File size: 5,912 Bytes
0cdcbd3
 
47fa989
8777b36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bee5346
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14416d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f87509e
14416d7
 
f87509e
14416d7
f87509e
 
44e5b90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7df5953
44e5b90
 
7df5953
44e5b90
7df5953
 
47fa989
 
 
 
 
5b35a39
 
9437e2c
bee5346
 
9437e2c
bee5346
9437e2c
44e5b90
 
 
 
 
 
0cdcbd3
d32cb25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e5a132
 
 
d32cb25
 
 
4e5a132
d32cb25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
---
license: mit
dataset_info:
- config_name: default
  features:
  - name: info
    dtype: string
  - name: modern
    dtype: string
  - name: classical
    dtype: string
  - name: english
    dtype: string
  splits:
  - name: train
    num_bytes: 366918005
    num_examples: 972467
  download_size: 256443222
  dataset_size: 366918005
- config_name: gemini-augmented
  features:
  - name: info
    dtype: string
  - name: modern
    dtype: string
  - name: classical
    dtype: string
  - name: english
    dtype: string
  - name: text
    dtype: string
  - name: messages
    list:
    - name: content
      dtype: string
    - name: role
      dtype: string
  splits:
  - name: train
    num_bytes: 11142831.6
    num_examples: 9000
  - name: test
    num_bytes: 1238092.4
    num_examples: 1000
  download_size: 7541863
  dataset_size: 12380924.0
- config_name: instruct
  features:
  - name: info
    dtype: string
  - name: modern
    dtype: string
  - name: classical
    dtype: string
  - name: english
    dtype: string
  - name: text
    dtype: string
  - name: messages
    list:
    - name: content
      dtype: string
    - name: role
      dtype: string
  splits:
  - name: train
    num_bytes: 9876880
    num_examples: 9000
  - name: test
    num_bytes: 1104403
    num_examples: 1000
  download_size: 6887847
  dataset_size: 10981283
- config_name: instruct-augmented
  features:
  - name: info
    dtype: string
  - name: modern
    dtype: string
  - name: classical
    dtype: string
  - name: english
    dtype: string
  - name: text
    dtype: string
  - name: messages
    list:
    - name: content
      dtype: string
    - name: role
      dtype: string
  splits:
  - name: train
    num_bytes: 11171774
    num_examples: 9000
  - name: test
    num_bytes: 1209150
    num_examples: 1000
  download_size: 7561715
  dataset_size: 12380924
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
  - split: test
    path: data/test-*
- config_name: instruct
  data_files:
  - split: train
    path: instruct/train-*
  - split: test
    path: instruct/test-*
- config_name: instruct-augmented
  data_files:
  - split: train
    path: instruct-augmented/train-*
  - split: test
    path: instruct-augmented/test-*
---
**Dataset Card for WenYanWen\_English\_Parallel**

**Dataset Summary**

The WenYanWen\_English\_Parallel dataset is a multilingual parallel corpus in Classical Chinese (Wenyanwen), modern Chinese, and English. The Classical Chinese and modern Chinese parts are sourced from the NiuTrans/Classical-Modern dataset, while the corresponding English translations are generated using Gemini Pro.

**Supported Tasks and Leaderboard**

This dataset can be used for various multilingual and translation tasks, including but not limited to:

1. Neural Machine Translation (Classical Chinese to Modern Chinese)
2. Neural Machine Translation (Modern Chinese to English)
3. Neural Machine Translation (Classical Chinese to English)
4. Multilingual Text-to-Text Transfer

There is currently no official leaderboard for this dataset.

**License**

Please refer to the license of the [NiuTrans/Classical-Modern](https://github.com/NiuTrans/Classical-Modern) dataset and the terms of use of Gemini Pro for more information regarding the dataset license.

**Citation Information**

If you use this dataset in your research, please cite the original sources:

1. [NiuTrans/Classical-Modern](https://github.com/NiuTrans/Classical-Modern)
2. Gemini Pro (for English translations)

**Dataset Structure**

The dataset is a tab-separated text file with four columns:

1. **document\_info**: The title or source information of the text
2. **modern\_chinese**: The translation of the original Classical Chinese text into modern Chinese
3. **classical\_chinese**: The original text in Classical Chinese (Wenyanwen)
4. **english**: The English translation of the Classical Chinese text

Here is an example of a dataset entry:

| Document Info | Modern Chinese | Classical Chinese | English Translation |
| --- | --- | --- | --- |
| 《黄帝四经·经法·道法》 | 人一降生便有患害随之,这是因为人的本性中存在着欲望且这种欲望永无止境。 | 生有害,曰欲,曰不知足。 | Man is born to know sorrow, because man's nature is selfish and his desires insatiable. |

**Dataset Size**

The dataset contains approximately 972k entries.

**Data Fields**

- **document\_info**: A string representing the title or source information of the text.
- **modern\_chinese**: A string containing the translation of the original Classical Chinese text into modern Chinese.
- **classical\_chinese**: A string containing the original text in Classical Chinese (Wenyanwen).
- **english**: A string containing the English translation of the Classical Chinese text.

**Data Splits**

There are no official data splits for this dataset. We recommend splitting the dataset into train, validation, and test sets at a ratio of 80:10:10.

**Potential Bias**

Since the English translations are generated using Gemini Pro, there might be inconsistencies or errors in the translations, which may introduce bias into the dataset. Additionally, the choice of Classical Chinese texts and their modern Chinese translations may also introduce bias. Finally, the use of a single translation tool for the English translations may result in limited linguistic diversity.

**Potential Social Impact**

This dataset can be used for various multilingual and translation tasks, which can have a positive impact on facilitating cross-cultural communication and understanding. However, it is important to be aware of the potential biases in the dataset and to use the dataset responsibly. Additionally, as with any dataset, it is important to consider the ethical implications of using this dataset, including issues related to data privacy, consent, and representation.