File size: 6,742 Bytes
743507f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""KorQuAD v2.1:The Korean Question Answering Dataset"""
from __future__ import absolute_import, division, print_function
import json
import os
import datasets
_CITATION = """\
@article{NODE09353166,
author={Youngmin Kim,Seungyoung Lim;Hyunjeong Lee;Soyoon Park;Myungji Kim},
title={{KorQuAD 2.0: Korean QA Dataset for Web Document Machine Comprehension}},
booltitle={{Journal of KIISE 제47권 제6호}},
journal={{Journal of KIISE}},
volume={{47}},
issue={{6}},
publisher={The Korean Institute of Information Scientists and Engineers},
year={2020},
ISSN={{2383-630X}},
pages={577-586},
url={http://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE09353166}}
"""
_DESCRIPTION = """\
KorQuAD 2.0 is a Korean question and answering dataset consisting of a total of 100,000+ pairs. There are three major differences from KorQuAD 1.0, which is the standard Korean Q & A data. The first is that a given document is a whole Wikipedia page, not just one or two paragraphs. Second, because the document also contains tables and lists, it is necessary to understand the document structured with HTML tags. Finally, the answer can be a long text covering not only word or phrase units, but paragraphs, tables, and lists. As a baseline model, BERT Multilingual is used, released by Google as an open source. It shows 46.0% F1 score, a very low score compared to 85.7% of the human F1 score. It indicates that this data is a challenging task. Additionally, we increased the performance by no-answer data augmentation. Through the distribution of this data, we intend to extend the limit of MRC that was limited to plain text to real world tasks of various lengths and formats.
"""
_HOMEPAGE = "https://korquad.github.io/"
_LICENSE = "CC BY-ND 2.0 KR"
_URL = "https://github.com/korquad/korquad.github.io/raw/master/dataset/KorQuAD_2.1"
_URLS = {
"train": [
_URL + "/train/KorQuAD_2.1_train_00.zip",
_URL + "/train/KorQuAD_2.1_train_01.zip",
_URL + "/train/KorQuAD_2.1_train_02.zip",
_URL + "/train/KorQuAD_2.1_train_03.zip",
_URL + "/train/KorQuAD_2.1_train_04.zip",
_URL + "/train/KorQuAD_2.1_train_05.zip",
_URL + "/train/KorQuAD_2.1_train_06.zip",
_URL + "/train/KorQuAD_2.1_train_07.zip",
_URL + "/train/KorQuAD_2.1_train_08.zip",
_URL + "/train/KorQuAD_2.1_train_09.zip",
_URL + "/train/KorQuAD_2.1_train_10.zip",
_URL + "/train/KorQuAD_2.1_train_11.zip",
_URL + "/train/KorQuAD_2.1_train_12.zip",
],
"validation": [_URL + "/dev/KorQuAD_2.1_dev_00.zip", _URL + "/dev/KorQuAD_2.1_dev_01.zip"],
}
class SquadKorV2(datasets.GeneratorBasedBuilder):
"""KorQuAD 2.1 dataset"""
VERSION = datasets.Version("2.1.0")
BUILDER_CONFIGS = [
datasets.BuilderConfig(name="squad_kor_v2", version=VERSION, description=_DESCRIPTION),
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"id": datasets.Value("string"),
"title": datasets.Value("string"),
"context": datasets.Value("string"),
"question": datasets.Value("string"),
"answer": datasets.Features(
{
"text": datasets.Value("string"),
"answer_start": datasets.Value("int32"),
"html_answer_start": datasets.Value("int32"),
}
),
"url": datasets.Value("string"),
"raw_html": datasets.Value("string"),
}
),
supervised_keys=None,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
# download and extract URLs
urls_to_download = _URLS
downloaded_files = dl_manager.download_and_extract(urls_to_download)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"dirs": downloaded_files["train"]}),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION, gen_kwargs={"dirs": downloaded_files["validation"]}
),
]
def _generate_examples(self, dirs):
"""Yields examples."""
for d in dirs:
filepaths = sorted(os.scandir(d), key=lambda x: x.name)
for filepath in filepaths:
with open(filepath, encoding="utf-8") as f:
squad = json.load(f)
for example in squad["data"]:
title = example.get("title", "").strip()
url = example.get("url", "").strip()
raw_html = example.get("raw_html", "").strip()
context = example["context"].strip()
for qa in example["qas"]:
question = qa["question"].strip()
answer = qa["answer"]
id_ = qa["id"]
answer_start = answer["answer_start"]
html_answer_start = answer["html_answer_start"]
answer_text = answer["text"].strip()
yield id_, {
"title": title,
"context": context,
"question": question,
"id": id_,
"answer": {
"answer_start": answer_start,
"html_answer_start": html_answer_start,
"text": answer_text,
},
"url": url,
"raw_html": raw_html,
}
|