|
import utils.utils |
|
import utils.dataset_utils |
|
import os |
|
from tqdm import tqdm |
|
import random |
|
import nltk |
|
import argparse |
|
|
|
|
|
def get_text(qad, domain): |
|
local_file = os.path.join(args.web_dir, qad['Filename']) if domain == 'SearchResults' else os.path.join(args.wikipedia_dir, qad['Filename']) |
|
return utils.utils.get_file_contents(local_file, encoding='utf-8') |
|
|
|
|
|
def select_relevant_portion(text): |
|
paras = text.split('\n') |
|
selected = [] |
|
done = False |
|
for para in paras: |
|
sents = sent_tokenize.tokenize(para) |
|
for sent in sents: |
|
words = nltk.word_tokenize(sent) |
|
for word in words: |
|
selected.append(word) |
|
if len(selected) >= args.max_num_tokens: |
|
done = True |
|
break |
|
if done: |
|
break |
|
if done: |
|
break |
|
selected.append('\n') |
|
st = ' '.join(selected).strip() |
|
return st |
|
|
|
|
|
def add_triple_data(datum, page, domain): |
|
qad = {'Source': domain} |
|
for key in ['QuestionId', 'Question', 'Answer']: |
|
qad[key] = datum[key] |
|
for key in page: |
|
qad[key] = page[key] |
|
return qad |
|
|
|
|
|
def get_qad_triples(data): |
|
qad_triples = [] |
|
for datum in data['Data']: |
|
for key in ['EntityPages', 'SearchResults']: |
|
for page in datum.get(key, []): |
|
qad = add_triple_data(datum, page, key) |
|
qad_triples.append(qad) |
|
return qad_triples |
|
|
|
|
|
def convert_to_squad_format(qa_json_file, squad_file): |
|
qa_json = utils.dataset_utils.read_triviaqa_data(qa_json_file) |
|
qad_triples = get_qad_triples(qa_json) |
|
|
|
random.seed(args.seed) |
|
random.shuffle(qad_triples) |
|
|
|
data = [] |
|
for qad in tqdm(qad_triples): |
|
qid = qad['QuestionId'] |
|
|
|
text = get_text(qad, qad['Source']) |
|
selected_text = select_relevant_portion(text) |
|
|
|
question = qad['Question'] |
|
para = {'context': selected_text, 'qas': [{'question': question, 'answers': []}]} |
|
data.append({'paragraphs': [para]}) |
|
qa = para['qas'][0] |
|
qa['id'] = utils.dataset_utils.get_question_doc_string(qid, qad['Filename']) |
|
qa['qid'] = qid |
|
|
|
ans_string, index = utils.dataset_utils.answer_index_in_document(qad['Answer'], selected_text) |
|
if index == -1: |
|
if qa_json['Split'] == 'train': |
|
continue |
|
else: |
|
qa['answers'].append({'text': ans_string, 'answer_start': index}) |
|
|
|
if qa_json['Split'] == 'train' and len(data) >= args.sample_size and qa_json['Domain'] == 'Web': |
|
break |
|
|
|
squad = {'data': data, 'version': qa_json['Version']} |
|
utils.utils.write_json_to_file(squad, squad_file) |
|
print ('Added', len(data)) |
|
|
|
|
|
def get_args(): |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('--triviaqa_file', help='Triviaqa file') |
|
parser.add_argument('--squad_file', help='Squad file') |
|
parser.add_argument('--wikipedia_dir', help='Wikipedia doc dir') |
|
parser.add_argument('--web_dir', help='Web doc dir') |
|
|
|
parser.add_argument('--seed', default=10, type=int, help='Random seed') |
|
parser.add_argument('--max_num_tokens', default=800, type=int, help='Maximum number of tokens from a document') |
|
parser.add_argument('--sample_size', default=80000, type=int, help='Random seed') |
|
parser.add_argument('--tokenizer', default='tokenizers/punkt/english.pickle', help='Sentence tokenizer') |
|
args = parser.parse_args() |
|
return args |
|
|
|
|
|
if __name__ == '__main__': |
|
args = get_args() |
|
sent_tokenize = nltk.data.load(args.tokenizer) |
|
convert_to_squad_format(args.triviaqa_file, args.squad_file) |
|
|