File size: 7,004 Bytes
7c93e9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
# -*- coding: utf-8 -*-
""" Official evaluation script for v1.0 of the TriviaQA dataset.
Extended from the evaluation script for v1.1 of the SQuAD dataset. """
from __future__ import print_function
import os
import sys
# 获取当前脚本所在的目录
current_dir = os.path.dirname(os.path.abspath(__file__))
# 构建相对路径
relative_path = os.path.join(current_dir, '..')
# 将相对路径添加到sys.path
sys.path.append(relative_path)

from collections import Counter
import string
import re
import sys
import argparse
import utils.dataset_utils
import utils.utils
import json
import csv
f1 = exact_match = common = Wrong = 0

def normalize_answer(s):
    """Lower text and remove punctuation, articles and extra whitespace."""
    # print(s)
    s = json.dumps(s)

    def remove_articles(text):
        return re.sub(r'\b(a|an|the)\b', ' ', text)

    def white_space_fix(text):
        return ' '.join(text.split())

    def handle_punc(text):
        exclude = set(string.punctuation + "".join([u"‘", u"’", u"´", u"`"]))
        return ''.join(ch if ch not in exclude else ' ' for ch in text)

    def lower(text):
        return text.lower()

    def replace_underscore(text):
        return text.replace('_', ' ')

    # print(white_space_fix(remove_articles(handle_punc(lower(replace_underscore(s))))).strip())
    return white_space_fix(remove_articles(handle_punc(lower(replace_underscore(s))))).strip()


def f1_score(prediction, ground_truth):
    global Wrong
    prediction_tokens = normalize_answer(prediction).split()
    print(f"规范化预测:{normalize_answer(prediction)}")
    # print(f"预测token数:{len(prediction_tokens)}")
    
    ground_truth_tokens = normalize_answer(ground_truth).split()
    print(f"规范化答案:{normalize_answer(ground_truth)}")
    # print(f"答案token数:{len(ground_truth_tokens) }")
    common = Counter(prediction_tokens) & Counter(ground_truth_tokens)
    print(common)
    num_same = sum(common.values())
    print(num_same)
    if num_same == 0:
        Wrong+=1
        return 0
    precision = 1.0 * num_same / len(prediction_tokens)
    # print(f"预测率:{precision}")
    recall = 1.0 * num_same / len(ground_truth_tokens)
    # print(f"召回率:{recall}")
    f1 = (2 * precision * recall) / (precision + recall)
    return f1


def exact_match_score(prediction, ground_truth):
    return normalize_answer(prediction) == normalize_answer(ground_truth)


def metric_max_over_ground_truths(metric_fn, prediction, ground_truths):
    scores_for_ground_truths = []
    score = metric_fn(prediction, ground_truths)
    scores_for_ground_truths.append(score)
    return max(scores_for_ground_truths)


def is_exact_match(answer_object, prediction):
    ground_truths = get_ground_truths(answer_object)
    for ground_truth in ground_truths:
        if exact_match_score(prediction, ground_truth):
            return True
    return False


def has_exact_match(ground_truths, candidates):
    for ground_truth in ground_truths:
        if ground_truth in candidates:
            return True
    return False


def get_ground_truths(answer):
    return answer['NormalizedAliases'] + [normalize_answer(ans) for ans in answer.get('HumanAnswers', [])]


def get_oracle_score(ground_truth, predicted_answers, i=None, mute=False,maxline=1000):
    exact_match = common = 0
    
    common += 1
    prediction = normalize_answer(predicted_answers[i])
    ground_truths = ground_truth[i]
    print(f"预测:{prediction}")
    print(f"事实{ground_truths}")
    em_for_this_question = has_exact_match(ground_truths, prediction)
    exact_match += int(em_for_this_question)

    exact_match = 100.0 * exact_match / maxline

    return {'oracle_exact_match': exact_match, 'common': common, 'denominator': maxline,"Wrong":Wrong,
            'pred_len': len(predicted_answers), 'gold_len': len(ground_truth)}


def evaluate_triviaqa(ground_truth, predicted_answers, i=None, mute=False,maxline=None):
    global f1,exact_match,common
    common += i
    prediction = predicted_answers[i]
    ground_truths = ground_truth[i]["Data"]["Answer"]
    # print(f"预测:{prediction}")
    # print(f"事实{ground_truths}")
    em_for_this_question = metric_max_over_ground_truths(
        exact_match_score, prediction, ground_truths)
    if em_for_this_question == 0 and not mute:
        print("em=0:", prediction, ground_truths)
    exact_match += em_for_this_question
    f1_for_this_question = metric_max_over_ground_truths(
        f1_score, prediction, ground_truths)
    f1 += f1_for_this_question
    print(f"当前轮次:{i+1}")
    print(f"本轮F1率:{f1_for_this_question}")
    print(f"累加F1率:{f1}")
    print(f"本轮exact:{em_for_this_question}")
    print(f"累加exact:{exact_match}")
    
   
    
    exact_match_mean =  exact_match / (i+1)
    f1_mean =  f1 / (i+1)
    
    print(f"平均F1率:{f1_mean}")
    print(f"平均exact率:{exact_match_mean}")

    return {'exact_match': exact_match_mean, 'f1': f1_mean, 'common': common, 'denominator': i+1,"Wrong":Wrong,
            'pred_len': len(predicted_answers), 'gold_len': len(ground_truth)}


def get_args():
    parser = argparse.ArgumentParser(
        description='Evaluation for TriviaQA {}'.format(expected_version))
    parser.add_argument('--dataset_file',default="C:/Users/94427/kashiwa/DISC-Assignment/Experiment/TriviaQA/TriviaQA_test_format1k.jsonl", help='Dataset file')
    parser.add_argument('--prediction_file',default="C:/Users/94427/kashiwa/DISC-Assignment/Experiment/TriviaQA/result/TriviaQA_GPT3.5_answers1k.csv", help='Prediction File')
    args = parser.parse_args()
    return args


if __name__ == '__main__':
    expected_version = 1.0
    args = get_args()

    # dataset_json = utils.dataset_utils.read_triviaqa_data(args.dataset_file)
    dataset_json = args.dataset_file
    prediction_json = args.prediction_file
    # dataset_dict = json.loads(dataset_json)
    dataset_dict = []

    prediction_dict = []
    




# 打开JSONL文件并读取数据
with open(args.dataset_file, 'r',encoding="utf-8") as file:
    for line in file:
        json_data = json.loads(line)
        dataset_dict.append(json_data)

# 打印读取的数据


# 打开CSV文件并读取数据
with open(args.prediction_file, newline='',encoding="utf-8") as csvfile:
    reader = csv.reader(csvfile)
    
    # 遍历每一行数据
    for row in reader:
        prediction_dict.append(row)
    # print(prediction_dict)
    # if dataset_json['Version'] != expected_version:
    #     print('Evaluation expects v-{} , but got dataset with v-{}'.format(expected_version,dataset_json['Version']),
    #           file=sys.stderr)
for i in range(0,1000):
    # print(dataset_dict)
    # print(dataset_dict[i])
    # print(dataset_dict[i]["Data"])
    print(f"当前行数:{i}")
    key_to_ground_truth = dataset_dict
    predictions = prediction_dict
    eval_dict = evaluate_triviaqa(key_to_ground_truth, predictions,i=i,maxline=1000)
    print(eval_dict)