import requests from datetime import datetime, timedelta import pandas as pd class WeatherDataFetcher: def __init__(self, api_key): self.api_key = api_key def get_lat_lon(self, city_name): """ Fetches the latitude and longitude for a given city name. Parameters: - city_name: The name of the city (including state and country). Returns: - A tuple (latitude, longitude) if successful, None otherwise. """ url = f'http://api.openweathermap.org/geo/1.0/direct?q={city_name}&limit=1&appid={self.api_key}' try: response = requests.get(url) data = response.json() if data: return data[0]['lat'], data[0]['lon'] else: print('No geo data found') return None except Exception as e: print(f"Error fetching geo data: {e}") return None def fetch_weather_data(self, lat, lon, start_date, end_date): """ Fetches weather data for a given set of coordinates within a specified date range and adds latitude and longitude to the DataFrame. Parameters: - lat: Latitude of the location. - lon: Longitude of the location. - start_date: The start date as a datetime object. - end_date: The end date as a datetime object. Returns: - A pandas DataFrame containing the weather data along with latitude and longitude. """ daily_data_frames = [] current_date = start_date while current_date <= end_date: timestamp = int(datetime.timestamp(current_date)) url = f'https://history.openweathermap.org/data/2.5/history/city?lat={lat}&lon={lon}&type=hour&start={timestamp}&appid={self.api_key}' response = requests.get(url) if response.status_code == 200: data = response.json() if 'list' in data: df_day = pd.json_normalize(data['list']) # Add latitude and longitude as columns df_day['latitude'] = lat df_day['longitude'] = lon df_day['date'] = current_date.strftime('%Y-%m-%d') daily_data_frames.append(df_day) else: print(f"No 'list' key found in data for {current_date.strftime('%Y-%m-%d')}") else: print(f"Failed to retrieve data for {current_date.strftime('%Y-%m-%d')} with status code {response.status_code}") current_date += timedelta(days=1) if daily_data_frames: df_all_days = pd.concat(daily_data_frames, ignore_index=True) return self.expand_weather_column(df_all_days) else: return pd.DataFrame() def expand_weather_column(self,df): # Check if 'weather' column exists if 'weather' in df.columns: # Extract weather details df['weather_id'] = df['weather'].apply(lambda x: x[0]['id'] if x else None) df['weather_main'] = df['weather'].apply(lambda x: x[0]['main'] if x else None) df['weather_description'] = df['weather'].apply(lambda x: x[0]['description'] if x else None) df['weather_icon'] = df['weather'].apply(lambda x: x[0]['icon'] if x else None) # Drop the original 'weather' column df = df.drop('weather', axis=1) return df def fetch_weather_for_cities(self, cities, start_date, end_date): all_cities_weather_data = [] for city_name in cities: lat_lon = self.get_lat_lon(city_name) # Call the method within the same class if lat_lon: lat, lon = lat_lon df_weather = self.fetch_weather_data(lat, lon, start_date, end_date) if not df_weather.empty: df_weather['city'] = city_name # Add a column for the city name all_cities_weather_data.append(df_weather) else: print(f"No weather data retrieved for {city_name}.") else: print(f"Failed to get latitude and longitude for {city_name}.") if all_cities_weather_data: all_data_df = pd.concat(all_cities_weather_data, ignore_index=True) return all_data_df else: return pd.DataFrame() def save_to_csv(self, df, file_name): try: df.to_csv(file_name, index=False) print(f"Data successfully saved to {file_name}.") except Exception as e: print(f"Failed to save data to CSV. Error: {e}")