File size: 12,742 Bytes
84cb2b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
import numpy as np
import random
import re
import copy
from nltk.corpus import stopwords
import nltk
pos_tag = nltk.pos_tag
from nltk.stem import WordNetLemmatizer
lemma = WordNetLemmatizer().lemmatize
import sys

function_word = [".", ",", "!", "?", "male", "female", "neutral"]
def get_avail_phrases():
    sw = set(stopwords.words('english'))
    avail_phrases = set()
    fin = open("./conceptnet_entity.csv", 'r')
    for i, line in enumerate(fin):
        avail_phrases.add(' '.join(line.strip().split("|||")[:-1]))
    avail_phrases = avail_phrases - sw
    fin.close()

    fin = open("./negation.txt", 'r')
    negation_word = []
    for i, line in enumerate(fin):
        word = ' '.join(line.strip().split()[1:])
        negation_word.append(word)
        avail_phrases.add(word)
    fin.close()

    for w in function_word:
        avail_phrases.add(w)

    with open("avail_phrases.txt", "w") as fout:
        for w in avail_phrases:
            fout.write(w+"\n")
    return avail_phrases, negation_word

avail_phrases, negation_word = get_avail_phrases()

def output(st, fout):
    if "w" in data_dir:
        fout.write(" ".join(st)+"\n")
    else:
        for sen in st:
            fout.write(sen+"\n")
        fout.write("-"*5+"\n")

def repeat_sentence(st):
    # repeat one sentence and delete the original sentence
    idx = np.random.choice(np.arange(len(st))[1:], 1 + int(len(st)/2), replace=False).tolist()
    s = min(idx)
    tmp_st = copy.deepcopy(st)
    for l in idx:
        tmp_st[l] = copy.deepcopy(tmp_st[s])
    return tmp_st

def repeat_ngram(st):
    # repeat ngram in one sentence 1~4
    def repeat_sen_gram(st):
        flag = True
        for _ in range(10):
            try:
                idx = np.random.choice(np.arange(len(st))[1:])
                gram_num = np.random.choice(np.arange(5)[1:])
                split_sen = st[idx].strip().split()
                pointer_st = np.random.choice(np.arange(len(split_sen)))
                pointer_ed = pointer_st + gram_num
                if pointer_ed > len(split_sen):
                    pointer_ed = pointer_st
                    pointer_st = pointer_ed - gram_num
                    if pointer_st < 0:
                        continue
                    else:
                        flag = False
                        break
            except:
                continue
        if flag:
            return copy.deepcopy(st)
        sen1, sen2, sen3 = " ".join(split_sen[:pointer_st]), " ".join(split_sen[pointer_st:pointer_ed]), " ".join(split_sen[pointer_ed:])
        tmp_st = copy.deepcopy(st)
        tmp_st[idx] = " ".join([sen1, sen2, sen2, sen3]).strip()
        return tmp_st
    for i in range(int(len(st)/2)):
        st = repeat_sen_gram(st)
    return st

def replace_sentence(st):
    flag = True
    for _ in range(10):
        try:
            tmp_st = copy.deepcopy(st)
            idxs = np.random.choice(np.arange(len(st))[1:], np.random.choice(np.arange(1, len(st))), replace=False)
            replace_st_id = np.random.choice(np.arange(len(story)))
            for idx in idxs:
                tmp_st[idx] = np.random.choice(story[replace_st_id])
            flag = False
            break
        except:
            continue
    if flag:
        return copy.deepcopy(st)
    return tmp_st

def change_neg_helper(sen):
    def pro(s):
        final_sen = " ".join(s)
        return final_sen
    sen = sen.strip().split()        
    for i, n in enumerate(sen):
        if n in negation_word:
            del sen[i]
            return pro(sen)
    neg_list = ["not", "n't"]
    for i, n in enumerate(sen):
        if n in ["would", "will", "can", "could", "may", "might", "shall", "should", "do", "does", "did", "am", "is", "are", "was", "were", "be", "been"]:
            sen.insert(i+1, np.random.choice(neg_list))
            return pro(sen)
    pos_sen = pos_tag(sen)
    for i, n in enumerate(pos_sen):
        if n[1] == "VB":
            sen.insert(i, "do " + np.random.choice(neg_list))
            return pro(sen)
        elif n[1] == "VBD":
            sen[i] = lemma(sen[i], "v")
            sen.insert(i, "did " + np.random.choice(neg_list))
            return pro(sen)
        elif n[1] == "VBG":
            sen.insert(i, np.random.choice(neg_list))
            return pro(sen)
        elif n[1] == "VBN":
            sen.insert(i, np.random.choice(neg_list))
            return pro(sen)
        elif n[1] == "VBP":
            sen.insert(i, "do " + np.random.choice(neg_list))
            return pro(sen)
        elif n[1] == "VBZ":
            sen[i] = lemma(sen[i], "v")
            sen.insert(i, "does " + np.random.choice(neg_list))
            return pro(sen)
    print("VERB ERROR")
    return None

anotomy_word = {}
all_num, anotomy_num = 0, 0
with open("./conceptnet_antonym.txt", "r") as fin:
    for line in fin:
        tmp = line.strip().split("|||")
        if len(tmp) == 3:
            h, t = tmp[0], tmp[2].split()
            if h in anotomy_word:
                anotomy_word[h] += t
            else:
                anotomy_word[h] = t[:]

def change_neg_sentence(st):
    flag = True
    for _ in range(10):
        try:
            tmp_st = copy.deepcopy(st)
            idxs = np.random.choice(np.arange(len(st))[1:], np.random.choice(np.arange(1, len(st))), replace=False)
            for idx in idxs:
                tmp_st_idx = change_neg_helper(st[idx])
                if tmp_st_idx is not None: 
                    tmp_st[idx] = tmp_st_idx
                    flag = False
            if flag == False:
                break
        except:
            continue
    if flag:
        return copy.deepcopy(st)
    return tmp_st

def replace_word(st):
    global all_num, anotomy_num
    def replace_one_word(st):
        anotomy = False
        flag = True
        for _ in range(100):
            tmp_st = copy.deepcopy(st)
            idx = np.random.choice(np.arange(len(st))[1:])
            split_sen = tmp_st[idx].split()
            pos_split_sen = pos_tag(split_sen)
            avail_w_id = []
            for w_id, w in enumerate(split_sen):
                if (w in avail_phrases and w not in function_word and "[" not in w):
                    avail_w_id.append(w_id)
            if len(avail_w_id) == 0: continue
            word_id = np.random.choice(avail_w_id)
            if pos_split_sen[word_id][1] not in pos_vocab_entity: continue
            lemma_word = lemma(pos_split_sen[word_id][0], 'v' if pos_split_sen[word_id][1][0] == 'V' else 'n')
            if lemma_word in anotomy_word:
                replace_word = np.random.choice(anotomy_word[lemma_word])
                anotomy = True
            else:
                word_freq = pos_vocab_entity[pos_split_sen[word_id][1]]
                replace_word = ""
                flag_in = True
                for _ in range(10):
                    replace_word = np.random.choice(word_freq["word"], p=word_freq["freq"]/np.sum(word_freq["freq"]))
                    if len(word_freq["word"]) == 1 or replace_word != pos_split_sen[word_id][0]:
                        flag_in = False
                        break
                if flag_in:
                    replace_word = pos_split_sen[word_id][0]
                anotomy = False
            tmp_split_sen = copy.deepcopy(split_sen)
            split_sen[word_id] = replace_word
            tmp_st[idx] = " ".join(split_sen)
            flag = False
            break
        if flag:
            return copy.deepcopy(st), False
        return tmp_st, anotomy
    num = 0
    for idx in np.arange(len(st))[1:]:
        for word in st[idx].split():
            if word in avail_phrases:
                num += 1
    try:
        final_num = np.random.choice(np.arange(1, int(num*0.15+1)))
    except:
        final_num = 1
    for _ in range(final_num):
        st, anotomy = replace_one_word(st)
        all_num += 1
        if anotomy: anotomy_num += 1
    return st

def shuffle_sentence(st, n_sentence):
    def exchange(l, ids, target_ids):
        tmp_l = copy.deepcopy(l)
        for o_id, t_id in zip(ids, target_ids):
            tmp_l[o_id] = copy.deepcopy(l[t_id])
        return tmp_l
    # exchange n sentences
    flag = True
    for _ in range(10):
        sen_ids = np.random.choice(np.arange(len(st))[1:], n_sentence, replace=False)
        target_ids = np.random.permutation(sen_ids)
        tmp_st = exchange(st, sen_ids, target_ids)
        if st != tmp_st:
            flag = False
            break       
    if flag:
        return copy.deepcopy(st)
    return tmp_st
def get_pos_vocab(dir):
    pos_vocab_entity = {}
    with open("%s/entity_vocab.txt"%dir, "r") as fin:
        for line in fin:
            tmp = line.strip().split("|||")
            word = tmp[0].split()[0]
            pos = tmp[1:]
            for p in pos:
                pp = p.split()
                if pp[0] in pos_vocab_entity:
                    pos_vocab_entity[pp[0]]["word"].append(word)
                    pos_vocab_entity[pp[0]]["freq"].append(float(pp[1]))
                else:
                    pos_vocab_entity[pp[0]] = {"word":[word], "freq":[float(pp[1])]}
    return pos_vocab_entity
# ========================================================================================

name_list = ["test", "dev", "train"]
data_dir = "./%s/ini_data"%("WritingPrompts" if "w" in sys.argv[1] else "ROCStories")
output_dir = "%s/train_data"%("WritingPrompts" if "w" in sys.argv[1] else "ROCStories")

# type_dict = {"repeat":0.6, "replace":0.15, "shuffle":0.15, "neg":0.1}
type_dict = {"repeat":0.1, "replace":0.3, "shuffle":0.4, "neg":0.2}
type_list = list(type_dict.keys())
type_prob_list = []
for t in type_list:
    type_prob_list.append(type_dict[t])

time_list = [1,2,3,4]
# time_prob_list = [0.2,0.4,0.3,0.1]
time_prob_list = [0.5,0.2,0.2,0.1]

pos_vocab_entity = get_pos_vocab(data_dir)
for name in name_list:
    if "w" in data_dir.lower():
        with open("%s/%s.wp_source"%(data_dir, name), "r") as fin1:
            with open("%s/%s.wp_target"%(data_dir, name), "r") as fin2:
                story, tmp = [], []
                for k, line in enumerate(fin2):
                    src = fin1.readline().strip()
                    if src[-1].isalpha():
                        src = src + " ."
                    tmp.append(src)
                    for sen in line.strip().split(".")[:-1]:
                        if sen.strip() != "":
                            tmp.append(sen.strip()+" .")
                    if len(tmp) >= 4:
                        story.append(tmp)
                    tmp = []
    else:
        with open("%s/%s.txt"%(data_dir, name), "r") as fin:
            story, tmp = [], []
            for k, line in enumerate(fin):
                i = k + 1
                if i % 6 == 0:
                    story.append(tmp)
                    tmp = []
                else:
                    sen = line.strip()
                    tmp.append(sen+" ." if sen[-1].isalpha() else sen)

    with open("%s/%s_human.txt"%(output_dir, name), "w") as fout:
        for st_id, st in enumerate(story):
            output(st, fout)

    prefix = "%s/%s_negative"%(output_dir, name)
    with open("%s.txt"%(prefix), "w") as fout:
        for st_id, st in enumerate(story):
            chaotic_list = np.random.choice(type_list, 
                np.random.choice(time_list, p=time_prob_list), replace=False, p=type_prob_list/np.sum(type_prob_list)).tolist()
            print(chaotic_list)
            for c in chaotic_list:
                if c == "repeat":
                    if random.random() < 0.7:
                        st = repeat_sentence(st)
                    else:
                        st = repeat_ngram(st)
                if c == "replace":
                    if random.random() < 0.5:
                        # replace one sentence
                        st = replace_sentence(st)
                    else:
                        # replace one word
                        st = replace_word(st)
                if c == "shuffle":
                    n_sentence = int(np.random.choice(np.arange(1,len(st)-1)+1))
                    st = shuffle_sentence(st, n_sentence)
                if c == "neg":
                    st = change_neg_sentence(st)
            output(st, fout)



    print("Anotomy:", anotomy_num)
    print("All:", all_num)