import numpy as np from sklearn import metrics from sklearn.metrics import f1_score, precision_score, recall_score, accuracy_score import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from tqdm import tqdm import time import json import copy from src.datasets import get_time_dif, to_tensor, convert_onehot from src.Models import * # from src.losses import * # from tensorboardX import SummaryWriter from ray import tune def train(config, train_iter, dev_iter, test_iter, task=1): embed_model = Bert_Layer(config).to(config.device) model = TwoLayerFFNNLayer(config).to(config.device) model_name = '{}-NN_ML-{}_D-{}_B-{}_E-{}_Lr-{}_aplha-{}'.format(config.model_name, config.pad_size, config.dropout, config.batch_size, config.num_epochs, config.learning_rate, config.alpha1) embed_optimizer = optim.AdamW(embed_model.parameters(), lr=config.learning_rate) model_optimizer = optim.AdamW(model.parameters(), lr=config.learning_rate) # fgm = FGM(embed_model, epsilon=1, emb_name='word_embeddings.') loss_fn = nn.BCEWithLogitsLoss() # loss_fn = get_loss_func("FL", [0.4, 0.6], config.num_classes, config.alpha1) max_score = 0 for epoch in range(config.num_epochs): embed_model.train() model.train() start_time = time.time() print("Model is training in epoch {}".format(epoch)) loss_all = 0. preds = [] labels = [] for batch in tqdm(train_iter, desc='Training', colour = 'MAGENTA'): embed_model.zero_grad() model.zero_grad() args = to_tensor(batch) att_input, pooled_emb = embed_model(**args) logit = model(att_input, pooled_emb).cpu() label = args['toxic'] # label = args['toxic_type'] # label = args['expression'] # label = args['target'] loss = loss_fn(logit, label.float()) pred = get_preds(config, logit) # pred = get_preds_task2_4(config, logit) # pred = get_preds_task3(config, logit) preds.extend(pred) labels.extend(label.detach().numpy()) loss_all += loss.item() embed_optimizer.zero_grad() model_optimizer.zero_grad() loss.backward() embed_optimizer.step() model_optimizer.step() end_time = time.time() print(" took: {:.1f} min".format((end_time - start_time)/60.)) print("TRAINED for {} epochs".format(epoch)) # 验证 if epoch >= config.num_warm: # print("training loss: loss={}".format(loss_all/len(data))) trn_scores = get_scores(preds, labels, loss_all, len(train_iter), data_name="TRAIN") dev_scores, _ = eval(config, embed_model, model, loss_fn, dev_iter, data_name='DEV') f = open('{}/{}.all_scores.txt'.format(config.result_path, model_name), 'a') f.write(' ================================================== Epoch: {} ==================================================\n'.format(epoch)) f.write('TrainScore: \n{}\nEvalScore: \n{}\n'.format(json.dumps(trn_scores), json.dumps(dev_scores))) max_score = save_best(config, epoch, model_name, embed_model, model, dev_scores, max_score) print("ALLTRAINED for {} epochs".format(epoch)) path = '{}/ckp-{}-{}.tar'.format(config.checkpoint_path, model_name, 'BEST') checkpoint = torch.load(path) embed_model.load_state_dict(checkpoint['embed_model_state_dict']) model.load_state_dict(checkpoint['model_state_dict']) test_scores, _ = eval(config, embed_model, model, loss_fn, test_iter, data_name='DEV') f = open('{}/{}.all_scores.txt'.format(config.result_path, model_name), 'a') f.write('Test: \n{}\n'.format(json.dumps(test_scores))) def eval(config, embed_model, model, loss_fn, dev_iter, data_name='DEV'): loss_all = 0. preds = [] labels = [] for batch in tqdm(dev_iter, desc='Evaling', colour = 'CYAN'): with torch.no_grad(): args = to_tensor(batch) att_input, pooled_emb = embed_model(**args) logit = model(att_input, pooled_emb) logit = logit.cpu() label = args['toxic'] # label = args['toxic_type'] # label = args['expression'] # label = args['target'] loss = loss_fn(logit, label.float()) pred = get_preds(config, logit) # pred = get_preds_task2_4(config, logit) # pred = get_preds_task3(config, logit) preds.extend(pred) labels.extend(label.detach().numpy()) loss_all += loss.item() dev_scores = get_scores(preds, labels, loss_all, len(dev_iter), data_name=data_name) # if data_name != "TEST": # 2022.9.20 命令行输入为test模式时,不调用tune # tune.report(metric=dev_scores) return dev_scores, preds # For Multi Classfication def get_preds(config, logit): results = torch.max(logit.data, 1)[1].cpu().numpy() new_results = [] for result in results: result = convert_onehot(config, result) new_results.append(result) return new_results # Task 2 and 4: 多分类 Toxic Type Discrimination and d Expression Type Detection def get_preds_task2_4(config, logit): all_results = [] logit_ = torch.sigmoid(logit) results_pred = torch.max(logit_.data, 1)[0].cpu().numpy() results = torch.max(logit_.data, 1)[1].cpu().numpy() # index for maximum probability for i in range(len(results)): if results_pred[i] < 0.5: result = [0 for i in range(config.num_classes)] else: result = convert_onehot(config, results[i]) all_results.append(result) return all_results # Task 3: 多标签分类 Targeted Group Detection def get_preds_task3(config, logit): all_results = [] logit_ = torch.sigmoid(logit) results_pred = torch.max(logit_.data, 1)[0].cpu().numpy() results = torch.max(logit_.data, 1)[1].cpu().numpy() logit_ = logit_.detach().cpu().numpy() for i in range(len(results)): if results_pred[i] < 0.5: result = [0 for i in range(config.num_classes)] else: result = get_pred_task3(logit_[i]) all_results.append(result) return all_results def get_pred_task3(logit): result = [0 for i in range(len(logit))] for i in range(len(logit)): if logit[i] >= 0.5: result[i] = 1 return result def get_scores(all_preds, all_lebels, loss_all, len, data_name): score_dict = dict() f1 = f1_score(all_preds, all_lebels, average='weighted') # acc = accuracy_score(all_preds, all_lebels) all_f1 = f1_score(all_preds, all_lebels, average=None) pre = precision_score(all_preds, all_lebels, average='weighted') recall = recall_score(all_preds, all_lebels, average='weighted') score_dict['F1'] = f1 # score_dict['accuracy'] = acc score_dict['all_f1'] = all_f1.tolist() score_dict['precision'] = pre score_dict['recall'] = recall score_dict['all_loss'] = loss_all/len print("Evaling on \"{}\" data".format(data_name)) for s_name, s_val in score_dict.items(): print("{}: {}".format(s_name, s_val)) return score_dict def save_best(config, epoch, model_name, embed_model, model, score, max_score): score_key = config.score_key curr_score = score[score_key] print('The epoch_{} {}: {}\nCurrent max {}: {}'.format(epoch, score_key, curr_score, score_key, max_score)) if curr_score > max_score or epoch == 0: torch.save({ 'epoch': config.num_epochs, 'embed_model_state_dict': embed_model.state_dict(), 'model_state_dict': model.state_dict(), }, '{}/ckp-{}-{}.tar'.format(config.checkpoint_path, model_name, 'BEST')) return curr_score else: return max_score