from importlib import import_module from src.datasets import * import os from os import path import numpy as np from train_eval import train, eval import argparse from src.Models import * from ray import tune from ray.tune.schedulers import ASHAScheduler parser = argparse.ArgumentParser(description='Chinese Toxic Classification') parser.add_argument('--mode', default="train", type=str, help='train/test') # 是否微调超参数 parser.add_argument('--tune_param', default=False, type=bool, help='True for param tuning') parser.add_argument('--tune_samples', default=1, type=int, help='Number of tuning experiments to run') parser.add_argument('--tune_asha', default=False, type=bool, help='If use ASHA scheduler for early stopping') parser.add_argument('--tune_file', default='RoBERTa', type=str, help='Suffix of filename for parameter tuning results') parser.add_argument('--tune_gpu', default=True, type=bool, help='Use GPU to tune parameters') args = parser.parse_args() # TOC # search_space = { # 'learning_rate': tune.choice([1e-5, 5e-5]), # 'num_epochs': tune.choice([5]), # 'batch_size': tune.choice([32, 64]), # 'dropout': tune.choice([0.2, 0.5]), # 'seed': tune.choice([1]), # "pad_size" : tune.choice([50, 100]) # } # THUCnews search_space = { 'learning_rate': tune.choice([1e-5]), 'num_epochs': tune.choice([5]), 'batch_size': tune.choice([32]), # 'dropout': tune.choice([0.2, 0.3, 0.5]), 'seed': tune.choice([1]), "pad_size" : tune.choice([80]), "alpha1" : tune.choice([0.5]) } def convert_label(preds): final_pred = [] for pred in preds: if pred == [1, 0]: final_pred.append("offensive") else: final_pred.append("non-offensive") return final_pred if __name__ == '__main__': # dataset = 'TOC' # 数据集 dataset = "ToxiCN" # model_name = "bert-base-chinese" model_name = "hfl/chinese-roberta-wwm-ext" # model_name = "junnyu/ChineseBERT-base" np.random.seed(1) torch.manual_seed(1) torch.cuda.manual_seed_all(1) torch.backends.cudnn.deterministic = True # 保证每次结果一样 start_time = time.time() print("Loading data...") x = import_module('model.' + "Config_base") config = x.Config_base(model_name, dataset) # 引入Config参数,包括Config_base和各私有Config if not os.path.exists(config.data_path): trn_data = Datasets(config, config.train_path) dev_data = Datasets(config, config.dev_path) test_data = Datasets(config, config.test_path) torch.save({ 'trn_data' : trn_data, 'dev_data' : dev_data, 'test_data' : test_data, }, config.data_path) else: checkpoint = torch.load(config.data_path) trn_data = checkpoint['trn_data'] dev_data = checkpoint['dev_data'] test_data = checkpoint['test_data'] print('The size of the Training dataset: {}'.format(len(trn_data))) print('The size of the Validation dataset: {}'.format(len(dev_data))) print('The size of the Test dataset: {}'.format(len(test_data))) train_iter = Dataloader(trn_data, batch_size=int(config.batch_size), SEED=config.seed) dev_iter = Dataloader(dev_data, batch_size=int(config.batch_size), shuffle=False) test_iter = Dataloader(test_data, batch_size=int(config.batch_size), shuffle=False) time_dif = get_time_dif(start_time) print("Time usage:", time_dif) def experiment(tune_config): if tune_config: for param in tune_config: setattr(config, param, tune_config[param]) train(config, train_iter, dev_iter, test_iter) if args.mode == "train": if args.tune_param: scheduler = ASHAScheduler(metric='metric', mode="max") if args.tune_asha else None analysis = tune.run(experiment, num_samples=args.tune_samples, config=search_space, resources_per_trial={'gpu':int(args.tune_gpu)}, scheduler=scheduler, verbose=3) analysis.results_df.to_csv('tune_results_'+args.tune_file+'.csv') # if not tune parameters else: experiment(tune_config=None) else: embed_model = Bert_Layer(config).to(config.device) model = TwoLayerFFNNLayer(config).to(config.device) # model_name = "ckp-bert-base-chinese-NN_ML-100_D-0.2_B-64_E-5_Lr-1e-05-BEST.tar" model_name = "ckp-bert-base-chinese-NN_ML-150_D-0.5_B-32_E-2_Lr-1e-05-BEST.tar" path = '{}/{}'.format(config.checkpoint_path, model_name) checkpoint = torch.load(path) embed_model.load_state_dict(checkpoint['embed_model_state_dict']) model.load_state_dict(checkpoint['model_state_dict']) loss_fn = nn.BCEWithLogitsLoss() dev_scores, preds = eval(config, embed_model, model, loss_fn, dev_iter, data_name='TEST') print(convert_label(preds))