# coding=utf-8 # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.Wikipedia # Lint as: python3 """Dream!n character datasets""" import datasets import json import urllib _CITATION = """ """ _DESCRIPTION = "Dream!n character datasets" _DATASET_URL = "https://huggingface.co/datasets/JAWCF/characters/resolve/main/images.tar.gz" json_url = urllib.request.urlopen("https://huggingface.co/datasets/JAWCF/characters/resolve/main/characters.json") DICT_DESC = json.loads(json_url.read()) class Characters(datasets.GeneratorBasedBuilder): def _info(self): features = datasets.Features({ 'image': datasets.Image(), 'text': datasets.Value('string') }) return datasets.DatasetInfo( # This is the description that will appear on the datasets page. description=_DESCRIPTION, # This defines the different columns of the dataset and their types features=features, # Here we define them above because they are different between the two configurations supervised_keys=None, # Homepage of the dataset for documentation homepage="", # License for the dataset if available license="", # Citation for the dataset citation=_CITATION, ) def _split_generators(self, dl_manager): path = dl_manager.download(_DATASET_URL) image_iters = dl_manager.iter_archive(path) splits = [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "images": image_iters } ), ] return splits def _generate_examples(self, images): """Yields examples.""" idx = 0 for filepath, image in images: yield idx, { "image": {"path": filepath, "bytes": image.read()}, "text" : DICT_DESC[filepath.split("/")[-1]], } idx+=1