Datasets:

Modalities:
Text
Formats:
parquet
Size:
< 1K
Libraries:
Datasets
pandas
License:
Titovs commited on
Commit
8b6caa7
·
0 Parent(s):

Init commit

Browse files
Files changed (3) hide show
  1. README.md +156 -0
  2. data/train-00000-of-00001.parquet +3 -0
  3. model_scores.png +3 -0
README.md ADDED
@@ -0,0 +1,156 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ dataset_info:
4
+ features:
5
+ - name: task_id
6
+ dtype: string
7
+ - name: prompt
8
+ dtype: string
9
+ - name: entry_point
10
+ dtype: string
11
+ - name: test
12
+ dtype: string
13
+ - name: description
14
+ dtype: string
15
+ - name: language
16
+ dtype: string
17
+ - name: canonical_solution
18
+ sequence: string
19
+ splits:
20
+ - name: train
21
+ num_bytes: 505355
22
+ num_examples: 161
23
+ download_size: 174830
24
+ dataset_size: 505355
25
+ configs:
26
+ - config_name: default
27
+ data_files:
28
+ - split: train
29
+ path: data/train-*
30
+ ---
31
+
32
+ # Benchmark summary
33
+
34
+ We introduce HumanEval for Kotlin, created from scratch by human experts.
35
+ Solutions and tests for all 161 HumanEval tasks are written by an expert olympiad programmer with 6 years of experience in Kotlin, and independently checked by a programmer with 4 years of experience in Kotlin.
36
+ The tests we implement are eqivalent to the original HumanEval tests for Python.
37
+
38
+ # How to use
39
+
40
+ The benchmark is prepared in a format suitable for MXEval and can be easily integrated into the MXEval pipeline.
41
+
42
+ When testing models on this benchmark, during the code generation step we use early stopping on the `}\n}` sequence to expedite the process. We also perform some code post-processing before evaluation — specifically, we remove all comments and signatures.
43
+
44
+ The code for running an example model on the benchmark using the early stopping and post-processing is available below.
45
+
46
+ ```python
47
+ import json
48
+ import re
49
+
50
+ from datasets import load_dataset
51
+ import jsonlines
52
+ import torch
53
+ from transformers import (
54
+ AutoTokenizer,
55
+ AutoModelForCausalLM,
56
+ StoppingCriteria,
57
+ StoppingCriteriaList,
58
+ )
59
+ from tqdm import tqdm
60
+ from mxeval.evaluation import evaluate_functional_correctness
61
+
62
+
63
+ class StoppingCriteriaSub(StoppingCriteria):
64
+ def __init__(self, stops, tokenizer):
65
+ (StoppingCriteria.__init__(self),)
66
+ self.stops = rf"{stops}"
67
+ self.tokenizer = tokenizer
68
+
69
+ def __call__(
70
+ self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs
71
+ ) -> bool:
72
+ last_three_tokens = [int(x) for x in input_ids.data[0][-3:]]
73
+ decoded_last_three_tokens = self.tokenizer.decode(last_three_tokens)
74
+
75
+ return bool(re.search(self.stops, decoded_last_three_tokens))
76
+
77
+
78
+ def generate(problem):
79
+ criterion = StoppingCriteriaSub(stops="\n}\n", tokenizer=tokenizer)
80
+ stopping_criteria = StoppingCriteriaList([criterion])
81
+
82
+ problem = tokenizer.encode(problem, return_tensors="pt").to('cuda')
83
+ sample = model.generate(
84
+ problem,
85
+ max_new_tokens=256,
86
+ min_new_tokens=128,
87
+ pad_token_id=tokenizer.eos_token_id,
88
+ do_sample=False,
89
+ num_beams=1,
90
+ stopping_criteria=stopping_criteria,
91
+ )
92
+
93
+ answer = tokenizer.decode(sample[0], skip_special_tokens=True)
94
+ return answer
95
+
96
+
97
+ def clean_asnwer(code):
98
+ # Clean comments
99
+ code_without_line_comments = re.sub(r"//.*", "", code)
100
+ code_without_all_comments = re.sub(
101
+ r"/\*.*?\*/", "", code_without_line_comments, flags=re.DOTALL
102
+ )
103
+ #Clean signatures
104
+ lines = code.split("\n")
105
+ for i, line in enumerate(lines):
106
+ if line.startswith("fun "):
107
+ return "\n".join(lines[i + 1:])
108
+
109
+ return code
110
+
111
+
112
+ model_name = "JetBrains/CodeLlama-7B-Kexer"
113
+ dataset = load_dataset("jetbrains/Kotlin_HumanEval")['train']
114
+ problem_dict = {problem['task_id']: problem for problem in dataset}
115
+
116
+ model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16).to('cuda')
117
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
118
+
119
+ output = []
120
+ for key in tqdm(list(problem_dict.keys()), leave=False):
121
+ problem = problem_dict[key]["prompt"]
122
+ answer = generate(problem)
123
+ answer = clean_asnwer(answer)
124
+ output.append({"task_id": key, "completion": answer, "language": "kotlin"})
125
+
126
+ output_file = f"answers"
127
+ with jsonlines.open(output_file, mode="w") as writer:
128
+ for line in output:
129
+ writer.write(line)
130
+
131
+ evaluate_functional_correctness(
132
+ sample_file=output_file,
133
+ k=[1],
134
+ n_workers=16,
135
+ timeout=15,
136
+ problem_file=problem_dict,
137
+ )
138
+
139
+ with open(output_file + '_results.jsonl') as fp:
140
+ total = 0
141
+ correct = 0
142
+ for line in fp:
143
+ sample_res = json.loads(line)
144
+ print(sample_res)
145
+ total += 1
146
+ correct += sample_res['passed']
147
+
148
+ print(f'Pass rate: {correct/total}')
149
+
150
+ ```
151
+
152
+
153
+ # Results
154
+
155
+ We evaluated multiple coding models using this benchmark, and the results are presented in the figure below:
156
+ ![results](https://huggingface.co/datasets/JetBrains/Kotlin_HumanEval/resolve/main/model_scores.png)
data/train-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:54c2765720acf0887c603f1eb1c08382cb7eba0c39a7a37be8e3b982aaddbc7b
3
+ size 174830
model_scores.png ADDED

Git LFS Details

  • SHA256: 7c6bf5e9b7863dd5e21683f8773c8beb3a74e4c1c46fdb55c46de18b8e0e9c65
  • Pointer size: 131 Bytes
  • Size of remote file: 441 kB