--- license: mit dataset_info: - config_name: default features: - name: info dtype: string - name: modern dtype: string - name: classical dtype: string - name: english dtype: string splits: - name: train num_bytes: 366918005 num_examples: 972467 download_size: 256443222 dataset_size: 366918005 - config_name: gemini-augmented features: - name: info dtype: string - name: modern dtype: string - name: classical dtype: string - name: english dtype: string - name: text dtype: string - name: messages list: - name: content dtype: string - name: role dtype: string splits: - name: train num_bytes: 11142831.6 num_examples: 9000 - name: test num_bytes: 1238092.4 num_examples: 1000 download_size: 7541863 dataset_size: 12380924 - config_name: instruct features: - name: info dtype: string - name: modern dtype: string - name: classical dtype: string - name: english dtype: string - name: text dtype: string - name: messages list: - name: content dtype: string - name: role dtype: string splits: - name: train num_bytes: 9876880 num_examples: 9000 - name: test num_bytes: 1104403 num_examples: 1000 download_size: 6887847 dataset_size: 10981283 - config_name: instruct-augmented features: - name: info dtype: string - name: modern dtype: string - name: classical dtype: string - name: english dtype: string - name: text dtype: string - name: messages list: - name: content dtype: string - name: role dtype: string splits: - name: train num_bytes: 11171774 num_examples: 9000 - name: test num_bytes: 1209150 num_examples: 1000 download_size: 7561715 dataset_size: 12380924 - config_name: instruct-large features: - name: info dtype: string - name: modern dtype: string - name: classical dtype: string - name: english dtype: string - name: text dtype: string - name: messages list: - name: content dtype: string - name: role dtype: string splits: - name: train num_bytes: 1072811901.9168397 num_examples: 970727 - name: test num_bytes: 1104403 num_examples: 1000 download_size: 673287243 dataset_size: 1073916304.9168396 configs: - config_name: default data_files: - split: train path: data/train-* - config_name: instruct data_files: - split: train path: instruct/train-* - split: test path: instruct/test-* - config_name: instruct-augmented data_files: - split: train path: instruct-augmented/train-* - split: test path: instruct-augmented/test-* - config_name: instruct-large data_files: - split: train path: instruct-large/train-* - split: test path: instruct-large/test-* task_categories: - translation - question-answering language: - zh - en - lzh size_categories: - 100K`[INST] 将以下现代汉语文本改写为文言文: 乾统三年,徙封为秦国公。 [/INST] 乾统三年,徙封秦国。`` | | messages | list | [{"content": "将以下现代汉语文本改写为文言文: 乾统三年,徙封为秦国公。", "role": "user"}, {"content": "乾统三年,徙封秦国。", "role": "assistant"}] | ## **Dataset Structure** The dataset consists of four subsets: `default`, `instruct`, `instruct-augment`, and `instruct-large`. - `default` is a parallel translation dataset. - `instruct` serves as an instruction-tuning dataset and consists of prompt/answer pairs created from a 10,000-sample subset of the `default` dataset. - `instruct-augment` is similar to `instruct`, with the distinction being that the prompt/answer pairs have been augmented by Gemini-Pro. (Detailed information can be found in our dataset generation code on [Github](https://github.com/Kaifeng-Gao/WenYanWen_English_Parallel/tree/main)) - `instruct-large` is an expanded version of `instruct` that includes all samples from the `default` dataset. ### **Default** | `info` | `modern` | `classical` | `english` | |----------|-------------|-----------|-----------| | string | string | string | string | | Split | Examples | |-------|-----------| | Train | 972,467 | ### **Instruct** | `info` | `modern` | `classical` | `english` | `text` | `messages` | |----------|----------|-------------|-----------|--------|------------------------| | string | string | string | string | string | list of {`content`: string, `role`: string}| | Split | Examples | |-------|-----------| | Train | 9,000 | | Test | 1,000 | ### **Instruct-Augmented** | `info` | `modern` | `classical` | `english` | `text` | `messages` | |----------|----------|-------------|-----------|--------|------------------------| | string | string | string | string | string | list of {`content`: string, `role`: string}| | Split | Examples | |-------|-----------| | Train | 9,000 | | Test | 1,000 | ### **Instruct-Large** | `info` | `modern` | `classical` | `english` | `text` | `messages` | |----------|----------|-------------|-----------|--------|------------------------| | string | string | string | string | string | list of {`content`: string, `role`: string}| | Split | Examples | |-------|-----------| | Train | 875,214 | | Test | 97,246 | ## **Supported Tasks and Leaderboard** This dataset can be used for various multilingual and translation tasks, including but not limited to: 1. Neural Machine Translation (Classical Chinese to Modern Chinese) 2. Neural Machine Translation (Modern Chinese to English) 3. Neural Machine Translation (Classical Chinese to English) 4. Multilingual Text-to-Text Transfer There is currently no official leaderboard for this dataset. ## **License** Please refer to the license of the [NiuTrans/Classical-Modern](https://github.com/NiuTrans/Classical-Modern) dataset and the terms of use of Gemini Pro for more information regarding the dataset license. ## **Citation Information** If you use this dataset in your research, please cite the original sources: 1. [NiuTrans/Classical-Modern](https://github.com/NiuTrans/Classical-Modern) 2. [Gemini Pro](https://arxiv.org/abs/2403.05530) ## **Potential Bias** Since the English translations are generated using Gemini Pro, there might be inconsistencies or errors in the translations, which may introduce bias into the dataset. Additionally, the choice of Classical Chinese texts and their modern Chinese translations may also introduce bias. Finally, the use of a single translation tool for the English translations may result in limited linguistic diversity. ## **Potential Social Impact** This dataset can be used for various multilingual and translation tasks, which can have a positive impact on facilitating cross-cultural communication and understanding. However, it is important to be aware of the potential biases in the dataset and to use the dataset responsibly. Additionally, as with any dataset, it is important to consider the ethical implications of using this dataset, including issues related to data privacy, consent, and representation.