image
imagewidth (px)
54
3.23k
latex_formula
stringlengths
6
142
\[x^{p+1} \ldots x^5\]
\[n \times n\]
\[H_{n+1}(x)=2xH_{n}(x)-2nH_{n-1}(x)\]
\[(2000)5920-5933\]
\[(k+k+n) \times(k+k+n)\]
\[0 \leq x \leq \frac{1}{4}\]
\[y \leq x\]
\[c<c_{cr}\]
\[\left(y+1 \right) \left(cy^2+1 \right) \left(cy^3+3cy^2-2y-3 \right)=0\]
\[u= \frac{az+b}{cz+d}\]
\[\tan( \theta)=1\]
\[x \neq 0\]
\[\log \sqrt{2 \pi}\]
\[\cos o \sigma\]
\[\frac{ \infty}{ \infty}\]
\[(4n-4)-(2n-1)=2n-3\]
\[x^2= \sum_{a=1}^3x_a^2\]
\[z=x_{21}x_{13}^{-1}x_{34}x_{42}^{-1}\]
\[- \frac{52}{45}\]
\[\beta^n+ \beta^{-n}-2\]
\[\int dyf(y)=1\]
\[( \frac{1}{2} \frac{1}{2}00)\]
\[(+ \frac{1}{2},+ \frac{1}{2},- \frac{1}{2},+ \frac{1}{2},+ \frac{1}{2})\]
\[\frac{1}{9} \frac{(s^2+t^2+u^2)^2}{stu}\]
\[e^{-u}+e^{-v}+e^{-t+u-v}+1=0\]
\[\sin \theta_1 \sin \theta_2 \sin \theta_3\]
\[56_c+8_v+56_v+8_c\]
\[x^4+ux^2+qx+r=0\]
\[bya\]
\[\pm \frac{1}{ \sqrt{132}}\]
\[a=b^{-1}c \sum_{n=0}^{ \infty} \left(-1 \right)^{n}\]
\[\sum_b I_{ab}\]
\[x=x_a-x_b\]
\[H=p^2+i \sin x\]
\[\lim \sqrt{x}\]
\[\sin y_0\]
\[[a_1] \times[a_2] \times[a_3]\]
\[\frac{179}{48}\]
\[\mbox{Tr}\]
\[137=3+7+127=(2^2-1)+(2^3-1)+(2^7-1)\]
\[\sum_{a=1}^{4}C_{a}=2B+4F\]
\[\frac{1}{ \sqrt 2}\]
\[\frac{ \sqrt{p+1}}{2}\]
\[S_{ab}S_{b}+S_{b}S_{ab}=0\]
\[e-e\]
\[(125)-(135)+(735)-(725)\]
\[3-2 \cos \theta- \cos^2 \theta\]
\[\frac{n_{1}}{ \sin \theta_{1}}= \frac{n_{2}}{ \sin \theta_{2}}\]
\[\sin( \pi \alpha)=1\]
\[x=y \tan \theta\]
\[\cos^2 \alpha\]
\[- \frac{1}{3} \int A^3\]
\[\frac{37 \sqrt{ \pi}}{8192} \frac{ \alpha}{R^3}\]
\[\sqrt{1+z^2}\]
\[f(z, \cos z, \sin z)\]
\[P_{max}= \frac{8 \sqrt{3}}{15}=0,924\]
\[\tan \beta=2\]
\[b_c= \frac{1}{2} \log( \sqrt{2}+1)\]
\[t>x\]
\[qyx\]
\[2h(2h+1)(4h+1)(4h+3)\]
\[xyz\]
\[x= \frac{2 \pi}{ \sqrt{2}}(n+ \frac{1}{2})\]
\[(001000000)\]
\[\sin( \pi \alpha)= \sin( \pi \beta)=0\]
\[a_{ab}=-a_{ba}\]
\[p \times p\]
\[\cos{ \alpha}=1\]
\[a^1a^2a^3a^4a^5\]
\[AdS_3 \times S^3 \times S^3 \times S^1\]
\[x^3-x^7\]
\[ax-b \log(x) \geq b(1- \log \frac{b}{a})\]
\[x^5(x-q^2)(x-1)+b^2(x^2-q^2)^2=0\]
\[xy=qyx\]
\[\tan( \theta/2) \sin^2( \theta/2)\]
\[\sin \alpha=0\]
\[a[1]=a_1+ \frac{3}{2}a_2+2a_3+a_4+ \frac{11}{2}\]
\[a=3(4- \sqrt{10}) \sqrt{10}/(14 \sqrt{10}-5)\]
\[(x+y)^n= \sum_{k=0}^n C_n^kx^{n-k}y^k\]
\[y^2=y^ay^a\]
\[b_4= \frac{a_1b_2-a_2b_1+a_4(b_1-b_2)}{a_1-a_2}\]
\[f=(1+w)(1-w)^{-1}\]
\[X-X\]
\[x+a\]
\[y^{2}= \left({y^{1}} \right)^{2}+ \ldots+ \left({y^{6}} \right)^{2}\]
\[- \frac{1}{4}+x\]
\[M \rightarrow \frac{M}{ \sqrt{c}}\]
\[a(t)= \sin(Ht)\]
\[X= \sqrt{x^ax_a+x^{a^{ \prime}}x_{a^{ \prime}}}\]
\[g+1+n=(n-1)+1+n=2n\]
\[38+40+2\]
\[c=-1 \pm \sqrt{2}\]
\[C= \sum_{n=1} c_nn^2\]
\[\sum m^2_B- \sum m^2_F=0\]
\[\sin^2{ \theta} \leq 1\]
\[32x^6-48x^4+18x^2-1\]
\[y= \sqrt{y_i y^i}\]
\[B \times X\]
\[|u|< \frac{1}{a} \tan( \frac{a}{ \sqrt{1+a^2}} \frac \pi2)\]
\[\sqrt{T}y(t)\]