Kamrani commited on
Commit
fd32ed9
·
1 Parent(s): 3886dce

Create new file

Browse files
Files changed (1) hide show
  1. en-fa-translation.py +109 -0
en-fa-translation.py ADDED
@@ -0,0 +1,109 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import csv
2
+ import json
3
+ import os
4
+
5
+ import datasets
6
+
7
+
8
+
9
+ # TODO: Add description of the dataset here
10
+ # You can copy an official description
11
+ _DESCRIPTION = """\
12
+ This new dataset is designed to solve this great NLP task and is crafted with a lot of care.
13
+ """
14
+ _URL = "https://huggingface.co/datasets/Kamrani/en-fa-translation/resolve/main/"
15
+ _URLs = {
16
+ "train": _URL + "train.json",
17
+ "dev": _URL + "dev.json",
18
+ "test": _URL + "test.json",
19
+ }
20
+
21
+ # TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case
22
+ class PersianTranslateDB(datasets.GeneratorBasedBuilder):
23
+ """TODO: Short description of my dataset."""
24
+
25
+ VERSION = datasets.Version("1.0.0")
26
+
27
+ # This is an example of a dataset with multiple configurations.
28
+ # If you don't want/need to define several sub-sets in your dataset,
29
+ # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
30
+
31
+ # If you need to make complex sub-parts in the datasets with configurable options
32
+ # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
33
+ # BUILDER_CONFIG_CLASS = MyBuilderConfig
34
+
35
+ # You will be able to load one or the other configurations in the following list with
36
+ # data = datasets.load_dataset('my_dataset', 'first_domain')
37
+ # data = datasets.load_dataset('my_dataset', 'second_domain')
38
+ BUILDER_CONFIGS = [
39
+ datasets.BuilderConfig(name="en-fa", version=VERSION, description="en-fa translation database"),
40
+ #datasets.BuilderConfig(name="second_domain", version=VERSION, description="This part of my dataset covers a second domain"),
41
+ ]
42
+
43
+ DEFAULT_CONFIG_NAME = "en-fa" # It's not mandatory to have a default configuration. Just use one if it make sense.
44
+
45
+ def _info(self):
46
+ # TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
47
+ features = datasets.Features(
48
+ {
49
+ "source": datasets.Value("string"),
50
+ "target": datasets.Value("string"),
51
+ # These are the features of your dataset like images, labels ...
52
+ }
53
+ )
54
+ return datasets.DatasetInfo(
55
+ # This is the description that will appear on the datasets page.
56
+ description=_DESCRIPTION,
57
+ # This defines the different columns of the dataset and their types
58
+ features=features, # Here we define them above because they are different between the two configurations
59
+ # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
60
+ # specify them. They'll be used if as_supervised=True in builder.as_dataset.
61
+ # supervised_keys=("sentence", "label"),
62
+ )
63
+
64
+ def _split_generators(self, dl_manager):
65
+ # TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
66
+ # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
67
+
68
+ # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
69
+ # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
70
+ # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
71
+ data_dir = dl_manager.download_and_extract(_URL)
72
+ return [
73
+ datasets.SplitGenerator(
74
+ name=datasets.Split.TRAIN,
75
+ # These kwargs will be passed to _generate_examples
76
+ gen_kwargs={
77
+ "filepath": os.path.join(data_dir, "train.json"),
78
+ "split": "train",
79
+ },
80
+ ),
81
+ datasets.SplitGenerator(
82
+ name=datasets.Split.VALIDATION,
83
+ # These kwargs will be passed to _generate_examples
84
+ gen_kwargs={
85
+ "filepath": os.path.join(data_dir, "dev.json"),
86
+ "split": "dev",
87
+ },
88
+ ),
89
+ datasets.SplitGenerator(
90
+ name=datasets.Split.TEST,
91
+ # These kwargs will be passed to _generate_examples
92
+ gen_kwargs={
93
+ "filepath": os.path.join(data_dir, "test.json"),
94
+ "split": "test"
95
+ },
96
+ ),
97
+ ]
98
+
99
+ # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
100
+ def _generate_examples(self, filepath, split):
101
+ # TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
102
+ # The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
103
+ with open(filepath, encoding="utf-8") as f:
104
+ for key, row in enumerate(f):
105
+ data = json.loads(row)
106
+ yield key, {
107
+ "source": data["source"],
108
+ "target": data["target"]
109
+ }