import torch from transformers import AutoModelForCausalLM, AutoTokenizer from transformers.generation.utils import GenerationConfig from peft import PeftModel, PeftConfig import json import csv # lora_path = "/root/lanyun-tmp/output/MiniCPM/checkpoint-9000/" model_path = '/root/lanyun-tmp/OpenBMB/MiniCPM-2B-sft-fp32' model = AutoModelForCausalLM.from_pretrained( model_path, torch_dtype=torch.float16, device_map="auto", trust_remote_code=True ) model.generation_config = GenerationConfig.from_pretrained(model_path) tokenizer = AutoTokenizer.from_pretrained( model_path, use_fast=False, trust_remote_code=True, ) # model = PeftModel.from_pretrained(model, lora_path) # 读取JSONL文件 filename = '/root/lanyun-tmp/Dataset/val_triviaqa.csv' data = [] with open(filename, newline='',encoding="utf-8") as csvfile: reader = csv.DictReader(csvfile) files = 'TriviaQA_MiniCPM_NLoRA.csv' with open(files, 'w', newline='',encoding='utf-8') as csvfile: writer = csv.writer(csvfile) # 提取内容 # 逐行读取CSV文件 for row in reader: context = row['context'] question = row['question'] messages = str([{'role': 'system', 'content': 'Don t output "[" !!!, As a reading comprehension expert, you will receive context and question. Please understand the given Context first and then output the answer of the question based on the Context'}, {'role': 'user', 'content': '{\'context\': \'[DOC] [TLE] richard marx had an 80s No 1 hit with Hold On To The Nights? \', \'question\': \'Who had an 80s No 1 hit with Hold On To The Nights?\'}'}, {'role': 'assistant', 'content': "richard marx"}]) response = model.chat(tokenizer, messages) answer = response[0][0] print(answer) writer.writerow(answer)