image
imagewidth (px) 54
3.23k
| latex_formula
stringlengths 6
142
|
---|---|
\[x^{p+1} \ldots x^5\] |
|
\[n \times n\] |
|
\[H_{n+1}(x)=2xH_{n}(x)-2nH_{n-1}(x)\] |
|
\[(2000)5920-5933\] |
|
\[(k+k+n) \times(k+k+n)\] |
|
\[0 \leq x \leq \frac{1}{4}\] |
|
\[y \leq x\] |
|
\[c<c_{cr}\] |
|
\[\left(y+1 \right) \left(cy^2+1 \right) \left(cy^3+3cy^2-2y-3 \right)=0\] |
|
\[u= \frac{az+b}{cz+d}\] |
|
\[\tan( \theta)=1\] |
|
\[x \neq 0\] |
|
\[\log \sqrt{2 \pi}\] |
|
\[\cos o \sigma\] |
|
\[\frac{ \infty}{ \infty}\] |
|
\[(4n-4)-(2n-1)=2n-3\] |
|
\[x^2= \sum_{a=1}^3x_a^2\] |
|
\[z=x_{21}x_{13}^{-1}x_{34}x_{42}^{-1}\] |
|
\[- \frac{52}{45}\] |
|
\[\beta^n+ \beta^{-n}-2\] |
|
\[\int dyf(y)=1\] |
|
\[( \frac{1}{2} \frac{1}{2}00)\] |
|
\[(+ \frac{1}{2},+ \frac{1}{2},- \frac{1}{2},+ \frac{1}{2},+ \frac{1}{2})\] |
|
\[\frac{1}{9} \frac{(s^2+t^2+u^2)^2}{stu}\] |
|
\[e^{-u}+e^{-v}+e^{-t+u-v}+1=0\] |
|
\[\sin \theta_1 \sin \theta_2 \sin \theta_3\] |
|
\[56_c+8_v+56_v+8_c\] |
|
\[x^4+ux^2+qx+r=0\] |
|
\[bya\] |
|
\[\pm \frac{1}{ \sqrt{132}}\] |
|
\[a=b^{-1}c \sum_{n=0}^{ \infty} \left(-1 \right)^{n}\] |
|
\[\sum_b I_{ab}\] |
|
\[x=x_a-x_b\] |
|
\[H=p^2+i \sin x\] |
|
\[\lim \sqrt{x}\] |
|
\[\sin y_0\] |
|
\[[a_1] \times[a_2] \times[a_3]\] |
|
\[\frac{179}{48}\] |
|
\[\mbox{Tr}\] |
|
\[137=3+7+127=(2^2-1)+(2^3-1)+(2^7-1)\] |
|
\[\sum_{a=1}^{4}C_{a}=2B+4F\] |
|
\[\frac{1}{ \sqrt 2}\] |
|
\[\frac{ \sqrt{p+1}}{2}\] |
|
\[S_{ab}S_{b}+S_{b}S_{ab}=0\] |
|
\[e-e\] |
|
\[(125)-(135)+(735)-(725)\] |
|
\[3-2 \cos \theta- \cos^2 \theta\] |
|
\[\frac{n_{1}}{ \sin \theta_{1}}= \frac{n_{2}}{ \sin \theta_{2}}\] |
|
\[\sin( \pi \alpha)=1\] |
|
\[x=y \tan \theta\] |
|
\[\cos^2 \alpha\] |
|
\[- \frac{1}{3} \int A^3\] |
|
\[\frac{37 \sqrt{ \pi}}{8192} \frac{ \alpha}{R^3}\] |
|
\[\sqrt{1+z^2}\] |
|
\[f(z, \cos z, \sin z)\] |
|
\[P_{max}= \frac{8 \sqrt{3}}{15}=0,924\] |
|
\[\tan \beta=2\] |
|
\[b_c= \frac{1}{2} \log( \sqrt{2}+1)\] |
|
\[t>x\] |
|
\[qyx\] |
|
\[2h(2h+1)(4h+1)(4h+3)\] |
|
\[xyz\] |
|
\[x= \frac{2 \pi}{ \sqrt{2}}(n+ \frac{1}{2})\] |
|
\[(001000000)\] |
|
\[\sin( \pi \alpha)= \sin( \pi \beta)=0\] |
|
\[a_{ab}=-a_{ba}\] |
|
\[p \times p\] |
|
\[\cos{ \alpha}=1\] |
|
\[a^1a^2a^3a^4a^5\] |
|
\[AdS_3 \times S^3 \times S^3 \times S^1\] |
|
\[x^3-x^7\] |
|
\[ax-b \log(x) \geq b(1- \log \frac{b}{a})\] |
|
\[x^5(x-q^2)(x-1)+b^2(x^2-q^2)^2=0\] |
|
\[xy=qyx\] |
|
\[\tan( \theta/2) \sin^2( \theta/2)\] |
|
\[\sin \alpha=0\] |
|
\[a[1]=a_1+ \frac{3}{2}a_2+2a_3+a_4+ \frac{11}{2}\] |
|
\[a=3(4- \sqrt{10}) \sqrt{10}/(14 \sqrt{10}-5)\] |
|
\[(x+y)^n= \sum_{k=0}^n C_n^kx^{n-k}y^k\] |
|
\[y^2=y^ay^a\] |
|
\[b_4= \frac{a_1b_2-a_2b_1+a_4(b_1-b_2)}{a_1-a_2}\] |
|
\[f=(1+w)(1-w)^{-1}\] |
|
\[X-X\] |
|
\[x+a\] |
|
\[y^{2}= \left({y^{1}} \right)^{2}+ \ldots+ \left({y^{6}} \right)^{2}\] |
|
\[- \frac{1}{4}+x\] |
|
\[M \rightarrow \frac{M}{ \sqrt{c}}\] |
|
\[a(t)= \sin(Ht)\] |
|
\[X= \sqrt{x^ax_a+x^{a^{ \prime}}x_{a^{ \prime}}}\] |
|
\[g+1+n=(n-1)+1+n=2n\] |
|
\[38+40+2\] |
|
\[c=-1 \pm \sqrt{2}\] |
|
\[C= \sum_{n=1} c_nn^2\] |
|
\[\sum m^2_B- \sum m^2_F=0\] |
|
\[\sin^2{ \theta} \leq 1\] |
|
\[32x^6-48x^4+18x^2-1\] |
|
\[y= \sqrt{y_i y^i}\] |
|
\[B \times X\] |
|
\[|u|< \frac{1}{a} \tan( \frac{a}{ \sqrt{1+a^2}} \frac \pi2)\] |
|
\[\sqrt{T}y(t)\] |