file,content
__init__.py,"import os
import sys
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__))))
from .bin.aion_pipeline import aion_train_model
"
aion.py,"import argparse
import sys
import os
import subprocess

INSTALL = 'install'
LINUXINSTALL = 'linuxinstall'
FE_MIGRATE = 'migrateappfe'
LAUNCH_KAFKA = 'launchkafkaconsumer'
RUN_LOCAL_MLAC_PIPELINE = 'runpipelinelocal'
BUILD_MLAC_CONTAINER = 'buildmlaccontainerlocal'
CONVERT_MODEL = 'convertmodel'
START_MLFLOW = 'mlflow'
COMMON_SERVICE = 'service'
TRAINING = 'training'
TRAINING_AWS = 'trainingonaws'
TRAINING_DISTRIBUTED = 'distributedtraining'
START_APPF = 'appfe'
ONLINE_TRAINING = 'onlinetraining'
TEXT_SUMMARIZATION = 'textsummarization'
GENERATE_MLAC = 'generatemlac'
AWS_TRAINING = 'awstraining'
LLAMA_7B_TUNING = 'llama7btuning'
LLM_PROMPT = 'llmprompt'
LLM_TUNING = 'llmtuning'
LLM_PUBLISH = 'llmpublish'
LLM_BENCHMARKING = 'llmbenchmarking'
TELEMETRY_PUSH = 'pushtelemetry'
def aion_aws_training(confFile):
    from hyperscalers.aion_aws_training import awsTraining
    status = awsTraining(confFile)
    print(status)
    
def aion_training(confFile):
    from bin.aion_pipeline import aion_train_model
    status = aion_train_model(confFile)
    print(status)    

def aion_awstraining(config_file):
    from hyperscalers import aws_instance
    print(config_file)
    aws_instance.training(config_file)
    
def aion_generatemlac(ConfFile):
    from bin.aion_mlac import generate_mlac_code
    status = generate_mlac_code(ConfFile)
    print(status)
    
def aion_textsummarization(confFile):
    from bin.aion_text_summarizer import aion_textsummary
    status = aion_textsummary(confFile)    
    
def aion_oltraining(confFile):
    from bin.aion_online_pipeline import aion_ot_train_model
    status = aion_ot_train_model(confFile)
    print(status)

def do_telemetry_sync():
    from appbe.telemetry import SyncTelemetry
    SyncTelemetry()
    
def aion_llm_publish(cloudconfig,instanceid,hypervisor,model,usecaseid,region,image):
    from llm.llm_inference import LLM_publish
    LLM_publish(cloudconfig,instanceid,hypervisor,model,usecaseid,region,image)
    
def aion_migratefe(operation):
    import os
    import sys
    os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'appfe.ux.settings')
    try:
        from django.core.management import execute_from_command_line
    except ImportError as exc:
        raise ImportError(
            ""Couldn't import Django. Are you sure it's installed and ""
            ""available on your PYTHONPATH environment variable? Did you ""
            ""forget to activate a virtual environment?""
        ) from exc
    argi=[]
    argi.append(os.path.abspath(__file__))
    argi.append(operation)
    execute_from_command_line(argi)    
def aion_appfe(url,port):
    #manage_location = os.path.join(os.path.dirname(os.path.abspath(__file__)),'manage.py')
    #subprocess.check_call([sys.executable,manage_location, ""runserver"",""%s:%s""%(url,port)])
    import os
    import sys
    os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'appfe.ux.settings')
    try:
        from django.core.management import execute_from_command_line
    except ImportError as exc:
        raise ImportError(
            ""Couldn't import Django. Are you sure it's installed and ""
            ""available on your PYTHONPATH environment variable? Did you ""
            ""forget to activate a virtual environment?""
        ) from exc
    argi=[]
    argi.append(os.path.abspath(__file__))
    argi.append('runaion')
    argi.append(""%s:%s""%(url,port))    
    execute_from_command_line(argi)

def aion_linux_install(version):
    from install import linux_dependencies
    linux_dependencies.process(version)    
    
def aion_install(version):
    from install import dependencies
    dependencies.process(version)
    
def aion_service(ip,port,username,password):
    from bin.aion_service import start_server
    start_server(ip,port,username,password)    
    
def aion_distributedLearning(confFile):
    from distributed_learning import learning 
    learning.training(confFile)
    
def aion_launchkafkaconsumer():
    from mlops import kafka_consumer
    kafka_consumer.launch_kafka_consumer()
    
def aion_start_mlflow():
    from appbe.dataPath import DEPLOY_LOCATION    
    import platform
    import shutil
    from os.path import expanduser    
    mlflowpath = os.path.normpath(os.path.join(os.path.dirname(__file__),'..','..','..','Scripts','mlflow.exe'))
    print(mlflowpath)
    home = expanduser(""~"")
    if platform.system() == 'Windows':
        DEPLOY_LOCATION = os.path.join(DEPLOY_LOCATION,'mlruns')
        outputStr = subprocess.Popen([sys.executable, mlflowpath,""ui"", ""--backend-store-uri"",""file:///""+DEPLOY_LOCATION])
    else:
        DEPLOY_LOCATION = os.path.join(DEPLOY_LOCATION,'mlruns')
        subprocess.check_call(['mlflow',""ui"",""-h"",""0.0.0.0"",""--backend-store-uri"",""file:///""+DEPLOY_LOCATION])

def aion_model_conversion(config_file):
    from conversions import model_convertions
    model_convertions.convert(config_file)    
    
def aion_model_buildMLaCContainer(config):
    from mlops import build_container
    build_container.local_docker_build(config)
    
def aion_model_runpipelinelocal(config):
    from mlops import local_pipeline
    local_pipeline.run_pipeline(config)

def aion_llm_tuning(config):
    from llm.llm_tuning import run
    run(config)
    
def aion_llm_prompt(cloudconfig,instanceid,prompt):
    from llm.aws_instance_api import LLM_predict
    LLM_predict(cloudconfig,instanceid,prompt)
    
def llm_bench_marking(hypervisor,instanceid,model,usecaseid,eval):
    print(eval)
    from llm.bench_marking import bench_mark
    bench_mark(hypervisor,instanceid,model,usecaseid,eval)
    
if __name__ == ""__main__"":
    parser = argparse.ArgumentParser()
    parser.add_argument('-c', '--configPath', help='Config File Path')
    parser.add_argument('-i', '--instanceid', help='instanceid')
    parser.add_argument('-hv', '--hypervisor', help='hypervisor')
    parser.add_argument('-md', '--model', help='model')
    parser.add_argument('-uc', '--usecase', help='usecase')
    parser.add_argument('-cc', '--cloudConfigPath', help='Cloud Config File Path')
    parser.add_argument('-m', '--module', help='MODULE=TRAINING, APPFE, ONLINETRAINING,DISTRIBUTEDTRAINING')
    parser.add_argument('-ip', '--ipaddress', help='URL applicable only for APPFE method ')    
    parser.add_argument('-p', '--port', help='APP Front End Port applicable only for APPFE method ')    
    parser.add_argument('-ac', '--appfecommand', help='APP Front End Command ')  
    parser.add_argument('-un','--username', help=""USERNAME"")
    parser.add_argument('-passw','--password', help=""PASSWORD"")
    parser.add_argument('-j', '--jsoninput', help='JSON Input')    
    parser.add_argument('-v', '--version', help='Installer Version')    
    parser.add_argument('-pf', '--prompt', help='Prompt File')
    parser.add_argument('-r', '--region', help='REGION NAME')
    parser.add_argument('-im', '--image', help='IMAGE NAME')
    parser.add_argument('-e', '--eval', help='evaluation for code or doc', default='doc')
    args = parser.parse_args()    
    if args.module.lower() == TRAINING:
        aion_training(args.configPath)
    elif args.module.lower() == TRAINING_AWS:
        aion_awstraining(args.configPath)        
    elif args.module.lower() == TRAINING_DISTRIBUTED:
        aion_distributedLearning(args.configPath)        
    elif args.module.lower() == START_APPF:
        aion_appfe(args.ipaddress,args.port)   
    elif args.module.lower() == ONLINE_TRAINING:
        aion_oltraining(args.configPath)  
    elif args.module.lower() == TEXT_SUMMARIZATION:
        aion_textsummarization(args.configPath)    
    elif args.module.lower() == GENERATE_MLAC:
        aion_generatemlac(args.configPath)        
    elif args.module.lower() == COMMON_SERVICE:
        aion_service(args.ipaddress,args.port,args.username,args.password)        
    elif args.module.lower() == START_MLFLOW:
        aion_mlflow()      
    elif args.module.lower() == CONVERT_MODEL:        
        aion_model_conversion(args.configPath)        
    elif args.module.lower() == BUILD_MLAC_CONTAINER:
        aion_model_buildMLaCContainer(args.jsoninput)            
    elif args.module.lower() == RUN_LOCAL_MLAC_PIPELINE:
        aion_model_runpipelinelocal(args.jsoninput)
    elif args.module.lower() == LAUNCH_KAFKA:        
        aion_launchkafkaconsumer()    
    elif args.module.lower() == INSTALL:        
        aion_install(args.version)
    elif args.module.lower() == LINUXINSTALL:        
        aion_linux_install(args.version)        
    elif args.module.lower() == FE_MIGRATE:        
        aion_migratefe('makemigrations')        
        aion_migratefe('migrate')
    elif args.module.lower() == AWS_TRAINING:
        aion_aws_training(args.configPath)
    elif args.module.lower() == LLAMA_7B_TUNING:
        aion_llm_tuning(args.configPath)
    elif args.module.lower() == LLM_TUNING:
        aion_llm_tuning(args.configPath)
    elif args.module.lower() == LLM_PROMPT:
        aion_llm_prompt(args.cloudConfigPath,args.instanceid,args.prompt)
    elif args.module.lower() == LLM_PUBLISH:
        aion_llm_publish(args.cloudConfigPath,args.instanceid,args.hypervisor,args.model,args.usecase,args.region,args.image)
    elif args.module.lower() == LLM_BENCHMARKING:
        llm_bench_marking(args.hypervisor,args.instanceid,args.model,args.usecase, args.eval)
    elif args.module.lower() == TELEMETRY_PUSH:
        do_telemetry_sync()"
aionMlopsService.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
# -*- coding: utf-8 -*-
# -*- coding: utf-8 -*-
import logging
logging.getLogger('tensorflow').disabled = True
import json
import mlflow
import mlflow.sklearn
import mlflow.sagemaker as mfs
# from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import train_test_split
# from sklearn import datasets
import time
import numpy as np
# Load dataset
# from sklearn.datasets import load_iris
import pickle
# Load the pickled model
# from matplotlib import pyplot
import sys
import os
import boto3
import subprocess
import os.path
from os.path import expanduser
import platform
from pathlib import Path


class aionMlopsService:
    def __init__(self,model,mlflowtosagemakerDeploy,mlflowtosagemakerPushOnly,mlflowtosagemakerPushImageName,mlflowtosagemakerdeployModeluri,experiment_name,mlflow_modelname,awsaccesskey_id,awssecretaccess_key,aws_session_token,mlflow_container_name,aws_region,aws_id,iam_sagemakerfullaccess_arn,sm_app_name,sm_deploy_option,delete_ecr_repository,ecrRepositoryName):
        try:
            self.model=model
            self.mlflowtosagemakerDeploy=mlflowtosagemakerDeploy
            self.mlflowtosagemakerPushOnly=str(mlflowtosagemakerPushOnly)
            self.mlflowtosagemakerPushImageName=str(mlflowtosagemakerPushImageName)
            self.mlflowtosagemakerdeployModeluri=str(mlflowtosagemakerdeployModeluri)
            self.experiment_name=experiment_name
            self.mlflow_modelname=mlflow_modelname
            self.awsaccesskey_id=awsaccesskey_id
            self.awssecretaccess_key=awssecretaccess_key
            self.aws_session_token=aws_session_token
            self.mlflow_container_name=mlflow_container_name
            self.aws_region=aws_region
            self.aws_id=aws_id
            self.iam_sagemakerfullaccess_arn=iam_sagemakerfullaccess_arn
            self.sm_app_name=sm_app_name
            self.sm_deploy_option=sm_deploy_option
            self.delete_ecr_repository=delete_ecr_repository
            self.ecrRepositoryName=ecrRepositoryName
            
            from appbe.dataPath import LOG_LOCATION        
            sagemakerLogLocation = LOG_LOCATION
                
            try:
                os.makedirs(sagemakerLogLocation)
            except OSError as e:
                if (os.path.exists(sagemakerLogLocation)):
                    pass
                else:
                    raise OSError('sagemakerLogLocation error.')
            
            self.sagemakerLogLocation=str(sagemakerLogLocation)
                    
            
            filename_mlops = 'mlopslog_'+str(int(time.time()))
            filename_mlops=filename_mlops+'.log'
            # filename = 'mlopsLog_'+Time()
            filepath = os.path.join(self.sagemakerLogLocation, filename_mlops)            
            logging.basicConfig(filename=filepath, format='%(message)s',filemode='w') 
            # logging.basicConfig(filename=""uq_logging.log"", format='%(asctime)s %(message)s',filemode='w') 
            # logging.basicConfig(filename=""uq_logging.log"", format=' %(message)s',filemode='w')
            # logging.basicConfig(filename='uq_logging.log', encoding='utf-8', level=logging.INFO)
            self.log = logging.getLogger('aionMLOps')
            self.log.setLevel(logging.DEBUG)
            # mlflow.set_experiment(self.experiment_name)            
            
        except Exception as e:
            self.log.info('<!------------- mlflow model INIT Error ---------------> '+str(e))
            exc_type, exc_obj, exc_tb = sys.exc_info()
            fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
            self.log.info(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))

    def mlflowSetPath(self,path):
        track_dir=os.path.join(path,'mlruns')
        uri=""file:""+str(Path(track_dir))
        return uri
    
    #Currently not used this delete ecr repository option
    def ecr_repository_delete(self,rep_name):
        # import subprocess
        client = boto3.client('ecr')
        repositories = client.describe_repositories()
        ecr_delete_rep=client.delete_repository(registryId=self.aws_id,repositoryName=self.ecrRepositoryName,force=True)
        mlflow_ecr_delete=subprocess.run(['aws', 'ecr', 'delete-repository','--repository-name',rep_name,'||','true'])
        self.log.info('Success: deleted aws ecr repository which contains mlops image.')

    def check_sm_deploy_status(self,app_name):
        sage_client = boto3.client('sagemaker', region_name=self.aws_region)
        endpoint_description = sage_client.describe_endpoint(EndpointName=app_name)
        endpoint_status = endpoint_description[""EndpointStatus""]
        try:
            failure_reason=endpoint_description[""FailureReason""]
            self.log.info(""sagemaker end point creation failure reason is: ""+str(failure_reason))
        except:
            pass
        endpoint_status=str(endpoint_status)
        return endpoint_status
    
    def invoke_sm_endpoint(self,app_name, input_json):
        client = boto3.session.Session().client(""sagemaker-runtime"", self.aws_region)
    
        response = client.invoke_endpoint(
            EndpointName=app_name,
            Body=input_json,
            ContentType='application/json; format=pandas-split',
        )
    #    preds = response['Body'].read().decode(""ascii"")
        preds = response['Body'].read().decode(""ascii"")
        preds = json.loads(preds)
        # print(""preds: {}"".format(preds))
        return preds
    
    def predict_sm_app_endpoint(self,X_test):
        #print(X_test)
        import pandas as pd
        prediction=None
        AWS_ACCESS_KEY_ID=str(self.awsaccesskey_id)
        AWS_SECRET_ACCESS_KEY=str(self.awssecretaccess_key)
        AWS_SESSION_TOKEN=str(self.aws_session_token)
        region = str(self.aws_region)
        #Existing model deploy options
        # mlflowtosagemakerPushImageName=str(self.mlflowtosagemakerPushImageName)
        # mlflowtosagemakerdeployModeluri=str(self.mlflowtosagemakerdeployModeluri)
        try:
            import subprocess
            cmd = 'aws configure set region_name '+region
            os.system(cmd)
            cmd = 'aws configure set aws_access_key_id '+AWS_ACCESS_KEY_ID
            os.system(cmd)
            cmd = 'aws configure set aws_secret_access_key '+AWS_SECRET_ACCESS_KEY
            os.system(cmd)
            '''
            aws_region=subprocess.run(['aws', 'configure', 'set','region_name',region])
            aws_accesskeyid=subprocess.run(['aws', 'configure', 'set','aws_access_key_id',AWS_ACCESS_KEY_ID])
            aws_secretaccesskey=subprocess.run(['aws', 'configure', 'set','aws_secret_access_key',AWS_SECRET_ACCESS_KEY])
            '''
        except:
            pass
        #Create a session for aws communication using aws boto3 lib
        # s3_client = boto3.client('ecr',aws_access_key_id=AWS_ACCESS_KEY_ID,aws_secret_access_key=AWS_SECRET_ACCESS_KEY,aws_session_token=AWS_SESSION_TOKEN,region_name=region)
        # s3 = boto3.resource('ecr', aws_access_key_id=AWS_ACCESS_KEY_ID, aws_secret_access_key= AWS_SECRET_ACCESS_KEY)
        session = boto3.Session(aws_access_key_id=AWS_ACCESS_KEY_ID,aws_secret_access_key=AWS_SECRET_ACCESS_KEY,aws_session_token=AWS_SESSION_TOKEN,region_name=region)

        #X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.3, random_state=2)
        # query_input = pd.DataFrame(X_test).iloc[[1,5]].to_json(orient=""split"")
        try:
            query_input = pd.DataFrame(X_test).to_json(orient=""split"")
            #print(query_input)
            prediction = self.invoke_sm_endpoint(app_name=self.sm_app_name, input_json=query_input)
            # self.log.info(""sagemaker end point Prediction: \n""+str(prediction))
            
        except Exception as e:
            print(e)
        return prediction
        
    
    def deleteSagemakerApp(self,app_name,region):
        # import mlflow.sagemaker as mfs
        #	region = 'ap-south-1'
        #	app_name = 'aion-demo-app'
        mfs.delete(app_name=app_name,region_name=region, archive=False,synchronous=True, timeout_seconds=300)           
        # print(""AION mlops sagemaker application endpoint is deleted....\n"")
        self.log.info('AION mlops sagemaker application endpoint is deleted, application name is: '+str(app_name))
    
    def deployModel2sagemaker(self,mlflow_container_name,tag_id,model_path):
        
        region = str(self.aws_region)
        aws_id = str(self.aws_id)
        iam_sagemakerfullaccess_arn = str(self.iam_sagemakerfullaccess_arn)
        app_name = str(self.sm_app_name)
        
        model_uri = str(model_path)
        app_status=False
        mlflow_root_dir = None
        try:
            os.chdir(str(self.sagemakerLogLocation))
            mlflow_root_dir = os.getcwd()
            self.log.info('mlflow root dir:  '+str(mlflow_root_dir))
        except:
            self.log.info(""path issue."")
            
        try:
            c_status=self.check_sm_deploy_status(app_name)
            #if ((c_status == ""Failed"") or (c_status == ""OutOfService"")):
            if ((c_status == ""Failed"") or (c_status.lower() == ""failed"")):
                app_status=False
                self.log.info(""Sagemaker endpoint status: Failed.\n"")
                mfs.delete(app_name=app_name,region_name=region, archive=False,synchronous=True, timeout_seconds=300)
            elif ((c_status.lower() == ""inservice"") or (c_status == ""InService"")):
                app_status=True
                self.log.info(""Sagemaker endpoint status: InService. Running sagemaker endpoint name: \n""+str(app_name))                
            else:
                app_status=False
                pass
        except:
            # print(""deploy status error.\n"")            
            pass
                        
        #aws ecr model app_name should contain only [[a-zA-Z0-9-]]
        import re                    
        if app_name:
            pattern = re.compile(""[A-Za-z0-9-]+"")
            # if found match (entire string matches pattern)
            if pattern.fullmatch(app_name) is not None:
                #print(""Found match: "")
                pass
            else:                
                app_name = 'aion-demo-app'
        else:
            app_name = 'aion-demo-app'
                        
        mlflow_image=mlflow_container_name+':'+tag_id
        image_url = aws_id + '.dkr.ecr.' + region + '.amazonaws.com/' + mlflow_image
        deploy_option=""create""
        self.log.info('deploy_option: \n'+str(deploy_option))
        if (deploy_option.lower() == ""create""):
            # Other deploy modes: mlflow.sagemaker.DEPLOYMENT_MODE_ADD,mlflow.sagemaker.DEPLOYMENT_MODE_REPLACE
            if not (app_status):
                try:
                    mfs.deploy(app_name=app_name,model_uri=model_uri,region_name=region,mode=""create"",execution_role_arn=iam_sagemakerfullaccess_arn,image_url=image_url)
                    self.log.info('sagemaker endpoint created and model deployed. Application name is:  \n'+str(app_name))
                except:
                    self.log.info('Creating end point application issue.Please check the connection and aws credentials \n')
            else:
                self.log.info('Sagemaker application with user endpoint name already running.Please check. Please delete the old endpoint with same name.\n')
                
    
        elif (deploy_option.lower() == ""delete""):
            # import mlflow.sagemaker as mfs
            # #	region = 'ap-south-1'
            # #	app_name = 'aion-demo-app'
            # mfs.delete(app_name=app_name,region_name=region, archive=False,synchronous=True, timeout_seconds=300)           
            # print(""Mlflow sagemaker application endpoint is deleted....\n"")
            # self.log.info('Mlflow sagemaker application endpoint is deleted, application name is: '+str(app_name))
            pass
        elif (deploy_option.lower() == ""add""):
            pass
        elif (deploy_option.lower() == ""replace""):
            pass
        else:
            pass
        
        return app_status
        
    def mlflow2sagemaker_deploy(self):
        self.log.info('<!------------- Inside AION mlops to sagemaker communication and deploy process. ---------------> ')
        deploy_status=False
        app_name = str(self.sm_app_name)
        self.log.info('Sagemaker Application Name: '+str(app_name))
        
        uri_mlflow=self.mlflowSetPath(self.sagemakerLogLocation)
        mlflow.set_tracking_uri(uri_mlflow)
        mlops_trackuri=mlflow.get_tracking_uri()
        mlops_trackuri=str(mlops_trackuri)
        self.log.info('mlops tracking uri:  '+str(mlops_trackuri))
        localhost_deploy=False
        try:
            #Loading aion model to deploy in sagemaker
            mlflow.set_experiment(self.experiment_name)
            self.log.info('Endpoint Name: '+str(self.experiment_name))
            # Assume, the model already loaded from joblib in aionmlflow2smInterface.py file. 
            aionmodel2deploy=self.model
            # run_id = None
            # experiment_id=None
            
            
            # Use the loaded pickled model to make predictions
            # pred = knn_from_pickle.predict(X_test)
            with mlflow.start_run(run_name='AIONMLOps') as run:
                
                # aionmodel2deploy.fit(X_train, y_train)
                # predictions = aionmodel2deploy.predict(X_test)
                mlflow.sklearn.log_model(aionmodel2deploy, self.mlflow_modelname) 
                run_id = run.info.run_uuid
                experiment_id = run.info.experiment_id
                self.log.info('AION mlops experiment run_id: '+str(run_id))
                self.log.info('AION mlops experiment experiment_id: '+str(experiment_id))
                self.log.info('AION mlops experiment model_name: '+str(self.mlflow_modelname))
                artifact_uri = {mlflow.get_artifact_uri()}
                # print(""1.artifact_uri: \n"",artifact_uri)
                mlflow.end_run()
            #If we need, we can check the mlflow experiments.
            # try:    
            #     mlflow_client = mlflow.tracking.MlflowClient('./mlruns')
            #     exp_list = mlflow_client.list_experiments()
            # except:
            #     pass
            #print(""mlflow exp_list: \n"",exp_list)
            mlflow_modelname=str(self.mlflow_modelname)
            
            mlops_trackuri=mlops_trackuri.replace('file:','')
            mlops_trackuri=str(mlops_trackuri)
            # mlflow_root_dir = os.getcwd()
            mlflow_root_dir = None
            try:
                os.chdir(str(self.sagemakerLogLocation))
                mlflow_root_dir = os.getcwd()
                self.log.info('mlflow root dir:  '+str(mlflow_root_dir))
            except:
                self.log.info(""path issue."")
            model_path = 'mlruns/%s/%s/artifacts/%s' % (experiment_id, run_id,self.mlflow_modelname)
            # model_path=mlops_trackuri+'\\%s\\%s\\artifacts\\%s' % (experiment_id, run_id,mlflow_modelname)
            self.log.info(""local host aion mlops model_path is: ""+str(model_path))
            time.sleep(2)
            
            
            #print(""Environment variable setup in the current working dir for aws sagemaker cli connection... \n"") 
            self.log.info('Environment variable setup in the current working dir for aws sagemaker cli connection... \n ')
            AWS_ACCESS_KEY_ID=str(self.awsaccesskey_id)
            AWS_SECRET_ACCESS_KEY=str(self.awssecretaccess_key)
            AWS_SESSION_TOKEN=str(self.aws_session_token)
            region = str(self.aws_region)
            #Existing model deploy options
            mlflowtosagemakerPushImageName=str(self.mlflowtosagemakerPushImageName)
            mlflowtosagemakerdeployModeluri=str(self.mlflowtosagemakerdeployModeluri)
            import subprocess
            cmd = 'aws configure set region_name '+region
            os.system(cmd)
            cmd = 'aws configure set aws_access_key_id '+AWS_ACCESS_KEY_ID
            os.system(cmd)
            cmd = 'aws configure set aws_secret_access_key '+AWS_SECRET_ACCESS_KEY
            os.system(cmd)
            #Create a session for aws communication using aws boto3 lib
            # s3_client = boto3.client('ecr',aws_access_key_id=AWS_ACCESS_KEY_ID,aws_secret_access_key=AWS_SECRET_ACCESS_KEY,aws_session_token=AWS_SESSION_TOKEN,region_name=region)
            # s3 = boto3.resource('ecr', aws_access_key_id=AWS_ACCESS_KEY_ID, aws_secret_access_key= AWS_SECRET_ACCESS_KEY)
            session = boto3.Session(aws_access_key_id=AWS_ACCESS_KEY_ID,aws_secret_access_key=AWS_SECRET_ACCESS_KEY,aws_session_token=AWS_SESSION_TOKEN,region_name=region)
            # session = boto3.session.Session(
            #         aws_access_key_id=AWS_ACCESS_KEY_ID,
            #         aws_secret_access_key=AWS_SECRET_ACCESS_KEY,
            #         aws_session_token=AWS_SESSION_TOKEN
            #     )
            # awsclient = session.resource('ecr')
            # s3 = session.resource('s3')
            self.log.info('aws environment variable setup done... \n')
            try:
                os.chdir(mlflow_root_dir)
            except FileNotFoundError:
                self.log.info('Directory does not exist. '+str(mlflow_root_dir))
            except NotADirectoryError:
                self.log.info('model_path is not a directory. '+str(mlflow_root_dir))
            except PermissionError:
                self.log.info('Issue in permissions to change to model dir. '+str(mlflow_root_dir))

            mlflow_container_name=str(self.mlflow_container_name)
            mlflow_version=mlflow.__version__
            tag_id=mlflow_version
            
            
            if (self.mlflowtosagemakerPushOnly.lower() == ""true""):
                self.log.info('Selected option is <Deploy existing model to sagemaker> \n')
                aws_id=str(self.aws_id)
                arn=str(self.iam_sagemakerfullaccess_arn)
                mlflow_image=mlflow_container_name+':'+tag_id
                image_url = aws_id+'.dkr.ecr.'+region+'.amazonaws.com/'+mlflow_image
                # print(""image_url:========= \n"",image_url)
                deploy_status=True
                try:
                    model_path=mlflowtosagemakerdeployModeluri
                    # ##We need to run mlflow docker container command in the artifacts->model directory inside mlruns.
                    self.log.info('Deploy existing model container-Model path given by user: '+str(model_path))
                    try:
                        os.chdir(model_path)
                    except FileNotFoundError:
                        self.log.info('Directory does not exist. '+str(model_path))
                    except NotADirectoryError:
                        self.log.info('model_path is not a directory. '+str(model_path))
                    except PermissionError:
                        self.log.info('Issue in permissions to change to model dir. '+str(model_path))
                        
                    try:
                        mfs.push_image_to_ecr(image=mlflowtosagemakerPushImageName)
                        deploy_status=True
                        self.log.info('AION mlops  pushed the docker container to aws ecr. \n ')
                    except:
                        self.log.info(""error in pushing existing container to ecr.\n"")
                        deploy_status=False

                    
                    time.sleep(2)
                    #Now,change the working dir to root dir,because now deploy needs full mlruns to model name dir.
                    try:
                    	# print("" Changing directory to mlflow root dir....\n"")
                    	os.chdir(mlflow_root_dir)
                    except FileNotFoundError:
                        self.log.info('model path is not a directory. '+str(mlflow_root_dir))
                    except NotADirectoryError:
                        self.log.info('model path is not a directory. '+str(mlflow_root_dir))
                    	# print(""{0} is not a directory"".format(mlflow_root_dir))                    
                    except PermissionError:
                        self.log.info('Issue in permissions to change to model dir. '+str(mlflow_root_dir))
                        
                    # self.deployModel2sagemaker(mlflowtosagemakerPushImageName,tag_id,mlflowtosagemakerdeployModeluri)
                    try:
                        if (deploy_status):
                            self.deployModel2sagemaker(mlflowtosagemakerPushImageName,tag_id,mlflowtosagemakerdeployModeluri)
                            self.log.info('AION creates docker container and push the container into aws ecr.. ')
                            time.sleep(2)
                    except:
                        self.log.info('AION deploy error.check connection and aws config parameters. ')
                        deploy_status=False
                    # self.log.info('model deployed in sagemaker. ')
                except Exception as e:
                    self.log.info('AION mlops failed to push docker container in aws ecr, check configuration parameters. \n'+str(e))
            elif (self.mlflowtosagemakerPushOnly.lower() == ""false""):
                if (self.mlflowtosagemakerDeploy.lower() == ""true""):
                    self.log.info('Selected option is <Create and Deploy model> \n')
                    deploy_status=True
                    try:
                        # ##We need to run mlflow docker container command in the artifacts->model directory inside mlruns.
                        try:
                            os.chdir(model_path)
                        except FileNotFoundError:
                            self.log.info('Directory does not exist. '+str(model_path))
                        except NotADirectoryError:
                            self.log.info('model_path is not a directory. '+str(model_path))
                        except PermissionError:
                            self.log.info('Issue in permissions to change to model dir. '+str(model_path))
                        try:
                            mlflow_container_push=subprocess.run(['mlflow', 'sagemaker', 'build-and-push-container','--build','--push','--container',mlflow_container_name])
                            self.log.info('AION mlops creates docker container and push the container into aws ecr.. ')
                            deploy_status=True
                            time.sleep(2)
                        except:
                            self.log.info('error in pushing aion model container to sagemaker, please check the connection between local host to aws server.')
                            deploy_status=False
                        self.log.info('Now deploying the model container to sagemaker starts....\n ')
                        # Once docker push completes, again going back to mlflow parent dir for deployment
                        #Now,change the working dir to root dir,because now deploy needs full mlruns to model name dir.
                        try:
                        	os.chdir(mlflow_root_dir)
                        except FileNotFoundError:
                            self.log.info('model_path does not exist. '+str(mlflow_root_dir))
                        except NotADirectoryError:
                            self.log.info('model_path is not a directory. '+str(mlflow_root_dir))
                        except PermissionError:
                            self.log.info('Issue in permissions to change to model dir. '+str(mlflow_root_dir))
                            
                        # app_name = str(self.sm_app_name)
                        try:
                            if (deploy_status):
                                self.deployModel2sagemaker(mlflow_container_name,tag_id,model_path)
                        except:
                            self.log.info('mlops deploy error.check connection')
                            deploy_status=False
    
                    except Exception as e:
                        exc = {""status"":""FAIL"",""message"":str(e).strip('""')}
                        out_exc = json.dumps(exc)
                        self.log.info('mlflow failed to creates docker container please check the aws iam,ecr permission setup, aws id access_key,secret key values for aion.\n')
            
                elif(self.mlflowtosagemakerDeploy.lower() == ""false""):
                    deploy_status=False
                    localhost_deploy=True
                    self.log.info('Selected option is <Create AION mlops container in local host .> \n')
                    self.log.info(""User selected create-Deploy sagemaker option as False,"")
                    self.log.info(""Creates the AION mlops-sagemaker container locally starting,but doesn't push into aws ecr and deploy in sagemaker. Check the container in docker repository. "")
                    try:
                        # ##We need to run AION mlops docker container command in the artifacts->model directory inside mlruns.
                        try:
                            os.chdir(model_path)
                            self.log.info('After change to AION mlops model dir, cwd: '+str(model_path))
                        except FileNotFoundError:
                            self.log.info('Directory does not exist. '+str(model_path))
                        except NotADirectoryError:
                            self.log.info('model_path is not a directory. '+str(model_path))
                        except PermissionError:
                            self.log.info('Issue in permissions to change to model dir. '+str(model_path))
                        
                        # mlflow_container_local=subprocess.run(['AION mlops', 'sagemaker', 'build-and-push-container','--build','--no-push','--container',mlflow_container_name])
                        
                        try:
                            if not (deploy_status):
                                mlflow_container_local=subprocess.run(['mlflow', 'sagemaker', 'build-and-push-container','--build','--no-push','--container',mlflow_container_name])
                                self.log.info('AION creates local host bsed docker container and push the container local docker repository. Check with <docker images> command.\n ')
                                localhost_deploy=True
                                time.sleep(2)
                        except:
                            self.log.info('error in pushing aion model container to sagemaker, please check the connection between local host to aws server.')
                            deploy_status=False
                            localhost_deploy=False
                            
                        # print(""AION mlops creates docker container and push the container into aws ecr.\n"")
                        self.log.info('AION mlops creates docker container and stored locally... ')
                        time.sleep(2)
                    except Exception as e:
                        localhost_deploy=False
                        # print(""mlflow failed to creates docker container please check the aws iam,ecr permission setup, aws id access_key,secret key values for aion.\n"")
                        self.log.info('AION mlops failed to creates docker container in local machine.\n'+str(e))                  
                else:
                    self.log.info('Deploy option not selected, Please check. ')
                    localhost_deploy=False
                    deploy_status=False
            else:
                pass
                
                
            
            
                
            localhost_container_status=""Notdeployed"" 
            mlflow2sm_deploy_status=""Notdeployed""
            if localhost_deploy:
                localhost_container_status=""success""
                mlflow2sm_deploy_status=""Notdeployed""
                # print(""AION creates local docker container successfully.Please check in docker repository."")
                self.log.info(""AION creates local docker container successfully.Please check in docker repository."")
            # else:
            #     localhost_container_status=""failed""
            #     # print(""AION failed to create local docker container successfully.Please check in docker repository."")
            #     self.log.info(""AION failed to create local docker container successfully.Please check in docker repository."")
            
            if (deploy_status):
                # Finally checking whether mlops model is deployed to sagemaker or not.
                app_name = str(self.sm_app_name)
                deploy_s = self.check_sm_deploy_status(app_name)
                if (deploy_s == ""InService""):
                    # print(""AION mlops model is deployed at aws sagemaker, use application name(app_name) and region to access.\n"")
                    self.log.info('AION mlops model is deployed at aws sagemaker, use application name(app_name) and region to access.\n'+str(app_name))
                    mlflow2sm_deploy_status=""success""
                    localhost_container_status=""Notdeployed""
                else:
                    # print(""AION Mlflow model not able to deploy at aws sagemaker\n"")
                    self.log.info('AION mlops model not able to deploy at aws sagemaker.\n')
                    mlflow2sm_deploy_status=""failed""
                    localhost_container_status=""Notdeployed""
                    
            # else:
            #     mlflow2sm_deploy_status=""None""
            
            
            return mlflow2sm_deploy_status,localhost_container_status
        
        except Exception as inst:
            exc = {""status"":""FAIL"",""message"":str(inst).strip('""')}
            out_exc = json.dumps(exc)
"
__init__.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''"
aion_pipeline.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import os
import sys
import json
import datetime, time, timeit
import argparse
import logging
logging.getLogger('tensorflow').disabled = True
import math
import shutil
import re
from datetime import datetime as dt
import warnings
from config_manager.pipeline_config import AionConfigManager
import pandas as pd
import numpy as np
import sklearn
import string
from records import pushrecords
import logging


from pathlib import Path
from pytz import timezone
from config_manager.config_gen import code_configure
import joblib
from sklearn.model_selection import train_test_split
from config_manager.check_config import config_validate
from utils.file_ops import save_csv_compressed,save_csv,save_chromadb
LOG_FILE_NAME = 'model_training_logs.log'

if 'AION' in sys.modules:
    try:
        from appbe.app_config import DEBUG_ENABLED
    except:
        DEBUG_ENABLED = False
else:
    DEBUG_ENABLED = True

def getversion():
    configFolder =  os.path.join(os.path.dirname(os.path.abspath(__file__)),'..','config')
    version = 'NA'
    for file in os.listdir(configFolder):
        if file.endswith("".var""):
            version = file.rsplit('.', 1)
            version = version[0]
            break
    return version
    
AION_VERSION = getversion()
def pushRecordForTraining():
    try:
        status,msg = pushrecords.enterRecord(AION_VERSION)
    except Exception as e:
        print(""Exception"", e)
        status = False
        msg = str(e)
    return status,msg

def mlflowSetPath(path,experimentname):
    import mlflow
    url = ""file:"" + str(Path(path).parent.parent) + ""/mlruns""
    mlflow.set_tracking_uri(url)
    mlflow.set_experiment(str(experimentname))

def set_log_handler( basic, mode='w'):
    deploy_loc = Path(basic.get('deployLocation'))
    log_file_parent = deploy_loc/basic['modelName']/basic['modelVersion']/'log'
    log_file_parent.mkdir(parents=True, exist_ok=True)
    log_file = log_file_parent/LOG_FILE_NAME
    
    filehandler = logging.FileHandler(log_file, mode,'utf-8')
    formatter = logging.Formatter('%(message)s')
    filehandler.setFormatter(formatter)
    log = logging.getLogger('eion')
    log.propagate = False
    for hdlr in log.handlers[:]:  # remove the existing file handlers
        if isinstance(hdlr,logging.FileHandler):
            log.removeHandler(hdlr)
    log.addHandler(filehandler)
    log.setLevel(logging.INFO)
    return log

        
class server():
    def __init__(self):
        self.response = None
        self.features=[]
        self.mFeatures=[]
        self.emptyFeatures=[]
        self.textFeatures=[]
        self.vectorizerFeatures=[]
        self.wordToNumericFeatures=[]
        self.profilerAction = []
        self.targetType = ''
        self.matrix1='{'
        self.matrix2='{'
        self.matrix='{'
        self.trainmatrix='{'
        self.numericalFeatures=[]
        self.nonNumericFeatures=[]
        self.similarGroups=[]
        self.dfcols=0
        self.dfrows=0
        self.method = 'NA'
        self.pandasNumericDtypes = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64']
        self.modelSelTopFeatures=[]
        self.topFeatures=[]
        self.allFeatures=[]
    def startScriptExecution(self, config_obj, codeConfigure, log):
        oldStdout = sys.stdout
        model_training_details = ''
        model_tried=''
        learner_type = ''
        topics = {}
        pred_filename = ''
        numericContinuousFeatures=''
        discreteFeatures=''
        sessonal_freq = ''
        additional_regressors = ''
        threshold=-1
        targetColumn = ''
        numericalFeatures =''
        nonNumericFeatures=''
        categoricalFeatures=''
        dataFolderLocation = ''
        featureReduction = 'False'        
        original_data_file = ''
        normalizer_pickle_file = ''
        pcaModel_pickle_file = ''
        bpca_features= []
        apca_features = []
        lag_order = 1
        profiled_data_file = ''
        trained_data_file = ''
        predicted_data_file=''
        dictDiffCount={}
        cleaning_kwargs = {}
        grouperbyjson = ''
        rowfilterexpression=''
        featureEngineeringSelector = 'false'
        conversion_method = ''
        params={}
        loss_matrix='binary_crossentropy'
        optimizer='Nadam'
        numericToLabel_json='[]'
        preprocessing_pipe=''
        firstDocFeature = ''
        secondDocFeature = ''
        padding_length = 30
        pipe = None
        scalertransformationFile=None
        column_merge_flag = False
        merge_columns = []
        score = 0
        profilerObj = None
        imageconfig=''
        labelMaps={}
        featureDataShape=[]
        normFeatures = []
        preprocess_out_columns = []
        preprocess_pipe = None
        label_encoder = None
        unpreprocessed_columns = []
        import pickle
        iterName,iterVersion,dataLocation,deployLocation,delimiter,textqualifier = config_obj.getAIONLocationSettings()
        inlierLabels=config_obj.getEionInliers()
        scoreParam = config_obj.getScoringCreteria()
        noofforecasts = config_obj.getNumberofForecasts()
        datetimeFeature,indexFeature,modelFeatures=config_obj.getFeatures()
        
        filter_expression = config_obj.getFilterExpression()
        refined_filter_expression = """"
        sa_images = []
        model_tried = ''
        deploy_config = {}
        iterName = iterName.replace("" "", ""_"")
        deployFolder = deployLocation
        usecaseLocation,deployLocation,dataFolderLocation,imageFolderLocation,original_data_file,profiled_data_file,trained_data_file,predicted_data_file,logFileName,outputjsonFile,reduction_data_file = config_obj.createDeploymentFolders(deployFolder,iterName,iterVersion)
        outputLocation=deployLocation
        mlflowSetPath(deployLocation,iterName+'_'+iterVersion)
        # mlflowSetPath shut down the logger, so set again
        set_log_handler( config_obj.basic, mode='a')
        xtrain=pd.DataFrame()        
        xtest=pd.DataFrame()
        log.info('Status:-|... AION Training Configuration started')        
        startTime = timeit.default_timer()
        try:
            output = {'bestModel': '', 'bestScore': 0, 'bestParams': {}}
            problem_type,targetFeature,profiler_status,selector_status,learner_status,deeplearner_status,timeseriesStatus,textsummarizationStatus,survival_analysis_status,textSimilarityStatus,inputDriftStatus,outputDriftStatus,recommenderStatus,visualizationstatus,deploy_status,associationRuleStatus,imageClassificationStatus,forecastingStatus, objectDetectionStatus,stateTransitionStatus, similarityIdentificationStatus,contextualSearchStatus,anomalyDetectionStatus = config_obj.getModulesDetails()
            status, error_id, msg = config_obj.validate_config()
            if not status:
                if error_id == 'fasttext':
                    raise ValueError(msg)    
            VideoProcessing = False        
            if(problem_type.lower() in ['classification','regression']):
                if(targetFeature == ''):
                    output = {""status"":""FAIL"",""message"":""Target Feature is Must for Classification and Regression Problem Type""}
                    return output
            
            
            from transformations.dataReader import dataReader       
            objData = dataReader()
            DataIsFolder = False
            folderdetails = config_obj.getFolderSettings()
            
            if os.path.isfile(dataLocation):
                log.info('Status:-|... AION Loading Data')            
                dataFrame = objData.csvTodf(dataLocation,delimiter,textqualifier)
                status,msg = save_csv_compressed(dataFrame,original_data_file)
                if not status:
                    log.info('CSV File Error: '+str(msg))
            elif os.path.isdir(dataLocation):
                if problem_type.lower() == 'summarization':
                    from document_summarizer import summarize
                    keywords, pretrained_type, embedding_sz = summarize.get_params()
                    dataFrame = summarize.to_dataframe(dataLocation,keywords, deploy_loc, pretrained_type, embedding_sz)
                    problem_type = 'classification'
                    targetFeature = 'label'
                    scoreParam = 'Accuracy'
                elif folderdetails['fileType'].lower() == 'document':
                    dataFrame, error = objData.documentsTodf(dataLocation, folderdetails['labelDataFile'])
                    if error:
                        log.info(error)
                elif folderdetails['fileType'].lower() == 'object':
                    testPercentage = config_obj.getAIONTestTrainPercentage()        #Unnati
                    intermediateLocation = os.path.join(deployLocation,'intermediate')
                    os.mkdir(intermediateLocation)
                    AugEnabled,keepAugImages,operations,augConf = config_obj.getEionImageAugmentationConfiguration()                    
                    dataFrame, n_class = objData.createTFRecord(dataLocation, intermediateLocation, folderdetails['labelDataFile'], testPercentage,AugEnabled,keepAugImages,operations, ""objectdetection"",augConf)        #Unnati
                    DataIsFolder = True
                else:
                    datafilelocation = os.path.join(dataLocation,folderdetails['labelDataFile'])
                    dataFrame = objData.csvTodf(datafilelocation,delimiter,textqualifier)
                    DataIsFolder = True
            if textSimilarityStatus or similarityIdentificationStatus or contextualSearchStatus:
                similaritydf = dataFrame

            filter = config_obj.getfilter()
            if filter != 'NA':
                dataFrame,rowfilterexpression = objData.rowsfilter(filter,dataFrame)    
            
            timegrouper = config_obj.gettimegrouper()       
            grouping = config_obj.getgrouper()      
            if grouping != 'NA':
                dataFrame,grouperbyjson = objData.grouping(grouping,dataFrame)
            elif timegrouper != 'NA':
                dataFrame,grouperbyjson = objData.timeGrouping(timegrouper,dataFrame)
            if timeseriesStatus or  anomalyDetectionStatus:
                from utils.validate_inputs import dataGarbageValue
                status,msg = dataGarbageValue(dataFrame,datetimeFeature)
                if status.lower() == 'error':
                    raise ValueError(msg)
            if not DataIsFolder:
                if timeseriesStatus: 
                    if(modelFeatures != 'NA'  and datetimeFeature != ''):
                        if datetimeFeature:
                            if isinstance(datetimeFeature, list): #to handle if time series having multiple time column 
                                unpreprocessed_columns = unpreprocessed_columns + datetimeFeature
                            else:
                                unpreprocessed_columns = unpreprocessed_columns + datetimeFeature.split(',')
                        if datetimeFeature not in modelFeatures:
                            modelFeatures = modelFeatures+','+datetimeFeature
                    
                    dataFrame = objData.removeFeatures(dataFrame,'NA',indexFeature,modelFeatures,targetFeature) 
                
                elif survival_analysis_status or anomalyDetectionStatus:
                    if(modelFeatures != 'NA'):
                        if datetimeFeature != 'NA' and datetimeFeature != '':
                            unpreprocessed_columns = unpreprocessed_columns + datetimeFeature.split(',')
                            if datetimeFeature not in modelFeatures:
                                modelFeatures = modelFeatures+','+datetimeFeature
                    dataFrame = objData.removeFeatures(dataFrame,'NA',indexFeature,modelFeatures,targetFeature)
                else:
                    dataFrame = objData.removeFeatures(dataFrame,datetimeFeature,indexFeature,modelFeatures,targetFeature)
            
            log.info('\n-------> First Ten Rows of Input Data: ')
            log.info(dataFrame.head(10))
            self.dfrows=dataFrame.shape[0]
            self.dfcols=dataFrame.shape[1]
            log.info('\n-------> Rows: '+str(self.dfrows))
            log.info('\n-------> Columns: '+str(self.dfcols))
            topFeatures=[]
            
            profilerObj = None
            normalizer=None
            dataLoadTime = timeit.default_timer() - startTime
            log.info('-------> COMPUTING: Total dataLoadTime time(sec) :'+str(dataLoadTime))
            if timeseriesStatus:
                if datetimeFeature != 'NA' and datetimeFeature != '':
                    preproces_config = config_obj.basic.get('preprocessing',{}).get('timeSeriesForecasting',{})
                    if preproces_config:
                        from transformations.preprocess import timeSeries as ts_preprocess
                        preprocess_obj = ts_preprocess( preproces_config,datetimeFeature, log)
                        dataFrame = preprocess_obj.run( dataFrame)
                        log.info('-------> Input dataFrame(5 Rows) after preprocessing: ')
                        log.info(dataFrame.head(5))
                        deploy_config['preprocess'] = {}
                        deploy_config['preprocess']['code'] = preprocess_obj.get_code()
            if profiler_status:
                log.info('\n================== Data Profiler has started ==================')
                log.info('Status:-|... AION feature transformation started')
                from transformations.dataProfiler import profiler as dataProfiler
                dp_mlstart = time.time()                
                profilerJson = config_obj.getEionProfilerConfigurarion()
                log.info('-------> Input dataFrame(5 Rows): ')
                log.info(dataFrame.head(5))
                log.info('-------> DataFrame Shape (Row,Columns): '+str(dataFrame.shape))
                testPercentage = config_obj.getAIONTestTrainPercentage()            #Unnati
                if DataIsFolder:
                    if folderdetails['type'].lower() != 'objectdetection':
                        profilerObj = dataProfiler(dataFrame)
                        topFeatures,VideoProcessing,tfrecord_directory = profilerObj.folderPreprocessing(dataLocation,folderdetails,deployLocation)
                elif textSimilarityStatus:
                    firstDocFeature = config_obj.getFirstDocumentFeature()
                    secondDocFeature = config_obj.getSecondDocumentFeature()    
                    profilerObj = dataProfiler(dataFrame,targetFeature, data_path=dataFolderLocation)
                    dataFrame,pipe,targetColumn,topFeatures = profilerObj.textSimilarityStartProfiler(firstDocFeature,secondDocFeature) 
                elif recommenderStatus:
                    profilerObj = dataProfiler(dataFrame)
                    dataFrame = profilerObj.recommenderStartProfiler(modelFeatures)
                else:
                    if deeplearner_status or learner_status:
                        if (problem_type.lower() != 'clustering') and (problem_type.lower() != 'topicmodelling'):
                            if targetFeature != '':                                                            
                                try:
                                    biasingDetail = config_obj.getDebiasingDetail()
                                    if len(biasingDetail) > 0:
                                        if biasingDetail['FeatureName'] != 'None':
                                            protected_feature = biasingDetail['FeatureName']
                                            privileged_className = biasingDetail['ClassName']
                                            target_feature = biasingDetail['TargetFeature']
                                            algorithm = biasingDetail['Algorithm']
                                            
                                            from debiasing.DebiasingManager import DebiasingManager
                                            mgrObj = DebiasingManager()
                                            log.info('Status:-|... Debiasing transformation started')
                                            transf_dataFrame = mgrObj.Bias_Mitigate(dataFrame, protected_feature, privileged_className, target_feature, algorithm)
                                            
                                            log.info('Status:-|... Debiasing transformation completed')
                                            dataFrame = transf_dataFrame
                                except Exception as e:
                                    print(e)
                                    pass
                                # ----------------------------------------------                   ----------------------------------------------                               
                                targetData = dataFrame[targetFeature]       
                                featureData = dataFrame[dataFrame.columns.difference([targetFeature])]
                                testPercentage = config_obj.getAIONTestTrainPercentage()            #Unnati
                                xtrain,ytrain,xtest,ytest = self.split_into_train_test_data(featureData,targetData,testPercentage,log,problem_type.lower())
                                xtrain.reset_index(drop=True,inplace=True)
                                ytrain.reset_index(drop=True,inplace=True)
                                xtest.reset_index(drop=True,inplace=True)
                                ytest.reset_index(drop=True,inplace=True)
                                dataFrame = xtrain
                                dataFrame[targetFeature] = ytrain                               
                    encode_target_problems = ['classification','anomalyDetection', 'timeSeriesAnomalyDetection'] #task 11997
                    if problem_type == 'survivalAnalysis' and dataFrame[targetFeature].nunique() > 1:
                        encode_target_problems.append('survivalAnalysis')
                    
                    if timeseriesStatus: #task 12627 calling data profiler without target feature specified separately (i.e) profiling is done for model features along with target features
                        profilerObj = dataProfiler(dataFrame, config=profilerJson, keep_unprocessed = unpreprocessed_columns.copy(), data_path=dataFolderLocation)
                    else:
                        profilerObj = dataProfiler(dataFrame, target=targetFeature, encode_target= problem_type in encode_target_problems, config=profilerJson, keep_unprocessed = unpreprocessed_columns.copy(), data_path=dataFolderLocation) #task 12627
                    dataFrame, preprocess_pipe, label_encoder = profilerObj.transform()
                    preprocess_out_columns = dataFrame.columns.tolist()
                    if not timeseriesStatus: #task 12627 preprocess_out_columns goes as output_columns in target folder script/input_profiler.py, It should contain the target feature also as it is what is used for forecasting
                        if targetFeature in preprocess_out_columns:
                            preprocess_out_columns.remove(targetFeature)
                    for x in unpreprocessed_columns:
                        preprocess_out_columns.remove(x)                    
                    if label_encoder:
                        joblib.dump(label_encoder, Path(deployLocation)/'model'/'label_encoder.pkl')
                        labelMaps = dict(zip(label_encoder.classes_, label_encoder.transform(label_encoder.classes_)))
                    codeConfigure.update_config('train_features',list(profilerObj.train_features_type.keys()))
                    codeConfigure.update_config('text_features',profilerObj.text_feature)
                    self.textFeatures =  profilerObj.text_feature
                    deploy_config['profiler'] = {}
                    deploy_config['profiler']['input_features'] = list(profilerObj.train_features_type.keys())
                    deploy_config['profiler']['output_features'] = preprocess_out_columns
                    deploy_config['profiler']['input_features_type'] = profilerObj.train_features_type
                    deploy_config['profiler']['word2num_features'] = profilerObj.wordToNumericFeatures
                    deploy_config['profiler']['unpreprocessed_columns'] = unpreprocessed_columns
                    deploy_config['profiler']['force_numeric_conv'] = profilerObj.force_numeric_conv
                    if self.textFeatures:
                        deploy_config['profiler']['conversion_method'] = config_obj.get_conversion_method()
                    if anomalyDetectionStatus and datetimeFeature != 'NA' and datetimeFeature != '':
                        if unpreprocessed_columns:
                            dataFrame.set_index( unpreprocessed_columns[0], inplace=True)
                    log.info('-------> Data Frame Post Data Profiling(5 Rows): ')
                    log.info(dataFrame.head(5))
                    if not xtest.empty:
                        if targetFeature != '':
                            non_null_index = ytest.notna()
                            ytest = ytest[non_null_index]
                            xtest = xtest[non_null_index]
                        if profilerObj.force_numeric_conv:
                            xtest[ profilerObj.force_numeric_conv] = xtest[profilerObj.force_numeric_conv].apply(pd.to_numeric,errors='coerce')
                        xtest.astype(profilerObj.train_features_type)
                        if unpreprocessed_columns:
                            xtest_unprocessed = xtest[unpreprocessed_columns]
                        xtest = preprocess_pipe.transform(xtest)
                        if not isinstance(xtest, np.ndarray):
                            xtest = xtest.toarray()   
                        xtest = pd.DataFrame(xtest, columns=preprocess_out_columns)
                        if unpreprocessed_columns:
                            xtest[unpreprocessed_columns] = xtest_unprocessed
                            if survival_analysis_status:
                                xtest.astype({x:'float' for x in unpreprocessed_columns})
                                xtrain.astype({x:'float' for x in unpreprocessed_columns})
                            #task 11997 removed setting datetime column as index of dataframe code as it is already done before
                        if label_encoder:
                            ytest = label_encoder.transform(ytest)
                    if preprocess_pipe:
                        if self.textFeatures:
                            from text.textProfiler import reset_pretrained_model
                            reset_pretrained_model(preprocess_pipe) # pickle is not possible for fasttext model ( binary)
                        joblib.dump(preprocess_pipe, Path(deployLocation)/'model'/'preprocess_pipe.pkl')
                        
                self.features=topFeatures
                if targetColumn in topFeatures:
                    topFeatures.remove(targetColumn)
                self.topFeatures=topFeatures
                if normalizer != None:
                    normalizer_file_path = os.path.join(deployLocation,'model','normalizer_pipe.sav')
                    normalizer_pickle_file = 'normalizer_pipe.sav'
                    pickle.dump(normalizer, open(normalizer_file_path,'wb'))
                log.info('Status:-|... AION feature transformation completed')
                dp_mlexecutionTime=time.time() - dp_mlstart
                log.info('-------> COMPUTING: Total Data Profiling Execution Time '+str(dp_mlexecutionTime))
                log.info('================== Data Profiling completed ==================\n')
                
            else:
                datacolumns=list(dataFrame.columns)
                if targetFeature in datacolumns:
                    datacolumns.remove(targetFeature)
                if not timeseriesStatus and not anomalyDetectionStatus and not inputDriftStatus and not outputDriftStatus and not imageClassificationStatus and not associationRuleStatus and not objectDetectionStatus and not stateTransitionStatus and not textsummarizationStatus:
                    self.textFeatures,self.vectorizerFeatures,pipe,column_merge_flag,merge_columns = profilerObj.checkForTextClassification(dataFrame)
                self.topFeatures =datacolumns
            if(pipe is not None):
                preprocessing_pipe = 'pppipe'+iterName+'_'+iterVersion+'.sav'
                ppfilename = os.path.join(deployLocation,'model','pppipe'+iterName+'_'+iterVersion+'.sav')
                pickle.dump(pipe, open(ppfilename, 'wb'))
            status, msg = save_csv_compressed(dataFrame,profiled_data_file)
            if not status:
                log.info('CSV File Error: ' + str(msg))
            if selector_status:
                log.info(""\n================== Feature Selector has started =================="")
                log.info(""Status:-|... AION feature engineering started"")
                fs_mlstart = time.time()
                selectorJson = config_obj.getEionSelectorConfiguration()
                if self.textFeatures:
                    config_obj.updateFeatureSelection(selectorJson, codeConfigure, self.textFeatures)
                    log.info(""-------> For vectorizer 'feature selection' is disabled and all the features will be used for training"")
                from feature_engineering.featureSelector import featureSelector
                selectorObj = featureSelector()
                dataFrame,targetColumn,self.topFeatures,self.modelSelTopFeatures,self.allFeatures,self.targetType,self.similarGroups,numericContinuousFeatures,discreteFeatures,nonNumericFeatures,categoricalFeatures,pcaModel,bpca_features,apca_features,featureEngineeringSelector = selectorObj.startSelector(dataFrame, selectorJson,self.textFeatures,targetFeature,problem_type)
                if(str(pcaModel) != 'None'):
                    featureReduction = 'True'
                    status, msg = save_csv(dataFrame,reduction_data_file)
                    if not status:
                        log.info('CSV File Error: ' + str(msg))                    
                    pcaFileName = os.path.join(deployLocation,'model','pca'+iterName+'_'+iterVersion+'.sav')
                    pcaModel_pickle_file = 'pca'+iterName+'_'+iterVersion+'.sav'
                    pickle.dump(pcaModel, open(pcaFileName, 'wb'))
                    if not xtest.empty:
                        xtest = pd.DataFrame(pcaModel.transform(xtest),columns= apca_features)
                if targetColumn in self.topFeatures:
                    self.topFeatures.remove(targetColumn)
                fs_mlexecutionTime=time.time() - fs_mlstart
                log.info('-------> COMPUTING: Total Feature Selection Execution Time '+str(fs_mlexecutionTime))
                log.info('================== Feature Selection completed ==================\n')
                log.info(""Status:-|... AION feature engineering completed"")
            
            if deeplearner_status or learner_status:
                log.info('Status:-|... AION training started')
                ldp_mlstart = time.time()
                balancingMethod = config_obj.getAIONDataBalancingMethod()
                from learner.machinelearning import machinelearning
                mlobj = machinelearning()
                modelType = problem_type.lower()
                targetColumn = targetFeature
                if modelType == ""na"":
                    if self.targetType == 'categorical':
                        modelType = 'classification'
                    elif self.targetType == 'continuous':
                        modelType = 'regression'
                    else:
                        modelType='clustering'
                datacolumns=list(dataFrame.columns)     
                if targetColumn in datacolumns:
                    datacolumns.remove(targetColumn)
                features =datacolumns
                featureData = dataFrame[features]
                if(modelType == 'clustering') or (modelType == 'topicmodelling'):
                    xtrain = featureData
                    ytrain = pd.DataFrame() 
                    xtest = featureData
                    ytest = pd.DataFrame()
                elif (targetColumn!=''):
                    xtrain = dataFrame[features]
                    ytrain = dataFrame[targetColumn]
                else:
                    pass
                    
                categoryCountList = []  
                if modelType == 'classification':
                    if(mlobj.checkForClassBalancing(ytrain) >= 1):
                        xtrain,ytrain = mlobj.ExecuteClassBalancing(xtrain,ytrain,balancingMethod)
                    valueCount=targetData.value_counts()
                    categoryCountList=valueCount.tolist()
                ldp_mlexecutionTime=time.time() - ldp_mlstart
                log.info('-------> COMPUTING: Total Learner data preparation Execution Time '+str(ldp_mlexecutionTime))
            if learner_status:
                base_model_score=0
                log.info('\n================== ML Started ==================')
                
                log.info('------->  Memory Usage by DataFrame During Learner Status  '+str(dataFrame.memory_usage(deep=True).sum()))
                mlstart = time.time()
                log.info('-------> Target Problem Type:'+ self.targetType)
                learner_type = 'ML'
                learnerJson = config_obj.getEionLearnerConfiguration()
                from learner.machinelearning import machinelearning                
                mlobj = machinelearning()
                anomalyDetectionStatus = False
                anomalyMethod =config_obj.getEionanomalyModels()
                if modelType.lower() == ""anomalydetection"" or modelType.lower() == ""timeseriesanomalydetection"":  #task 11997
                    anomalyDetectionStatus = True
                    
                if anomalyDetectionStatus == True :
                    datacolumns=list(dataFrame.columns)
                    if targetColumn in datacolumns:
                        datacolumns.remove(targetColumn)
                    if datetimeFeature in datacolumns:
                        datacolumns.remove(datetimeFeature)
                    self.features = datacolumns
                    from learner.anomalyDetector import anomalyDetector
                    anomalyDetectorObj=anomalyDetector()
                    model_type =""anomaly_detection""
                    saved_model = model_type+'_'+iterName+'_'+iterVersion+'.sav'
                    if problem_type.lower() == ""timeseriesanomalydetection"": #task 11997
                        anomalyconfig = config_obj.getAIONTSAnomalyDetectionConfiguration()
                        modelType = ""TimeSeriesAnomalyDetection""
                    else:
                        anomalyconfig = config_obj.getAIONAnomalyDetectionConfiguration()
                    testPercentage = config_obj.getAIONTestTrainPercentage()
                    ##Multivariate feature based anomaly detection status from gui (true/false)
                    mv_featurebased_selection = config_obj.getMVFeaturebasedAD()
                    mv_featurebased_ad_status=str(mv_featurebased_selection['uniVariate'])                    
                    model,estimator,matrix,trainmatrix,score,labelMaps=anomalyDetectorObj.startanomalydetector(dataFrame,targetColumn,labelMaps,inlierLabels,learnerJson,model_type,saved_model,anomalyMethod,deployLocation,predicted_data_file,testPercentage,anomalyconfig,datetimeFeature,mv_featurebased_ad_status)      #Unnati
                    score = 'NA'
                    if(self.matrix != '{'):
                        self.matrix += ','
                    self.matrix += matrix
                    if(self.trainmatrix != '{'):
                        self.trainmatrix += ','
                    self.trainmatrix += trainmatrix
                    scoreParam = 'NA'
                    scoredetails = f'{{""Model"":""{model}"",""Score"":""{score}""}}'
                    if model_tried != '':
                            model_tried += ','
                    model_tried += scoredetails
                    model = anomalyMethod
                else:
                    log.info('-------> Target Problem Type:'+ self.targetType)
                    log.info('-------> Target Model Type:'+ modelType)
                    if(modelType == 'regression'):
                        allowedmatrix =  ['mse','r2','rmse','mae']
                        if(scoreParam.lower() not in allowedmatrix):
                            scoreParam = 'mse'
                    
                    if(modelType == 'classification'):
                        allowedmatrix =  ['accuracy','recall','f1_score','precision','roc_auc']
                        if(scoreParam.lower() not in allowedmatrix):
                            scoreParam = 'accuracy'
                    scoreParam = scoreParam.lower() 
                    codeConfigure.update_config('scoring_criteria',scoreParam) 
                    modelParams,modelList = config_obj.getEionLearnerModelParams(modelType)
                    status,model_type,model,saved_model,matrix,trainmatrix,featureDataShape,model_tried,score,filename,self.features,threshold,pscore,rscore,self.method,loaded_model,xtrain1,ytrain1,xtest1,ytest1,topics,params=mlobj.startLearning(learnerJson,modelType,modelParams,modelList,scoreParam,targetColumn,dataFrame,xtrain,ytrain,xtest,ytest,categoryCountList,self.topFeatures,self.modelSelTopFeatures,self.allFeatures,self.targetType,deployLocation,iterName,iterVersion,trained_data_file,predicted_data_file,labelMaps,'MB',codeConfigure,featureEngineeringSelector,config_obj.getModelEvaluationConfig(),imageFolderLocation)
                    
                    #Getting model,data for ensemble calculation
                    e_model=loaded_model
                    base_model_score=score
                    if(self.matrix != '{'):
                        self.matrix += ','
                    if(self.trainmatrix != '{'):
                        self.trainmatrix += ','
                    self.trainmatrix += trainmatrix
                    self.matrix += matrix
                mlexecutionTime=time.time() - mlstart
                log.info('-------> Total ML Execution Time '+str(mlexecutionTime))
                log.info('================== ML Completed ==================\n')
            if deeplearner_status:
                learner_type = 'DL'
                log.info('Status:- |... AION DL training started')
                from dlearning.deeplearning import deeplearning
                dlobj = deeplearning()
                from learner.machinelearning import machinelearning
                mlobj = machinelearning()   
                log.info('\n================== DL Started ==================')  
                dlstart = time.time()
                deeplearnerJson = config_obj.getEionDeepLearnerConfiguration()
                targetColumn = targetFeature
                method = deeplearnerJson['optimizationMethod']
                optimizationHyperParameter = deeplearnerJson['optimizationHyperParameter']
                cvSplit = optimizationHyperParameter['trainTestCVSplit']
                roundLimit=optimizationHyperParameter['roundLimit']
                if 'randomMethod' in optimizationHyperParameter:
                    randomMethod = optimizationHyperParameter['randomMethod']
                else:
                    randomMethod = 'Quantum'
                modelType = problem_type.lower()
                modelParams = deeplearnerJson['modelParams']
                modelParamsFile=deeplearnerJson['modelparamsfile']
                
                if roundLimit =="""":
                    roundLimit=None
                else:
                    roundLimit=int(roundLimit)
                
                if len(self.modelSelTopFeatures) !=0:
                    dl_features=self.modelSelTopFeatures
                    best_feature_model = 'ModelBased'
                elif len(self.topFeatures) != 0:
                    dl_features=self.topFeatures
                    if featureEngineeringSelector.lower() == 'true':
                        best_feature_model = 'DimensionalityReduction'
                    else:                                       
                        best_feature_model = 'StatisticalBased'   
                    
                elif len(self.allFeatures) != 0:
                    dl_features=self.allFeatures
                    best_feature_model = 'AllFeatures'                    
                else:
                    datacolumns=list(dataFrame.columns)
                    datacolumns.remove(targetColumn)
                    dl_features =datacolumns
                    best_feature_model = 'AllFeatures'
                log.info('-------> Features Used For Modeling: '+(str(dl_features))[:500])
                
                
                if cvSplit == """":
                    cvSplit =None
                else:
                    cvSplit =int(cvSplit)
                                                
                xtrain = xtrain[dl_features]
                xtest = xtest[dl_features]
                df_test = xtest.copy()
                df_test['actual'] = ytest
                                        
                modelParams,modelList = config_obj.getEionDeepLearnerModelParams(modelType)     
                if modelType.lower() == 'classification':               
                    scoreParam = dlobj.setScoreParams(scoreParam,modelType)
                    featureDataShape = xtrain.shape     
                    model_type = 'Classification'
                    log.info('\n------ Training DL: Classification ----')
                elif modelType.lower() == 'regression':
                    model_type = ""Regression""
                    if scoreParam == 'None':
                        scoreParam = None
                    log.info('\n------ Training DL: Regression ----')
                    featureDataShape =  xtrain.shape
                model_dl,score_dl,best_model_dl,params_dl,X1,XSNN,model_tried_dl,loss_matrix,optimizer,saved_model_dl,filename_dl,dftrain,df_test,performancematrix,trainingperformancematrix = dlobj.startLearning(model_type,modelList, modelParams, scoreParam, cvSplit, xtrain,ytrain,xtest,ytest,method,randomMethod,roundLimit,labelMaps,df_test,deployLocation,iterName,iterVersion,best_feature_model)
                if model_tried != '':
                    model_tried += ','
                model_tried += model_tried_dl
                bestDL = True
                if learner_status:
                    if score_dl <= score:
                        bestDL = False
                        log.info(""\n----------- Machine Learning is Good ---"")
                        log.info(""-------> Model: ""+str(model) +"" Score: ""+str(score))
                        log.info(""---------------------------------------\n"")
                    else:
                        os.remove(filename)
                        os.remove(predicted_data_file)
                        log.info(""\n------------ Deep Learning is Good---"")
                        log.info(""-------> Model: ""+str(model_dl)+"" Score: ""+str(score_dl))
                        log.info(""---------------------------------------\n"")
                if bestDL:
                    model = model_dl
                    score = score_dl
                    best_model = best_model_dl
                    params = params_dl
                    filename = filename_dl
                    status, msg = save_csv(df_test,predicted_data_file)
                    if not status:
                        log.info('CSV File Error: ' + str(msg))

                    saved_model = saved_model_dl
                    self.matrix = '{'+performancematrix
                    self.trainmatrix = '{'+trainingperformancematrix
                    self.features = dl_features
                else:
                    learner_type = 'ML'
                    shutil.rmtree(filename_dl)

                dlexecutionTime=time.time() - dlstart
                log.info('-------> DL Execution Time '+str(dlexecutionTime))
                log.info('Status:- |... AION DL training completed')
                log.info('================== Deep Completed ==================\n')
            if deeplearner_status or learner_status:
                log.info('Status:-|... AION training completed')    
            if stateTransitionStatus:
                log.info('Status:-|... AION State Transition start')
                learner_type = modelType = model_type = 'StateTransition'
                model = 'MarkovClustering'
                scoreParam = 'NA'
                score = 0
                from state_transition.pattern import pattern

                patternobj = pattern(modelFeatures,targetFeature)

                model_tried,probabilityfile,clusteringfile = patternobj.training(dataFrame,outputLocation)
                deploy_status = False
                visualizationstatus = False
                log.info('Status:-|... AION State Transition completed')
            if associationRuleStatus:
                log.info('\n================== Association Rule Started ==================')
                log.info('Status:-|... AION Association Rule start')
                learner_type = 'AR'
                modelType = 'Association Rule'
                model = 'apriori'
                scoreParam = 'NA'
                score  = 'NA'
                model_type = modelType
                associationRuleJson = config_obj.getEionAssociationRuleConfiguration()
                modelparams,modelList = config_obj.getEionAssociationRuleModelParams()
                invoiceNoFeature,itemFeature = config_obj.getAssociationRuleFeatures()
                if model in modelparams:
                    modelparam = modelparams[model]
                log.info('\n-------- Assciation Rule Start -----')
                from association_rules.associationrules import associationrules
                associationrulesobj = associationrules(dataFrame,associationRuleJson,modelparam,invoiceNoFeature,itemFeature)
                model_tried = associationrulesobj.apply_associationRules(outputLocation)
                log.info('-------- Association Rule End -----\n')
                log.info('<--------Association Rule Completed----->')
                log.info('Status:-|... AION Association Rule completed')
                deploy_status = False
            if textSimilarityStatus:
                log.info('================ Text Similarity Started ====================')
                log.info('Status:-|... AION Text Similarity started')
                learner_type = 'Text Similarity'
                model_type = 'Text Similarity'
                scoreParam = 'Accuracy'
                modelType = model_type
                firstDocFeature = config_obj.getFirstDocumentFeature()
                secondDocFeature = config_obj.getSecondDocumentFeature()    
                textSimilarityCongig = config_obj.getEionTextSimilarityConfig()
                testPercentage = config_obj.getAIONTestTrainPercentage()        #Unnati
                from recommender.text_similarity import eion_similarity_siamese
                objTextSimilarity = eion_similarity_siamese()
                model,score,matrix,trainmatrix,modeltried,saved_model,filename,padding_length,threshold = objTextSimilarity.siamese_model(dataFrame,firstDocFeature,secondDocFeature,targetFeature,textSimilarityCongig,pipe,deployLocation,iterName,iterVersion,testPercentage,predicted_data_file)
                if(self.matrix != '{'):
                    self.matrix += ','
                self.matrix += matrix
                if model_tried != '':
                    model_tried += ','
                model_tried += modeltried
                if(self.trainmatrix != '{'):
                    self.trainmatrix += ','
                self.trainmatrix += trainmatrix
                log.info('Status:-|... AION Text Similarity completed')
                log.info('================ Text Similarity Started End====================')
            if timeseriesStatus:
                log.info('================ Time Series Forecasting Started ====================') #task 11997
                log.info('Status:-|... AION TimeSeries Forecasting started') #task 11997
                modelType = 'TimeSeriesForecasting' #task 11997
                model_type = 'TimeSeriesForecasting' #task 11997
                learner_type = 'TS'
                modelName='ARIMA'
                numericContinuousFeatures = targetFeature.split("","")
                profilerJson = config_obj.getEionTimeSeriesConfiguration()
                modelParams,modelList = config_obj.getEionTimeSeriesModelParams()
                modelName = modelList
                testPercentage = config_obj.getAIONTestTrainPercentage()        #Unnati
                
                from time_series.timeseries import timeseries
                allowedmatrix =  ['mse','r2','rmse','mae']
                if(scoreParam.lower() not in allowedmatrix):
                    scoreParam = 'rmse'
                objTS = timeseries(profilerJson,modelParams,modelList,dataFrame,targetFeature,datetimeFeature,modelName,testPercentage,iterName,iterVersion,deployLocation,scoreParam)
                modelName,model,scoreParam,score,best_model,sfeatures,errormatrix,model_tried,dictDiffCount,pred_freq,additional_regressors,filename,saved_model,lag_order,scalertransformationFile = objTS.timeseries_learning(trained_data_file,predicted_data_file,deployLocation)
                
                xtrain = dataFrame
                self.matrix += errormatrix
                log.info(""Best model to deploy: \n""+str(model))
                ## Below part is for var,arima,fbprophet
                
                try:
                    with open(filename, 'rb') as f:
                        loaded_model = pickle.load(f)
                    f.close()    
                except:
                    loaded_model=best_model
                    pass
                df_l=len(dataFrame)
                pred_threshold=0.1
                max_pred_by_user= round((df_l)*pred_threshold)
                #prediction for 24 steps or next 24 hours
                if noofforecasts == -1:
                    noofforecasts = max_pred_by_user
                no_of_prediction=noofforecasts
                if (no_of_prediction > max_pred_by_user):
                    log.info(""-------> Forecast beyond the threshold.So, Reset to Maximum:"" +str(max_pred_by_user))
                    no_of_prediction=max_pred_by_user
                noofforecasts = no_of_prediction
                log.info(""-------> Number of Forecast Records: ""+str(no_of_prediction))
                log.info(""\n------ Forecast Prediction Start -------------"")
                if(model.lower() == 'var'):
                    sfeatures.remove(datetimeFeature)
                    self.features = sfeatures               
                    originalPredictions=objTS.var_prediction(no_of_prediction)
                    log.info(""-------> Predictions"")
                    log.info(originalPredictions)
                    predictions=originalPredictions
                    forecast_output = predictions.to_json(orient='records')
                else:
                    if (model.lower() == 'fbprophet'):
                        self.features = sfeatures
                        if not pred_freq:
                            sessonal_freq = 'H'
                        else:
                            sessonal_freq=pred_freq
                        ts_prophet_future = best_model.make_future_dataframe(periods=no_of_prediction,freq=sessonal_freq,include_history = False)
                        #If additional regressor given by user.
                        if (additional_regressors):
                            log.info(""------->Prophet additional regressor given by user: ""+str(additional_regressors))
                            ts_prophet_future[additional_regressors] = dataFrame[additional_regressors]
                            ts_prophet_future.reset_index(drop=True)
                            ts_prophet_future=ts_prophet_future.dropna()
                        else:
                            pass
                        
                        train_forecast = best_model.predict(ts_prophet_future)
                        train_forecast = train_forecast.round(2)
                        prophet_forecast_tail=train_forecast[['ds', 'yhat', 'yhat_lower', 'yhat_upper']]
                        prophet_forecast_tail['ds'] = prophet_forecast_tail['ds'].dt.strftime('%Y-%m-%d %H:%i:%s')
                        log.info(""------->Prophet Predictions"")
                        log.info(prophet_forecast_tail)
                        forecast_output = prophet_forecast_tail.to_json(orient='records')
                    elif (model.lower() == 'arima'):
                        predictions = loaded_model.predict(n_periods=no_of_prediction)
                        predictions = predictions.round(2)  
                        self.features = sfeatures        
                        col = targetFeature.split("","")
                        pred = pd.DataFrame(predictions,columns=col)
                        predictionsdf = pred
                        log.info(""-------> Predictions"")
                        log.info(predictionsdf)
                        forecast_output = predictionsdf.to_json(orient='records')
                    elif (model.lower() == 'encoder_decoder_lstm_mvi_uvo'):
                        log.info(datetimeFeature)
                        log.info(sfeatures)
                        self.features = sfeatures
                        if len(sfeatures) == 1:
                            xt = xtrain[self.features].values
                        else:
                            xt = xtrain[self.features].values
                             
                        with open(scalertransformationFile, 'rb') as f:
                            loaded_scaler_model = pickle.load(f)
                        f.close()
                        xt = xt.astype('float32')
                        xt = loaded_scaler_model.transform(xt)
                        pred_data  = xt
                        y_future = []
                        
                        featuerlen = len(sfeatures)
                        targetColIndx = (xtrain.columns.get_loc(targetFeature))
                        #in case of lstm multivariate input and univariate out prediction only one sequence can be predicted
                        #consider the last xtrain window as input sequence

                        pdata = pred_data[-lag_order:] 
                        pdata = pdata.reshape((1,lag_order, featuerlen))
                        pred = loaded_model.predict(pdata)
                        pred_1d = pred.ravel()
                        #pred_1d = pred_1d.reshape(len(pred_1d),1)
                        pdata_2d = pdata.ravel().reshape(len(pdata) * lag_order, featuerlen)
                        pdata_2d[:,targetColIndx] = pred_1d
                        pred_2d_inv =   loaded_scaler_model.inverse_transform(pdata_2d) 
                        predout = pred_2d_inv[:, targetColIndx]  
                        predout = predout.reshape(len(pred_1d),1)                        
                        #y_future.append(predout)

                        col = targetFeature.split("","")
                        pred = pd.DataFrame(index=range(0,len(predout)),columns=col)
                        for i in range(0, len(predout)):
                            pred.iloc[i] = predout[i]
                        predictions = pred
                        log.info(""-------> Predictions"")
                        log.info(predictions)
                        forecast_output = predictions.to_json(orient='records')
                    elif (model.lower() == 'mlp' or  model.lower() == 'lstm'):
                        sfeatures.remove(datetimeFeature)
                        self.features = sfeatures
                        if len(sfeatures) == 1:
                            xt = xtrain[self.features].values
                        else:
                            xt = xtrain[self.features].values
                             
                        with open(scalertransformationFile, 'rb') as f:
                            loaded_scaler_model = pickle.load(f)
                        f.close()
                        xt = xt.astype('float32')
                        xt = loaded_scaler_model.transform(xt)
                        pred_data  = xt
                        y_future = []
                        for i in range(no_of_prediction):
                            pdata = pred_data[-lag_order:] 
                            if model.lower() == 'mlp':
                                pdata = pdata.reshape((1,lag_order))    
                            else:
                                pdata = pdata.reshape((1,lag_order, len(sfeatures)))    
                            if (len(sfeatures) > 1):
                                pred = loaded_model.predict(pdata)
                                predout =   loaded_scaler_model.inverse_transform(pred)                             
                                y_future.append(predout)
                                pred_data=np.append(pred_data,pred,axis=0)
                            else:   
                                pred = loaded_model.predict(pdata)
                                predout =   loaded_scaler_model.inverse_transform(pred)         
                                y_future.append(predout.flatten()[-1])
                                pred_data = np.append(pred_data,pred)
                        col = targetFeature.split("","")
                        pred = pd.DataFrame(index=range(0,len(y_future)),columns=col)
                        for i in range(0, len(y_future)):
                            pred.iloc[i] = y_future[i]
                        predictions = pred
                        log.info(""-------> Predictions"")
                        log.info(predictions)
                        forecast_output = predictions.to_json(orient='records')
                    else:
                        pass
                log.info('Status:-|... AION TimeSeries Forecasting completed') #task 11997
                log.info(""------ Forecast Prediction End -------------\n"")
                log.info('================ Time Series Forecasting Completed ================\n') #task 11997
            if recommenderStatus:
                log.info('\n================ Recommender Started ================ ')
                log.info('Status:-|... AION Recommender started')
                learner_type = 'RecommenderSystem'
                model_type = 'RecommenderSystem'
                modelType = model_type
                model = model_type
                targetColumn=''
                datacolumns=list(dataFrame.columns)
                self.features=datacolumns
                svd_params = config_obj.getEionRecommenderConfiguration()
                from recommender.item_rating import recommendersystem
                recommendersystemObj = recommendersystem(modelFeatures,svd_params)

                testPercentage = config_obj.getAIONTestTrainPercentage()        #Unnati
                saved_model,rmatrix,score,trainingperformancematrix,model_tried = recommendersystemObj.recommender_model(dataFrame,outputLocation)
                scoreParam = 'NA' #Task 11190
                log.info('Status:-|... AION Recommender completed')
                log.info('================ Recommender Completed ================\n')
                
            if textsummarizationStatus:
                log.info('\n================ text Summarization Started  ================ ')
                log.info('Status:-|... AION text Summarization started')
                modelType = 'textsummarization'
                model_type = 'textsummarization'
                learner_type = 'Text Summarization'
                modelName='TextSummarization'
                from sklearn.preprocessing import LabelEncoder
                from sklearn.ensemble import RandomForestClassifier
                from scipy import spatial
                model = model_type                
                dataLocationTS,deployLocationTS,KeyWordsTS,pathForKeywordFileTS = config_obj.getEionTextSummarizationConfig()
                #print(""dataLocationTS"",dataLocationTS)
                #print(""deployLocationTS"",deployLocationTS)
                #print(""KeyWordsTS"",KeyWordsTS)
                #print(""pathForKeywordFileTS"",pathForKeywordFileTS)               
                #PreTrained Model Download  starts-------------------------
                from appbe.dataPath import DATA_DIR
                preTrainedModellocation = Path(DATA_DIR)/'PreTrainedModels'/'TextSummarization'
                preTrainedModellocation = Path(DATA_DIR)/'PreTrainedModels'/'TextSummarization'
                models = {'glove':{50:'glove.6B.50d.w2vformat.txt'}}
                supported_models = [x for y in models.values() for x in y.values()]
                modelsPath = Path(DATA_DIR)/'PreTrainedModels'/'TextSummarization'
                Path(modelsPath).mkdir(parents=True, exist_ok=True)
                p = Path(modelsPath).glob('**/*')
                modelsDownloaded = [x.name for x in p if x.name in supported_models]
                selected_model=""glove.6B.50d.w2vformat.txt""                
                if selected_model not in modelsDownloaded:
                    print(""Model not in folder, downloading"")
                    import urllib.request
                    location = Path(modelsPath)
                    local_file_path =  location/f""glove.6B.50d.w2vformat.txt""
                    urllib.request.urlretrieve(f'https://aion-pretrained-models.s3.ap-south-1.amazonaws.com/text/glove.6B.50d.w2vformat.txt', local_file_path)
                from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
                tokenizer = AutoTokenizer.from_pretrained(""sshleifer/distilbart-cnn-12-6"")
                model = AutoModelForSeq2SeqLM.from_pretrained(""sshleifer/distilbart-cnn-12-6"")
                tokenizer.save_pretrained(preTrainedModellocation)
                model.save_pretrained(preTrainedModellocation)
                #PreTrained Model Download  ends-----------------------
                deployLocationData=deployLocation+""\\data\\""
                modelLocation=Path(DATA_DIR)/'PreTrainedModels'/'TextSummarization'/'glove.6B.50d.w2vformat.txt'
                KeyWordsTS=KeyWordsTS.replace("","", "" "")                               
                noOfKeyword = len(KeyWordsTS.split())
                keywords = KeyWordsTS.split()
                embeddings = {}
                word = ''
                with open(modelLocation, 'r', encoding=""utf8"") as f:
                    header = f.readline()
                    header = header.split(' ')
                    vocab_size = int(header[0])
                    embed_size = int(header[1])
                    for i in range(vocab_size):
                        data = f.readline().strip().split(' ')
                        word = data[0]
                        embeddings[word] = [float(x) for x in data[1:]]
                readData=pd.read_csv(pathForKeywordFileTS,encoding='utf-8',encoding_errors= 'replace')
                for i in range(noOfKeyword):
                    terms=(sorted(embeddings.keys(), key=lambda word: spatial.distance.euclidean(embeddings[word], embeddings[keywords[i]])) )[1:6]         
                    readData = readData.append({'Keyword': keywords[i]}, ignore_index=True)
                    for j in range(len(terms)):
                        readData = readData.append({'Keyword': terms[j]}, ignore_index=True)
                deployLocationDataKwDbFile=deployLocationData+""keywordDataBase.csv""
                readData.to_csv(deployLocationDataKwDbFile,encoding='utf-8',index=False)
                datalocation_path=dataLocationTS
                path=Path(datalocation_path)
                fileList=os.listdir(path)
                textExtraction = pd.DataFrame()
                textExtraction['Sentences']=""""
                rowIndex=0
                for i in range(len(fileList)):
                    fileName=str(datalocation_path)+""\\""+str(fileList[i])
                    if fileName.endswith("".pdf""):
                        print(""\n files "",fileList[i])
                        from pypdf import PdfReader
                        reader = PdfReader(fileName)
                        number_of_pages = len(reader.pages)
                        text=""""
                        textOutputForFile=""""    
                        OrgTextOutputForFile=""""                
                        for i in range(number_of_pages) :
                            page = reader.pages[i]
                            text1 = page.extract_text()
                            text=text+text1
                        import nltk
                        tokens = nltk.sent_tokenize(text)
                        for sentence in tokens:
                            sentence=sentence.replace(""\n"", "" "")                                
                            if   (len(sentence.split()) < 4 ) or (len(str(sentence.split(',')).split()) < 8)or (any(chr.isdigit() for chr in sentence)) :
                                continue
                            textExtraction.at[rowIndex,'Sentences']=str(sentence.strip())              
                            rowIndex=rowIndex+1                            
                    if fileName.endswith("".txt""):
                        print(""\n txt files"",fileList[i])
                        data=[]
                        with open(fileName, ""r"",encoding=""utf-8"") as f:
                            data.append(f.read())
                        str1 = """"
                        for ele in data:
                            str1 += ele
                        sentences=str1.split(""."")
                        count=0
                        for sentence in sentences:
                            count += 1
                            textExtraction.at[rowIndex+i,'Sentences']=str(sentence.strip())
                            rowIndex=rowIndex+1                            
                df=textExtraction
                #print(""textExtraction"",textExtraction)
                deployLocationDataPreProcessData=deployLocationData+""preprocesseddata.csv""
                save_csv_compressed(deployLocationDataPreProcessData, df, encoding='utf-8')
                df['Label']=0
                kw=pd.read_csv(deployLocationDataKwDbFile,encoding='utf-8',encoding_errors= 'replace')
                Keyword_list = kw['Keyword'].tolist()
                for i in df.index:
                    for x in Keyword_list:
                        if (str(df[""Sentences""][i])).find(x) != -1:
                            df['Label'][i]=1
                            break
                deployLocationDataPostProcessData=deployLocationData+""postprocesseddata.csv""
                #df.to_csv(deployLocationDataPostProcessData,encoding='utf-8')
                save_csv_compressed(deployLocationDataPostProcessData, df, encoding='utf-8')
                labelledData=df
                train_df=labelledData
                labelencoder = LabelEncoder()
                train_df['Sentences'] = labelencoder.fit_transform(train_df['Sentences'])
                X = train_df.drop('Label',axis=1)
                y = train_df['Label']       
                X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)   
                Classifier = RandomForestClassifier(n_estimators = 10, random_state = 42)
                modelTs=Classifier.fit(X, y)
                import pickle
                deployLocationTS=deployLocation+""\\model\\""+iterName+'_'+iterVersion+'.sav'
                deployLocationTS2=deployLocation+""\\model\\""+""classificationModel.sav""                    
                pickle.dump(modelTs, open(deployLocationTS, 'wb'))
                pickle.dump(modelTs, open(deployLocationTS2, 'wb'))                    
                print(""\n  trainModel  Ends"")

                saved_model = 'textsummarization_'+iterName+'_'+iterVersion
                log.info('Status:-|... AION text summarization completed')
                model = learner_type
                log.info('================ text summarization Completed ================\n')
            if survival_analysis_status:
                sa_method = config_obj.getEionanomalyModels()
                labeldict = {}
                log.info('\n================ SurvivalAnalysis Started ================ ')
                log.info('Status:-|... AION SurvivalAnalysis started')

                log.info('\n================ SurvivalAnalysis DataFrame ================ ')
                log.info(dataFrame)
                from survival import survival_analysis
                from learner.machinelearning import machinelearning
                sa_obj = survival_analysis.SurvivalAnalysis(dataFrame, preprocess_pipe, sa_method, targetFeature, datetimeFeature, filter_expression, profilerObj.train_features_type)
                if sa_obj != None:
                    predict_json = sa_obj.learn()

                    if sa_method.lower() in ['kaplanmeierfitter','kaplanmeier','kaplan-meier','kaplan meier','kaplan','km','kmf']:
                        predicted = sa_obj.models[0].predict(dataFrame[datetimeFeature])

                        status, msg = save_csv(predicted,predicted_data_file)
                        if not status:
                            log.info('CSV File Error: ' + str(msg))
                        self.features = [datetimeFeature]
                    elif sa_method.lower() in ['coxphfitter','coxregression','cox-regression','cox regression','coxproportionalhazard','coxph','cox','cph']:
                        predicted = sa_obj.models[0].predict_cumulative_hazard(dataFrame)
                        datacolumns = list(dataFrame.columns)
                        targetColumn = targetFeature
                        if targetColumn in datacolumns:
                            datacolumns.remove(targetColumn)
                        self.features = datacolumns
                        score = sa_obj.score
                        scoreParam = 'Concordance_Index'

                        status,msg = save_csv(predicted,predicted_data_file)
                        if not status:
                            log.info('CSV File Error: ' + str(msg))
                    model = sa_method
                    
                    modelType = ""SurvivalAnalysis""
                    model_type = ""SurvivalAnalysis""
                    modelName = sa_method
                    i = 1
                    for mdl in sa_obj.models:
                        saved_model = ""%s_%s_%s_%d.sav""%(model_type,sa_method,iterVersion,i)
                        pickle.dump(mdl, open(os.path.join(deployLocation,'model',saved_model), 'wb')),
                        i+=1
                    p = 1
                    for plot in sa_obj.plots:
                        img_name = ""%s_%d.png""%(sa_method,p)
                        img_location = os.path.join(imageFolderLocation,img_name)
                        plot.savefig(img_location,bbox_inches='tight')
                        sa_images.append(img_location)
                        p+=1
                log.info('Status:-|... AION SurvivalAnalysis completed')
                log.info('\n================ SurvivalAnalysis Completed ================ ')
            if visualizationstatus:
                visualizationJson = config_obj.getEionVisualizationConfiguration()
                log.info('\n================== Visualization Recommendation Started ==================')
                
                visualizer_mlstart = time.time()
                from visualization.visualization import Visualization
                visualizationObj = Visualization(iterName,iterVersion,dataFrame,visualizationJson,datetimeFeature,deployLocation,dataFolderLocation,numericContinuousFeatures,discreteFeatures,categoricalFeatures,self.features,targetFeature,model_type,original_data_file,profiled_data_file,trained_data_file,predicted_data_file,labelMaps,self.vectorizerFeatures,self.textFeatures,self.numericalFeatures,self.nonNumericFeatures,self.emptyFeatures,self.dfrows,self.dfcols,saved_model,scoreParam,learner_type,model,featureReduction,reduction_data_file)
                visualizationObj.visualizationrecommandsystem()
                visualizer_mlexecutionTime=time.time() - visualizer_mlstart
                log.info('-------> COMPUTING: Total Visualizer Execution Time '+str(visualizer_mlexecutionTime))
                
                log.info('================== Visualization Recommendation Started ==================\n')
            if similarityIdentificationStatus or contextualSearchStatus:
                datacolumns=list(dataFrame.columns)
                features = modelFeatures.split("","")
                if indexFeature != '' and indexFeature != 'NA':
                    iFeature = indexFeature.split("","")
                    for ifea in iFeature:
                        if ifea not in features:
                            features.append(ifea)                
                for x in features:
                    dataFrame[x] = similaritydf[x]
                #get vectordb(chromadb) status selected
                if similarityIdentificationStatus:
                    learner_type = 'similarityIdentification'
                else:
                    learner_type = 'contextualSearch'
                vecDBCosSearchStatus = config_obj.getVectorDBCosSearchStatus(learner_type)
                if vecDBCosSearchStatus:
                    status, msg = save_chromadb(dataFrame, config_obj, trained_data_file, modelFeatures)
                    if not status:
                        log.info('Vector DB File Error: '+str(msg))
                else:
                    status, msg = save_csv(dataFrame,trained_data_file)
                    if not status:
                        log.info('CSV File Error: '+str(msg))
                self.features = datacolumns

                model_type = config_obj.getAlgoName(problem_type)
                model = model_type #bug 12833
                model_tried = '{""Model"":""'+model_type+'"",""FeatureEngineering"":""NA"",""Score"":""NA"",""ModelUncertainty"":""NA""}'
                modelType = learner_type
                saved_model = learner_type
                score = 'NA'    
            if deploy_status:
                if str(model) != 'None':
                    log.info('\n================== Deployment Started ==================')
                    log.info('Status:-|... AION Creating Prediction Service Start')
                    deployer_mlstart = time.time()
                    
                    deployJson = config_obj.getEionDeployerConfiguration()
                    deploy_name = iterName+'_'+iterVersion
                    from prediction_package.model_deploy import DeploymentManager
                    if  textsummarizationStatus :
                        deploy = DeploymentManager()
                        deploy.deployTSum(deployLocation,preTrainedModellocation)
                        codeConfigure.save_config(deployLocation)
                        deployer_mlexecutionTime=time.time() - deployer_mlstart
                        log.info('-------> COMPUTING: Total Deployer Execution Time '+str(deployer_mlexecutionTime))
                        log.info('Status:-|... AION Deployer completed')
                        log.info('================== Deployment Completed ==================')  
                    else:
                        deploy = DeploymentManager()
                        deploy.deploy_model(deploy_name,deployJson,learner_type,model_type,model,scoreParam,saved_model,deployLocation,self.features,self.profilerAction,dataLocation,labelMaps,column_merge_flag,self.textFeatures,self.numericalFeatures,self.nonNumericFeatures,preprocessing_pipe,numericToLabel_json,threshold,loss_matrix,optimizer,firstDocFeature,secondDocFeature,padding_length,trained_data_file,dictDiffCount,targetFeature,normalizer_pickle_file,normFeatures,pcaModel_pickle_file,bpca_features,apca_features,self.method,deployFolder,iterName,iterVersion,self.wordToNumericFeatures,imageconfig,sessonal_freq,additional_regressors,grouperbyjson,rowfilterexpression,xtrain,profiled_data_file,conversion_method,modelFeatures,indexFeature,lag_order,scalertransformationFile,noofforecasts,preprocess_pipe,preprocess_out_columns, label_encoder,datetimeFeature,usecaseLocation,deploy_config)
                    codeConfigure.update_config('deploy_path',os.path.join(deployLocation,'publish'))
                    codeConfigure.save_config(deployLocation)
                    deployer_mlexecutionTime=time.time() - deployer_mlstart
                    log.info('-------> COMPUTING: Total Deployer Execution Time '+str(deployer_mlexecutionTime))
                    log.info('Status:-|... AION Creating Prediction Service completed')
                    log.info('================== Deployment Completed ==================')  
                
            if not outputDriftStatus and not inputDriftStatus:
                from transformations.dataProfiler import set_features
                self.features = set_features(self.features,profilerObj)
                self.matrix += '}'
                self.trainmatrix += '}'
                print(model_tried)
                model_tried = eval('['+model_tried+']')
                matrix = eval(self.matrix)
                trainmatrix = eval(self.trainmatrix)
                deployPath = deployLocation.replace(os.sep, '/')
                if survival_analysis_status:
                    output_json = {""status"":""SUCCESS"",""data"":{""ModelType"":modelType,""deployLocation"":deployPath,""BestModel"":model,""BestScore"":str(score),""ScoreType"":str(scoreParam).upper(),""matrix"":matrix,""survivalProbability"":json.loads(predict_json),""featuresused"":str(self.features),""targetFeature"":str(targetColumn),""EvaluatedModels"":model_tried,""imageLocation"":str(sa_images),""LogFile"":logFileName}}
                elif not timeseriesStatus:
                    try:
                        json.dumps(params)
                        output_json = {""status"":""SUCCESS"",""data"":{""ModelType"":modelType,""deployLocation"":deployPath,""BestModel"":model,""BestScore"":str(score),""ScoreType"":str(scoreParam).upper(),""matrix"":matrix,""trainmatrix"":trainmatrix,""featuresused"":str(self.features),""targetFeature"":str(targetColumn),""params"":params,""EvaluatedModels"":model_tried,""LogFile"":logFileName}}
                    except:
                        output_json = {""status"":""SUCCESS"",""data"":{""ModelType"":modelType,""deployLocation"":deployPath,""BestModel"":model,""BestScore"":str(score),""ScoreType"":str(scoreParam).upper(),""matrix"":matrix,""trainmatrix"":trainmatrix,""featuresused"":str(self.features),""targetFeature"":str(targetColumn),""params"":"""",""EvaluatedModels"":model_tried,""LogFile"":logFileName}}
                else:
                    if config_obj.summarize:
                        modelType = 'Summarization'
                    output_json = {""status"":""SUCCESS"",""data"":{""ModelType"":modelType,""deployLocation"":deployPath,""BestModel"":model,""BestScore"":str(score),""ScoreType"":str(scoreParam).upper(),""matrix"":matrix,""featuresused"":str(self.features),""targetFeature"":str(targetColumn),""EvaluatedModels"":model_tried,'forecasts':json.loads(forecast_output),""LogFile"":logFileName}}  
                if bool(topics) == True:
                    output_json['topics'] = topics
                with open(outputjsonFile, 'w',encoding='utf-8') as f:
                    json.dump(output_json, f)
                f.close()                    
                output_json = json.dumps(output_json) 

                log.info('\n------------- Summary ------------')
                log.info('------->No of rows & columns in data:('+str(self.dfrows)+','+str(self.dfcols)+')')
                log.info('------->No of missing Features :'+str(len(self.mFeatures)))
                log.info('------->Missing Features:'+str(self.mFeatures))
                log.info('------->Text Features:'+str(self.textFeatures))
                log.info('------->No of Nonnumeric Features :'+str(len(self.nonNumericFeatures)))
                log.info('------->Non-Numeric Features :' +str(self.nonNumericFeatures))
                if threshold == -1:
                    log.info('------->Threshold: NA')
                else:
                    log.info('------->Threshold: '+str(threshold))
                log.info('------->Label Maps of Target Feature for classification  :'+str(labelMaps))
                for i in range(0,len(self.similarGroups)):
                    log.info('------->Similar Groups '+str(i+1)+' '+str(self.similarGroups[i]))
                if((learner_type != 'TS') & (learner_type != 'AR')):
                    log.info('------->No of columns and rows used for Modeling :'+str(featureDataShape))
                    log.info('------->Features Used for Modeling:'+str(self.features))
                    log.info('------->Target Feature: '+str(targetColumn))
                    log.info('------->Best Model Score :'+str(score))
                    log.info('------->Best Parameters:'+str(params))
                log.info('------->Type of Model :'+str(modelType))
                log.info('------->Best Model :'+str(model))
                log.info('------------- Summary ------------\n')
                log.info('Status:-|... AION Model Training Successfully Done')
            
        except Exception as inst:
            log.info('server code execution failed !....'+str(inst))
            log.error(inst, exc_info = True)
            output_json = {""status"":""FAIL"",""message"":str(inst).strip('""'),""LogFile"":logFileName}
            output_json = json.dumps(output_json)

            exc_type, exc_obj, exc_tb = sys.exc_info()
            fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
            log.info(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))

        executionTime = timeit.default_timer() - startTime
        log.info('\nTotal execution time(sec) :'+str(executionTime))
        log.info('\n------------- Output JSON ------------')
        log.info('aion_learner_status:'+str(output_json))
        log.info('------------- Output JSON ------------\n')
        for hdlr in log.handlers[:]:  # remove the existing file handlers
            if isinstance(hdlr,logging.FileHandler):
                hdlr.close()
                log.removeHandler(hdlr)
        return output_json

    def split_into_train_test_data(self,featureData,targetData,testPercentage,log,modelType='classification'):         #Unnati
        log.info('\n-------------- Test Train Split ----------------')
        if testPercentage == 0 or testPercentage == 100:          #Unnati
            xtrain=featureData
            ytrain=targetData
            xtest=pd.DataFrame()
            ytest=pd.DataFrame()
        else:
            testSize= testPercentage/100       #Unnati
            if modelType == 'regression':
                log.info('-------> Split Type: Random Split')
                xtrain,xtest,ytrain,ytest=train_test_split(featureData,targetData,test_size=testSize,shuffle=True,random_state=42)
            else:
                try:
                    log.info('-------> Split Type: Stratify Split')
                    xtrain,xtest,ytrain,ytest=train_test_split(featureData,targetData,stratify=targetData,test_size=testSize,random_state=42)
                except Exception as ValueError:
                    count_unique = targetData.value_counts()
                    feature_with_single_count = count_unique[ count_unique == 1].index.tolist()
                    error = f""The least populated class in {feature_with_single_count} has only 1 member, which is too few. The minimum number of groups for any class cannot be less than 2""
                    raise Exception(error) from ValueError

                except:
                    log.info('-------> Split Type: Random Split')
                    xtrain,xtest,ytrain,ytest=train_test_split(featureData,targetData,test_size=testSize,shuffle=True,random_state=42)

        log.info('Status:- !... Train / test split done: '+str(100-testPercentage)+'% train,'+str(testPercentage)+'% test')  #Unnati
        log.info('-------> Train Data Shape: '+str(xtrain.shape)+' ---------->')
        log.info('-------> Test Data Shape: '+str(xtest.shape)+' ---------->')
        log.info('-------------- Test Train Split End ----------------\n')
        return(xtrain,ytrain,xtest,ytest)

def aion_train_model(arg):
    warnings.filterwarnings('ignore')
    config_path = Path( arg)
    with open( config_path, 'r') as f:
        config = json.load( f)
    log = set_log_handler(config['basic'])
    log.info('************* Version - v'+AION_VERSION+' *************** \n')
    msg = '-------> Execution Start Time: '+ datetime.datetime.now(timezone(""Asia/Kolkata"")).strftime('%Y-%m-%d %H:%M:%S' + ' IST')
    log.info(msg)
    try:
        config_validate(arg)
        valid, msg = pushRecordForTraining()
        if valid:
            serverObj = server()
            configObj = AionConfigManager()
            codeConfigure = code_configure()
            codeConfigure.create_config(config)
            readConfistatus,msg = configObj.readConfigurationFile(config)
            if(readConfistatus == False):
                raise ValueError( msg)
            output = serverObj.startScriptExecution(configObj, codeConfigure, log)
        else:
            output = {""status"":""LicenseVerificationFailed"",""message"":str(msg).strip('""')}
            output = json.dumps(output)
        print( f""\naion_learner_status:{output}\n"")
        log.info( f""\naion_learner_status:{output}\n"")
    except Exception as inst:
        output = {""status"":""FAIL"",""message"":str(inst).strip('""')}
        output = json.dumps(output)        
        exc_type, exc_obj, exc_tb = sys.exc_info()
        fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
        print(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))
        print(f""\naion_learner_status:{output}\n"")
        log.info( f""\naion_learner_status:{output}\n"")
    return output

if __name__ == ""__main__"":
    aion_train_model( sys.argv[1])
"
aion_uncertainties.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import joblib
import time
import pandas as pd
import numpy as np
import argparse
import json
import os
import pathlib
from pathlib import Path
from uncertainties.uq_main import aionUQ
import os
from datetime import datetime
from os.path import expanduser
import platform
import logging

class run_uq:
    def __init__(self,modelfeatures,modelFile,csvFile,target):
        self.modelfeatures=modelfeatures
        self.modelFile=modelFile
        self.csvFile=csvFile
        self.target=target
    ##UQ classification fn   
    def getUQclassification(self,model,ProblemName,Params):
        df = pd.read_csv(self.csvFile)
        
        # # object_cols = [col for col, col_type in df.dtypes.iteritems() if col_type == 'object']    -- Fix for python 3.8.11 update (in 2.9.0.8) 
        object_cols = [col for col, col_type in zip(df.columns,df.dtypes) if col_type == 'object']
        
        df = df.drop(object_cols, axis=1)
        df = df.dropna(axis=1)
        df = df.reset_index(drop=True)        
        modelfeatures = self.modelfeatures
        #tar = args.target
        # target = df[tar]       
        y=df[self.target].values
        y = y.flatten()
        X = df.drop(self.target, axis=1)
        try:
            uqObj=aionUQ(df,X,y,ProblemName,Params,model,modelfeatures,self.target)
            accuracy,uq_ece,output_jsonobject=uqObj.uqMain_BBMClassification()
        except Exception as e:
            print(""uq error"",e)
        # print(""UQ Classification: \n"",output_jsonobject)
        # print(accuracy,uq_ece,output_jsonobject,model_confidence_per,model_uncertaitny_per)
        #print(output_jsonobject)
        return accuracy,uq_ece,output_jsonobject
    
    ##UQ regression fn   
    def getUQregression(self,model,ProblemName,Params):
        
        df = pd.read_csv(self.csvFile)
        modelfeatures = self.modelfeatures
        dfp = df[modelfeatures]
        tar = self.target
        target = df[tar]
        uqObj=aionUQ(df,dfp,target,ProblemName,Params,model,modelfeatures,tar)
        total_picp_percentage,total_Uncertainty_percentage,uq_medium,uq_best,scoringCriteria,uq_jsonobject=uqObj.uqMain_BBMRegression()
        return total_picp_percentage,total_Uncertainty_percentage,uq_medium,uq_best,scoringCriteria,uq_jsonobject
    
    def uqMain(self,model):
        #print(""inside uq main.\n"")
        reg_status=""""
        class_status=""""
        algorithm_status=""""
        try:
            model=model
            if Path(self.modelFile).is_file():        
                ProblemName = model.__class__.__name__                
                if ProblemName in  ['LogisticRegression','SGDClassifier','SVC','DecisionTreeClassifier','RandomForestClassifier','GaussianNB','KNeighborsClassifier','GradientBoostingClassifier']:
                    Problemtype = 'Classification'
                elif ProblemName in ['LinearRegression','Lasso','Ridge','DecisionTreeRegressor','RandomForestRegressor']:
                    Problemtype = 'Regression'
                else:
                    Problemtype = ""None""
                    
                if Problemtype.lower() == 'classification':
                    try:
                        Params = model.get_params()
                        accuracy,uq_ece,output = self.getUQclassification(model,ProblemName,Params)
                        class_status=""SUCCESS""
                        #print(output)
                    except Exception as e:
                        print(e)
                        class_status=""FAILED""
                        output = {'Problem':'None','msg':str(e)}
                        output = json.dumps(output)
                elif Problemtype.lower() == 'regression' :
                    try:
                        Params = model.get_params()
                        total_picp_percentage,total_Uncertainty_percentage,uq_medium,uq_best,scoringCriteria,output = self.getUQregression(model,ProblemName,Params)
                        #print(uq_jsonobject)
                        reg_status=""SUCCESS""
                    except Exception as e:
                        output = {'Problem':'None','msg':str(e)}
                        output = json.dumps(output)
                        reg_status=""FAILED""
                else:
                    try:                        
                        output={}
                        output['Problem']=""None""
                        output['msg']=""Uncertainty Quantification not supported for this algorithm.""
                        output = json.dumps(output)
                        algorithm_status=""FAILED""
                    except:
                        algorithm_status=""FAILED"" 
        except Exception as e:
                print(e)
                reg_status=""FAILED""
                class_status=""FAILED""
                algorithm_status=""FAILED""
                output = {'Problem':'None','msg':str(e)}
                output = json.dumps(output)
        return class_status,reg_status,algorithm_status,output
        
        
def aion_uq(modelFile,dataFile,features,targetfeatures):
    try:
        from appbe.dataPath import DEPLOY_LOCATION
        uqLogLocation = os.path.join(DEPLOY_LOCATION,'logs')
        try:
            os.makedirs(uqLogLocation)
        except OSError as e:
            if (os.path.exists(uqLogLocation)):
                pass
            else:
                raise OSError('uqLogLocation error.')
            
        filename_uq = 'uqlog_'+str(int(time.time()))
        filename_uq=filename_uq+'.log'
        filepath = os.path.join(uqLogLocation, filename_uq)            
        print(filepath)
        logging.basicConfig(filename=filepath, format='%(message)s',filemode='w') 
        log = logging.getLogger('aionUQ')
        log.setLevel(logging.INFO)
        log.info('************* Version - v1.7.0 *************** \n')        
        if isinstance(features, list):
            modelfeatures = features
        else:
            if ',' in features:
                modelfeatures = [x.strip() for x in features.split(',')]
            else:
                modelfeatures = features.split(',')         
        model = joblib.load(modelFile)
        
        uqobj = run_uq(modelfeatures,modelFile,dataFile,targetfeatures)
        class_status,reg_status,algorithm_status,output=uqobj.uqMain(model)
        if (class_status.lower() == 'failed'):
            log.info('uq classifiction failed./n')
        elif (class_status.lower() == 'success'):
            log.info('uq classifiction success./n')
        else:
            log.info('uq classifiction not used../n')
                
        if (reg_status.lower() == 'failed'):
            log.info('uq regression failed./n')
        elif (reg_status.lower() == 'success'):
            log.info('uq regression success./n')
        else:
            log.info('uq regression not used./n')
        if (algorithm_status.lower() == 'failed'):
            log.info('Problem type issue, UQ only support classification and regression. May be selected algorithm not supported by Uncertainty Quantification currently./n')
        
    except Exception as e:
        log.info('uq test failed.n'+str(e))
        #print(e)
        output = {'Problem':'None','msg':str(e)}
        output = json.dumps(output)
        
    return(output)
#Sagemaker main fn call

if __name__=='__main__':
    
    try:
        parser = argparse.ArgumentParser()
        parser.add_argument('savFile')
        parser.add_argument('csvFile')
        parser.add_argument('features')
        parser.add_argument('target')
        args = parser.parse_args()
        home = expanduser(""~"")
        if platform.system() == 'Windows':
            uqLogLocation = os.path.join(home,'AppData','Local','HCLT','AION','uqLogs')
        else:
            uqLogLocation = os.path.join(home,'HCLT','AION','uqLogs')
            
        try:
            os.makedirs(uqLogLocation)
        except OSError as e:
            if (os.path.exists(uqLogLocation)):
                pass
            else:
                raise OSError('uqLogLocation error.')
        # self.sagemakerLogLocation=str(sagemakerLogLocation)
        filename_uq = 'uqlog_'+str(int(time.time()))
        filename_uq=filename_uq+'.log'
        # filename = 'mlopsLog_'+Time()
        filepath = os.path.join(uqLogLocation, filename_uq)            
        logging.basicConfig(filename=filepath, format='%(message)s',filemode='w') 
        log = logging.getLogger('aionUQ')
        log.setLevel(logging.DEBUG)
        
        
        if ',' in args.features:
            args.features = [x.strip() for x in args.features.split(',')]
        else:
            args.features = args.features.split(',')
        modelFile = args.savFile
        modelfeatures = args.features
        csvFile = args.csvFile
        target=args.target
        model = joblib.load(args.savFile)
        ##Main uq function call
        uqobj = run_uq(modelfeatures,modelFile,csvFile,target)
        class_status,reg_status,algorithm_status,output=uqobj.uqMain(model)
        
        if (class_status.lower() == 'failed'):
            log.info('uq classifiction failed./n')
        elif (class_status.lower() == 'success'):
            log.info('uq classifiction success./n')
        else:
            log.info('uq classifiction not used../n')
            
        if (reg_status.lower() == 'failed'):
            log.info('uq regression failed./n')
        elif (reg_status.lower() == 'success'):
            log.info('uq regression success./n')
        else:
            log.info('uq regression not used./n')
        if (algorithm_status.lower() == 'failed'):
            msg = 'Uncertainty Quantification not supported for this algorithm'
            log.info('Algorithm not supported by Uncertainty Quantification./n')
            output = {'Problem':'None','msg':str(msg)}
            output = json.dumps(output)
    except Exception as e:
        log.info('uq test failed.n'+str(e))
        output = {'Problem':'None','msg':str(e)}
        output = json.dumps(output)
        #print(e)
    print(output)"
aion_telemetry.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import requests
import json
import os
from datetime import datetime
import socket
import getmac
def telemetry_data(operation,Usecase,data):
    now = datetime.now()
    ID = datetime.timestamp(now)
    record_date = now.strftime(""%y-%m-%d %H:%M:%S"")
    try:
        user = os.getlogin()
    except:
        user = 'NA'
    computername = socket.getfqdn()
    macaddress = getmac.get_mac_address()
    item = {}
    item['ID'] = str(int(ID))
    item['record_date'] = record_date
    item['UseCase'] = Usecase
    item['user'] = str(user)
    item['operation'] = operation
    item['remarks'] = data
    item['hostname'] = computername
    item['macaddress'] = macaddress
    url = 'https://l5m119j6v9.execute-api.ap-south-1.amazonaws.com/default/aion_telemetry'
    record = {}
    record['TableName'] = 'AION_OPERATION'
    record['Item'] = item
    record = json.dumps(record)
    try:
        response = requests.post(url, data=record,headers={""x-api-key"":""Obzt8ijfOT3dgBYma9JCt1tE3W6tzHaV8rVuQdMK"",""Content-Type"":""application/json"",})
        check_telemetry_file()
    except Exception as inst:
        filename = os.path.join(os.path.dirname(os.path.abspath(__file__)),'telemetry.txt')    
        f=open(filename, ""a+"")
        f.write(record+'\n')
        f.close()
        
def check_telemetry_file():
    file_path = os.path.join(os.path.dirname(os.path.abspath(__file__)),'telemetry.txt')
    if(os.path.isfile(file_path)):
        f = open(file_path, 'r')
        file_content = f.read()
        f.close()
        matched_lines = file_content.split('\n')
        write_lines = []
        url = 'https://l5m119j6v9.execute-api.ap-south-1.amazonaws.com/default/aion_telemetry'
        for record in matched_lines:
            try:
                response = requests.post(url, data=record,headers={""x-api-key"":""Obzt8ijfOT3dgBYma9JCt1tE3W6tzHaV8rVuQdMK"",""Content-Type"":""application/json"",})
            except:
                write_lines.append(record)
        f = open(file_path, ""a"")
        f.seek(0)
        f.truncate()
        for record in write_lines:
            f.write(record+'\n')
        f.close()
        return True          
    else:
        return True"
aion_publish.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import os
import platform
import shutil
import subprocess
import sys
import glob
import json


def publish(data):
    if os.path.splitext(data)[1] == "".json"":
        with open(data,'r',encoding='utf-8') as f:
            jsonData = json.load(f)
    else:
        jsonData = json.loads(data)
    model = jsonData['modelName']
    version = jsonData['modelVersion']
    deployFolder = jsonData['deployLocation']
    model = model.replace("" "", ""_"")
    deployedPath = os.path.join(deployFolder,model+'_'+version)
    deployedPath = os.path.join(deployedPath,'WHEELfile')
    whlfilename='na'
    if os.path.isdir(deployedPath):
        for file in os.listdir(deployedPath):
            if file.endswith("".whl""):
                whlfilename = os.path.join(deployedPath,file)
        if whlfilename != 'na':
            subprocess.check_call([sys.executable, ""-m"", ""pip"", ""uninstall"",""-y"",model])
            subprocess.check_call([sys.executable, ""-m"", ""pip"", ""install"", whlfilename])
            
            status,pid,ip,port = check_service_running(jsonData['modelName'],jsonData['serviceFolder'])
            if status == 'Running':
                service_stop(json.dumps(jsonData))
                service_start(json.dumps(jsonData))
            
            output_json = {'status':""SUCCESS""}
            output_json = json.dumps(output_json)
            
    else:
        output_json = {'status':'Error','Msg':'Installation Package not Found'}
        output_json = json.dumps(output_json)
    return(output_json)
def check_service_running(model,serviceFolder):
    model = model.replace("" "", ""_"")
    filename = model+'_service.py'
    modelservicefile = os.path.join(serviceFolder,filename)
    status = 'File Not Exist'
    ip = ''
    port = ''
    pid = ''
    if os.path.exists(modelservicefile):
        status = 'File Exist'
        import psutil
        for proc in psutil.process_iter():
            pinfo = proc.as_dict(attrs=['pid', 'name', 'cmdline','connections'])
            if 'python' in pinfo['name']:
                if filename in pinfo['cmdline'][1]:
                    status = 'Running'
                    pid = pinfo['pid']
                    for x in pinfo['connections']:
                        ip = x.laddr.ip
                        port = x.laddr.port
                        
                    
    return(status,pid,ip,port)
def service_stop(data):
    if os.path.splitext(data)[1] == "".json"":
        with open(data,'r',encoding='utf-8') as f:
            jsonData = json.load(f)
    else:
        jsonData = json.loads(data)
    status,pid,ip,port = check_service_running(jsonData['modelName'],jsonData['serviceFolder'])
    if status == 'Running':
        import psutil
        p = psutil.Process(int(pid))
        p.terminate()
        time.sleep(2)
    output_json = {'status':'SUCCESS'}   
    output_json = json.dumps(output_json)
    return(output_json)
    
def service_start(data):
    if os.path.splitext(data)[1] == "".json"":
        with open(data,'r',encoding='utf-8') as f:
            jsonData = json.load(f)
    else:
        jsonData = json.loads(data)
    model = jsonData['modelName']
    version = jsonData['modelVersion']
    ip = jsonData['ip']
    port = jsonData['port']
    deployFolder = jsonData['deployLocation']
    serviceFolder = jsonData['serviceFolder']
    model = model.replace("" "", ""_"")
    deployLocation = os.path.join(deployFolder,model+'_'+version)
    org_service_file = os.path.abspath(os.path.join(os.path.dirname(__file__),'model_service.py'))
    filename = model+'_service.py'
    modelservicefile = os.path.join(serviceFolder,filename)
    status = 'File Not Exist'
    if os.path.exists(modelservicefile):
        status = 'File Exist'
        r = ([line.split() for line in subprocess.check_output(""tasklist"").splitlines()])
        for i in range(len(r)):
            if filename in r[i]:    
                status = 'Running'
    if status == 'File Not Exist':
        shutil.copy(org_service_file,modelservicefile)
        with open(modelservicefile, 'r+') as file:
            content = file.read()
            file.seek(0, 0)
            line = 'from '+model+' import aion_performance'
            file.write(line+""\n"")
            line = 'from '+model+' import aion_drift'
            file.write(line+ ""\n"")
            line    = 'from '+model+' import featureslist'
            file.write(line+ ""\n"")
            line = 'from '+model+' import aion_prediction'
            file.write(line+ ""\n"")
            file.write(content)
            file.close()
            status = 'File Exist'
    if status == 'File Exist':   
        status,pid,ipold,portold = check_service_running(jsonData['modelName'],jsonData['serviceFolder'])
        if status != 'Running':
            command = ""python ""+modelservicefile+' '+str(port)+' '+str(ip)
            os.system('start cmd /c ""'+command+'""')
            time.sleep(2)
        status = 'Running'
    output_json = {'status':'SUCCESS','Msg':status}   
    output_json = json.dumps(output_json)
    return(output_json)
if __name__ == ""__main__"":
    aion_publish(sys.argv[1])
    "
aion_text_summarizer.py,"import json
import logging
import os
import shutil
import time
import sys
from sys import platform
from distutils.util import strtobool
from config_manager.pipeline_config import AionConfigManager
from summarizer import Summarizer
# Base class for EION configuration Manager which read the needed f params from eion.json, initialize the parameterlist, read the respective params, store in variables and return back to caller function or external modules.

class AionTextManager:

	
	def __init__(self):
		self.log = logging.getLogger('eion')
		self.data = ''
		self.problemType = ''
		self.basic = []
		self.advance=[]

	def readTextfile(self,dataPath):
		#dataPath=self.[baisc][]
		file = open(dataPath, ""r"")
		data = file.read()
		return data
		#print(data)

	def generateSummary(self,data,algo,stype):
		bert_model = Summarizer()
		if stype == ""large"":
			bert_summary = ''.join(bert_model(data, min_length=300))
			return(bert_summary)
		elif stype == ""medium"":
			bert_summary = ''.join(bert_model(data, min_length=150))
			return(bert_summary)
		elif stype == ""small"":
			bert_summary = ''.join(bert_model(data, min_length=60))
			return(bert_summary)

def aion_textsummary(arg):
	Obj = AionTextManager()
	configObj = AionConfigManager()
	readConfistatus,msg = configObj.readConfigurationFile(arg)
	dataPath = configObj.getTextlocation()
	text_data = Obj.readTextfile(dataPath)
	getAlgo, getMethod = configObj.getTextSummarize()
	summarize = Obj.generateSummary(text_data, getAlgo, getMethod)
	output = {'status':'Success','summary':summarize}    
	output_json = json.dumps(output)
	return(output_json)
if __name__ == ""__main__"":
	aion_textsummary(sys.argv[1])
	

"
__init__.py,"import os
import sys
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__))))
"
aion_service.py,"#from BaseHTTPServer import BaseHTTPRequestHandler,HTTPServer
from http.server import BaseHTTPRequestHandler,HTTPServer 
#from SocketServer import ThreadingMixIn
from socketserver import ThreadingMixIn 
from functools import partial
from http.server import SimpleHTTPRequestHandler, test
import base64
from appbe.dataPath import DEPLOY_LOCATION

'''
from augustus.core.ModelLoader import ModelLoader
from augustus.strict import modelLoader
'''
import pandas as pd
import os,sys
from os.path import expanduser
import platform
import numpy as np
import configparser
import threading
import subprocess
import argparse
from functools import partial
import re
import cgi
from datetime import datetime
import json
import sys
from datetime import datetime
user_records = {}
class LocalModelData(object):
	models = {}	
  
class HTTPRequestHandler(BaseHTTPRequestHandler):
	def __init__(self, *args, **kwargs):
		username = kwargs.pop(""username"")
		password = kwargs.pop(""password"")
		self._auth = base64.b64encode(f""{username}:{password}"".encode()).decode()
		super().__init__(*args)

	def do_HEAD(self):
		self.send_response(200)
		self.send_header(""Content-type"", ""text/html"")
		self.end_headers()

	def do_AUTHHEAD(self):
		self.send_response(401)
		self.send_header(""WWW-Authenticate"", 'Basic realm=""Test""')
		self.send_header(""Content-type"", ""text/html"")
		self.end_headers()
        
	def do_POST(self):
		print(""PYTHON ######## REQUEST ####### STARTED"")
		if None != re.search('/AION/', self.path):
			ctype, pdict = cgi.parse_header(self.headers.get('content-type'))
			if ctype == 'application/json':
				if self.headers.get(""Authorization"") == None:
					self.do_AUTHHEAD()
					resp = ""Authentication Failed: Auth Header Not Present""
					resp=resp.encode()
					self.wfile.write(resp)
				elif self.headers.get(""Authorization"") == ""Basic "" + self._auth:
					length = int(self.headers.get('content-length'))
					#data = cgi.parse_qs(self.rfile.read(length), keep_blank_values=1)
					data = self.rfile.read(length)
					#print(data)
					#keyList = list(data.keys())
					#print(keyList[0])
					model = self.path.split('/')[-2]
					operation = self.path.split('/')[-1]
					home = expanduser(""~"")
					#data = json.loads(data)
					dataStr = data
					model_path = os.path.join(DEPLOY_LOCATION,model)
					isdir = os.path.isdir(model_path)  
					if isdir:                
						if operation.lower() == 'predict':                    
							predict_path = os.path.join(model_path,'aion_predict.py')
							outputStr = subprocess.check_output([sys.executable,predict_path,dataStr])
							outputStr = outputStr.decode('utf-8')
							outputStr = re.search(r'predictions:(.*)',str(outputStr), re.IGNORECASE).group(1)
							outputStr = outputStr.strip()
							resp = outputStr
						elif operation.lower() == 'spredict':
							try:
								predict_path = os.path.join(model_path,'aion_spredict.py')
								print(predict_path)
								outputStr = subprocess.check_output([sys.executable,predict_path,dataStr])
								outputStr = outputStr.decode('utf-8')
								outputStr = re.search(r'predictions:(.*)',str(outputStr), re.IGNORECASE).group(1)
								outputStr = outputStr.strip()
								resp = outputStr
							except Exception as e:
								print(e)
                                
						elif operation.lower() == 'features':                  
							predict_path = os.path.join(model_path,'featureslist.py')
							outputStr = subprocess.check_output([sys.executable,predict_path,dataStr])
							outputStr = outputStr.decode('utf-8')
							outputStr = re.search(r'predictions:(.*)',str(outputStr), re.IGNORECASE).group(1)
							outputStr = outputStr.strip()
							resp = outputStr
						elif operation.lower() == 'explain':
							predict_path = os.path.join(model_path,'explainable_ai.py')                
							outputStr = subprocess.check_output([sys.executable,predict_path,'local',dataStr])
							outputStr = outputStr.decode('utf-8')
							outputStr = re.search(r'aion_ai_explanation:(.*)',str(outputStr), re.IGNORECASE).group(1)
							outputStr = outputStr.strip()
						elif operation.lower() == 'monitoring':                    
							predict_path = os.path.join(model_path,'aion_ipdrift.py')
							outputStr = subprocess.check_output([sys.executable,predict_path,dataStr])
							outputStr = outputStr.decode('utf-8')
							outputStr = re.search(r'drift:(.*)',str(outputStr), re.IGNORECASE).group(1)
							outputStr = outputStr.strip()
						elif operation.lower() == 'performance':                    
							predict_path = os.path.join(model_path,'aion_opdrift.py')
							outputStr = subprocess.check_output([sys.executable,predict_path,dataStr])
							outputStr = outputStr.decode('utf-8')
							outputStr = re.search(r'drift:(.*)',str(outputStr), re.IGNORECASE).group(1)
							outputStr = outputStr.strip()
						elif operation.lower() == 'pattern_anomaly_predict':
							data = json.loads(data)
							anomaly = False
							remarks = ''
							clusterid = -1
							configfilename = os.path.join(model_path,'datadetails.json')
							filename = os.path.join(model_path,'clickstream.json')
							clusterfilename = os.path.join(model_path,'stateClustering.csv')
							probfilename = os.path.join(model_path,'stateTransitionProbability.csv')
            	            
							dfclus = pd.read_csv(clusterfilename)
							dfprod = pd.read_csv(probfilename)                
							f = open(configfilename, ""r"")
							configSettings = f.read()
							f.close()                
							configSettingsJson = json.loads(configSettings)
							activity = configSettingsJson['activity']
							sessionid = configSettingsJson['sessionid']                
							f = open(filename, ""r"")
							configSettings = f.read()
							f.close()                
							configSettingsJson = json.loads(configSettings)
							groupswitching = configSettingsJson['groupswitching']
							page_threshold = configSettingsJson['transitionprobability']
							chain_count = configSettingsJson['transitionsequence']
							chain_probability = configSettingsJson['sequencethreshold']   
							currentactivity = data[activity]
							if bool(user_records):
								sessionid = data[sessionid]
							
								if sessionid != user_records['SessionID']:
									user_records['SessionID'] = sessionid
									prevactivity = ''
									user_records['probarry'] = []
									user_records['prevclusterid'] = -1
									user_records['NoOfClusterHopping'] = 0
									user_records['pageclicks'] = 1
								else:
									prevactivity = user_records['Activity']
								user_records['Activity'] = currentactivity
								pageswitch = True
								if prevactivity == currentactivity or prevactivity == '':
									probability = 0	
									pageswitch = False
									remarks = ''		
								else:
									user_records['pageclicks'] += 1
									df1 = dfprod[(dfprod['State'] == prevactivity) & (dfprod['NextState'] == currentactivity)]
									if df1.empty:
										remarks = 'Anomaly Detected - User in unusual state'	
										anomaly = True
										clusterid = -1
										probability = 0
										user_records['probarry'].append(probability)
										n=int(chain_count)
										num_list = user_records['probarry'][-n:]
										avg = sum(num_list)/len(num_list)
										for index, row in dfclus.iterrows():
											clusterlist = row[""clusterlist""]
											if currentactivity in clusterlist:
												clusterid = row[""clusterid""]
									else:
										probability = df1['Probability'].iloc[0]
										user_records['probarry'].append(probability)
										n=int(chain_count)
										num_list = user_records['probarry'][-n:]
										davg = sum(num_list)/len(num_list)
										for index, row in dfclus.iterrows():
											clusterlist = row[""clusterlist""]
											if currentactivity in clusterlist:
												clusterid = row[""clusterid""]
										remarks = ''			
										if user_records['prevclusterid'] != -1:
											if probability == 0 and user_records['prevclusterid'] != clusterid:
												user_records['NoOfClusterHopping'] = user_records['NoOfClusterHopping']+1
												if user_records['pageclicks'] == 1:
													remarks = 'Anomaly Detected - Frequent Cluster Hopping'	
													anomaly = True
												else:
													remarks = 'Cluster Hopping Detected'
												user_records['pageclicks'] = 0
												if user_records['NoOfClusterHopping'] > int(groupswitching) and anomaly == False:
													remarks = 'Anomaly Detected - Multiple Cluster Hopping' 				
													anomaly = True
											elif probability == 0:
												remarks = 'Anomaly Detected - Unusual State Transition Detected'
												anomaly = True
											elif probability <= float(page_threshold):
												remarks = 'Anomaly Detected - In-frequent State Transition Detected'		
												anomaly = True
										else:
											if pageswitch == True:
												if probability == 0:
													remarks = 'Anomaly Detected - Unusual State Transition Detected'
													anomaly = True
												elif probability <= float(page_threshold):
													remarks = 'Anomaly Detected - In-frequent State Transition Detected'
													anomaly = True
											else:
												remarks = '' 
										if davg < float(chain_probability):
											if anomaly == False:
												remarks = 'Anomaly Detected - In-frequent Pattern Detected'      	
												anomaly = True
							else:
								user_records['SessionID'] = data[sessionid]
								user_records['Activity'] = data[activity]
								user_records['probability'] = 0
								user_records['probarry'] = []
								user_records['chainprobability'] = 0
								user_records['prevclusterid'] = -1
								user_records['NoOfClusterHopping'] = 0
								user_records['pageclicks'] = 1
								for index, row in dfclus.iterrows():
									clusterlist = row[""clusterlist""]
									if currentactivity in clusterlist:
										clusterid = row[""clusterid""]
							user_records['prevclusterid'] = clusterid
							outputStr = '{""status"":""SUCCESS"",""data"":{""Anomaly"":""'+str(anomaly)+'"",""Remarks"":""'+str(remarks)+'""}}'
						elif operation.lower() == 'pattern_anomaly_settings':
							data = json.loads(data)
							groupswitching = data['groupswitching']
							transitionprobability = data['transitionprobability']
							transitionsequence = data['transitionsequence']
							sequencethreshold = data['sequencethreshold']
							filename = os.path.join(model_path,'clickstream.json')
							data = {}
							data['groupswitching'] = groupswitching
							data['transitionprobability'] = transitionprobability
							data['transitionsequence'] = transitionsequence
							data['sequencethreshold'] = sequencethreshold
							updatedConfig = json.dumps(data)
							with open(filename, ""w"") as fpWrite:
								fpWrite.write(updatedConfig)             
							fpWrite.close()
							outputStr = '{""Status"":""SUCCESS""}'                        
						else:
							outputStr = ""{'Status':'Error','Msg':'Operation not supported'}""   
					else:
						outputStr = ""{'Status':'Error','Msg':'Model Not Present'}""                   
					resp = outputStr
					resp=resp+""\n""
					resp=resp.encode()
					self.send_response(200)
					self.send_header('Content-Type', 'application/json')
					self.end_headers()
					self.wfile.write(resp)
				else:
					self.do_AUTHHEAD()
					self.wfile.write(self.headers.get(""Authorization"").encode())
					resp = ""Authentication Failed""
					resp=resp.encode()
					self.wfile.write(resp)
			else:
				print(""python ==> else1"")
				self.send_response(403)
				self.send_header('Content-Type', 'application/json')
				self.end_headers()
				print(""PYTHON ######## REQUEST ####### ENDED"")
			return
	def getModelFeatures(self,modelSignature):            
		datajson = {'Body':'Gives the list of features'}    
		home = expanduser(""~"")
		if platform.system() == 'Windows':
			predict_path = os.path.join(home,'AppData','Local','HCLT','AION','target',modelSignature,'featureslist.py')
		else:
			predict_path = os.path.join(home,'HCLT','AION','target',modelSignature,'featureslist.py')
		if(os.path.isfile(predict_path)):
			outputStr = subprocess.check_output([sys.executable,predict_path])
			outputStr = outputStr.decode('utf-8')
			outputStr = re.search(r'features:(.*)',str(outputStr), re.IGNORECASE).group(1)
			outputStr = outputStr.strip()
			displaymsg = outputStr
			#displaymsg = json.dumps(displaymsg)
			return(True,displaymsg)
		else:
			displaymsg = ""{'status':'ERROR','msg':'Unable to fetch featuers'}""    		
		return(False,displaymsg)   
        
	def getFeatures(self,modelSignature):        
		datajson = {'Body':'Gives the list of features'}
		urltext = '/AION/UseCase_Version/features'
		if modelSignature != '':
			status,displaymsg = self.getModelFeatures(modelSignature)
			if status:
				urltext = '/AION/'+modelSignature+'/features'                
			else:
				displaymsg = json.dumps(datajson)
		else:
			displaymsg = json.dumps(datajson)
		msg=""""""
URL:{url}
RequestType: POST
Content-Type=application/json
Output: {displaymsg}. 
			"""""".format(url=urltext,displaymsg=displaymsg)            
		return(msg)
        
	def features_help(self,modelSignature):
		home = expanduser(""~"")
		if platform.system() == 'Windows':
			display_path = os.path.join(home,'AppData','Local','HCLT','AION','target',modelSignature,'display.json')
		else:
			display_path = os.path.join(home,'HCLT','AION','target',modelSignature,'display.json')
		#display_path = os.path.join(os.path.dirname(os.path.abspath(__file__)),'target',model,'display.json')
		datajson = {'Body':'Data Should be in JSON Format'}
		if(os.path.isfile(display_path)):
			with open(display_path) as file:
				config = json.load(file)
			file.close()
			datajson={}
			for feature in config['numericalFeatures']:
				if feature != config['targetFeature']:
					datajson[feature] = 'Numeric Value'
			for feature in config['nonNumericFeatures']:
				if feature != config['targetFeature']:
					datajson[feature] = 'Category Value'
			for feature in config['textFeatures']:
				if feature != config['targetFeature']:                
					datajson[feature] = 'Category Value'
		displaymsg = json.dumps(datajson)	
		return(displaymsg)
	def predict_help(self,modelSignature):
		if modelSignature != '':
			displaymsg = self.features_help(modelSignature)
			urltext = '/AION/'+modelSignature+'/predict'
		else:
			datajson = {'Body':'Data Should be in JSON Format'}
			displaymsg = json.dumps(datajson)
			urltext = '/AION/UseCase_Version/predict'
		msg=""""""
URL:{url}
RequestType: POST
Content-Type=application/json
Body: {displaymsg}
Output: prediction,probability(if Applicable),remarks corresponding to each row. 
			"""""".format(url=urltext,displaymsg=displaymsg)    
		return(msg)
	def performance_help(self,modelSignature):
		if modelSignature != '':
			urltext = '/AION/'+modelSignature+'/performance'
		else:
			urltext = '/AION/UseCase_Version/performance'
		datajson = {""trainingDataLocation"":""Reference Data File Path"",""currentDataLocation"":""Latest Data File Path""}
		displaymsg = json.dumps(datajson)
		msg=""""""
URL:{url}
RequestType: POST
Content-Type=application/json
Body: {displaymsg}
Output: HTML File Path."""""".format(url=urltext,displaymsg=displaymsg)    
		return(msg)                    
	def monitoring_help(self,modelSignature):
		if modelSignature != '':
			urltext = '/AION/'+modelSignature+'/monitoring'
		else:
			urltext = '/AION/UseCase_Version/monitoring'
		datajson = {""trainingDataLocation"":""Reference Data File Path"",""currentDataLocation"":""Latest Data File Path""}
		displaymsg = json.dumps(datajson)
		msg=""""""
URL:{url}
RequestType: POST
Content-Type=application/json
Body: {displaymsg}
Output: Affected Columns. HTML File Path."""""".format(url=urltext,displaymsg=displaymsg)    
		return(msg)                
	def explain_help(self,modelSignature):
		if modelSignature != '':
			displaymsg = self.features_help(modelSignature)
			urltext = '/AION/'+modelSignature+'/explain'
		else:
			datajson = {'Body':'Data Should be in JSON Format'}
			displaymsg = json.dumps(datajson)
			urltext = '/AION/UseCase_Version/explain'
		msg=""""""
URL:{url}
RequestType: POST
Content-Type=application/json
Body: {displaymsg}
Output: anchor (Local Explanation),prediction,forceplot,multidecisionplot."""""".format(url=urltext,displaymsg=displaymsg)    
		return(msg)            
	def help_text(self,modelSignature):        
		predict_help = self.predict_help(modelSignature)    
		explain_help = self.explain_help(modelSignature)        
		features_help = self.getFeatures(modelSignature)
		monitoring_help = self.monitoring_help(modelSignature)
		performance_help = self.performance_help(modelSignature)
		msg=""""""
Following URL:

Prediction
{predict_help}

Local Explaination
{explain_help}

Features
{features_help}

Monitoring
{monitoring_help}

Performance
{performance_help}
"""""".format(predict_help=predict_help,explain_help=explain_help,features_help=features_help,monitoring_help=monitoring_help,performance_help=performance_help)
		return msg
        
	def do_GET(self):
		print(""PYTHON ######## REQUEST ####### STARTED"")
		if None != re.search('/AION/', self.path):
			self.send_response(200)
			self.send_header('Content-Type', 'application/json')
			self.end_headers()
			helplist = self.path.split('/')[-1]
			print(helplist)
			if helplist.lower() == 'help':
				model = self.path.split('/')[-2]                
				if model.lower() == 'aion':
					model =''
				msg = self.help_text(model) 
			elif helplist.lower() == 'predict':
				model = self.path.split('/')[-2]                
				if model.lower() == 'aion':
					model =''
				msg = self.predict_help(model) 
			elif helplist.lower() == 'explain':
				model = self.path.split('/')[-2]                
				if model.lower() == 'aion':
					model =''
				msg = self.explain_help(model) 
			elif helplist.lower() == 'monitoring':
				model = self.path.split('/')[-2]                
				if model.lower() == 'aion':
					model =''
				msg = self.monitoring_help(model)
			elif helplist.lower() == 'performance':
				model = self.path.split('/')[-2]                
				if model.lower() == 'aion':
					model =''
				msg = self.performance_help(model)
			elif helplist.lower() == 'features':
				model = self.path.split('/')[-2]                
				if model.lower() == 'aion':
					model =''
				status,msg = self.getModelFeatures(model)
			else:
				model = self.path.split('/')[-2]                
				if model.lower() == 'aion':
					model =helplist
				msg = self.help_text(model)                
			self.wfile.write(msg.encode())
		else:
			self.send_response(403)
			self.send_header('Content-Type', 'application/json')
			self.end_headers()
		return
	
class ThreadedHTTPServer(ThreadingMixIn, HTTPServer):
	allow_reuse_address = True
 
	def shutdown(self):
		self.socket.close()
		HTTPServer.shutdown(self)
 
class SimpleHttpServer():
	def __init__(self, ip, port,username,password):
		handler_class = partial(HTTPRequestHandler,username=username,password=password,)
		self.server = ThreadedHTTPServer((ip,port), handler_class)
 
	def start(self):
		self.server_thread = threading.Thread(target=self.server.serve_forever)
		self.server_thread.daemon = True
		self.server_thread.start()
 
	def waitForThread(self):
		self.server_thread.join()
 
	def stop(self):
		self.server.shutdown()
		self.waitForThread()

def start_server(ip,port,username,password):
	server = SimpleHttpServer(ip,int(port),username,password)
	print('HTTP Server Running...........')
	server.start()
	server.waitForThread()
   "
aion_online_pipeline.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import os
import sys
import json
import datetime, time, timeit
import logging
logging.getLogger('tensorflow').disabled = True
import shutil
import warnings
from config_manager.online_pipeline_config import OTAionConfigManager
from records import pushrecords
import logging
import mlflow
from pathlib import Path
from pytz import timezone

def pushRecordForOnlineTraining():
	try:
		from appbe.pages import getversion
		status,msg = pushrecords.enterRecord(AION_VERSION)
	except Exception as e:
		print(""Exception"", e)
		status = False
		msg = str(e)
	return status,msg

def mlflowSetPath(path,experimentname):
	import mlflow
	url = ""file:"" + str(Path(path).parent.parent) + ""/mlruns""
	mlflow.set_tracking_uri(url)
	mlflow.set_experiment(str(experimentname))
		
class server():

	def __init__(self):
		self.response = None
		self.dfNumCols=0
		self.dfNumRows=0
		self.features=[]
		self.mFeatures=[]
		self.emptyFeatures=[]
		self.vectorizerFeatures=[]
		self.wordToNumericFeatures=[]
		self.profilerAction = []
		self.targetType = ''
		self.matrix1='{'
		self.matrix2='{'
		self.matrix='{'
		self.trainmatrix='{'
		self.numericalFeatures=[]
		self.nonNumericFeatures=[]
		self.similarGroups=[]
		self.method = 'NA'
		self.pandasNumericDtypes = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64']
		self.modelSelTopFeatures=[]
		self.topFeatures=[]
		self.allFeatures=[]


	def startScriptExecution(self, config_obj):
		rowfilterexpression = ''
		grouperbyjson = ''
		model_tried=''
		learner_type = ''
		topics = {}
		numericContinuousFeatures=''
		discreteFeatures=''
		threshold=-1
		targetColumn = ''
		categoricalFeatures=''
		dataFolderLocation = ''
		original_data_file = ''
		profiled_data_file = ''
		trained_data_file = ''
		predicted_data_file=''
		featureReduction = 'False'
		reduction_data_file=''
		params={}
		score = 0
		labelMaps={}
		featureDataShape=[]
		self.riverModels = []
		self.riverAlgoNames = ['Online Logistic Regression', 'Online Softmax Regression', 'Online Decision Tree Classifier', 'Online KNN Classifier',  'Online Linear Regression', 'Online Bayesian Linear Regression', 'Online Decision Tree Regressor','Online KNN Regressor']

		#ConfigSettings
		iterName,iterVersion,dataLocation,deployLocation,delimiter,textqualifier = config_obj.getAIONLocationSettings()
		scoreParam = config_obj.getScoringCreteria()
		datetimeFeature,indexFeature,modelFeatures=config_obj.getFeatures()
		iterName = iterName.replace("" "", ""_"")
		deployLocation,dataFolderLocation,original_data_file,profiled_data_file,trained_data_file,predicted_data_file,logFileName,outputjsonFile = config_obj.createDeploymentFolders(deployLocation,iterName,iterVersion)

		#Mlflow
		mlflowSetPath(deployLocation,iterName+'_'+iterVersion)
 
		
		#Logger
		filehandler = logging.FileHandler(logFileName, 'w','utf-8')
		formatter = logging.Formatter('%(message)s')
		filehandler.setFormatter(formatter)
		log = logging.getLogger('eion')
		log.propagate = False
		for hdlr in log.handlers[:]:  # remove the existing file handlers
			if isinstance(hdlr,logging.FileHandler):
				log.removeHandler(hdlr)
		log.addHandler(filehandler)
		log.setLevel(logging.INFO)
		log.info('************* Version - v2.2.5 *************** \n')
		msg = '-------> Execution Start Time: '+ datetime.datetime.now(timezone(""Asia/Kolkata"")).strftime('%Y-%m-%d %H:%M:%S' + ' IST')
		log.info(msg)


		startTime = timeit.default_timer()
		try:

			output = {'bestModel': '', 'bestScore': 0, 'bestParams': {}}

			#ConfigSetting
			problemType,targetFeature,profilerStatus,selectorStatus,learnerStatus,visualizationstatus,deployStatus = config_obj.getModulesDetails()
			selectorStatus = False	 
			if(problemType.lower() in ['classification','regression']):
				if(targetFeature == ''):
					output = {""status"":""FAIL"",""message"":""Target Feature is Must for Classification and Regression Problem Type""}
					return output
			
			#DataReading
			from transformations.dataReader import dataReader		
			objData = dataReader()
			if os.path.isfile(dataLocation):
				dataFrame = objData.csvTodf(dataLocation,delimiter,textqualifier)
				dataFrame.rename(columns=lambda x:x.strip(), inplace=True)


			#FilterDataframe
			filter = config_obj.getfilter()
			if filter != 'NA':
				dataFrame,rowfilterexpression = objData.rowsfilter(filter,dataFrame)	
			
			#GroupDataframe
			timegrouper = config_obj.gettimegrouper()		
			grouping = config_obj.getgrouper()		
			if grouping != 'NA':
				dataFrame,grouperbyjson = objData.grouping(grouping,dataFrame)
			elif timegrouper != 'NA':
				dataFrame,grouperbyjson = objData.timeGrouping(timegrouper,dataFrame)

			#KeepOnlyModelFtrs
			dataFrame = objData.removeFeatures(dataFrame,datetimeFeature,indexFeature,modelFeatures,targetFeature)
			
			log.info('\n-------> First Ten Rows of Input Data: ')
			log.info(dataFrame.head(10))
			self.dfNumRows=dataFrame.shape[0]
			self.dfNumCols=dataFrame.shape[1]

			dataLoadTime = timeit.default_timer() - startTime
			log.info('-------> COMPUTING: Total dataLoadTime time(sec) :'+str(dataLoadTime))

			if profilerStatus:
				log.info('\n================== Data Profiler has started ==================')
				log.info('Status:-|... AION feature transformation started')
				dp_mlstart = time.time()                
				profilerJson = config_obj.getEionProfilerConfigurarion()
				log.info('-------> Input dataFrame(5 Rows): ')
				log.info(dataFrame.head(5))
				log.info('-------> DataFrame Shape (Row,Columns): '+str(dataFrame.shape))
				from incremental.incProfiler import incProfiler
				incProfilerObj = incProfiler()
				dataFrame,targetColumn,self.mFeatures,self.numericalFeatures,self.nonNumericFeatures,labelMaps,self.configDict,self.textFeatures,self.emptyFeatures,self.wordToNumericFeatures = incProfilerObj.startIncProfiler(dataFrame,profilerJson,targetFeature,deployLocation,problemType)
				self.features = self.configDict['allFtrs']
				log.info('-------> Data Frame Post Data Profiling(5 Rows): ')
				log.info(dataFrame.head(5))
				log.info('Status:-|... AION feature transformation completed')
				dp_mlexecutionTime=time.time() - dp_mlstart
				log.info('-------> COMPUTING: Total Data Profiling Execution Time '+str(dp_mlexecutionTime))
				log.info('================== Data Profiling completed ==================\n')
				
			dataFrame.to_csv(profiled_data_file,index=False)
			selectorStatus = False
			if learnerStatus:
				log.info('Status:-|... AION Learner data preparation started')
				ldp_mlstart = time.time()
				testPercentage = config_obj.getAIONTestTrainPercentage()
				balancingMethod = config_obj.getAIONDataBalancingMethod()
				from learner.machinelearning import machinelearning
				mlobj = machinelearning()
				modelType = problemType.lower()
				targetColumn = targetFeature
				if modelType == ""na"":
					if self.targetType == 'categorical':
						modelType = 'classification'
					elif self.targetType == 'continuous':
						modelType = 'regression'
				datacolumns=list(dataFrame.columns)		
				if targetColumn in datacolumns:
					datacolumns.remove(targetColumn)
				features =datacolumns
				featureData = dataFrame[features]
				if targetColumn != '':
					targetData = dataFrame[targetColumn]			  
					xtrain,ytrain,xtest,ytest = mlobj.split_into_train_test_data(featureData,targetData,testPercentage,modelType)
				categoryCountList = []	
				if modelType == 'classification':
					if(mlobj.checkForClassBalancing(ytrain) >= 1):
						xtrain,ytrain = mlobj.ExecuteClassBalancing(xtrain,ytrain,balancingMethod)
					valueCount=targetData.value_counts()
					categoryCountList=valueCount.tolist()
				ldp_mlexecutionTime=time.time() - ldp_mlstart
				log.info('-------> COMPUTING: Total Learner data preparation Execution Time '+str(ldp_mlexecutionTime))
				log.info('Status:-|... AION Learner data preparation completed')
			if learnerStatus:
				log.info('\n================== ML Started ==================')
				log.info('Status:-|... AION training started')
				log.info('------->  Memory Usage by DataFrame During Learner Status  '+str(dataFrame.memory_usage(deep=True).sum()))
				mlstart = time.time()
				log.info('-------> Target Problem Type:'+ self.targetType)
				learner_type = 'ML'
				learnerJson = config_obj.getEionLearnerConfiguration()
				log.info('-------> Target Model Type:'+ modelType)
				modelParams,modelList = config_obj.getEionLearnerModelParams(modelType)
				if(modelType == 'regression'):
					allowedmatrix =  ['mse','r2','rmse','mae']
					if(scoreParam.lower() not in allowedmatrix):
						scoreParam = 'mse'
				
				if(modelType == 'classification'):
					allowedmatrix =  ['accuracy','recall','f1_score','precision','roc_auc']
					if(scoreParam.lower() not in allowedmatrix):
						scoreParam = 'accuracy'
				scoreParam = scoreParam.lower()				
				from incremental.incMachineLearning import incMachineLearning
				incMlObj = incMachineLearning(mlobj)
				self.configDict['riverModel'] = False
				status,model_type,model,saved_model,matrix,trainmatrix,featureDataShape,model_tried,score,filename,self.features,threshold,pscore,rscore,self.method,loaded_model,xtrain1,ytrain1,xtest1,ytest1,topics,params=incMlObj.startLearning(learnerJson,modelType,modelParams,modelList,scoreParam,self.features,targetColumn,dataFrame,xtrain,ytrain,xtest,ytest,categoryCountList,self.targetType,deployLocation,iterName,iterVersion,trained_data_file,predicted_data_file,labelMaps)
				if model in self.riverAlgoNames:
					self.configDict['riverModel'] = True				
				if(self.matrix != '{'):
					self.matrix += ','
				if(self.trainmatrix != '{'):
					self.trainmatrix += ','
				self.trainmatrix += trainmatrix
				self.matrix += matrix
				mlexecutionTime=time.time() - mlstart
				log.info('-------> Total ML Execution Time '+str(mlexecutionTime))
				log.info('Status:-|... AION training completed')
				log.info('================== ML Completed ==================\n')

			if visualizationstatus:
				visualizationJson = config_obj.getEionVisualizationConfiguration()
				log.info('Status:-|... AION Visualizer started')
				visualizer_mlstart = time.time()
				from visualization.visualization import Visualization
				visualizationObj = Visualization(iterName,iterVersion,dataFrame,visualizationJson,datetimeFeature,deployLocation,dataFolderLocation,numericContinuousFeatures,discreteFeatures,categoricalFeatures,self.features,targetFeature,model_type,original_data_file,profiled_data_file,trained_data_file,predicted_data_file,labelMaps,self.vectorizerFeatures,self.textFeatures,self.numericalFeatures,self.nonNumericFeatures,self.emptyFeatures,self.dfNumRows,self.dfNumCols,saved_model,scoreParam,learner_type,model,featureReduction,reduction_data_file)
				visualizationObj.visualizationrecommandsystem()
				visualizer_mlexecutionTime=time.time() - visualizer_mlstart
				log.info('-------> COMPUTING: Total Visualizer Execution Time '+str(visualizer_mlexecutionTime))
				log.info('Status:-|... AION Visualizer completed')
				try:
					os.remove(os.path.join(deployLocation,'aion_xai.py'))
				except:
					pass

				
			if deployStatus:
				if str(model) != 'None':
					log.info('\n================== Deployment Started ==================')
					log.info('Status:-|... AION Deployer started')
					deployPath = deployLocation
					deployer_mlstart = time.time()
					src = os.path.join(os.path.dirname(os.path.abspath(__file__)),'..','utilities','useCaseFiles')
					shutil.copy2(os.path.join(src,'incBatchLearning.py'),deployPath)
					os.rename(os.path.join(deployPath,'incBatchLearning.py'),os.path.join(deployPath,'aion_inclearning.py'))
					shutil.copy2(os.path.join(src,'incBatchPrediction.py'),deployPath)
					os.rename(os.path.join(deployPath,'incBatchPrediction.py'),os.path.join(deployPath,'aion_predict.py'))
					self.configDict['modelName'] = str(model)
					self.configDict['modelParams'] = params
					self.configDict['problemType'] = problemType.lower()
					self.configDict['score'] = score
					self.configDict['metricList'] = []
					self.configDict['metricList'].append(score)
					self.configDict['trainRowsList'] = []
					self.configDict['trainRowsList'].append(featureDataShape[0])				
					self.configDict['scoreParam'] = scoreParam
					self.configDict['partialFit'] = 0
					with open(os.path.join(deployLocation,'production', 'Config.json'), 'w', encoding='utf8') as f:
						json.dump(self.configDict, f, ensure_ascii=False)
					deployer_mlexecutionTime=time.time() - deployer_mlstart
					log.info('-------> COMPUTING: Total Deployer Execution Time '+str(deployer_mlexecutionTime))
					log.info('Status:-|... AION Batch Deployment completed')
					log.info('================== Deployment Completed ==================')	
				

			# 	self.features = profilerObj.set_features(self.features,self.textFeatures,self.vectorizerFeatures)
			self.matrix += '}'
			self.trainmatrix += '}'
			matrix = eval(self.matrix)
			trainmatrix = eval(self.trainmatrix)
			model_tried = eval('['+model_tried+']')
			try:
				json.dumps(params)
				output_json = {""status"":""SUCCESS"",""data"":{""ModelType"":modelType,""deployLocation"":deployPath,""BestModel"":model,""BestScore"":str(score),""ScoreType"":str(scoreParam).upper(),""matrix"":matrix,""trainmatrix"":trainmatrix,""featuresused"":str(self.features),""targetFeature"":str(targetColumn),""params"":params,""EvaluatedModels"":model_tried,""LogFile"":logFileName}}
			except:
				output_json = {""status"":""SUCCESS"",""data"":{""ModelType"":modelType,""deployLocation"":deployPath,""BestModel"":model,""BestScore"":str(score),""ScoreType"":str(scoreParam).upper(),""matrix"":matrix,""trainmatrix"":trainmatrix,""featuresused"":str(self.features),""targetFeature"":str(targetColumn),""params"":"""",""EvaluatedModels"":model_tried,""LogFile"":logFileName}}

				print(output_json)	
				if bool(topics) == True:
					output_json['topics'] = topics
			with open(outputjsonFile, 'w') as f:
				json.dump(output_json, f)                   
			output_json = json.dumps(output_json) 

			log.info('\n------------- Summary ------------')
			log.info('------->No of rows & columns in data:('+str(self.dfNumRows)+','+str(self.dfNumCols)+')')
			log.info('------->No of missing Features :'+str(len(self.mFeatures)))
			log.info('------->Missing Features:'+str(self.mFeatures))
			log.info('------->Text Features:'+str(self.textFeatures))
			log.info('------->No of Nonnumeric Features :'+str(len(self.nonNumericFeatures)))
			log.info('------->Non-Numeric Features :' +str(self.nonNumericFeatures))
			if threshold == -1:
				log.info('------->Threshold: NA')
			else:
				log.info('------->Threshold: '+str(threshold))
			log.info('------->Label Maps of Target Feature for classification  :'+str(labelMaps))
			if((learner_type != 'TS') & (learner_type != 'AR')):
				log.info('------->No of columns and rows used for Modeling :'+str(featureDataShape))
				log.info('------->Features Used for Modeling:'+str(self.features))
				log.info('------->Target Feature: '+str(targetColumn))
				log.info('------->Best Model Score :'+str(score))
				log.info('------->Best Parameters:'+str(params))
			log.info('------->Type of Model :'+str(modelType))
			log.info('------->Best Model :'+str(model))
			log.info('------------- Summary ------------\n')
			
			
		except Exception as inst:
			log.info('server code execution failed !....'+str(inst))
			output_json = {""status"":""FAIL"",""message"":str(inst).strip('""')}
			output_json = json.dumps(output_json)
			exc_type, exc_obj, exc_tb = sys.exc_info()
			fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
			log.info(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))
		
		executionTime = timeit.default_timer() - startTime
		log.info('\nTotal execution time(sec) :'+str(executionTime))
		log.info('\n------------- Output JSON ------------')
		log.info('-------> Output :'+str(output_json))
		log.info('------------- Output JSON ------------\n')
		for hdlr in log.handlers[:]:  # remove the existing file handlers
			if isinstance(hdlr,logging.FileHandler):
				hdlr.close()
				log.removeHandler(hdlr)
		return output_json
		



def aion_ot_train_model(arg):
	warnings.filterwarnings('ignore')
	try:
		valid, msg = pushRecordForOnlineTraining()
		if valid:
			serverObj = server()
			configObj = OTAionConfigManager()
			jsonPath = arg
			readConfistatus,msg = configObj.readConfigurationFile(jsonPath)
			if(readConfistatus == False):
				output = {""status"":""FAIL"",""message"":str(msg).strip('""')}
				output = json.dumps(output)
				print(""\n"")
				print(""aion_learner_status:"",output)
				print(""\n"")
				return output	
			output = serverObj.startScriptExecution(configObj)
		else:
			output = {""status"":""LicenseVerificationFailed"",""message"":str(msg).strip('""')}
			output = json.dumps(output)
			print(""\n"")
			print(""aion_learner_status:"",output)
			print(""\n"")
			return output
	except Exception as inst:
		output = {""status"":""FAIL"",""message"":str(inst).strip('""')}
		output = json.dumps(output)        
		exc_type, exc_obj, exc_tb = sys.exc_info()
		fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
		print(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))
	print(""\n"")
	print(""aion_learner_status:"",output)
	print(""\n"")
	return output

if __name__ == ""__main__"":
	aion_ot_train_model(sys.argv[1])

"
aion_mlac.py,"""""""
/**
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  © Copyright HCL Technologies Ltd. 2021, 2022
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*/
""""""
import os
from pathlib import Path
os.chdir(Path(__file__).parent)
import json
import shutil        
from mlac.timeseries import app as ts_app
from mlac.ml import app as ml_app
import traceback
        
def create_test_file(config):
    code_file = 'aionCode.py'
    text = """"""
from pathlib import Path
import subprocess
import sys
import json
import argparse

def run_pipeline(data_path):
	print('Data Location:', data_path)
	cwd = Path(__file__).parent

	monitor_file = str(cwd/'ModelMonitoring'/'{code_file}')

	load_file = str(cwd/'DataIngestion'/'{code_file}')
	transformer_file = str(cwd/'DataTransformation'/'{code_file}')
	selector_file = str(cwd/'FeatureEngineering'/'{code_file}')
	train_folder = cwd
	register_file = str(cwd/'ModelRegistry'/'{code_file}')
	deploy_file = str(cwd/'ModelServing'/'{code_file}')

	print('Running modelMonitoring')
	cmd = [sys.executable, monitor_file, '-i', data_path]
	result = subprocess.check_output(cmd)
	result = result.decode('utf-8')
	print(result)    
	result = json.loads(result[result.find('{search}'):])
	if result['Status'] == 'Failure':
		exit()
	
	print('Running dataIngestion')
	cmd = [sys.executable, load_file]
	result = subprocess.check_output(cmd)
	result = result.decode('utf-8')
	print(result)    
	result = json.loads(result[result.find('{search}'):])
	if result['Status'] == 'Failure':
		exit()

	print('Running DataTransformation')
	cmd = [sys.executable, transformer_file]
	result = subprocess.check_output(cmd)
	result = result.decode('utf-8')
	print(result)
	result = json.loads(result[result.find('{search}'):])
	if result['Status'] == 'Failure':
		exit()

	print('Running FeatureEngineering')
	cmd = [sys.executable, selector_file]
	result = subprocess.check_output(cmd)
	result = result.decode('utf-8')
	print(result)
	result = json.loads(result[result.find('{search}'):])
	if result['Status'] == 'Failure':
		exit()

	train_models = [f for f in train_folder.iterdir() if 'ModelTraining' in f.name]
	for model in train_models:
		print('Running',model.name)
		cmd = [sys.executable, str(model/'{code_file}')]
		train_result = subprocess.check_output(cmd)
		train_result = train_result.decode('utf-8')
		print(train_result)    

	print('Running ModelRegistry')
	cmd = [sys.executable, register_file]
	result = subprocess.check_output(cmd)
	result = result.decode('utf-8')
	print(result)
	result = json.loads(result[result.find('{search}'):])
	if result['Status'] == 'Failure':
		exit()

	print('Running ModelServing')
	cmd = [sys.executable, deploy_file]
	result = subprocess.check_output(cmd)
	result = result.decode('utf-8')
	print(result)

if __name__ == '__main__':        
	parser = argparse.ArgumentParser()        
	parser.add_argument('-i', '--inputPath', help='path of the input data')        
	args = parser.parse_args()        
	if args.inputPath:        
		filename =  args.inputPath
	else:
		filename = r""{filename}""
	try:        
		print(run_pipeline(filename))        
	except Exception as e:        
		print(e)
"""""".format(filename=config['dataLocation'],search='{""Status"":',code_file=code_file)
    deploy_path = Path(config[""deploy_path""])/'MLaC'
    deploy_path.mkdir(parents=True, exist_ok=True)
    py_file = deploy_path/""run_pipeline.py""
    with open(py_file, ""w"") as f:
        f.write(text)

def is_module_in_req_file(mod, folder):
    status = False
    if (Path(folder)/'requirements.txt').is_file():
        with open(folder/'requirements.txt', 'r') as f:
            status = mod in f.read()
    return status

def copy_local_modules(config):
    deploy_path = Path(config[""deploy_path""])
    local_modules_location = config.get(""local_modules_location"", None)
    if local_modules_location:
        folder_loc = local_modules_location
    else:
        folder_loc = Path(__file__).parent/'local_modules'
        if not folder_loc.exists():
            folder_loc = None
    if folder_loc:
        file = folder_loc/'config.json'
        if file.exists():
            with open(file, 'r') as f:
                data = json.load(f)
                for key, values in data.items():
                    local_module = folder_loc/key
                    if local_module.exists():
                        for folder in values:
                            target_folder = Path(deploy_path)/'MLaC'/folder
                            if target_folder.is_dir():
                                if is_module_in_req_file(key, target_folder):
                                    shutil.copy(local_module, target_folder)
    
def validate(config):
    error = ''
    if 'error' in config.keys():
        error = config['error']
    return error
        
def generate_mlac_code(config):
    with open(config, 'r') as f:
        config = json.load(f)
    error = validate(config)
    if error:
        raise ValueError(error)
    if config['problem_type'] in ['classification','regression']:
        return generate_mlac_ML_code(config)
    elif config['problem_type'].lower() == 'timeseriesforecasting': #task 11997
        return generate_mlac_TS_code(config)
        
def generate_mlac_ML_code(config):
    try:
        ml_app.run_loader(config)
        ml_app.run_transformer(config)
        ml_app.run_selector(config)
        ml_app.run_trainer(config)
        ml_app.run_register(config)
        ml_app.run_deploy(config)
        ml_app.run_drift_analysis(config)
        copy_local_modules(config)	
        create_test_file(config)
        status = {'Status':'SUCCESS','MLaC_Location':str(Path(config[""deploy_path""])/'MLaC')}
    except Exception as Inst:
        status = {'Status':'Failure','msg':str(Inst)}
        traceback.print_exc()
    status = json.dumps(status)    
    return(status)
    
def generate_mlac_TS_code(config):
    try:
        ts_app.run_loader(config)
        ts_app.run_transformer(config)
        ts_app.run_selector(config)
        ts_app.run_trainer(config)
        ts_app.run_register(config)
        ts_app.run_deploy(config)
        ts_app.run_drift_analysis(config)
        create_test_file(config)
        status = {'Status':'SUCCESS','MLaC_Location':str(Path(config[""deploy_path""])/'MLaC')}
    except Exception as Inst:
        status = {'Status':'Failure','msg':str(Inst)}
        traceback.print_exc()
    status = json.dumps(status)    
    return(status)"
aion_gluon.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import logging
logging.getLogger('tensorflow').disabled = True
#from autogluon.tabular import TabularDataset, TabularPredictor
#from autogluon.core.utils.utils import setup_outputdir
#from autogluon.core.utils.loaders import load_pkl
#from autogluon.core.utils.savers import save_pkl
import datetime, time, timeit
from datetime import datetime as dt
import os.path
import json
import io
import shutil
import sys

#from Gluon_MultilabelPredictor import MultilabelPredictor

class MultilabelPredictor():

    """""" Tabular Predictor for predicting multiple columns in table.
        Creates multiple TabularPredictor objects which you can also use individually.
        You can access the TabularPredictor for a particular label via: `multilabel_predictor.get_predictor(label_i)`

        Parameters
        ----------
        labels : List[str]
            The ith element of this list is the column (i.e. `label`) predicted by the ith TabularPredictor stored in this object.
        path : str
            Path to directory where models and intermediate outputs should be saved.
            If unspecified, a time-stamped folder called ""AutogluonModels/ag-[TIMESTAMP]"" will be created in the working directory to store all models.
            Note: To call `fit()` twice and save all results of each fit, you must specify different `path` locations or don't specify `path` at all.
            Otherwise files from first `fit()` will be overwritten by second `fit()`.
            Caution: when predicting many labels, this directory may grow large as it needs to store many TabularPredictors.
        problem_types : List[str]
            The ith element is the `problem_type` for the ith TabularPredictor stored in this object.
        eval_metrics : List[str]
            The ith element is the `eval_metric` for the ith TabularPredictor stored in this object.
        consider_labels_correlation : bool
            Whether the predictions of multiple labels should account for label correlations or predict each label independently of the others.
            If True, the ordering of `labels` may affect resulting accuracy as each label is predicted conditional on the previous labels appearing earlier in this list (i.e. in an auto-regressive fashion).
            Set to False if during inference you may want to individually use just the ith TabularPredictor without predicting all the other labels.
        kwargs :
            Arguments passed into the initialization of each TabularPredictor.

    """"""

    multi_predictor_file = 'multilabel_predictor.pkl'

    def __init__(self, labels, path, problem_types=None, eval_metrics=None, consider_labels_correlation=True, **kwargs):
        if len(labels) < 2:
            raise ValueError(""MultilabelPredictor is only intended for predicting MULTIPLE labels (columns), use TabularPredictor for predicting one label (column)."")
        self.path = setup_outputdir(path, warn_if_exist=False)
        self.labels = labels
        #print(self.labels)
        self.consider_labels_correlation = consider_labels_correlation
        self.predictors = {}  # key = label, value = TabularPredictor or str path to the TabularPredictor for this label
        if eval_metrics is None:
            self.eval_metrics = {}
        else:
            self.eval_metrics = {labels[i] : eval_metrics[i] for i in range(len(labels))}
        problem_type = None
        eval_metric = None
        for i in range(len(labels)):
            label = labels[i]
            path_i = self.path + ""Predictor_"" + label
            if problem_types is not None:
                problem_type = problem_types[i]
            if eval_metrics is not None:
                eval_metric = self.eval_metrics[i]
            self.predictors[label] = TabularPredictor(label=label, problem_type=problem_type, eval_metric=eval_metric, path=path_i, **kwargs)

    def fit(self, train_data, tuning_data=None, **kwargs):
        """""" Fits a separate TabularPredictor to predict each of the labels.

            Parameters
            ----------
            train_data, tuning_data : str or autogluon.tabular.TabularDataset or pd.DataFrame
                See documentation for `TabularPredictor.fit()`.
            kwargs :
                Arguments passed into the `fit()` call for each TabularPredictor.
        """"""
        if isinstance(train_data, str):
            train_data = TabularDataset(train_data)
        if tuning_data is not None and isinstance(tuning_data, str):
            tuning_data = TabularDataset(tuning_data)
        train_data_og = train_data.copy()
        if tuning_data is not None:
            tuning_data_og = tuning_data.copy()
        save_metrics = len(self.eval_metrics) == 0
        for i in range(len(self.labels)):
            label = self.labels[i]
            predictor = self.get_predictor(label)
            if not self.consider_labels_correlation:
                labels_to_drop = [l for l in self.labels if l!=label]
            else:
                labels_to_drop = [self.labels[j] for j in range(i+1,len(self.labels))]
            train_data = train_data_og.drop(labels_to_drop, axis=1)
            if tuning_data is not None:
                tuning_data = tuning_data_og.drop(labels_to_drop, axis=1)
            print(f""Fitting TabularPredictor for label: {label} ..."")
            predictor.fit(train_data=train_data, tuning_data=tuning_data, **kwargs)
            self.predictors[label] = predictor.path
            if save_metrics:
                self.eval_metrics[label] = predictor.eval_metric
        self.save()

    def eval_metrics(self):
        return(self.eval_metrics)

    def predict(self, data, **kwargs):
        """""" Returns DataFrame with label columns containing predictions for each label.

            Parameters
            ----------
            data : str or autogluon.tabular.TabularDataset or pd.DataFrame
                Data to make predictions for. If label columns are present in this data, they will be ignored. See documentation for `TabularPredictor.predict()`.
            kwargs :
                Arguments passed into the predict() call for each TabularPredictor.
        """"""
        return self._predict(data, as_proba=False, **kwargs)

    def predict_proba(self, data, **kwargs):
        """""" Returns dict where each key is a label and the corresponding value is the `predict_proba()` output for just that label.

            Parameters
            ----------
            data : str or autogluon.tabular.TabularDataset or pd.DataFrame
                Data to make predictions for. See documentation for `TabularPredictor.predict()` and `TabularPredictor.predict_proba()`.
            kwargs :
                Arguments passed into the `predict_proba()` call for each TabularPredictor (also passed into a `predict()` call).
        """"""
        return self._predict(data, as_proba=True, **kwargs)

    def evaluate(self, data, **kwargs):
        """""" Returns dict where each key is a label and the corresponding value is the `evaluate()` output for just that label.

            Parameters
            ----------
            data : str or autogluon.tabular.TabularDataset or pd.DataFrame
                Data to evalate predictions of all labels for, must contain all labels as columns. See documentation for `TabularPredictor.evaluate()`.
            kwargs :
                Arguments passed into the `evaluate()` call for each TabularPredictor (also passed into the `predict()` call).
        """"""
        data = self._get_data(data)
        eval_dict = {}
        for label in self.labels:
            print(f""Evaluating TabularPredictor for label: {label} ..."")
            predictor = self.get_predictor(label)
            eval_dict[label] = predictor.evaluate(data, **kwargs)
            if self.consider_labels_correlation:
                data[label] = predictor.predict(data, **kwargs)
        return eval_dict

    def save(self):
        """""" Save MultilabelPredictor to disk. """"""
        for label in self.labels:
            if not isinstance(self.predictors[label], str):
                self.predictors[label] = self.predictors[label].path
        save_pkl.save(path=self.path+self.multi_predictor_file, object=self)
        print(f""MultilabelPredictor saved to disk. Load with: MultilabelPredictor.load('{self.path}')"")

    @classmethod
    def load(cls, path):
        """""" Load MultilabelPredictor from disk `path` previously specified when creating this MultilabelPredictor. """"""
        path = os.path.expanduser(path)
        if path[-1] != os.path.sep:
            path = path + os.path.sep
        return load_pkl.load(path=path+cls.multi_predictor_file)

    def get_predictor(self, label):
        """""" Returns TabularPredictor which is used to predict this label. """"""
        predictor = self.predictors[label]
        if isinstance(predictor, str):
            return TabularPredictor.load(path=predictor)
        return predictor

    def _get_data(self, data):
        if isinstance(data, str):
            return TabularDataset(data)
        return data.copy()

    def _predict(self, data, as_proba=False, **kwargs):
        data = self._get_data(data)
        if as_proba:
            predproba_dict = {}
        for label in self.labels:
            print(f""Predicting with TabularPredictor for label: {label} ..."")
            predictor = self.get_predictor(label)
            if as_proba:
                predproba_dict[label] = predictor.predict_proba(data, as_multiclass=True, **kwargs)
            data[label] = predictor.predict(data, **kwargs)
        if not as_proba:
            return data[self.labels]
        else:
            return predproba_dict

def aion_train_gluon(arg):
    configFile = arg
    with open(configFile, 'rb') as cfile:
        data = json.load(cfile)   
    cfile.close()   
    rootElement = data['basic']
    modelname = rootElement['modelName']
    version = rootElement['modelVersion']
    dataLocation = rootElement['dataLocation']
    deployFolder = rootElement['deployLocation']
    analysisType = rootElement['analysisType']
    testPercentage = data['advance']['testPercentage']
    deployLocation = os.path.join(deployFolder,modelname+'_'+version)
    try:
        os.makedirs(deployLocation)
    except OSError as e:
        shutil.rmtree(deployLocation)
        os.makedirs(deployLocation)
    logLocation = os.path.join(deployLocation,'log')
    try:
        os.makedirs(logLocation)
    except OSError as e:
        pass
    etcLocation = os.path.join(deployLocation,'etc')
    try:
        os.makedirs(etcLocation)
    except OSError as e:
        pass
    logFileName=os.path.join(deployLocation,'log','model_training_logs.log')
    filehandler = logging.FileHandler(logFileName, 'w','utf-8')
    formatter = logging.Formatter('%(message)s')
    filehandler.setFormatter(formatter)
    log = logging.getLogger('eion')
    log.propagate = False
    for hdlr in log.handlers[:]:  # remove the existing file handlers
        if isinstance(hdlr,logging.FileHandler):
            log.removeHandler(hdlr)
    log.addHandler(filehandler)
    log.setLevel(logging.INFO)
    log.info('************* Version - v1.2.0 *************** \n')
    msg = '-------> Execution Start Time: '+ dt.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S')
    log.info(msg)
    dataLabels = rootElement['targetFeature'].split(',')
    

    # Create and Write the config file used in Prediction
    # ----------------------------------------------------------------------------#
    
    tdata = TabularDataset(dataLocation) 
    #train_data = tdata
    train_data = tdata.sample(frac = 0.8)
    test_data = tdata.drop(train_data.index)

    if rootElement['trainingFeatures'] != '':
        trainingFeatures = rootElement['trainingFeatures'].split(',')
    else:
        trainingFeatures = list(train_data.columns)
    features = trainingFeatures
    for x in dataLabels:
        if x not in features:
            features.append(x)
    indexFeature = rootElement['indexFeature']
    if indexFeature != '':
        indexFeature = indexFeature.split(',')
    for x in indexFeature:
        if x in features:
            features.remove(x)  
    dateTimeFeature = rootElement['dateTimeFeature']
    if dateTimeFeature != '':
        dateTimeFeature = dateTimeFeature.split(',')
        for x in dateTimeFeature:
            if x in features:
                features.remove(x) 
    train_data = train_data[features]
    test_data = test_data[features]
    
    
    configJsonFile = {""targetFeature"":dataLabels,""features"":"","".join([feature for feature in features])}
    configJsonFilePath = os.path.join(deployLocation,'etc','predictionConfig.json')
    if len(dataLabels) == 1 and analysisType['multiLabelPrediction'] == ""False"":
        dataLabels = rootElement['targetFeature']
    with io.open(configJsonFilePath, 'w', encoding='utf8') as outfile:
        str_ = json.dumps(configJsonFile, ensure_ascii=False)
        outfile.write(str_)
    # ----------------------------------------------------------------------------#
    if analysisType['multiLabelPrediction'] == ""True"":           
    
        # Copy and Write the Predictiion script file into deployment location
        # ----------------------------------------------------------------------------#
        srcFile = os.path.join(os.path.dirname(__file__),'gluon','AION_Gluon_MultiLabelPrediction.py')
        dstFile = os.path.join(deployLocation,'aion_predict.py')
        shutil.copy(srcFile,dstFile)
        # ----------------------------------------------------------------------------#		
    
        labels = dataLabels                         # which columns to predict based on the others
        #problem_types = dataProblem_types           # type of each prediction problem
        save_path = os.path.join(deployLocation,'ModelPath')   # specifies folder to store trained models
        time_limit = 5                              # how many seconds to train the TabularPredictor for each label
        log.info('Status:-|... AION Gluon Start')
        try:
            if len(labels) < 2:
                log.info('Status:-|... AION Evaluation Error: Target should be multiple column')
                # ----------------------------------------------------------------------------#
                output = {'status':'FAIL','message':'Number of target variable should be 2 or more than 2'}
            else:				
                multi_predictor = MultilabelPredictor(labels=labels, path=save_path)
                multi_predictor.fit(train_data, time_limit=time_limit)
                log.info('Status:-|... AION Gluon Stop')
                log.info('Status:-|... AION Evaluation Start')
                trainevaluations = multi_predictor.evaluate(train_data)
                testevaluations = multi_predictor.evaluate(test_data) 
            
                best_model = {}                                   
                for label in labels:
                    predictor_class = multi_predictor.get_predictor(label)
                    predictor_class.get_model_best()
                    best_model[label] = predictor_class.get_model_best()                        
            
                log.info('Status:-|... AION Evaluation Stop')
            # ----------------------------------------------------------------------------#
                output = {'status':'SUCCESS','data':{'ModelType':'MultiLabelPrediction','EvaluatedModels':'','featuresused':'','BestModel':'AutoGluon','BestScore': '0', 'ScoreType': 'ACCURACY','deployLocation':deployLocation,'matrix':trainevaluations,'testmatrix':testevaluations,'BestModel':best_model, 'LogFile':logFileName}}
        except Exception as inst:
            log.info('Status:-|... AION Gluon Error')
            output = {""status"":""FAIL"",""message"":str(inst).strip('""')}
    if analysisType['multiModalLearning'] == ""True"":
        from autogluon.core.utils.utils import get_cpu_count, get_gpu_count
        from autogluon.text import TextPredictor    
        # check the system and then set the equivelent flag
        # ----------------------------------------------------------------------------#
        os.environ[""AUTOGLUON_TEXT_TRAIN_WITHOUT_GPU""] = ""0""
        if get_gpu_count() == 0:
            os.environ[""AUTOGLUON_TEXT_TRAIN_WITHOUT_GPU""] = ""1""
        # ----------------------------------------------------------------------------#
        # Copy and Write the Predictiion script file into deployment location
        # ----------------------------------------------------------------------------#
        srcFile = os.path.join(os.path.dirname(__file__),'gluon','AION_Gluon_MultiModalPrediction.py')
        dstFile = os.path.join(deployLocation,'aion_predict.py')
        shutil.copy(srcFile,dstFile)
        time_limit = None  # set to larger value in your applications
        save_path = os.path.join(deployLocation,'text_prediction')
        predictor = TextPredictor(label=dataLabels, path=save_path)
        predictor.fit(train_data, time_limit=time_limit)
        log.info('Status:-|... AION Gluon Stop')
        log.info('Status:-|... AION Evaluation Start')
        trainevaluations = predictor.evaluate(train_data)
        log.info('Status:-|... AION Evaluation Stop')
        # ----------------------------------------------------------------------------#
        output = {'status':'SUCCESS','data':{'ModelType':'MultiModelLearning','EvaluatedModels':'','featuresused':'','BestModel':'AutoGluon','BestScore': '0', 'ScoreType': 'SCORE','deployLocation':deployLocation,'matrix':trainevaluations,'LogFile':logFileName}}        
        
    output = json.dumps(output) 
    print(""\n"")
    print(""aion_learner_status:"",output)
    print(""\n"")
    log.info('\n------------- Output JSON ------------')
    log.info('-------> Output :'+str(output))
    log.info('------------- Output JSON ------------\n')
    for hdlr in log.handlers[:]:  # remove the existing file handlers
        if isinstance(hdlr,logging.FileHandler):
            hdlr.close()
            log.removeHandler(hdlr)
    
    return(output)
if __name__ == ""__main__"":
    aion_train_gluon(sys.argv[1])"
aion_sagemaker.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''    
import joblib
import time
from pandas import json_normalize
import pandas as pd
import numpy as np
import argparse
import json
import os
import pathlib
from pathlib import Path
from sagemaker.aionMlopsService import aionMlopsService
import logging
import os.path
from os.path import expanduser
import platform,sys
from pathlib import Path
from sklearn.model_selection import train_test_split

def getAWSConfiguration(mlops_params,log):
    awsId=mlops_params['awsSagemaker']['awsID']
    if ((not awsId) or (awsId is None)):
        awsId=""""
        log.info('awsId error. ')
    awsAccesskeyid=mlops_params['awsSagemaker']['accesskeyID']
    if ((not awsAccesskeyid) or (awsAccesskeyid is None)):
        awsAccesskeyid=""""
        log.info('awsAccesskeyid error. ')
    awsSecretaccesskey=mlops_params['awsSagemaker']['secretAccesskey']
    if ((not awsSecretaccesskey) or (awsSecretaccesskey is None)):
        awsSecretaccesskey=""""
        log.info('awsSecretaccesskey error. ')
    awsSessiontoken=mlops_params['awsSagemaker']['sessionToken']
    if ((not awsSessiontoken) or (awsSessiontoken is None)):
        awsSessiontoken=""""
        log.info('awsSessiontoken error. ')
    awsRegion=mlops_params['awsSagemaker']['region']
    if ((not awsRegion) or (awsRegion is None)):
        awsRegion=""""
        log.info('awsRegion error. ')
    IAMSagemakerRoleArn=mlops_params['awsSagemaker']['IAMSagemakerRoleArn']
    if ((not IAMSagemakerRoleArn) or (IAMSagemakerRoleArn is None)):
        IAMSagemakerRoleArn=""""
        log.info('IAMSagemakerRoleArn error. ')
    return awsId,awsAccesskeyid,awsSecretaccesskey,awsSessiontoken,awsRegion,IAMSagemakerRoleArn

def getMlflowParams(mlops_params,log):
    modelInput = mlops_params['modelInput']
    data = mlops_params['data']  

    mlflowtosagemakerDeploy=mlops_params['sagemakerDeploy']
    if ((not mlflowtosagemakerDeploy) or (mlflowtosagemakerDeploy is None)):
        mlflowtosagemakerDeploy=""True""
    mlflowtosagemakerPushOnly=mlops_params['deployExistingModel']['status']
    if ((not mlflowtosagemakerPushOnly) or (mlflowtosagemakerPushOnly is None)):
        mlflowtosagemakerPushOnly=""False""
    mlflowtosagemakerPushImageName=mlops_params['deployExistingModel']['dockerImageName']
    if ((not mlflowtosagemakerPushImageName) or (mlflowtosagemakerPushImageName is None)):
        mlflowtosagemakerPushImageName=""mlops_image""
    mlflowtosagemakerdeployModeluri=mlops_params['deployExistingModel']['deployModeluri']
    if ((not mlflowtosagemakerdeployModeluri) or (mlflowtosagemakerdeployModeluri is None)):
        mlflowtosagemakerdeployModeluri=""None""
        log.info('mlflowtosagemakerdeployModeluri error. ')
    cloudInfrastructure = mlops_params['modelOutput']['cloudInfrastructure']
    if ((not cloudInfrastructure) or (cloudInfrastructure is None)):
        cloudInfrastructure=""Sagemaker""
    endpointName=mlops_params['endpointName']
    if ((not endpointName) or (endpointName is None)):
        sagemakerAppName=""aion-demo-app""
        log.info('endpointName not given, setting default one. ')
    experimentName=str(endpointName)
    mlflowContainerName=str(endpointName)
    return modelInput,data,mlflowtosagemakerDeploy,mlflowtosagemakerPushOnly,mlflowtosagemakerPushImageName,mlflowtosagemakerdeployModeluri,cloudInfrastructure,endpointName,experimentName,mlflowContainerName

def getPredictionParams(mlops_params,log):
    
    predictStatus=mlops_params['prediction']['status']
    if ((not predictStatus) or (predictStatus is None)):
        predictStatus=""False""
    modelInput = mlops_params['modelInput']
    data = mlops_params['data']
    if (predictStatus == ""True"" or predictStatus.lower()== ""true""):
        if ((not modelInput) or (modelInput is None)):
            log.info('prediction model input error.Please check given model file or its path for prediction ')
        if ((not data) or (data is None)):
            log.info('prediction data input error.Please check given data file or its path for prediction ')
    targetFeature=mlops_params['prediction']['target']
    return predictStatus,targetFeature
    
def sagemakerPrediction(mlopsobj,data,log):
    df = json_normalize(data)
    model=None
    predictionStatus=False
    try:
        endpointPrediction=mlopsobj.predict_sm_app_endpoint(df)
        
        if (endpointPrediction is None):
            log.info('Sagemaker endpoint application prediction Issue.')
            outputjson = {""status"":""Error"",""msg"":""Sagemaker endpoint application prediction Issue""}
            outputjson = json.dumps(outputjson)  
            #print(""predictions: ""+str(outputjson))
            predictionStatus=False
        else:
            log.info(""sagemaker end point Prediction: \n""+str(endpointPrediction))
            df['prediction'] = endpointPrediction
            outputjson = df.to_json(orient='records')
            outputjson = {""status"":""SUCCESS"",""data"":json.loads(outputjson)}
            outputjson = json.dumps(outputjson)  
            #print(""predictions: ""+str(outputjson))
            predictionStatus=True            
    except Exception as e:
        #log.info(""sagemaker end point Prediction error: \n"")
        outputjson = {""status"":""Error"",""msg"":str(e)}
        outputjson=None
        predictionStatus=False
    return outputjson,predictionStatus
## Main aion sagemaker fn call    
def sagemaker_exec(mlops_params,log):
    #mlops_params = json.loads(config)
    mlops_params=mlops_params
    modelInput,data,mlflowtosagemakerDeploy,mlflowtosagemakerPushOnly,mlflowtosagemakerPushImageName,mlflowtosagemakerdeployModeluri,cloudInfrastructure,endpointName,experimentName,mlflowContainerName = getMlflowParams(mlops_params,log)
    mlflowModelname=None
    awsId,awsAccesskeyid,awsSecretaccesskey,awsSessiontoken,awsRegion,IAMSagemakerRoleArn = getAWSConfiguration(mlops_params,log)
    predictStatus,targetFeature = getPredictionParams(mlops_params,log)

    sagemakerDeployOption='create'
    deleteAwsecrRepository='False'
    sagemakerAppName=str(endpointName)
    ecrRepositoryName='aion-ecr-repo'
    #aws ecr model app_name should contain only [[a-zA-Z0-9-]], again rechecking here.
    import re                    
    if sagemakerAppName:
        pattern = re.compile(""[A-Za-z0-9-]+"")
        # if found match (entire string matches pattern)
        if pattern.fullmatch(sagemakerAppName) is not None:
            #print(""Found match: "")
            pass
        else:
            log.info('wrong sagemaker Application Name, Nmae should contains only [A-Za-z0-9-] .')              
            app_name = 'aion-demo-app'
    else:
        app_name = 'aion-demo-app'
    #Following 3 aws parameter values are now hard coded , because currently we are not using. If aion using the options, please make sure to get the values from GUI .  
    sagemakerDeployOption=""create""
    deleteAwsecrRepository=""False""
    ecrRepositoryName=""aion_test_repo""  
    log.info('mlops parameter check done.')
    # predictionStatus=False
    deploystatus = 'SUCCESS'
    try:
        log.info('cloudInfrastructure: '+str(cloudInfrastructure))
        if(cloudInfrastructure.lower() == ""sagemaker""):
            ## sagemaker app prediction call
            if (predictStatus.lower() == ""true""):
                
                # df = json_normalize(data)
                model=None
                mlopsobj = aionMlopsService(model,mlflowtosagemakerDeploy,mlflowtosagemakerPushOnly,mlflowtosagemakerPushImageName,mlflowtosagemakerdeployModeluri,experimentName,mlflowModelname,awsAccesskeyid,awsSecretaccesskey,awsSessiontoken,mlflowContainerName,awsRegion,awsId,IAMSagemakerRoleArn,sagemakerAppName,sagemakerDeployOption,deleteAwsecrRepository,ecrRepositoryName)
                outputjson,predictionStatus = sagemakerPrediction(mlopsobj,data,log)
                print(""predictions: ""+str(outputjson))
                predictionStatus=predictionStatus
                return(outputjson)
            else:
                if Path(modelInput).is_file():
                    
                    msg = ''
                    model = joblib.load(modelInput)
                    ProblemName = model.__class__.__name__
                    mlflowModelname=str(ProblemName)
                    log.info('aion mlops Model name: '+str(mlflowModelname))
                    df=None
                    mlopsobj = aionMlopsService(model,mlflowtosagemakerDeploy,mlflowtosagemakerPushOnly,mlflowtosagemakerPushImageName,mlflowtosagemakerdeployModeluri,experimentName,mlflowModelname,awsAccesskeyid,awsSecretaccesskey,awsSessiontoken,mlflowContainerName,awsRegion,awsId,IAMSagemakerRoleArn,sagemakerAppName,sagemakerDeployOption,deleteAwsecrRepository,ecrRepositoryName)
                    mlflow2sm_status,localhost_container_status=mlopsobj.mlflow2sagemaker_deploy()
                    log.info('mlflow2sm_status: '+str(mlflow2sm_status))
                    log.info('localhost_container_status: '+str(localhost_container_status))
                    # Checking deploy status
                    if (mlflowtosagemakerPushOnly.lower() == ""true"" ):
                        if (mlflow2sm_status.lower() == ""success""):
                            deploystatus = 'SUCCESS'
                            msg = 'Endpoint succesfully deployed in sagemaker'
                            log.info('Endpoint succesfully deployed in sagemaker (Push eisting model container).\n ')
                        elif(mlflow2sm_status.lower() == ""failed""):
                            deploystatus = 'ERROR'
                            msg = 'Endpoint failed to deploy in sagemaker'
                            log.info('Endpoint failed to deploy in sagemaker. (Push eisting model container).\n ')
                        else:
                            pass
                    elif(mlflowtosagemakerDeploy.lower() == ""true""):
                        if (mlflow2sm_status.lower() == ""success""):
                            deploystatus='SUCCESS'
                            msg = 'Endpoint succesfully deployed in sagemaker'
                            log.info('Endpoint succesfully deployed in sagemaker')
                        elif(mlflow2sm_status.lower() == ""failed""):
                            deploystatus = 'ERROR'
                            msg = 'Endpoint failed to deploy in sagemaker'
                            log.info('Endpoint failed to deploy in sagemaker.\n ')
                        elif (mlflow2sm_status.lower() == ""Notdeployed""):
                            deploystatus= 'ERROR'
                            msg = 'Sagemaker compatible container created'
                            log.info('sagemaker endpoint not deployed, check aws connection and credentials. \n')
                    
                    elif (mlflowtosagemakerDeploy.lower() == ""false""):
                        if(localhost_container_status.lower() == ""success""):
                            deploystatus = 'SUCCESS'
                            msg = 'Localhost mlops docker created successfully'
                            log.info('Localhost mlops docker created successfully. \n')
                        elif(localhost_container_status.lower() == ""failed""):
                            deploystatus = 'ERROR'
                            msg = 'Localhost mlops docker created failed'
                            log.info('Localhost mlops docker creation failed. \n')
                        elif (localhost_container_status.lower() == ""Notdeployed""):
                            deploystatus= 'ERROR'
                            log.info('Localhost mlops docker not deployed, check local docker status. \n')
                        else:
                            pass
                    else:
                        pass
                else:
                    deploystatus = 'ERROR'
                    msg = 'Model Path not Found'
                    print('Error: Model Path not Found')
                outputjson = {""status"":str(deploystatus),""data"":str(msg)}
                outputjson = json.dumps(outputjson)                      
                print(""predictions: ""+str(outputjson))          
                return(outputjson)
    except Exception as inst:
        outputjson = {""status"":str(deploystatus),""data"":str(msg)}
        outputjson = json.dumps(outputjson)                      
        print(""predictions: ""+str(outputjson))          
        return(outputjson)

def aion_sagemaker(config):
    try:
        mlops_params = config
        print(mlops_params)
        from appbe.dataPath import LOG_LOCATION        
        sagemakerLogLocation = LOG_LOCATION
        try:
            os.makedirs(sagemakerLogLocation)
        except OSError as e:
            if (os.path.exists(sagemakerLogLocation)):
                pass
            else:
                raise OSError('sagemakerLogLocation error.')

        filename_mlops = 'mlopslog_'+str(int(time.time()))
        filename_mlops=filename_mlops+'.log'
        filepath = os.path.join(sagemakerLogLocation, filename_mlops)            
        logging.basicConfig(filename=filepath, format='%(message)s',filemode='w') 
        log = logging.getLogger('aionMLOps')
        log.setLevel(logging.DEBUG)
        
        output = sagemaker_exec(mlops_params,log)
        return output
            
    except Exception as inst:
        print(inst)
        deploystatus = 'ERROR'
        output = {""status"":str(deploystatus),""data"":str(inst)}
        output = json.dumps(output)                      
        print(""predictions: ""+str(output))          
        return(output)
        
#Sagemaker main fn call
if __name__=='__main__':
    json_config = str(sys.argv[1])
    output = aion_sagemaker(json.loads(json_config))
    
    "
mergeLogs.py,"import json
from pathlib import Path
import shutil

class mergeLogs():

    def __init__(self, folders, dataLocation=None):
        self.folders = [Path(x) for x in folders]
        self.dataLocation = dataLocation
        self.baseFolder = """"
        self.outputData = {}
        
    def readOutputStr(self, data):
        text = ""-------> Output :""
        output = data.find(text)

    def keywithmaxval(self, d):
         """""" a) create a list of the dict's keys and values; 
             b) return the key with the max value""""""  
         v=list(d.values())
         k=list(d.keys())
         return k[v.index(max(v))]

    def getBestScore(self, data):
        text = ""-------> Output :""
        output = [x[len(text):-1] for x in data if text in x]
        self.outputData = json.loads(output[0])
        return self.outputData['data']['BestScore']

    def getModelParams(self, data):
        capture = False
        startText = ""---------- ClassifierModel has started ----------""
        endText = ""---------- ClassifierModel End ---------- ""
        modelBasedText = ""Models Based Selected Features  Start""
        CorrelationBased = ""Top/CorrelationBased Features Start""
        removableText = ""Status:-  |... Search Optimization Method applied: random\n""

        modelsParam = []
        modelcorrelation = None
        output = {}
        for x in data:
            if endText in x:
                capture = False
                output[modelcorrelation] = ''.join(modelsParam)
                modelcorrelation = None
                modelsParam = []
            elif capture:
                if x != removableText:
                    modelsParam.append(x)
            elif startText in x:
                capture = True
            elif modelBasedText in x:
                modelcorrelation = 'modelBased'
            elif CorrelationBased in x:
                modelcorrelation = 'correlationBased'
        return output
        
    def mergeConfigFiles(self, bestScoreFolder):
        # path is already updated
        with open(bestScoreFolder/'etc'/'code_config.json', 'r') as f:
            config = json.load(f)
            if self.dataLocation:
                config['dataLocation'] = self.dataLocation
            if 'modelVersion' in config.keys():
                config['modelVersion'] = '_'.join(config['modelVersion'].split('_')[:-1])
                with open(bestScoreFolder/'etc'/'code_config.json', 'w') as f:
                    json.dump(config, f, indent=4)
        with open(bestScoreFolder/'etc'/'display.json', 'r') as f:
            config = json.load(f)
            if 'version' in config.keys():
                config['version'] = '_'.join(config['version'].split('_')[:-1])
                with open(bestScoreFolder/'etc'/'display.json', 'w') as f:
                    json.dump(config, f, indent=4)
        if len(self.folders) > 1:
            with open(bestScoreFolder/'etc'/'output.json', 'r') as f:
                config = json.load(f)
                evaluated_models = config['data']['EvaluatedModels']
            for folder in self.folders:
                if folder != bestScoreFolder:
                    with open(folder/'etc'/'output.json', 'r') as f:
                        sub_config = json.load(f)
                        for evaluated_model in sub_config['data']['EvaluatedModels']:
                            evaluated_models.append(evaluated_model)
            with open(bestScoreFolder/'etc'/'output.json', 'w') as f:
                config['data']['EvaluatedModels'] = evaluated_models
                json.dump(config, f, indent=4)
            

    def mergeLogFiles(self, bestScoreFolder, data):
        startText = ""---------- ClassifierModel has started ----------\n""
        endText = ""---------- ClassifierModel End ---------- \n""
        modelBasedText = ""Models Based Selected Features  Start""
        CorrelationBased = ""Top/CorrelationBased Features Start""
        
        with open(bestScoreFolder/'log'/'model_training_logs.log', 'r') as f:
            text = f.read()
        CorrelationBasedIndex = text.find(CorrelationBased)
        modelBasedTextIndex =  text.find(modelBasedText)
        firstendIndex =  text.find(endText)
        numOfMethods = 0
        if CorrelationBasedIndex > 0:
            numOfMethods += 1
        if modelBasedTextIndex > 0:
            numOfMethods += 1
        if numOfMethods == 2:
            secondendIndex =  text[firstendIndex+ len(endText):].find(endText) +firstendIndex+len(endText)
        # assuming correlation is always first
        for k,v in data.items():
            if k != bestScoreFolder:
                if 'correlationBased' in v.keys():
                    text = text[:firstendIndex] + v['correlationBased'] + text[firstendIndex:]
                    firstendIndex += len(v['correlationBased'])
                    if numOfMethods == 2:
                        secondendIndex += len(v['correlationBased'])
                if 'modelBased' in v.keys():                
                    if numOfMethods == 2:
                        text = text[:secondendIndex] + v['modelBased'] + text[secondendIndex:]
                        secondendIndex += len(v['modelBased'])
                    else:
                        text = text[:firstendIndex] + v['modelBased'] + text[firstendIndex:]
                        firstendIndex += len(v['modelBased'])
        with open(bestScoreFolder/'log'/'model_training_logs.log', 'w') as f:
            text = text.replace(str(bestScoreFolder), str(self.baseFolder))
            f.write(text)
                
    def mergeFolder(self):
        bestScoreInFile = {}
        modelsTrainOutput = {}
        self.baseFolder = self.folders[0].parent/""_"".join(self.folders[0].name.split('_')[:-1])
        if len(self.folders) == 1:
            if self.baseFolder.exists():
                shutil.rmtree(self.baseFolder)
            self.folders[0].rename(self.baseFolder)
        else:
            for folder in self.folders:
                with open(folder/'log'/'model_training_logs.log', 'r') as f:
                    data = f.readlines()
                bestScoreInFile[folder] = self.getBestScore(data)
                modelsTrainOutput[folder] = self.getModelParams(data)
            bestScoreFolder = self.keywithmaxval(bestScoreInFile)
            self.mergeLogFiles(bestScoreFolder, modelsTrainOutput )
            self.mergeConfigFiles(bestScoreFolder)
            if self.baseFolder.exists():
                shutil.rmtree(self.baseFolder)
            bestScoreFolder.rename(self.baseFolder)
            #remove extra folders
            for folder in self.folders:
                if folder.exists():
                    shutil.rmtree(folder)
        return self.outputData

"
aion_aws_training.py,"import json
import sys,os
from pathlib import Path, PurePosixPath
from fabric import Connection
import tarfile
import copy

from hyperscalers.cloudServer import awsGPUTraining
import time
import shutil
import logging
import multiprocessing
from hyperscalers.mergeLogs import mergeLogs


class AION(awsGPUTraining):

    def __init__(self, config):
        config['AMAZON_EC2']['InstanceIds'] = [] #removing the support for Instance Id
        super().__init__(config)
        self.remoteUpload = {}
        
    def copyDataOnServer(self, index):
        try:
            client = Connection(
                host=self.serverIP,
                user=self.sshConfig[""userName""],
                connect_kwargs={
                    ""key_filename"": self.sshConfig[""keyFilePath""],
                },
            )
            client.run( 'mkdir -p {}'.format(self.remoteUpload['remoteDeployLocation']))
            client.put(self.remoteUpload['configFile'], self.remoteUpload['remoteConfigLoc'])
            if not Path(self.remoteUpload['dataLoc']).exists():
                raise ValueError("" data location {} does not exist"".format(self.remoteUpload['dataLoc']))
            if Path(self.remoteUpload['dataLoc']).is_file():
                client.put(self.remoteUpload['dataLoc'], self.remoteUpload['remoteDataLoc'])
            else:                
                client.run( 'mkdir -p {}'.format(self.remoteUpload['remoteDataLoc']))
                p = Path(self.remoteUpload['dataLoc']).glob('**/*')
                files = [x for x in p if x.is_file()]
                for file in files:
                    client.put(file, self.remoteUpload['remoteDataLoc'])
                if self.remoteUpload.get('imgCsvLoc', None):
                    client.put(self.remoteUpload['imgCsvLoc'], self.remoteUpload['remoteDataLoc'])
        except Exception as e:
            raise ValueError(""Error in copying data to cloud server. "" + str(e))
            
    def executeCode(self):
        try:
            client = Connection(
                host=self.serverIP,
                user=self.sshConfig[""userName""],
                connect_kwargs={
                    ""key_filename"": self.sshConfig[""keyFilePath""],
                },
            )
            cmd = '{} {} {}'.format(""/home/ubuntu/aws/venv/aion-env/bin/python3.8"", ""/home/ubuntu/aws/venv/aion-env/lib/python3.8/site-packages/AION/aion.py"", self.remoteUpload['remoteConfigLoc'])
            output = client.run( cmd, warn=True)
        except Exception as e:
            raise ValueError(""Error in running code on cloud server. "" + str(e))
        
    def downloadAndExtractModel(self):
        try:
            client = Connection(
                host=self.serverIP,
                user=self.sshConfig[""userName""],
                connect_kwargs={
                    ""key_filename"": self.sshConfig[""keyFilePath""],
                },
            )
            remote = PurePosixPath(self.remoteUpload['remoteDeployLocation'])
            fileName = self.remoteUpload['deployName']
            local = Path(self.remoteUpload['localDeployLocation'])
            tarFileName = fileName+"".tar.gz""
            cmd = 'cd {};tar -czvf {} -C {}/ {}'.format(remote, tarFileName, remote, fileName)
            client.run( cmd)
            extractFile = str(local/tarFileName)
            client.get( str(remote/tarFileName), extractFile)
            with tarfile.open(extractFile, ""r:gz"") as tar:
                tar.extractall(local)
            Path(extractFile).unlink()
            client.run( 'rm -r {}'.format(remote/fileName))
            client.run( 'rm {}'.format(remote/tarFileName))

        except Exception as e:
            raise ValueError(""Error in downloading file from server. "" + str(e))
    def deleteDataOnServer(self):
        client = Connection(
            host=self.serverIP,
            user=self.sshConfig[""userName""],
            connect_kwargs={
                ""key_filename"": self.sshConfig[""keyFilePath""],
            },
        )
        dataPaths = [self.remoteUpload['remoteDataLoc'], self.remoteUpload['remoteDeployLocation'], self.remoteUpload['remoteConfigLoc']]
        for loc in dataPaths:
            if Path(loc).is_file():
                client.run( 'rm {}'.format(loc))
            else:
                client.run( 'rm -r {}'.format(loc))
                
    # only for csv files
    def updateConfigGetRemoteLoc(self, config, index=0):
        remote_location = '/home/ubuntu/aws/usecase'
        remoteInputLoc = PurePosixPath(remote_location)/""input""
        remoteOutputLoc = PurePosixPath(remote_location)/""target""
        if Path(config['basic']['dataLocation']).is_dir():
            if Path(config['basic']['folderSettings']['labelDataFile']).parent !=Path(config['basic']['dataLocation']):
                self.remoteUpload['imgCsvLoc'] = config['basic']['folderSettings']['labelDataFile']
            config['basic']['folderSettings']['labelDataFile'] = Path(config['basic']['folderSettings']['labelDataFile']).name
        csvFile = Path(config['basic']['dataLocation']).name 
        
        localFile = config['basic']['dataLocation']
        localDeployLoc = config['basic']['deployLocation']
        config['basic']['dataLocation'] = str(remoteInputLoc/csvFile)
        config['basic']['deployLocation'] = str(remoteOutputLoc)
        jsonFile = Path(__file__).parent/'remote_{}.json'.format(index)
        with open(jsonFile,""w"") as f:
            json.dump(config, f)
        self.remoteUpload['remoteDataLoc'] = config['basic']['dataLocation']
        self.remoteUpload['remoteConfigLoc'] = str(remoteInputLoc)+ ""/temp.json""
        self.remoteUpload['remoteDeployLocation'] = config['basic']['deployLocation']
        self.remoteUpload['dataLoc'] = localFile
        self.remoteUpload['configFile'] = str(jsonFile)
        self.remoteUpload['localDeployLocation'] = localDeployLoc
        self.remoteUpload['deployName'] = ""{}_{}"".format(config['basic']['modelName'],config['basic']['modelVersion'])
 
    def updateDeployPath(self):
        import fileinput
        logFile = Path(self.remoteUpload['localDeployLocation'])/self.remoteUpload['deployName']/""model_training_logs.log""
        self.remoteUpload['localDeployLocation'] = self.remoteUpload['localDeployLocation'].replace('\\','/')
        if Path(logFile).exists():
            with fileinput.FileInput(logFile, inplace=True, backup='.bak') as file:
                for line in file:
                    remoteLoc = self.remoteUpload['remoteDeployLocation'] +'/'+ self.remoteUpload['deployName']
                    localLoc = self.remoteUpload['localDeployLocation'] +'/'+ ""_"".join(self.remoteUpload['deployName'].split('_')[:-1])
                    print(line.replace(remoteLoc, localLoc), end='')
        logFile = Path(self.remoteUpload['localDeployLocation'])/self.remoteUpload['deployName']/""output.json""
        if Path(logFile).exists():
            with fileinput.FileInput(logFile, inplace=True, backup='.bak') as file:
                for line in file:
                    remoteLoc = self.remoteUpload['remoteDeployLocation'] +'/'+ self.remoteUpload['deployName']
                    localLoc = self.remoteUpload['localDeployLocation'] +'/'+ ""_"".join(self.remoteUpload['deployName'].split('_')[:-1])
                    print(line.replace(remoteLoc, localLoc), end='')
        logFile = Path(self.remoteUpload['localDeployLocation'])/self.remoteUpload['deployName']/""display.json""
        if Path(logFile).exists():
            with fileinput.FileInput(logFile, inplace=True, backup='.bak') as file:
                for line in file:
                    remoteLoc = self.remoteUpload['remoteDeployLocation'] +'/'+ self.remoteUpload['deployName']
                    localLoc = self.remoteUpload['localDeployLocation'] +'/'+ ""_"".join(self.remoteUpload['deployName'].split('_')[:-1])
                    print(line.replace(remoteLoc, localLoc), end='')
            
def updateUserServerConfig(aws_config):
    aws_config['ssh']['keyFilePath'] = str(Path(__file__).parent/""AION_GPU.pem"")
    return aws_config

def getKeyByValue(dictionary, refValue):
    for key, value in dictionary.items():
        if value == refValue:
            return key
    return None

def getKeysByValue(dictionary, refValue):
    keys = []
    for key, value in dictionary.items():
        if value == refValue:
            keys.append(key)
    return keys

class openInstancesStatus():

    def __init__(self):
        pass
        
    def addInstance(self, instanceId,  args=None):
        fileName = instanceId + '.ec2instance'
        data = {}
        data[instanceId] = args
        with open(fileName, ""w"") as f:
            json.dump( data, f, indent=4) #TODO do we need to encrypt

    def removeInstance(self, instanceId):
        fileName = instanceId + '.ec2instance'
        if Path(fileName).exists():
            Path(fileName).unlink()
            
    def clearPreviousInstancesState(self):
        # check and stop the previous instance
        openInstances = Path().glob(""*.ec2instance"")
        for file in openInstances:
            with open(file, 'r') as f:
                data = json.load(f)
                prevConfig = list(data.values())[0]
                key = Path(file).stem
            if prevConfig['AMAZON_EC2']['amiId']:
                prevConfig['AMAZON_EC2']['InstanceIds'] = [key]
                prevConfig['AMAZON_EC2']['amiId'] = """" # clear amiId 
                instance = awsGPUTraining(prevConfig)
                if len(prevConfig['AMAZON_EC2']['InstanceIds']) > 0:
                    try:
                        if instance.is_instance_running(prevConfig['AMAZON_EC2']['InstanceIds'][0]):
                            instance.stop_server_instance()
                    except:
                        pass
            self.removeInstance(key)

class prepareConfig():

    def __init__(self, config,noOfInstance,ComputeInfrastructure):
        if isinstance(config, dict):
            self.config = config
            self.configDir = Path(__file__).parent
        elif isinstance(config, str):
            with open(config, 'r') as f:
                self.config = json.load(f)
            self.configDir = Path(config).parent
        else:
            raise TypeError(""{} type object is not supported for config"".format(type(config)))
        self.problemType = getKeyByValue(self.config['basic']['analysisType'] ,""True"")
        self.algorithms = getKeysByValue(self.config['basic']['algorithms'][self.problemType] ,""True"")
        self.numInstances = int(noOfInstance)
        self.computeInfrastructure = ComputeInfrastructure
        self.isMultiInstance = False
        self.validateMultiInstance()
        self.newConfigs = []
        
    def isRemoteTraining(self):
        return True if(self.computeInfrastructure == ""True"") else False
    
    def validateMultiInstance(self):
        if self.isRemoteTraining():
            if self.problemType == 'classification' or self.problemType == 'regression':
                if self.numInstances > len(self.algorithms):
                    self.numInstances = len(self.algorithms)
                if len(self.algorithms) > 1 and self.numInstances > 1:
                    self.isMultiInstance = True
        
    def createNewConfigs(self):
        configs = []
        algos = self.algorithms
        if len(algos) <= self.numInstances:
            self.numInstances = len(algos)
        algosPerInstances = (len(algos)+(self.numInstances - 1))//self.numInstances
        remainingAlgos = len(algos)
        for i in range(self.numInstances):
            newConfig = copy.deepcopy(self.config)
            for k,v in newConfig['basic']['algorithms'][self.problemType].items():
                newConfig['basic']['algorithms'][self.problemType][k] = ""False""
            algosPerInstances = remainingAlgos // (self.numInstances - i)
            for j in range(algosPerInstances):
                newConfig['basic']['algorithms'][self.problemType][algos[len(algos) - remainingAlgos + j]] = ""True""
            newConfig['basic']['modelVersion'] = newConfig['basic']['modelVersion'] + ""_{}"".format(i)
            newFileName = str(self.configDir/""splittedConfig_{}.json"".format(i))
            with open(newFileName, 'w') as jsonFile:
                json.dump(newConfig, jsonFile, indent=4)
                configs.append(newFileName)
            remainingAlgos -= algosPerInstances
        return configs

class Process(multiprocessing.Process):
    def __init__(self, aws_config, configFile, index, openInstancesLog):
        super(Process, self).__init__()
        self.index = index
        self.aws_config = aws_config
        self.configFile = configFile
        self.openInstances = openInstancesLog
                 
    def run(self):
        log = logging.getLogger('eion')
        serverStart = False
        try:
            server = AION(self.aws_config)
            with open(self.configFile,""r"") as f:
                config = json.load(f)
            server.updateConfigGetRemoteLoc(config, self.index)
            instanceId = server.start_instance()
            log.info('Status:-|... start instance: {}'.format(instanceId))
            serverStart = True
            self.openInstances.addInstance(instanceId, self.aws_config)
            time.sleep(40)
            log.info('Status:-|... copying data on instance: {}'.format(instanceId))
            server.copyDataOnServer( config)
            log.info('Status:-|... Training on instance: {}'.format(instanceId))
            server.executeCode()
            log.info('Status:-|... downloading data from instance: {}'.format(instanceId))
            server.downloadAndExtractModel()
            server.deleteDataOnServer()
            log.info('Status:-|... stopping instance: {}'.format(instanceId))
            server.stop_server_instance()
            serverStart = False
            self.openInstances.removeInstance(instanceId)
            server.updateDeployPath()
        except Exception as e:
            print(e)
            pass
        finally:
            if serverStart:
                log.info('Status:-|... stopping instance: {}'.format(instanceId))
                server.stop_server_instance()
                self.openInstances.removeInstance(instanceId)
            
def awsTraining(configPath):
    try:
        # This function responsible for starting the training with AWS
        with open(configPath, ""r"") as f:
            config = json.load(f)
            
        ec2 = boto3.resource('ec2',region_name=AWS_Region)
        instance_id= instance[0].instance_id
        deployFolder = config['basic']['deployLocation']    
        iterName = config['basic']['modelName']
        iterVersion = config['basic']['modelVersion']
        dataLocation = config['basic']['dataLocation']
        usecaseLocation = os.path.join(deployFolder,iterName)
        if not Path(usecaseLocation).exists():        
            os.makedirs(usecaseLocation)        
        deployLocation = os.path.join(usecaseLocation,iterVersion)
        if Path(deployLocation).exists():
            shutil.rmtree(deployLocation)
        os.makedirs(deployLocation)
        logLocation = os.path.join(deployLocation,'log')
        if not Path(logLocation).exists():        
            os.makedirs(logLocation)
        #read the server config
        logFileName=os.path.join(logLocation,'model_training_logs.log') 
        filehandler = logging.FileHandler(logFileName, 'w','utf-8')
        formatter = logging.Formatter('%(message)s')
        filehandler.setFormatter(formatter)
        log = logging.getLogger('eion')
        log.propagate = False
        for hdlr in log.handlers[:]:  # remove the existing file handlers
            if isinstance(hdlr,logging.FileHandler):
                log.removeHandler(hdlr)
        log.addHandler(filehandler)
        log.setLevel(logging.INFO)
        log.info('Status:-|... Compute Infrastructure:AMAZON EC2')
        with open(Path(__file__).parent/""../config/compute.conf"", ""r"") as f:
            aws_config = json.load(f)
        aws_config = updateUserServerConfig(aws_config)
        configSplitter = prepareConfig(sys.argv[1],aws_config['AMAZON_EC2']['NoOfInstance'],aws_config['ComputeInfrastructure'])
        newConfigs = configSplitter.createNewConfigs()
        print(newConfigs)
        openInstances = openInstancesStatus()
        openInstances.clearPreviousInstancesState()
        folders = []
        processes = [0] * len(newConfigs)
        for index, config in enumerate(newConfigs):
            processes[index] = Process(aws_config, config, index, openInstances)
            processes[index].start()
        for index, config in enumerate(newConfigs):            
            processes[index].join()
            folders.append(deployLocation + '_{}'.format(index))
        if Path(deployLocation+'_0').exists():
            filehandler.close()
            log.removeHandler(filehandler)
            merge = mergeLogs(folders)
            merge.mergeFolder()
        else:
            output = {""status"":""FAIL"",""message"":""Please check cloud server configuration.""}
            output = json.dumps(output)
            log.info('server code execution failed !....')
            log.info('\n------------- Output JSON ------------')
            log.info('-------> Output :'+str(output))
            log.info('------------- Output JSON ------------\n')
            print(""\n"")
            print(""aion_learner_status:"",output)
            print(""\n"")
    except Exception as inst:
        output = {""status"":""FAIL"",""message"":str(inst).strip('""')}
        output = json.dumps(output)
        log.info('server code execution failed !....'+str(inst))
        log.info('\n------------- Output JSON ------------')
        log.info('-------> Output :'+str(output))
        log.info('------------- Output JSON ------------\n')
        print(""\n"")
        print(""aion_learner_status:"",output)
        print(""\n"")

"
aws_instance.py,"import json
import sys,os
from pathlib import Path, PurePosixPath
from fabric import Connection
import tarfile
import copy

from hyperscalers.cloudServer import awsGPUTraining
import time
import shutil
import logging
import multiprocessing
from hyperscalers.mergeLogs import mergeLogs


class AION(awsGPUTraining):

    def __init__(self, config):
        config['AMAZON_EC2']['InstanceIds'] = [] #removing the support for Instance Id
        super().__init__(config)
        self.remoteUpload = {}
        
    def copyDataOnServer(self, index):
        try:
            client = Connection(
                host=self.serverIP,
                user=self.sshConfig[""userName""],
                connect_kwargs={
                    ""key_filename"": self.sshConfig[""keyFilePath""],
                },
            )
            client.run( 'mkdir -p {}'.format(self.remoteUpload['remoteDeployLocation']))
            client.put(self.remoteUpload['configFile'], self.remoteUpload['remoteConfigLoc'])
            if not Path(self.remoteUpload['dataLoc']).exists():
                raise ValueError("" data location {} does not exist"".format(self.remoteUpload['dataLoc']))
            if Path(self.remoteUpload['dataLoc']).is_file():
                client.put(self.remoteUpload['dataLoc'], self.remoteUpload['remoteDataLoc'])
            else:                
                client.run( 'mkdir -p {}'.format(self.remoteUpload['remoteDataLoc']))
                p = Path(self.remoteUpload['dataLoc']).glob('**/*')
                files = [x for x in p if x.is_file()]
                for file in files:
                    client.put(file, self.remoteUpload['remoteDataLoc'])
                if self.remoteUpload.get('imgCsvLoc', None):
                    client.put(self.remoteUpload['imgCsvLoc'], self.remoteUpload['remoteDataLoc'])
        except Exception as e:
            raise ValueError(""Error in copying data to cloud server. "" + str(e))
            
    def executeCode(self):
        try:
            client = Connection(
                host=self.serverIP,
                user=self.sshConfig[""userName""],
                connect_kwargs={
                    ""key_filename"": self.sshConfig[""keyFilePath""],
                },
            )
            cmd = '{} {} {}'.format(""/home/ubuntu/aws/venv/aion-env/bin/python3.8"", ""/home/ubuntu/aws/venv/aion-env/lib/python3.8/site-packages/AION/aion.py"", self.remoteUpload['remoteConfigLoc'])
            output = client.run( cmd, warn=True)
        except Exception as e:
            raise ValueError(""Error in running code on cloud server. "" + str(e))
        
    def downloadAndExtractModel(self):
        try:
            client = Connection(
                host=self.serverIP,
                user=self.sshConfig[""userName""],
                connect_kwargs={
                    ""key_filename"": self.sshConfig[""keyFilePath""],
                },
            )
            remote = PurePosixPath(self.remoteUpload['remoteDeployLocation'])
            fileName = self.remoteUpload['deployName']
            local = Path(self.remoteUpload['localDeployLocation'])
            tarFileName = fileName+"".tar.gz""
            cmd = 'cd {};tar -czvf {} -C {}/ {}'.format(remote, tarFileName, remote, fileName)
            client.run( cmd)
            extractFile = str(local/tarFileName)
            client.get( str(remote/tarFileName), extractFile)
            with tarfile.open(extractFile, ""r:gz"") as tar:
                tar.extractall(local)
            Path(extractFile).unlink()
            client.run( 'rm -r {}'.format(remote/fileName))
            client.run( 'rm {}'.format(remote/tarFileName))

        except Exception as e:
            raise ValueError(""Error in downloading file from server. "" + str(e))
    def deleteDataOnServer(self):
        client = Connection(
            host=self.serverIP,
            user=self.sshConfig[""userName""],
            connect_kwargs={
                ""key_filename"": self.sshConfig[""keyFilePath""],
            },
        )
        dataPaths = [self.remoteUpload['remoteDataLoc'], self.remoteUpload['remoteDeployLocation'], self.remoteUpload['remoteConfigLoc']]
        for loc in dataPaths:
            if Path(loc).is_file():
                client.run( 'rm {}'.format(loc))
            else:
                client.run( 'rm -r {}'.format(loc))
                
    # only for csv files
    def updateConfigGetRemoteLoc(self, config, index=0):
        remote_location = '/home/ubuntu/aws/usecase'
        remoteInputLoc = PurePosixPath(remote_location)/""input""
        remoteOutputLoc = PurePosixPath(remote_location)/""target""
        if Path(config['basic']['dataLocation']).is_dir():
            if Path(config['basic']['folderSettings']['labelDataFile']).parent !=Path(config['basic']['dataLocation']):
                self.remoteUpload['imgCsvLoc'] = config['basic']['folderSettings']['labelDataFile']
            config['basic']['folderSettings']['labelDataFile'] = Path(config['basic']['folderSettings']['labelDataFile']).name
        csvFile = Path(config['basic']['dataLocation']).name 
        
        localFile = config['basic']['dataLocation']
        localDeployLoc = config['basic']['deployLocation']
        config['basic']['dataLocation'] = str(remoteInputLoc/csvFile)
        config['basic']['deployLocation'] = str(remoteOutputLoc)
        jsonFile = Path(__file__).parent/'remote_{}.json'.format(index)
        with open(jsonFile,""w"") as f:
            json.dump(config, f)
        self.remoteUpload['remoteDataLoc'] = config['basic']['dataLocation']
        self.remoteUpload['remoteConfigLoc'] = str(remoteInputLoc)+ ""/temp.json""
        self.remoteUpload['remoteDeployLocation'] = config['basic']['deployLocation']
        self.remoteUpload['dataLoc'] = localFile
        self.remoteUpload['configFile'] = str(jsonFile)
        self.remoteUpload['localDeployLocation'] = localDeployLoc
        self.remoteUpload['deployName'] = ""{}_{}"".format(config['basic']['modelName'],config['basic']['modelVersion'])
 
    def updateDeployPath(self):
        import fileinput
        logFile = Path(self.remoteUpload['localDeployLocation'])/self.remoteUpload['deployName']/""model_training_logs.log""
        self.remoteUpload['localDeployLocation'] = self.remoteUpload['localDeployLocation'].replace('\\','/')
        if Path(logFile).exists():
            with fileinput.FileInput(logFile, inplace=True, backup='.bak') as file:
                for line in file:
                    remoteLoc = self.remoteUpload['remoteDeployLocation'] +'/'+ self.remoteUpload['deployName']
                    localLoc = self.remoteUpload['localDeployLocation'] +'/'+ ""_"".join(self.remoteUpload['deployName'].split('_')[:-1])
                    print(line.replace(remoteLoc, localLoc), end='')
        logFile = Path(self.remoteUpload['localDeployLocation'])/self.remoteUpload['deployName']/""output.json""
        if Path(logFile).exists():
            with fileinput.FileInput(logFile, inplace=True, backup='.bak') as file:
                for line in file:
                    remoteLoc = self.remoteUpload['remoteDeployLocation'] +'/'+ self.remoteUpload['deployName']
                    localLoc = self.remoteUpload['localDeployLocation'] +'/'+ ""_"".join(self.remoteUpload['deployName'].split('_')[:-1])
                    print(line.replace(remoteLoc, localLoc), end='')
        logFile = Path(self.remoteUpload['localDeployLocation'])/self.remoteUpload['deployName']/""display.json""
        if Path(logFile).exists():
            with fileinput.FileInput(logFile, inplace=True, backup='.bak') as file:
                for line in file:
                    remoteLoc = self.remoteUpload['remoteDeployLocation'] +'/'+ self.remoteUpload['deployName']
                    localLoc = self.remoteUpload['localDeployLocation'] +'/'+ ""_"".join(self.remoteUpload['deployName'].split('_')[:-1])
                    print(line.replace(remoteLoc, localLoc), end='')
            
def updateUserServerConfig(aws_config):
    aws_config['ssh']['keyFilePath'] = str(Path(__file__).parent/""AION_GPU.pem"")
    return aws_config

def getKeyByValue(dictionary, refValue):
    for key, value in dictionary.items():
        if value == refValue:
            return key
    return None

def getKeysByValue(dictionary, refValue):
    keys = []
    for key, value in dictionary.items():
        if value == refValue:
            keys.append(key)
    return keys

class openInstancesStatus():

    def __init__(self):
        pass
        
    def addInstance(self, instanceId,  args=None):
        fileName = instanceId + '.ec2instance'
        data = {}
        data[instanceId] = args
        with open(fileName, ""w"") as f:
            json.dump( data, f, indent=4) #TODO do we need to encrypt

    def removeInstance(self, instanceId):
        fileName = instanceId + '.ec2instance'
        if Path(fileName).exists():
            Path(fileName).unlink()
            
    def clearPreviousInstancesState(self):
        # check and stop the previous instance
        openInstances = Path().glob(""*.ec2instance"")
        for file in openInstances:
            with open(file, 'r') as f:
                data = json.load(f)
                prevConfig = list(data.values())[0]
                key = Path(file).stem
            if prevConfig['AMAZON_EC2']['amiId']:
                prevConfig['AMAZON_EC2']['InstanceIds'] = [key]
                prevConfig['AMAZON_EC2']['amiId'] = """" # clear amiId 
                instance = awsGPUTraining(prevConfig)
                if len(prevConfig['AMAZON_EC2']['InstanceIds']) > 0:
                    try:
                        if instance.is_instance_running(prevConfig['AMAZON_EC2']['InstanceIds'][0]):
                            instance.stop_server_instance()
                    except:
                        pass
            self.removeInstance(key)

class prepareConfig():

    def __init__(self, config,noOfInstance,ComputeInfrastructure):
        if isinstance(config, dict):
            self.config = config
            self.configDir = Path(__file__).parent
        elif isinstance(config, str):
            with open(config, 'r') as f:
                self.config = json.load(f)
            self.configDir = Path(config).parent
        else:
            raise TypeError(""{} type object is not supported for config"".format(type(config)))
        self.problemType = getKeyByValue(self.config['basic']['analysisType'] ,""True"")
        self.algorithms = getKeysByValue(self.config['basic']['algorithms'][self.problemType] ,""True"")
        self.numInstances = int(noOfInstance)
        self.computeInfrastructure = ComputeInfrastructure
        self.isMultiInstance = False
        self.validateMultiInstance()
        self.newConfigs = []
        
    def isRemoteTraining(self):
        return True if(self.computeInfrastructure == ""True"") else False
    
    def validateMultiInstance(self):
        if self.isRemoteTraining():
            if self.problemType == 'classification' or self.problemType == 'regression':
                if self.numInstances > len(self.algorithms):
                    self.numInstances = len(self.algorithms)
                if len(self.algorithms) > 1 and self.numInstances > 1:
                    self.isMultiInstance = True
        
    def createNewConfigs(self):
        configs = []
        algos = self.algorithms
        if len(algos) <= self.numInstances:
            self.numInstances = len(algos)
        algosPerInstances = (len(algos)+(self.numInstances - 1))//self.numInstances
        remainingAlgos = len(algos)
        for i in range(self.numInstances):
            newConfig = copy.deepcopy(self.config)
            for k,v in newConfig['basic']['algorithms'][self.problemType].items():
                newConfig['basic']['algorithms'][self.problemType][k] = ""False""
            algosPerInstances = remainingAlgos // (self.numInstances - i)
            for j in range(algosPerInstances):
                newConfig['basic']['algorithms'][self.problemType][algos[len(algos) - remainingAlgos + j]] = ""True""
            newConfig['basic']['modelVersion'] = newConfig['basic']['modelVersion'] + ""_{}"".format(i)
            newFileName = str(self.configDir/""splittedConfig_{}.json"".format(i))
            with open(newFileName, 'w') as jsonFile:
                json.dump(newConfig, jsonFile, indent=4)
                configs.append(newFileName)
            remainingAlgos -= algosPerInstances
        return configs

class Process(multiprocessing.Process):
    def __init__(self, aws_config, configFile, index, openInstancesLog):
        super(Process, self).__init__()
        self.index = index
        self.aws_config = aws_config
        self.configFile = configFile
        self.openInstances = openInstancesLog
                 
    def run(self):
        log = logging.getLogger('eion')
        serverStart = False
        try:
            server = AION(self.aws_config)
            with open(self.configFile,""r"") as f:
                config = json.load(f)
            server.updateConfigGetRemoteLoc(config, self.index)
            instanceId = server.start_instance()
            log.info('Status:-|... start instance: {}'.format(instanceId))
            serverStart = True
            self.openInstances.addInstance(instanceId, self.aws_config)
            time.sleep(40)
            log.info('Status:-|... copying data on instance: {}'.format(instanceId))
            server.copyDataOnServer( config)
            log.info('Status:-|... Training on instance: {}'.format(instanceId))
            server.executeCode()
            log.info('Status:-|... downloading data from instance: {}'.format(instanceId))
            server.downloadAndExtractModel()
            server.deleteDataOnServer()
            log.info('Status:-|... stopping instance: {}'.format(instanceId))
            server.stop_server_instance()
            serverStart = False
            self.openInstances.removeInstance(instanceId)
            server.updateDeployPath()
        except Exception as e:
            print(e)
            pass
        finally:
            if serverStart:
                log.info('Status:-|... stopping instance: {}'.format(instanceId))
                server.stop_server_instance()
                self.openInstances.removeInstance(instanceId)
         
def training(config_path):
    try:
        # read the aion configuration file for server enabled
        with open(config_path, ""r"") as f:
            config = json.load(f)
        deployFolder = config['basic']['deployLocation']    
        iterName = config['basic']['modelName']
        iterVersion = config['basic']['modelVersion']
        dataLocation = config['basic']['dataLocation']
        deployLocation = os.path.join(deployFolder,iterName+'_'+iterVersion)
        if Path(deployLocation).exists():
            shutil.rmtree(deployLocation)
        os.makedirs(deployLocation)
        #read the server config
        logFileName=os.path.join(deployLocation,'model_training_logs.log') 
        filehandler = logging.FileHandler(logFileName, 'w','utf-8')
        formatter = logging.Formatter('%(message)s')
        filehandler.setFormatter(formatter)
        log = logging.getLogger('eion')
        log.propagate = False
        for hdlr in log.handlers[:]:  # remove the existing file handlers
            if isinstance(hdlr,logging.FileHandler):
                log.removeHandler(hdlr)
        log.addHandler(filehandler)
        log.setLevel(logging.INFO)
        log.info('Status:-|... Compute Infrastructure:AMAZON EC2')
        with open(Path(__file__).parent/""../config/compute.conf"", ""r"") as f:
            aws_config = json.load(f)
        aws_config = updateUserServerConfig(aws_config)
        configSplitter = prepareConfig(config_path,aws_config['AMAZON_EC2']['NoOfInstance'],aws_config['ComputeInfrastructure'])
        newConfigs = configSplitter.createNewConfigs()
        print(newConfigs)
        openInstances = openInstancesStatus()
        openInstances.clearPreviousInstancesState()
        folders = []
        processes = [0] * len(newConfigs)
        for index, config in enumerate(newConfigs):
            processes[index] = Process(aws_config, config, index, openInstances)
            processes[index].start()
        for index, config in enumerate(newConfigs):            
            processes[index].join()
            folders.append(deployLocation + '_{}'.format(index))
        if Path(deployLocation+'_0').exists():
            filehandler.close()
            log.removeHandler(filehandler)
            merge = mergeLogs(folders)
            merge.mergeFolder()
        else:
            output = {""status"":""FAIL"",""message"":""Please check cloud server configuration.""}
            output = json.dumps(output)
            log.info('server code execution failed !....')
            log.info('\n------------- Output JSON ------------')
            log.info('-------> Output :'+str(output))
            log.info('------------- Output JSON ------------\n')
            print(""\n"")
            print(""aion_learner_status:"",output)
            print(""\n"")
    except Exception as inst:
        output = {""status"":""FAIL"",""message"":str(inst).strip('""')}
        output = json.dumps(output)
        log.info('server code execution failed !....'+str(inst))
        log.info('\n------------- Output JSON ------------')
        log.info('-------> Output :'+str(output))
        log.info('------------- Output JSON ------------\n')
        print(""\n"")
        print(""aion_learner_status:"",output)
        print(""\n"")

"
__init__.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''"
cloudServer.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import boto3
import json
import time
import requests
import datetime
import uuid
import shutil
from websocket import create_connection
from botocore.exceptions import ClientError
import tarfile
from pathlib import Path, PurePosixPath
from stat import S_ISDIR
from fabric import Connection
import time
import logging

class awsGPUTraining():


    def __init__(self, config):
        local_config = {""location"":{""data"":""aion/data/od"", ""code"":"""", ""pretrainedModel"":""aion/pretrainedModels""},
                        ""jupyter"":{""header"":{""Authorization"":""Token f3af05d5348301997fb014f245569e872d27bb9018fd70d2""}, ""portNo"":""8888"",
                        ""notebook_path"":""aion/code/AWS_GPU_OD_Training.ipynb""}}
        self.serverConfig = config[""server""]
        self.sshConfig = config[""ssh""]
        self.log = logging.getLogger('eion')
        self.codeLocation = local_config[""location""][""code""]
        self.dataLocation = local_config[""location""][""data""]
        self.pretrainedModelLocation = local_config[""location""][""pretrainedModel""]
        self.jupyterConfig = local_config[""jupyter""]
        self.serverIP = """"
        if self.serverConfig[""awsAccessKeyId""] == """" or self.serverConfig[""awsSecretAccessKey""] == """":
            raise ValueError(""Cloud server configuration is not available."")
        if len(self.serverConfig[""InstanceIds""]) == 0 and self.serverConfig[""amiId""] == """":
            raise ValueError(""Please provide either InstanceIds or amiId in server config"")

        self.instanceId = []
        self.separate_instance = False
        if self.serverConfig[""amiId""] != """":
            self.separate_instance = True
        else:
            if len(self.serverConfig[""InstanceIds""]):
                if isinstance(self.serverConfig[""InstanceIds""], list):
                    self.instanceId = self.serverConfig[""InstanceIds""]
                elif isinstance(self.serverConfig[""InstanceIds""], str):
                    self.instanceId = [self.serverConfig[""InstanceIds""]]

        self.ec2_client = boto3.client(self.serverConfig[""serverName""], region_name=self.serverConfig[""regionName""], aws_access_key_id=self.serverConfig[""awsAccessKeyId""], aws_secret_access_key=self.serverConfig[""awsSecretAccessKey""])

    def __sftp_exists(self, sftp, path):
        try:
            sftp.stat(path)
            return True
        except:# IOError, e:
            #if e.errno == errno.ENOENT:
            return False
            
    def __rmtree(self, sftp, remotepath, level=0):
        for f in sftp.listdir_attr(remotepath):
            rpath = str(PurePosixPath(remotepath)/f.filename)
            if S_ISDIR(f.st_mode):
                self.__rmtree(sftp, rpath, level=(level + 1))
                sftp.rmdir(rpath)
            else:
                rpath = str(PurePosixPath(remotepath)/f.filename)
                sftp.remove(rpath)
        
    def copy_files_to_server(self, location):
        try:
            client = Connection(
                host=self.serverIP,
                user=self.sshConfig[""userName""],
                connect_kwargs={
                    ""key_filename"": self.sshConfig[""keyFilePath""],
                },
            )
            client.sudo('rm -rf {}/*'.format(self.dataLocation))
            tarFile = str((PurePosixPath(self.dataLocation).parent/PurePosixPath(self.dataLocation).name).with_suffix("".tar.gz""))
            client.put(location+'/test.tfrecord', self.dataLocation+'/test.tfrecord')
            client.put(location+'/train.tfrecord', self.dataLocation+'/train.tfrecord')
            client.put(location+'/pipeline.config', self.dataLocation+'/pipeline.config')
            client.put(location+'/label_map.pbtxt', self.dataLocation+'/label_map.pbtxt')
            client.put(location+'/model.config', self.dataLocation+'/model.config')
            if self.jupyterConfig != """":
                client.run(""touch {}"".format(self.dataLocation+'/log.txt'))
        except Exception as e:
            raise ValueError(""Error in copying data to cloud server. "" + str(e))

    def __myexec(self, ssh, cmd, timeout, want_exitcode=False):
        # one channel per command
        stdin, stdout, stderr = ssh.exec_command(cmd) 
        # get the shared channel for stdout/stderr/stdin
        channel = stdout.channel

        # we do not need stdin.
        stdin.close()                 
        # indicate that we're not going to write to that channel anymore
        channel.shutdown_write()      

        # read stdout/stderr in order to prevent read block hangs
        stdout_chunks = []
        stdout_chunks.append(stdout.channel.recv(len(stdout.channel.in_buffer)))
        # chunked read to prevent stalls
        while not channel.closed or channel.recv_ready() or channel.recv_stderr_ready(): 
            # stop if channel was closed prematurely, and there is no data in the buffers.
            got_chunk = False
            readq, _, _ = select.select([stdout.channel], [], [], timeout)
            for c in readq:
            
                if c.recv_ready(): 
                    stdout_chunks.append(stdout.channel.recv(len(c.in_buffer)))
                    got_chunk = True
                if c.recv_stderr_ready(): 
                    # make sure to read stderr to prevent stall    
                    stderr.channel.recv_stderr(len(c.in_stderr_buffer))  
                    got_chunk = True  
            '''
            1) make sure that there are at least 2 cycles with no data in the input buffers in order to not exit too early (i.e. cat on a >200k file).
            2) if no data arrived in the last loop, check if we already received the exit code
            3) check if input buffers are empty
            4) exit the loop
            '''
            if not got_chunk \
                and stdout.channel.exit_status_ready() \
                and not stderr.channel.recv_stderr_ready() \
                and not stdout.channel.recv_ready(): 
                # indicate that we're not going to read from this channel anymore
                stdout.channel.shutdown_read()  
                # close the channel
                stdout.channel.close()
                break    # exit as remote side is finished and our bufferes are empty

        # close all the pseudofiles
        stdout.close()
        stderr.close()

        if want_exitcode:
            # exit code is always ready at this point
            return (''.join(stdout_chunks), stdout.channel.recv_exit_status())
        return ''.join(stdout_chunks)


    def __myexec1(self, ssh, cmd, timeout, want_exitcode=False):
        # one channel per command
        stdin, stdout, stderr = ssh.exec_command(cmd, get_pty=True) 
        for line in iter(stderr.readline, """"):
            print(line, end="""")
        stdin.close()                 
        stdout.close()
        stderr.close()

    def executeCode(self):
        try:
            client = Connection(
                host=self.serverIP,
                user=self.sshConfig[""userName""],
                connect_kwargs={
                    ""key_filename"": self.sshConfig[""keyFilePath""],
                },
            )
            cmd = 'python3.8 {} {} {}'.format(self.codeLocation, self.dataLocation, self.pretrainedModelLocation)
            client.run( cmd)
        except Exception as e:
            raise ValueError(""Error in running code on cloud server. "" + str(e))
    
    def start_executing_notebook(self):
        try:
            publicIp_Port = self.serverIP + "":"" + self.jupyterConfig[""portNo""]
            conURL = ""ws://"" + publicIp_Port
            base = 'http://' + publicIp_Port + ''

            headers = self.jupyterConfig[""header""]
            url = base + '/api/kernels'
            flag = True
            while flag: # deadlock need to add timeout
                response = requests.post(url, headers=headers)
                flag = False
            kernel = json.loads(response.text)

            # Load the notebook and get the code of each cell
            url = base + '/api/contents/' + self.jupyterConfig[""notebook_path""]
            response = requests.get(url, headers=headers)
            file = json.loads(response.text)
            code = [c['source'] for c in file['content']['cells'] if len(c['source']) > 0 and c['cell_type']=='code' ]
            ws = create_connection(conURL + ""/api/kernels/"" + kernel[""id""] + ""/channels"",
                                   header=headers)

            def send_execute_request(code):
                msg_type = 'execute_request';
                content = {'code': code, 'silent': False}
                hdr = {'msg_id': uuid.uuid1().hex,
                       'username': 'test',
                       'session': uuid.uuid1().hex,
                       'data': datetime.datetime.now().isoformat(),
                       'msg_type': msg_type,
                       'version': '5.0'}
                msg = {'header': hdr, 'parent_header': hdr,
                       'metadata': {},
                       'content': content}
                return msg

            for c in code:
                ws.send(json.dumps(send_execute_request(c)))

            # We ignore all the other messages, we just get the code execution output
            # (this needs to be improved for production to take into account errors, large cell output, images, etc.)
            error_msg = ''
            traceback_msg = ''
            for i in range(0, len(code)):
                msg_type = '';
                while msg_type != ""stream"":
                    rsp = json.loads(ws.recv())
                    msg_type = rsp[""msg_type""]
                    if msg_type == 'error':
                        raise ValueError(""Error on Cloud machine: ""+rsp['content']['evalue'])
            ws.close()
            self.log.info('Status:-  |...Execution Started`')
        except ClientError as e:
            raise ValueError(e)



    def __wait_for_completion(self, sftp, remoteLogFile, localLogFile):
        
        waiting = True
        error_msg = """"
        while waiting:
            time.sleep(5 * 60)
            try:
                sftp.get(str(remoteLogFile), str(localLogFile))
                with open(localLogFile, ""r"") as f:
                    content = f.readlines()
                for x in content:
                    if ""Error"" in x:
                        waiting = False
                        error_msg = x
                    if ""success"" in x:
                        waiting = False
            except:
                raise (str(e))
        return error_msg
        
    def copy_file_from_server(self, localPath):
        try:
            client = Connection(
                host=self.serverIP,
                user=self.sshConfig[""userName""],
                connect_kwargs={
                    ""key_filename"": self.sshConfig[""keyFilePath""],
                },
            )

            remoteLogFile = PurePosixPath(self.dataLocation)/'log.txt'
            localLogFile = Path(localPath)/'remote_log.txt'
            client.get(str(remoteLogFile), str(localLogFile))
            tarFile = (PurePosixPath(self.dataLocation).parent/PurePosixPath(self.dataLocation).name).with_suffix("".tar.gz"")
            client.get(str(tarFile), str(Path(localPath)/tarFile.name))
        except:
            raise
        return str(Path(localPath)/tarFile.name)

    def create_instance(self):
        instances = self.ec2_client.run_instances(
                ImageId=self.serverConfig[""amiId""],
                MinCount=1,
                MaxCount=1,
                InstanceType=""t2.xlarge"",
                KeyName=""AION_GPU"",
                SecurityGroupIds = [""sg-02c3a6c8dd67edb74""]
            )    
        self.instanceId = [instances['Instances'][0]['InstanceId']]
        
    def start_instance(self):
        if self.separate_instance:
            self.create_instance()
        try:
            response = self.ec2_client.start_instances(InstanceIds=self.instanceId, DryRun=True)
        except Exception as e:
            if 'DryRunOperation' not in str(e):
                raise ValueError(""Error in starting the EC2 instance, check server configuration. "" + str(e))
        try:
            running_state_code = 16
            response = self.ec2_client.start_instances(InstanceIds=self.instanceId, DryRun=False)
            instance_status_code = 0
            while instance_status_code != running_state_code:
                response = self.ec2_client.describe_instances(InstanceIds=self.instanceId)
                instance_status_code = response['Reservations'][0]['Instances'][0]['State']['Code']
                if instance_status_code == running_state_code:
                    self.serverIP = response['Reservations'][0]['Instances'][0]['PublicIpAddress']
                    break
        except ClientError as e:
            raise ValueError(""Error in starting the EC2 instance. "" + str(e))

    def terminate_instance(self):
        ec2 = boto3.resource(self.serverConfig[""serverName""], region_name=self.serverConfig[""regionName""], aws_access_key_id=self.serverConfig[""awsAccessKeyId""], aws_secret_access_key=self.serverConfig[""awsSecretAccessKey""])

        ec2.instances.filter(InstanceIds=self.instanceId).terminate()  # for terminating an ec2 instance

    def stop_server_instance(self):
        try:
            self.ec2_client.stop_instances(InstanceIds=self.instanceId, DryRun=True)
        except Exception as e:
            if 'DryRunOperation' not in str(e):
                raise
        stopped_state_code = 80
        # Dry run succeeded, call stop_instances without dryrun
        try:
            response = self.ec2_client.stop_instances(InstanceIds=self.instanceId, DryRun=False)
            response = self.ec2_client.describe_instances(InstanceIds=self.instanceId)
            instance_status_code = 0
            while instance_status_code != stopped_state_code:
                response = self.ec2_client.describe_instances(InstanceIds=self.instanceId)
                instance_status_code = response['Reservations'][0]['Instances'][0]['State']['Code']
                if instance_status_code == stopped_state_code:
                    break
        except:
            raise ValueError(""Error in stopping the EC2 instance {}.Please stop it manually "".format(self.instanceId[0]))
        if self.separate_instance:
            try:
                self.terminate_instance()
            except:
                raise ValueError(""Error in terminating the EC2 instance {}.Please terminate it manually "".format(self.instanceId[0]))

"
manage.py,"#!/usr/bin/env python
""""""Django's command-line utility for administrative tasks.""""""
import os
import sys


def main():
    os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'appfe.ux.settings')
    try:
        from django.core.management import execute_from_command_line
    except ImportError as exc:
        raise ImportError(
            ""Couldn't import Django. Are you sure it's installed and ""
            ""available on your PYTHONPATH environment variable? Did you ""
            ""forget to activate a virtual environment?""
        ) from exc
    execute_from_command_line(sys.argv)


if __name__ == '__main__':
    main()
"
urls.py,"""""""mpgWebApp URL Configuration

The `urlpatterns` list routes URLs to views. For more information please see:
    https://docs.djangoproject.com/en/3.0/topics/http/urls/
Examples:
Function views
    1. Add an import:  from my_app import views
    2. Add a URL to urlpatterns:  path('', views.home, name='home')
Class-based views
    1. Add an import:  from other_app.views import Home
    2. Add a URL to urlpatterns:  path('', Home.as_view(), name='home')
Including another URLconf
    1. Import the include() function: from django.urls import include, path
    2. Add a URL to urlpatterns:  path('blog/', include('blog.urls'))
""""""
from django.contrib import admin
from django.urls import path
from django.urls import include, re_path
from appfe.api import inferenceApis
from django.urls import path, re_path
urlpatterns = [
    #path('predict', inferenceApis.apipredict,name='PredictAPI'),
    path('predict', inferenceApis.apipredict,name='PredictAPI'),
    path('spredict',inferenceApis.apispredict,name='SecurePredictAPI'),
    path('monitoring', inferenceApis.apiinputdrift,name='MonitoringAPI'),
    path('performance', inferenceApis.apioutputdrift,name='Performance'),    
    path('xplain', inferenceApis.apixplain,name='Xplain'),
    path('features',inferenceApis.apifeatures,name='Features'),
    path('uploadfile',inferenceApis.uploadfile,name='uploadfile'),
    path('retrain',inferenceApis.retrain,name='retrain'),	
    path('trainstatus',inferenceApis.trainstatus,name='trainstatus'),	
    path('publish',inferenceApis.publish,name='publish'),	
    path('geteda',inferenceApis.geteda,name='geteda'),
    path('pattern_anomaly_settings',inferenceApis.apiPatternAnomalySettings,name='PatternAnomalySettings'),
    path('pattern_anomaly_predict',inferenceApis.apiPatternAnomalyPredict,name='PatternAnomalyPredict')
]


#df=pd.read_csv(""C:\Project\Analytics\Deployment\germancredit_9\germancreditdata.csv"")
#
#bool_cols = [col for col in df if np.isin(df[col].dropna().unique(), [0, 1]).all()]
#
#bool_cols
"
inferenceApis.py,"from django.shortcuts import render
from django.http import HttpResponse
from appbe.dataPath import DEPLOY_LOCATION
from rest_framework import status
from django.db.models import Max, F
import os,sys
import time
import json
import re
import pandas as pd
from rest_framework.permissions import IsAuthenticated
from django.views.decorators.csrf import csrf_exempt
from appbe.dataPath import DATA_FILE_PATH
from appbe.dataPath import CONFIG_FILE_PATH
from appfe.modelTraining.models import usecasedetails
from appfe.modelTraining.models import Existusecases
import subprocess
from pathlib import Path

user_records = {}
@csrf_exempt
def geteda(request):
    if request.method == 'POST':
        if request.content_type == 'application/json':	
            output = {}
            try:
                data=request.body.decode('utf-8')	
                data = json.loads(data)					
                file_id = data['fileid']    
                edaOptions = 'All'
                if 'options' in data:
                    edaOptions = data['options']  
                dataFile = os.path.join(DATA_FILE_PATH,file_id)
                from appbe.eda import ux_eda
                eda_obj = ux_eda(dataFile)
                if 'dataoverview' in edaOptions.lower() or 'all' in edaOptions.lower():
                    dataDistributionDF = eda_obj.dataDistribution()   
                    dataDistributionJson = dataDistributionDF.to_json(orient = 'records')
                    output['DataOverview'] = json.loads(dataDistributionJson)
                if 'top10records' in edaOptions.lower() or 'all' in edaOptions.lower():
                    top10df = eda_obj.getTopRows(10)
                    top10dfJson = top10df.to_json(orient = 'records')
                    output['Top10Records'] = json.loads(top10dfJson)
                if 'datadistribution' in edaOptions.lower() or 'all' in edaOptions.lower():    
                    distributionJson = eda_obj.getDistribution()
                    output['DataDistribution'] = distributionJson
                if ""featureimportance""  in edaOptions.lower() or 'all' in edaOptions.lower():
                    pca_map = eda_obj.getPCATop10Features()
                    pca_details = pca_map
                    pca_df=pd.DataFrame()            
                    if len(pca_details) > 0:
                        pca_df = pd.DataFrame({'Feature':pca_details.index, 'Explained Variance Ratio':pca_details.values}).round(2)
                        pca_json = pca_df.to_json(orient=""records"")
                        output['FeatureImportance'] = json.loads(pca_json)
                    else:
                        pca_json = 'Error During feature importance processing'
                        output['FeatureImportance'] = pca_json 
                if ""correlationanalysis"" in edaOptions.lower() or 'all' in edaOptions.lower():            
                    corr_mat = eda_obj.getCorrelationMatrix()
                    if not corr_mat.empty:
                        corr_mat =  corr_mat.to_json(orient=""columns"")
                        output['CorrelationAnalysis'] = json.loads(corr_mat)
                    else:
                        output['CorrelationAnalysis'] = 'Error during correlation analysis'
                if ""unsupervisedclustering"" in edaOptions.lower() or 'all' in edaOptions.lower():
                    clusteringDetails,hopkins_val = eda_obj.getClusterDetails()
                    output['UnsupervisedClustering'] = clusteringDetails
                    output['HopkinsValue'] = hopkins_val
                    
            except Exception as e:
                print(e)
            return HttpResponse(json.dumps({""status"":""Success"",""output"":output}),content_type=""application/json"")    
        else:
            return HttpResponse(json.dumps({""status"":""error"",""msg"":""Wrong Content Type""}),content_type=""application/json"")                
                    
@csrf_exempt
def publish(request):
    usecaseid = request.GET[""usecaseid""]
    currentVersion = request.GET[""version""]
    if request.method == 'POST':
        if request.content_type == 'application/json':	
            try:
                from appbe.models import publishmodel
                status,msg,url = publishmodel(request,usecaseid,currentVersion,Existusecases,usecasedetails)
                return HttpResponse(json.dumps({""status"":status,""msg"":msg,""url"":url}),content_type=""application/json"")
            except Exception as e: 				   
                print(e)
                return HttpResponse(json.dumps({""status"":""error"",""msg"":""model training exception""}),content_type=""application/json"")	
        else:
            return HttpResponse(json.dumps({""status"":""error"",""msg"":""Wrong Content Type""}),content_type=""application/json"")
    else:
        msg = help_text(request,usecaseid,version)
        return HttpResponse(msg,content_type=""text/plain"")			
@csrf_exempt
def trainstatus(request):
    usecaseid = request.GET[""usecaseid""]
    currentVersion = request.GET[""version""]
    if request.method == 'POST':
        if request.content_type == 'application/json':	
            try:
               data=request.body.decode('utf-8')	
               data = json.loads(data)					
               trainingid = int(data['trainingid'])
               model = Existusecases.objects.get(id=trainingid)
               if model.Status.lower() == 'success':
                    return HttpResponse(json.dumps({""status"":""success"",""trainingStatus"":""Trained"",""usecaseid"":str(usecaseid),""version"":str(model.Version)}),content_type=""application/json"")
               else:
                    from appbe.training import checkversionrunningstatus
                    status = checkversionrunningstatus(trainingid,usecasedetails,Existusecases)
                    if status.lower() == 'success':
                        return HttpResponse(json.dumps({""status"":""success"",""trainingStatus"":""Trained"",""usecaseid"":str(usecaseid),""version"":str(model.Version)}),content_type=""application/json"")						
                    else:	
                        return HttpResponse(json.dumps({""status"":""success"",""trainingStatus"":status,""usecaseid"":str(usecaseid),""version"":str(model.Version)}),content_type=""application/json"")						
            except Exception as e: 				   
                print(e)
                return HttpResponse(json.dumps({""status"":""error"",""msg"":""model training exception""}),content_type=""application/json"")	
        else:
            return HttpResponse(json.dumps({""status"":""error"",""msg"":""Wrong Content Type""}),content_type=""application/json"")
    else:
        msg = help_text(request,usecaseid,version)
        return HttpResponse(msg,content_type=""text/plain"")
@csrf_exempt
def retrain(request):	
    usecaseid = request.GET[""usecaseid""]
    currentVersion = request.GET[""version""]
    if request.method == 'POST':
        if request.content_type == 'application/json':	
            try:
               data=request.body.decode('utf-8')	
               data = json.loads(data)					
               file_id = data['fileid']
               p = usecasedetails.objects.get(usecaseid=usecaseid)
               s1 = Existusecases.objects.filter(ModelName=p).annotate(maxver=Max('ModelName__existusecases__Version'))
               config_list = s1.filter(Version=F('maxver'))
               if config_list.count() > 0:					
                   Version = config_list[0].Version
                   Version = Version + 1
                   model = Existusecases.objects.filter(ModelName=p,Version=currentVersion)
                   indexVal = 0 
                   configfile = str(model[indexVal].ConfigPath)
                   f = open(configfile, ""r"")
                   configSettings = f.read()
                   f.close()
                   configSettingsJson = json.loads(configSettings)				   
                   configSettingsJson['basic']['modelVersion'] = str(Version)
                   dataFile = configSettingsJson['basic']['dataLocation']
                   if os.path.isfile(dataFile):
                       data = pd.read_csv(dataFile,encoding='utf-8',skipinitialspace = True,na_values=['-','?'],encoding_errors= 'replace')
                       dataFile = os.path.join(DATA_FILE_PATH,file_id)
                       data2 = pd.read_csv(dataFile,encoding='utf-8',skipinitialspace = True,na_values=['-','?'],encoding_errors= 'replace')
                       data = data.append(data2,ignore_index=True)
                       data.to_csv(dataFile,index=False)
                   dataFile = os.path.join(DATA_FILE_PATH,file_id)
                   configSettingsJson['basic']['dataLocation'] = str(dataFile)
                   updatedConfigSettings = json.dumps(configSettingsJson)
                   filetimestamp = str(int(time.time()))
                   outputfile = os.path.join(CONFIG_FILE_PATH, 'AION_OUTPUT_' + filetimestamp + '.json')
                   config_json_filename = os.path.join(CONFIG_FILE_PATH, 'AION_' + filetimestamp + '.json')
                   with open(config_json_filename, ""w"") as fpWrite:
                       fpWrite.write(updatedConfigSettings)
                   fpWrite.close()				   
                   ps = Existusecases(DataFilePath=str(dataFile), DeployPath='', Status='Not Trained',ConfigPath=str(config_json_filename), Version=Version, ModelName=p,TrainOuputLocation=str(outputfile))
                   ps.save()
                   scriptPath = os.path.normpath(os.path.join(os.path.dirname(os.path.abspath(__file__)), '..', '..','aion.py'))
                   outputStr = subprocess.Popen([sys.executable, scriptPath,'-m','training','-c',config_json_filename])
                   ps.Status = 'Running'
                   ps.trainingPID = outputStr.pid
                   ps.save()
                   return HttpResponse(json.dumps({""status"":""success"",""trainingid"":str(ps.id),""version"":str(ps.Version),""usecaseid"":usecaseid}),content_type=""application/json"")						
                   '''				   
                   outputStr = outputStr.decode('utf-8')
                   outputStr = re.search(r'aion_learner_status:(.*)', str(outputStr), re.IGNORECASE).group(1)
                   outputStr = outputStr.strip()
                   resultJsonObj = json.loads(outputStr)
                   ps.Status = resultJsonObj['status']
                   if resultJsonObj['status'] == 'SUCCESS':
                       ps.modelType = resultJsonObj['data']['ModelType']
                       ps.DeployPath = str(resultJsonObj['data']['deployLocation'])
                       if resultJsonObj['data']['ModelType'] in ['clustering','anomalydetection', 'timeSeriesAnomalyDetection']: #task 11997
                           ps.ProblemType = 'unsupervised'
                       else:
                           ps.ProblemType = 'supervised'
                   ps.save()				   
                   '''
               else:
                   return HttpResponse(json.dumps({""status"":""error"",""msg"":'Existing trained model not found'}),content_type=""application/json"")			 
            except Exception as e: 				   
                print(e)
                return HttpResponse(json.dumps({""status"":""error"",""msg"":""model training exception""}),content_type=""application/json"")	
        else:
            return HttpResponse(json.dumps({""status"":""error"",""msg"":""Wrong Content Type""}),content_type=""application/json"")
    else:
        msg = help_text(request,usecaseid,version)
        return HttpResponse(msg,content_type=""text/plain"")				
@csrf_exempt
def uploadfile(request):
    try:
        if 'file' not in request.FILES:
            msg = 'No file part in the request'
            return HttpResponse(json.dumps({""status"":""error"",""msg"":msg}),content_type=""application/json"")
        else:
            file = request.FILES['file']	
            if file.size > 31457280:
                msg = 'Upload limit is 30 MB only'
            ext = str(file).split('.')[-1]			
            if ext.lower() in ['csv','tsv','tar','zip','avro','parquet']:
                filetimestamp = str(int(time.time()))
                file_id = 'AION_' + filetimestamp+'.'+ext
                dataFile = os.path.join(DATA_FILE_PATH,file_id)			
                with open(dataFile, 'wb+') as destination:
                    for chunk in file.chunks():
                        destination.write(chunk)
                destination.close()            		
                return HttpResponse(json.dumps({""status"":""success"",""fileid"":file_id}),content_type=""application/json"")		
            else:
                return HttpResponse(json.dumps({""status"":""error"",""msg"":""File extension not supported""}),content_type=""application/json"")			
    except Exception as e:
        print(e)
        return HttpResponse(json.dumps({""status"":""error"",""msg"":""File upload exception""}),content_type=""application/json"")		
def help_text(request,usecaseid,version):
    hosturl =request.get_host()
    url='http://'+hosturl+'/api/'
    msg = """"""
Request_Type: Post
Content_Type: applicattion/json
For Prediction URL: {url}'predict?usecaseid={usecaseid}&version={version}
For Explanations URL: {url}xplain?usecaseid={usecaseid}&version={version}
For Input Drift URL: {url}monitoring?usecaseid={usecaseid}&version={version}
For Output Drift URL: {url}performance?usecaseid={usecaseid}&version={version}
BODY: Data in json format
"""""".format(url=url,usecaseid=usecaseid,version=version)
    return msg
   
@csrf_exempt
def apispredict(request):
    usecaseid = request.GET[""usecaseid""]
    version = request.GET[""version""]
    if request.method == 'POST':
        if request.content_type == 'application/json':
            model_path = os.path.join(DEPLOY_LOCATION,usecaseid,str(version))
            isdir = os.path.isdir(model_path)
            if isdir:  
                try:
                    data=request.body.decode('utf-8')
                    predict_path = os.path.join(model_path,'aion_spredict.py')
                    outputStr = subprocess.check_output([sys.executable,predict_path,data])
                    outputStr = outputStr.decode('utf-8')
                    outputStr = re.search(r'predictions:(.*)',str(outputStr), re.IGNORECASE).group(1)
                    resp = outputStr.strip()
                    return HttpResponse(resp,content_type=""application/json"")
                except Exception as e:
                    print(e)
                    return HttpResponse(json.dumps({""status"":""error"",""msg"":""Bad Request""}),content_type=""application/json"")
            else:
                return HttpResponse(json.dumps({""status"":""error"",""msg"":""Wrong UseCaseID or Version""}),content_type=""application/json"")
        else:
            return HttpResponse(json.dumps({""status"":""error"",""msg"":""Wrong Content Type""}),content_type=""application/json"")
    else:
        msg = help_text(request,usecaseid,version)
        return HttpResponse(msg,content_type=""text/plain"")
        
@csrf_exempt
def apipredict(request):
    usecaseid = request.GET[""usecaseid""]
    version = request.GET[""version""]
    #print(request.content_type)
    if request.method == 'POST':
        if request.content_type in ['application/json','multipart/form-data']:
            model_path = os.path.join(DEPLOY_LOCATION,usecaseid,str(version))
            isdir = os.path.isdir(model_path)
            if isdir:  
                try:
                    data = ''
                    msg = 'Bad request'
                    if 'file' not in request.FILES:
                        data=request.body.decode('utf-8')
                    else:
                        file = request.FILES['file']	
                        if file.size > 31457280:
                            msg = 'Upload limit is 30 MB only'
                            
                        else:
                            ext = str(file).split('.')[-1]			
                            if ext.lower() in ['csv','tsv','tar','zip','avro','parquet']:             
                                urlData = file.read()
                                import io
                                rawData = pd.read_csv(io.StringIO(urlData.decode('utf-8')))
                                data = rawData.to_json(orient='records')
                            else:
                                msg = 'Extension not supported'
                            
                    if data != '':
                        predict_path = os.path.join(model_path,'aion_predict.py')
                        outputStr = subprocess.check_output([sys.executable,predict_path,data])
                        outputStr = outputStr.decode('utf-8')
                        outputStr = re.search(r'predictions:(.*)',str(outputStr), re.IGNORECASE).group(1)
                        resp = outputStr.strip()
                        return HttpResponse(resp,content_type=""application/json"")
                    else:
                        return HttpResponse(json.dumps({""status"":""error"",""msg"":msg}),content_type=""application/json"")
                except Exception as e:
                    print(e)
                    return HttpResponse(json.dumps({""status"":""error"",""msg"":""Bad Request""}),content_type=""application/json"")
            else:
                return HttpResponse(json.dumps({""status"":""error"",""msg"":""Wrong UseCaseID or Version""}),content_type=""application/json"")
        else:
            return HttpResponse(json.dumps({""status"":""error"",""msg"":""Wrong Content Type""}),content_type=""application/json"")
    else:
        msg = help_text(request,usecaseid,version)
        return HttpResponse(msg,content_type=""text/plain"")
@csrf_exempt       
def apiinputdrift(request):
    usecaseid = request.GET[""usecaseid""]
    version = request.GET[""version""]
    if request.method == 'POST':
        if request.content_type == 'application/json':
            model_path = os.path.join(DEPLOY_LOCATION,usecaseid,str(version))
            isdir = os.path.isdir(model_path)
            if isdir:  
                try:
                    data=request.body.decode('utf-8')
                    predict_path = os.path.join(model_path,'aion_ipdrift.py')
                    outputStr = subprocess.check_output([sys.executable,predict_path,data])
                    outputStr = outputStr.decode('utf-8')
                    outputStr = re.search(r'drift:(.*)',str(outputStr), re.IGNORECASE).group(1)
                    resp = outputStr.strip()
                    return HttpResponse(resp,content_type=""application/json"")
                except Exception as e:
                    print(e)
                    return HttpResponse(json.dumps({""status"":""error"",""msg"":""Bad Request""}),content_type=""application/json"")
            else:
                return HttpResponse(json.dumps({""status"":""error"",""msg"":""Wrong UseCaseID or Version""}),content_type=""application/json"")
        else:
            return HttpResponse(json.dumps({""status"":""error"",""msg"":""Wrong Content Type""}),content_type=""application/json"")
    else:
        msg = help_text(request,usecaseid,version)
        return HttpResponse(msg,content_type=""text/plain"")
@csrf_exempt         
def apioutputdrift(request):
    usecaseid = request.GET[""usecaseid""]
    version = request.GET[""version""]
    if request.method == 'POST':
        if request.content_type == 'application/json':
            model_path = os.path.join(DEPLOY_LOCATION,usecaseid,str(version))
            isdir = os.path.isdir(model_path)
            if isdir:  
                try:
                    data=request.body.decode('utf-8')
                    predict_path = os.path.join(model_path,'aion_opdrift.py')
                    outputStr = subprocess.check_output([sys.executable,predict_path,data])
                    outputStr = outputStr.decode('utf-8')
                    outputStr = re.search(r'drift:(.*)',str(outputStr), re.IGNORECASE).group(1)
                    resp = outputStr.strip()
                    return HttpResponse(resp,content_type=""application/json"")
                except Exception as e:
                    print(e)
                    return HttpResponse(json.dumps({""status"":""error"",""msg"":""Bad Request""}),content_type=""application/json"")
            else:
                return HttpResponse(json.dumps({""status"":""error"",""msg"":""Wrong UseCaseID or Version""}),content_type=""application/json"")
        else:
            return HttpResponse(json.dumps({""status"":""error"",""msg"":""Wrong Content Type""}),content_type=""application/json"")
    else:
        msg = help_text(request,usecaseid,version)
        return HttpResponse(msg,content_type=""text/plain"")
@csrf_exempt 
def apixplain(request):        
    usecaseid = request.GET[""usecaseid""]
    version = request.GET[""version""]
    if request.method == 'POST':
        if request.content_type == 'application/json':
            model_path = (Path(DEPLOY_LOCATION)/usecaseid)/str(version)
            if model_path.is_dir():  
                try:
                    with open( (model_path/'etc')/'display.json', 'r') as f:
                        disp_data = json.load(f)
                        is_explainable = not disp_data.get('textFeatures')
                except:
                    is_explainable = True
                try:
                    if not is_explainable:
                        return HttpResponse(json.dumps({""status"":""error"",""msg"":""explain api is not supported when text features are used for training""}),content_type=""application/json"")
                    data=request.body.decode('utf-8')
                    predict_path = model_path/'aion_xai.py'
                    outputStr = subprocess.check_output([sys.executable,predict_path,'local',data]) #BugId:13304
                    outputStr = outputStr.decode('utf-8')
                    outputStr = re.search(r'aion_ai_explanation:(.*)',str(outputStr), re.IGNORECASE).group(1)
                    resp = outputStr.strip()
                    return HttpResponse(resp,content_type=""application/json"")
                except Exception as e:
                    print(e)
                    return HttpResponse(json.dumps({""status"":""error"",""msg"":""Bad Request""}),content_type=""application/json"")
            else:
                return HttpResponse(json.dumps({""status"":""error"",""msg"":""Wrong UseCaseID or Version""}),content_type=""application/json"")
        else:
            return HttpResponse(json.dumps({""status"":""error"",""msg"":""Wrong Content Type""}),content_type=""application/json"")
    else:
        msg = help_text(request,usecaseid,version)
        return HttpResponse(msg,content_type=""text/plain"")
#@api_view(['POST','GET'])        
def apifeatures(request):     
    usecaseid = request.GET[""usecaseid""]
    version = request.GET[""version""]
    if request.content_type == 'application/json':
        model_path = os.path.join(DEPLOY_LOCATION,usecaseid,str(version))
        isdir = os.path.isdir(model_path)
        if isdir:  
            try:
                data=request.body.decode('utf-8')
                predict_path = os.path.join(model_path,'featureslist.py')
                outputStr = subprocess.check_output([sys.executable,predict_path,data])
                outputStr = outputStr.decode('utf-8')
                outputStr = re.search(r'predictions:(.*)',str(outputStr), re.IGNORECASE).group(1)
                resp = outputStr.strip()
                return HttpResponse(resp,content_type=""application/json"")
            except Exception as e:
                print(e)
                return HttpResponse(json.dumps({""status"":""error"",""msg"":""Bad Request""}),content_type=""application/json"")
        else:
            return HttpResponse(json.dumps({""status"":""error"",""msg"":""Wrong UseCaseID or Version""}),content_type=""application/json"")
    else:
         return HttpResponse(json.dumps({""status"":""error"",""msg"":""Wrong Content Type""}),content_type=""application/json"")

@csrf_exempt
def apiPatternAnomalySettings(request):
    usecaseid = request.GET[""usecaseid""]
    version = request.GET[""version""]
    if request.content_type == 'application/json':
        model_path = os.path.join(DEPLOY_LOCATION,usecaseid,str(version))   
        isdir = os.path.isdir(model_path)
        if isdir:    
            try: 
                data=request.body.decode('utf-8')
                data = json.loads(data)
                groupswitching = data['groupswitching']
                transitionprobability = data['transitionprobability']
                transitionsequence = data['transitionsequence']
                sequencethreshold = data['sequencethreshold']
                filename = os.path.join(model_path,'clickstream.json')
                print(filename)
                data = {}
                data['groupswitching'] = groupswitching
                data['transitionprobability'] = transitionprobability
                data['transitionsequence'] = transitionsequence
                data['sequencethreshold'] = sequencethreshold
                updatedConfig = json.dumps(data)
                with open(filename, ""w"") as fpWrite:
                    fpWrite.write(updatedConfig)             
                fpWrite.close()            
                return HttpResponse(json.dumps({""status"":'Success'}),content_type=""application/json"")
            except Exception as e:
                print(e)
                return HttpResponse(json.dumps({""status"":""error"",""msg"":""Bad Request""}),content_type=""application/json"")
        else:
            return HttpResponse(json.dumps({""status"":""error"",""msg"":""Bad Request""}),content_type=""application/json"")
    else:
        msg = help_text(request,usecaseid,version)
        return HttpResponse(msg,content_type=""text/plain"")
#@api_view(['POST']) 
@csrf_exempt 
def apiPatternAnomalyPredict(request):
    import pandas as pd
    usecaseid = request.GET[""usecaseid""]
    version = request.GET[""version""]
    if request.content_type == 'application/json':
        model_path = os.path.join(DEPLOY_LOCATION,usecaseid,str(version))   
        isdir = os.path.isdir(model_path)
        if isdir:    
            try: 
                data=request.body.decode('utf-8')
                data = json.loads(data)
                anomaly = False
                remarks = ''
                clusterid = -1
                configfilename = os.path.join(model_path,'datadetails.json')
                filename = os.path.join(model_path,'clickstream.json')
                clusterfilename = os.path.join(model_path,'stateClustering.csv')
                probfilename = os.path.join(model_path,'stateTransitionProbability.csv')
                dfclus = pd.read_csv(clusterfilename)
                dfprod = pd.read_csv(probfilename)                
                f = open(configfilename, ""r"")
                configSettings = f.read()
                f.close()                
                configSettingsJson = json.loads(configSettings)
                activity = configSettingsJson['activity']
                sessionid = configSettingsJson['sessionid']                
                f = open(filename, ""r"")
                configSettings = f.read()
                f.close()                
                configSettingsJson = json.loads(configSettings)
                groupswitching = configSettingsJson['groupswitching']
                page_threshold = configSettingsJson['transitionprobability']
                chain_count = configSettingsJson['transitionsequence']
                chain_probability = configSettingsJson['sequencethreshold']   
                currentactivity = data[activity]
                if bool(user_records):
                    sessionid = data[sessionid]
                    if sessionid != user_records['SessionID']:
                        user_records['SessionID'] = sessionid
                        prevactivity = ''
                        user_records['probarry'] = []
                        user_records['prevclusterid'] = -1
                        user_records['NoOfClusterHopping'] = 0
                        user_records['pageclicks'] = 1
                    else:
                        prevactivity = user_records['Activity']
                    user_records['Activity'] = currentactivity
                    pageswitch = True
                    if prevactivity == currentactivity or prevactivity == '':
                        probability = 0	
                        pageswitch = False
                        remarks = ''		
                    else:
                        user_records['pageclicks'] += 1
                        df1 = dfprod[(dfprod['State'] == prevactivity) & (dfprod['NextState'] == currentactivity)]
                        if df1.empty:
                            remarks = 'Anomaly Detected - User in unusual state'	
                            anomaly = True
                            clusterid = -1
                            probability = 0
                            user_records['probarry'].append(probability)
                            n=int(chain_count)
                            num_list = user_records['probarry'][-n:]
                            avg = sum(num_list)/len(num_list)
                            for index, row in dfclus.iterrows():
                                clusterlist = row[""clusterlist""]
                                if currentactivity in clusterlist:
                                    clusterid = row[""clusterid""]
                        else:
                            probability = df1['Probability'].iloc[0]
                            user_records['probarry'].append(probability)
                            n=int(chain_count)
                            num_list = user_records['probarry'][-n:]
                            davg = sum(num_list)/len(num_list)
                            for index, row in dfclus.iterrows():
                                clusterlist = row[""clusterlist""]
                                if currentactivity in clusterlist:
                                    clusterid = row[""clusterid""]
                            remarks = ''			
                            if user_records['prevclusterid'] != -1:
                                if probability == 0 and user_records['prevclusterid'] != clusterid:
                                    user_records['NoOfClusterHopping'] = user_records['NoOfClusterHopping']+1
                                    if user_records['pageclicks'] == 1:
                                        remarks = 'Anomaly Detected - Frequent Cluster Hopping'	
                                        anomaly = True
                                    else:
                                        remarks = 'Cluster Hopping Detected'
                                    user_records['pageclicks'] = 0
                                    if user_records['NoOfClusterHopping'] > int(groupswitching) and anomaly == False:
                                        remarks = 'Anomaly Detected - Multiple Cluster Hopping' 				
                                        anomaly = True
                                    elif probability == 0:
                                        remarks = 'Anomaly Detected - Unusual State Transition Detected'
                                        anomaly = True
                                    elif probability <= float(page_threshold):
                                        remarks = 'Anomaly Detected - In-frequent State Transition Detected'		
                                        anomaly = True
                                    else:
                                        if pageswitch == True:
                                            if probability == 0:
                                                remarks = 'Anomaly Detected - Unusual State Transition Detected'
                                                anomaly = True
                                            elif probability <= float(page_threshold):
                                                remarks = 'Anomaly Detected - In-frequent State Transition Detected'
                                                anomaly = True
                                            else:
                                                remarks = '' 
                                    if davg < float(chain_probability):
                                        if anomaly == False:
                                            remarks = 'Anomaly Detected - In-frequent Pattern Detected'      	
                                            anomaly = True
                else:
                    user_records['SessionID'] = data[sessionid]
                    user_records['Activity'] = data[activity]
                    user_records['probability'] = 0
                    user_records['probarry'] = []
                    user_records['chainprobability'] = 0
                    user_records['prevclusterid'] = -1
                    user_records['NoOfClusterHopping'] = 0
                    user_records['pageclicks'] = 1
                    for index, row in dfclus.iterrows():
                        clusterlist = row[""clusterlist""]
                        if currentactivity in clusterlist:
                            clusterid = row[""clusterid""]
                user_records['prevclusterid'] = clusterid
                outputStr = {'status':'SUCCESS','data':{'Anomaly':str(anomaly),'Remarks':str(remarks)}}
                return HttpResponse(json.dumps(outputStr),content_type=""application/json"")				
                
            except Exception as e:
                print(e)
                return HttpResponse(json.dumps({""status"":""error"",""msg"":""Bad Request""}),content_type=""application/json"")            
        else:
            return HttpResponse(json.dumps({""status"":""error"",""msg"":""Bad Request""}),content_type=""application/json"")        
    else:
        msg = help_text(request,usecaseid,version)
        return HttpResponse(msg,content_type=""text/plain"")"
urls.py,"""""""mpgWebApp URL Configuration

The `urlpatterns` list routes URLs to views. For more information please see:
    https://docs.djangoproject.com/en/3.0/topics/http/urls/
Examples:
Function views
    1. Add an import:  from my_app import views
    2. Add a URL to urlpatterns:  path('', views.home, name='home')
Class-based views
    1. Add an import:  from other_app.views import Home
    2. Add a URL to urlpatterns:  path('', Home.as_view(), name='home')
Including another URLconf
    1. Import the include() function: from django.urls import include, path
    2. Add a URL to urlpatterns:  path('blog/', include('blog.urls'))
""""""
from django.contrib import admin
from django.urls import path
from django.urls import include, re_path
from appfe.modelTraining import views
from appfe.modelTraining import upload_views
from appfe.modelTraining import bc_views
from appfe.modelTraining import mltest_views
from appfe.modelTraining import train_views
from appfe.modelTraining import dg_views
from appfe.modelTraining import settings_views
from appfe.modelTraining import drift_views
from appfe.modelTraining import landing_views
from appfe.modelTraining import mllite_views
from appfe.modelTraining import trustedAI_views
from appfe.modelTraining import llm_views
from appfe.modelTraining import visualizer_views as v
from appfe.modelTraining import prediction_views
from django.urls import path, re_path
urlpatterns = [
    path('admin/', admin.site.urls),
    path('api/', include('appfe.api.urls')),
	path('', views.index, name=""index""),
	re_path('^$',views.index,name='Homepage'),
    re_path('prediction', prediction_views.Prediction, name=""Prediction""),
	path('edit/<int:id>', views.edit),
    path('update/<int:id>', views.update), 
    path('opentraining/<int:id>/<int:currentVersion>',views.opentraining),
    path('opentraininglogs/<int:id>/<int:currentVersion>',landing_views.opentraininglogs),
    path('show',views.show,name=""show""),
    path('ucdetails/<int:id>',views.ucdetails,name='ucdetails'),
    path('delete/<int:id>', views.destroy,name='DeleteUseCase'),
    path('deleteversion/<int:id>',views.remove_version,name='RemoveVersion'),
	path('deletes3Bucket/<str:name>', settings_views.removes3bucket,name='removes3bucket'),
	path('deleteGcsBucket/<str:name>', settings_views.removegcsbucket,name='removegcsbucket'),
	path('deleteAzureBucket/<str:name>', settings_views.removeazurebucket,name='removeazurebucket'),
    path('publish/<int:id>',views.publish),
    path('createpackagedocker/<int:id>/<int:version>',views.createpackagedocker),
    path('stoptraining',train_views.stoptraining),	
    path('downloadPackage/<int:id>/<int:version>',views.downloadpackage),
    re_path('startmodelservice',views.startmodelservice,name=""startmodelservice""),
    re_path('stopmodelservice',views.stopmodelservice,name=""stopmodelservice""),
	path('retrain/<int:id>/<int:currentVersion>', landing_views.retrain),
    re_path('computetoAWS',settings_views.computetoAWS,name='computeInfrastructure'),
    re_path('computetoLLaMMA7b',settings_views.computetoLLaMMA7b,name='computeInfrastructure'),
    re_path('computetoGCPLLaMA13B',settings_views.computetoGCPLLaMA13B,name='computeInfrastructure'),    
    re_path('help',views.help,name = ""help""),    
    re_path('mlac_userguide',views.mlac_userguide,name = ""mlac_userguide""),    
	path('launchmodel/<int:id>/<int:version>', landing_views.launchmodel),
	path('modxplain/<int:id>/<int:version>', landing_views.modxplain),    
	path('moddrift/<int:id>/<int:version>',landing_views.moddrift),
    re_path('ConvertOnnx', mllite_views.ConvertOnnx, name=""ConvertOnnx""),
    re_path('runtimeutility', mllite_views.runtimeutility, name=""runtimeutility""),
    re_path('sagepredict', mllite_views.sageprediction, name=""sageprediction""),
    re_path('mlstyles', views.mlstyles, name=""mlstyles""),
    re_path('mltrain', views.mltrain, name=""mltrain""),
    re_path('usecasefilter', views.usecasefilter, name=""usecasefilter""),    
    re_path('mlpredict', views.mlpredict, name=""mlpredict""),
    re_path('getdataclasses',views.getdataclasses,name=""getdataclasses""),
    re_path('usecases', views.AIusecases, name=""AIusecases""),
    re_path('modelkafka',views.modelkafka,name=""ModelKafka""),
    re_path('AionProblem', views.AionProblem, name=""AionProblem""),
    re_path('UQTesting', mltest_views.UQTesting, name=""UQTesting""),
    re_path('maaccommand',views.maaccommand,name='MAAC'),
    re_path('GCSbucketAdd',settings_views.GCSbucketAdd,name=""gcsbucket""),
    re_path('adds3bucket',settings_views.adds3bucket,name=""adds3bucket""), 
    re_path('azurestorageAdd',settings_views.azurestorageAdd,name=""azurestorageAdd""),	
    re_path('features', views.features, name=""features""),
    re_path('downloadedareport',upload_views.downloadedareport,name=""downloadedareport""),
	re_path('downloadxplainreport',views.downloadxplainreport,name=""downloadxplainreport""),
    re_path('downlpredictreport',views.downlpredictreport,name=""DownloadPrediction""),
	re_path('LoadBasicConfiguration',views.LoadBasicConfiguration,name='LoadBasicConfiguration'), 
    re_path('LoadAdvanceConfiguration',views.LoadAdvanceConfiguration,name='LoadAdvanceConfiguration'), 
    re_path('uploaddatafromscript',upload_views.uploaddatafromscript,name='uploaddatafromscript'),
    re_path('features', views.features, name=""features""),
    re_path('uploadDatafromSatandardDataset',upload_views.uploadDatafromSatandardDataset,name=""uploadDatafromSatandardDataset""),
    re_path('uploadDatafromunsupervisedmodel',views.uploadDatafromunsupervisedmodel,name=""uploadDatafromunsupervisedmodel""),
    re_path('mltesting',mltest_views.mltesting,name='mltesting'),
    re_path('mllite',views.mllite,name=""MLLite""),
	re_path('settings',settings_views.settings_page,name=""settings""),
    re_path('openneural',mllite_views.openneural,name=""openneural""),
    re_path('Tfliteneural',mllite_views.Tfliteneural,name=""Tfliteneural""),
    re_path('encryptedpackage',views.encryptedpackage,name='encryptedpackage'),
    re_path('ABtesting', mltest_views.ABtest, name=""ABtesting""),
    re_path('uploadedData', upload_views.uploadedData, name='uploadedData'),
    
    # Text Data Labelling using LLM related changes
    # --------------------------------------------------------
    re_path('uploadedTextData', llm_views.uploadedTextData, name='uploadedTextData'),
    re_path('getTextLabel', llm_views.getTextLabel, name='getTextLabel'),
    re_path('downloadTextLabelReport',llm_views.downloadTextLabelReport,name=""downloadTopicReport""),
    # --------------------------------------------------------
    
    
    # QnA Generator using LLM related changes
    # --------------------------------------------------------
    re_path('genearateQA', llm_views.genearateQA, name='genearateQA'),
    re_path('downloadQnAReport',llm_views.downloadQnAReport,name=""downloadQnAReport""),
    # --------------------------------------------------------
    
    re_path('advanceconfig', bc_views.savebasicconfig, name='Advance'),
    re_path('edaReport',upload_views.EDAReport,name='edareport'),
    re_path('readlogfile',views.readlogfile,name=""readlogfile""),
    re_path('flcommand',views.flcommand,name=""flcommand""),
    re_path('openmlflow',views.mlflowtracking,name=""MLflow""),
    re_path('basicconfig',bc_views.basicconfig,name='basicConfig'),
    re_path('Advance',views.Advance,name='Advance'), 
    re_path('uploaddata', views.uploaddata, name='uploaddata'),
    re_path('dataupload', views.Dataupload, name='dataupload'),
    re_path('trainmodel', train_views.trainmodel, name='next'),
   #Sagemaker
    re_path('Sagemaker',mllite_views.Sagemaker,name=""Sagemaker""),
    re_path('batchlearning',views.batchlearning,name=""batchlearning""),
    # EDA Reports changes
    re_path('gotoreport', views.gotoreport, name='report'),
    re_path('llmmodelevaluate',train_views.llmmodelevaluate, name='llmmodelevaluate'),
    # EDA Visualization changes
    re_path('getgraph',views.getgraph,name=""getgraph""),
    
    # Fairness Metrics changes
    re_path('getmetrics',views.getmetrics,name=""getmetrics""),
    
    re_path('getDeepDiveData',views.getDeepDiveData,name=""getDeepDiveData""),
    
    # 12686:Data Distribution related Changes
    re_path('getDataDistribution',views.getDataDistribution,name=""getDataDistribution""),
    re_path('licensekey',views.licensekey,name=""licensekey""),
    # -------------------------------- Graviton-Integration Changes S T A R T --------------------------------
    re_path('getuserdata',views.getuserdata,name=""getuserdata""),
    re_path('getdataservice',views.getdataservice,name=""getdataservice""),
    # ------------------------------------------------ E N D -------------------------------------------------	

    re_path('getdataimbalance',views.getdataimbalance,name=""getdataimbalance""),
    
    re_path('trainresult',train_views.trainresult,name='trainresult'), 
    re_path('LoadDataForSingleInstance',views.LoadDataForSingleInstance,name='LoadDataForSingleInstance'), 
    re_path('PredictForSingleInstance',prediction_views.PredictForSingleInstance,name='PredictForSingleInstance'), 
    re_path('stateTransitionSettings',views.stateTransitionSettings,name='stateTransitionSettings'),
    re_path('instancepredict',views.instancepredict,name='predict'),
    re_path('onnxruntime',views.onnxruntime,name='onnxruntime'),
    re_path('home',views.Dataupload,name='manage'),
    re_path('show',views.show,name=""show""),
    re_path('delete',views.show,name=""delete""),
	re_path('inputdrift', landing_views.inputdrift, name='inputdrift'),
	re_path('dotextSummarization',views.dotextSummarization,name='textSummarization'),
	re_path('outputdrift', views.outputdrift, name='outputdrift'),
    re_path('xplain', v.xplain, name='xplain'),
    re_path('sensitivity', trustedAI_views.sensitivityAnalysis, name='sensitivity'),
    re_path('fairnesmetrics', trustedAI_views.fairnesmetrics, name='fairnesmetrics'),
    re_path('handlefairness', trustedAI_views.handlefairness, name='handlefairness'),
    re_path('performance', trustedAI_views.performance_metrics, name='performance'),
    re_path('uquncertainty', trustedAI_views.uquncertainty, name='uquncertainty'),
    re_path('uqtransparency', trustedAI_views.uqtransparency, name='uqtransparency'),
    re_path('RLpath',views.RLpath,name='RLpath'),
    path('opendetailedlogs/<int:id>/<int:currentVersion>', views.opendetailedlogs, name='logfile'),
    path('downloadlogfile/<int:id>/<int:currentVersion>',views.downloadlogfile),
    path('openmodelevaluation/<int:id>',views.openmodelevaluation,name='openmodelevaluation'),
    re_path('startPublishServices',settings_views.startPublishServices,name=""PublishService""),
    re_path('startKafka',settings_views.startKafka,name='startKafka'),
    re_path('startService',views.startService,name='startService'),
    re_path('startTracking',views.startTracking,name=""startTracking""),
    re_path('Drift', drift_views.Drift, name='Drift'),
    re_path('Distribution', drift_views.Distribution, name='Distribution'),
    re_path('newfile', views.newfile, name='newfile'),
    re_path('Evaluate', drift_views.Evaluate, name='Evaluate'),
    re_path('qlearning',views.qlearning,name='qlearning'),
    re_path('listfiles',upload_views.listfiles,name='listfiles'),
    #url('actionavalanche',views.actionavalanche,name='actionavalanche'),
    re_path('sqlAlchemy',upload_views.sqlAlchemy,name='sqlAlchemy'),
    re_path('submitquery',upload_views.submitquery,name='submitquery'),
    re_path('validatecsv',upload_views.validatecsv,name='validatecsv'),
    path('ObjLabelAdd/<int:id>',views.ObjLabelAdd),
    path('objectlabel/<int:id>',views.objectlabel),
    path('imagelabel/<int:id>',views.imagelabel),
    path('ObjLabelRemove/<int:id>',views.ObjLabelRemove),
    re_path('objectlabelling',views.objectlabelling,name='objectlabelling'),
    re_path('imagelabelling',views.imagelabelling,name='imagelabelling'),
    re_path('ObjLabelDiscard',views.ObjLabelDiscard,name='ObjLabelDiscard'),
    re_path('ObjLabelNext',views.ObjLabelNext,name='ObjLabelNext'),
    re_path('ObjLabelPrev',views.ObjLabelPrev,name=""ObjLabelPrev""),
    re_path('saveaionconfig',settings_views.saveaionconfig,name='saveaionconfig'),
    re_path('savegravitonconfig',settings_views.savegravitonconfig,name='savegravitonconfig'),
    re_path('saveopenaiconfig',settings_views.saveopenaiconfig,name=""saveopenaiconfig""),
    re_path('getvalidateddata',views.getvalidateddata,name=""getvalidateddata""),
    re_path('updateawsconfig',settings_views.amazonec2settings,name=""amazonec2settings""),
    re_path('updategcpconfig',settings_views.gcpcomputesettings,name=""gcpcomputesettings""),    
    re_path('localsetings',views.localsetings,name=""localsetings""),
    re_path('ImgLabelNext',views.ImgLabelNext,name='ImgLabelNext'),
    re_path('objectlabeldone',views.objectlabeldone,name='ObjectLabeling'),
    re_path(r'^get_table_list', upload_views.get_table_list, name='get_table_list'),
    re_path(r'^getdatasetname', views.getdatasetname, name='getdatasetname'),
    re_path(r'^get_tables_fields_list', upload_views.get_tables_fields_list, name='get_tables_fields_list'),
    re_path(r'^validate_query', upload_views.validate_query, name='validate_query'),
    re_path(r'^trigger_DAG', views.trigger_DAG, name = 'trigger_DAG'),
    # The home page
    path('dataoperations', views.dataoperations, name='dataoperations'),
    path('summarization',views.summarization,name='summarization'),
    path('datalabel', views.datalabel, name='datalabel'),
    path('upload_and_read_file_data', views.upload_and_read_file_data, name='upload_and_read_file_data'),
    path('apply_rule', views.apply_rule, name='apply_rule'),
    path('apply_rule_ver2', views.apply_rule_ver2, name='apply_rule_ver2'),
    path('download_result_dataset', views.download_result_dataset, name='download_result_dataset'),
    path('get_sample_result_of_individual_rule', views.get_sample_result_of_individual_rule,
         name='get_sample_result_of_individual_rule'),
    path('get_sample_result_of_individual_rule_ver2', views.get_sample_result_of_individual_rule_ver2,
         name='get_sample_result_of_individual_rule_ver2'),
    path('upload_and_read_test_data', views.upload_and_read_test_data, name='upload_and_read_test_data'),
    path('get_label_and_weightage', views.get_label_and_weightage, name='get_label_and_weightage'),
    path('datagenrate', dg_views.datagenrate, name='datagenrate'),
    path('generateconfig', dg_views.generateconfig, name='generateconfig'),
    path('StationarySeasonalityTest', views.StationarySeasonalityTest, name='StationarySeasonalityTest'),
  
    path('modelcompare', views.modelcompare, name='modelcompare'),        
    path('textsummarization', views.textsummarization, name='textsummarization'),     
    path('azureOpenAiDavinci', llm_views.azureOpenAiDavinci, name='azureOpenAiDavinci'),   
    path('azureOpenAiDavinciSumarization', llm_views.azureOpenAiDavinciSumarization, name='azureOpenAiDavinciSumarization'),    
    # LLM Testing
    path('llmtesting', views.llmtesting, name='llmtesting'),     
    path('llmtestingresult', views.llmtestingresult, name='llmtestingresult'),
    re_path('llmtestreport',views.llmtestreport,name=""llmtestreport""), 
    # Code Clone Detection
    
    path('codeclonedetectionresult', views.codeclonedetectionresult, name='codeclonedetectionresult'),
    re_path('codeclonereport',views.codeclonereport,name=""codeclonereport""),
    re_path('evaluateprompt',views.evaluatepromptmetrics,name=""evaluatepromptmetrics""),
    path('libraries', views.libraries, name='libraries'), #To display libraries
]


#df=pd.read_csv(""C:\Project\Analytics\Deployment\germancredit_9\germancreditdata.csv"")
#
#bool_cols = [col for col in df if np.isin(df[col].dropna().unique(), [0, 1]).all()]
#
#bool_cols
"
error_handler.py,"from django.http import HttpResponse
from django.conf import settings
import traceback


class ErrorHandlerMiddleware:

    def __init__(self, get_response):
        self.get_response = get_response

    def __call__(self, request):
        response = self.get_response(request)
        return response

    def process_exception(self, request, exception):
        if not settings.DEBUG:
            if exception:
                # Format your message here
                message = ""**{url}**\n\n{error}\n\n````{tb}````"".format(
                    url=request.build_absolute_uri(),
                    error=repr(exception),
                    tb=traceback.format_exc()
                )
                # Do now whatever with this message
                # e.g. requests.post(<slack channel/teams channel>, data=message)
                
            return HttpResponse(""Error processing the request."", status=500)"
wsgi.py,"""""""
WSGI config for ux project.

It exposes the WSGI callable as a module-level variable named ``application``.

For more information on this file, see
https://docs.djangoproject.com/en/3.0/howto/deployment/wsgi/
""""""

import os

from django.core.wsgi import get_wsgi_application

os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'ux.settings')

application = get_wsgi_application()
"
asgi.py,"""""""
ASGI config for ux project.

It exposes the ASGI callable as a module-level variable named ``application``.

For more information on this file, see
https://docs.djangoproject.com/en/3.0/howto/deployment/asgi/
""""""

import os

from django.core.asgi import get_asgi_application

os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'ux.settings')

application = get_asgi_application()
"
settings.py,"""""""
Django settings for mpgWebApp project.

Generated by 'django-admin startproject' using Django 3.0.3.

For more information on this file, see
https://docs.djangoproject.com/en/3.0/topics/settings/

For the full list of settings and their values, see
https://docs.djangoproject.com/en/3.0/ref/settings/
""""""

import os
from os.path import expanduser
import platform
from appbe.dataPath import DATA_DIR
#from cloghandler import ConcurrentRotatingFileHandler
sql_database_path = os.path.join(DATA_DIR,'sqlite')
if os.path.isdir(sql_database_path) == False:
    os.makedirs(sql_database_path)

DATA_UPLOAD_MAX_NUMBER_FIELDS = None
DATA_UPLOAD_MAX_MEMORY_SIZE = None    
# Build paths inside the project like this: os.path.join(BASE_DIR, ...)
BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
#BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath()))


# Quick-start development settings - unsuitable for production
# See https://docs.djangoproject.com/en/3.0/howto/deployment/checklist/

# SECURITY WARNING: keep the secret key used in production secret!
SECRET_KEY = 'y8d*&k0jv4c*zu^ykqz$=yyv@(lcmz495uj^()hthjs=x&&g0y'

# SECURITY WARNING: don't run with debug turned on in production!
DEBUG = True
ALLOWED_HOSTS = ['*']


# Application definition

INSTALLED_APPS = [
    'django.contrib.admin',
    'django.contrib.auth',
    'django.contrib.contenttypes',
    'django.contrib.sessions',
    'django.contrib.messages',
    'django.contrib.staticfiles',
    'appfe.modelTraining',
]

MIDDLEWARE = [
    'django.middleware.security.SecurityMiddleware',
    'django.contrib.sessions.middleware.SessionMiddleware',
    'django.middleware.common.CommonMiddleware',
    'django.middleware.csrf.CsrfViewMiddleware',
    'django.contrib.auth.middleware.AuthenticationMiddleware',
    'django.contrib.messages.middleware.MessageMiddleware',
    'django.middleware.clickjacking.XFrameOptionsMiddleware',
	'appfe.ux.error_handler.ErrorHandlerMiddleware'
]

ROOT_URLCONF = 'appfe.ux.urls'



TEMPLATES = [
    {
        'BACKEND': 'django.template.backends.django.DjangoTemplates',
        'DIRS': [os.path.join(BASE_DIR,'templates')],
        'APP_DIRS': True,
        'OPTIONS': {
            'context_processors': [
                'django.template.context_processors.debug',
                'django.template.context_processors.request',
                'django.contrib.auth.context_processors.auth',
                'django.contrib.messages.context_processors.messages',
            ],
        },
    },
]

WSGI_APPLICATION = 'appfe.ux.wsgi.application'


# Database
# https://docs.djangoproject.com/en/3.0/ref/settings/#databases

DATABASES = {
    'default': {
        'ENGINE': 'django.db.backends.sqlite3',
        'NAME': os.path.join(sql_database_path, 'db.sqlite3'),
    }
}


# Password validation
# https://docs.djangoproject.com/en/3.0/ref/settings/#auth-password-validators

AUTH_PASSWORD_VALIDATORS = [
    {
        'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator',
    },
    {
        'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator',
    },
    {
        'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator',
    },
    {
        'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator',
    },
]


# Internationalization
# https://docs.djangoproject.com/en/3.0/topics/i18n/

LANGUAGE_CODE = 'en-us'

TIME_ZONE = 'UTC'

USE_I18N = True

USE_L10N = True

USE_TZ = True


# Static files (CSS, JavaScript, Images)
# https://docs.djangoproject.com/en/3.0/howto/static-files/

STATIC_URL = '/static/'
STATIC_ROOT=os.path.join(BASE_DIR,'static')
"
forms.py,"from django import forms  
from modelTraining.models import usecasedetails  
import os
class usecasedetailsForm(forms.ModelForm):  
    class Meta:  
        model = usecasedetails  
        fields = ""__all__""   
from modelTraining.models import Existusecases  
class ExistusecasesForm(forms.ModelForm):  
    class Meta:  
        model = Existusecases  
        fields = ""__all__"" "
forms.py,"from django import forms  
from appfe.modelTraining.models import usecasedetails
from appfe.modelTraining.models import Existusecases

class usecasedetailsForm(forms.ModelForm):  
    class Meta:  
        model = usecasedetails  
        fields = ""__all__""   
 
class ExistusecasesForm(forms.ModelForm):  
    class Meta:  
        model = Existusecases  
        fields = ""__all__"" "
views.py,"from django.shortcuts import render
from django.urls import reverse
from django.http import HttpResponse
from django.shortcuts import redirect
import time
from django.template import loader
from django import template
from django.views.decorators.csrf import csrf_exempt
from os import walk
from plotly.subplots import make_subplots
import plotly.graph_objects as go
from appbe import help_Text as ht
import random
from appbe import service_url
from appbe import compute
from appbe import installPackage
from appbe.pages import getusercasestatus
from appbe import images_analysis as ia
from django.db.models import Max, F
from appbe.aion_config import settings
from appbe.aion_config import get_graviton_data
from appbe.aion_config import get_llm_data
from appbe.aion_config import get_edafeatures
from appbe.training import calculate_total_activities
from appbe.training import calculate_total_interations
from appbe.training import checkModelUnderTraining
from appbe.training import checkversionrunningstatus
from appbe.training import changeModelStatus
from appbe.training import getStatusCount
from appbe.training import getModelStatus
from appbe.training import check_unsupported_col
from appbe.publish import chech_publish_info
from appbe.publish import check_input_data
import uuid
import numpy as np
from appbe.aion_config import kafka_setting
from appbe.aion_config import running_setting
from appbe.validatecsv import csv_validator
from appbe.aion_config import addKafkaModel
from appbe.aion_config import getrunningstatus
from appbe.aion_config import aion_service
from appbe.pages import getversion
from appbe.s3bucketsDB import get_s3_bucket
from appbe.s3bucketsDB import read_s3_bucket
from appbe.gcsbucketsDB import get_gcs_bucket
from appbe.gcsbucketsDB import read_gcs_bucket
from appbe.azureStorageDB import get_azureStorage
from appbe.azureStorageDB import read_azureStorage
from appbe.dataIngestion import getcommonfields
from appbe.dataIngestion import ingestDataFromFile
from appbe.dataIngestion import delimitedsetting
import pdfplumber
from docx import Document


from appbe.trainresult import ParseResults
import pandas as pd
import numpy as np
import re
import xml.etree.ElementTree as ET
import json
import glob
from appbe import dataPath
from pathlib import Path
import urllib, base64   
import os
from os.path import expanduser
import platform
import time
import sys
import csv
import subprocess
import base64
from appfe.modelTraining.models import usecasedetails
from appfe.modelTraining.forms import usecasedetailsForm
from appfe.modelTraining.models import Existusecases
from django.shortcuts import get_list_or_404, get_object_or_404
from pandas import json_normalize
from django.contrib.sessions.models import Session
import logging
from appbe.dataPath import DEFAULT_FILE_PATH
from appbe.dataPath import DATA_FILE_PATH
from appbe.dataPath import CONFIG_FILE_PATH
from appbe.dataPath import DEPLOY_LOCATION
from utils.file_ops import read_df_compressed
from appbe.dataPath import LOG_LOCATION
from appbe.log_ut import logg


LOG_FILE_NAME = 'model_training_logs.log'
LOG_FOLDER = 'log'

if os.path.isdir(DATA_FILE_PATH) == False:
    os.makedirs(DATA_FILE_PATH)

if os.path.isdir(CONFIG_FILE_PATH) == False:
    os.makedirs(CONFIG_FILE_PATH)
 
if os.path.isdir(DEPLOY_LOCATION) == False:
    os.makedirs(DEPLOY_LOCATION)
    

# EION_SCRIPT_PATH = 'C:\\Project\\Analytics\\eion\\eion\\eion.py'
PYTHON_PATH = 'python.exe'
AION_VERSION = getversion()
usecasetab = settings()
#AION_VERSION
# MainPage
logg_obj = logg(LOG_LOCATION)
log = logg_obj.create_log(AION_VERSION)
def index(request):
    from appbe.pages import index_page
    status,context,action = index_page(request,usecasedetails,Existusecases)
    context['version'] = AION_VERSION
    return render(request,action,context)

def localsetings(request):
    from appbe.pages import get_usecase_page
    try:
        compute.updatelocalsetings(request)
        time.sleep(2)       
        request.session['IsRetraining'] = 'No'
        #print(1)
        status,context,action = get_usecase_page(request,usecasedetails,Existusecases)
        context['version'] = AION_VERSION
        #print(2)
        return render(request,action,context)       
    except Exception as e:
        print(e)         
        return render(request, 'usecases.html',{'error': 'Fail to update localsetings','version':AION_VERSION})
    
def computetoAWS(request):
    from appbe.pages import get_usecase_page
    try:
        compute.updateToComputeSettings(request)
        time.sleep(2)       
        #print(1)       
        request.session['IsRetraining'] = 'No'
        status,context,action = get_usecase_page(request,usecasedetails,Existusecases)
        context['version'] = AION_VERSION
        return render(request,action,context)
    except Exception as e:   
        print(e)    
        return render(request, 'usecases.html',{'error': 'Fail to update ComputeSettings','version':AION_VERSION})
def licensekey(request):
    try:
        command = request.POST['licensesubmit']
        if command.lower() == 'generatelicense':
            userkey = request.POST['userkey']
            from records import pushrecords
            msg = pushrecords.generateLicenseKey(userkey)
            context = {'msg':msg}
            context['selected'] = 'License'
            print(context)
            return render(request,'licenseexpired.html',context)
            
        else:
            licensekey = request.POST['licensekey']
            from records import pushrecords
            pushrecords.updateLicense(licensekey)
            from appbe.pages import get_usecase_page
            status,context,action = get_usecase_page(request,usecasedetails,Existusecases)
            context['version'] = AION_VERSION
            return render(request,action,context)
    except Exception as e:   
        print(e)    
        return render(request, 'usecases.html',{'error': 'Fails in loading the page','version':AION_VERSION})
def help(request):
    context = {'selected': 'userguide', 'usecasetab': usecasetab}
    context['version'] = AION_VERSION
    return render(request, 'help.html', context)

def mlac_userguide(request):
    context = {'selected': 'mlac_userguide', 'usecasetab': usecasetab}
    context['version'] = AION_VERSION
    return render(request, 'help.html', context)
       
def AionProblem(request):
    if request.method == ""POST"":
        AionProblem = request.POST[""Algorithm""]
        request.session[""AionProblem""] = AionProblem
        return HttpResponse(AionProblem)
        
def features(request):
    if request.method == ""POST"":
        
        typedata = request.POST['datatype']

        if typedata == ""datapath"":
            datapath = request.POST['datap']
            if(os.path.isfile(datapath) and os.path.isfile(datapath)):
                df = pd.read_csv(datapath)
                modelfeature = df.columns.tolist() 
             
                modelfeatures = json.dumps(modelfeature)
                return HttpResponse(modelfeatures)
            else:
                return HttpResponse(json.dumps(""Data path does not exist ""), content_type=""application/error"")
        elif typedata == ""scriptpath"":
            scriptPath = request.POST['scriptp']
            #print(scriptPath)
            f = open(scriptPath, ""r"")
            pythoncode = f.read()
            f.close()
            ldict = {}
            exec(pythoncode, globals(), ldict)
            df = ldict['dfpy']            
            filetimestamp = str(int(time.time()))
            dataFile = os.path.join(DATA_FILE_PATH, 'AION_' + filetimestamp+'.csv')
            df.to_csv(dataFile, index=False)
            modelfeature = df.columns.tolist() 
            output = {'features':modelfeature,'datafile':dataFile}
            output = json.dumps(output)

            # return render(request,'prediction.html',{'modelfeatures':modelfeatures,'test':'test'})
            return HttpResponse(output)        

def mllite(request):
    from appbe.pages import mllite_page
    context = mllite_page(request)
    context['version'] = AION_VERSION
    return render(request, 'ConvertOnnx.html',context)

def usecasefilter(request):
    from appbe import mlstyles as mls
    selectedoption = request.GET[""selectedoption""]
    context = mls.Aiusecases(request,selectedoption)
    context['listtype'] = selectedoption
    context['version'] = AION_VERSION    
    return render(request, 'aiUseCases.html',context)    
def AIusecases(request):
    from appbe import mlstyles as mls
    context = mls.Aiusecases(request,'Implemented')
    context['listtype'] = 'Implemented'
    context['version'] = AION_VERSION
    return render(request, 'aiUseCases.html',context)
    
def mlstyles(request):
    from appbe import mlstyles as mls
    context = mls.mlstyles(request)
    context['selected'] = 'DataOperations'
    context['version'] = AION_VERSION
    return render(request, 'mlstyles.html',context) 
    
def mlpredict(request):
    from appbe import mlstyles as mls    
    context, button_flag = mls.mlpredict(request)
    context['selected'] = 'DataOperations'
    context['version'] = AION_VERSION
    if button_flag in ['prediction','predictsingle']:
        return render(request, 'mlstyles.html', context)
    else:
        return context
    
def mltrain(request):
    from appbe import mlstyles as mls
    context, button_flag = mls.mltrain(request)
    context['selected'] = 'DataOperations'  
    context['version'] = AION_VERSION  
    if button_flag == 'training':
        return render(request, 'mlstyles.html', context)
    else:
        return  context
        
def getdatasetname(request):
    try:
        from appbe.dataPath import DATA_DIR
        from appbe.sqliteUtility import sqlite_db
        file_path = os.path.join(DATA_DIR,'sqlite')
        sqlite_obj = sqlite_db(file_path,'config.db')
        temp_data = sqlite_obj.read_data('dataingest')

        data = []
        for x in temp_data:
            data_dict = {}
            data_dict['datasetname'] = x[1]
            data.append(data_dict)

    except Exception as e:
        print(e)
        data = []
    return HttpResponse(json.dumps(data))
    
def outputdrift(request):
    try:
        selected_use_case,ModelVersion,ModelStatus = getusercasestatus(request)
        computeinfrastructure = compute.readComputeConfig()    
        if ModelStatus != 'SUCCESS':
            context = {'error': 'Please train the model first or launch an existing trained model', 'selected_use_case': selected_use_case,'usecasetab':usecasetab,
                       'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion, 'selected': 'monitoring','computeinfrastructure':computeinfrastructure}
          
        else:
            updatedConfigFile = request.session['config_json']
            f = open(updatedConfigFile, ""r"")
            configSettings = f.read()
            f.close()
            configSettingsJson = json.loads(configSettings)
            problemtypes = configSettingsJson['basic']['analysisType'] 
            problem_type = """"
            for k in problemtypes.keys():
                if configSettingsJson['basic']['analysisType'][k] == 'True':
                    problem_type = k
                    break
            problem = problem_type
            ser_url = service_url.read_performance_service_url_params()
            iterName = request.session['UseCaseName'].replace("" "", ""_"")
            ModelVersion = request.session['ModelVersion']
            ser_url = ser_url+'performance?usecaseid='+iterName+'&version='+str(ModelVersion)     
            if problem.lower() not in ['classification','regression']:
                context = {'error': 'Output drift only available for classification and regression problems type', 'selected_use_case': selected_use_case, 'ModelStatus': ModelStatus,
                       'ModelVersion': ModelVersion, 'selected': 'monitoring','computeinfrastructure':computeinfrastructure,'usecasetab':usecasetab}
            else:           
                context = {'SUCCESS': 'Model is trained', 'selected_use_case': selected_use_case, 'ModelStatus': ModelStatus,'usecasetab':usecasetab,
                       'ModelVersion': ModelVersion, 'selected': 'monitoring','computeinfrastructure':computeinfrastructure,'ser_url':ser_url,'trainingDataLocation':request.session['datalocation']}
        
        return render(request, 'outputdrif.html', context)
    except:
         return render(request, 'outputdrif.html', {'error':'Fail to do outputdrift analysis','usecasetab':usecasetab})        


# -------------------------------- Graviton-Integration Changes S T A R T --------------------------------  
def getuserdata(request):   
    import requests 
    data = []   
    try:
        graviton_url,graviton_userid = get_graviton_data()
        gravitonURL = graviton_url
        gravitonUserId = graviton_userid
        
        # url = 'https://xenius.azurewebsites.net/api/dataservices?userid='+    
        url = gravitonURL + 'dataservices?userid=' + gravitonUserId
        print(url)
        response = requests.get(url)    
        statuscode = response.status_code   
        print(statuscode)
        if statuscode == 200:   
            json_dictionary = json.loads(response.content)  
            data = json_dictionary['result']
            print(data)            
    except Exception as e:  
        print(e)    
        data = []   
    data_json = json.dumps(data)    
    return HttpResponse(data_json)  
        
        
def getdataservice(request):    
    import requests 
    data = []   
    dataServiceId = request.GET.get('DataServiceId')    
    try:    
        graviton_url,graviton_userid = get_graviton_data()
        gravitonURL = graviton_url
        gravitonUserId = graviton_userid
        
        # url = 'https://xenius.azurewebsites.net/api/getmetadata?userid=1&dataserviceid='+str(dataServiceId)
        url = gravitonURL + 'getmetadata?userid=' + gravitonUserId +'&dataserviceid='+str(dataServiceId)
        response = requests.get(url)    
        statuscode = response.status_code   
        if statuscode == 200:   
            json_dictionary = json.loads(response.content)  
            data = json_dictionary['result']    
    except Exception as e:  
        print(e)    
        data = []   
    data_json = json.dumps(data)    
    return HttpResponse(data_json)  
# ------------------------------------------------ E N D -------------------------------------------------  



def getvalidateddata(request):
    import requests
    computeinfrastructure = compute.readComputeConfig()    
    taskid = request.POST.get('elixirdatataskid')
    try:
        url = 'http://'+elixir_ip+':'+elixir_port+'/api/get_validation_result?task_id='+str(taskid)
        #print(url)
        response = requests.get(url)
        statuscode = response.status_code   
        if statuscode == 200:   
            json_dictionary = json.loads(response.content)
            data = json_dictionary['Result']
        else:
            data = []   
    except Exception as e:
        print(e)
        data = []
    try:
        df = pd.DataFrame.from_dict(data)
        filetimestamp = str(int(time.time()))
        dataFile = os.path.join(DATA_FILE_PATH, 'AION_' + filetimestamp+'.csv')
        request.session['datalocation'] = str(dataFile)
        df.to_csv(dataFile, index=False)
        df_top = df.head(10)
        df_json = df_top.to_json(orient=""records"")
        df_json = json.loads(df_json)
        statusmsg = 'Data File Uploaded Successfully '
        selected_use_case = request.session['UseCaseName']
        ModelVersion = request.session['ModelVersion']
        ModelStatus = request.session['ModelStatus']
        request.session['currentstate'] = 0
        request.session['finalstate'] = 0
        request.session['datatype'] = 'Normal'
        context = {'tab': 'tabconfigure','data': df_json,'status_msg': statusmsg,'selected_use_case': selected_use_case,
                           'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion,'selected': 'modeltraning',
                           'currentstate': request.session['currentstate'], 'finalstate': request.session['finalstate'],'exploratory':False,'computeinfrastructure':computeinfrastructure}
        return render(request, 'upload.html', context)  
    except:
        context = {'tab': 'tabconfigure','selected_use_case': selected_use_case,'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion,'selected': 'modeltraning','computeinfrastructure':computeinfrastructure,""usecaseerror"":""Error in validating data!""}
        return render(request, 'upload.html', context)

def trigger_DAG(request):
    from appfe.modelTraining import AirflowLib
    response = AirflowLib.TriggerDag(""example_complex"", """")
    return HttpResponse(response, content_type=""application/json"")

def Airflow(request):
    try:
        selected_use_case = request.session['UseCaseName']
        ModelVersion = request.session['ModelVersion']
        ModelStatus = request.session['ModelStatus']
        context = {'selected_use_case': selected_use_case, 'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion,
                   'selected': 'monitoring', 'airflow': True}
        return render(request, 'upload.html', context)
    except:
        return render(request, 'upload.html', {'error':'interrupted error'})
        

def Results(request):
    return render(request, 'modeltraning.html', context)

def uploadnext(request):
    return render(request, 'basicconfig.html', {'selected': 'modeltraning','version':AION_VERSION})

def basicconfignext(request):
    from appbe import advance_Config as ac
    context = ac.basicconfignex(request)
    computeinfrastructure = compute.readComputeConfig()
    context['computeinfrastructure'] = computeinfrastructure
    context['version'] = AION_VERSION
    return render(request, 'advancedconfig.html', context)





def updateRunConfig(_trainingTime, _filesize, _features, _modelname, _problem_type):
    returnVal = 'Success'
    try:            
        import psutil    
        memInGB = round(psutil.virtual_memory().total / (1024 * 1024 * 1024))
        _resource = str(memInGB) + "" GB""
        
        _time = str(_trainingTime) + "" Mins""
        
        new_record = {
                    ""sampleSize"": _filesize,
                    ""features"": _features,
                    ""algorithm"": _modelname,
                    ""machineResource"": _resource,
                    ""trainingTime"": _time,
                    ""problemtype"": _problem_type
                }
        
        configfilepath = os.path.join(os.path.dirname(os.path.abspath(__file__)),'..','..','config','training_runs.json')
        if(os.path.isfile(configfilepath)):  
            with open(configfilepath,'r+') as file:
                # load existing data into a dict.
                file_data = json.load(file)
                # join new_record with file_data inside runs
                file_data[""runs""].append(new_record)
                # sets file's current position at offset.
                file.seek(0)
                # convert back to json.
                json.dump(file_data, file, indent = 4)
                
    except Exception as inst:
        returnVal = 'Fail'
        pass               
    
    return returnVal

        
def objectlabeldone(request):
    try:
        computeinfrastructure = compute.readComputeConfig()
        request.session['datatype'] = 'Object'
        request.session['csvfullpath'] = request.session['objectLabelFileName']
        df = pd.read_csv(request.session['csvfullpath'])
        df1 = df.groupby(['Label']).agg({""File"":{""count"",""nunique""}})
        df1.columns = df1.columns.droplevel(0)  
        df1 = df1.reset_index()
        class_count = []
        for i in range(len(df1)):
            dct = {}
            dct['Label'] = df1.loc[i, ""Label""]
            dct['TotalAnnotations'] = df1.loc[i, ""count""]
            dct['Images'] = df1.loc[i, ""nunique""]
            class_count.append(dct)
        #orxml_file in glob.glob(request.session['datalocation'] + '/*.xml'):
        status_msg = 'Successfully Done'
        wordcloudpic = ''
        bargraph = ''
        firstFile = pd.DataFrame()
        #print(class_count)
        context = {'tab': 'upload','firstFile':firstFile,'dataa': class_count,'textdetails':wordcloudpic,'featuregraph': bargraph,'status_msg': status_msg,'validcsv': True,'computeinfrastructure':computeinfrastructure}
        return render(request, 'upload.html', context)
    except:        
        context = {'tab': 'upload','computeinfrastructure':computeinfrastructure,""usecaseerror"":""Error in labeling object!""}
        return render(request, 'upload.html', context)

        
def ObjLabelDiscard(request):
    return redirect(reverse('objectlabelling'))
    
def ObjLabelAdd(request,id):
    angle = request.GET.get(""angle"")
    gid = request.GET.get(""gid"")
    xMin = min(int(request.GET.get(""xMin"")),int(request.GET.get(""xMax"")))
    xMax =max(int(request.GET.get(""xMin"")),int(request.GET.get(""xMax"")))
    yMin = min(int(request.GET.get(""yMin"")),int(request.GET.get(""yMax"")))
    yMax = max(int(request.GET.get(""yMin"")),int(request.GET.get(""yMax"")))
    height = request.GET.get(""height"")
    width = request.GET.get(""width"")
    #print(""=====> ""+str(angle) +""  ""+ str(gid) +""  ""+ str(xMin) + ""  "" + str(xMax) + ""  "" +str(yMin) +""  ""+ str(yMax)+"" ""+str(width))
    # with open(""out.csv"", 'w') as f:
    #     # writer = csv.writer(f)
    #     # writer.writerow([angle, id, gid, xMin, xMax, yMin, yMax])
    #     f.write(angle +""  ""+ gid +""  ""+ xMin + ""  "" + xMax + ""  "" +yMin +""  ""+ yMax)
    labels = request.session['labels']
    labels.append({""id"":id, ""name"":"""", ""xMin"":xMin, ""xMax"":xMax, ""yMin"":yMin, ""yMax"":yMax, ""height"":height,""width"":width, ""angle"":angle})
    request.session['labels'] = labels
    return redirect(reverse('objectlabelling'))

def imageeda(request):
    try:
        computeinfrastructure = compute.readComputeConfig()
        request.session['datatype'] = 'Image'
        filename = request.session['csvfullpath']
        os.remove(filename)        
        request.session['csvfullpath'] = request.session['LabelFileName']
        df = pd.read_csv(request.session['csvfullpath'])
        eda_result = ''  
        duplicate_img = ''
        color_plt = '' 
        df2 = df.groupby('Label', as_index=False)['File'].count().reset_index()
        df_json = df2.to_json(orient=""records"")
        df_json = json.loads(df_json)
        cfig = go.Figure()
        xaxis_data = df2['Label'].tolist()
        yaxis_data = df2['File'].tolist()
        cfig.add_trace(go.Bar(x=xaxis_data, y=yaxis_data))
        cfig.update_layout(barmode='stack', xaxis_title='Label', yaxis_title='File')
        bargraph = cfig.to_html(full_html=False, default_height=450, default_width=520)
        firstFile = df.groupby('Label').first().reset_index()
        #firstFile['FilePath'] = firstFile['File'].apply(lambda x: os.path.join(request.session['datalocation'], x))
        images = []
        qualityscore,eda_result,duplicate_img,color_plt = ia.analysis_images(request.session['datalocation'])
        for i in range(len(firstFile)):

            filename = firstFile.loc[i, ""File""]
            filePath = os.path.join(request.session['datalocation'], filename)
            string = base64.b64encode(open(filePath, ""rb"").read())
            image_64 = 'data:image/png;base64,' + urllib.parse.quote(string)
            firstFile.loc[i, ""Image""] = image_64
            firstFile.loc[i, ""Quality""] = qualityscore[filename]
        status_msg = 'Successfully Done'
        selected_use_case = request.session['UseCaseName']
        ModelVersion = request.session['ModelVersion']
        ModelStatus = request.session['ModelStatus']
        context = {'tab': 'upload', 'featuregraph': bargraph,'dataa': df_json, 'selected_use_case': selected_use_case,
                       'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion, 'validcsv': True,'eda_result':eda_result,'duplicate_img':duplicate_img,'color_plt':color_plt, 'firstFile': firstFile,
                       'status_msg': status_msg,'computeinfrastructure':computeinfrastructure}
        return(context)
    except:
        context={'error':'Fail to load Eda result'}
        return (context) 
       
def imagelabelling(request):
    if (request.session['currentIndex']) == (request.session['endIndex']+1):
        try:
            context = imageeda(request)
            return render(request, 'upload.html', context)
        except:
           context = {'error': 'Image labeling error'}
           return render(request, 'upload.html', context)
    else:
        try:
            df = pd.read_csv(request.session['csvfullpath'])
            filePath = os.path.join(request.session['datalocation'],df[""File""].iloc[request.session['currentIndex']])
            string = base64.b64encode(open(filePath, ""rb"").read())
            image_64 = 'data:image/png;base64,' + urllib.parse.quote(string)   
            context = {'tab': 'upload','id':request.session['currentIndex'],'labels': request.session['labels'],'image':image_64,'head':request.session['currentIndex']+1,'len':len(df)} 
            return render(request, 'imagelabelling.html', context)
        except:
            context = {'error': 'Image labeling error'}
            return render(request, 'upload.html', context)   

def objecteda(request):
    request.session['datatype'] = 'Object'
    filename = request.session['csvfullpath']
    try:
        os.remove(filename)
    except:
        pass
    try:
        request.session['csvfullpath'] = request.session['LabelFileName']
        df = pd.read_csv(request.session['csvfullpath'])
        df1 = df.groupby(['Label']).agg({""File"":{""count"",""nunique""}})
        df1.columns = df1.columns.droplevel(0)  
        df1 = df1.reset_index()
        class_count = []
        for i in range(len(df1)):
            dct = {}
            dct['Label'] = df1.loc[i, ""Label""]
            dct['TotalAnnotations'] = df1.loc[i, ""count""]
            dct['Images'] = df1.loc[i, ""nunique""]
            class_count.append(dct)
        #orxml_file in glob.glob(request.session['datalocation'] + '/*.xml'):
        status_msg = 'Successfully Done'
        wordcloudpic = ''
        bargraph = ''
        firstFile = pd.DataFrame()
        context = {'tab': 'upload','firstFile':firstFile,'dataa': class_count,'textdetails':wordcloudpic,'featuregraph': bargraph,'status_msg': status_msg,'validcsv': True}  
        return(context) 
    except:
        context={'tab': 'upload','error':'Fail to load Eda result'}
        return(context)
        
def objectlabelling(request):

    if (request.session['currentIndex']) == (request.session['endIndex']+1):
        try:
            context = objecteda(request)
            context['version'] = AION_VERSION
            return render(request, 'upload.html', context)
        except:
            return render(request, 'upload.html', {'error':'objectlabelling error','version':AION_VERSION})
    else:
        try:
            df = pd.read_csv(request.session['csvfullpath'])
            filePath = os.path.join(request.session['datalocation'],df[""File""].iloc[request.session['currentIndex']])
            string = base64.b64encode(open(filePath, ""rb"").read())
            image_64 = 'data:image/png;base64,' + urllib.parse.quote(string)
            bounds = []
            context = {'tab': 'upload','bounds':bounds,'labels': request.session['labels'],'directory':request.session['datalocation'],'image':image_64,'head':request.session['currentIndex']+1,'len':len(df),'filelist':df,'selectedfile':df[""File""].iloc[request.session['currentIndex']]} 
            context['version'] = AION_VERSION
            return render(request, 'objectlabelling.html',context)
        except:            
            return render(request, 'objectlabelling.html',{'tab': 'upload','error':'Objectlabelling Error','version':AION_VERSION})
            

def imagelabel(request,id):
    request.session['labels'] = request.GET.get(""name"")
    return redirect(reverse('imagelabelling'))    
def objectlabel(request,id):
    name = request.GET.get(""name"")
    labels =  request.session['labels']
    labels[int(id) - 1][""name""] = name
    request.session['labels'] = labels
    return redirect(reverse('objectlabelling'))

def ObjLabelRemove(request,id):
    index = int(id) - 1
    labels = request.session['labels']
    del labels[index]
    for label in labels[index:]:
        label[""id""] = str(int(label[""id""]) - 1)
    request.session['labels'] = labels
    return redirect(reverse('objectlabelling'))
    
def ImgLabelNext(request):  
    df = pd.read_csv(request.session['csvfullpath'])    
    filePath = df[""File""].iloc[request.session['currentIndex']]
    if request.session['labels'] != '':
        dataFile = request.session['LabelFileName']
        #print(dataFile)
        with open(dataFile,'a') as f:
            f.write(filePath + "","" +
                request.session['labels'] + ""\n"") 
        f.close()                
    request.session['currentIndex'] = request.session['currentIndex']+1
    request.session['labels'] = ''
    return redirect(reverse('imagelabelling'))

def ObjLabelPrev(request):
    df = pd.read_csv(request.session['csvfullpath'])
    imagePath = df[""File""].iloc[request.session['currentIndex']]
    request.session['currentIndex'] = request.session['currentIndex'] - 1
    process_marked_area_on_image(imagePath,request)
    return redirect(reverse('objectlabelling'))
    
def remove_labelling_from_csv(imagePath,request):
    dataFile = request.session['LabelFileName']
    df = pd.read_csv(dataFile)
    if not df.empty:
        if imagePath in df.values:
            df = df.set_index(""File"")
            df = df.drop(imagePath, axis=0)
            df.to_csv(dataFile, index=True)
            
def process_marked_area_on_image(imagePath,request):
    df = pd.read_csv(request.session['csvfullpath'])
    dataFile = request.session['LabelFileName']
    remove_labelling_from_csv(imagePath,request)
    write_coordinates_and_label_to_csv(imagePath,request)
    if request.session['currentIndex'] < len(df):
        image = df[""File""].iloc[request.session['currentIndex']]
        request.session['labels'] = []
        with open(dataFile, 'r') as file:
            reader = csv.reader(file)
            for row in reader:
                if row[0] == image:
                    labels = request.session['labels']
                    labels.append({""id"":row[1], ""name"":row[9], ""xMin"": row[3], ""xMax"":row[4], ""yMin"":row[5], ""yMax"":row[6], ""height"":row[7],""width"":row[8], ""angle"":row[2]})
                    request.session['labels'] = labels
        labels = request.session['labels']
    return True
    
def write_coordinates_and_label_to_csv(imagePath,request):
    dataFile = request.session['LabelFileName']
    with open(dataFile, 'a') as f:
        for label in request.session['labels']:
            f.write(imagePath + "","" +
                    str(round(float(label[""id""]))) + "","" +
                    str(label[""angle""]) + "","" +
                    str(round(float(label[""xMin""]))) + "","" +
                    str(round(float(label[""xMax""]))) + "","" +
                    str(round(float(label[""yMin""]))) + "","" +
                    str(round(float(label[""yMax""]))) + "","" +
                    str(round(float(label[""height""]))) + "","" +
                    str(round(float(label[""width""]))) + "","" +
                    label[""name""] + ""\n"")       
    f.close()
def ObjLabelSelect(request):
    selectedimage=request.GET.get('file')
    df = pd.read_csv(request.session['csvfullpath'])
    filePath = df[""File""].iloc[request.session['currentIndex']]
    remove_labelling_from_csv(filePath,request)
    dataFile = request.session['LabelFileName']
    with open(dataFile,'a') as f:
        for label in request.session['labels']:
            f.write(filePath + "","" +
            str(round(float(label[""id""]))) + "","" +
            str(label[""angle""]) + "","" +
            str(round(float(label[""xMin""]))) + "","" +
            str(round(float(label[""xMax""]))) + "","" +
            str(round(float(label[""yMin""]))) + "","" +
            str(round(float(label[""yMax""]))) + "","" +
            str(round(float(label[""height""]))) + "","" +
            str(round(float(label[""width""]))) + "","" +
            label[""name""] + ""\n"")       
    f.close()
    currentIndex = 0
    for index,row in df.iterrows():
        #print(row['File'])
        if row['File'] == selectedimage:
            break
        else:
            currentIndex = currentIndex+1
    request.session['currentIndex'] = currentIndex
    if request.session['currentIndex'] < len(df):
        image = df[""File""].iloc[request.session['currentIndex']]
        request.session['labels'] = []
        with open(dataFile, 'r') as file:
            reader = csv.reader(file)
            for row in reader:
                if row[0] == image:
                    labels = request.session['labels']
                    labels.append({""id"":row[1], ""name"":row[9], ""xMin"": row[3], ""xMax"":row[4], ""yMin"":row[5], ""yMax"":row[6], ""height"":row[7],""width"":row[8], ""angle"":row[2]})
                    request.session['labels'] = labels
        labels = request.session['labels']
    return redirect(reverse('objectlabelling'))
    
def ObjLabelNext(request):
    df = pd.read_csv(request.session['csvfullpath'])
    filePath = df[""File""].iloc[request.session['currentIndex']]
    remove_labelling_from_csv(filePath,request)
    dataFile = request.session['LabelFileName']
    with open(dataFile,'a') as f:
        for label in request.session['labels']:
            f.write(filePath + "","" +
            str(round(float(label[""id""]))) + "","" +
            str(label[""angle""]) + "","" +
            str(round(float(label[""xMin""]))) + "","" +
            str(round(float(label[""xMax""]))) + "","" +
            str(round(float(label[""yMin""]))) + "","" +
            str(round(float(label[""yMax""]))) + "","" +
            str(round(float(label[""height""]))) + "","" +
            str(round(float(label[""width""]))) + "","" +
            label[""name""] + ""\n"")       
    f.close()
    request.session['currentIndex'] = request.session['currentIndex']+1
    if request.session['currentIndex'] < len(df):
        image = df[""File""].iloc[request.session['currentIndex']]
        request.session['labels'] = []
        with open(dataFile, 'r') as file:
            reader = csv.reader(file)
            for row in reader:
                if row[0] == image:
                    labels = request.session['labels']
                    labels.append({""id"":row[1], ""name"":row[9], ""xMin"": row[3], ""xMax"":row[4], ""yMin"":row[5], ""yMax"":row[6], ""height"":row[7],""width"":row[8], ""angle"":row[2]})
                    request.session['labels'] = labels
        labels = request.session['labels']
    return redirect(reverse('objectlabelling'))
    
       

    
            
def encryptedpackage(request):
    from appbe.encryptedPackage import encrptpackage_command
    from appbe.encryptedPackage import download_sclient
    context = encrptpackage_command(request,Existusecases,usecasedetails)
    context['version'] = AION_VERSION
    try:
        return download_sclient(request,context) #Task 9981
    except Exception as e:
        print(e)
        return render(request, 'usecases.html', context)
        
def StationarySeasonalityTest(request):

    from appbe.stationarity_seasonality_check import StationarySeasonalityTest as sst
    datapath = request.GET.get('datapath')
    datetimefeature = request.GET.get('datefeature')
    featurename = request.GET.get('targetfeature')
    seasonality_status = request.GET.get('seasonality_status')
    stationarity_status = request.GET.get('stationarity_status')
 
    df=pd.read_csv(datapath)
    ss_obj=sst(df,featurename,datetimefeature)
    result_dict=ss_obj.analysis(seasonality_status,stationarity_status)

    return HttpResponse(json.dumps(result_dict), content_type=""application/json"")

def dataoverframe(df):
    from facets_overview.generic_feature_statistics_generator import GenericFeatureStatisticsGenerator
    gfsg = GenericFeatureStatisticsGenerator()
    proto = gfsg.ProtoFromDataFrames([{'name': 'train', 'table': df}])
    protostr = base64.b64encode(proto.SerializeToString()).decode(""utf-8"")
    return protostr


def getimpfeatures(dataFile, numberoffeatures):
    imp_features = []
    if numberoffeatures > 20:
        from appbe.eda import ux_eda
        eda_obj = ux_eda(dataFile, optimize=1)            
        pca_map = eda_obj.getPCATop10Features()
        imp_features = pca_map.index.values.tolist()
    return imp_features
    
    
def uploaddata(request):
    from appbe import exploratory_Analysis as ea
    from appbe.aion_config import eda_setting
    # context={'test':'test'}   
    selected_use_case,ModelVersion,ModelStatus = getusercasestatus(request)
    computeinfrastructure = compute.readComputeConfig()
    try:
        if selected_use_case == 'Not Defined':
            context = {'selected_use_case': selected_use_case,'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion, 'tab': 'tabconfigure',
                       'usecaseerror': 'Please create a new use case for training the model or select an existing use case for retraining', 'selected_use_case': selected_use_case,'computeinfrastructure':computeinfrastructure,'s3buckets':get_s3_bucket(),'gcsbuckets':get_gcs_bucket(),'azurestorage':get_azureStorage()
                       ,'usecasetab':usecasetab,'version':AION_VERSION}
            return render(request, 'upload.html', context)
        if 'ModelVersion' in request.session:
            ModelVersion = request.session['ModelVersion']
        else:
            ModelVersion = 0

        if 'ModelStatus' in request.session:
            ModelStatus = request.session['ModelStatus']
        else:
            ModelStatus = 'Not Trained'
        
        if request.session['finalstate'] > 0:
            if request.session['datatype'] in ['Video', 'Image','Document','Object']:
                folderLocation = str(request.session['datalocation'])
                dataFile = os.path.join(folderLocation, request.session['csvfullpath'])
                df = pd.read_csv(dataFile, encoding='utf8',encoding_errors= 'replace')
                if df['Label'].isnull().sum() > 0:
                    if request.session['datatype'] == 'Document':
                        dataDf = pd.DataFrame()
                        dataDict = {}
                        keys = [""text""]
                        for key in keys:
                            dataDict[key] = []
                        for i in range(len(df)):
                            filename = os.path.join(request.session['datalocation'],df.loc[i,""File""])
                            with open(filename, ""r"",encoding=""utf-8"") as f:
                                dataDict[""text""].append(f.read())
                            f.close()   
                        dataDf = pd.DataFrame.from_dict(dataDict)   
                        tcolumns=['text']       
                        wordcloudpic,df_text = ea.getWordCloud(dataDf,tcolumns)
                        status_msg = 'Successfully Done'
                        request.session['currentstate'] = 0
                        firstFile = pd.DataFrame()
                        context = {'tab': 'upload','firstFile':firstFile,'validcsv': True,'singletextdetails':wordcloudpic,'currentstate': request.session['currentstate'], 'finalstate': request.session['finalstate'],'computeinfrastructure':computeinfrastructure,'s3buckets':get_s3_bucket(),'gcsbuckets':get_gcs_bucket(),'azurestorage':get_azureStorage()
                        ,'usecasetab':usecasetab,'version':AION_VERSION}            
                        return render(request, 'upload.html', context)
                eda_result = ''  
                duplicate_img = ''
                color_plt = '' 
                df2 = df.groupby('Label', as_index=False)['File'].count().reset_index()
                df_json = df2.to_json(orient=""records"")
                df_json = json.loads(df_json)
                cfig = go.Figure()
                xaxis_data = df2['Label'].tolist()
                yaxis_data = df2['File'].tolist()
                cfig.add_trace(go.Bar(x=xaxis_data, y=yaxis_data))
                cfig.update_layout(barmode='stack', xaxis_title='Label', yaxis_title='File')
                bargraph = cfig.to_html(full_html=False, default_height=450, default_width=520)
                firstFile = df.groupby('Label').first().reset_index()
                images = []
                if request.session['datatype'] == 'Image':
                    qualityscore,eda_result,duplicate_img,color_plt = ia.analysis_images(request.session['datalocation'])
                    for i in range(len(firstFile)):
                        filename = firstFile.loc[i, ""File""]
                        filePath = os.path.join(request.session['datalocation'], filename)
                        string = base64.b64encode(open(filePath, ""rb"").read())
                        image_64 = 'data:image/png;base64,' + urllib.parse.quote(string)
                        firstFile.loc[i, ""Image""] = image_64
                        firstFile.loc[i, ""Quality""] = qualityscore[filename]
             
                elif request.session['datatype'] == 'Document':
                    dataDrift = ''      
                    dataDf = pd.DataFrame()
                    dataDict = {}
                    keys = [""text"",""Label""]
                    for key in keys:
                        dataDict[key] = []
                    for i in range(len(df)):
                        filename = os.path.join(request.session['datalocation'],df.loc[i,""File""])
                        with open(filename, ""r"",encoding=""utf-8"") as f:
                            dataDict[""text""].append(f.read())
                        f.close()   
                        dataDict[""Label""].append(df.loc[i,""Label""])
                    dataDf = pd.DataFrame.from_dict(dataDict)
                    wordcloudpic = ea.getCategoryWordCloud(dataDf)
                    status_msg = 'Successfully Done'
                    context = {'tab': 'upload','dataa': df_json,'textdetails':wordcloudpic,'featuregraph': bargraph,'status_msg': status_msg,'validcsv': True,'computeinfrastructure':computeinfrastructure,'s3buckets':get_s3_bucket(),'gcsbuckets':get_gcs_bucket()
                    ,'usecasetab':usecasetab,'azurestorage':get_azureStorage(),'version':AION_VERSION}
                    return render(request, 'upload.html', context)
                
                status_msg = 'Successfully Done'
                selected_use_case = request.session['UseCaseName']
                ModelVersion = request.session['ModelVersion']
                ModelStatus = request.session['ModelStatus']
                request.session['currentstate'] = 0
                
                context = {'tab': 'upload', 'featuregraph': bargraph, 'validcsv': True, 'firstFile': firstFile,
                           'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion,'s3buckets':get_s3_bucket(),'gcsbuckets':get_gcs_bucket(),
                           'currentstate': request.session['currentstate'], 'finalstate': request.session['finalstate'],'eda_result':eda_result,'duplicate_img':duplicate_img,'color_plt':color_plt,'azurestorage':get_azureStorage(),
                           'selected': 'modeltraning','computeinfrastructure':computeinfrastructure,
                           'usecasetab':usecasetab,'version':AION_VERSION
                           }
                return render(request, 'upload.html', context)
            elif request.session['datatype'].lower() in ['llm_document', 'llm_code']:
                request.session['currentstate'] = 0
                dataFile = request.session['csvfullpath']
                df = pd.read_csv(dataFile, encoding='utf8',encoding_errors= 'replace')
                filesCount = 0
                filesSize = 0
                files = []
                for index, row in df.iterrows():
                    filename = row['File']
                    files.append(filename)
                    filesCount = filesCount + 1
                    get_size = os.path.getsize(filename)
                    filesSize = round(filesSize + get_size, 1)
                
                if filesSize > 1048576:    
                    size = round((filesSize / (1024 * 1024)), 1)
                    filesSize = str(size) + ' M'
                elif filesSize > 1024:
                    size = round((filesSize /1024), 1)
                    filesSize = str(size) + ' K'
                else:
                    filesSize = str(filesSize) + ' B'    
                files = pd.DataFrame(files, columns=['File'])
                files.index = range(1, len(files) + 1)
                files.reset_index(level=0, inplace=True)
                files = files.to_json(orient=""records"")
                files = json.loads(files)
                from appbe.prediction import get_instance
                hypervisor, instanceid,region,image = get_instance(selected_use_case + '_' + str(ModelVersion))
                if hypervisor != '':
                    computeinfrastructure['computeInfrastructure'] = hypervisor
                else:
                    computeinfrastructure['computeInfrastructure'] = 'AWS'
                context = {'tab': 'upload',""selected_use_case"":selected_use_case,""selectedPath"":request.session['datalocation'],""selectedfile"":request.session['fileExtension'],'csvgenerated': True,'filesCount':filesCount,'filesSize':filesSize,'files':files,
                           'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion,'s3buckets':get_s3_bucket(),'gcsbuckets':get_gcs_bucket(),
                           'currentstate': request.session['currentstate'], 'finalstate': request.session['finalstate'],'azurestorage':get_azureStorage(),
                           'selected': 'modeltraning','computeinfrastructure':computeinfrastructure,'datatype':request.session['datatype'],
                           'usecasetab':usecasetab,'version':AION_VERSION,""selectedfile"":request.session['fileExtension'],""selectedPath"":request.session['datalocation']
                           }
                return render(request, 'upload.html', context)
            else:
                dataFile = str(request.session['datalocation'])
            check_df = pd.read_csv(dataFile, encoding='utf8',encoding_errors= 'replace')
            check_df.rename(columns=lambda x: x.strip(), inplace=True)
            featuresList = check_df.columns.tolist()
            
            numberoffeatures = len(featuresList)           
            imp_features = getimpfeatures(dataFile, numberoffeatures)            
            
            # check_df = pd.read_csv(dataFile)
            # check_df.rename(columns=lambda x: x.strip(), inplace=True)
            # ---------------------------- 
            
            # EDA Performance change
            # ----------------------------
            sample_size = int(eda_setting())
            samplePercentage = 100
            samplePercentval = 0
            showRecommended = False
            
            
            #dflength = len(eda_obj.getdata())
            dflength = len(check_df)            
            if dflength > sample_size:                
                samplePercentage = round(float((sample_size/dflength) * 100),2)
                samplePercentval = samplePercentage / 100
                showRecommended = True
            # ----------------------------
            
            # df_top = df.head(10)
            df_top = check_df.head(10)
            
            df_json = df_top.to_json(orient=""records"")
            df_json = json.loads(df_json)
            statusmsg = ''
            selected_use_case = request.session['UseCaseName']
            ModelVersion = request.session['ModelVersion']
            ModelStatus = request.session['ModelStatus']
            request.session['currentstate'] = 0
            
            # EDA Subsampling changes
            context = {'range':range(1,101),'samplePercentage':samplePercentage,'samplePercentval':samplePercentval, 'showRecommended':showRecommended,'featuresList': featuresList, 'selected_use_case': selected_use_case,'data': df_json,'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion,'usecasetab':usecasetab,'azurestorage':get_azureStorage(),
                       'currentstate': request.session['currentstate'], 'finalstate': request.session['finalstate'],'s3buckets':get_s3_bucket(),'gcsbuckets':get_gcs_bucket(),'imp_features':imp_features,'numberoffeatures':numberoffeatures,
                       'version':AION_VERSION,
                       'selected': 'modeltraning','exploratory':False,'computeinfrastructure':computeinfrastructure}
        else:
            request.session['uploaddone'] = False
            request.session['currentstate'] = 0
            request.session['finalstate'] = 0
            clusteringModels = Existusecases.objects.filter(Status='SUCCESS',ProblemType='unsupervised').order_by('-id')
            
            context = {'selected_use_case': selected_use_case, 'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion,'usecasetab':usecasetab,'azurestorage':get_azureStorage(),'clusteringModels':clusteringModels,
                       'currentstate': request.session['currentstate'], 'finalstate': request.session['finalstate'],'s3buckets':get_s3_bucket(),'gcsbuckets':get_gcs_bucket(),
                       'selected': 'modeltraning','computeinfrastructure':computeinfrastructure
                       }
            context['version'] = AION_VERSION
            
        return render(request, 'upload.html', context)
    except Exception as e:
        exc_type, exc_obj, exc_tb = sys.exc_info()
        fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
        print(str(exc_type) + ' ' + str(fname) + ' ' + str(exc_tb.tb_lineno))
        print(e)
        return render(request, 'upload.html', {'selected_use_case': selected_use_case, 'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion,'error':'Fail to upload Data','usecasetab':usecasetab,'version':AION_VERSION})

def mlflowtracking(request):
    import requests
    response = requests.get(""http://localhost:5000/"")
    #response = requests.get(url)
    statuscode = response.status_code   
    data = []
    context = {'statuscode':statuscode}
    context['version'] = AION_VERSION
    return render(request, 'openmlflow.html', context)
    
            
    
def readlogfile(request):
    file_path = request.session['logfilepath']
    try:
        updatedConfigFile = request.session['config_json']
        f = open(updatedConfigFile, ""r+"")
        configSettingsData = f.read()
        configSettings = json.loads(configSettingsData)
        f.close()
        if os.path.exists(file_path):
            my_file = open(file_path, 'r',encoding=""utf-8"")
            file_content = my_file.read()
            my_file.close()
            matched_lines = [line.replace('Status:-', '') for line in file_content.split('\n') if ""Status:-"" in line]
            matched_status_lines = matched_lines[::-1]
            if len(matched_status_lines) > 0:
                no_lines = len(matched_lines)
                if 'noflines' not in request.session:
                    request.session['noflines'] = 0    
                request.session['noflines'] = request.session['noflines'] + 1
                if request.session['ModelStatus'] != 'SUCCESS':
                    numberoflines = request.session['noflines']
                    if numberoflines > no_lines:
                        numberoflines = no_lines
                        request.session['noflines'] = no_lines
                    matched_lines = matched_lines[0:numberoflines]
        
                matched_status_lines = matched_status_lines[0]
                output = getStatusCount(matched_lines,request.session['total_steps'])
                matched_status_lines = matched_status_lines.split('...')
                matched_status_lines = matched_status_lines[1]
                output2=[]
                output2.append(matched_status_lines)
                from appbe import leaderboard
                import pandas
                result = leaderboard.get_leaderboard(file_content)
                if result.empty==False:
                    result = result.to_html(classes='table',col_space='100px', index=False)
                else:
                    result = 'Leaderboard is not available'
                data_details = {'status':output2,'logs':output,'log_file':file_content,'leaderboard': result,'trainingstatus':request.session['ModelStatus']}
                return HttpResponse(json.dumps(data_details), content_type=""application/json"")
            else:
                matched_lines = []          
                matched_lines.append('Initializing Training Engine')
                data_details = {'status':matched_lines,'logs':matched_lines,'log_file':matched_lines, 'leaderboard':matched_lines,'trainingstatus':matched_lines}
                return HttpResponse(json.dumps(data_details), content_type=""application/json"")     
        else:
            stepsdone = 0
            matched_lines = []
            if request.session['ModelStatus'] == 'Running':
                matched_lines.append('Initializing Training Engine')
            else:
                matched_lines.append('Not Trained')         
            data_details = {'status':matched_lines,'logs':matched_lines,'log_file':matched_lines, 'leaderboard':matched_lines,'trainingstatus':matched_lines}
            return HttpResponse(json.dumps(data_details), content_type=""application/json"")     
    except Exception as e:
        print(e)
        exc_type, exc_obj, exc_tb = sys.exc_info()
        fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
        print(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))
        matched_lines = []
        if request.session['ModelStatus'] == 'Running':
            stepsdone = 0
            matched_lines.append('Initializing Training Engine')
            data_details = {'status':matched_lines,'logs':matched_lines,'log_file':matched_lines, 'leaderboard':matched_lines,'trainingstatus':matched_lines}
            return HttpResponse(json.dumps(data_details), content_type=""application/json"")
        else:
            matched_lines.append('Not Trained')
            data_details = {'status':matched_lines,'logs':matched_lines,'log_file':matched_lines,'leaderboard':matched_lines,'trainingstatus':matched_lines}
            return HttpResponse(json.dumps(data_details), content_type=""application/json"")
            


# EDA Visualization changes
# ----------------------------
def getgraph(request):    
    from appbe import exploratory_Analysis as ea
    output = ea.get_edaGraph(request)      
    return HttpResponse(output)
# ----------------------------


# --- 12686:Data Distribution related Changes S T A R T ---
def getDataDistribution(request):
    from appbe import exploratory_Analysis as ea
    output = ea.get_DataDistribution(request)
    return HttpResponse(output)
# ---------------------- E N D  ----------------------


def getDeepDiveData(request):
    from appbe import exploratory_Analysis as ea
    output = ea.get_DeepDiveData(request)
    return HttpResponse(output)


# Fairness Metrics changes
# ----------------------------
def getmetrics(request):    
    from appbe import exploratory_Analysis as ea    
    output = ea.get_fairmetrics(request)      
    return HttpResponse(output)
# ----------------------------


def getdataimbalance(request):    
    d3_url = request.GET.get('d3_url')
    mpld3_url = request.GET.get('mpld3_url')
    
    updatedConfigFile = request.session['config_json']
    f = open(updatedConfigFile, ""r+"", encoding=""utf-8"")
    configSettingsData = f.read()
    configSettingsJson = json.loads(configSettingsData)

    df = pd.read_csv(configSettingsJson['basic']['dataLocation'],encoding='utf8')   
    targetFeature = configSettingsJson['basic']['targetFeature']                
    df1 = df[targetFeature].value_counts().to_frame()         
        
    if (len(df1) < 1):
        response = 'Data balancing detail is not available due to no class is found in target feature.'
    elif (len(df1) > 30):
        response = 'Data balancing detail is not available due to high number of classes in target feature.'
    else:
        dfStyler = df1.style.set_properties(**{'text-align': 'right'})
        dfStyler.set_table_styles([dict(selector='th', props=[('text-align', 'right')])])
        valueCount = dfStyler.to_html()     
        
        import matplotlib.pyplot as plt
        import mpld3
        fig, ax = plt.subplots(figsize=[6.5,6])          
        
        df2 = df[targetFeature].value_counts().sort_values()
        _ncol = 1
        _radius = 0.5
        
        if (len(df1) > 10):            
            _radius = 0.4
            _ncol = 1           
        else:
            _radius = 0.6            
            _ncol = 1
        
        ax = df2.plot(kind = 'pie', ylabel='', title=targetFeature,  labeldistance=None, radius=_radius, autopct='%1.0f%%')
        ax.legend(loc='right', bbox_to_anchor=(1, 0.8), ncol = _ncol)    
        # ax.legend(bbox_to_anchor=(1,1), bbox_transform=plt.gcf().transFigure)
        
        plt.subplots_adjust(left=0.02, bottom=0.05, right=0.9)
        ax.get_yaxis().set_visible(False)     
        html_graph = mpld3.fig_to_html(fig,d3_url=d3_url,mpld3_url=mpld3_url)         
        response = valueCount + ' ' + html_graph
        
    return HttpResponse(response)

def dotextSummarization(request):
    from appbe.textSummarization import startSummarization
    context = startSummarization(request,DEFAULT_FILE_PATH,CONFIG_FILE_PATH,DATA_FILE_PATH)
    context['version'] = AION_VERSION
    return render(request, 'summarization.html', context)
def openmodelevaluation(request,id):
    deploypath = request.session['deploypath']
    if id == 1:
        contentFile= os.path.join(deploypath,'log','boosting_overfit.html')
    if id == 2:
        contentFile= os.path.join(deploypath,'log','boosting_overfit_condition.html')    
    if id == 3:
        contentFile= os.path.join(deploypath,'log','smc.html')
    if id == 4:
        contentFile= os.path.join(deploypath,'log','smc_condition.html')        
    if id == 5:
        contentFile= os.path.join(deploypath,'log','mi.html')
    if id == 6:
        contentFile= os.path.join(deploypath,'log','mi_con.html')        
    try:
        my_file = open(contentFile, 'r', encoding=""utf-8"")
        file_content = my_file.read()
        my_file.close()
        context = {'content': file_content,'status':request.session['ModelStatus']}
        context['version'] = AION_VERSION
        return render(request, 'deepcheck.html', context, content_type=""text/html"")
    except:
        context = {'content': 'Not available'}
        context['version'] = AION_VERSION
        return render(request, 'deepcheck.html', context, content_type=""text/html"")
def downloadlogfile(request,id,currentVersion):
    import mimetypes
    from django.http import FileResponse
    p = usecasedetails.objects.get(id=id)
    model = Existusecases.objects.filter(ModelName=p,Version=currentVersion)
    if model[0].DeployPath != 'NA':
        file_path = os.path.join(str(model[0].DeployPath),'log','model_training_logs.log')
    else:
        file_path = os.path.join(DEPLOY_LOCATION,model[0].ModelName.usecaseid,str(currentVersion),'log','model_training_logs.log')
    try:
        
        if os.path.exists(file_path):
            my_file = open(file_path, 'r', encoding=""utf-8"")
            file_content = my_file.read()
            my_file.close()
            mime_type, _ = mimetypes.guess_type(file_path)
            response = HttpResponse(file_content, content_type=mime_type)#bugid 12513
            # Set the HTTP header for sending to browser
            filename = p.usecaseid+'.log'
            response['Content-Disposition'] = ""attachment; filename=%s"" % filename            
            return response
        else:
            response = HttpResponse('File Not Found')#bugid 12513
            # Set the HTTP header for sending to browser
            filename = p.usecaseid+'.log'
            response['Content-Disposition'] = ""attachment; filename=%s"" % filename            
            return response
    except Exception as e:
        response = HttpResponse('File Not Found')#bugid 12513
        # Set the HTTP header for sending to browser
        filename = p.usecaseid+'.log'
        response['Content-Disposition'] = ""attachment; filename=%s"" % filename            
        return response
def opendetailedlogs(request,id,currentVersion):
    p = usecasedetails.objects.get(id=id)
    model = Existusecases.objects.filter(ModelName=p,Version=currentVersion)
    if model[0].DeployPath != 'NA':
        file_path = os.path.join(str(model[0].DeployPath),'log','model_training_logs.log')
    else:
        file_path = os.path.join(DEPLOY_LOCATION,model[0].ModelName.usecaseid,str(currentVersion),'log','model_training_logs.log')
    try:
        
        if os.path.exists(file_path):
            my_file = open(file_path, 'r', encoding=""utf-8"")
            file_content = my_file.read()
            my_file.close()
            context = {'content':file_content}
            return HttpResponse(json.dumps(context),content_type=""application/json"")
        else:
            context = {'content':'Status not available'}
            return HttpResponse(json.dumps(context),content_type=""application/json"")
    except Exception as e:
        print(e)
        context = {'content':'Status not available'}
        return HttpResponse(json.dumps(context),content_type=""application/json"")
        

def batchlearning(request):
    from appbe.onlineLearning import startIncrementallearning
    action,context = startIncrementallearning(request,usecasedetails,Existusecases,DATA_FILE_PATH)
    context['version'] = AION_VERSION
    return render(request,action,context)
def downlpredictreport(request):
    predictionResults = request.POST.get('predictionResults')
    predictionResults = pd.DataFrame.from_dict(eval(predictionResults))
    usename = request.session['UseCaseName'].replace("" "", ""_"") + '_' + str(request.session['ModelVersion'])
    predictFileName = usename + '_prediction.xlsx'
    from io import BytesIO as IO 
    excel_file = IO()        
    excel_writer = pd.ExcelWriter(excel_file, engine=""xlsxwriter"")    
    predictionResults.to_excel(excel_writer, sheet_name='Predictions')
    workbook  = excel_writer.book
    #excel_writer.save()
    excel_writer.close()
    excel_file.seek(0)
    response = HttpResponse(excel_file.read(), content_type='application/vnd.openxmlformats-officedocument.spreadsheetml.sheet')
    response['Content-Disposition'] = 'attachment; filename=' + predictFileName
    return response    
# EDA Reports changes
# ---------------------------- 
def downloadxplainreport(request):
    from appbe.xplain import global_explain
    status,msg,ale_view,sentences,bargraph,inputFields,nrows,ncols,targetFeature,dataPoints,target_classes,df_proprocessed,numberofclasses,modelfeatures,problemType,mfcount,topTwoFeatures,topFeaturesMsg,most_influencedfeature,interceppoint,anchorjson,labelMaps = global_explain(request)
    if status == 'Success':
        usename = request.session['UseCaseName'].replace("" "", ""_"") + '_' + str(request.session['ModelVersion'])
        predictFileName = usename + '_xplain.xlsx'
        df = pd.DataFrame({'What kind of data does the system learn from?': ['This dataset is a dataset of measurements taken for '+str(numberofclasses)+' categories of '+str(targetFeature),'The '+str(numberofclasses)+' different categories of '+str(targetFeature)+' as per the data are:']})
        i = 1
        df1 = []
        for x in target_classes:
            df1.append({'What kind of data does the system learn from?':' '+str(i)+':'+str(x)})
            i = i+1
        df1.append({'What kind of data does the system learn from?':'The total number of data points is '+str(dataPoints)})
        df = pd.concat([df, pd.DataFrame(df1)], ignore_index = True)
        from io import BytesIO as IO 
        excel_file = IO()        
        excel_writer = pd.ExcelWriter(excel_file, engine=""xlsxwriter"")    
        df.to_excel(excel_writer, sheet_name='Dashboard',index=False)
        pd.DataFrame(df_proprocessed).to_excel(excel_writer, sheet_name='Top 5 Rows',index=False)
        df = pd.DataFrame({'What are the various features of the data used for model training?': ['The various features of the data are:']})
        i = 1
        df1 = []
        for x in modelfeatures:
            df1.append({'What are the various features of the data used for model training?':' '+str(i)+': '+str(x)})
            i = i+1
        df = pd.concat( [df, pd.DataFrame( df1)], ignore_index = True)
        df.to_excel(excel_writer, sheet_name='Features',index=False)
        topFeaturesMsg =  pd.DataFrame(topFeaturesMsg,columns=[""Feature Importance""])       
        topFeaturesMsg.to_excel(excel_writer, sheet_name='Feature importance',index=False)
        achors = pd.DataFrame(anchorjson)
        achors.to_excel(excel_writer, sheet_name='Prediction',index=False)
        workbook  = excel_writer.book
        #excel_writer.save()
        excel_writer.close()
        excel_file.seek(0)
        response = HttpResponse(excel_file.read(), content_type='application/vnd.openxmlformats-officedocument.spreadsheetml.sheet')
        response['Content-Disposition'] = 'attachment; filename=' + predictFileName
        return response
    else:
        response = HttpResponse()
        return response

def gotoreport(request):
    report_button = request.POST.get('trainmodel')
    usename = request.session['UseCaseName'].replace("" "", ""_"") + '_' + str(request.session['ModelVersion'])
        
    if report_button == 'download_edafile':
        from appbe.reports import downloadtrainingfile
        edaFileName,excel_file  = downloadtrainingfile(request,Existusecases)
        response = HttpResponse(excel_file.read(), content_type='application/vnd.openxmlformats-officedocument.spreadsheetml.sheet')
        response['Content-Disposition'] = 'attachment; filename=' + edaFileName
        return response


def LoadBasicConfiguration(request):
    try:
        from appbe import exploratory_Analysis as ea    
        configFile = DEFAULT_FILE_PATH + 'eion_config.json'
        f = open(configFile, ""r"")
        configSettings = f.read()
        f.close()
        configSettingsJson = json.loads(configSettings)

        temp = {}
        temp['ModelName'] = request.session['UseCaseName']
        temp['Version'] = request.session['ModelVersion']

        dataLocation = str(request.session['datalocation'])
        df = pd.read_csv(dataLocation, encoding='latin1')
        featuresList = df.columns.values.tolist()
        datetimeFeatures = []
        sequenceFeatures = []
        unimportantFeatures = []
        featuresRatio = {}
        for i in featuresList:
            check = ea.match_date_format(df[i])
            if check == True:
                datetimeFeatures.append(i)
                unimportantFeatures.append(i)
                continue
            seq_check = ea.check_seq_feature(df[i])
            if seq_check == True:
                sequenceFeatures.append(i)
                unimportantFeatures.append(i)
                continue
            ratio = ea.check_category(df[i])
            if ratio != 0:
                featuresRatio[i] = ratio
            else:
                unimportantFeatures.append(i)
        targetFeature = min(featuresRatio, key=featuresRatio.get)
        unimportantFeatures.append(targetFeature)
        config = {}
        config['modelName'] = request.session['UseCaseName']
        config['modelVersion'] = request.session['ModelVersion']
        config['datetimeFeatures'] = datetimeFeatures
        config['sequenceFeatures'] = sequenceFeatures
        config['FeaturesList'] = featuresList
        config['unimportantFeatures'] = unimportantFeatures
        config['targetFeature'] = targetFeature
        context = {'tab': 'configure', 'temp': temp, 'config': config}
        context['version'] = AION_VERSION
        return render(request, 'modeltraning.html', context)
    except:
        return render(request, 'modeltraning.html', {'error':'Fail to load basic config file','version':AION_VERSION})

def LoadDataForSingleInstance(request):
    try:
        updatedConfigFile = request.session['config_json']
        f = open(updatedConfigFile, ""r"")
        configSettings = f.read()
        f.close()
        configSettingsJson = json.loads(configSettings)
        problemtypes = configSettingsJson['basic']['analysisType'] 
        #print(problemtypes.keys())
        problem_type = """"
        for k in problemtypes.keys():
            if configSettingsJson['basic']['analysisType'][k] == 'True':
                problem_type = k
                break
        if problem_type == 'timeSeriesForecasting': #task 11997
            inputFieldsDict = {'noofforecasts': 10}
        elif problem_type == 'recommenderSystem':
            inputFieldsDict = {""uid"": 1, ""iid"": 31, ""rating"": 0}
        elif problem_type == 'videoForecasting':
            inputFieldsDict = {'VideoPath': 'person01_boxing_d1_uncomp.avi'}
        else:
            inputFeatures = configSettingsJson['basic']['trainingFeatures']
            targetFeature = configSettingsJson['basic']['targetFeature']
            inputFeaturesList = inputFeatures.split(',')
            if targetFeature in inputFeaturesList:
                inputFeaturesList.remove(targetFeature)
            dataFilePath = str(configSettingsJson['basic']['dataLocation'])
            df = pd.read_csv(dataFilePath, encoding='latin1')
            singleInstanceData = df.loc[0, inputFeaturesList]
            inputFieldsDict = singleInstanceData.to_dict()
        inputFields = []
        inputFields.append(inputFieldsDict)
        selected_use_case = request.session['UseCaseName']
        ModelVersion = request.session['ModelVersion']
        ModelStatus = request.session['ModelStatus']
        context = {'tab': 'predict', 'inputFields': inputFields, 'selected_use_case': selected_use_case,
                   'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion, 'selected': 'prediction'}
        return render(request, 'prediction.html', context=context)
    except:
        return render(request, 'prediction.html', {'tab': 'predict', 'error': 'Fail to load inputfields', 'selected_use_case': selected_use_case,'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion, 'selected': 'prediction'})
def uploadDatafromunsupervisedmodel(request):
    computeinfrastructure = compute.readComputeConfig()
    try:
        modelid = request.POST.get('modelid')
        p = Existusecases.objects.get(id=modelid)
        dataFile = str(p.DataFilePath)
        deploypath = str(p.DeployPath)
        if(os.path.isfile(dataFile) == False):
            context = {'tab': 'tabconfigure', 'error': 'Data file does not exist','computeinfrastructure':computeinfrastructure}
            return render(request, 'prediction.html', context)
        predictionScriptPath = os.path.join(deploypath,'aion_predict.py')
        outputStr = subprocess.check_output([sys.executable, predictionScriptPath, dataFile])
        outputStr = outputStr.decode('utf-8')
        outputStr = re.search(r'predictions:(.*)', str(outputStr), re.IGNORECASE).group(1)
        outputStr = outputStr.strip()
        predict_dict = json.loads(outputStr)
        if (predict_dict['status'] == 'SUCCESS'):
            predictionResults = predict_dict['data']
            df2 = pd.json_normalize(predictionResults)
            filetimestamp = str(int(time.time()))
            dataFile = os.path.join(DATA_FILE_PATH, 'AION_' + filetimestamp+'.csv')
            request.session['datalocation'] = str(dataFile)
            df2.to_csv(dataFile, index=False)
        request.session['datalocation'] = str(dataFile)
        from appbe.eda import ux_eda
        eda_obj = ux_eda(dataFile)
        featuresList,datetimeFeatures,sequenceFeatures,constantFeature,textFeature,targetFeature,numericCatFeatures,numericFeature,catFeature = eda_obj.getFeatures()
        # ----------------------------
        samplePercentage = 100
        samplePercentval = 0
        showRecommended = False 
        df = pd.read_csv(dataFile,nrows=100)
        df_top = df.head(10)
        df_json = df_top.to_json(orient=""records"")
        df_json = json.loads(df_json)
        statusmsg = 'Data File Uploaded Successfully '
        selected_use_case = request.session['UseCaseName']
        ModelVersion = request.session['ModelVersion']
        ModelStatus = request.session['ModelStatus']
        request.session['currentstate'] = 0
        request.session['finalstate'] = 0
        request.session['datatype'] = 'Normal'
        No_of_Permissible_Features_EDA = get_edafeatures()
        clusteringModels = Existusecases.objects.filter(Status='SUCCESS',ProblemType='unsupervised').order_by('-id')
        context = {'tab': 'tabconfigure','range':range(1,101),'FeturesEDA':No_of_Permissible_Features_EDA,'samplePercentage':samplePercentage,'computeinfrastructure':computeinfrastructure, 'samplePercentval':samplePercentval, 'showRecommended':showRecommended,'featuresList':featuresList,'data': df_json,'status_msg': statusmsg,'selected_use_case': selected_use_case,'clusteringModels':clusteringModels,
                           'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion,'selected': 'modeltraning',
                           'currentstate': request.session['currentstate'], 'finalstate': request.session['finalstate'],'exploratory':False}
        context['version'] = AION_VERSION
        return render(request, 'upload.html', context)
    except Exception as e:
        print(e)
        return render(request, 'upload.html', {'error':'Failed to upload Data','selected_use_case': selected_use_case,'computeinfrastructure':computeinfrastructure,'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion,'selected': 'modeltraning','version':AION_VERSION})
              
def qlearning(request):
    return render(request, 'qlearning.html', {})
    
def RLpath(request):
    return render(request, 'rl_path.html', {})

def stateTransitionSettings(request):
    selected_use_case = request.session['UseCaseName']
    ModelVersion = request.session['ModelVersion']
    ModelStatus = request.session['ModelStatus']
    import requests
    setting_url = service_url.read_service_url_params(request)
    usecasename = request.session['usecaseid'].replace("" "", ""_"")
    setting_url = setting_url+'pattern_anomaly_settings?usecaseid='+usecasename+'&version='+str(request.session['ModelVersion'])
    #print(setting_url)
    inputFieldsDict = {}
    inputFieldsDict['groupswitching'] = request.POST.get('groupswitching')
    inputFieldsDict['transitionprobability'] = request.POST.get('transitionprobability')
    inputFieldsDict['transitionsequence'] = request.POST.get('transitionsequence')
    inputFieldsDict['sequencethreshold'] = request.POST.get('sequencethreshold')
#    print(inputFieldsDict)
    inputFieldsJson = json.dumps(inputFieldsDict)
    #print(inputFieldsJson)
    try:
        response = requests.post(setting_url,data=inputFieldsJson,headers={""Content-Type"":""application/json"",})
        if response.status_code != 200:
            outputStr=response.content
            context = {'tab': 'tabconfigure', 'error': outputStr.decode('utf-8'), 'selected': 'prediction'}
            return render(request, 'prediction.html', context)
    except Exception as inst:
        if 'Failed to establish a new connection' in str(inst):
            context = {'tab': 'tabconfigure', 'error': 'AION Service needs to be started', 'selected': 'prediction'}
        else:
            context = {'tab': 'tabconfigure', 'error': 'Prediction Error '+str(inst), 'selected': 'prediction'}
        return render(request, 'prediction.html', context)
    try:
        outputStr=response.content
        outputStr = outputStr.decode('utf-8')
        outputStr = outputStr.strip()
        #print(outputStr)
        predict_dict = json.loads(str(outputStr))
        selected_use_case,ModelVersion,ModelStatus = getusercasestatus(request)
        updatedConfigFile = request.session['config_json']
        f = open(updatedConfigFile, ""r"")
        configSettings = f.read()
        f.close()
        configSettingsJson = json.loads(configSettings)
        inputFeatures = configSettingsJson['basic']['trainingFeatures']
        targetFeature = configSettingsJson['basic']['targetFeature']
        inputFeaturesList = inputFeatures.split(',')
        inputFieldsDict = {inputFeatures:'session',targetFeature:'Activity'}
        inputFields = []
        inputFields.append(inputFieldsDict)
        iterName = request.session['UseCaseName'].replace("" "", ""_"")
        settings_url = ''
        problemtypes = configSettingsJson['basic']['analysisType'] 
        #print(problemtypes.keys())
        problem_type = """"
        for k in problemtypes.keys():
            if configSettingsJson['basic']['analysisType'][k] == 'True':
                problem_type = k
                break
        if problem_type == 'StateTransition':
            ser_url = service_url.read_pattern_anomaly_url_params(request)
            settings_url = service_url.read_pattern_anomaly_setting_url_params(request)
        else:
            ser_url = service_url.read_service_url_params(request)
                    
        ser_url = ser_url+'predict?usecaseid='+iterName+'&version='+str(ModelVersion)
        onnx_runtime = False
        if str(configSettingsJson['advance']['deployer']['edge_deployment']) == 'True':
            if str(configSettingsJson['advance']['deployer']['edge_format']['onnx']) == 'True':
                onnx_runtime = True
        analyticsTypes = problem_type
        imagedf = ''
        return render(request, 'prediction.html',
                                  {'inputFields': inputFields,'imagedf':imagedf, 'selected_use_case': selected_use_case,'ser_url':ser_url,'analyticsType':analyticsTypes,'settings_url':settings_url,'usecasetab':usecasetab,
                                   'ModelStatus': ModelStatus,'onnx_edge':onnx_runtime,'ModelVersion': ModelVersion, 'selected': 'prediction'})
    except Exception as e:
        print(e)
        return render(request, 'prediction.html', {'error': 'Fail to do state Transition Settings', 'selected_use_case': selected_use_case,'ModelStatus': ModelStatus,'ModelVersion': ModelVersion, 'selected': 'prediction'})
 
def flcommand(request):
    try:
        from appbe.flconfig import fl_command
        context = fl_command(request,Existusecases,usecasedetails)
        return render(request, 'usecases.html', context)
    except Exception as e:
        print(e)    
        return render(request, 'models.html',{'error': 'Failed to generate federated learning client code'})
    
def maaccommand(request):
    from appbe.models import maac_command
    try:
        context,page = maac_command(request,Existusecases,usecasedetails)
        context['version'] = AION_VERSION
        return render(request,page,context)
    except Exception as e:
        print(e)
        return render(request, 'usecases.html',{'errormlac': 'Failed to generate code: '+str(e),'version':AION_VERSION})
        

def onnxruntime(request):
    try:
        onnx_scriptPath = os.path.join(request.session['deploypath'],'edge','onnxvalidation.py')
        outputStr = subprocess.check_output([sys.executable, onnx_scriptPath])
        #print(outputStr)
        outputStr = outputStr.decode('utf-8')
        outputStr = re.search(r'predictions:(.*)', str(outputStr), re.IGNORECASE).group(1)
        outputStr = outputStr.strip()
        predict_dict = json.loads(outputStr)
        selected_use_case = request.session['UseCaseName']
        ModelVersion = request.session['ModelVersion']
        ModelStatus = request.session['ModelStatus']
        context = {'tab': 'predict', 'predictionResults': predict_dict, 'selected_use_case': selected_use_case,
                   'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion, 'selected': 'prediction','onnx_edge':True,'version':AION_VERSION}
        return render(request, 'prediction.html', context=context)        
        
    except Exception as inst:
        print('-------------------->'+str(inst))
        context = {'tab': 'tabconfigure', 'error': 'Failed To Perform Prediction', 'selected': 'prediction','version':AION_VERSION}
        return render(request, 'prediction.html', context)
def instancepredict(request):
    log = logging.getLogger('log_ux')
    from appbe.train_output import get_train_model_details
    modelType=''
    trainingStatus,modelType,bestmodel = get_train_model_details(DEPLOY_LOCATION,request)
    computeinfrastructure = compute.readComputeConfig()
    selected_use_case, ModelVersion, ModelStatus = getusercasestatus(request)
    try:
        t1 = time.time()
        if request.FILES:
            Datapath = request.FILES['DataFilePath']
            from io import StringIO
            ext = str(Datapath).split('.')[-1]            
            if ext.lower() in ['csv','tsv','tar','zip','avro','parquet','txt']:                        
                content = StringIO(Datapath.read().decode('utf-8'))
                reader = csv.reader(content)
                df = pd.DataFrame(reader)
                df.columns = df.iloc[0]
                df = df[1:]

            filetimestamp = str(int(time.time()))
            if ext.lower() in ['csv','tsv','tar','zip','avro','parquet','txt','pdf']:
                dataFile = os.path.join(DATA_FILE_PATH,'AION_' + filetimestamp+'.'+ext)
            else:
                dataFile = os.path.join(DATA_FILE_PATH,'AION_' + filetimestamp)
            with open(dataFile, 'wb+') as destination:
                for chunk in Datapath.chunks():
                    destination.write(chunk)
            destination.close()
            dataPath = dataFile    
        if(os.path.isfile(dataFile) == False):
            context = {'tab': 'tabconfigure', 'error': 'Data file does not exist','computeinfrastructure':computeinfrastructure,'version':AION_VERSION}
            log.info('Predict Batch : ' + str(selected_use_case) + ' : ' + str(ModelVersion) + ' : ' + '0 ' + 'sec' + ' : ' + 'Error : Data file does not exist')

            return render(request, 'prediction.html', context)
        updatedConfigFile = request.session['config_json']
        f = open(updatedConfigFile, ""r"")
        configSettings = f.read()
        f.close()
        configSettingsJson = json.loads(configSettings)
        
        predictionScriptPath = os.path.join(request.session['deploypath'], 'aion_predict.py')
        outputStr = subprocess.check_output([sys.executable, predictionScriptPath, dataFile])
        outputStr = outputStr.decode('utf-8')
        outputStr = re.search(r'predictions:(.*)', str(outputStr), re.IGNORECASE).group(1)
        outputStr = outputStr.strip()
        predict_dict = json.loads(outputStr)

        problemtypes = configSettingsJson['basic']['analysisType'] 
        problem_type = ''
        for k in problemtypes.keys():
            if configSettingsJson['basic']['analysisType'][k] == 'True':
                problem_type = k
                break
        PredictionResultsOfTextSum = []
        if (predict_dict['status'] == 'SUCCESS'):
            predictionResults = predict_dict['data']
            predictionResultsTextSum= predict_dict['data']            
            if problem_type in ['similarityIdentification','contextualSearch']:
                for x in predictionResults:
                    msg=''
                    for y in x['prediction']:
                        msg += str(y)
                        msg += '\n'
                        msg += '\n'
                        msg += '\n'
                        msg += '\n'
                        msg += '\n'
                    x['prediction'] = msg
            
            if problem_type == 'textSummarization':
                Results = {}                
                Results['msg'] = predict_dict['msg']
                PredictionResultsOfTextSum.append(Results)  
                Results['prediction'] = predict_dict['data']
                PredictionResultsOfTextSum.append(Results)
                    
            t2 = time.time()
            log.info('Predict Batch : ' + str(selected_use_case) + ' : ' + str(ModelVersion) + ' : ' + str(
                round(t2 - t1)) + ' sec' + ' : ' + 'Success')

        else:
            context = {'tab': 'tabconfigure', 'error': 'Failed To perform prediction','version':AION_VERSION}
            log.info('Predict Batch : ' + str(selected_use_case) + ' : ' + str(ModelVersion) + ' : ' + '0 ' + 'sec' + ' : ' + 'Error : Failed To perform prediction')
            return render(request, 'prediction.html', context)
        selected_use_case = request.session['UseCaseName']
        ModelVersion = request.session['ModelVersion']
        ModelStatus = request.session['ModelStatus']
        from appfe.modelTraining.train_views import getMLModels 
        problem_type,dproblemtype,sc,mlmodels,dlmodels,smodelsize =  getMLModels(configSettingsJson)    
        from appbe.prediction import createInstanceFeatures
        ser_url = service_url.read_service_url_params(request)
        inputFields,ser_url = createInstanceFeatures(configSettingsJson,problem_type,mlmodels,request.session['usecaseid'],request.session['ModelVersion'],ser_url)
        from appfe.modelTraining.prediction_views import getTrainingStatus
        result = getTrainingStatus(request)
        context = {'tab': 'predict','ser_url':ser_url,'predictionResults': predictionResults, 'selected_use_case': selected_use_case,'problem_type':problem_type,'result':result,
                   'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion, 'selected': 'prediction','computeinfrastructure':computeinfrastructure,'bestmodel':bestmodel,'usecasetab':usecasetab,'version':AION_VERSION,'modelType':modelType,'inputFields':inputFields,'configSettingsJson':configSettingsJson}
        if problem_type == 'textSummarization':
            context={'tab': 'predict','predictionResultsTextSum': predictionResultsTextSum, 'PredictionResultsOfTextSum': PredictionResultsOfTextSum,'selected_use_case': selected_use_case, 'ModelStatus': ModelStatus,'ModelVersion': ModelVersion, 'selected': 'prediction','problem_type':problem_type}
                   
                   
        return render(request, 'prediction.html', context=context)
    except Exception as inst:
        print(inst)
        context = {'tab': 'tabconfigure', 'error': 'Failed To perform prediction', 'selected': 'prediction','computeinfrastructure':computeinfrastructure,'version':AION_VERSION}
        log.info('Predict Batch :' + str(selected_use_case) + ' : ' + str(
            ModelVersion) + ' : ' + '0 ' + 'sec' + ' : ' + 'Error : Failed To perform prediction, '+str(inst))

        return render(request, 'prediction.html', context)


def LoadAdvanceConfiguration(request):
    try:
        if request.method == 'POST':
            configFile = request.session['config_json']
            f = open(configFile, ""r"")
            configSettings = f.read()
            f.close()

            configSettingsJson = json.loads(configSettings)
            context = {'tab': 'advconfig', 'advconfig': configSettingsJson}
            context['version'] = AION_VERSION
            context['usecasetab'] = usecasetab
            return render(request, 'modeltraning.html', context)
    except:
        return render(request, 'modeltraning.html', {'error':'Fail to load advance config file','version':AION_VERSION,'usecasetab':usecasetab})


# advance
def Advance(request):
    try:
        from appbe import advance_Config as ac
        request.session['defaultfilepath'] = DEFAULT_FILE_PATH
        context = ac.save(request)
        submittype = request.POST.get('AdvanceSubmit')
        computeinfrastructure = compute.readComputeConfig()
        if submittype != 'AdvanceDefault':
            from appfe.modelTraining.train_views import trainmodel
            return trainmodel(request)
        else:
            context['version'] = AION_VERSION
            context['usecasetab'] = usecasetab
            context['computeinfrastructure'] = computeinfrastructure
            return render(request, 'advancedconfig.html', context)
    except Exception as e:
        print(e)
        return render(request, 'advancedconfig.html', {'erroradvance':'Fail to save','version':AION_VERSION,'usecasetab':usecasetab,'computeinfrastructure':computeinfrastructure})
    
def templatepage(request):
    computeinfrastructure = compute.readComputeConfig()
    try:
        kafkaSetting = kafka_setting()
        ruuningSetting = running_setting()
        ser_url = service_url.read_service_url_params(request)
        packagetip='''
    Call From Command Line
    1. Click AION Shell
    2. python {packageAbsolutePath}/aion_prediction.py {json_data}
    Call As a Package
    1. Go To package_path\WHEELfile
    2. python -m pip install {packageName}-py3-none-any.whl
    Call the predict function after wheel package installation
    1. from {packageName} import aion_prediction as p1
    2. p1.predict({json_data})  
        '''

        usecase = usecasedetails.objects.all()
        models = Existusecases.objects.filter(Status='SUCCESS')
        selected_use_case,ModelVersion,ModelStatus = getusercasestatus(request)
        if len(usecase) > 0:
            nouc = usecasedetails.objects.latest('id')  
            nouc = (nouc.id)+1
        else:
            nouc = 1
        context  = {'usecasedetail': usecase, 'nouc': nouc,'models': models, 'selected_use_case': selected_use_case, 'ModelStatus': ModelStatus,'ser_url':ser_url,'packagetip':packagetip,'ModelVersion': ModelVersion, 'selected': 'usecase','computeinfrastructure':computeinfrastructure,'kafkaSetting':kafkaSetting,'ruuningSetting':ruuningSetting,'usecasetab':usecasetab}
        return (context)
    except:
        
        context = {'error':'Fail to load usecases details','usecasetab':usecasetab}
        return (context)
        
def modelkafka(request):
    try:
        addKafkaModel(request,request.session['datalocation'])
        selected_use_case,ModelVersion,ModelStatus = getusercasestatus(request)
        computeinfrastructure = compute.readComputeConfig()
        kafkaSetting = kafka_setting()
        ruuningSetting = running_setting()
        ser_url = service_url.read_service_url_params(request)
        packagetip='''
    Call From Command Line
    1. Click AION Shell
    2. python {packageAbsolutePath}/aion_prediction.py {json_data}
    Call As a Package
    1. Go To package_path\WHEELfile
    2. python -m pip install {packageName}-py3-none-any.whl
    Call the predict function after wheel package installation
    1. from {packageName} import aion_prediction as p1
    2. p1.predict({json_data})  
        '''
        models = Existusecases.objects.filter(Status='SUCCESS').order_by('-id')
        usecase = usecasedetails.objects.all().order_by('-id')
        if len(usecase) > 0:        
            nouc = usecasedetails.objects.latest('id')  
            nouc = (nouc.id)+1
        else:
            nouc = 1            
        return render(request, 'usecases.html',
                          {'usecasedetail': usecase, 'nouc': nouc, 'models': models, 'selected_use_case': selected_use_case,'ser_url':ser_url,'packagetip':packagetip,'usecasetab':usecasetab,
                           'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion, 'selected': 'usecase','computeinfrastructure':computeinfrastructure,'kafkaSetting':kafkaSetting,'ruuningSetting':ruuningSetting})
    except:
        return render(request, 'usecases.html',{'selected': 'usecase', 'selected_use_case': selected_use_case,'error': 'Fail to load modelkafka'})

def startTracking(request):
    from appbe.aion_config import aion_tracking
    from appbe.aion_config import start_tracking
    try:
        status = aion_tracking()
        if status.lower() == 'error':
            start_tracking()
            status = 'MLflowSuccess'
        else:
            status = 'MLflowSuccess'
        context = {'selected':'DataOperations','usecasetab':usecasetab,'status':status}   
        context['version'] = AION_VERSION
        return render(request, ""dataoperations.html"",context)
    except:
        context = {'selected':'DataOperations','usecasetab':usecasetab,'status':'Error'}   
        context['version'] = AION_VERSION
        return render(request, ""dataoperations.html"",context)
    
def startService(request):
    try:
        status = aion_service()
        if status == 'Running':
            status = 'AION service already running'
        elif status == 'Started':
            status = 'AION service started successfully'
        else:
            status = 'Error in starting'
        context = settings(request)
        context['status'] = status
        return render(request, 'settings_page.html', context)
    except:
        return render(request, 'settings_page.html', {'error':'Fail to start service'})
   
def Dataupload(request):
    from appbe.pages import usecases_page
    checkModelUnderTraining(request,usecasedetails,Existusecases)
    request.session['IsRetraining'] = 'No'
    status,context,action = usecases_page(request,usecasedetails,Existusecases)
    context['version'] = AION_VERSION
    context['currentstate'] =0
    from appbe.aion_config import get_telemetryoptout
    telemetryoptout = get_telemetryoptout()
    if telemetryoptout == 'No':
        from appbe.telemetry import checkTelemtry
        checkTelemtry()
    return render(request,action,context)


def show(request):
    try:
        models = Existusecases.objects.all()
        # print(models)
        return render(request, ""usecases.html"", {'models': models, 'selected': 'usecase'})
    except:
        return render(request, ""usecases.html"", {'error': 'Error to show Usecases', 'selected': 'usecase'})


def edit(request, id):
    try:
        usecasedetail = usecasedetails.objects.get(id=id)
        return render(request, 'edit.html', {'usecasedetail': usecasedetail, 'selected': 'usecase'})
    except:
        return render(request, ""usecases.html"", {'error': 'Error in editing usecase', 'selected': 'usecase'})
       
def opentraining(request, id,currentVersion):
    from appbe.pages import usecases_page
    try:
        p = usecasedetails.objects.get(id=id)
        model = Existusecases.objects.filter(ModelName=p,Version=currentVersion)
        Version = model[0].Version  
        usecasename = p.UsecaseName
        request.session['ModelName'] = p.id
        request.session['UseCaseName'] = usecasename
        request.session['usecaseid'] = p.usecaseid 
        request.session['ModelVersion'] = Version
        request.session['ModelStatus'] = 'Not Trained'
        request.session['finalstate'] = 0
        usecase = usecasedetails.objects.all().order_by('-id')
        configfile = str(model[0].ConfigPath)
        
        dataFile = ''
        if configfile != '':
            request.session['finalstate'] = 2
            f = open(configfile, ""r"")
            configSettings = f.read()
            f.close()
            configSettings = json.loads(configSettings)     
            dataFile = configSettings['basic']['dataLocation']
            
            if configSettings['basic']['folderSettings']['fileType'] == 'Object':
                request.session['datatype'] = configSettings['basic']['folderSettings']['fileType']
                request.session['objectLabelFileName'] = configSettings['basic']['folderSettings']['labelDataFile']
                request.session['datalocation'] = configSettings['basic']['dataLocation']
                return objectlabeldone(request)
            elif configSettings['basic']['folderSettings']['fileType'] in ['LLM_Document','LLM_Code']:
                request.session['datatype'] = configSettings['basic']['folderSettings']['fileType']
                request.session['fileExtension'] = configSettings['basic']['folderSettings']['fileExtension']
                request.session['csvfullpath'] = configSettings['basic']['folderSettings']['labelDataFile']
                request.session['datalocation'] = configSettings['basic']['dataLocation']
            else:           
                request.session['datalocation'] = str(configSettings['basic']['dataLocation'])
                request.session['datatype'] = 'Normal'          
            if 'fileSettings' in configSettings['basic'].keys():
                fileSettings = configSettings['basic']['fileSettings']
                if 'delimiters' in fileSettings.keys():
                    delimiters = configSettings['basic']['fileSettings']['delimiters']
                    textqualifier = configSettings['basic']['fileSettings']['textqualifier']
                    request.session['delimiter'] = delimiters
                    request.session['textqualifier'] = textqualifier
                else:
                    request.session['delimiter'] = ','
                    request.session['textqualifier'] = '""'            
        if dataFile == '':            
            dataFile =  str(model[0].DataFilePath)
            if dataFile != '':
                request.session['finalstate'] = 2
            request.session['datalocation'] = dataFile
        return uploaddata(request)
    except Exception as e:
        print(e)
        checkModelUnderTraining(request,usecasedetails,Existusecases)
        request.session['IsRetraining'] = 'No'
        status,context,action = usecases_page(request,usecasedetails,Existusecases)
        context['version'] = AION_VERSION
        context['Status'] = 'Error'
        context['Msg'] = 'Error in retraining usecase. Check log file for more details'
        return render(request,action,context)

def stopmodelservice(request):
    try:
        kafkaSetting = kafka_setting()
        ruuningSetting = running_setting()
        computeinfrastructure = compute.readComputeConfig()
        selected_use_case,ModelVersion,ModelStatus = getusercasestatus(request)
        id = request.POST.get('modelid')
        pid = request.POST.get('pid')
        installPackage.stopService(pid)
        time.sleep(5)
        usecasedetail = usecasedetails.objects.get(id=id)
        usecasename = usecasedetail.UsecaseName
        runningStatus,pid,ip,port = installPackage.checkModelServiceRunning(usecasename)
        installationStatus,modelName,modelVersion=installPackage.checkInstalledPackge(usecasename)
        models = Existusecases.objects.filter(ModelName=usecasedetail,Status='SUCCESS')
        for model in models:
            model.scoringCreteria = 'NA'
            model.score = 'NA'
            model.deploymodel = 'NA'
            model.maacsupport = 'False'     
            model.flserversupport = 'False'
            if os.path.isdir(str(model.DeployPath)):
                modelPath = os.path.join(str(model.DeployPath), 'output.json')
                try:    
                    with open(modelPath) as file:
                        outputconfig = json.load(file)
                    file.close()
                    if outputconfig['status'] == 'SUCCESS':
                        model.scoringCreteria = outputconfig['data']['ScoreType']
                        model.score = outputconfig['data']['BestScore']
                        model.deploymodel = outputconfig['data']['BestModel']
                        supportedmodels = [""Logistic Regression"",
                        ""Naive Bayes"",""Decision Tree"",""Support Vector Machine"",""K Nearest Neighbors"",""Gradient Boosting"",""Random Forest"",""Linear Regression"",""Lasso"",""Ridge""]
                        if model.deploymodel in supportedmodels:
                            model.maacsupport = 'True'
                        else:
                            model.maacsupport = 'False'
                        supportedmodels = [""Logistic Regression"",""Neural Network"",""Linear Regression""]
                        if model.deploymodel in supportedmodels:
                            model.flserversupport = 'True'
                        else:
                            model.flserversupport = 'False'
                except Exception as e:    
                    pass
        selected_use_case,ModelVersion,ModelStatus = getusercasestatus(request)
        nouc = 0
        usecase = usecasedetails.objects.all()
        return render(request, 'models.html',
                      {'tab': 'upload','nouc':nouc,'usecasedetail': usecase, 'models': models, 'selected_use_case': selected_use_case,
                       'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion, 'selected': 'usecase','computeinfrastructure':computeinfrastructure,'kafkaSetting':kafkaSetting,'ruuningSetting':ruuningSetting,'installationStatus':installationStatus,'modelName':modelName,'modelVersion':modelVersion,'usecasename':usecasename,'runningStatus':runningStatus,'pid':pid,'ip':ip,'port':port,'usecaseid':id})
    except:
        return render(request, 'models.html',{'error': 'Fail to stop model service'})
                   
def startmodelservice(request):
    try:
        kafkaSetting = kafka_setting()
        ruuningSetting = running_setting()
        computeinfrastructure = compute.readComputeConfig()
        selected_use_case,ModelVersion,ModelStatus = getusercasestatus(request)
        installPackage.startService(request.POST.get('modelName'),request.POST.get('ip'),request.POST.get('portNo'))
        time.sleep(5)
        id = request.POST.get('modelid')
        usecasedetail = usecasedetails.objects.get(id=id)
        usecasename = usecasedetail.UsecaseName
        runningStatus,pid,ip,port = installPackage.checkModelServiceRunning(usecasename)
        installationStatus,modelName,modelVersion=insallPackage.checkInstalledPackge(usecasename)
        models = Existusecases.objects.filter(ModelName=usecasedetail,Status='SUCCESS')
        for model in models:
            model.scoringCreteria = 'NA'
            model.score = 'NA'
            model.deploymodel = 'NA'
            model.maacsupport = 'False'     
            model.flserversupport = 'False'
            if os.path.isdir(str(model.DeployPath)):
                modelPath = os.path.join(str(model.DeployPath),'etc', 'output.json')
                try:    
                    with open(modelPath) as file:
                        outputconfig = json.load(file)
                    file.close()
                    if outputconfig['status'] == 'SUCCESS':
                        model.scoringCreteria = outputconfig['data']['ScoreType']
                        model.score = outputconfig['data']['BestScore']
                        model.deploymodel = outputconfig['data']['BestModel']
                        supportedmodels = [""Logistic Regression"",
                        ""Naive Bayes"",""Decision Tree"",""Support Vector Machine"",""K Nearest Neighbors"",""Gradient Boosting"",""Random Forest"",""Linear Regression"",""Lasso"",""Ridge""]
                        if model.deploymodel in supportedmodels:
                            model.maacsupport = 'True'
                        else:
                            model.maacsupport = 'False'
                        supportedmodels = [""Logistic Regression"",""Neural Network"",""Linear Regression""]
                        if model.deploymodel in supportedmodels:
                            model.flserversupport = 'True'
                        else:
                            model.flserversupport = 'False'
                except Exception as e:    
                    pass    
        selected_use_case,ModelVersion,ModelStatus = getusercasestatus(request)
        nouc = 0
        usecase = usecasedetails.objects.all()
        return render(request, 'models.html',
                      {'tab': 'upload','nouc':nouc,'usecasedetail': usecase, 'models': models, 'selected_use_case': selected_use_case,
                       'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion, 'selected': 'usecase','computeinfrastructure':computeinfrastructure,'kafkaSetting':kafkaSetting,'ruuningSetting':ruuningSetting,'installationStatus':installationStatus,'modelName':modelName,'modelVersion':modelVersion,'usecasename':usecasename,'runningStatus':runningStatus,'pid':pid,'ip':ip,'port':port,'usecaseid':id})
    except:
        return render(request, 'models.html',{'error': 'Fail to start model service'})
def downloadpackage(request, id,version):
    return(installPackage.downloadPackage(request,id,version,usecasedetails,Existusecases))
    
def createpackagedocker(request, id,version):
    try:
        context = installPackage.createPackagePackage(request,id,version,usecasedetails,Existusecases)
        context['version'] = AION_VERSION
        return render(request, 'usecases.html',context) 
    except Exception as e:
        return render(request, 'usecases.html',{'error': str(e)})
    
def publish(request, id):
    print(""Inside Publish Tab"")
    try:
        kafkaSetting = kafka_setting()
        ruuningSetting = running_setting()
        computeinfrastructure = compute.readComputeConfig()
        usecasedetail = usecasedetails.objects.get(id=id)
        usecasename = usecasedetail.UsecaseName
        publish_version,publish_status,publish_drift_status =chech_publish_info(usecasename)
        runningStatus,pid,ip,port = installPackage.checkModelServiceRunning(usecasename)
        installationStatus,modelName,modelVersion=installPackage.checkInstalledPackge(usecasename)  
        models = Existusecases.objects.filter(ModelName=usecasedetail,Status='SUCCESS')
        
        for model in models:
            model.scoringCreteria = 'NA'
            model.score = 'NA'
            model.deploymodel = 'NA'
            model.maacsupport = 'False'
            model.flserversupport = 'False'     
            if os.path.isdir(str(model.DeployPath)):
                modelPath = os.path.join(str(model.DeployPath),'etc', 'output.json')
                try:    
                    with open(modelPath) as file:
                        outputconfig = json.load(file)
                    file.close()
                    if outputconfig['status'] == 'SUCCESS':
                        model.scoringCreteria = outputconfig['data']['ScoreType']
                        model.score = outputconfig['data']['BestScore']
                        model.deploymodel = outputconfig['data']['BestModel']
                        model.featuresused = eval(outputconfig['data']['featuresused'])
                        model.targetFeature = outputconfig['data']['targetFeature']
                        if 'params' in outputconfig['data']:
                            model.modelParams = outputconfig['data']['params']
                        model.modelType = outputconfig['data']['ModelType']
                        model.dataPath =  os.path.join(str(model.DeployPath),'data', 'postprocesseddata.csv')
                        supportedmodels = [""Logistic Regression"",
                        ""Naive Bayes"",""Decision Tree"",""Support Vector Machine"",""K Nearest Neighbors"",""Gradient Boosting"",""Random Forest"",""Linear Regression"",""Lasso"",""Ridge"",""Extreme Gradient Boosting (XGBoost)"",""Light Gradient Boosting (LightGBM)"",""Categorical Boosting (CatBoost)"",""LSTM""]
                        print(model.deploymodel)                        
                        if model.deploymodel in supportedmodels:
                            model.maacsupport = 'True'
                        else:
                            model.maacsupport = 'False'  
                        supportedmodels = [""Logistic Regression"",""Neural Network"",""Linear Regression""]
                        if model.deploymodel in supportedmodels:
                            model.flserversupport = 'True'
                        else:
                            model.flserversupport = 'False' 
                        supportedmodels = [""Extreme Gradient Boosting (XGBoost)""]
                        if model.deploymodel in supportedmodels:
                            model.encryptionsupport = 'True'
                        else:
                            model.encryptionsupport = 'False'                               
                except Exception as e:    
                    print(e)
                    pass
        selected_use_case,ModelVersion,ModelStatus = getusercasestatus(request)
        nouc = 0
        usecase = usecasedetails.objects.all()
        print(models)   
        return render(request, 'models.html',
                      {'tab': 'upload','nouc':nouc,'usecasedetail': usecase, 'models': models, 'selected_use_case': selected_use_case,'usecasetab':usecasetab,'publish_version':publish_version,'publish_status':publish_status,'publish_drift_status':publish_drift_status,
                       'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion, 'selected': 'usecase','computeinfrastructure':computeinfrastructure,'installationStatus':installationStatus,'modelName':modelName,'modelVersion':modelVersion,'usecasename':usecasename,'runningStatus':runningStatus,'pid':pid,'ip':ip,'port':port,'usecaseid':id})
    except Exception as e:
        print(e)
        return render(request, 'models.html',{'error': 'Fail to publish model'})                       

def remove_version(request, id):
    from appbe.pages import get_usecase_page
    try:
        kafkaSetting = kafka_setting()
        ruuningSetting = running_setting()
        computeinfrastructure = compute.readComputeConfig()
        if request.method == 'GET':
            try:
                model = Existusecases.objects.get(id=id)
                usecaseid = model.ModelName.id
                if os.path.isdir(str(model.DeployPath)):
                    import shutil
                    if DEPLOY_LOCATION  != str(model.DeployPath):
                        shutil.rmtree(str(model.DeployPath))
                    else:
                        uname = model.ModelName.usecaseid.replace("" "", ""_"")
                        usecaseversion = model.Version
                        deployLocation = os.path.join(str(model.DeployPath),uname+'_'+str(usecaseversion))
                        if os.path.isdir(str(deployLocation)):
                            shutil.rmtree(str(deployLocation))                          
                model.delete()
                usecasedetail = usecasedetails.objects.get(id=model.ModelName.id)
                models = Existusecases.objects.filter(ModelName=usecasedetail)
                if len(models) == 0:
                    usecasedetail.delete()
                Status = 'SUCCESS'
                Msg = 'Version Deleted Successfully'
            except Exception as e:
                print(e)
                Status = 'Error'
                Msg = str(e)
        status, context,page = get_usecase_page(request,usecasedetails,Existusecases)
        context['Status'] = Status
        context['Msg'] = Msg
        context['version'] = AION_VERSION
        return render(request, 'usecases.html',context)
    except Exception as e:
        print(e)
        status, context,page = get_usecase_page(request,usecasedetails,Existusecases)    
        context['Status'] = 'Error'
        context['Msg'] = 'Usecase Version Deletion Error'  
        context['version'] = AION_VERSION
        return render(request, 'usecases.html',context)
        
def destroy(request, id):
    from appbe.pages import get_usecase_page
    try:
        kafkaSetting = kafka_setting()
        ruuningSetting = running_setting()
        computeinfrastructure = compute.readComputeConfig()
        if request.method == 'GET':
            try:
                usecasedetail = usecasedetails.objects.get(id=id)
                usecasename = usecasedetail.usecaseid
                models = Existusecases.objects.filter(ModelName=usecasedetail)
                for model in models:
                    if os.path.isdir(str(model.DeployPath)):
                        import shutil
                        if DEPLOY_LOCATION  != str(model.DeployPath):
                            shutil.rmtree(str(model.DeployPath))
                        else:
                            uname = usecasename.replace("" "", ""_"")
                            usecaseversion = model.Version
                            deployLocation = os.path.join(str(model.DeployPath),uname+'_'+str(usecaseversion))
                            if os.path.isdir(str(deployLocation)):
                                shutil.rmtree(str(deployLocation))                          
                usecasedetail.delete()
                Status = 'SUCCESS'
                Msg = 'Deleted Successfully'
            except Exception as e:
                print(e)
                Status = 'Error'
                Msg = str(e)
        else:
            usecasename = 'Not Defined'     
        if 'UseCaseName' in request.session:
            if (usecasename == request.session['UseCaseName']):
                selected_use_case = 'Not Defined'
                request.session['UseCaseName'] = selected_use_case
                request.session['ModelVersion'] = 0
                request.session['ModelStatus'] = 'Not Trained'
            else:
                selected_use_case = request.session['UseCaseName']
        else:
            selected_use_case = 'Not Defined'
           
        status, context,page = get_usecase_page(request,usecasedetails,Existusecases)
        context['Status'] = Status
        context['Msg'] = Msg
        context['version'] = AION_VERSION
        return render(request, 'usecases.html',context)
    except:
        status, context,page = get_usecase_page(request,usecasedetails,Existusecases)    
        context['Status'] = 'Error'
        context['Msg'] = 'Usecase Deletion Error'  
        context['version'] = AION_VERSION        
        return render(request, 'usecases.html',context)


def update(request, id):
    try:
        lab = get_object_or_404(usecasedetails, id=id)
        if request.method == 'POST':
            form = usecasedetailsForm(request.POST, instance=lab)
            request.session['usecaseid'] = form['id']
            # print(request.session['usecaseid'])
            if form.is_valid():
                form.save()
                return redirect('/show')
        else:
            form = usecasedetailsForm(instance=lab)
            request.session['usecaseid'] = form['id']
            # print(request.session['usecaseid'])
        return render(request, 'edit.html', {'form': form, 'selected': 'usecase'})
    except:
        return render(request, 'edit.html', {'error': 'Error in updating usecase', 'selected': 'usecase'})


def newfile(request):
    selected_use_case = request.session['UseCaseName']
    ModelVersion = request.session['ModelVersion']
    ModelStatus = request.session['ModelStatus']
    try:
        model = Existusecases.objects.get(ModelName=request.session['ModelName'], Version=request.session['ModelVersion'])
        output_train_json_filename = str(model.TrainOuputLocation)
        f = open(output_train_json_filename, ""r+"")
        training_output = f.read()
        f.close()
        training_output = json.loads(training_output)
        dataFile = request.POST.get('localfilePath')
        if(os.path.isfile(dataFile) == False):
            context = {'error': 'Data file does not exist', 'selected_use_case': selected_use_case,
                       'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion}
            return render(request, 'outputdrif.html', context)  
        df = pd.read_csv(dataFile)
        request.session['drift_datalocations'] = dataFile
        request.session['Features_dr'] = df.columns.values.tolist()
        Featrs = request.session['Features_dr']
        statusmsg = 'Data File Uploaded Successfully'
        
        context = {'tab': 'tabconfigure',  'status_msg': statusmsg,
                   'selected_use_case': selected_use_case, 'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion,
                   'selected': 'monitoring', 'z': Featrs}
        context['version'] = AION_VERSION
        return render(request, 'outputdrif.html', context)
    except Exception as Isnt:
        context = {'error': 'Error during output drift.'+str(Isnt), 'selected_use_case': selected_use_case,
                       'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion}
        context['version'] = AION_VERSION
        return render(request, 'outputdrif.html', context)      

def summarization(request):
    context = {'selected':'DataOperations','usecasetab':usecasetab}
    context['version'] = AION_VERSION
    return render(request, ""summarization.html"",context)    


# ------------------ Debiasing Changes ------------------
def getdataclasses(request):
    updatedConfigFile = request.session['config_json']
    f = open(updatedConfigFile, ""r+"", encoding=""utf-8"")
    configSettingsData = f.read()
    configSettingsJson = json.loads(configSettingsData)        
    
    df = pd.read_csv(configSettingsJson['basic']['dataLocation'],encoding='utf8')   
    classeslist = []
    selectedFeature = request.GET.get('features')
    classeslist = df[selectedFeature].unique().tolist()    
    _list = []    
    for item in classeslist:
        _list.append(""<option value='""+ item +""'>"" + item +""</option>"")
        
    return HttpResponse(_list)
# ------------------                   ------------------

def ucdetails(request, id):
    from appbe.pages import usecases_page
    checkModelUnderTraining(request, usecasedetails, Existusecases)
    request.session['IsRetraining'] = 'No'

    status, context, action = usecases_page(request, usecasedetails, Existusecases, id)

    context['version'] = AION_VERSION

    return render(request, 'usecasedetails.html', context)
    
def dataoperations(request):
    context = {'selected':'DataOperations','usecasetab':usecasetab}
    context['version'] = AION_VERSION
    return render(request, ""dataoperations.html"",context)
# @login_required(login_url=""/login/"")
def datalabel(request):
    context = {'selected':'DataOperations','usecasetab':usecasetab}
    context['version'] = AION_VERSION
    return render(request, ""label_dataset_ver2.html"",context)


# @login_required(login_url=""/login/"")
def pages(request):
    context = {}
    # All resource paths end in .html.
    # Pick out the html file name from the url. And load that template.
    try:
        load_template = request.path.split('/')[-1]
        html_template = loader.get_template(load_template)
        return HttpResponse(html_template.render(context, request))

    except template.TemplateDoesNotExist:
        html_template = loader.get_template('page-404.html')
        return HttpResponse(html_template.render(context, request))

    except:
        html_template = loader.get_template('page-500.html')
        return HttpResponse(html_template.render(context, request))

def delimitedsetting(delimiter='',textqualifier='',other=''):
    if delimiter != '':
        if delimiter.lower() == 'tab' or delimiter.lower() == '\t':
            delimiter = '\t'
        elif delimiter.lower() == 'semicolon' or delimiter.lower() == ';':
            delimiter = ';'
        elif delimiter.lower() == 'comma' or delimiter.lower() == ',':
            delimiter = ','
        elif delimiter.lower() == 'space' or delimiter.lower() == ' ':
            delimiter = ' '
        elif delimiter.lower() == 'other' or other.lower() != '':
            if other != '':
                delimiter = other
            else:
                delimiter = ','
        elif delimiter != '':
            delimiter = delimiter
        else:
            delimiter = ','
    else:
        delimiter = ','
    if textqualifier == '':
        textqualifier = '""'
    return delimiter,textqualifier
    

@csrf_exempt
def upload_and_read_file_data(request):
    file_path, file_ext = handle_uploaded_file(path=DATA_FILE_PATH, file=request.FILES['uploaded_file'])
    file_delim = request.POST.get(""file_delim"")
    textqualifier = request.POST.get(""qualifier"")
    delimiters = request.POST.get(""delimiters"")
    delimiter,textqualifier = delimitedsetting(request.POST.get('file_delim'),request.POST.get('qualifier'),request.POST.get('delimiters_custom_value'))
    size_take = 100 
    
    if file_ext in [""csv"", ""tsv""]:
        num_records = sum(1 for line in open(file_path)) - 1
        num_rows = num_records
        if num_records > size_take:
            skip = sorted(random.sample(range(1, num_records + 1), num_records - size_take))
        else:
            skip = 0
        # with open(file_path, 'r') as file:
            # data = file.readline(10)
            # from detect_delimiter import detect
            # row_delimiter = detect(text=data, default=None, whitelist=[',', ';', ':', '|', '\t', ' '])
            # if file_delim == ""custom"" and request.POST[""custom_delim""] != """":
                # row_delimiter = request.POST[""custom_delim""]
                # print('row_delimiter',row_delimiter)
        file_content = pd.read_csv(file_path, sep=delimiter,quotechar=textqualifier, engine='python',skiprows=skip,encoding='utf-8-sig',skipinitialspace = True)
    elif file_path.endswith("".json""):
        file_content_df = pd.read_json(file_path)
        file_content = pd.json_normalize(file_content_df.to_dict(""records""))
        num_rows = len(file_content)
    elif file_path.endswith("".avro""):
        import pandavro as pdx
        from avro.datafile import DataFileReader
        from avro.io import DatumReader
        reader = DataFileReader(open(file_path, ""rb""), DatumReader())
        schema = json.loads(reader.meta.get('avro.schema').decode('utf-8'))
        file_content = pdx.read_avro(file_path, schema=schema, na_dtypes=True)
        num_rows = len(file_content)
    elif file_path.endswith("".parquet""):
        from pyarrow.parquet import ParquetFile
        import pyarrow as pa
        import pyarrow.parquet as pq
        pf = ParquetFile(file_path)
        take_rows = next(pf.iter_batches(batch_size=size_take))
        file_content = pa.Table.from_batches([take_rows]).to_pandas()
        table = pq.read_table(file_path, columns=[])
        num_rows = table.num_rows
        # file_content = pd.read_parquet(file_path, engine=""pyarrow"")
    else:
        raise ValueError(""Invalid file format"")
    response = {}
    column_list = []
    for key, val in dict(file_content.dtypes).items():
        if str(val) == 'object':
            try:
                pd.to_datetime(file_content[str(key)])
                column_list.append({""column_name"": str(key), 'data_type': 'datetime64'})
            except ValueError:
                column_list.append({""column_name"": str(key), 'data_type': 'string'})
                pass
        else:
            column_list.append({""column_name"": str(key), 'data_type': str(val)})
    response[""column_list""] = column_list
    response[""data_html""] = file_content.to_html(classes='table table-striped table-bordered table-hover dataTable no-footer', justify='left', index=False)
    response[""record_count""] = num_rows
    response[""file_ext""] = file_ext
    return HttpResponse(json.dumps(response), content_type=""application/json"")


@csrf_exempt
def handle_uploaded_file(path, file, test_dataset=False):
    print('path',path)
    if test_dataset:
        filename = os.path.join(path,""test_data_file."" + file.name.split('.')[1])
        with open(filename, 'wb+') as destination:
            for chunk in file.chunks():
                destination.write(chunk)
            return filename, file.name.split('.')[1]
    else:
        filename = os.path.join(path,""uploaded_file."" + file.name.split('.')[1])
        with open(filename, 'wb+') as destination:
            for chunk in file.chunks():
                destination.write(chunk)
            return filename, file.name.split('.')[1]


@csrf_exempt
def apply_rule(request):
    from appbe  import labelling_utils as utils
    rule_list = json.loads(request.POST['rule_list'])
    file_ext = request.POST.get(""file_ext"")
    label_list = json.loads(request.POST['label_list'])
    not_satisfy_label = request.POST.get(""non_satisfied_label"")
    response = utils.label_dataset(rule_list, file_ext, label_list, not_satisfy_label)
    return HttpResponse(json.dumps(response), content_type=""application/json"")


@csrf_exempt
def get_sample_result_of_individual_rule(request):
    from appbe  import labelling_utils as utils
    rule_json = json.loads(request.POST['rule_json'])
    file_ext = request.POST.get(""file_ext"")
    label_list = json.loads(request.POST['label_list'])
    not_satisfy_label = request.POST.get(""non_satisfied_label"")
    print(""rule_json>>>"", rule_json)
    print(""file_ext>>>"", file_ext)
    print(""label_list>>>>"", label_list)
    print(""not_satisfied_label"", not_satisfy_label)
    response = utils.get_sample_result_of_individual_rule(rule_json, file_ext, label_list, not_satisfy_label)
    return HttpResponse(json.dumps(response), content_type=""application/json"")


def download_result_dataset(request):
    #file_name = request.GET.get(""filename"")
    file_name = request.session['AION_labelled_Dataset']
    file_path = os.path.join(DATA_FILE_PATH, file_name)
    is_exist = os.path.exists(file_path)
    if is_exist:
        with open(file_path, ""rb"") as file:
            response = HttpResponse(file, content_type=""application/force-download"")
            response[""Content-Disposition""] = ""attachment; filename=%s"" % file_name
        return response
    else:
        return HttpResponse(json.dumps(""file not found""), content_type=""application/error"")


@csrf_exempt
def get_sample_result_of_individual_rule_ver2(request):
    from appbe  import labelling_utils as utils
    rule_json = json.loads(request.POST['rule_json'])
    file_ext = request.POST.get(""file_ext"")
    label_list = json.loads(request.POST['label_list'])
    not_satisfy_label = request.POST.get(""non_satisfied_label"")
    response = utils.get_sample_result_of_individual_rule_ver2(rule_json, file_ext, label_list, not_satisfy_label)
    return HttpResponse(json.dumps(response), content_type=""application/json"")


def get_label_list(label_json):
    label_list = []
    label_weightage = []
    for item in label_json:
        label_list.append(item[""label_name""])
        if item[""label_weightage""] != """":
            weightage_perc = float(item[""label_weightage""]) / 100
            label_weightage.append(np.around(weightage_perc, 2))
        else:
            label_weightage.append(100 / len(label_json))
    return label_list, label_weightage


@csrf_exempt
def apply_rule_ver2(request):
    from appbe  import labelling_utils as utils
    rule_list = json.loads(request.POST['rule_list'])
    file_ext = request.POST.get(""file_ext"")
    label_json = json.loads(request.POST['label_list'])
    label_list, label_weightage = get_label_list(label_json)
    not_satisfy_label = request.POST.get(""non_satisfied_label"")
    include_proba = request.POST.get(""is_include_proba"") == 'true'
    response = utils.label_dataset_ver2(request,rule_list, file_ext, label_list, not_satisfy_label, label_weightage,
                                        include_proba)
    return HttpResponse(json.dumps(response), content_type=""application/json"")


@csrf_exempt
def upload_and_read_test_data(request):
    file_path, file_ext = handle_uploaded_file(path=DATA_FILE_PATH, file=request.FILES['uploaded_file'], test_dataset=True)

    # file_path, file_ext = handle_uploaded_file(path=DATA_FILE_PATH, file=request.FILES['uploaded_file'])
    file_delim_test = request.POST.get(""file_delim_test"")
    size_take = 100 
    if file_ext in [""csv"", ""tsv""]:
        num_records = sum(1 for line in open(file_path)) - 1
        num_rows = num_records
        if num_records > size_take:
            skip = sorted(random.sample(range(1, num_records + 1), num_records - size_take))
        else:
            skip = 0
        with open(file_path, 'r') as file:
            data = file.readline(10)
            from detect_delimiter import detect
            row_delimiter = detect(text=data, default=None, whitelist=[',', ';', ':', '|', '\t', ' '])
            if file_delim_test == ""custom"" and request.POST[""custom_test_delim""] != """":
                row_delimiter = request.POST[""custom_test_delim""]
        file_content = pd.read_csv(file_path, sep=row_delimiter, quotechar=""'"", escapechar=""/"", engine='python',skiprows=skip,encoding='utf-8-sig',skipinitialspace = True)
    elif file_path.endswith("".json""):
        file_content_df = pd.read_json(file_path)
        file_content = pd.json_normalize(file_content_df.to_dict(""records""))
        num_rows = len(file_content)
    elif file_path.endswith("".avro""):
        import pandavro as pdx
        from avro.datafile import DataFileReader
        from avro.io import DatumReader
        reader = DataFileReader(open(file_path, ""rb""), DatumReader())
        schema = json.loads(reader.meta.get('avro.schema').decode('utf-8'))
        file_content = pdx.read_avro(file_path, schema=schema, na_dtypes=True)
        num_rows = len(file_content)
    elif file_path.endswith("".parquet""):
        from pyarrow.parquet import ParquetFile
        import pyarrow as pa
        import pyarrow.parquet as pq
        pf = ParquetFile(file_path)
        take_rows = next(pf.iter_batches(batch_size=size_take))
        file_content = pa.Table.from_batches([take_rows]).to_pandas()
        table = pq.read_table(file_path, columns=[])
        num_rows = table.num_rows
        # file_content = pd.read_parquet(file_path, engine=""pyarrow"")
    else:
        raise ValueError(""Invalid file format"")
    response = {}
    column_list = []
    for key, val in dict(file_content.dtypes).items():
        if str(val) == 'object':
            try:
                pd.to_datetime(file_content[str(key)])
                column_list.append({""column_name"": str(key), 'data_type': 'datetime64'})
            except ValueError:
                column_list.append({""column_name"": str(key), 'data_type': 'string'})
                pass
        else:
            column_list.append({""column_name"": str(key), 'data_type': str(val)})
    response[""column_list""] = column_list
    response[""data_html""] = file_content.to_html(classes='table table-striped text-left',table_id='testdata', justify='left', index=False)
    response[""record_count""] = num_rows
    response[""file_ext""] = file_ext 
    response[""file_delim_test""] = file_delim_test 
    response[""custom_test_delim""] = request.POST[""custom_test_delim""] 
  
    return HttpResponse(json.dumps(response), content_type=""application/json"")


@csrf_exempt
def get_label_and_weightage(request):
    from appbe  import labelling_utils as utils
    test_file_ext = request.POST.get(""test_file_ext"")
    file_delim_test = request.POST.get(""file_delim_test"")
    marked_label_column = request.POST.get(""marked_label_column"")
    custom_test_delim = request.POST.get(""custom_test_delim"")
    label_list_with_weightage = utils.get_label_and_weightage(test_file_ext, marked_label_column, file_delim_test, custom_test_delim)
    return HttpResponse(json.dumps(label_list_with_weightage), content_type=""application/json"")
    
    
    
def modelcompare(request):

    deploypath = request.GET.get('DeployLocation')

    filepath = os.path.join(deploypath,'etc','output.json')
    with open(filepath) as file:
        config = json.load(file)
    file.close()
    # training/testing data needs to be updated as below once it is available in deployment folder
    #trainingDataPath = os.path.join(deploypath,'data','trainData.csv')
    #testingDataPath = os.path.join(deploypath,'data','testData.csv')

    trainingDataPath = os.path.join(deploypath,'data','postprocesseddata.csv.gz')
    testingDataPath = os.path.join(deploypath,'data','postprocesseddata.csv.gz')
    
    featureUsedInTraining=config['data']['featuresused'] 
    targetFeature= config['data']['targetFeature']
    scoringCriteria=config['data']['ScoreType']
    scoringCriteria=scoringCriteria.lower()    
    problemType=config['data']['ModelType']
    problemType=problemType.lower()

    tempFeatureUsedInTraining = featureUsedInTraining.split(',')
    finalFeatures=[]
    for i in range (len(tempFeatureUsedInTraining)) : 
        tempFeatureUsedInTraining[i]=tempFeatureUsedInTraining[i].replace('[', '')
        tempFeatureUsedInTraining[i]=tempFeatureUsedInTraining[i].replace(']', '')
        tempFeatureUsedInTraining[i]=tempFeatureUsedInTraining[i].replace(""'"", '')
        tempFeatureUsedInTraining[i] = tempFeatureUsedInTraining[i].lstrip()
        tempFeatureUsedInTraining[i] = tempFeatureUsedInTraining[i].rstrip()         
        finalFeatures.append(tempFeatureUsedInTraining[i])
    featureUsedInTraining = finalFeatures 
    
    #print(""trainingDataPath----"",trainingDataPath) 
    #print(""testingDataPath----"",testingDataPath) 
    #print(""problemType----"",problemType) 
    #print(""scoringCriteria----"",scoringCriteria) 
    #print(""featureUsedInTraining----"",featureUsedInTraining,type(featureUsedInTraining))
    #print(""targetFeature----"",targetFeature)
    

    if problemType == 'classification':
      
        try:
            df1 = pd.read_csv(trainingDataPath,encoding='utf-8',skipinitialspace = True,compression='gzip')
            df2 = pd.read_csv(testingDataPath,encoding='utf-8',skipinitialspace = True,compression='gzip')
            trainX=df1[featureUsedInTraining]
            trainY=df1[targetFeature]
            testX=df2[featureUsedInTraining]
            testY=df2[targetFeature].to_numpy()
            from sklearn import linear_model
            estimator = linear_model.LogisticRegression()
            estimator.fit(trainX, trainY)
            predictedData = estimator.predict(testX)
            from learner.aion_matrix import aion_matrix
            scoring = aion_matrix()
            score = scoring.get_score(scoringCriteria, testY, predictedData)
            context = {'Model': 'Logistic regression','Testing Score': score, 'Confidence Score': ""Not supported"", 'Feature Engineering Method': ""ModelBased""}
            return HttpResponse(json.dumps(context), content_type=""application/json"")
        except Exception as e:
            print(""exception ""+str(e))
            exc_type, exc_obj, exc_tb = sys.exc_info()
            fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
            print(str(exc_type) + ' ' + str(fname) + ' ' + str(exc_tb.tb_lineno))
            context = {'Model': 'Logistic regression','Testing Score': ""Exception Occured"", 'Confidence Score': ""Not supported"", 'Feature Engineering Method': ""ModelBased""}
            return HttpResponse(json.dumps(context), content_type=""application/json"")

    if problemType == 'regression':
      
        try:
            df1 = pd.read_csv(trainingDataPath,encoding='utf-8',skipinitialspace = True,compression='gzip')
            df2 = pd.read_csv(testingDataPath,encoding='utf-8',skipinitialspace = True,compression='gzip')
            trainX=df1[featureUsedInTraining]
            trainY=df1[targetFeature]
            testX=df2[featureUsedInTraining]
            testY=df2[targetFeature].to_numpy()
            from sklearn import linear_model
            estimator = linear_model.LinearRegression()            
            estimator.fit(trainX, trainY)
            predictedData = estimator.predict(testX)
            from learner.aion_matrix import aion_matrix
            scoring = aion_matrix()            
            score = scoring.get_score(scoringCriteria, testY, predictedData)
            context = {'Model': 'Linear regression','Testing Score': score, 'Confidence Score': ""Not supported"", 'Feature Engineering Method': ""ModelBased""}
            return HttpResponse(json.dumps(context), content_type=""application/json"")

        except Exception as e:
            print(""exception"")      
            context = {'Model': 'Linear regression','Testing Score': ""Exception Occured"", 'Confidence Score': ""Not supported"", 'Feature Engineering Method': ""ModelBased""}
            return HttpResponse(json.dumps(context), content_type=""application/json"")
            
            
def textsummarization(request):
    return render(request, ""textsummarization.html"",context={'version':AION_VERSION,'selected': 'textsummarization'})

      
# LLM Testing Task ID 14533
def validate_llm(prompts, reference_generation,temperature, similarity_threshold, perturbations_per_sample):
    default = {'temperature':{'default':0.9,'lower':0.0,'upper':1.0},'similarity_threshold':{'default':0.75,'lower':0.0,'upper':1.0},'perturbations_per_sample':5}
    
    if not isinstance( prompts, (list,str)):
        raise ValueError(f""Prompt should be of type str, got '{prompt}' of type {type(prompt)}"")
    elif prompts == '':
        raise ValueError(""Prompt field can not be empty"")
    if not isinstance( reference_generation, str):
        raise ValueError(f""Reference Generated Answer should be of type str, got '{reference_generation}' of type {type(reference_generation)}"")
    # elif reference_generation == '':
        # raise ValueError(""Reference Generation field can not be empty"")
    if not isinstance( temperature, float) or temperature < default['temperature']['lower'] or temperature > default['temperature']['upper']:
        if isinstance( temperature, str) and temperature == '':
            temperature = default['temperature']['default']
        else:
            raise ValueError(f""Model Parameter Temperature should be of type float with range {default['temperature']['lower']} - {default['temperature']['upper']}, got {temperature} of type {type(temperature)}"")
    if not isinstance( similarity_threshold, float) or similarity_threshold < default['similarity_threshold']['lower'] or similarity_threshold > default['similarity_threshold']['upper']:
        if isinstance( similarity_threshold, str) and similarity_threshold == '':
            similarity_threshold = default['similarity_threshold']['default']
        else:
            raise ValueError(f""Similarity Threshold should be of type float with range {default['similarity_threshold']['lower']} - {default['similarity_threshold']['upper']}, got {similarity_threshold} of type {type(similarity_threshold)}"")
    if not isinstance( perturbations_per_sample, int):
        if isinstance( perturbations_per_sample, str) and perturbations_per_sample == '':
            perturbations_per_sample = default['perturbations_per_sample']
        else:
            raise ValueError(f""Perturbations Per Sample should be of type integer, got {perturbations_per_sample} of type {type(perturbations_per_sample)}"")
    return prompts, reference_generation,temperature, similarity_threshold, perturbations_per_sample

def llmtesting(request):
    ftmodels = []
    usecase = usecasedetails.objects.all().order_by('-id')
    for x in usecase:
        #print(x.id)
        models = Existusecases.objects.filter(Status='SUCCESS',ModelName=x.id).order_by('-id')
        if len(models) > 0:
            for model in models:
                #print(str(model.ConfigPath))
                version = model.Version 
                if os.path.isdir(str(model.DeployPath)):
                    modelPath = os.path.join(str(model.DeployPath),'etc','output.json')
                    with open(modelPath) as file:
                        outputconfig = json.load(file)
                    problemType = outputconfig['data']['ModelType']
                    if problemType.lower() == 'llm fine-tuning':
                        from appbe.models import get_instance
                        hypervisor,instanceid,region,image,status = get_instance(x.usecaseid+ '_' + str(version))
                        with open(str(model.ConfigPath)) as file:
                            configSettingsJson = json.load(file)
                        file.close()
                        from appbe.pages import getMLModels
                        problem_type,dproblem_type,sc,mlmodels,dlmodels,smodelsize =  getMLModels(configSettingsJson)
                        ft = mlmodels+'-'+smodelsize+'-'+x.usecaseid+'_'+str(version)
                        finetunedModel = {}
                        finetunedModel['ft']=ft
                        finetunedModel['basemodel'] = mlmodels+'-'+smodelsize
                        finetunedModel['usecaseid'] = x.usecaseid+'_'+str(version)
                        ftmodels.append(finetunedModel)
    return render(request, ""llmtesting.html"",context={'version':AION_VERSION,'selected': 'llmtesting','ftmodels':ftmodels})
   
# LLM Testing Result Task ID 14533
def llmtestingresult(request):
    try:
        
        context = {'result':result,'provider':provider,'tabledata':tabledata,'summary':summary,'modelName':modelName,'temperature':temperature,'similarity_threshold':similarity_threshold,'prompt':prompt,'reference_generation':reference_generation,'perturbations_per_sample':perturbations_per_sample,'version':AION_VERSION,'selected': 'llmtestingresults','success':'success'}
        return render(request, ""llmtestingresults.html"",context)
    except Exception as e:
        print(e)         
        context = {'error': 'Fail to Generate LLM Testing Report '+str(e),'version':AION_VERSION,'selected': 'llmtestingresults','fail':'fail'}
        return render(request, ""llmtestingresults.html"",context)

# LLM Testing Result Task ID 14533
def llmtestingresult(request):
 
    
    try:
        
        generate_test = request.POST['prompt_temp']
        if generate_test == ""generatetest"":
            UseCaseName = request.POST['selectusecase']
            ModelName = request.POST['selectmodel']
            temperature = request.POST['modelparam']
            similarity_threshold = request.POST['similarity_threshold']
            perturbations_per_sample = request.POST['perturbations_per_sample']
            selecttype = request.POST['selectquestion']
            reference_generation = (request.POST['reference_generation'])
            baseModel = request.POST['basemodel']
            
            from appbe.llmTesting import test_LLM
            if selecttype == ""Single"":
                prompts = request.POST['prompt']
                

            else:
                data_file = request.POST['dataFilePath']#Task 16794
                file_name = os.path.splitext(data_file)[0]
                file_extension = os.path.splitext(data_file)[-1].lower()
                if file_extension != "".csv"":
                    questions = []
                    answers = []
                    if file_extension == "".pdf"":
                        with pdfplumber.open(data_file) as pdf:
                            for page in pdf.pages:
                                text = page.extract_text()
                                lines = text.split(""\n"")

                                current_question = """"
                                current_answer = """"
                                reading_question = False

                                for line in lines:
                                    line = line.strip()

                                    if line.endswith(""?""):
                                        if reading_question:
                                            questions.append(current_question)
                                            answers.append(current_answer)
                                            current_question = """"
                                            current_answer = """"

                                        current_question = line
                                        reading_question = True

                                    elif reading_question:
                                        current_answer += "" "" + line
                                if reading_question:
                                    questions.append(current_question)
                                    answers.append(current_answer)

                    elif file_extension == "".docx"":
                        doc = Document(data_file)

                        current_question = """"
                        current_answer = """"
                        reading_question = False

                        for paragraph in doc.paragraphs:
                            text = paragraph.text.strip()

                            if text.endswith(""?""):
                                if reading_question:
                                    questions.append(current_question)
                                    answers.append(current_answer)
                                    current_question = """"
                                    current_answer = """"

                                current_question = text
                                reading_question = True
                            elif reading_question:
                                current_answer += "" ""+ text

                        if reading_question:
                            questions.append(current_question)
                            answers.append(current_answer)

                    else:
                        print(""unsupported file format. please provide a pdf or docx file."")

                    faq = pd.DataFrame({'Question':questions, 'Answers':answers})
                    # print(faq) 
                    data_file_csv  = file_name+"".csv""
                    faq.to_csv(data_file_csv, index=False, encoding='utf-8')

                    
                else:
                    faq = pd.read_csv(data_file,encoding='cp1252')
                    rows = faq.shape[0]
                prompts = list(faq['Question'])
            try:
                temperature = float( temperature)
                similarity_threshold = float(similarity_threshold)
                perturbations_per_sample = int( perturbations_per_sample)
            except:
                pass
                

                
            prompts, reference_generation,temperature, similarity_threshold, perturbations_per_sample = validate_llm(prompts, reference_generation,temperature, similarity_threshold, perturbations_per_sample)
            from appbe.aion_config import get_llm_data
            llm_key,llm_url,api_type,api_version=get_llm_data()
            urls = {        
                'OPENAI_API_BASE' : llm_url,
                'OPENAI_API_KEY' : llm_key,
                'OPENAI_API_TYPE' :api_type,
                'OPENAI_API_VERSION':api_version
            }
            llm_obj = test_LLM()
            llm_obj.set_params(urls)
            
            if selecttype == ""Single"":
                print(UseCaseName,ModelName)
                if ModelName.lower() == 'basemodel':
                    result = llm_obj.run_offline_model( UseCaseName,baseModel,temperature, similarity_threshold, perturbations_per_sample, reference_generation, prompts,False )
                    llmModelName = baseModel
                else:
                    result = llm_obj.run_offline_model( UseCaseName,ModelName,temperature, similarity_threshold, perturbations_per_sample, reference_generation, prompts,True )
                    llmModelName = ModelName+'-'+UseCaseName
                print(result)
                filetimestamp = str(int(time.time()))
                dataFile = os.path.join(DATA_FILE_PATH, 'llmreport_' + filetimestamp+'.html')
                result = result.split(""LLMTestingResultOutput:"")[-1]
                
                output = json.loads(result)
           
                with open(dataFile,'w') as htmlfile:
                    htmlfile.write(output['data']['html_file'])
                request.session['llmtestreport'] = str(dataFile)                
                # provider = result.generation_kwargs['Provider']
                provider = """"
                # metric_name = list(result.metric[0].keys())[0]
                metric_name = output['data']['metric_name']
                # metric_values = output['data']['metric_values']
                metric_values = eval(output['data']['metric_values'])
                passed_tests = output['data']['passed_tests']
                total_tests = output['data']['total_tests']
                summary = f'{passed_tests}/{total_tests}'
                tabledata = {}
                prompts = output['data']['prompts']
                generations= output['data']['generations']
                Generations = []
                for sub in generations:
                    Generations.append(sub.replace(""\n"", """"))
                metricvalues =  metric_values
                text = [eval(x) for x in generations]
                gen = [x[0]['generated_text'].split('\n')[1:] for x in text]
                Generations = [' '.join(x) for x in gen]
                resultoutput = eval(output['data']['resultoutput'])[0]
                for index,val in enumerate(Generations):
                    Generations[index]= Generations[index].strip()
                    if len(Generations[index])<=2:
                        metricvalues[index] = 0
                        resultoutput[index] = 0
                    
                tabledata = zip(prompts,Generations,metricvalues,resultoutput)
                
                context = {'result':result,'provider':provider,'tabledata':tabledata,'summary':summary,'modelName':llmModelName,'temperature':temperature,'similarity_threshold':similarity_threshold,'prompt':prompts,'reference_generation':reference_generation,'perturbations_per_sample':perturbations_per_sample,'single':'single','version':AION_VERSION,'selected': 'llmtestingresults','success':'success'}
                # context = {'result':result,'provider':""provider"",'tabledata':""tabledata"",'summary':""summary"",'modelName':modelName,'temperature':temperature,'similarity_threshold':similarity_threshold,'prompt':prompts,'reference_generation':reference_generation,'perturbations_per_sample':perturbations_per_sample,'single':'single','version':AION_VERSION,'selected': 'llmtestingresults','success':'success'}
            else:
                if ModelName.lower() == 'basemodel':
                    result_str =llm_obj.run_multiple_offline_model(UseCaseName,baseModel,temperature, similarity_threshold, perturbations_per_sample,faq,False)
                    llmModelName = baseModel
                else:
                    result_str =llm_obj.run_multiple_offline_model(UseCaseName,ModelName,temperature, similarity_threshold, perturbations_per_sample,faq,True)
                    llmModelName = ModelName+'-'+UseCaseName
                result_str = result_str.split(""LLMTestingResultOutput:"")[-1]
                output = json.loads(result_str)
                # result will be df converted from output['data']
                result = pd.DataFrame(json.loads(output['data']))
                filetimestamp = str(int(time.time()))
                dataFile = os.path.join(DATA_FILE_PATH, 'llmreport_' + filetimestamp+'.csv')
                request.session['llmtestreport'] = str(dataFile)
                result.rename(columns={'Perturbed Prompts':'PerturbedPrompts','Similarity [Generations]':'Similarity'},inplace=True)
                result_df = result.head(5)
                result.to_csv(dataFile, index=False)
                
                
                context={'result':result_df,'modelName':llmModelName,'temperature':temperature,'similarity_threshold':similarity_threshold,'perturbations_per_sample':perturbations_per_sample,'selected': 'llmtestingresults','multiple':'multiple','success':'success'}

            return render(request, ""llmtestingresults.html"",context)
        if generate_test == ""download_prompt"":
  
            csvdata= os.path.join(DEFAULT_FILE_PATH,""Prompt_template.csv"")
            if os.path.isfile(csvdata) and os.path.exists(csvdata):
                df = pd.read_csv(csvdata,encoding='utf8')
                downloadFileName = 'llmreport.csv'
                response = HttpResponse(content_type='text/csv')
                response['Content-Disposition'] = 'attachment; filename='+downloadFileName
                df.to_csv(response, index=False)
                return response
            else:
                context = {'error': 'Fail to Download File','version':AION_VERSION,'selected': 'llmtestingresults','fail':'fail'}
                return render(request, ""llmtestingresults.html"",context) 
    except Exception as e:
        print(e)
        errormsg = str(e)
        if 'Invalid URL' in errormsg or 'No connection adapters' in errormsg or 'invalid subscription key' in errormsg:
           errormsg = 'Access denied due to invalid subscription key or wrong API endpoint. Please go to settings and make sure to provide a valid key for an active subscription and use a correct regional API endpoint for your resource.'
         
        if 'Max retries exceeded with url' in errormsg:
           errormsg = 'Please make sure you have good internet connection and access to API endpoint for your resource.'         
        context = {'error':errormsg,'version':AION_VERSION,'selected': 'llmtestingresults','fail':'fail'}
        return render(request, ""llmtestingresults.html"",context)
        
def llmtestreport(request):
    file_path = request.session['llmtestreport']
    # file_path = ""C:\AION\To_Kiran\To_Kiran\codeCloneReport\code_clone_report.txt""
    report_path = os.path.join(file_path)
    if os.path.exists(report_path):
        with open(report_path, 'rb') as fh:    
            response = HttpResponse(fh.read(), content_type='application/vnd.openxmlformats-officedocument.spreadsheetml.sheet')
            response['Content-Disposition'] = 'attachment; filename=' + os.path.basename(report_path)
            return response
    else:
        return render(request, ""llmtestingresults.html"",context={""error"":""Fail To Download File"",'version':AION_VERSION,'result':'result','selected': 'llmtestingresults'})
 
### To display libraries in UI ####
def libraries(request):
    current_dir = os.path.dirname(os.path.abspath(__file__))
    file_path = os.path.normpath(os.path.join(current_dir,'..','..','lic',""requirement.csv""))
    library_data = []
    with open(file_path, 'r') as file:
        csv_reader = csv.DictReader(file)
        for row in csv_reader:
            library_info = {
                ""library"" :row[""Library""] if row.get(""Library"") else ""none"",
                ""version"" :row[""Version""] if row.get(""Version"") else ""none"",
                ""license"" :row[""License""] if row.get(""License"") else ""none""
                }
            library_data.append(library_info)
    # print(library_data)
    return render(request, ""libraries.html"", context={""data"":library_data,'version':AION_VERSION,'selected': 'libraries'})

# For Code Clone Detection


def codeclonedetectionresult(request):
    from appbe.codeclonedetection import CodeCloneDetectionFiles
    
    try:
        codecloneconfig = os.path.join(os.path.dirname(os.path.abspath(__file__)),'..','..','config','code_clone_config.json')
        f = open(codecloneconfig, ""r"")
        configSettings = f.read()
        f.close()
        configSettings = json.loads(configSettings)        
        rootdir = request.POST.get('rootdirectory')
        ccdmode = request.POST.get('ccdmode')

        if(os.path.isdir(rootdir)):
            llm_key,llm_url,api_type,api_version = get_llm_data()
            openai_apiKey = llm_key
            openai_baseUrl = llm_url           
            try:
                openai_apiType = api_type
                openai_apiVersion = api_version
            except:
                openai_apiType = configSettings['openaiApiType']
                openai_apiVersion = configSettings['openaiApiVersion']
            openai_embeddingEngine = configSettings['codeCloneDetection']['openaiEmbeddingEngine']
            openai_embeddingModel = configSettings['codeCloneDetection']['openaiEmbeddingModel']
            openai_chatModel = configSettings['codeCloneDetection']['openaiChatModel']
            openai_deploymentId = configSettings['codeCloneDetection']['openaiDeploymentId']
            rootDirFilesType = configSettings['codeCloneDetection']['rootDirFilesType']
        else:
            return render(request, ""codeclone.html"",context={""codeclonedetectionerror"":""Please provide valid root directory file path."",'version':AION_VERSION,'result':'result','selected': 'codeclonedetectionresult'})
        filetimestamp = str(int(time.time()))

        config_json_filename = os.path.join(CONFIG_FILE_PATH, 'code_clone_config_' + filetimestamp + '.json')
        updatedConfigSettings = json.dumps(configSettings)
        with open(config_json_filename, ""w"") as fpWrite:
            fpWrite.write(updatedConfigSettings)
        fpWrite.close()
      
        from appbe.dataPath import DEPLOY_LOCATION
        codeclonedir_path = os.path.join(DEPLOY_LOCATION,('codeCloneDetection_'+filetimestamp))
        os.makedirs(codeclonedir_path,exist_ok=True) 
        request.session['clonereport'] = str(codeclonedir_path)

        try:
         
            if (rootDirFilesType.lower() == ""python"" and ccdmode.lower() == ""openai""):
                cdobj = CodeCloneDetectionFiles(rootdir,openai_baseUrl, openai_apiKey,openai_apiType,openai_apiVersion,codeclonedir_path,openai_embeddingEngine,openai_embeddingModel,openai_chatModel,openai_deploymentId)

                report_str,report_dict,report_df,report_json = cdobj.getCloneReport()
                clonetype = report_dict['Code_clones_count_by_clone_type'].to_dict()
                for i in clonetype:
                    clonevalues = clonetype[i].values()
                    clonekeys = clonetype[i].keys()
                clonetype = zip(clonekeys,clonevalues)
                return render(request, ""codeclonedetectionresult.html"",context={'report_json':json.loads(report_json),'report_dict':report_dict,'clonetype':clonetype,'clonefunctions':report_dict['clone_functions'],'version':AION_VERSION,'result':'result','selected': 'codeclonedetectionresult','openai':'openai'})
            ## Pls uncomment below code if you need to use sklearn based code clone detection.
            # elif (ccdmode.lower() ==""sklearn""):
                # from appbe.codeclonedetection_sklearn import codeCloneDetectionSklearn
                # chunk_size = 10000
                # cdobj = codeCloneDetectionSklearn(rootdir,codeclonedir_path,chunk_size)
                # report_dict = cdobj.get_clone()

                
                # return render(request, ""codeclonedetectionresult.html"",context={'report_dict':report_dict,'function_df':report_dict['result_df'],'function_dict':report_dict['result_df'].to_dict(),'sklearn':'sklearn'})
            else:
                raise Exception (""Invalid clonedetection input."")
                return render(request, ""codeclone.html"",context={""codeclonedetectionerror"":""Python Files Are Only Supported.""})
        except Exception as e:
            return render(request, ""codeclone.html"",context={""codeclonedetectionerror"":""OpenAI Model Connection Error"",'version':AION_VERSION,'result':'result','selected': 'codeclonedetectionresult'})
        
    except Exception as e:
        print('code clone detection interface issue.Error message: ',e)            
        return render(request, ""codeclone.html"",context={""codeclonedetectionerror"":""OpenAI Model Connection Error"",'version':AION_VERSION,'result':'result','selected': 'codeclonedetectionresult'})
   
def codeclonereport(request):
    file_path = request.session['clonereport']
    report_path = os.path.join(file_path, 'codeCloneReport','code_clone_report.txt')
    if os.path.exists(report_path):
        with open(report_path, 'rb') as fh:    
            response = HttpResponse(fh.read(), content_type='application/vnd.openxmlformats-officedocument.spreadsheetml.sheet')
            response['Content-Disposition'] = 'attachment; filename=' + os.path.basename(report_path)
            return response
    else:
        return render(request, ""codeclonedetectionresult.html"",context={""codeclonedetectionerror"":""Fail To Download File"",'version':AION_VERSION,'result':'result','selected': 'codeclonedetectionresult'})
        
def evaluatepromptmetrics(request):    
    """""" Evaluate prompt only information for LLM Evaluation.""""""
    import whylogs as why
    from langkit import light_metrics
    from whylogs.experimental.core.udf_schema import udf_schema
    from whylogs.experimental.core.udf_schema import register_dataset_udf
    from langkit import lang_config, response_column
    import json
    
    prompt_msg = request.GET.get('instruction')
    text_schema = udf_schema()
    llm_schema = light_metrics.init()
    df = pd.DataFrame({
        ""prompt"": [
            prompt_msg
        ]})
    results = why.log(df, schema=udf_schema())  # .profile()
    view = results.view()

    # import pdb
    # pdb.set_trace()
    
    from appbe.evaluate_prompt import evaluate_prompt_metrics
    final_output_json,prompt_results = evaluate_prompt_metrics(prompt_msg)
    prompt_results_json = json.dumps(prompt_results, indent=4)
    # return prompt_results_json,prompt_results
    return HttpResponse(final_output_json)
"
bc_views.py,"from django.shortcuts import render
from django.urls import reverse
from django.http import HttpResponse
from django.shortcuts import redirect
from appbe.dataPath import DEFAULT_FILE_PATH
from appbe.dataPath import DATA_FILE_PATH
from appbe.dataPath import CONFIG_FILE_PATH
from appbe.dataPath import DEPLOY_LOCATION
from appbe.pages import getversion
from appbe.aion_config import running_setting
from appfe.modelTraining.models import usecasedetails
from appfe.modelTraining.models import Existusecases
from appbe import compute
AION_VERSION = getversion()
def basicconfig(request):
    try:
        from appbe.aion_config import settings
        usecasetab = settings()
        from appbe import basic_Config as bc
        request.session['defaultfilepath'] = DEFAULT_FILE_PATH
        request.session['configfilepath'] = CONFIG_FILE_PATH
        request.session['deploylocation'] = DEPLOY_LOCATION
        computeinfrastructure = compute.readComputeConfig()
        submit_button = request.POST.get('upload_submit')
        ModelVersion = request.session['ModelVersion']
        ruuningSetting = running_setting()
        selected_use_case = request.session['UseCaseName']
        ModelStatus = request.session['ModelStatus']
        #print(request.method)
        # Retraing settings changes
        if request.method == 'POST' and request.session['finalstate'] == 0:         
            context = bc.gotoconf(request)
        else:
            context = bc.openbasicconf(request)
        context['computeinfrastructure'] = computeinfrastructure
        context['version'] = AION_VERSION
        context['usecasetab'] = usecasetab
        return render(request, 'basicconfig.html', context)
    except Exception as e:
        print(e)
        import sys,os
        exc_type, exc_obj, exc_tb = sys.exc_info()
        fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
        print(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))
        return render(request, 'basicconfig.html', {'error':'Fail to retreive basic config file inputs','version':AION_VERSION,'usecasetab':usecasetab})

def savebasicconfig(request):
    from appbe import basic_Config as bc
    from appbe import advance_Config as ac
    from appfe.modelTraining.train_views import trainmodel
    try:    
        if request.method != 'GET':
            status,msg,context =bc.save(request)
        else:
            status = 'pass'
            msg = ''
    except Exception as e:
        print(e)

    if status.lower()!='error': 
        if request.method == 'GET':
            context = ac.basicconfignex(request)
            computeinfrastructure = compute.readComputeConfig()
            context['computeinfrastructure'] = computeinfrastructure
            context['version'] = AION_VERSION
            context['currentstate'] = 1
            return render(request, 'advancedconfig.html', context)          
        elif request.POST.get('BasicSubmit') == 'GotoAdvance':
            context = ac.basicconfignex(request)
            computeinfrastructure = compute.readComputeConfig()
            context['computeinfrastructure'] = computeinfrastructure
            context['version'] = AION_VERSION
            context['currentstate'] = 1
            return render(request, 'advancedconfig.html', context)  
        else:
            return trainmodel(request)
    else:
        context = bc.openbasicconf(request)
        computeinfrastructure = compute.readComputeConfig()
        context['computeinfrastructure'] = computeinfrastructure    
        context['config_error']= msg
        context['version'] = AION_VERSION
        return render(request, 'basicconfig.html', context) 
"
models.py,"from django.db import models


class usecasedetails(models.Model):
    id = models.AutoField(primary_key=True)
    UsecaseName = models.CharField(max_length=50)
    usecaseid = models.CharField(max_length=10, default=UsecaseName)
    Description = models.CharField(max_length=200)

    class Meta:
        db_table = ""usecasedetails""


class Existusecases(models.Model):
    id = models.AutoField(primary_key=True)
    ModelName = models.ForeignKey(usecasedetails, on_delete=models.CASCADE)
    Version = models.IntegerField(default=0)
    DataFilePath = models.FileField(upload_to=None)
    ConfigPath = models.FileField(upload_to=None)
    DeployPath = models.FileField(upload_to=None)
    Status = models.CharField(max_length=200)
    publishStatus = models.CharField(max_length=20, default='')
    publishPID   = models.IntegerField(default=0)
    trainingPID  = 	models.IntegerField(default=0)
    driftStatus = models.CharField(max_length=20, default='')    
    ProblemType = models.CharField(max_length=20, default='')
    modelType = models.CharField(max_length=40, default='')        
    portNo      = models.IntegerField(default=0)
    TrainOuputLocation = models.CharField(max_length=200, default='') 
    class Meta:  
        
        db_table = ""Existusecases"" "
mllite_views.py,"from django.shortcuts import render
from django.urls import reverse
from django.http import HttpResponse
from django.shortcuts import redirect
import json
from appbe.dataPath import DEFAULT_FILE_PATH
from appbe.dataPath import DATA_FILE_PATH
from appbe.dataPath import CONFIG_FILE_PATH
from appbe.dataPath import DEPLOY_LOCATION
from appbe.pages import getusercasestatus
import pandas as pd
import numpy as np
from appbe.pages import getversion
import logging
import json
import time
import os
import subprocess
import sys
import base64
from appbe import compute
import urllib

AION_VERSION = getversion()

def Sagemaker(request):    
    
    if request.method == ""POST"":
        try:
            datafile = request.POST['datap']
            endpoint = request.POST['endpoint']
            awsaccountid = request.POST['awsaccountid']
            accesskeyid = request.POST['accesskeyid']
            secretaccesskey = request.POST['secretaccesskey']
            sessionToken = request.POST['sessionToken']
            region = request.POST['region']
            if (awsaccountid != """" and accesskeyid != """" and secretaccesskey != """" and sessionToken != """" and endpoint != """") :
                awsSagemaker = {}
                awsSagemaker['awsID'] = awsaccountid
                awsSagemaker['accesskeyID'] = request.POST['accesskeyid']
                awsSagemaker['secretAccesskey'] = request.POST['secretaccesskey']
                awsSagemaker['sessionToken'] = request.POST['sessionToken']
                awsSagemaker['region'] = request.POST['region']
                configFile = os.path.join(DEFAULT_FILE_PATH, 'model_converter.json')
                f = open(configFile, ""r"")
                configSettings = f.read()
                f.close()
                configSettingsJson = json.loads(configSettings) 
                configSettingsJson['awsSagemaker'] = awsSagemaker
                if(os.path.exists(datafile)):
                    inputDataType = datafile.rsplit('.', 1)[1]
                    if inputDataType.lower() == 'csv':
                        df = pd.read_csv(datafile)
                        # df1 = df.iloc[0, :]
                        df2 = df.head(1)
                        df3 =df2.to_dict(orient='records')[0]
                        inputFields = []
                        inputFields.append(df3)
                        # models = models.rsplit('.', 1)[1]
                        context = {'sagepredict':'sagepredict','endpoint':endpoint,'datafile':datafile,'inputFields':inputFields,'sagemaker':configSettingsJson,'version':AION_VERSION}
                else:
                    context = {'exception':'exception','error':'Data File Error','version':AION_VERSION}
            else:
                context = {'error': 'Error: Please enter valid input','runtimeerror':'runtimeerror','version':AION_VERSION} 
        except Exception as e:
            context = {'exception':'exception','error':'Exception :'+str(e),'sagepredict':'sagepredict','version':AION_VERSION}
        return render(request, 'ConvertOnnx.html',context)
        
def Tfliteneural(request):
    try:
        if request.method == ""POST"":
            try:
                models = request.POST['model1']
                datafile = request.POST['datafile1']
                if(os.path.isfile(models)):
                    modelformat = models.rsplit('.', 1)[1]
                if(os.path.isfile(models) and os.path.exists(datafile) and modelformat.lower()=='tflite'):
                    inputDataType = datafile.rsplit('.', 1)[1]
                    if inputDataType.lower() == 'csv':
                        df = pd.read_csv(datafile)
                        df2 = df.head(1)
                        df3 =df2.to_dict(orient='records')[0]
                        inputFields = []
                        inputFields.append(df3)
                        context = {'mlalgotf':'mlalgotf','models':models,'datafile':datafile,'inputFields':inputFields,'selected':'mllite','version':AION_VERSION}
                    elif inputDataType.lower() == 'jpg':
                        from PIL import Image
                        img = Image.open(datafile)
                        string = base64.b64encode(open(datafile, ""rb"").read())
                        image_64 = 'data:image/png;base64,' + urllib.parse.quote(string)
                        context = {'dlalgotf':'dlalgotf','models':models,'datafile':datafile,'im':image_64,'selected':'mllite','version':AION_VERSION}
                else:
                    context={'error':'Either model path or data path does not exists','runtimeerror':'runtimeerror','selected':'mllite','version':AION_VERSION}
            except Exception as e:
                context={'error':'Exception i.e., '+str(e),'runtimeerror':'runtimeerror','selected':'mllite','version':AION_VERSION}
        return render(request, 'ConvertOnnx.html',context)
    except:
        context={'error':'Failed to perform TFlite Runtime Prediction','runtimeerror':'runtimeerror','selected':'mllite'}
        return render(request, 'ConvertOnnx.html',context)
        
def openneural(request):
    try:
    
        if request.method == ""POST"":
            models = request.POST['model']
            datafile = request.POST['datafile']
            if(os.path.isfile(models)):
                modelformat = models.rsplit('.', 1)[1]
            if(os.path.isfile(models) and os.path.exists(datafile)) and modelformat.lower()=='onnx':
                inputDataType = datafile.rsplit('.', 1)[1]
                
                if inputDataType.lower() == 'csv':
                    df = pd.read_csv(datafile)
                    df2 = df.head(1)
                    df3 =df2.to_dict(orient='records')[0]
                    inputFields = []
                    inputFields.append(df3)
                    # models = models.rsplit('.', 1)[1]
                    context = {'mlalgo':'mlalgo','models':models,'datafile':datafile,'selected':'mllite','inputFields':inputFields,'version':AION_VERSION}
                elif inputDataType.lower() == 'jpg':
                    
                    from PIL import Image
                    img = Image.open(datafile)
                    string = base64.b64encode(open(datafile, ""rb"").read())
                    image_64 = 'data:image/png;base64,' + urllib.parse.quote(string)
             
                    context = {'dlalgo':'dlalgo','models':models,'datafile':datafile,'im':image_64,'selected':'mllite','version':AION_VERSION}
            else:
                context={'error':'Either model path or data path does not exists','runtimeerror':'runtimeerror','selected':'mllite','version':AION_VERSION}
        return render(request, 'ConvertOnnx.html',context)
    except:
        context={'error':'Failed to perform ONNX Runtime Prediction','runtimeerror':'runtimeerror','selected':'mllite','version':AION_VERSION}
        return render(request, 'ConvertOnnx.html',context)       
        
def ConvertOnnx(request):
    try:
        if request.method == ""POST"":
            
            modelpath = request.POST['models']
            deploypath = request.POST['deploy']
            outputonnx = request.POST['outputonnx']
            inputtonnx = request.POST['inputtonnx']
            outputonnx = request.POST['outputonnx']             
            Features = request.POST['Features']
            modelinput = inputtonnx
            modeloutput = outputonnx
            
            if (os.path.exists(modelpath) == False) and (outputonnx !=""sagemaker"") and (os.path.exists(deploypath) == False):
                context = {'modelpath':modelpath,'deploypath':deploypath,'inputtype':modelinput,'outputtype':modeloutput,'Features':Features,'error2':'error2','convert':'convert','logfile':'','selected':'mllite','version':AION_VERSION}                 
            elif outputonnx !=""sagemaker"":
                
                filetimestamp = str(int(time.time()))

                convjson = os.path.join(DEFAULT_FILE_PATH, 'conversion.json')
                with open(convjson, 'r+') as f:
                    conv = json.load(f)
                f.close()
                conv['basic']['modelName'] = 'conversion_'+ str(filetimestamp)
                conv['basic']['modelVersion'] = ""1""
                conv['advance']['aionConversionUtility']['modelpath'] = modelpath
                conv['advance']['aionConversionUtility']['deployedlocation'] = deploypath
                conv['advance']['aionConversionUtility']['numberoffeatures'] = Features
                temp = {}
                temp['inputModelType'] = inputtonnx
                temp['outputModelType'] = outputonnx
                inputtype = conv['advance']['aionConversionUtility']['inputModelType']
                outputtype = conv['advance']['aionConversionUtility']['outputModelType']
                for i in list(inputtype.keys()):
                    conv['advance']['aionConversionUtility']['inputModelType'][i] = 'False'
                for i in list(outputtype.keys()):
                    conv['advance']['aionConversionUtility']['outputModelType'][i] = 'False'
                    
                conv['advance']['aionConversionUtility']['inputModelType'][temp['inputModelType'][0].lower() + temp['inputModelType'][1:]] = 'True'
                conv['advance']['aionConversionUtility']['outputModelType'][temp['outputModelType'][0].lower() + temp['outputModelType'][1:]] = 'True'
              
                
                conv = json.dumps(conv)
                config_json_filename = os.path.join(CONFIG_FILE_PATH, 'conv' + filetimestamp + '.json')
                with open(config_json_filename, ""w"") as fpWrite:
                    fpWrite.write(conv)
                fpWrite.close()
                scriptPath = os.path.normpath(os.path.join(os.path.dirname(os.path.abspath(__file__)), '..', '..','aion.py'))
                try:           
                    outputStr = subprocess.check_output([sys.executable, scriptPath,'-m','convertmodel','-c',config_json_filename])
                    outputStr = outputStr.decode('utf-8')
                    outputStr= outputStr.replace('\'','\""')
                    #print('ou',outputStr)
                    outputStr = outputStr.strip()
                    MLlite = json.loads(outputStr)
                    logsfile = MLlite['logfiles']
                    if MLlite['Convert'] == 'Success':
                        context = {'modelpath':modelpath,'deploypath':deploypath,'inputtype':modelinput,'outputtype':modeloutput,'Features':Features,'convert1':'convert1','convert':'convert','logfile':MLlite['logfiles'],'selected':'mllite','version':AION_VERSION}
                    else:
                        logfile = logsfile.replace('\\','@')
                        context = {'modelpath':modelpath,'deploypath':deploypath,'inputtype':modelinput,'outputtype':modeloutput,'Features':Features,'error1':'error1','convert':'convert','logfile':logfile,'selected':'mllite','version':AION_VERSION}
                except Exception as e:
                    print(e)
                    context = {'modelpath':modelpath,'deploypath':deploypath,'inputtype':modelinput,'outputtype':modeloutput,'Features':Features,'Notconvert':'Notconvert','convert':'convert','version':AION_VERSION}
            elif ( outputonnx ==""sagemaker"") :
                configFile = os.path.join(DEFAULT_FILE_PATH,  'model_converter.json')
                #print(configFile)
                f = open(configFile, ""r"")
                configSettings = f.read()
                f.close()
                configSettingsJson = json.loads(configSettings)
                configSettingsJson['modelInput'] = request.POST.get('ModelInput')
                #print('pushonly:',request.POST.get('sagemaker'))
                if request.POST.get('sagemaker') == 'CreateDeploy':
                    configSettingsJson['sagemakerDeploy'] = 'True'
                    configSettingsJson['deployExistingModel']['status'] = 'False'
                else:
                    configSettingsJson['sagemakerDeploy'] = 'False'
                    if request.POST.get('sagemaker') == 'DeployOnly':    
                        configSettingsJson['deployExistingModel']['status'] = 'True'
                    else:
                        configSettingsJson['deployExistingModel']['status'] = 'False'
                          
                #configSettingsJson['deployExistingModel']['status'] = request.POST.get('Status')
                configSettingsJson['deployExistingModel']['dockerImageName'] = request.POST.get('imagename')
                configSettingsJson['deployExistingModel']['deployModeluri'] = request.POST.get('deploymodel')
                configSettingsJson['modelOutput']['cloudInfrastructure'] = request.POST.get('problemname')
                configSettingsJson['endpointName'] = request.POST.get('endpointname')
               
                configSettingsJson['awsSagemaker']['awsID'] = request.POST.get('awskeyid1')
                configSettingsJson['awsSagemaker']['accesskeyID'] = request.POST.get('accesskey1')
                configSettingsJson['awsSagemaker']['secretAccesskey'] = request.POST.get('secretaccess1')
                configSettingsJson['awsSagemaker']['sessionToken'] = request.POST.get('token1')
                configSettingsJson['awsSagemaker']['region'] = request.POST.get('region1')
                configSettingsJson['awsSagemaker']['IAMSagemakerRoleArn'] = request.POST.get('fullaccess')
                
                conv = json.dumps(configSettingsJson)
                '''
                filetimestamp = str(int(time.time()))
                config_json_filename = os.path.join(CONFIG_FILE_PATH, 'Sagemaker' + filetimestamp + '.json')
                
                with open(config_json_filename, ""w"") as fpWrite:
                    fpWrite.write(conv)
                fpWrite.close()
                '''
                from bin.aion_sagemaker import aion_sagemaker
                aion_sagemaker(configSettingsJson)
                #print(conv)
                #scriptPath = os.path.normpath(os.path.join(os.path.dirname(os.path.abspath(__file__)), '..', '..','bin','run_sagemaker.py'))
                             
                #outputStr = subprocess.check_output([sys.executable, scriptPath, conv])
                #outputStr = outputStr.decode('utf-8')
                #outputStr=outputStr.strip()
                #print('kir',outputStr)
                
                context = {'convert':'convert','sagemaker1':'sagemaker1','mlflow':'mlflow','inputtype':modelinput,'outputtype':modeloutput,'deploy':outputStr,'selected':'mllite','version':AION_VERSION}
            
            else:
                context={'exception':'exception','error':'Please Enter Valid Inputs','selected':'mllite','version':AION_VERSION}
    except Exception as e:
        print(e)        
        context={'exception':'exception','error':'Error during Conversion','selected':'mllite','version':AION_VERSION}
    return render(request, 'ConvertOnnx.html',context) 

def sageprediction(request):
    #print(""=========asdecdefefefefefefefef======="")
    values = request.POST['value']
    keys = request.POST['keys']
    endpoint = request.POST['endpointname']
    x = keys.split("","")
    y = values.split("","")
    dictionary = {key:value for key, value in zip(x,y)}
    awsSagemaker={}
    awsSagemaker['awsID'] = request.POST['awsaccountid']
    awsSagemaker['accesskeyID'] = request.POST['accesskeyid']
    awsSagemaker['secretAccesskey'] = request.POST['secretaccesskey']
    awsSagemaker['sessionToken'] = request.POST['sessionToken']
    awsSagemaker['region'] = request.POST['region']
    configFile = os.path.join(DEFAULT_FILE_PATH, 'model_converter.json')
    f = open(configFile, ""r"")
    configSettings = f.read()
    f.close()
    configSettingsJson = json.loads(configSettings) 
    awsSagemaker['IAMSagemakerRoleArn'] = configSettingsJson['awsSagemaker']['IAMSagemakerRoleArn']
    configSettingsJson['awsSagemaker'] = awsSagemaker
    configSettingsJson['data'] = dictionary
    configSettingsJson['endpointName'] = endpoint
    configSettingsJson['prediction']['status'] = 'True'
    conv = json.dumps(configSettingsJson)
    scriptPath = os.path.normpath(os.path.join(os.path.dirname(os.path.abspath(__file__)), '..', '..','bin','run_sagemaker.py'))
    outputStr = subprocess.check_output([sys.executable, scriptPath, conv])
    outputStr = outputStr.decode('utf-8')
    outputStr = re.search(r'predictions:(.*)', str(outputStr), re.IGNORECASE).group(1)
    outputStr=outputStr.strip()
    output = json.loads(outputStr)
    if output['status'] == 'SUCCESS':
        outputStr = output['data']
        outputStr = pd.json_normalize(outputStr)
        outputStr = outputStr.to_html()
    else:
        outputStr = output['msg']
    return HttpResponse(outputStr)
            
def runtimeutility(request):
    if request.method == ""POST"":
        models = request.POST['model']
        datafile = request.POST['datafile']
        inputDataType = datafile.rsplit('.', 1)[1]
       
        
        if inputDataType.lower() == 'csv':
            values = request.POST['value']
            keys = request.POST['keys']
            x = keys.split("","")
            y = values.split("","")
             
            dictionary = {key:value for key, value in zip(x,y)}
            jsondata = json.dumps(dictionary, indent = 4)
            #print(jsondata)
           
            config_json_filename = os.path.join(DEFAULT_FILE_PATH, 'runtime.json')
            #print(config_json_filename)
            with open(config_json_filename, ""w"") as fpWrite:
                fpWrite.write(jsondata)
            fpWrite.close()  
                  
            from conversions.runtime_utility import runTimeTesting
            #scriptPath = os.path.normpath(os.path.join(os.path.dirname(os.path.abspath(__file__)), '..', '..','conversions', 'runtime_utility.py'))
            config_json_file = os.path.join(DEFAULT_FILE_PATH, 'runtime.json')           
            #outputStr = subprocess.check_output([sys.executable, scriptPath, models, config_json_file])
            #outputStr = outputStr.decode('utf-8')
            outputStr=runTimeTesting(models,config_json_file)
            # context = {'outputStr':outputStr,'modeltype':modeltype}
        else:
            from conversions.runtime_utility import runTimeTesting
            outputStr=runTimeTesting(models,datafile)             
            
    return HttpResponse(outputStr)"
mltest_views.py,"from django.shortcuts import render
from django.urls import reverse
from django.http import HttpResponse
from django.shortcuts import redirect
import json
from appbe.dataPath import DEFAULT_FILE_PATH
from appbe.dataPath import DATA_FILE_PATH
from appbe.dataPath import CONFIG_FILE_PATH
from appbe.dataPath import DEPLOY_LOCATION
from appbe.pages import getversion
AION_VERSION = getversion()
import os
import time
import subprocess
import sys
import re
import pandas as pd
def mltesting(request):
    from appbe.pages import mltesting_page
    context = mltesting_page(request)
    context['selected']='mltesting'
    context['version'] = AION_VERSION
    return render(request, 'mltesting.html',context)

def ABtest(request):
    try:
        if request.method == ""POST"":
           
            models = request.POST[""model""]
            data = request.POST[""data""]
            #context['version'] = AION_VERSION
            if(os.path.isfile(models) and os.path.isfile(data)):
            
                AlgorithmNames={'LogisticRegression':'Logistic Regression','SGDClassifier':'Stochastic Gradient Descent','GaussianNB':'Naive Bayes','SVC':'Support Vector Machine','KNeighborsClassifier':'K Nearest Neighbors','DecisionTreeClassifier':'Decision Tree','RandomForestClassifier':'Random Forest','GradientBoostingClassifier':'Gradient Boosting','XGBClassifier':'Extreme Gradient Boosting (XGBoost)','DecisionTreeRegressor':'Decision Tree','LinearRegression':'Linear Regression','Lasso':'Lasso','Ridge':'Ridge','RandomForestRegressor':'Random Forest','XGBRegressor':'Extreme Gradient Boosting (XGBoost)'}
                filetimestamp = str(int(time.time()))
                mltestjson = os.path.join(DEFAULT_FILE_PATH, 'aion_config.json')
                with open(mltestjson, 'r+') as f:
                    mltest = json.load(f)
                f.close()
             
                with open(request.session['MLTestResult'], 'r+') as f:
                    mltestresult = json.load(f)
                f.close()
                models = mltestresult['models']
                datapath = mltestresult['datap']
                featurs = mltestresult['feature']
                featurs = featurs.split("","")
                tar = mltestresult['target']
                tar = tar.split("","")
                # models,datap,Problemtype,targ,feature,Problem,Parameters,Accuracy
                # models,datap,Problemtype,targ,feature,Problem,Parameters,Accuracy
                mltest['basic']['modelName'] = 'MLtest_'+ str(filetimestamp)
                mltest['basic']['modelVersion'] = ""1""
                mltest['basic']['dataLocation'] = mltestresult['datap']
                mltest['basic']['deployLocation'] = DEPLOY_LOCATION
                mltest['basic']['trainingFeatures'] = mltestresult['feature']
                mltest['basic']['targetFeature'] = mltestresult['target']
                mltest['advance']['profiler']['featureDict']=[]
                temp = {}
                Problemtype =  mltestresult['Problemtype']
                if Problemtype == 'Classification':
                    Accuracyscore1 = mltestresult['Score']
                    Accuracyscore = float(Accuracyscore1)*100
                    temp['ScoringCriteria'] = 'Accuracy'
                else:
                    R2_Score = round(float(mltestresult['Score']),2)
                    temp['ScoringCriteria'] = 'R2'
                baselineparam = mltestresult['Params']
                temp['algorithm'] = []
                if request.session[""AionProblem""] == 'Samebaseline':
                    baselineprob = AlgorithmNames[mltestresult['ProblemName']]
                    temp['algorithm'].append(baselineprob)
                    
                else:
                    baselineprob = request.session[""AionProblem""]
                    temp['algorithm'] = baselineprob.split("","")
                #print(baselineprob)
                temp['ProblemType'] = Problemtype
                #temp['algorithm'] = ['K Nearest Neighbors']
                problemtyp = mltest['basic']['analysisType']
                scoring = mltest['basic']['scoringCriteria']
                for i in list(scoring.keys()):
                    for x in list(mltest['basic']['scoringCriteria'][i].keys()):
                        mltest['basic']['scoringCriteria'][i][x] = 'False'
                if temp['ProblemType'].lower() in [""classification"",""regression"",]:
                    mltest['basic']['scoringCriteria'][temp['ProblemType'][0].lower() + temp['ProblemType'][1:]][temp['ScoringCriteria']] = 'True' 
                for i in list(problemtyp.keys()):
                    mltest['basic']['analysisType'][i]='False'
                    
                algorithm = mltest['basic']['algorithms']
                for i in list(algorithm.keys()):
                    for x in list(mltest['basic']['algorithms'][i].keys()):
                            
                        mltest['basic']['algorithms'][i][x] = 'False'
                
                mltest['basic']['analysisType'][temp['ProblemType'][0].lower() + temp['ProblemType'][1:]] = 'True'
                for X in temp['algorithm']:
                    mltest['basic']['algorithms'][temp['ProblemType'][0].lower() + temp['ProblemType'][1:]][X] = 'True'
                mltest = json.dumps(mltest)
                config_json_filename = os.path.join(CONFIG_FILE_PATH, 'MLtest' + filetimestamp + '.json')
                with open(config_json_filename, ""w"") as fpWrite:
                    fpWrite.write(mltest)
                fpWrite.close()
                scriptPath = os.path.normpath(os.path.join(os.path.dirname(os.path.abspath(__file__)), '..', '..','aion.py'))
                outputStr = subprocess.check_output([sys.executable, scriptPath,'-m','training','-c',config_json_filename])
                outputStr = outputStr.decode('utf-8')
                outputStr = re.search(r'aion_learner_status:(.*)', str(outputStr), re.IGNORECASE).group(1)
                outputStr = outputStr.strip()
                decoded_data = json.loads(outputStr)
                #print(decoded_data)
                if decoded_data['data']['ScoreType'] == 'R2':
                    decoded_data['data']['BestScore'] = str(round(float(decoded_data['data']['BestScore']),2))
                if decoded_data['data']['ScoreType'].lower() == 'accuracy':
                    decoded_data['data']['BestScore'] = str(round(float(decoded_data['data']['BestScore']),2))
                #print(decoded_data)
                #print('123',Accuracyscore)
                if Problemtype == 'Classification':
                    
                    if Accuracyscore >= float(decoded_data['data']['BestScore']) :
                        context = {'modelname': models,'datapath':datapath,'features':featurs,'target':tar,'abtest':'abtest','message':'message','msg':'Existing model is good to be used.','classification':'classification','classuccess':'classuccess','selected':'mltesting','version':AION_VERSION}
                    else:
                        context = {'modelname': models,'datapath':datapath,'features':featurs,'target':tar,'tableab':'tableab','abtest':'abtest','decoded_data':decoded_data,'score':Accuracyscore,'basealgo':baselineprob,'Problem':AlgorithmNames[mltestresult['ProblemName']],'baseparm':baselineparam,'classification':'classification','classuccess':'classuccess','selected':'mltesting','version':AION_VERSION}
                else:
                    if R2_Score >= float(decoded_data['data']['BestScore']) :
                        context = {'modelname': models,'datapath':datapath,'features':featurs,'target':tar,'abtest':'abtest','message':'message','msg':'Existing model is good to be used.','regression':'regression','regsuccess':'regsuccess','selected':'mltesting'}
                    else:
                        context = {'modelname': models,'datapath':datapath,'features':featurs,'target':tar,'tableab':'tableab','abtest':'abtest','decoded_data':decoded_data,'score':R2_Score,'basealgo':baselineprob,'Problem':AlgorithmNames[mltestresult['ProblemName']],'baseparm':baselineparam,'regression':'regression','regsuccess':'regsuccess','selected':'mltesting','version':AION_VERSION}
            else:
                context= {'error':'Error - Model file or Data file does not exist','abtesting':'abtesting','selected':'mltesting'}
                context['version'] = AION_VERSION
        return render(request, 'mltesting.html', context)
    except Exception as e:
        print(e)    
        context= {'error':'Error - Fail to perform A/B Testing','abtesting':'abtesting','selected':'mltesting'}
        context['version'] = AION_VERSION
        return render(request, 'mltesting.html', context)    

def UQTesting(request):
    try:
        if request.method == ""POST"":
            models = request.POST['modeluq']
            datap = request.POST['datauq']
            if(os.path.isfile(models) and os.path.isfile(datap)):
                df = pd.read_csv(datap)
                trainfea = df.columns.tolist()
                
                featurs = request.POST.getlist('Traininguq')
                feature = "","".join(featurs)
                
                # features = ['PetalLengthCm','PetalWidthCm']
                targ = request.POST['Targetuq']
                tar =[targ]
              
                from bin.aion_uncertainties import aion_uq
                outputStr = aion_uq(models,datap,feature,tar)
                print(outputStr)
                uq_test = json.loads(outputStr)
                
                #print(""=============="")
                #print(uq_test)
                #print(""=============="")
                Problemtype= uq_test['Problem']
                msg = uq_test['msg']
                if Problemtype == 'Regression':
                    
                    # Confidence_Interval_Plot = uq_test['Confidence Interval Plot']
                    # #print(Confidence_Interval_Plot)
                    # if Confidence_Interval_Plot != '':
                        # string = base64.b64encode(open(Confidence_Interval_Plot, ""rb"").read())
                        # Confidence_Interval_Plot = 'data:image/png;base64,' + urllib.parse.quote(string)        
                    
                    # PICP_Plot = uq_test['PICP Plot']
                    # if PICP_Plot != '':
                        # string = base64.b64encode(open(PICP_Plot, ""rb"").read())
                        # PICP_Plot = 'data:image/png;base64,' + urllib.parse.quote(string)
                        
                    # Confidence_Plot = uq_test['Confidence Plot']
                    # if Confidence_Plot != '':
                        # string = base64.b64encode(open(Confidence_Plot, ""rb"").read())
                        # Confidence_Plot = 'data:image/png;base64,' + urllib.parse.quote(string)    
                    if msg == ""Good"":
                        context={'Uqtest':'Uqtest','regression':'regression','modelname':models,'datapath':datap,'features':featurs,'target':tar,'trainfea':trainfea,'uq_reg':uq_test,'uqregression':'uqregression','dfuqr':df,'Green':'Green','selected':'mllite','version':AION_VERSION}
                    elif msg == ""Bad"":
                        context={'Uqtest':'Uqtest','regression':'regression','modelname':models,'datapath':datap,'features':featurs,'target':tar,'trainfea':trainfea,'uq_reg':uq_test,'uqregression':'uqregression','dfuqr':df,'Red':'Red','selected':'mllite','version':AION_VERSION}
                    else:
                        context={'Uqtest':'Uqtest','regression':'regression','modelname':models,'datapath':datap,'features':featurs,'target':tar,'trainfea':trainfea,'uq_reg':uq_test,'uqregression':'uqregression','dfuqr':df,'orange':'orange','selected':'mllite','version':AION_VERSION}
                elif Problemtype == 'Classification':
                    
                    # df3 = pd.DataFrame.from_dict(uq_test,orient='index')
                    df3 = pd.DataFrame.from_dict(uq_test, orient='index', columns=['value'])
                    df3 = df3.rename_axis('Attributes').reset_index()        
                    # risk_plot = uq_test['Risk Plot']
                    # if risk_plot != '':
                        # string = base64.b64encode(open(risk_plot, ""rb"").read())
                        # risk_plot = 'data:image/png;base64,' + urllib.parse.quote(string)        
                    
                    # reliability_plot = uq_test['Reliability Plot']
                    # if reliability_plot != '':
                        # string = base64.b64encode(open(reliability_plot, ""rb"").read())
                        # reliability_plot = 'data:image/png;base64,' + urllib.parse.quote(string)
                        
                    df3['Attributes'] = df3['Attributes'].str.replace(r'_', ' ')
                    # df3.loc[(df3.Attributes == 'Model_total_confidence_score'),'Attributes']='Model Total Confidence'
                    # df3.loc[(df3.Attributes == 'Expected_Calibration_Error'),'Attributes']='Expected Calibration Error'
                    df3 = df3.iloc[4:, :]
                    report = df3.to_html(index=False)
                    
                    if msg == ""Good"": 
                        context={'Uqtest':'Uqtest','classification':'classification','modelname':models,'datapath':datap,'features':featurs,'target':tar,'uqclassification':'uqclassification','uq_class':uq_test,'report':report,'selected':'mltesting','selected':'mllite','version':AION_VERSION}
                    elif msg == ""Bad"": 
                        context={'Uqtest':'Uqtest','classification':'classification','modelname':models,'datapath':datap,'features':featurs,'target':tar,'uqclassification':'uqclassification','uq_class':uq_test,'report':report,'selected':'mltesting','selected':'mllite','version':AION_VERSION}
                    else:
                        context={'Uqtest':'Uqtest','classification':'classification','modelname':models,'datapath':datap,'features':featurs,'target':tar,'uqclassification':'uqclassification','uq_class':uq_test,'report':report,'selected':'mltesting','selected':'mllite','version':AION_VERSION}
                elif Problemtype == 'None':
                    #print('hi')
                    context={'Uqerror':'Uqerror','errormsg':""Error:""+str(msg),'version':AION_VERSION}
            else:
                context= {'error':'Please enter  valid inputs','UQtesting':'UQtesting','selected':'mllite','version':AION_VERSION}
        return render(request, 'mltesting.html', context)
    except Exception as e:
        print(""uqregression error: "",e)
        context= {'error':'Error - Fail to perform  Uncertainty Quantification ','UQtesting':'UQtesting','selected':'mllite','version':AION_VERSION}
        return render(request, 'mltesting.html', context)        "
trustedAI_views.py,"from django.shortcuts import render
from django.urls import reverse
from django.http import HttpResponse
from django.shortcuts import redirect
import json
from appbe.dataPath import DEFAULT_FILE_PATH
from appbe.dataPath import DATA_FILE_PATH
from appbe.dataPath import CONFIG_FILE_PATH
from appbe.dataPath import DEPLOY_LOCATION
from appbe.pages import getusercasestatus
import pandas as pd
import numpy as np
from appbe.pages import getversion
import logging
import json
import time
import os
from appbe import compute
AION_VERSION = getversion()
def sensitivityAnalysis(request):  #usnish
    from appbe.pages import usecases_page
    t1 = time.time()
    from appbe.telemetry import UpdateTelemetry
    UpdateTelemetry(request.session['usecaseid']+'-'+str(request.session['ModelVersion']),'TrustedAI','Yes')
    log = logging.getLogger('log_ux')
    computeinfrastructure = compute.readComputeConfig()
    selected_use_case = request.session['UseCaseName']
    ModelVersion = request.session['ModelVersion']

    try:
        from trusted_ai.sensitivity_analysis import startSA


        # request.session['deploypath'] = str(p.DeployPath)
        sensitivitystr= startSA(request)
        sensitivitystr = json.loads(sensitivitystr)

        ModelStatus = request.session['ModelStatus']
        if sensitivitystr['Status']=='Success':
            sensitivityGraph = sensitivitystr['graph']


            t2 = time.time()
            log.info('Sensitivity Analysis : ' + str(selected_use_case) + ' : ' + str(
                ModelVersion) + ' : ' + str(round(t2 - t1)) + ' sec' + ' : ' + 'Success')
            return HttpResponse(json.dumps(sensitivitystr))
        else:
            error = sensitivitystr['reason']
            raise Exception(error)
    except Exception as e:
        print(e)
        log.info('Sensitivity Analysis : ' + str(selected_use_case) + ' : ' + str(
            ModelVersion) + ' : ' + '0' + 'sec' + ' : ' + 'Error : Failed to Perform Sensitivity Analysis, ' + str(e))
        outputstr = json.dumps({'Status':'','msg':'Failed to Perform Sensitivity Analysis. '+str(e)})
        return HttpResponse(outputstr)
 
def handlefairness(request):
    from appbe.telemetry import UpdateTelemetry
    UpdateTelemetry(request.session['usecaseid']+'-'+str(request.session['ModelVersion']),'TrustedAI','Yes')
    updatedConfigFile = request.session['config_json']
    f = open(updatedConfigFile, ""r"")
    configSettings = f.read()
    f.close()
    configSettings = json.loads(configSettings)
    problemType = 'classification'
    for key in configSettings['basic']['analysisType']:
        if configSettings['basic']['analysisType'][key] == 'True':
            problemType = key
            break
    trainingfeature = configSettings['basic']['trainingFeatures']
    targetfeature = configSettings['basic']['targetFeature']
    featuretype = configSettings['advance']['profiler']['featureDict']
    catfeature = []
    for feat_conf in featuretype:
        colm = feat_conf.get('feature', '')
        if feat_conf['type'] == ""categorical"":
            catfeature.append(feat_conf['feature'])
    output={'targetfeature':targetfeature,'trainingfeature':trainingfeature,'catfeature':catfeature,'problemType':problemType}
    return HttpResponse(json.dumps(output))  

def fairnesmetrics(request):  #Richard--Task-13581
    from appbe.pages import usecases_page
    from appbe.telemetry import UpdateTelemetry
    UpdateTelemetry(request.session['usecaseid']+'-'+str(request.session['ModelVersion']),'TrustedAI','Yes')
    t1 = time.time()
    log = logging.getLogger('log_ux')
    selected_use_case,ModelVersion,ModelStatus = getusercasestatus(request)
    try:
        from trusted_ai.fairness_metrics import get_metrics  
        output = get_metrics(request)
        t2 = time.time()
        log.info('Fairness Metrics : ' + str(selected_use_case) + ' : ' + str(
        ModelVersion) + ' : ' + str(round(t2 - t1)) + ' sec' + ' : ' + 'Success')      
        return HttpResponse(output)
    except Exception as e:
        print(e)
        log.info('Fairness Metrics : ' + str(selected_use_case) + ' : ' + str(
            ModelVersion) + ' : ' + '0' + 'sec' + ' : ' + 'Error : Failed to diaplay Fairness Metrics, ' + str(e))
        return HttpResponse('')      

def performance_metrics(request):
    from appbe.pages import usecases_page
    from appbe.telemetry import UpdateTelemetry
    UpdateTelemetry(request.session['usecaseid']+'-'+str(request.session['ModelVersion']),'TrustedAI','Yes')
    t1 = time.time()
    log = logging.getLogger('log_ux')
    selected_use_case,ModelVersion,ModelStatus = getusercasestatus(request)
    try:
        from trusted_ai.performance import get_metrics  
        output = get_metrics(request)
        t2 = time.time()
        log.info('Performance Metrics : ' + str(selected_use_case) + ' : ' + str(
        ModelVersion) + ' : ' + str(round(t2 - t1)) + ' sec' + ' : ' + 'Success')   
        print( output)
        return HttpResponse(json.dumps(output))
    except Exception as e:
        print(e)
        log.info('Performance Metrics : ' + str(selected_use_case) + ' : ' + str(
            ModelVersion) + ' : ' + '0' + 'sec' + ' : ' + 'Error : Failed to diaplay Performance Metrics, ' + str(e))
        return HttpResponse('')  

def uquncertainty(request):
    from trusted_ai.trustedai_uq import trustedai_uq  
    from appbe.telemetry import UpdateTelemetry
    UpdateTelemetry(request.session['usecaseid']+'-'+str(request.session['ModelVersion']),'TrustedAI','Yes')
    output = trustedai_uq(request)      
    return HttpResponse(output)        

def uqtransparency(request):
    t1 = time.time()
    log = logging.getLogger('log_ux')
    from appbe.telemetry import UpdateTelemetry
    UpdateTelemetry(request.session['usecaseid']+'-'+str(request.session['ModelVersion']),'TrustedAI','Yes')
    selected_use_case = request.session['UseCaseName']
    model_version = request.session['ModelVersion']
    try:
        deploypath = request.session['deploypath']
        configpath = os.path.join(deploypath,'etc','display.json')
        f = open(configpath, ""r"")
        configSettings = f.read()
        f.close()
        configSettings = json.loads(configSettings)
        problemType = configSettings['problemType']
        model_Features = configSettings['modelFeatures']
        if problemType.lower() == 'classification':
            from trusted_ai.brier_score import get_brier_score  
            problem_type, brier_score = get_brier_score(request)       
            display_dict = {""ProblemType"":problem_type.title(),""BrierScore"":round(brier_score, 2),'model_Features':model_Features,'problemTypeuq':problemType}
        else:
            display_dict = {""ProblemType"":problemType,""BrierScore"":'','model_Features':model_Features,'problemTypeuq':problemType}
        display_json = json.dumps(display_dict)
        t2 = time.time()
        log.info('Brier Score : ' + str(selected_use_case) + ' : ' + str(
        model_version) + ' : ' + str(round(t2 - t1)) + ' sec' + ' : ' + 'Success')      
        return HttpResponse(display_json, content_type=""application/json"")
    except Exception as e:
        print(e)
        log.info('Brier Score : ' + str(selected_use_case) + ' : ' + str(
            model_version) + ' : ' + '0' + 'sec' + ' : ' + 'Error : Failed to diaplay Brier Score, ' + str(e))
        return HttpResponse('')    "
upload_views.py,"from django.shortcuts import render
from django.urls import reverse
from django.http import HttpResponse
from django.shortcuts import redirect
import json
from appbe.dataPath import DEFAULT_FILE_PATH
from appbe.dataPath import DATA_FILE_PATH
from appbe.dataPath import CONFIG_FILE_PATH
from appbe.dataPath import DEPLOY_LOCATION
from appbe.pages import getusercasestatus
import os
import plotly.graph_objects as go
import time
import sys
from pathlib import Path
import csv
import pandas as pd
import numpy as np
from appbe.pages import getversion
AION_VERSION = getversion()
def uploadedData(request):
    from appbe.dataIngestion import ingestDataFromFile
    context = ingestDataFromFile(request,DATA_FILE_PATH)
    context['version'] = AION_VERSION
    from appbe.aion_config import get_edafeatures
    No_of_Permissible_Features_EDA = get_edafeatures()
    context['FeturesEDA'] = No_of_Permissible_Features_EDA
    return render(request, 'upload.html', context)

def uploaddatafromscript(request):
    from appbe.aion_config import settings
    usecasetab = settings()
    from appbe import compute
    computeinfrastructure = compute.readComputeConfig()
    from appfe.modelTraining.models import Existusecases
    clusteringModels = Existusecases.objects.filter(Status='SUCCESS',ProblemType='unsupervised').order_by('-id')
    selected_use_case = request.session['UseCaseName']
    ModelVersion = request.session['ModelVersion']
    ModelStatus = request.session['ModelStatus']
    try:
        scriptPath = request.POST.get('pythonscriptPath')
        if(os.path.isfile(scriptPath) == False ):
            context = {'tab': 'upload', 'error': 'File does not exist', 'selected': 'modeltraning','clusteringModels':clusteringModels,'computeinfrastructure':computeinfrastructure,'selected_use_case': selected_use_case,
                           'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion}
            context['version'] = AION_VERSION
            return render(request, 'upload.html', context)
        if(scriptPath != ''):
            try:
                f = open(scriptPath, ""r"")
                pythoncode = f.read()
                f.close()
                ldict = {}
                exec(pythoncode, globals(), ldict)
            except Exception as e:
                context = {'tab': 'upload', 'error': 'Error in script execution i.e., '+str(e), 'selected': 'modeltraning','usecasetab':usecasetab,'clusteringModels':clusteringModels,'computeinfrastructure':computeinfrastructure,'selected_use_case': selected_use_case,
                           'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion}
                context['version'] = AION_VERSION
                return render(request, 'upload.html', context)  
            if 'dfpy' not in ldict:
                context = {'tab': 'upload', 'error': 'dfpy dataset not found', 'selected': 'modeltraning','usecasetab':usecasetab,'clusteringModels':clusteringModels,'computeinfrastructure':computeinfrastructure,'selected_use_case': selected_use_case,
                           'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion}
                context['version'] = AION_VERSION
                return render(request, 'upload.html', context)  
            raw_data = ''
            if 'df_aion_raw' in ldict:
                df_raw = ldict['df_aion_raw']
                raw_data = df_raw.to_json(orient=""records"")
                raw_data = json.loads(raw_data)
            df = ldict['dfpy']
            filetimestamp = str(int(time.time()))
            dataFile = os.path.join(DATA_FILE_PATH, 'AION_' + filetimestamp+'.csv')
            request.session['datalocation'] = str(dataFile)
            df.to_csv(dataFile, index=False)
            df_top = df.head(10)
            df_json = df_top.to_json(orient=""records"")
            df_json = json.loads(df_json)
            statusmsg = 'Data File Uploaded Successfully '
            request.session['currentstate'] = 0
            request.session['finalstate'] = 0
            request.session['datatype'] = 'Normal'
            from appbe.aion_config import get_edafeatures
            No_of_Permissible_Features_EDA = get_edafeatures()         
            context = {'tab': 'tabconfigure','FeturesEDA':No_of_Permissible_Features_EDA,'computeinfrastructure':computeinfrastructure,'raw_data':raw_data,'data': df_json,'status_msg': statusmsg,'selected_use_case': selected_use_case,
                           'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion,'selected': 'modeltraning',
                           'currentstate': request.session['currentstate'], 'finalstate': request.session['finalstate'],'exploratory':False,'usecasetab':usecasetab}
            return render(request, 'upload.html', context)
        else:
            from appfe.modelTraining.models import Existusecases
            clusteringModels = Existusecases.objects.filter(Status='SUCCESS',ProblemType='unsupervised').order_by('-id')
            context = {'tab': 'upload','computeinfrastructure':computeinfrastructure, 'error': 'Please enter script path', 'selected': 'modeltraning','usecasetab':usecasetab,'clusteringModels':clusteringModels,'selected_use_case': selected_use_case,
                           'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion}
            return render(request, 'upload.html', context)
    except:
        from appfe.modelTraining.models import Existusecases
        clusteringModels = Existusecases.objects.filter(Status='SUCCESS',ProblemType='unsupervised').order_by('-id')
        return render(request, 'upload.html', {'tab': 'upload','clusteringModels':clusteringModels,'selected': 'modeltraning','computeinfrastructure':computeinfrastructure,'error':'Fail to upload data from script','selected_use_case': selected_use_case,
                           'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion})

def listfiles(request):
    from appbe.labels import label_filename
    selected_use_case,ModelVersion,ModelStatus = getusercasestatus(request)
    from appbe import compute    
    computeinfrastructure = compute.readComputeConfig()
    path = request.POST.get('scriptPath')
    print(path)
    dirstatus = os.path.isdir(path)
    import glob
    try:
        if(path != '' and dirstatus == True):   
            radiovalue = request.POST.get('filetype')
            # create csv
            filetimestamp = str(int(time.time()))
            header = ['File', 'Label']
            filename = 'AION_List_' + selected_use_case + '.csv'
            dataFile = os.path.join(DATA_FILE_PATH, filename)
            csvfilename = 'AION_List_' + filetimestamp
            request.session['csvfilename'] = dataFile
            request.session['datalocation'] = path
            type = 'NA'
            request.session['fileExtension'] = radiovalue
            if radiovalue in ['avi', 'wmv', 'mp4']:
                if request.POST.get('computeInfrastructure') in ['AWS','GCP']:
                    request.session['datatype'] = 'LLM_Video'
                    type = 'LLM_Video'      
                else:
                    request.session['datatype'] = 'Video'
                    type = 'Video'      
            elif radiovalue in ['jpeg', 'png', 'bmp']:
                if request.POST.get('computeInfrastructure') in ['AWS','GCP']:
                    request.session['datatype'] = 'LLM_Image'
                    type = 'LLM_Image'      
                else:
                    request.session['datatype'] = 'Image'
                    type = 'Image'
            elif radiovalue in ['txt', 'log', 'pdf','docs','docx','doc']:
                if request.POST.get('computeInfrastructure') in ['AWS','GCP']:
                    request.session['datatype'] = 'LLM_Document'
                    type = 'LLM_Document'      
                else:
                    request.session['datatype'] = 'Document'        
                    type = 'Document'
            elif radiovalue in ['java','py']:
                if request.POST.get('computeInfrastructure') in ['AWS','GCP']:
                    request.session['datatype'] = 'LLM_Code'
                    type = 'LLM_Code'      
                else:
                    request.session['datatype'] = 'Code'        
                    type = 'Document'        
            if type == 'NA':
                context = {'tab': 'upload', 'error': 'Please select the type', 'selected': 'modeltraning','computeinfrastructure':computeinfrastructure,'version':AION_VERSION, 'selected_use_case': selected_use_case,'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion}
                return render(request, 'upload.html', context)
            request.session['folderPath'] = path
            request.session['csvfullpath'] = dataFile
            file = open(dataFile, 'w', newline='')
            writer = csv.DictWriter(file, fieldnames=header)
            # writing data row-wise into the csv file
            writer.writeheader()
            #os.chdir(path)
            tifCounter = 0
            if radiovalue == 'doc':
                tifCounter = len(glob.glob(os.path.join(path,""**/*.""+'doc'),recursive=True))
                tifCounter = tifCounter+len(glob.glob(os.path.join(path,""**/*.""+'docx'),recursive=True) )

            else:
                tifCounter = len(glob.glob(os.path.join(path, ""**/*."" + radiovalue), recursive=True))
            if radiovalue == 'jpeg':
                tifCounter += len(glob.glob1(path,""*.jpg""))
            labelfileexists = False
            dflabels = pd.DataFrame()
            if type == 'Image':
                
                labelfilename = label_filename(request)
                labelfileexists = os.path.isfile(labelfilename)
                if labelfileexists == True:
                    dflabels = pd.read_csv(labelfilename)
                    if len(dflabels) == 0:
                        labelfileexists = False
                    else:
                        dflabels = dflabels.head(5)
            if tifCounter == 0:
                context = {'tab': 'upload', 'error': 'No files in the folder with selected file type', 'selected': 'modeltraning','selected_use_case': selected_use_case,'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion,'labelfileexists':labelfileexists,'dflabels':dflabels,'computeinfrastructure':computeinfrastructure,'version':AION_VERSION}
                return render(request, 'upload.html', context)
            filesCount = 0
            filesSize = 0
            files=[]


            for filename in glob.iglob(os.path.join(path, ""**/*."" + radiovalue), recursive=True):
                files.append(filename)
            if radiovalue == 'doc':
                for filename in glob.iglob(os.path.join(path, ""**/*."" + 'docx'), recursive=True):
                    files.append(filename)
            for filename in files:
                filesCount = filesCount+1
                writer.writerow({'File': filename, 'Label': ''})
                get_size = os.path.getsize(filename)
                filesSize = round(filesSize + get_size, 1)
                
            if filesSize > 1048576:    
                size = round((filesSize / (1024 * 1024)), 1)
                filesSize = str(size) + ' M'
            elif filesSize > 1024:
                size = round((filesSize /1024), 1)
                filesSize = str(size) + ' K'
            else:
                filesSize = str(filesSize) + ' B'        
            files = pd.DataFrame(files,columns=['File'])
            files.index = range(1, len(files) + 1)
            files.reset_index(level=0, inplace=True)
            files = files.to_json(orient=""records"")
            files = json.loads(files)
            if radiovalue == 'jpeg':
                for filename in glob.iglob(os.path.join(path,""**/*.jpg""), recursive=True):
                    writer.writerow({'File': filename, 'Label': ''})
            from appbe.aion_config import get_edafeatures                        
            No_of_Permissible_Features_EDA = get_edafeatures()
            #filesSize = str(filesSize)+' M'
            print(filesSize)
            print(filesCount)
            context = {'tab': 'upload','files':files,'filesCount':filesCount,'filesSize':filesSize,'filelist':dataFile,'finalstate':0, 'file': dataFile,'FeturesEDA':No_of_Permissible_Features_EDA, 'csvfilename': csvfilename,'type':type,'csvgenerated': True,'selected_use_case': selected_use_case,'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion,'labelfileexists':labelfileexists,'dflabels':dflabels,'computeinfrastructure':computeinfrastructure,'version':AION_VERSION,""selectedfile"":radiovalue,""selectedPath"":path}
            return render(request, 'upload.html', context)
        else:
            context = {'tab': 'upload', 'error': 'Error: Folder path either not entered or does not exists.', 'modeltraning': 'prediction','selected_use_case': selected_use_case,'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion,'computeinfrastructure':computeinfrastructure,'version':AION_VERSION,""selectedfile"":radiovalue,""selectedPath"":path}
            return render(request, 'upload.html', context)
    except Exception as e:
        print(e)
        return render(request, 'upload.html', {'tab': 'upload','error':'Folder path is mandatory','version':AION_VERSION,'computeinfrastructure':computeinfrastructure, 'selected_use_case': selected_use_case,'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion})

def validatecsv(request):
    from appbe.aion_config import settings
    usecasetab = settings()
    from appbe import exploratory_Analysis as ea
    from appbe.labels import label_filename
    try:
        selected_use_case,ModelVersion,ModelStatus = getusercasestatus(request)
        from appbe import compute
        computeinfrastructure = compute.readComputeConfig()
        #print(request.POST.get('validatesubmit'))
        if request.POST.get('validatesubmit') == 'ObjectDetection':     
            df = pd.read_csv(request.session['csvfullpath'])
            dataFile = label_filename(request)
            request.session['LabelFileName'] = dataFile
            request.session['currentIndex'] = 0
            request.session['endIndex'] = len(df)-1
            not_end = not(request.session['currentIndex'] == request.session['endIndex'])
            filePath = os.path.join(request.session['datalocation'],df[""File""].iloc[request.session['currentIndex']])
            string = base64.b64encode(open(filePath, ""rb"").read())
            image_64 = 'data:image/png;base64,' + urllib.parse.quote(string)
            request.session['labels'] = []
            if os.path.isfile(dataFile):
                image = df[""File""].iloc[request.session['currentIndex']]    
                with open(dataFile, 'r') as file:
                    reader = csv.reader(file)
                    for row in reader:
                        if row[0] == image:
                            labels = request.session['labels']
                            labels.append({""id"":row[1], ""name"":row[9], ""xMin"": row[3], ""xMax"":row[4], ""yMin"":row[5], ""yMax"":row[6], ""height"":row[7],""width"":row[8], ""angle"":row[2]})
                            request.session['labels'] = labels
                labels = request.session['labels']
            else:
                with open(dataFile,'w') as f:
                    f.write(""File,id,angle,xmin,xmax,ymin,ymax,height,width,Label\n"")
                f.close()            
            bounds = []
            context = {'tab': 'upload','bounds':bounds,'labels': request.session['labels'],'directory':request.session['datalocation'],'image':image_64,'head':request.session['currentIndex']+1,'len':len(df),'filelist':df,'computeinfrastructure':computeinfrastructure} 
            context['version'] = AION_VERSION
            return render(request, 'objectlabelling.html', context)
        elif request.POST.get('validatesubmit') == 'bulkLabeling':  
            type = 'BulkImage'
            dataFile =  request.session['csvfullpath']
            csvfilename = request.session['csvfullpath'] 
            labelfileexists = False
            dflabels = pd.DataFrame()
            context = {'tab': 'upload', 'file': dataFile, 'csvfilename': csvfilename,'type':type,'csvgenerated': True,'selected_use_case': selected_use_case,'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion,'labelfileexists':labelfileexists,'dflabels':dflabels,'computeinfrastructure':computeinfrastructure}
            context['version'] = AION_VERSION
            return render(request, 'upload.html', context)
        elif request.POST.get('validatesubmit') == 'ImageClassification':
            df = pd.read_csv(request.session['csvfullpath'])     
            dataFile = label_filename(request)
            request.session['LabelFileName'] = dataFile
            with open(dataFile,'w') as f:
                f.write(""File,Label\n"")
            f.close()    
            request.session['currentIndex'] = 0
            request.session['endIndex'] = len(df)-1
            not_end = not(request.session['currentIndex'] == request.session['endIndex'])
            filePath = os.path.join(request.session['datalocation'],df[""File""].iloc[request.session['currentIndex']])
            string = base64.b64encode(open(filePath, ""rb"").read())
            request.session['labels'] = ''
            image_64 = 'data:image/png;base64,' + urllib.parse.quote(string)
            context = {'tab': 'upload','id':request.session['currentIndex'],'labels': request.session['labels'],'image':image_64,'head':request.session['currentIndex']+1,'len':len(df),'computeinfrastructure':computeinfrastructure} 
            context['version'] = AION_VERSION
            return render(request, 'imagelabelling.html', context)
        elif request.POST.get('validatesubmit') == 'submitpreviouslabel':
            dataFile = label_filename(request)
            request.session['LabelFileName'] = dataFile
            df = pd.read_csv(dataFile)
            if len(df.columns) == 2:
                context = imageeda(request)
                context['version'] = AION_VERSION
                return render(request, 'upload.html', context)     
            else:
                context = objecteda(request)
                context['version'] = AION_VERSION
                return render(request, 'upload.html', context)
        else:
            df = pd.read_csv(request.session['csvfullpath'])
            
            if request.session['datatype'] in ['LLM_Document','LLM_Code']:
                from appfe.modelTraining.bc_views import basicconfig
                return basicconfig(request)
            else:    
                if df['Label'].isnull().sum() > 0:
                    # show error message
                    if request.session['datatype'] == 'Document':
                    
                        dataDf = pd.DataFrame()
                        
                        dataDict = {}
                        keys = [""text""]
                        for key in keys:
                            dataDict[key] = []
                        for i in range(len(df)):
                            filename = os.path.join(request.session['datalocation'],df.loc[i,""File""])
                            
                            if Path(filename).suffix == '.pdf':
                                from appbe.dataIngestion import pdf2text
                                text = pdf2text(filename)
                                dataDict[""text""].append(text)     
                            else:
                                with open(filename, ""r"",encoding=""utf-8"") as f:
                                    dataDict[""text""].append(f.read())
                                f.close()   
                        dataDf = pd.DataFrame.from_dict(dataDict)   
                        tcolumns=['text']       
                        wordcloudpic,df_text = ea.getWordCloud(dataDf,tcolumns)
                        status_msg = 'Successfully Done'
                        firstFile = pd.DataFrame()
                        context = {'tab': 'upload','firstFile':firstFile,'singletextdetails':wordcloudpic,'status_msg': status_msg,'validcsv': True,'computeinfrastructure':computeinfrastructure,'usecasetab':usecasetab,'selected_use_case': selected_use_case,'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion}      
                    else:
                        errormessage = str(df['Label'].isnull().sum()) + "" rows do not contain label values""
                        context = {'error': errormessage}
            
                else:
                    eda_result = ''  
                    duplicate_img = ''
                    color_plt = '' 
                    df2 = df.groupby('Label', as_index=False)['File'].count().reset_index().rename(columns ={'File':'Number of Files'})
                    df_json = df2.to_json(orient=""records"")
                    df_json = json.loads(df_json)
                    cfig = go.Figure()
                    xaxis_data = df2['Label'].tolist()
                    yaxis_data = df2['Number of Files'].tolist()
                    cfig.add_trace(go.Bar(x=xaxis_data, y=yaxis_data))
                    cfig.update_layout(barmode='stack', xaxis_title='Label', yaxis_title='File')
                    bargraph = cfig.to_html(full_html=False, default_height=450, default_width=520)
                    firstFile = df.groupby('Label').first().reset_index()
                    #firstFile['FilePath'] = firstFile['File'].apply(lambda x: os.path.join(request.session['datalocation'], x))
                    images = []
                    if request.session['datatype'] == 'Image':
                        qualityscore,eda_result,duplicate_img,color_plt = ia.analysis_images(request.session['datalocation'])
                        #print(qualityscore)
                        for i in range(len(firstFile)):
                            filename = firstFile.loc[i, ""File""]
                            filePath = os.path.join(request.session['datalocation'], filename)
                            string = base64.b64encode(open(filePath, ""rb"").read())
                            image_64 = 'data:image/png;base64,' + urllib.parse.quote(string)
                            firstFile.loc[i, ""Image""] = image_64
                            firstFile.loc[i, ""Quality""] = qualityscore[filename]
                 
                    elif request.session['datatype'] == 'Document':
                        dataDrift = ''      
                        dataDf = pd.DataFrame()
                        dataDict = {}
                        keys = [""text"",""Label""]
                        for key in keys:
                            dataDict[key] = []
                        for i in range(len(df)):
                            filename = os.path.join(request.session['datalocation'],df.loc[i,""File""])
                            if Path(filename).suffix == '.pdf':
                                from appbe.dataIngestion import pdf2text
                                text = pdf2text(filename)
                                dataDict[""text""].append(text) 
                                dataDict[""Label""].append(df.loc[i,""Label""])                                
                            else:
                                with open(filename, ""r"",encoding=""utf-8"") as f:
                                    dataDict[""text""].append(f.read())
                                f.close()   
                                dataDict[""Label""].append(df.loc[i,""Label""])
                        dataDf = pd.DataFrame.from_dict(dataDict)
                        wordcloudpic = ea.getCategoryWordCloud(dataDf)
                        status_msg = 'Successfully Done'
                        firstFile = pd.DataFrame()
                        context = {'tab': 'upload','firstFile':firstFile,'dataa': df_json,'textdetails':wordcloudpic,'featuregraph': bargraph,'status_msg': status_msg,'validcsv': True,'computeinfrastructure':computeinfrastructure,'usecasetab':usecasetab,'selected_use_case': selected_use_case,'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion}
                        return render(request, 'upload.html', context)                 
                    status_msg = 'Successfully Done'
                    selected_use_case = request.session['UseCaseName']
                    ModelVersion = request.session['ModelVersion']
                    ModelStatus = request.session['ModelStatus']
                    context = {'tab': 'upload', 'featuregraph': bargraph,'dataa': df_json, 'selected_use_case': selected_use_case,
                           'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion, 'validcsv': True,'eda_result':eda_result,'duplicate_img':duplicate_img,'color_plt':color_plt, 'firstFile': firstFile,
                           'status_msg': status_msg,'computeinfrastructure':computeinfrastructure,'usecasetab':usecasetab}
                    context['version'] = AION_VERSION

            return render(request, 'upload.html', context)
    except UnicodeDecodeError:        
        exc_type, exc_obj, exc_tb = sys.exc_info()
        fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
        print(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))
        return render(request, 'upload.html', {'tab': 'upload','selected_use_case': selected_use_case,'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion,'error':'Only utf8 file encoding supported','computeinfrastructure':computeinfrastructure})    
    except Exception as e:
        print(e)
        exc_type, exc_obj, exc_tb = sys.exc_info()
        fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
        print(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))
        return render(request, 'upload.html', {'tab': 'upload','selected_use_case': selected_use_case,'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion,'error':'Validation Failed','computeinfrastructure':computeinfrastructure})
        
def file_successfully_created(request,dataFile):
    from appbe import compute
    computeinfrastructure = compute.readComputeConfig()
    selected_use_case,ModelVersion,ModelStatus = getusercasestatus(request)
    try:
        request.session['datalocation'] = str(dataFile)
        request.session['delimiter'] = ','
        request.session['textqualifier'] = '""'
        from appbe.eda import ux_eda
        eda_obj = ux_eda(dataFile,optimize=1)
        featuresList,datetimeFeatures,sequenceFeatures,constantFeature,textFeature,targetFeature,numericCatFeatures,numericFeature,catFeature = eda_obj.getFeatures()
        # ----------------------------
            
        numberoffeatures = len(featuresList)       
        from appfe.modelTraining.views import getimpfeatures
        imp_features = getimpfeatures(dataFile,numberoffeatures)    
        samplePercentage = 100
        samplePercentval = 0
        showRecommended = False 
        from utils.file_ops import read_df
        status,df_top = read_df(dataFile,nrows=10)
        df_json = df_top.to_json(orient=""records"")
        df_json = json.loads(df_json)
        statusmsg = 'Data File Uploaded Successfully '
        request.session['currentstate'] = 0
        request.session['finalstate'] = 0
        request.session['datatype'] = 'Normal'
        from appbe.aion_config import get_edafeatures 
        No_of_Permissible_Features_EDA = get_edafeatures()
        context = {'tab': 'tabconfigure','computeinfrastructure':computeinfrastructure,'range':range(1,101),'FeturesEDA':No_of_Permissible_Features_EDA,'samplePercentage':samplePercentage, 'samplePercentval':samplePercentval, 'showRecommended':showRecommended,'featuresList':featuresList,'data': df_json,'status_msg': statusmsg,'selected_use_case': selected_use_case,
                           'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion,'selected': 'modeltraning',
                           'imp_features':imp_features, 'numberoffeatures':numberoffeatures,
                           'currentstate': request.session['currentstate'], 'finalstate': request.session['finalstate'],'exploratory':False}
        context['version'] = AION_VERSION
        return render(request, 'upload.html', context)
    except Exception as e:
        print(e)
        return render(request, 'upload.html', {'error':'Failed to upload Data','selected_use_case': selected_use_case,'computeinfrastructure':computeinfrastructure,'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion,'selected': 'modeltraning'})
    
def uploadDatafromSatandardDataset(request):
    from appbe import compute
    computeinfrastructure = compute.readComputeConfig()
    try:
        dataobject = request.POST.get('dataset')
        if dataobject == 'Iris':
            from sklearn.datasets import load_iris
            data = load_iris()
            df = pd.DataFrame(data.data, columns=data.feature_names)
            df['Species']=data['target']
            df['Species']=df['Species'].apply(lambda x: data['target_names'][x])
        elif dataobject == 'Boston':
            from sklearn.datasets import load_boston
            df1 = load_boston()
            df = pd.DataFrame(data=df1.data, columns=df1.feature_names)
            df[""target""] = df1.target
        elif dataobject == 'BreastCancer':
            from sklearn.datasets import load_breast_cancer
            cancer = load_breast_cancer()
            df = pd.DataFrame(np.c_[cancer['data'], cancer['target']],columns= np.append(cancer['feature_names'], ['target']))
        elif dataobject == 'Diabetes':
            from sklearn.datasets import load_diabetes
            data = load_diabetes()
            df = pd.DataFrame(data.data, columns=data.feature_names)
            df['y']=data['target']
        elif dataobject == 'Wine':
            from sklearn.datasets import load_wine
            data = load_wine()
            df = pd.DataFrame(data.data, columns=data.feature_names)
            df['class']=data['target']
            df['class']=df['class'].apply(lambda x: data['target_names'][x])
        filetimestamp = str(int(time.time()))
        dataFile = os.path.join(DATA_FILE_PATH, 'AION_' + filetimestamp+'.csv')
        request.session['datalocation'] = str(dataFile)
        df.to_csv(dataFile, index=False)
        request.session['delimiter'] = ','
        request.session['textqualifier'] = '""'
        # EDA Subsampling changes
        # ----------------------------
        from appbe.eda import ux_eda
        eda_obj = ux_eda(dataFile)
        featuresList,datetimeFeatures,sequenceFeatures,constantFeature,textFeature,targetFeature,numericCatFeatures,numericFeature,catFeature = eda_obj.getFeatures()
        # ----------------------------
        
        numberoffeatures = len(featuresList)                               
        from appfe.modelTraining.views import getimpfeatures
        imp_features = getimpfeatures(dataFile,numberoffeatures)


        samplePercentage = 100
        samplePercentval = 0
        showRecommended = False 
        df_top = df.head(10)
        df_json = df_top.to_json(orient=""records"")
        df_json = json.loads(df_json)
        statusmsg = 'Data File Uploaded Successfully '
        selected_use_case = request.session['UseCaseName']
        ModelVersion = request.session['ModelVersion']
        ModelStatus = request.session['ModelStatus']
        request.session['currentstate'] = 0
        request.session['finalstate'] = 0
        request.session['datatype'] = 'Normal'
        from appbe.aion_config import get_edafeatures 
        No_of_Permissible_Features_EDA = get_edafeatures()
        from appfe.modelTraining.models import Existusecases
        clusteringModels = Existusecases.objects.filter(Status='SUCCESS',ProblemType='unsupervised').order_by('-id')
        context = {'tab': 'tabconfigure','computeinfrastructure':computeinfrastructure,'range':range(1,101),'FeturesEDA':No_of_Permissible_Features_EDA,'samplePercentage':samplePercentage, 'samplePercentval':samplePercentval, 'showRecommended':showRecommended,'featuresList':featuresList,'data': df_json,'status_msg': statusmsg,'selected_use_case': selected_use_case,'clusteringModels':clusteringModels,
                           'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion,'selected': 'modeltraning',
                           'imp_features':imp_features, 'numberoffeatures':numberoffeatures,
                           'currentstate': request.session['currentstate'], 'finalstate': request.session['finalstate'],'exploratory':False}
        context['version'] = AION_VERSION
        return render(request, 'upload.html', context)
    except Exception as e:
        print(e)
        return render(request, 'upload.html', {'error':'Failed to upload Data','selected_use_case': selected_use_case,'computeinfrastructure':computeinfrastructure,'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion,'selected': 'modeltraning'})

def sqlAlchemy(request):
    from appbe import alchemy
    selected_use_case,ModelVersion,ModelStatus = getusercasestatus(request) 
    dbType = request.POST.get('dbType')
    request.session['dbType'] = dbType
    from appbe import compute    
    computeinfrastructure = compute.readComputeConfig()
    from appbe.aion_config import get_edafeatures     
    No_of_Permissible_Features_EDA = get_edafeatures()
    if dbType.lower() == ""sqlite"":
        request.session['filepath'] = request.POST.get('filepath')
        request.session['tablenamesql'] = request.POST.get('tablenamesql')
        table_details = {""Database Type"": dbType, ""File Path"": request.session['filepath']}
    if dbType.lower() in [""postgresql"", ""mysql"", ""mssql""]:
        if dbType.lower()=='mssql':
            db = ""mssql""
        else:
            db = ""postgresql""
        request.session['tablename'] = request.POST.get('tablename'+'_'+db)
        request.session['dbname'] = request.POST.get('dbname'+'_'+db)
        request.session['password'] = request.POST.get('password'+'_'+db)
        request.session['username'] = request.POST.get('username'+'_'+db)
        request.session['port'] = request.POST.get('port'+'_'+db)
        request.session['host'] = request.POST.get('host'+'_'+db)
        table_details = {""Database Type"": dbType, ""Database Name"": request.session['dbname'],
                         ""Host"": request.session['host'], ""Port"": request.session['port']}

        if dbType.lower() == ""mssql"":
            request.session['driver'] = request.POST.get('driver'+'_'+db)
            table_details.update({""driver"": request.session['driver']})
    request.session['currentstate'] = 0
    request.session['finalstate'] = 0
    request.session['datatype'] = 'Normal'
    #print(dbType)
    submit_button = request.POST.get('sql_submit')
    if submit_button == 'multitable':
        try:
            connection_string = alchemy.get_connection(request)
            import sqlalchemy as db
            engine = db.create_engine(connection_string)
            engine.connect()
            request.session['currentstate'] = 0
            request.session['finalstate'] = 0
            request.session['datatype'] = 'Normal'
            print(request.POST.get('dbType'))
            context = {'tab': 'tabconfigure','FeturesEDA':No_of_Permissible_Features_EDA,'computeinfrastructure':computeinfrastructure,'selected_use_case': selected_use_case,
                               'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion,'selected': 'modeltraning',
                               'currentstate': request.session['currentstate'], 'finalstate': request.session['finalstate'],'version':AION_VERSION}
            context.update({'db_details':table_details})
            return render(request, 'querybuildersql.html', context)
        except Exception as e:
            print(str(e))
            if ""No module named 'psycopg2'"" in str(e):
                error = 'Not found module: psycopg2. Please install and try again'
            else:
                error = 'Error in connecting to the database'
            return render(request, 'upload.html', {'tab': 'tabconfigure', 'selected_use_case': selected_use_case,'computeinfrastructure':computeinfrastructure,
                                                       'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion,
                                                       'selected': 'modeltraning', 'version': AION_VERSION,
                                                       'error': error})
            
    else:
        try:

            df = alchemy.getDataFromSingleTable(request)
            
            filetimestamp = str(int(time.time()))
            dataFile = os.path.join(DATA_FILE_PATH, 'AION_' + filetimestamp+'.csv')
            request.session['datalocation'] = str(dataFile)
            df.to_csv(dataFile, index=False)
            df_top = df.head(10)
            df_json = df_top.to_json(orient=""records"")
            df_json = json.loads(df_json)
            statusmsg = 'Data File Uploaded Successfully '
            request.session['currentstate'] = 0
            request.session['finalstate'] = 0
            request.session['datatype'] = 'Normal'
            context = {'tab': 'tabconfigure','data': df_json,'status_msg': statusmsg,'selected_use_case': selected_use_case,'computeinfrastructure':computeinfrastructure,'FeturesEDA':No_of_Permissible_Features_EDA,
                               'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion,'selected': 'modeltraning',
                               'currentstate': request.session['currentstate'], 'finalstate': request.session['finalstate'],'exploratory':False}
            context['version'] = AION_VERSION
            return render(request, 'upload.html', context)
        except Exception as e:
            print(e)
            if ""No module named 'psycopg2'"" in str(e):
                context = {'tab': 'upload','computeinfrastructure':computeinfrastructure,'selected_use_case': selected_use_case,'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion,""error"":""Not found module: psycopg2. Please install and try again""}
            else:
                context = {'tab': 'upload','computeinfrastructure':computeinfrastructure,'selected_use_case': selected_use_case,'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion,""error"":""Error in fetching the data from database.""}
            context['version'] = AION_VERSION
            return render(request, 'upload.html', context)   

def get_table_list(request):
    from appbe import alchemy
    dbType = request.session['dbType']
    table_list = alchemy.list_tables(request)
    #print(json.dumps(table_list))
    return HttpResponse(json.dumps(table_list), content_type=""application/json"")
    
def get_tables_fields_list(request):
    from appbe import alchemy    
    table_list = request.GET.get(""sel_tables"")
    
    table_field_list = alchemy.list_tables_fields(request,table_list)
    
    return HttpResponse(table_field_list, content_type=""application/json"")
    
def validate_query(request):
    from appbe import alchemy
    query = request.GET.get(""query"")
    table_details = request.GET.get(""table_details"")
    join_details = request.GET.get(""join_details"")
    where_details = request.GET.get(""where_details"")
    request.session[""table_details""]=table_details
    request.session[""join_details""]=join_details
    request.session[""where_details""]=where_details
    df,msg = alchemy.validatequery(request,table_details,join_details,where_details)
    return HttpResponse(json.dumps(msg), content_type=""application/json"")
        
    
def submitquery(request):
    from appbe import alchemy
    from appbe import compute     
    selected_use_case = request.session['UseCaseName']
    ModelVersion = request.session['ModelVersion']
    ModelStatus = request.session['ModelStatus']
    computeinfrastructure = compute.readComputeConfig()    
    try:
        query = request.POST.get(""txtfinalquery"")
        table_details = request.session[""table_details""]
        join_details = request.session[""join_details""]
        where_details = request.session[""where_details""]    
        df,msg = alchemy.validatequery(request,table_details,join_details,where_details)
        filetimestamp = str(int(time.time()))
        dataFile = os.path.join(DATA_FILE_PATH, 'AION_' + filetimestamp+'.csv')
        request.session['datalocation'] = str(dataFile)
        df.to_csv(dataFile, index=False)
        df_top = df.head(10)
        df_json = df_top.to_json(orient=""records"")
        df_json = json.loads(df_json)
        statusmsg = 'Data File Uploaded Successfully '
        selected_use_case = request.session['UseCaseName']
        ModelVersion = request.session['ModelVersion']
        ModelStatus = request.session['ModelStatus']
        request.session['currentstate'] = 0
        request.session['finalstate'] = 0
        request.session['datatype'] = 'Normal'
        context = {'tab': 'tabconfigure','data': df_json,'status_msg': statusmsg,'selected_use_case': selected_use_case,'computeinfrastructure':computeinfrastructure,
                               'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion,'selected': 'modeltraning',
                               'currentstate': request.session['currentstate'], 'finalstate': request.session['finalstate'],'exploratory':False}
        return render(request, 'upload.html', context)
    except: 
        return render(request, 'upload.html', {'tab': 'tabconfigure','selected_use_case': selected_use_case,'computeinfrastructure':computeinfrastructure,'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion,'selected': 'modeltraning','error':'Failed to upload datafile'})            

def EDAReport(request):
    from appbe.telemetry import UpdateTelemetry
    UpdateTelemetry(request.session['usecaseid']+'-'+str(request.session['ModelVersion']),'EDA','Yes')
    from appbe import exploratory_Analysis as ea
    request.session['defaultfilepath'] = DEFAULT_FILE_PATH
    request.session['configfilepath'] = CONFIG_FILE_PATH
    request.session['deploylocation'] = DEPLOY_LOCATION
    from appbe import compute 
    computeinfrastructure = compute.readComputeConfig()
    submit_button = request.POST.get('upload_submit')
    ModelVersion = request.session['ModelVersion']
    #print(submit_button)
    if submit_button == 'data_eda':
        try:
            from appbe.aion_config import settings
            usecasetab = settings()       
            from appbe.s3bucketsDB import get_s3_bucket
            from appbe.gcsbucketsDB import get_gcs_bucket
            from appbe.azureStorageDB import get_azureStorage
            context = ea.get_eda(request)
            context['computeinfrastructure'] = computeinfrastructure
            context['s3buckets'] = get_s3_bucket()
            context['gcsbuckets'] = get_gcs_bucket()
            context['azurestorage'] = get_azureStorage()
            context['version'] = AION_VERSION
            context['usecasetab'] = usecasetab
        except Exception as e:
            print(e)        
            context = {'error':'Error in doing the EDA','ModelVersion': ModelVersion,'version':AION_VERSION}
        return render(request, 'upload.html', context)        

def get_features_datatype(v,num_list,cat_list,text_list):
    """""" To get exact datatype of the feature in Data Overview.""""""   
    if v in cat_list:
        return 'Categorical'
    elif v in num_list:    
        return 'Numerical'
    elif v in text_list:    
        return 'Text'
        
def downloadedareport(request):
    des1 = json.loads(request.POST.get('des1'))
    des1 = pd.DataFrame(des1)
    cluster_df = json.loads(request.POST.get('cluster_df'))
    cluster_df = pd.DataFrame(cluster_df)
    
    pca_df = []
    if request.POST.get('pca_df') != 'Empty DataFrame\r\nColumns: []\r\nIndex: []':
        pca_df = json.loads(request.POST.get('pca_df'))
        pca_df = pd.DataFrame(pca_df)
    
    cor_mat = json.loads(request.POST.get('cor_mat'))
    cor_mat = pd.DataFrame(cor_mat)
    cor_mat.replace(np.nan, 0, inplace=True)
    cor_mat.fillna('None',inplace=True)
    usename = request.session['UseCaseName'].replace("" "", ""_"") + '_' + str(request.session['ModelVersion'])
    edaFileName = usename + '_EDA.xlsx'
        
    from io import BytesIO as IO 
    excel_file = IO()        
    excel_writer = pd.ExcelWriter(excel_file, engine=""xlsxwriter"")
    ##For Task 17622    
    actual_df = json.loads(request.POST.get('data_deep_json'))
    actual_df = pd.DataFrame(actual_df)
    actual_df.replace(np.nan, 0,inplace=True)
    actual_df.fillna('None',inplace=True)
    top_10_rows = actual_df.head(10)
    top_10_rows.to_excel(excel_writer, sheet_name='Top 10 Rows',index=True)
    des1 = des1.fillna(0)
    #Write everything in one single column
    actual_df_numerical_features = actual_df.select_dtypes(exclude='object')
    actual_df_categorical_features = actual_df.select_dtypes(include='object')
    #For text features
    textFeature = json.loads(request.POST.get('textFeature'))
    textFeature_df = actual_df.filter(textFeature)
    actual_df_categorical_features = actual_df_categorical_features.drop(textFeature, axis=1) 
    for i in  des1['Features']:
        num_cols = actual_df_numerical_features.columns.to_list()
        cat_cols = actual_df_categorical_features.columns.to_list()
        text_cols = textFeature
        des1['Features Type'] = des1['Features'].apply(lambda x: get_features_datatype(x, num_cols,cat_cols,text_cols))

    curr_columns = des1.columns.to_list()
    curr_columns.remove('Features Type')
    insert_i = curr_columns.index('Features')+1
    curr_columns.insert(insert_i,'Features Type')
    des1 = des1[curr_columns]
    des1.to_excel(excel_writer, sheet_name='Data Overview',startrow=0, startcol=0,index=False)
    ## Hopkins value addition
    hopkins_value = str(request.POST.get('hopkins_val'))
    hopkins_tip = request.POST.get('hopkins_tip')
    hopkins_dict = {'Hopkins_value':[hopkins_value],""hopkins_information"":[hopkins_tip]}
    hopkins_df = pd.DataFrame.from_dict(hopkins_dict)
    ##Data Distribution
    from appbe.eda import ux_eda
    eda_obj = ux_eda(actual_df)
    datadist_dict={}
    for k,v in enumerate(actual_df.columns.to_list()):
        distname, sse = eda_obj.DistributionFinder(actual_df[v])
        datadist_dict[v]=[distname,sse]
    data_dist_df = pd.DataFrame(datadist_dict)
    data_dist_df = data_dist_df.T
    data_dist_df.reset_index(inplace=True)
    data_dist_df.columns = ['Features','Distribution','SSE']
    data_dist_df.drop(['SSE'],axis=1,inplace=True)
    data_dist_df.fillna(""NA"",inplace = True)
    data_dist_df = data_dist_df.replace(['',None,pd.NaT],""NA"")
    data_dist_df = data_dist_df.replace([""geom""],""geometric"")
    data_dist_df.to_excel(excel_writer, sheet_name='Data Distribution',index=False)
    
    if len(pca_df) > 0:
        pca_df.to_excel(excel_writer, sheet_name='Feature Importance',index=False)
    
    cor_mat.to_excel(excel_writer, sheet_name='Correlation Analysis',index=False)
    #Unsupervised clustering    
    cdf_start_row = 1+len(hopkins_df)+6
    if not textFeature:
        import io
        hs_info = ""Hopkins Statistics""
        hs_info_df = pd.read_csv(io.StringIO(hs_info), sep="","")
        hs_info_df.to_excel(excel_writer, sheet_name='Unsupervised Clustering',startrow=0, startcol=2,index=False)
        hopkins_df.to_excel(excel_writer, sheet_name='Unsupervised Clustering',startrow=2, startcol=0,index=False)
    else:
        # If text features available in data.
        import io
        hs_info = ""Hopkins Statistics is not availble for data with text features. Unselect text features and retry EDA.""
        hs_info_df = pd.read_csv(io.StringIO(hs_info), sep="","")
        hs_info_df.to_excel(excel_writer, sheet_name='Unsupervised Clustering',startrow=0, startcol=3,index=False)
        #cluster_df.to_excel(excel_writer, sheet_name='Unsupervised Clustering',startrow=cdf_start_row, startcol=1,index=True)
        cdf_start_row = 1+len(hopkins_df)+4
        
        cluster_info = "" Unsupervised clustering results (Excluding text features) ""
        cluster_info_df = pd.read_csv(io.StringIO(cluster_info), sep="","")
        cluster_info_df.to_excel(excel_writer, sheet_name='Unsupervised Clustering',startrow=cdf_start_row-2, startcol=1,index=False)
    
    cluster_df.to_excel(excel_writer, sheet_name='Unsupervised Clustering',startrow=cdf_start_row, startcol=0,index=False)        
        
    workbook  = excel_writer.book

    #excel_writer.save()  #Save() is deprecated,instead we need to use close().
    excel_writer.close()
    excel_file.seek(0)
    response = HttpResponse(excel_file.read(), content_type='application/vnd.openxmlformats-officedocument.spreadsheetml.sheet')
    response['Content-Disposition'] = 'attachment; filename=' + edaFileName
    return response        "
visualizer_views.py,"import os,sys
import re
import logging
from django.http import HttpRequest, HttpResponse
from django.conf import settings
from django.shortcuts import render
from appbe.pages import getversion
import plotly.graph_objects as go
import plotly.figure_factory as ff
from django.shortcuts import render
from plotly.subplots import make_subplots
from django.contrib.sessions.models import Session
from sklearn.metrics import confusion_matrix
from IPython.core.display import HTML
from IPython.core import display
from django.template import Context, loader
import pandas as pd
import numpy as np
import io
import urllib, base64
from natsort import natsorted
import matplotlib.pyplot as plt
import plotly.express as px
import json
from IPython.core.display import display, HTML
from appbe import compute
import base64
import warnings
warnings.filterwarnings('ignore')
import subprocess
from appbe import installPackage
from appfe.modelTraining.models import usecasedetails
from appfe.modelTraining.models import Existusecases
from utils.file_ops import read_df_compressed
from appbe.dataPath import LOG_LOCATION
from appbe.log_ut import logg
import time

AION_VERSION = getversion()
def getusercasestatus(request):
    if 'UseCaseName' in request.session:
        selected_use_case = request.session['UseCaseName']
    else:
        selected_use_case = 'Not Defined'

    if 'ModelVersion' in request.session:
        ModelVersion = request.session['ModelVersion']
    else:
        ModelVersion = 0

    if 'ModelStatus' in request.session:
        ModelStatus = request.session['ModelStatus']
    else:
        ModelStatus = 'Not Trained'
    return selected_use_case,ModelVersion,ModelStatus
	
def xplain(request):
	log = logging.getLogger('log_ux')
	computeinfrastructure = compute.readComputeConfig()
	from appbe.aion_config import settings
	usecasetab = settings()
	selected_use_case,ModelVersion,ModelStatus = getusercasestatus(request)	
	if request.method == 'GET':
		try:
			if ModelStatus != 'SUCCESS':
				log.info('xplain :' + str(selected_use_case) + ' : ' + str(ModelVersion) + ' : ' + '0 ' + 'sec' + ' : ' + 'Error:Please train the model first or launch an existing trained model')
				return render(request,'businessview.html',{'selected_use_case':selected_use_case,'ModelStatus':ModelStatus,'ModelVersion':ModelVersion,'error':'Please train the model first or launch an existing trained model','selected':'visualizer','subselected':'businessview','computeinfrastructure':computeinfrastructure,'usecasetab':usecasetab,'version':AION_VERSION})
			else:
				if 'ModelVersion' not in request.session:
					log.info('xplain : ' + str(selected_use_case) + ' : ' + str(ModelVersion) + ' : ' + '0 ' + 'sec' + ' : ' + 'Error:Please train the model first')
					return render(request,'businessview.html',{'selected_use_case':selected_use_case,'ModelStatus':ModelStatus,'ModelVersion':ModelVersion,'error':'Please trained the model first','selected':'visualizer','subselected':'businessview','computeinfrastructure':computeinfrastructure,'usecasetab':usecasetab,'version':AION_VERSION})	
				elif request.session['ModelVersion'] == 0:
					log.info('xplain : ' + str(selected_use_case) + ' : ' + str(ModelVersion) + ' : ' + '0 ' + 'sec' + ' : ' + 'Error : Please train the model first')
					return render(request,'businessview.html',{'selected_use_case':selected_use_case,'ModelStatus':ModelStatus,'ModelVersion':ModelVersion,'error':'Please trained the model first','selected':'visualizer','subselected':'businessview','computeinfrastructure':computeinfrastructure,'usecasetab':usecasetab,'version':AION_VERSION})
				elif 'ModelStatus' not in request.session:
					log.info('xplain : ' + str(selected_use_case) + ' : ' + str(ModelVersion) + ' : ' + '0 ' + 'sec' + ' : ' + 'Error : Please train the model first')
					return render(request,'businessview.html',{'selected_use_case':selected_use_case,'ModelStatus':ModelStatus,'ModelVersion':ModelVersion,'error':'Please trained the model first','selected':'visualizer','subselected':'businessview','computeinfrastructure':computeinfrastructure,'usecasetab':usecasetab,'version':AION_VERSION})	 		
				elif request.session['ModelStatus'] != 'SUCCESS':
					log.info('xplain : ' + str(selected_use_case) + ' : ' + str(ModelVersion) + ' : ' + '0 ' + 'sec' + ' : ' + 'Error : Please train the model first')
					return render(request,'businessview.html',{'selected_use_case':selected_use_case,'ModelStatus':ModelStatus,'ModelVersion':ModelVersion,'error':'Please trained the model first','selected':'visualizer','subselected':'businessview','computeinfrastructure':computeinfrastructure,'usecasetab':usecasetab,'version':AION_VERSION})	 		
			
			updatedConfigFile = request.session['config_json']
			f = open(updatedConfigFile, ""r"")
			configSettings = f.read()
			f.close()
			configSettingsJson = json.loads(configSettings)
			problemType = 'classification'
			for key in configSettingsJson['basic']['analysisType']:
				if configSettingsJson['basic']['analysisType'][key] == 'True':
					problemType = key
					break
					
			if problemType.lower() != 'classification' and problemType.lower() != 'regression':
				log.info('xplain:' + str(selected_use_case) + ' : ' + str(ModelVersion) + ' : ' + '0' + 'sec' + ' : ' + 'Error:Explainable AI only available for classification and regression problem')
				return render(request,'businessview.html',{'selected_use_case':selected_use_case,'ModelStatus':ModelStatus,'ModelVersion':ModelVersion,'error':'Explainable AI only available for classification and regression problem','selected':'visualizer','subselected':'businessview','computeinfrastructure':computeinfrastructure,'usecasetab':usecasetab,'version':AION_VERSION})
			displaypath = os.path.join( request.session['deploypath'],'etc','display.json')
			with open(displaypath) as file:
				config = json.load(file)
			file.close()
			inputFeatures = configSettingsJson['basic']['trainingFeatures']
				
			targetFeature = configSettingsJson['basic']['targetFeature']
			inputFeaturesList = inputFeatures.split(',')
			if targetFeature in inputFeaturesList:
				inputFeaturesList.remove(targetFeature)
			dataFilePath = str(configSettingsJson['basic']['dataLocation'])
			df = pd.read_csv(dataFilePath,nrows=10)
			df.rename(columns=lambda x: x.strip(), inplace=True)
			df = df[inputFeaturesList]
			inputFieldsDict = df.to_dict(orient='index')[5]
			inputFields = []
			inputFields.append(inputFieldsDict)
			targetfeatures = targetFeature.split("","")
			##### Bug 20649 starts
			featureDict = configSettingsJson['advance']['profiler']['featureDict']
			catFeatureList = []
			for feature in featureDict:
				if feature['type'] == 'categorical':
					catFeatureList.append(feature['feature'])
			for feature in targetfeatures:
				if feature in catFeatureList:
					catFeatureList.remove(feature)
			fairness_error = """" if len(catFeatureList)>0 else ""Fairness metrics is not applicable as categorical feature(s) is not present.""
			##### Bug 20649 ends
			context = {""fairness_error"":fairness_error,""catFeatureList"":catFeatureList,'selected_use_case':selected_use_case,'configSettings':configSettingsJson,'targetfeatures':targetfeatures,'ModelStatus':ModelStatus,'ModelVersion':ModelVersion,'selected':'visualizer','subselected':'businessview','inputFields':inputFields,'computeinfrastructure':computeinfrastructure,'usecasetab':usecasetab,'version':AION_VERSION,'problemType':problemType}
			
			return render(request, 'businessview.html', context)
		except Exception as e:
			log.info('xplain : ' + str(selected_use_case) + ' : ' + str(ModelVersion) + ' : ' + '0 ' + 'sec' + ' : ' + 'Error : Unexpected error occur, '+str(e))
			print(e)
			return render(request,'businessview.html',{'selected_use_case':selected_use_case,'ModelStatus':ModelStatus,'ModelVersion':ModelVersion,'error':'Unexpected error occur','selected':'visualizer','subselected':'businessview','computeinfrastructure':computeinfrastructure,'usecasetab':usecasetab,'version':AION_VERSION})	 		
	if request.method == 'POST':
		if request.POST.get(""submit"") == 'modelxplain':
			return modelxplain(request)
		if request.POST.get(""submit"") == 'xplainprediction':
			return predictionxplain(request)
def modelxplain(request):
	log = logging.getLogger('log_ux')
	computeinfrastructure = compute.readComputeConfig()
	selected_use_case,ModelVersion,ModelStatus = getusercasestatus(request)
	from appbe.aion_config import settings
	usecasetab = settings()
	t1 = time.time()    
	if 'UseCaseName' not in request.session:
		return render(request,'businessview.html',{'selected_use_case':selected_use_case,'ModelStatus':ModelStatus,'ModelVersion':ModelVersion,'error':'Please create the use case first, trained the model and  then visualize the data','selected':'visualizer','subselected':'businessview','computeinfrastructure':computeinfrastructure,'usecasetab':usecasetab,'version':AION_VERSION})
	else:
		if 'ModelVersion' not in request.session:
			log.info('Xplain Model : ' + str(selected_use_case) + ' : ' + str(ModelVersion) + ' : ' + '0 ' + 'sec' + ' : ' + 'Error : Please trained the model first')
			return render(request,'businessview.html',{'selected_use_case':selected_use_case,'ModelStatus':ModelStatus,'ModelVersion':ModelVersion,'error':'Please trained the model first','selected':'visualizer','subselected':'businessview','computeinfrastructure':computeinfrastructure,'usecasetab':usecasetab,'version':AION_VERSION})	
		elif request.session['ModelVersion'] == 0:
			log.info('Xplain Model : ' + str(selected_use_case) + ' : ' + str(ModelVersion) + ' : ' + '0 ' + 'sec' + ' : ' + 'Error : Please trained the model first')
			return render(request,'businessview.html',{'selected_use_case':selected_use_case,'ModelStatus':ModelStatus,'ModelVersion':ModelVersion,'error':'Please trained the model first','selected':'visualizer','subselected':'businessview','computeinfrastructure':computeinfrastructure,'usecasetab':usecasetab,'version':AION_VERSION})
		elif 'ModelStatus' not in request.session:
			log.info('Xplain Model : ' + str(selected_use_case) + ' : ' + str(ModelVersion) + ' : ' + '0 ' + 'sec' + ' : ' + 'Error : Please trained the model first')
			return render(request,'businessview.html',{'selected_use_case':selected_use_case,'ModelStatus':ModelStatus,'ModelVersion':ModelVersion,'error':'Please trained the model first','selected':'visualizer','subselected':'businessview','computeinfrastructure':computeinfrastructure,'usecasetab':usecasetab,'version':AION_VERSION})	 		
		elif request.session['ModelStatus'] != 'SUCCESS':
			log.info('Xplain Model : ' + str(selected_use_case) + ' : ' + str(ModelVersion) + ' : ' + '0 ' + 'sec' + ' : ' + 'Error : Please trained the model first')
			return render(request,'businessview.html',{'selected_use_case':selected_use_case,'ModelStatus':ModelStatus,'ModelVersion':ModelVersion,'error':'Please trained the model first','selected':'visualizer','subselected':'businessview','computeinfrastructure':computeinfrastructure,'usecasetab':usecasetab,'version':AION_VERSION})	 		
	try:
		from appbe.telemetry import UpdateTelemetry
		UpdateTelemetry(request.session['usecaseid']+'-'+str(request.session['ModelVersion']),'TrustedAI','Yes')
		updatedConfigFile = request.session['config_json']
		f = open(updatedConfigFile, ""r"")
		configSettings = f.read()
		f.close()
		configSettingsJson = json.loads(configSettings)
		problemType = 'classification'
		for key in configSettingsJson['basic']['analysisType']:
			if configSettingsJson['basic']['analysisType'][key] == 'True':
				problemType = key
				break
		if problemType.lower() != 'classification' and problemType.lower() != 'regression':
			log.info('Xplain Model : ' + str(selected_use_case) + ' : ' + str(ModelVersion) + ' : ' + '0 ' + 'sec' + ' : ' + 'Error : Explainable AI only available for classification and regression problem')
			return render(request,'businessview.html',{'selected_use_case':selected_use_case,'ModelStatus':ModelStatus,'ModelVersion':ModelVersion,'error':'Explainable AI only available for classification and regression problem','selected':'visualizer','subselected':'businessview','computeinfrastructure':computeinfrastructure,'usecasetab':usecasetab,'version':AION_VERSION})
        
		displaypath = os.path.join( request.session['deploypath'],'etc','display.json')
		with open(displaypath) as file:
			config = json.load(file)
		file.close()
		targetFeature = configSettingsJson['basic']['targetFeature']
		dataFilePath = str(configSettingsJson['basic']['dataLocation'])
		status, df = read_df_compressed(config['postprocessedData'], nrows=10)
		df.rename(columns=lambda x: x.strip(), inplace=True)
		if targetFeature in df.columns:
			df.drop( targetFeature, axis=1, inplace=True)
		inputFieldsDict = df.to_dict(orient='index')[5]
		inputFields = []
		inputFields.append(inputFieldsDict)
        
		if 'nrows' in config:
			nrows = config['nrows']
		else:
			nrows = 'Not Available'
            
		if 'ncols' in config:
			ncols = config['ncols']
		else:
			ncols = 'Not Available'
            
		if 'targetFeature' in config:
			targetFeature = config['targetFeature']
		else:
			targetFeature = ''

		labelMaps = config['labelMaps']
		modelfeatures = configSettingsJson['basic']['trainingFeatures'].split(',')
		mfcount = len(modelfeatures)
		dataFilePath = str(configSettingsJson['basic']['dataLocation'])		
		df_proprocessed = pd.read_csv(dataFilePath,nrows=1000)
		df_proprocessed.rename(columns=lambda x: x.strip(), inplace=True)
		if 'targetFeature' != '':
			target_classes = df_proprocessed[targetFeature].unique()
			numberofclasses = len(target_classes)
		else:
			target_classes = []
			numberofclasses = 'Not Available'   
		dataPoints = df_proprocessed.shape[0]	
		df_proprocessed = df_proprocessed.head(5)
		df_proprocessed = df_proprocessed.to_json(orient=""records"")
		df_proprocessed = json.loads(df_proprocessed)
		expainableAIPath = os.path.join(request.session['deploypath'],'aion_xai.py') 
		outputStr = subprocess.check_output([sys.executable,expainableAIPath,'global']) 		
		outputStr = outputStr.decode('utf-8')
		outputStr = re.search(r'aion_ai_explanation:(.*)',str(outputStr), re.IGNORECASE).group(1)
		outputStr = outputStr.strip()
		ale_json = json.loads(str(outputStr))
		ale_json = ale_json['data']
		ale_view = ale_json['data']
		sentences = ale_json['sentences']
		scoreMessage = ''	
		feature_importance = ale_json['feature_importance']
		dfimp = pd.DataFrame.from_dict(feature_importance)
		dfimp = dfimp.sort_values(by=['values'],ascending=False).reset_index()
		yaxis_data = dfimp['values'].tolist()
		xaxis_data = dfimp['labels'].tolist()
		cfig = go.Figure()
		cfig.add_trace(go.Bar(x=xaxis_data,y=yaxis_data,name='Feature Importance'))			
		cfig.update_layout(barmode='stack',xaxis_title='Features')			
		bargraph = cfig.to_html(full_html=False, default_height=450,default_width=1000)
		dftoprecords = dfimp.head(2)
		topTwoFeatures = dfimp['labels'].tolist()
		topFeaturesMsg = []
		for i in range(0,len(dfimp)):
			value = round(dfimp.loc[i, ""values""],2)*100
			value = round(value,2)
			tvalue = str(dfimp.loc[i, ""labels""])+' contributing to '+ str(value)+'%'
			topFeaturesMsg.append(tvalue)
		most_influencedfeature = ale_json['most_influencedfeature']
		interceppoint = ale_json['interceptionpoint']
		anchorjson =  ale_json['anchorjson']
		t2 = time.time()
		context = {'ale_view':ale_view,'selected_use_case':selected_use_case,'ModelStatus':ModelStatus,'ModelVersion':ModelVersion,'selected':'visualizer','subselected':'businessview','sentences':sentences,""bargraph"":bargraph,'inputFields':inputFields,'nrows':nrows,'ncols':ncols,'targetFeature':targetFeature,'dataPoints':dataPoints,'target_classes':target_classes,'datarows':df_proprocessed,'numberofclasses':numberofclasses,'modelfeatures':modelfeatures,'problemType':problemType,'mfcount':mfcount,'topTwoFeatures':topTwoFeatures,'topFeaturesMsg':topFeaturesMsg,'most_influencedfeature':most_influencedfeature,'interceppoint':interceppoint,'achors':anchorjson,'labelMaps':labelMaps,'computeinfrastructure':computeinfrastructure,'usecasetab':usecasetab,'version':AION_VERSION}
		log.info('Xplain Model : ' + str(selected_use_case) + ' : ' + str(ModelVersion) + ' : ' + str(round(t2 - t1)) + ' sec' + ' : ' + 'Success')
		return render(request, 'businessview.html', context)
	except Exception as Inst:
		exc_type, exc_obj, exc_tb = sys.exc_info()
		fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
		print(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))    
		print(Inst)	
		log.info('Xplain Model : ' + str(selected_use_case) + ' : ' + str(ModelVersion) + ' : ' + '0 ' + 'sec' + ' : ' + 'Error : Failed to Xplain Model, '+str(Inst))
		log.info('Details : '+str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))
		return render(request,'businessview.html',{'selected_use_case':selected_use_case,'ModelStatus':ModelStatus,'ModelVersion':ModelVersion,'error1':'Failed to Xplain Model','selected':'visualizer','subselected':'businessview','computeinfrastructure':computeinfrastructure,'usecasetab':usecasetab,'version':AION_VERSION})	 		
		
def predictionxplain(request):
    log = logging.getLogger('log_ux')
    from appbe.aion_config import settings
    usecasetab = settings()
    computeinfrastructure = compute.readComputeConfig()
    selected_use_case, ModelVersion, ModelStatus = getusercasestatus(request)
    try:
        from appbe.telemetry import UpdateTelemetry
        UpdateTelemetry(request.session['usecaseid']+'-'+str(request.session['ModelVersion']),'TrustedAI','Yes')
        t1 = time.time()
        displaypath = os.path.join( request.session['deploypath'],'etc','display.json')
        with open(displaypath) as file:
            config = json.load(file)
        file.close()    
        updatedConfigFile = request.session['config_json']
        f = open(updatedConfigFile, ""r"")
        configSettings = f.read()
        f.close()
        configSettingsJson = json.loads(configSettings)
        inputFeatures = configSettingsJson['basic']['trainingFeatures']
        targetFeature = configSettingsJson['basic']['targetFeature']
        inputFeaturesList = inputFeatures.split(',')
        if targetFeature in inputFeaturesList:
            inputFeaturesList.remove(targetFeature)
        
        inputFieldsDict = {}
        problemType = 'classification'
        for key in configSettingsJson['basic']['analysisType']:
            if configSettingsJson['basic']['analysisType'][key] == 'True':
                problemType = key
                break
        if problemType.lower() == 'timeseriesforecasting': #task 11997
            inputFieldsDict['noofforecasts'] = request.POST.get('noofforecasts')
        elif problemType == 'RecommenderSystem':			
            inputFieldsDict['uid'] = request.POST.get('uid')
            inputFieldsDict['iid'] = request.POST.get('iid')
            inputFieldsDict['rating'] = request.POST.get('rating')			
        else:
            for feature in inputFeaturesList:
                try:
                    dataFilePath = str(configSettingsJson['basic']['dataLocation'])
                    df = pd.read_csv(dataFilePath,nrows=10)
                    df.rename(columns=lambda x: x.strip(), inplace=True)
                    df = df[inputFeaturesList]
                    inputFieldsDict = df.to_dict(orient='index')[5]
                except:
                    inputFieldsDict[feature] =  request.POST.get(feature)

            for key, value in inputFieldsDict.items():
                if value == 'nan':
                    inputFieldsDict[key] = ''

        inputFieldsJson = json.dumps(inputFieldsDict)
        
        expainableAIPath = os.path.join(request.session['deploypath'],'aion_xai.py') 
        #print(inputFieldsJson)
        outputStr = subprocess.check_output([sys.executable,expainableAIPath,'local',inputFieldsJson])
        
        outputStr = outputStr.decode('utf-8')
        outputStr = re.search(r'aion_ai_explanation:(.*)',str(outputStr), re.IGNORECASE).group(1)
        outputStr = outputStr.strip()
        #print(outputStr)
    
        predict_dict = json.loads(str(outputStr))
        if (predict_dict['status'] == 'SUCCESS'):
            predict_dict = predict_dict['data']
            prediction = predict_dict['prediction']      		
            anchor = predict_dict['anchor']
            precision = predict_dict['precision']
            coverage = round(predict_dict['coverage'],2)
            confidence = '95%'
            forceplot_view = predict_dict['forceplot']
            multidecisionplot_view = predict_dict['multidecisionplot']
            waterfallplot_view = predict_dict['waterfallplot']  #Task12581
        else:
            context={'tab':'tabconfigure','error':'Failed to xplain','selected':'businessview','computeinfrastructure':computeinfrastructure,'usecasetab':usecasetab,'version':AION_VERSION,'selected_use_case':selected_use_case,'ModelStatus':ModelStatus,'ModelVersion':ModelVersion}
            log.info('Xplain Prediction : ' + str(selected_use_case) + ' : ' + str(ModelVersion) + ' : ' + '0 ' + 'sec' + ' : ' + 'Error : Failed to xplain')
            return render(request,'businessview.html',context)

        inputFields = []
        inputFields.append(inputFieldsDict)
        selected_use_case = request.session['UseCaseName']
        ModelVersion = request.session['ModelVersion']
        ModelStatus = request.session['ModelStatus']
        context={'tab' : 'predict','inputFields':inputFields,'prediction':prediction,'reason':anchor, 'precision': precision,'coverage':coverage,'confidence':confidence,'forceplot_view':forceplot_view,'multidecisionplot_view':multidecisionplot_view,'waterfallplot_view':waterfallplot_view,'selected_use_case':selected_use_case,'ModelStatus':ModelStatus,'ModelVersion':ModelVersion,'selected' : 'businessview','computeinfrastructure':computeinfrastructure,'usecasetab':usecasetab,'version':AION_VERSION}
        t2= time.time()
        log.info('Xplain Prediction : ' + str(selected_use_case) + ' : ' + str(
            ModelVersion) + ' : ' + str(round(t2 - t1)) + ' sec' + ' : ' + 'Success')
        return render(request, 'businessview.html', context = context)
    except Exception as inst:
        print(inst)
        log.info('Xplain Prediction : ' + str(selected_use_case) + ' : ' + str(ModelVersion) + ' : ' +'0'+ 'sec' + ' : ' + 'Error : Failed to Xplain Prediction, ' + str(inst))
        context={'tab' : 'tabconfigure','error' : 'Failed to Xplain Prediction','selected' : 'businessview','computeinfrastructure':computeinfrastructure,'usecasetab':usecasetab,'version':AION_VERSION,'selected_use_case':selected_use_case,'ModelStatus':ModelStatus,'ModelVersion':ModelVersion}
        return render(request,'businessview.html',context)
"
train_views.py,"from django.shortcuts import render
from django.urls import reverse
from django.http import HttpResponse
from django.shortcuts import redirect
import json
from appbe.dataPath import DEFAULT_FILE_PATH
from appbe.dataPath import DATA_FILE_PATH
from appbe.dataPath import CONFIG_FILE_PATH
from appbe.dataPath import DEPLOY_LOCATION
from appbe.pages import getversion
from appbe.aion_config import running_setting
from appbe.training import checkModelUnderTraining
from appbe.training import calculate_total_activities
from appbe.training import check_unsupported_col
from appbe.training import check_granularity
from appbe.training import checkversionrunningstatus
from appbe.training import getModelStatus
from appbe.training import changeModelStatus
from appbe.training import calculate_total_interations
from appbe.pages import getusercasestatus
from utils.file_ops import read_df_compressed
import plotly.graph_objects as go
from appbe.pages import getMLModels
from appfe.modelTraining.models import usecasedetails
from appbe.training import getStatusCount
from appfe.modelTraining.models import Existusecases
import os,sys
import urllib, base64
import subprocess
import time
import re
import numpy as np
import pandas as pd
from pathlib import Path
import importlib
from appbe.log_ut import logg
from appbe import compute
import logging
AION_VERSION = getversion()
LOG_FILE_NAME = 'model_training_logs.log'
LOG_FOLDER = 'log'



def getPerformanceMatrix(deploypath,output_json):
    displaypath = os.path.join(deploypath,'etc','display.json')
    model_perf = []
    try:    
        with open(displaypath) as file:
            config = json.load(file)
        file.close()
    except Exception as e:
        print(e)
        import glob
        resultJsonObj = json.loads(output_json)
        if (resultJsonObj['data']['ModelType'] == 'anomalydetection' and resultJsonObj['data']['BestScore'] != 0) or resultJsonObj['data']['ModelType'].lower() == 'timeseriesanomalydetection':  #task 11997
            if resultJsonObj['data']['BestModel'].lower() == 'autoencoder' or resultJsonObj['data']['BestModel'].lower() == 'dbscan' :
                try:
                    anomaly_plot_files = glob.glob(os.path.normpath(os.path.join(deploypath,'output','anomaly_plot','*.png')))
                    for plot in anomaly_plot_files:
                        if(os.path.isfile(plot)):
                            string = base64.b64encode(open(plot, ""rb"").read())
                            image_64 = 'data:image/png;base64,' + urllib.parse.quote(string)
                            model_perf.append(image_64)  
                        else:
                            model_perf.append('nograph')
                except Exception as e:
                    print(""Anomaly plot exe error: \n"",e)

            else:
                predictfile = os.path.join(deploypath,'data','predicteddata.csv')
                if(os.path.isfile(predictfile)):
                    df = pd.read_csv(predictfile)
                    outliers=df.loc[df['predict']==-1]
                    outlier_index=list(outliers.index)
                    normals=df.loc[df['predict']!=-1]
                    normals_index=list(normals.index)
                    featuresList = df.columns.values.tolist()
                    #print(featuresList)
                    if 'predict' in featuresList:
                        featuresList.remove('predict')
                    if 'score' in featuresList:
                        featuresList.remove('score')
                    if len(featuresList) == 1:
                        xdata = df[featuresList[0]]
                        ydata = df['score']
                        fig = go.Figure()
                        fig.add_trace(go.Scatter(x=df[featuresList[0]].iloc[normals_index], y=df['score'].iloc[normals_index],mode='markers',name='Normal'))
                        fig.add_trace(go.Scatter(x=df[featuresList[0]].iloc[outlier_index], y=df['score'].iloc[outlier_index],mode='markers',name='Predicted Outliers'))
                        fig.update_layout(xaxis_title=featuresList[0],yaxis_title=""Score"")
                        frgraph = fig.to_html(full_html=False, default_height=400, default_width=1100)
                        model_perf.append(frgraph)
                    if len(featuresList) == 2:
                        fig = go.Figure()
                        df = df.reset_index()
                        fig.add_trace(go.Scatter(x=df[featuresList[0]], y=df[featuresList[1]],mode='markers',name='Normal Points'))
                        fig.add_trace(go.Scatter(x=df[featuresList[0]].iloc[outlier_index], y=df[featuresList[1]].iloc[outlier_index],mode='markers',name='Predicted Outliers'))
                        fig.update_xaxes(title_text=featuresList[0])
                        fig.update_yaxes(title_text=featuresList[1])
                        fig.update_layout(xaxis_title=featuresList[0],yaxis_title=featuresList[1])
                        frgraph = fig.to_html(full_html=False, default_height=400, default_width=1100)
                        model_perf.append(frgraph)
                    if len(featuresList) > 2:   
                        from sklearn.decomposition import PCA
                        pca = PCA(2)
                        pca.fit(df)
                        res=pd.DataFrame(pca.transform(df))
                        Z = np.array(res)
                        fig = go.Figure()
                        fig.add_trace(go.Scatter(x=res[0], y=res[1],mode='markers',name='Normal Points'))
                        fig.add_trace(go.Scatter(x=res.iloc[outlier_index,0], y=res.iloc[outlier_index,1],mode='markers',name='Predicted Outliers'))
                        fig.update_xaxes(title_text=""Principal Component 1"")
                        fig.update_yaxes(title_text=""Principal Component 2"")
                        frgraph = fig.to_html(full_html=False, default_height=400, default_width=1100)
                        model_perf.append(frgraph)
        return (model_perf)
         
    if config['problemType'].lower() == 'classification' or config['problemType'].lower() == 'anomaly_detection' or config['problemType'].lower() == 'timeseriesanomalydetection':
        displaypath = os.path.join(deploypath,'log','img')        
        import glob
        for img in glob.glob(displaypath+""/*.png""):    
            string = base64.b64encode(open(img, ""rb"").read())
            image_64 = 'data:image/png;base64,' + urllib.parse.quote(string)
            model_perf.append(image_64)
        #print(model_perf)
    elif config['problemType'].lower() == 'regression' or config['problemType'].lower() == 'recommendersystem' or \
            config['problemType'].lower() == 'text similarity':
        dataPath = config['predictedData']
        readstatus,predict_df=read_df_compressed(dataPath)
        regfig = go.Figure()
        regfig.add_trace(go.Scatter(x=np.arange(1, len(predict_df) + 1), y=predict_df['actual'],
                                    mode='lines',
                                    name='Actual'))
        regfig.add_trace(go.Scatter(x=np.arange(1, len(predict_df) + 1), y=predict_df['predict'],
                                    mode='lines',
                                    name='Predict'))

        frgraph = regfig.to_html(full_html=False, default_height=400, default_width=1100)
        rfgraph = ''
        model_perf.append(frgraph)
    elif config['problemType'].lower() == 'clustering':
        dataPath = config['predictedData']
        readstatus,predict_df=read_df_compressed(dataPath)        
        distinctCount = len(predict_df['predict'].unique())
        clusterlist = predict_df['predict'].unique()
        color = ['green','blue','red','orange','green','blue','red','orange']
        fig = go.Figure()
        for cluster in clusterlist:
            df_cluster = predict_df[predict_df['predict'] == cluster]
            modelFeatures = config['modelFeatures']
            X1= df_cluster[modelFeatures[0]].tolist()
            X2= df_cluster[modelFeatures[1]].tolist()
            fig.add_trace(go.Scatter(x=X1, y=X2,mode='markers',name='cluster '+str(cluster)))
        fig.update_layout(title=""Cluster Graph"",xaxis_title=modelFeatures[0],yaxis_title=modelFeatures[1],)
        frgraph = fig.to_html(full_html=False, default_height=400, default_width=1100)
        model_perf.append(frgraph)    
            
    elif config['problemType'].lower() == 'timeseriesforecasting': #task 11997
        dataPath = config['predictedData']
        predict_df = pd.read_csv(dataPath)
        modelFeatures = config['modelFeatures']
        for feature in modelFeatures:
            feature_name = feature + '_actual'
            prediction = feature + '_pred'
            if feature_name in predict_df.columns:
                regfig = go.Figure()
                regfig.add_trace(go.Scatter(x=np.arange(1, len(predict_df) + 1), y=predict_df[feature_name],
                                            mode='lines',
                                            name=feature))
                regfig.add_trace(go.Scatter(x=np.arange(1, len(predict_df) + 1), y=predict_df[prediction],
                                            mode='lines',
                                            name='Predict'))
                frgraph = regfig.to_html(full_html=False, default_height=400, default_width=1100)
                model_perf.append(frgraph)
    return (model_perf)


def stoptraining(request):
    request.session['ModelStatus'] = 'Terminated'
    request.session.save()
    changeModelStatus(Existusecases,request.session['modelid'],'Terminated','NA','NA')  
    return HttpResponse('Terminated')
        
def kill_child_proc_rec(ppid):
    import psutil
    for process in psutil.process_iter():
        _ppid = process.ppid()
        if _ppid == ppid:
            _pid = process.pid
            kill_child_proc_rec(_pid)
            print(f'Terminating: {_pid}')
            if sys.platform == 'win32':
                process.terminate()
            else:
                os.system('kill -9 {0}'.format(_pid))
def getDataFileCountAndSize(basicConfig):
    import glob
    path = basicConfig['dataLocation']
    radiovalue = basicConfig['folderSettings']['fileExtension']
    filesCount = 0
    filesSize = 0
    files = []

    for filename in glob.iglob(os.path.join(path, ""**/*."" + radiovalue), recursive=True):
        files.append(filename)
    if radiovalue == 'doc':
        for filename in glob.iglob(os.path.join(path, ""**/*."" + 'docx'), recursive=True):
            files.append(filename)
    for filename in files:
    #for filename in glob.iglob(os.path.join(path, ""**/*."" + radiovalue), recursive=True):
        filesCount = filesCount + 1
        get_size = os.path.getsize(filename)
        filesSize = round(filesSize + get_size, 1)
    if filesSize > 1048576:    
        size = round((filesSize / (1024 * 1024)), 1)
        filesSize = str(size) + ' M'
    elif filesSize > 1024:
        size = round((filesSize /1024), 1)
        filesSize = str(size) + ' K'
    else:
        filesSize = str(filesSize) + ' B'
    
    return filesCount,filesSize
# task 4343 Abort training 
def read_log_file( config_file):
    outputStr = 'aion_learner_status:{""status"":""Fail"",""message"":""Log file not found""}'
    if Path(config_file).exists():
        with open(config_file, 'r', encoding='utf-8') as f:
            config = json.load(f)
        deployPath = Path(config['basic']['deployLocation'])
        log_file = deployPath/config['basic']['modelName'].replace(' ', '_')/config['basic']['modelVersion']/LOG_FOLDER/LOG_FILE_NAME
        if log_file.exists():
            with open(log_file, 'r', encoding='utf-8') as f:
                outputStr = f.read()
    return outputStr

def checkVectorDBPackage(embeddedDB):
    errorStatus = 'False'
    if embeddedDB.lower() == 'vectordb':
        status = importlib.util.find_spec('chromadb')
        if not status:
            errorStatus = 'True'
    return errorStatus
def getModelSize(configSettings,model):
    modelSize = 'NA'
    if 'modelSize' in configSettings['basic']:
        selectedModelSize = configSettings['basic']['modelSize']['llmFineTuning'][model]
        for k in selectedModelSize.keys():
            if configSettings['basic']['modelSize']['llmFineTuning'][model][k] == 'True':
                modelSize = k
                break  
    return modelSize            
def llmmodelevaluate(request):
    selected_use_case,ModelVersion,ModelStatus = getusercasestatus(request)
    usecasename = request.session['usecaseid'].replace("" "", ""_"")
    from appbe.prediction import get_instance
    hypervisor,instanceid,region,image = get_instance(usecasename+'_'+str(ModelVersion))
    scriptPath = os.path.normpath(os.path.join(os.path.dirname(os.path.abspath(__file__)), '..', '..','aion.py'))
    usecaseconfigfile = request.session['config_json']
    f = open(usecaseconfigfile, ""r+"", encoding=""utf-8"")
    configSettingsData = f.read()
    f.close()
    configSettings = json.loads(configSettingsData)
    problem_type = ''
    modelSize = ''
    problemtypes = configSettings['basic']['analysisType'] 
    for k in problemtypes.keys():
        if configSettings['basic']['analysisType'][k] == 'True':
            problem_type = k
            break
    mlmodels =''
    algorihtms = configSettings['basic']['algorithms'][problem_type]
    for k in algorihtms.keys():
        if configSettings['basic']['algorithms'][problem_type][k] == 'True':
            if mlmodels != '':
                mlmodels += ', ' 
            mlmodels += k
    if 'modelSize' in configSettings['basic']:
        selectedModelSize = configSettings['basic']['modelSize']['llmFineTuning'][mlmodels]
        for k in selectedModelSize.keys():
            if configSettings['basic']['modelSize']['llmFineTuning'][mlmodels][k] == 'True':
                modelSize = k
                break        
    eval = ''
    if configSettings['basic']['folderSettings']['fileType'] == 'LLM_Document':
        eval = 'doc'
    elif configSettings['basic']['folderSettings']['fileType'] == 'LLM_Code':
        eval = 'code'
    #print(sys.executable, scriptPath,hypervisor,instanceid,f'{mlmodels}-{modelSize}',selected_use_case+'_'+str(ModelVersion),eval)
    outputStr = subprocess.check_output([sys.executable, scriptPath,'-m','llmbenchmarking','-hv',hypervisor,'-i',instanceid,'-md',f'{mlmodels}-{modelSize}','-uc',usecasename+'_'+str(ModelVersion),'-e',eval])
    return trainmodel(request)
def trainresult(request):
    from appbe.aion_config import settings
    usecasetab = settings()    
    selected_use_case,ModelVersion,ModelStatus = getusercasestatus(request)
    usecasename = request.session['usecaseid'].replace("" "", ""_"")
    log = logging.getLogger('log_ux')
    computeinfrastructure = compute.readComputeConfig() 
    trainmodel =request.POST.get('trainmodel')  
    
    updatedConfigFile = request.session['config_json']
    f = open(updatedConfigFile, ""r+"", encoding=""utf-8"")
    configSettingsData = f.read()
    configSettings = json.loads(configSettingsData)
    total_steps = calculate_total_activities(configSettings)
    request.session['total_steps'] = total_steps
    p = usecasedetails.objects.get(usecaseid=request.session['usecaseid'])
    usecaseindex = p.id   #bugid:14163
    if trainmodel == 'Train Model': 
        try:
            if configSettings['basic']['analysisType']['survivalAnalysis'] != 'True' and configSettings['basic']['analysisType']['llmFineTuning'] != 'True':
                configSettings['advance']['testPercentage'] = int(request.POST.get('TrainTestPercentage',0))     #Unnati
                configSettings['advance']['categoryBalancingMethod'] = request.POST.get('BalancingMethod','NA')
            if configSettings['basic']['analysisType']['llmFineTuning'] == 'True':
                configSettings['basic']['vmRunning'] = request.POST.get('vmRunning','KeepRunning')
            if configSettings['basic']['analysisType']['similarityIdentification'] == 'True':
                dbs = configSettings['basic']['preprocessing']['similarityIdentification']
                for dbt in dbs.keys():  
                   configSettings['basic']['preprocessing']['similarityIdentification'][dbt]='False'
                configSettings['basic']['preprocessing']['similarityIdentification'][request.POST.get('contentdb')] = 'True'
                errorStatus = checkVectorDBPackage(request.POST.get('contentdb'))
                if errorStatus.lower() == 'true':
                    return render(request, 'training.html', {'error': 'Error: Chromadb package not found.','selected_use_case': selected_use_case,'ModelVersion': ModelVersion,'selected': 'modeltraning','computeinfrastructure':computeinfrastructure,'usecasetab':usecasetab,'version':AION_VERSION,'contentdb':''})
            if configSettings['basic']['analysisType']['contextualSearch'] == 'True':     
                dbs = configSettings['basic']['preprocessing']['contextualSearch']
                for dbt in dbs.keys():  
                   configSettings['basic']['preprocessing']['contextualSearch'][dbt]='False'
                configSettings['basic']['preprocessing']['contextualSearch'][request.POST.get('contentdb')] = 'True'
                errorStatus = checkVectorDBPackage(request.POST.get('contentdb'))
                if errorStatus.lower() == 'true':
                    return render(request, 'training.html', {'error': 'Error: Chromadb package not found.','selected_use_case': selected_use_case,'ModelVersion': ModelVersion,'selected': 'modeltraning','computeinfrastructure':computeinfrastructure,'usecasetab':usecasetab,'version':AION_VERSION,'contentdb':''})
            updatedConfigSettingsJson = json.dumps(configSettings)
            f.seek(0)
            f.write(updatedConfigSettingsJson)
            f.truncate()
            f.close()
            # output_json = aion_train_model(updatedConfigFile)
            request.session['noflines'] = 0
            request.session['ModelStatus'] = 'Running'
            request.session.save()
            changeModelStatus(Existusecases,request.session['modelid'],'Running','NA','NA')
            #print(configSettings['basic']['distributedLearning'])
            #sys.exit()
            import timeit
            startTime = timeit.default_timer()
            process_killed = False
            if computeinfrastructure['computeInfrastructure'].lower() == 'aws' and configSettings['basic']['analysisType']['llmFineTuning'] != 'True':
                scriptPath = os.path.normpath(os.path.join(os.path.dirname(os.path.abspath(__file__)), '..', '..','aion.py'))
                #print(scriptPath,updatedConfigFile)
                outputStr = subprocess.check_output([sys.executable, scriptPath,'-m','awstraining','-c',updatedConfigFile])
            elif computeinfrastructure['computeInfrastructure'].lower() in ['aws','gcp']:
                scriptPath = os.path.normpath(os.path.join(os.path.dirname(os.path.abspath(__file__)), '..', '..','aion.py'))
                outputStr = subprocess.check_output([sys.executable, scriptPath,'-m','llmtuning','-c',updatedConfigFile])
            else:
                if configSettings['basic']['analysisType']['multiLabelPrediction'] == 'True' or configSettings['basic']['analysisType']['multiModalLearning'] == 'True':
                    scriptPath = os.path.normpath(os.path.join(os.path.dirname(os.path.abspath(__file__)), '..', '..','bin','run_gluon.py'))
                    outputStr = subprocess.check_output([sys.executable, scriptPath, updatedConfigFile])
                elif configSettings['basic']['onlineLearning'] == 'True':
                    scriptPath = os.path.normpath(os.path.join(os.path.dirname(os.path.abspath(__file__)), '..', '..','aion.py'))
                    outputStr = subprocess.check_output([sys.executable, scriptPath,'-m','onlinetraining','-c',updatedConfigFile])                
                elif configSettings['basic']['distributedLearning'] == 'True':
                    scriptPath = os.path.normpath(os.path.join(os.path.dirname(os.path.abspath(__file__)), '..', '..','aion.py'))
                    outputStr = subprocess.check_output([sys.executable, scriptPath,'-m','distributedtraining','-c',updatedConfigFile])
                else:
                    scriptPath = os.path.normpath(os.path.join(os.path.dirname(os.path.abspath(__file__)), '..', '..','aion.py'))
                    cmd = [sys.executable, scriptPath,'-m','training','-c',updatedConfigFile] # task 4343 abort training
                    training_proc = subprocess.Popen( cmd)
                    
                    outputStr = ''
                    while training_proc.poll() == None:
                        if getModelStatus(Existusecases,request.session['modelid']) == 'Terminated':
                            kill_child_proc_rec(training_proc.pid)
                            training_proc.kill()
                            process_killed = True
                        time.sleep(1)                           
                    if process_killed: 
                        outputStr = 'aion_learner_status:{""status"":""Fail"",""message"":""Terminated by user""}'
                    else:
                        outputStr = read_log_file( updatedConfigFile)
            usename = request.session['UseCaseName'].replace("" "", ""_"")
            outputfile = os.path.join(DEPLOY_LOCATION,usename,str(request.session['ModelVersion']),'etc','output.json')
            if os.path.isfile(outputfile):
                f1 = open(outputfile, ""r+"", encoding=""utf-8"")
                outputStr = f1.read()
                f1.close()
            else:
                if not isinstance( outputStr, str):
                    outputStr = outputStr.decode('utf-8')
                outputStr = re.search(r'aion_learner_status:(.*)', str(outputStr), re.IGNORECASE).group(1)
                outputStr = outputStr.strip()
            resultJsonObj = json.loads(outputStr)
            #print(resultJsonObj)
            odataFile = request.session['outputfilepath']
            with open(odataFile, 'w') as json_file:
                json.dump(resultJsonObj, json_file)
            json_file.close()

            model = Existusecases.objects.get(id=request.session['modelid'])

            request.session['ModelStatus'] = resultJsonObj['status']
            ModelStatus = request.session['ModelStatus']        
            model.Status = resultJsonObj['status']
            
            training_error = ''
            if resultJsonObj['status'] == 'SUCCESS':
                model.modelType = resultJsonObj['data']['ModelType']
                model.DeployPath = str(resultJsonObj['data']['deployLocation'])
                if resultJsonObj['data']['ModelType'] in ['clustering','anomalydetection', 'timeSeriesAnomalyDetection']: #task 11997
                    model.ProblemType = 'unsupervised'
                else:
                    model.ProblemType = 'supervised'
            else:
                training_error = resultJsonObj['message']
            model.save()
            problemtypes = configSettings['basic']['analysisType'] 
            #print(problemtypes.keys())
            problem_typ = """"
            for k in problemtypes.keys():
                if configSettings['basic']['analysisType'][k] == 'True':
                    problem_typ = k
                    break
            modeltyp = problem_typ
            listofmodels = ''
            problem_type,dproblem_type,sc,mlmodels,dlmodels,smodelsize =  getMLModels(configSettings)
            if mlmodels != '':
                listofmodels += str(mlmodels)
            if dlmodels != '':
                listofmodels += listofmodels+' '+str(dlmodels)
            from appbe.telemetry import UpdateTelemetry
            UpdateTelemetry(request.session['usecaseid']+'-'+str(request.session['ModelVersion']),'Algorithms',listofmodels)        
        
            # ----------------------------------------------------------------------------- #
            if (problem_type == 'classification' or problem_type == 'regression'):
                if len(mlmodels.split(',')) == 1:
                    trainingTime = timeit.default_timer() - startTime
                    trainingTime = round(trainingTime/60)
                
                    # calculate the size of uploaded dataset
                    filePath = configSettings['basic']['dataLocation']
                    sz = os.path.getsize(filePath)    
                    fileSizeMB = sz / (1024 * 1024)
                    filesize = str(fileSizeMB) + "" MB""        
                
                    featuresCount = str(len(configSettings['basic']['trainingFeatures'].split(',')))
                
                    modelname = mlmodels.split(',')[0]            
                
                
                    fileSizeMBLimit = 0
                    configfilepath = os.path.join(os.path.dirname(os.path.abspath(__file__)),'..','..','config','training.config')    
                    if(os.path.isfile(configfilepath)):
                        file = open(configfilepath, ""r"", encoding=""utf-8"")
                        read = file.read()
                        file.close()
                        for line in read.splitlines():
                            if 'fileSizeMBLimit=' in line:
                                fileSizeMBLimit = int(line.split('=',1)[1])            
                
                    # append the new entry into config only if size of uploaded dataset meets the threshold
                    if fileSizeMB > fileSizeMBLimit:
                        _val = updateRunConfig(trainingTime, filesize, featuresCount, modelname, problem_type)   
            # ----------------------------------------------------------------------------- #

        
            if resultJsonObj['status'] == 'SUCCESS':
                #from appbe import telemetry
            
                request.session['deploypath'] = str(resultJsonObj['data']['deployLocation'])
                from appbe.trainresult import ParseResults
                result, survical_images = ParseResults(outputStr)
                model_perf = getPerformanceMatrix(request.session['deploypath'],outputStr)
                #telemetry.telemetry_data('Training Successfully Done',selected_use_case+'_'+str(ModelVersion),str(listofmodels))
                UpdateTelemetry(request.session['usecaseid']+'-'+str(request.session['ModelVersion']),'Operation','Success')
                request.session['currentstate'] = 3
                request.session['finalstate'] = 4
                request.session.save()
                file_path = request.session['logfilepath']
                my_file = open(file_path, 'r',encoding=""utf8"")
                file_content = my_file.read()
                my_file.close()
                matched_lines = [line.replace('Status:-', '') for line in file_content.split('\n') if ""Status:-"" in line]
                matched_status_lines = matched_lines[::-1]
            
                matched_status_lines = matched_status_lines[0]
                matched_status_lines = matched_status_lines.split('...')
                matched_status_lines = matched_status_lines[1]
            
                no_lines = len(matched_lines)
                if 'noflines' not in request.session:
                    request.session['noflines'] = 0    
                request.session['noflines'] = request.session['noflines'] + 1
                if request.session['ModelStatus'] != 'SUCCESS':
                    numberoflines = request.session['noflines']
                    if numberoflines > no_lines:
                        numberoflines = no_lines
                        request.session['noflines'] = no_lines
                    matched_lines = matched_lines[0:numberoflines]
                shortlogs = getStatusCount(matched_lines,request.session['total_steps'])
                temp = {}
                temp['modelName'] = request.session['UseCaseName']
                temp['modelVersion'] = request.session['ModelVersion']
                config = {}
                config['modelName'] = request.session['UseCaseName']
                config['modelVersion'] = request.session['ModelVersion']
                config['datetimeFeatures'] = configSettings['basic']['dateTimeFeature']
                config['sequenceFeatures'] = configSettings['basic']['indexFeature']
                config['FeaturesList'] = configSettings['basic']['trainingFeatures']
                config['unimportantFeatures'] = ''
                config['targetFeature'] = configSettings['basic']['targetFeature']
                modelCondition = ''
                problemtypes = configSettings['basic']['analysisType'] 

                problem_type = """"
                for k in problemtypes.keys():
                    if configSettings['basic']['analysisType'][k] == 'True':
                        problem_type = k
                        break    
                problem_type,dproblemType,sc,mlmodels,dlmodels,smodelsize =  getMLModels(configSettings)
                configSettings['basic']['problem_type'] = problem_type
                configSettings['basic']['dproblem_type'] = dproblemType
                if mlmodels != '':
                    configSettings['basic']['mllearner'] = 'enable'
                if dlmodels != '':
                    configSettings['basic']['dllearner'] = 'enable'
                if configSettings['basic']['analysisType']['multiLabelPrediction'] == 'True':
                    configSettings['basic']['selected_ML_Models'] = 'AutoGluon'
                    configSettings['basic']['mllearner'] = 'enable'
                else:
                    configSettings['basic']['selected_ML_Models'] = mlmodels
                    configSettings['basic']['selected_DL_Models'] = dlmodels
                configSettings['basic']['smodel_size'] = smodelsize
                if 'noOfRecords' in configSettings['basic']:
                    records = configSettings['basic']['noOfRecords']
                else:
                    from appbe.train_output import getDataSetRecordsCount
                    records = getDataSetRecordsCount(configSettings['basic']['dataLocation'])
                filesCount = 0
                filesSize = 0
                #print(configSettings['basic']['analysisType']['llmFineTuning'].lower())
                #print(configSettings['basic']['folderSettings']['fileType'].lower())
                if configSettings['basic']['analysisType']['llmFineTuning'].lower() == 'true' and configSettings['basic']['folderSettings']['fileType'].lower() in ['llm_document','llm_code']:
                    filesCount,filesSize = getDataFileCountAndSize(configSettings['basic'])
                noofIteration = calculate_total_interations(configSettings)
                features =  configSettings['basic']['trainingFeatures'].split(',')           
                noOfTrainingFeatures = len(features)        
                configSettings['basic']['problem_type']=problem_type
                featuretype = configSettings['advance']['profiler']['featureDict']
                if  ('Logistic Regression' not in mlmodels) or ('Linear Regression' not in mlmodels):
                    selectedmodel = 'modelcomparision'  
                else:
                    selectedmodel = "" ""


                user_provided_data_type = {}
                text_type=''
                for feat_conf in featuretype:
                    colm = feat_conf.get('feature', '')
                    if feat_conf['type'] == ""text"":
                        text_type=""text""
                        break
                contentdb = ''
                if problem_type.lower() in ['similarityidentification','contextualsearch']:
                    if configSettings['basic']['preprocessing'][problem_type]['CSV'].lower() == 'true':
                        contentdb = 'CSV'
                    elif configSettings['basic']['preprocessing'][problem_type]['VectorDB'].lower() == 'true':
                        contentdb = 'VectorDB'

                context = {'tab': 'trainresult','filesCount':filesCount,'filesSize':filesSize, 'result': result, 'selectedmodel': selectedmodel, 'advconfig': configSettings, 'shortlogs':shortlogs,
                   'selected_use_case': selected_use_case, 'noOfRecords': records,'noOfTrainingFeatures':noOfTrainingFeatures,
                       'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion,'usecaseid':usecaseindex,#bugid:14163 #BugID13336
                        'noofIteration':noofIteration,'log_file':file_content,'contentdb':contentdb,
                       'currentstate': request.session['currentstate'], 'finalstate': request.session['finalstate'],
                       'model_perf': model_perf,'logs':matched_status_lines, 'perf_images': survical_images, 'selected': 'modeltraning','computeinfrastructure':computeinfrastructure,'usecasetab':usecasetab,'usecasename':usecasename}
                context['version'] = AION_VERSION
                return render(request, 'training.html', context)
            else:
                UpdateTelemetry(request.session['usecaseid']+'-'+str(request.session['ModelVersion']),'Operation','Error')
                request.session['currentstate'] = 3
                request.session['finalstate'] = 4
                #from appbe import telemetry
                if process_killed: 
                   errorMsg = 'Terminated by user'
                else:       
                   errorMsg = 'Model Training Error (check log file for more details)'
                contentdb = ''
                if problem_type.lower() in ['similarityidentification','contextualsearch']:
                    if configSettings['basic']['preprocessing'][problem_type]['CSV'].lower() == 'true':
                        contentdb = 'CSV'
                    elif configSettings['basic']['preprocessing'][problem_type]['VectorDB'].lower() == 'true':
                        contentdb = 'VectorDB'
                


                #telemetry.telemetry_data('Training Error',selected_use_case+'_'+str(ModelVersion),str(listofmodels))
                context = {'tab': 'trainresult', 'error': errorMsg,'selected_use_case': selected_use_case,'contentdb':contentdb,
                       'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion,'usecaseid':usecaseindex,#bugid:14163 #BugID13336
                       'currentstate': request.session['currentstate'], 'finalstate': request.session['finalstate'],
                       'selected': 'modeltraning','computeinfrastructure':computeinfrastructure,'usecasetab':usecasetab,'usecasename':usecasename}
                context['version'] = AION_VERSION
                return render(request, 'training.html', context)
        except Exception as e:
            log.info('Training Fail:' + str(selected_use_case) + ':' + str(ModelVersion) + ':' + '0' + 'sec' + ':' + 'Training fail '+str(e))         
            exc_type, exc_obj, exc_tb = sys.exc_info()
            fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
            print(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))
            print(e)
            return render(request, 'training.html', {'error': 'Model Training Error','selected_use_case': selected_use_case,'ModelVersion': ModelVersion,'selected': 'modeltraning','computeinfrastructure':computeinfrastructure,'usecasename':usecasename,'usecasetab':usecasetab,'version':AION_VERSION,'contentdb':''})
            
    else:
        modelCondition = ''
        problemtypes = configSettings['basic']['analysisType'] 
      
        problem_type = """"
        for k in problemtypes.keys():
            if configSettings['basic']['analysisType'][k] == 'True':
                problem_type = k
                break    
        problem_type,dproblem_type,sc,mlmodels,dlmodels,smodelsize =  getMLModels(configSettings)
        configSettings['basic']['problem_type'] = problem_type
        configSettings['basic']['dproblem_type'] = dproblem_type
        if mlmodels != '':
            configSettings['basic']['mllearner'] = 'enable'
        if dlmodels != '':
            configSettings['basic']['dllearner'] = 'enable'
        if configSettings['basic']['analysisType']['multiLabelPrediction'] == 'True':
           configSettings['basic']['selected_ML_Models'] = 'AutoGluon'
           configSettings['basic']['mllearner'] = 'enable'
        else:
            configSettings['basic']['selected_ML_Models'] = mlmodels
            configSettings['basic']['selected_DL_Models'] = dlmodels
                
        if 'noofRecords' in configSettings['basic']:
            records = configSettings['basic']['noofRecords']
        else:
            from appbe.train_output import getDataSetRecordsCount
            records = getDataSetRecordsCount(configSettings['basic']['dataLocation'])
        filesCount = 0
        filesSize = 0
        print(configSettings['basic']['analysisType']['llmFineTuning'].lower())
        print(configSettings['basic']['folderSettings']['fileType'].lower())
        if configSettings['basic']['analysisType']['llmFineTuning'].lower() == 'true' and \
                configSettings['basic']['folderSettings']['fileType'].lower() in ['llm_document', 'llm_code']:
            filesCount, filesSize = getDataFileCountAndSize(configSettings['basic'])
        noofIteration = calculate_total_interations(configSettings)     
        features =  configSettings['basic']['trainingFeatures'].split(',')           
        noOfTrainingFeatures = len(features)                
        configSettings['basic']['problem_type']=problem_type
        
        context = { 'advconfig': configSettings,'filesCount':filesCount,'filesSize':filesSize,
                   'selected_use_case': selected_use_case, 'noOfRecords': records, 'ModelStatus': ModelStatus,'ModelVersion': ModelVersion,'noofIteration':noofIteration,'usecasename':usecasename, 
                   'modelCondition':modelCondition, 'selected': 'modeltraning','computeinfrastructure':computeinfrastructure,'usecasetab':usecasetab,'noOfTrainingFeatures':noOfTrainingFeatures}
        context['version'] = AION_VERSION
        return render(request, 'training.html',context) 
        
def getTrainingTime(filePath, no_of_features):  
    #filePath = 'C:\\MyFolder\AION\\AION Datasets\\Heavy Datasets\\class_1MRows_26Cols.csv'        
    returnVal = '0_0'    
    if(os.path.isfile(filePath)):
        trainingTime = 0
        
        neartrainingTime = 0                    # It's used to store the closest Training-Time
        nearsampleSize = 0                      # It's used to store the closest Sample-Size
        leastSizeDifference = 0                 # It's used to find the possible minimum difference between the dataset's actual size and Sample-Size in JSON file
        inRange = 0                             # It's used to identify if Extrapolation is needed or not
        
        fileSizeMBLimit = 0                   # It's used to check/limit the size of uploaded dataset
        acceptSizeVariance = 10                 # It's used to cover the variance in sample-size
        featuresThreshold = 50                  # It's used to set the boundary/binary-classification of records-typte    
        
        # ------------------------------------------------------------------------------------------------------------ #
        configfilepath = os.path.join(os.path.dirname(os.path.abspath(__file__)),'..','..','config','training.config')    
        if(os.path.isfile(configfilepath)):
            file = open(configfilepath, ""r"")
            read = file.read()
            file.close()
            for line in read.splitlines():
                if 'fileSizeMBLimit=' in line:
                    fileSizeMBLimit = int(line.split('=',1)[1])
                if 'acceptSizeVariance=' in line:
                    acceptSizeVariance = int(line.split('=',1)[1])
                if 'featuresThreshold=' in line:
                    featuresThreshold = int(line.split('=',1)[1])

        # get the size of uploaded dataset/file (in MB)
        sz = os.path.getsize(filePath)    
        fileSizeMB = sz / (1024 * 1024)
            
        # check if uploaded dataset/file is bigger than defined threshold or not. If yes, only than go to calculate the tentative training-time    
        if(fileSizeMB > fileSizeMBLimit):
            configfilepath = os.path.join(os.path.dirname(os.path.abspath(__file__)),'..','..','config','training_runs.json')
            try:
                if(os.path.isfile(configfilepath)):           
                    # Opening JSON file
                    f = open(configfilepath)                     
                    # returns JSON object as a dictionary
                    data = json.load(f)
                     
                    # Iterating through the json list
                    for run in data['runs']:
                        sampleSize = run['sampleSize'].replace("" MB"","""")
                        sampleSize = int(float(sampleSize))

                        features = int(run['features'])

                        # match records under 10% (+ or -) of variance
                        sizeDifference = fileSizeMB - sampleSize
                        if (sizeDifference < 0):
                            sizeDifference = sizeDifference * -1
                        
                        if (leastSizeDifference == 0):
                            leastSizeDifference = sizeDifference
                                                    
                        # ------------------------------------------------------------------------------------------------ #
                        if (no_of_features <= featuresThreshold):
                            if ((sizeDifference * 100)/fileSizeMB < acceptSizeVariance and features <= featuresThreshold):                        
                                acceptSizeVariance = (sizeDifference * 100)/fileSizeMB
                                trainingTime = run['trainingTime'].replace("" Mins"","""")
                                trainingTime = int(trainingTime)
                                returnVal = str(trainingTime) + '_match'
                                inRange = 1
                            
                            # get the nearest value of sampleSize (which can be used for extrapolation) from the JSON file   
                            if (sizeDifference <= leastSizeDifference and features <= featuresThreshold):
                                nearsampleSize = sampleSize
                                leastSizeDifference = sizeDifference
                                neartrainingTime = run['trainingTime'].replace("" Mins"","""")
                                neartrainingTime = int(neartrainingTime)
                        # ------------------------------------------------------------------------------------------------ #
                        
                        # ------------------------------------------------------------------------------------------------ #
                        if (no_of_features > featuresThreshold):
                            if ((sizeDifference * 100)/fileSizeMB < acceptSizeVariance and features > featuresThreshold):                        
                                acceptSizeVariance = (sizeDifference * 100)/fileSizeMB
                                trainingTime = run['trainingTime'].replace("" Mins"","""")
                                trainingTime = int(trainingTime)
                                returnVal = str(trainingTime) + '_match'
                                inRange = 1
                            
                            # get the nearest value of sampleSize (which can be used for extrapolation) from the JSON file   
                            if (sizeDifference <= leastSizeDifference and features > featuresThreshold):
                                nearsampleSize = sampleSize
                                leastSizeDifference = sizeDifference
                                neartrainingTime = run['trainingTime'].replace("" Mins"","""")
                                neartrainingTime = int(neartrainingTime)
                        # ------------------------------------------------------------------------------------------------ #  
                        
                    # When there is no record (sample-size) matched with 10% of variance then go for the extrapolation
                    if (inRange == 0):
                        sizeDifference = fileSizeMB - nearsampleSize
                        ratio = (sizeDifference * 100)/nearsampleSize
                        trainingTime = neartrainingTime + ((ratio * neartrainingTime)/100)
                        trainingTime = int(trainingTime)
                        returnVal = str(trainingTime) + '_extrapolation'
                        
                    # Closing file
                    f.close()    
                    
            except Exception as inst:
                pass    
    
    return returnVal

def getllmmodelscore(usecaseid,model):
    DB_TABLE = 'llm_benchmarking'
    from appbe.sqliteUtility import sqlite_db
    from appbe.dataPath import DATA_DIR
    file_path = str(Path(DATA_DIR)/'sqlite')
    sqlite_obj = sqlite_db(file_path,'config.db')
    usecaseidcond = f'usecaseid=""{usecaseid}""'
    helptxt =''
    msg = ''
    #print(usecaseidcond)
    if sqlite_obj.table_exists(DB_TABLE):
        usecasemodelscore = sqlite_obj.read_data(DB_TABLE,usecaseidcond)
        status = ''
        finetunedscore = 'NA'
        foundationscore = 'NA'
        benchmarkdataset = 'NA'
        modelfunctionscore = {'CodeLLaMA-2-7B':'33%','CodeLLaMA-2-13B':'36%','LLaMA-2-7B':'16.8%','LLaMA-2-13B':'20.1%','LLaMA-2-70B':'31.0%','LLaMA-2-Chat-7B':'76%','LLaMA-2-Chat-13B':'79.2%','LLaMA-2-Chat-70B':'84.2%','Falcon-7B':'NA','Falcon-40B':'NA'}
        foundationscore = modelfunctionscore.get(model,'NA')
        scoretype='NA'
        for x in usecasemodelscore:
            #print(x)
            keys = sqlite_obj.column_names(DB_TABLE)
            #print(keys)
            status = x[keys.index('state')]
            if status.lower() in ['success','finished']:
                result_type = x[keys.index('result_type')]
                result = eval(x[keys.index('result')])
                scoretype = list(result.keys())[0]
                if scoretype.lower() == 'hellaswag':
                    benchmarkdataset = 'HellaSwag'
                    helptxt = 'HellaSwag is a challenge dataset for evaluating commonsense Natural Language Inferencing. It consists of ~70k multiple choice questions with four answer choices about what might happen next. The correct answer is the (real) sentence for the next event; the three incorrect answers are adversarial generated and human verified.'
                else:
                    benchmarkdataset = 'HumanEval'
                if result_type == 'dict':
                    sub_result = list(result.values())[0]
                    scoretype = list(sub_result.keys())[0]
                    if scoretype == 'acc':
                        scoretype = 'Accuracy'
                    finetunedscore = str(round((float(list(sub_result.values())[0])*100),2))
                    finetunedscore = f'{finetunedscore}%'
                else:
                    finetunedscore = str(round((float(list(result.values())[0])*100),2))
            elif status.lower() == 'error':
                msg = x[keys.index('result')]
                
        evaluation = {'status':status,'msg':msg,'benchmarkdataset':benchmarkdataset,'scoreType':scoretype,'finetunedscore':str(finetunedscore),'foundationscore':foundationscore,'helptxt':helptxt} 
    else:
        evaluation = {'status':'','scoreType':'','benchmarkdataset':'','finetunedscore':'','foundationscore':'','helptxt':''} 
    #print(evaluation)
    return evaluation
def trainmodel(request):    
    from appbe.aion_config import settings
    usecasetab = settings()
    selected_use_case = request.session['UseCaseName']
    ModelVersion = request.session['ModelVersion']
    ModelStatus = request.session['ModelStatus']
    usecasename = request.session['usecaseid'].replace("" "", ""_"")
    try:
        checkModelUnderTraining(request,usecasedetails,Existusecases)        
        computeinfrastructure = compute.readComputeConfig()
        updatedConfigFile = request.session['config_json']
        f = open(updatedConfigFile, ""r+"", encoding=""utf-8"")
        configSettingsData = f.read()
        configSettingsJson = json.loads(configSettingsData)
        total_steps = calculate_total_activities(configSettingsJson)
        warning = check_unsupported_col(configSettingsJson)
        time_series_warning = check_granularity(configSettingsJson)
        noofIteration = calculate_total_interations(configSettingsJson)
        request.session['total_steps'] = total_steps
        p = usecasedetails.objects.get(usecaseid=request.session['usecaseid'])
        usecaseid = p.id

        modelCondition = ''
   
        problem_type,dproblem_type,sc,mlmodels,dlmodels,smodelsize =  getMLModels(configSettingsJson)
        configSettingsJson['basic']['problem_type'] = problem_type
        configSettingsJson['basic']['dproblem_type'] = dproblem_type
        if mlmodels != '':
            configSettingsJson['basic']['mllearner'] = 'enable'
        if dlmodels != '':
            configSettingsJson['basic']['dllearner'] = 'enable'
        if configSettingsJson['basic']['analysisType']['multiLabelPrediction'] == 'True' or configSettingsJson['basic']['analysisType']['multiModalLearning'] == 'True':
           configSettingsJson['basic']['selected_ML_Models'] = 'AutoGluon'
           configSettingsJson['basic']['mllearner'] = 'enable'
        else:
            configSettingsJson['basic']['selected_ML_Models'] = mlmodels
            configSettingsJson['basic']['selected_DL_Models'] = dlmodels
        configSettingsJson['basic']['smodel_size'] = smodelsize


        
        
        # ---------------------------------------------------------------------- #    
        cal_trainingTime = 0.
        is_extrapolation = 'No'    
        is_DataImbalance = 'No'
        if (request.session['ModelStatus'] == 'Not Trained' and (problem_type == 'classification' or problem_type == 'regression')):
        
            # <!-- ------------------------------  Data Imbalance Changes ------------------------------  -->
            if ( problem_type == 'classification' ):
                is_DataImbalance = 'Yes'                              
            # <!-- -------------------------------------------------------------------------------------  -->
                        
            if len(mlmodels.split(',')) == 1:
                filePath = configSettingsJson['basic']['dataLocation']
                no_of_features = len(configSettingsJson['basic']['trainingFeatures'].split(','))
                
                returnVal = getTrainingTime(filePath, no_of_features)
                cal_trainingTime = int(returnVal.split('_')[0])    
                    
                if (returnVal.split('_')[1] == 'extrapolation'):
                    is_extrapolation = 'Yes'
        # ---------------------------------------------------------------------- #
        
        
        features =  configSettingsJson['basic']['trainingFeatures'].split(',')   
        if configSettingsJson['basic']['targetFeature'] in features:
            features.remove(configSettingsJson['basic']['targetFeature'])
        noOfTrainingFeatures = len(features)
        selected_use_case = request.session['UseCaseName']
        ModelVersion = request.session['ModelVersion']
        ModelStatus = request.session['ModelStatus']
        if 'noOfRecords' in configSettingsJson['basic']:
            records = configSettingsJson['basic']['noOfRecords']
        else:
            from appbe.train_output import getDataSetRecordsCount
            records = getDataSetRecordsCount(configSettingsJson['basic']['dataLocation'])
        filesCount = 0
        filesSize = 0
        try:
            if configSettingsJson['basic']['analysisType']['llmFineTuning'].lower() == 'true' and \
                configSettingsJson['basic']['folderSettings']['fileType'].lower() in ['llm_document', 'llm_code']:
                filesCount, filesSize = getDataFileCountAndSize(configSettingsJson['basic'])
        except:
            pass
        if request.session['finalstate'] <= 3:
            request.session['finalstate'] = 3
        request.session['currentstate'] = 3
        if request.session['ModelStatus'].lower() == 'running':
            model = Existusecases.objects.get(ModelName=request.session['ModelName'],
                                              Version=request.session['ModelVersion'])
            status = checkversionrunningstatus(model.id,usecasedetails,Existusecases)
            request.session['ModelStatus'] = status
            request.session.save()
            
        if request.session['ModelStatus'] == 'SUCCESS':
            model = Existusecases.objects.get(ModelName=request.session['ModelName'],
                                              Version=request.session['ModelVersion'])
            output_train_json_filename = str(model.TrainOuputLocation)
            f = open(output_train_json_filename, ""r+"")
            training_output = f.read()
            f.close()
            model_perf = getPerformanceMatrix(request.session['deploypath'],training_output)
            from appbe.trainresult import ParseResults
            result, survical_images = ParseResults(training_output)
            file_path = request.session['logfilepath']
            my_file = open(file_path, 'r',encoding=""utf-8"")
            file_content = my_file.read()
            my_file.close()
            matched_lines = [line.replace('Status:-', '') for line in file_content.split('\n') if ""Status:-"" in line]
            matched_status_lines = matched_lines[::-1]
            
            matched_status_lines = matched_status_lines[0]
            matched_status_lines = matched_status_lines.split('...')
            matched_status_lines = matched_status_lines[1]
            
            no_lines = len(matched_lines)
            if 'noflines' not in request.session:
                request.session['noflines'] = 0
            request.session['noflines'] = request.session['noflines'] + 1
            if request.session['ModelStatus'] != 'SUCCESS':
                numberoflines = request.session['noflines']
                if numberoflines > no_lines:
                    numberoflines = no_lines
                    request.session['noflines'] = no_lines
                matched_lines = matched_lines[0:numberoflines]
            shortlogs = getStatusCount(matched_lines,request.session['total_steps'])

            featuretype = configSettingsJson['advance']['profiler']['featureDict'] 


            user_provided_data_type = {}
            text_type=''
            for feat_conf in featuretype:
                colm = feat_conf.get('feature', '')
                if feat_conf['type'] == ""text"":
                    text_type=""text""
                    break
            
            configSettingsJson['basic']['problem_type']= problem_type
            configSettingsJson['basic']['selected_ML_Models']= mlmodels
            if  ('Logistic Regression' not in mlmodels) or ('Linear Regression' not in mlmodels):
                selectedmodel = 'modelcomparision'
            else:
                selectedmodel = "" ""
            contentdb = ''
            finetunedeval = {}
            if problem_type.lower() in ['similarityidentification','contextualsearch']:
                if configSettingsJson['basic']['preprocessing'][problem_type]['CSV'].lower() == 'true':
                    contentdb = 'CSV'
                elif configSettingsJson['basic']['preprocessing'][problem_type]['VectorDB'].lower() == 'true':
                    contentdb = 'VectorDB'
            if problem_type.lower() == 'llmfinetuning':
                modelSize = getModelSize(configSettingsJson,mlmodels)
                usecasename = request.session['usecaseid'].replace("" "", ""_"")
                finetunedeval = getllmmodelscore(f'{usecasename}_{ModelVersion}',f'{mlmodels}-{modelSize}')
                
            context = {'result': result,'filesCount':filesCount,'filesSize':filesSize, 'text_type':text_type,'selectedmodel':selectedmodel, 'advconfig': configSettingsJson,'usecaseid':usecaseid,'usecasename':usecasename,
                       'selected_use_case': selected_use_case, 'noOfRecords': records, 'ModelStatus': ModelStatus,'warning':warning,'time_series_warning':time_series_warning,
                       'modelCondition':modelCondition,'ModelVersion': ModelVersion,'shortlogs':shortlogs,'logs':matched_status_lines,'currentstate': request.session['currentstate'],'finalstate': request.session['finalstate'], 'model_perf': model_perf,'perf_images': survical_images, 'selected': 'modeltraning','computeinfrastructure':computeinfrastructure,'usecasetab':usecasetab,'noOfTrainingFeatures':noOfTrainingFeatures,'version':AION_VERSION,'noofIteration':noofIteration,'log_file':file_content,'contentdb':contentdb,'finetunedeval':finetunedeval}
        else:
            contentdb = ''
            if problem_type.lower() in ['similarityidentification','contextualsearch']:
                if configSettingsJson['basic']['preprocessing'][problem_type]['CSV'].lower() == 'true':
                    contentdb = 'CSV'
                elif configSettingsJson['basic']['preprocessing'][problem_type]['VectorDB'].lower() == 'true':
                    status = importlib.util.find_spec('chromadb')
                    if not status:
                        contentdb = 'CSV'
                    else:
                        contentdb = 'VectorDB'
                else:
                    status = importlib.util.find_spec('chromadb')
                    if not status:
                        contentdb = 'CSV'
                    else:
                        contentdb = 'VectorDB'
            configSettingsJson['basic']['problem_type']=problem_type
            context = {'cal_trainingTime':cal_trainingTime,'filesCount':filesCount,'filesSize':filesSize, 'is_extrapolation': is_extrapolation,'advconfig': configSettingsJson,'usecaseid':usecaseid,'usecasename':usecasename,
                       'selected_use_case': selected_use_case, 'noOfRecords': records, 'ModelStatus': ModelStatus, 'warning':warning,'time_series_warning':time_series_warning,'is_DataImbalance' : is_DataImbalance,
                       'ModelVersion': ModelVersion, 'currentstate': request.session['currentstate'], 
                       'modelCondition':modelCondition,'finalstate': request.session['finalstate'], 'selected': 'modeltraning','computeinfrastructure':computeinfrastructure,'usecasetab':usecasetab,'noOfTrainingFeatures':noOfTrainingFeatures,'version':AION_VERSION,'noofIteration':noofIteration,'contentdb':contentdb}
        return render(request, 'training.html', context)
    except Exception as e:
        print(e)
        exc_type, exc_obj, exc_tb = sys.exc_info()
        fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
        print(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))
        context = { 'error': 'Model Training Error','selected_use_case': selected_use_case,'contentdb':'','usecasename':usecasename,
                    'ModelVersion': ModelVersion,'selected': 'modeltraning','computeinfrastructure':computeinfrastructure,'version':AION_VERSION}
        return render(request, 'training.html', context)"
apps.py,"from django.apps import AppConfig


class ModelTrainingConfig(AppConfig):
    name = 'appfe.modelTraining'
"
tests.py,"from django.test import TestCase

# Create your tests here.
"
landing_views.py,"from django.shortcuts import render
from django.urls import reverse
from django.http import HttpResponse
from django.shortcuts import redirect
from appbe.pages import getusercasestatus
from appbe.pages import getversion
AION_VERSION = getversion()
from appfe.modelTraining.models import usecasedetails
from appfe.modelTraining.models import Existusecases
import os
from django.db.models import Max, F
import pandas as pd
from appbe.publish import check_input_data
from appbe.dataPath import DEFAULT_FILE_PATH
from appbe.dataPath import DATA_FILE_PATH
from appbe.dataPath import CONFIG_FILE_PATH
from appbe.dataPath import DEPLOY_LOCATION
from appbe import installPackage
import json
from appbe import compute
from appbe.training import checkModelUnderTraining
import logging
def opentraininglogs(request, id,currentVersion):
    from appbe.pages import usecases_page
    try:
        from appbe import installPackage
        modelID = installPackage.getMIDFromUseCaseVersion(id,currentVersion,usecasedetails,Existusecases)
        p = Existusecases.objects.get(id=modelID)
        configpath = str(p.ConfigPath)
        file_exists = os.path.exists(configpath)
        if not file_exists:
            request.session['IsRetraining'] = 'No'
            status,context,action = usecases_page(request,usecasedetails,Existusecases)
            context['errorMsg'] = 'Error in model launching: Some of the files are missing'
            return render(request,action,context)           
        usecasename = p.ModelName.UsecaseName
        Version = p.Version
        request.session['ModelName'] = p.ModelName.id
        request.session['UseCaseName'] = usecasename
        request.session['usecaseid'] = p.ModelName.usecaseid        
        request.session['ModelVersion'] = p.Version
        request.session['deploypath'] = str(p.DeployPath)
        request.session['config_json'] = configpath
        usename = request.session['usecaseid'].replace("" "", ""_"")
        request.session['logfilepath'] = os.path.join(DEPLOY_LOCATION,usename,str(request.session['ModelVersion']),'log','model_training_logs.log')
        request.session['finalstate'] = 3   
        request.session['ModelStatus'] = p.Status
        updatedConfigFile = request.session['config_json']
        f = open(updatedConfigFile, ""r"")
        configSettings = f.read()
        f.close()
        configSettings = json.loads(configSettings)
        problemtypes = configSettings['basic']['analysisType'] 
        #print(problemtypes.keys())
        problem_type = """"
        for k in problemtypes.keys():
            if configSettings['basic']['analysisType'][k] == 'True':
                problem_type = k
                break       
        if problem_type.lower() in ['videoforecasting','imageclassification','objectdetection','document','llmfinetuning']:
            request.session['datatype'] = configSettings['basic']['folderSettings']['fileType']
            request.session['csvfullpath'] = configSettings['basic']['folderSettings']['labelDataFile']
            request.session['datalocation'] = configSettings['basic']['dataLocation']
            if problem_type.lower() == 'llmfinetuning':
                request.session['fileExtension'] = configSettings['basic']['folderSettings']['fileExtension']
        else:
            request.session['datalocation'] = str(p.DataFilePath)
            request.session['datatype'] = 'Normal'
        if 'fileSettings' in configSettings['basic'].keys():
            fileSettings = configSettings['basic']['fileSettings']
            if 'delimiters' in fileSettings.keys():
                delimiters = configSettings['basic']['fileSettings']['delimiters']
                textqualifier = configSettings['basic']['fileSettings']['textqualifier']
                request.session['delimiter'] = delimiters
                request.session['textqualifier'] = textqualifier
            else:
                request.session['delimiter'] = ','
                request.session['textqualifier'] = '""'
        from appfe.modelTraining.views import uploaddata        
        return uploaddata(request)
    except Exception as e:
        print(e)
        return render(request, 'usecases.html',{'error': 'Failed to launch model. Please train the model first before launching.','selected': 'prediction','version':AION_VERSION})

def retrain(request, id,currentVersion):
    from appbe.aion_config import eda_setting
    from appbe.pages import usecases_page
    from appbe.aion_config import settings
    usecasetab = settings()
    try:
        p =  usecasedetails.objects.get(id=id)
        s1 = Existusecases.objects.filter(ModelName=id).annotate(maxver=Max('ModelName__existusecases__Version'))
        config_list = s1.filter(Version=F('maxver'))
        if config_list.count() > 0:
            Version = config_list[0].Version
            Version = Version + 1
        else:
            Version = 1
           
        usecasename = p.UsecaseName
        request.session['ModelName'] = p.id
        request.session['UseCaseName'] = usecasename
        request.session['usecaseid'] = p.usecaseid 
        request.session['ModelVersion'] = Version
        request.session['ModelStatus'] = 'Not Trained'
        request.session['finalstate'] = 0
        usecase = usecasedetails.objects.all().order_by('-id')

        # Retraing settings changes
        # -------- S T A R T --------
        model = Existusecases.objects.filter(ModelName=p,Version=currentVersion)
        
        samplePercentage = 100
        samplePercentval = 0
        showRecommended = False
        
        if(model.count() > 0):
            indexVal = 0
            configfile = str(model[indexVal].ConfigPath)        
            f = open(configfile, ""r"")
            configSettings = f.read()
            f.close()
            configSettings = json.loads(configSettings)     
            dataFile = configSettings['basic']['dataLocation']
            if configSettings['basic']['folderSettings']['fileType'] == 'Object':
                request.session['datatype'] = configSettings['basic']['folderSettings']['fileType']
                request.session['objectLabelFileName'] = configSettings['basic']['folderSettings']['labelDataFile']
                request.session['datalocation'] = configSettings['basic']['dataLocation']
                return objectlabeldone(request)         
            else:           
                request.session['datalocation'] = str(configSettings['basic']['dataLocation'])
                request.session['datatype'] = 'Normal'          
            if 'fileSettings' in configSettings['basic'].keys():
                fileSettings = configSettings['basic']['fileSettings']
                if 'delimiters' in fileSettings.keys():
                    delimiters = configSettings['basic']['fileSettings']['delimiters']
                    textqualifier = configSettings['basic']['fileSettings']['textqualifier']
                    request.session['delimiter'] = delimiters
                    request.session['textqualifier'] = textqualifier
                else:
                    request.session['delimiter'] = ','
                    request.session['textqualifier'] = '""'      
                    
            df = pd.read_csv(dataFile, encoding='utf8',nrows=10,encoding_errors= 'replace')
            records = df.shape[0]
            df1 = check_input_data(usecasename)
            if df1.shape[0] >  0:
                df = pd.read_csv(dataFile, encoding='utf8',encoding_errors= 'replace')
                df = df.append(df1, ignore_index=True)
                df = df.reset_index(drop=True)
                filetimestamp = str(int(time.time()))
                dataFile = os.path.join(DATA_FILE_PATH, 'AION_' + filetimestamp+'.csv')
                df.to_csv(dataFile, index=False)    
                print(df.shape[0])
            request.session['datalocation'] = str(dataFile)
            request.session['NoOfRecords'] = records
            request.session['IsRetraining'] = 'Yes'
            
            df_top = df.head(10)
            df_json = df_top.to_json(orient=""records"")
            df_json = json.loads(df_json)
                                
            # from AION import ux_eda
            # eda_obj = ux_eda(dataFile)
            # featuresList,datetimeFeatures,sequenceFeatures,constantFeature,textFeature,targetFeature,numericCatFeatures,numericFeature = eda_obj.getFeatures()        
            featuresList = df.columns.tolist()   
            
            numberoffeatures = len(featuresList)            
            from appfe.modelTraining.views import getimpfeatures
            imp_features = getimpfeatures(dataFile,numberoffeatures)

            check_df = pd.read_csv(dataFile,encoding='utf8',encoding_errors= 'replace')
            
            # EDA Performance change
            # ----------------------------
            sample_size = int(eda_setting())
                    
            # dflength = len(eda_obj.getdata())
            dflength = len(check_df)
            
            if dflength > sample_size:
                samplePercentage = int((sample_size/dflength) * 100)
                samplePercentval = samplePercentage / 100
                showRecommended = True
            # ----------------------------
        
       
        statusmsg = 'Data loaded Successfully for Retraining.'
        computeinfrastructure = compute.readComputeConfig()
        # ----------------------------
        
        selected_use_case = request.session['UseCaseName']
        ModelVersion = Version
        ModelStatus = 'Not Trained'
        if len(usecase) > 0:
            nouc = usecasedetails.objects.latest('id')  
            nouc = (nouc.id)+1
        else:
            nouc = 1
        
        # Retraing settings changes
        # -------- S T A R T --------
        # return render(request, 'usecases.html', {'usecasedetail': usecase,'nouc':nouc,'models': models, 'selectedusecase': usecasename,
                                                 # 'selected_use_case': selected_use_case, 'ModelStatus': ModelStatus,
                                                 # 'ModelVersion': ModelVersion, 'selected': 'usecase'})
        ps = Existusecases(DataFilePath=request.session['datalocation'], DeployPath='', Status='Not Trained',ConfigPath=configfile, Version=Version, ModelName=p,TrainOuputLocation='')
        ps.save()
        if(model.count() > 0):
            context = {'range':range(1,101),'samplePercentage':samplePercentage, 'samplePercentval':samplePercentval, 'showRecommended':showRecommended,'featuresList': featuresList, 'tab': 'tabconfigure','data': df_json,'selected_use_case': selected_use_case, 'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion,'selected': 'modeltraning','exploratory':False, 'status_msg': statusmsg,'computeinfrastructure':computeinfrastructure,'IsRetrainingModel':True,'imp_features':imp_features,'numberoffeatures':numberoffeatures, 'dataSetPath': dataFile,'usecasetab':usecasetab,'finalstate':request.session['finalstate'],'version':AION_VERSION}
        else:
            context = {'tab': 'tabconfigure','selected_use_case': selected_use_case, 'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion,'selected': 'modeltraning','computeinfrastructure':computeinfrastructure,'usecasetab':usecasetab,'Modelretrain':request.session['ModelVersion'],'finalstate':request.session['finalstate'],'version':AION_VERSION}
        context['version'] = AION_VERSION  
        return render(request, 'upload.html', context)
    except Exception as e:
        print(e)
        checkModelUnderTraining(request,usecasedetails,Existusecases)
        request.session['IsRetraining'] = 'No'
        status,context,action = usecases_page(request,usecasedetails,Existusecases)
        #print(context)     
        context['version'] = AION_VERSION
        context['Status'] = 'Error'
        context['Msg'] = 'Error in retraining usecase. Check log file for more details'
        return render(request,action,context)        

def launchmodel(request, id,version):
    from appbe.pages import usecases_page
    try:
        modelID = installPackage.getMIDFromUseCaseVersion(id,version,usecasedetails,Existusecases)
        p = Existusecases.objects.get(id=modelID)
        configpath = str(p.ConfigPath)
        file_exists = os.path.exists(configpath)
        if not file_exists:
            request.session['IsRetraining'] = 'No'
            status,context,action = usecases_page(request,usecasedetails,Existusecases)
            context['errorMsg'] = 'Error in model launching: Some of the files are missing'
            return render(request,action,context)           
        usecasename = p.ModelName.UsecaseName
        Version = p.Version
        request.session['ModelName'] = p.ModelName.id
        request.session['UseCaseName'] = usecasename
        request.session['usecaseid'] = p.ModelName.usecaseid        
        request.session['ModelVersion'] = p.Version
        request.session['deploypath'] = str(p.DeployPath)
        request.session['config_json'] = configpath
        usename = request.session['usecaseid'].replace("" "", ""_"")
        request.session['logfilepath'] = os.path.join(DEPLOY_LOCATION,usename,str(request.session['ModelVersion']),'log','model_training_logs.log')
        request.session['finalstate'] = 3   
        request.session['ModelStatus'] = p.Status
        updatedConfigFile = request.session['config_json']

        f = open(updatedConfigFile, ""r"")
        configSettings = f.read()
        f.close()
        configSettings = json.loads(configSettings)
        problemtypes = configSettings['basic']['analysisType'] 
        #print(problemtypes.keys())
        problem_type = """"
        for k in problemtypes.keys():
            if configSettings['basic']['analysisType'][k] == 'True':
                problem_type = k
                break
        if problem_type == 'videoForecasting' or problem_type == 'imageClassification' or problem_type == 'objectDetection':
            request.session['datatype'] = configSettings['basic']['folderSettings']['fileType']
            request.session['csvfullpath'] = configSettings['basic']['folderSettings']['labelDataFile']
            request.session['datalocation'] = configSettings['basic']['dataLocation']
        elif configSettings['basic']['folderSettings']['fileType'] == 'Document':
            request.session['datatype'] = configSettings['basic']['folderSettings']['fileType']
            request.session['csvfullpath'] = configSettings['basic']['folderSettings']['labelDataFile']
            request.session['datalocation'] = configSettings['basic']['dataLocation']
        else:
            request.session['datalocation'] = str(p.DataFilePath)
            request.session['datatype'] = 'Normal'
        if 'fileSettings' in configSettings['basic'].keys():
            fileSettings = configSettings['basic']['fileSettings']
            if 'delimiters' in fileSettings.keys():
                delimiters = configSettings['basic']['fileSettings']['delimiters']
                textqualifier = configSettings['basic']['fileSettings']['textqualifier']
                request.session['delimiter'] = delimiters
                request.session['textqualifier'] = textqualifier
            else:
                request.session['delimiter'] = ','
                request.session['textqualifier'] = '""'
            
        from appfe.modelTraining.prediction_views import Prediction        
        return Prediction(request)
    except Exception as e:
        print(e)
        return render(request, 'prediction.html',{'error': 'Failed to launch model. Please train the model first before launching.','selected': 'prediction','version':AION_VERSION})        

def modxplain(request, id,version):
    from appbe.pages import usecases_page
    log = logging.getLogger('log_ux')
    modelID = installPackage.getMIDFromUseCaseVersion(id,version,usecasedetails,Existusecases)
    p = Existusecases.objects.get(id=modelID)
    configpath = str(p.ConfigPath)
    usecasename = p.ModelName.UsecaseName
    Version = p.Version
    request.session['ModelName'] = p.ModelName.id
    request.session['UseCaseName'] = usecasename
    request.session['usecaseid'] = p.ModelName.usecaseid
    request.session['ModelVersion'] = p.Version
    request.session['deploypath'] = str(p.DeployPath)
    request.session['config_json'] = configpath
    usename = request.session['usecaseid'].replace("" "", ""_"")
    request.session['logfilepath'] = os.path.join(DEPLOY_LOCATION,usename,str(request.session['ModelVersion']),'log','model_training_logs.log')
    request.session['finalstate'] = 3   
    request.session['ModelStatus'] = p.Status
    file_exists = os.path.exists(configpath)
    if not file_exists:
        request.session['IsRetraining'] = 'No'
        status,context,action = usecases_page(request,usecasedetails,Existusecases)
        context['errorMsg'] = 'Error in model launching: Some of the files are missing'
        log.info('modxplain:' + str(selected_use_case) + ':' + str(ModelVersion) + ':' + '0 ' + 'sec' + ':' + 'Error:Error in model launching: Some of the files are missing')
        return render(request,action,context) 
        
    usecasename = p.ModelName.UsecaseName
    Version = p.Version
    request.session['ModelName'] = p.ModelName.id
    request.session['UseCaseName'] = usecasename
    request.session['usecaseid'] = p.ModelName.usecaseid
    request.session['ModelVersion'] = p.Version
    request.session['deploypath'] = str(p.DeployPath)
    request.session['config_json'] = configpath
    usename = request.session['usecaseid'].replace("" "", ""_"")
    request.session['logfilepath'] = os.path.join(DEPLOY_LOCATION,usename,str(request.session['ModelVersion']),'log','model_training_logs.log')
    request.session['finalstate'] = 3   
    request.session['ModelStatus'] = p.Status
    from appfe.modelTraining import visualizer_views as v
    return v.xplain(request)        
    
def moddrift(request, id,version):
    from appbe.pages import usecases_page
    modelID = installPackage.getMIDFromUseCaseVersion(id,version,usecasedetails,Existusecases)
    p = Existusecases.objects.get(id=modelID)
    configpath = str(p.ConfigPath)
    file_exists = os.path.exists(configpath)
    if not file_exists:
        request.session['IsRetraining'] = 'No'
        status,context,action = usecases_page(request,usecasedetails,Existusecases)
        context['errorMsg'] = 'Error in model launching: Some of the files are missing'
        return render(request,action,context)           
    usecasename = p.ModelName.UsecaseName
    Version = p.Version
    request.session['ModelName'] = p.ModelName.id
    request.session['UseCaseName'] = usecasename
    request.session['usecaseid'] = p.ModelName.usecaseid
    request.session['ModelVersion'] = p.Version
    request.session['deploypath'] = str(p.DeployPath)
    request.session['config_json'] = configpath
    usename = request.session['usecaseid'].replace("" "", ""_"")
    request.session['logfilepath'] = os.path.join(DEPLOY_LOCATION,usename,str(request.session['ModelVersion']),'log','model_training_logs.log')
    request.session['finalstate'] = 3   
    request.session['ModelStatus'] = p.Status

    f = open( configpath, ""r"")
    configSettings = f.read()
    f.close()
    configSettingsJson = json.loads(configSettings)
    trainingdataloc = configSettingsJson['basic']['dataLocation']

    request.session['datalocation']= trainingdataloc
    
    return inputdrift(request)
    
def inputdrift(request):
    log = logging.getLogger('log_ux')
    from appbe.aion_config import settings
    usecasetab = settings()
    from appbe import service_url
    try:
        selected_use_case,ModelVersion,ModelStatus = getusercasestatus(request)
        computeinfrastructure = compute.readComputeConfig()    
        
        if ModelStatus != 'SUCCESS':
            context = {'error': 'Please train the model first or launch an existing trained model', 'selected_use_case': selected_use_case,
                       'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion, 'selected': 'monitoring','computeinfrastructure':computeinfrastructure,'usecasetab':usecasetab}
            log.info('Error Please train the model first or launch an existing trained model')

        else:
            updatedConfigFile = request.session['config_json']
            f = open(updatedConfigFile, ""r"")
            configSettings = f.read()
            f.close()
            configSettingsJson = json.loads(configSettings)
            problemtypes = configSettingsJson['basic']['analysisType'] 
            problem_type = """"
            for k in problemtypes.keys():
                if configSettingsJson['basic']['analysisType'][k] == 'True':
                    problem_type = k
                    break
            problem = problem_type
            ser_url = service_url.read_monitoring_service_url_params(request)    
            iterName = request.session['usecaseid'].replace("" "", ""_"")
            ModelVersion = request.session['ModelVersion']
            ser_url = ser_url+'monitoring?usecaseid='+iterName+'&version='+str(ModelVersion)
            pser_url = service_url.read_performance_service_url_params(request)
            pser_url = pser_url+'performance?usecaseid='+iterName+'&version='+str(ModelVersion)    
            if problem.lower() not in ['classification','regression']:
                context = {'error': 'Input drift only available for classification and regression problems', 'selected_use_case': selected_use_case, 'ModelStatus': ModelStatus,'version':AION_VERSION,
                       'ModelVersion': ModelVersion, 'selected': 'monitoring','ser_url':ser_url,'pser_url':pser_url,'trainingDataLocation':request.session['datalocation'],'computeinfrastructure':computeinfrastructure,'usecasetab':usecasetab}
            else:
                context = {'SUCCESS': 'Model is trained', 'selected_use_case': selected_use_case, 'ModelStatus': ModelStatus, 'version':AION_VERSION,
                       'ModelVersion': ModelVersion, 'selected': 'monitoring','ser_url':ser_url,'pser_url':pser_url,'trainingDataLocation':request.session['datalocation'],'computeinfrastructure':computeinfrastructure,'usecasetab':usecasetab}
        return render(request, 'inputdrif.html', context)
    except Exception as e:
        print(e)
        log.info('inputdrift; Error: Failed to perform drift analysis'+str(e))
        return render(request, 'inputdrif.html', {'selected_use_case': selected_use_case, 'ModelStatus': ModelStatus,'ModelVersion': ModelVersion, 'selected': 'monitoring','computeinfrastructure':computeinfrastructure,'version':AION_VERSION,'error':'Fail to do inputdrift analysis','usecasetab':usecasetab}) 
 "
AirflowLib.py,"#
# AirflowLib.py
#
#   It contains methods to consume rest API of Apache airflow instance
#	Apache Airflow exposed experimental API
#	One can achieve the API output just by using the methods implemented within this python file by importing the same
#

import requests
import pandas as pd




# base_url = 'http://localhost:8080/api/experimental'


# It defines the API error which actually raised when error occured during API consumption
from modelTraining.airflow_config import base_url


class ApiError(Exception):
    """"""An API Error Exception""""""

    def __init__(self, status):
        self.status = status

    def __str__(self):
        return ""APIError: status={}"".format(self.status)


# This method takes dagId as parameter and return the list of Dag Run from apache airflow instance
def GetDagRunList(dagId):
    resp = requests.get(base_url + '/dags/' + dagId + '/dag_runs')
    if resp.status_code != 200:
        raise ApiError('GetDagRunList {}'.format(resp))
    dfData = ConvertJSONtoDF(resp.json())
    return dfData


# It is responsible to create/trigger dag of the Airflow instance
# It takes 2 parameter dagId and paramJson
def TriggerDag(dagId, paramJson):
    paramJson = {""conf"": ""{\""key\"":\""value\""}""}
    resp = requests.post(base_url + '/dags/' + dagId + '/dag_runs', json=paramJson)
    print(resp)
    if resp.status_code != 200:
        raise ApiError('TriggerDag {}'.format(resp))
    return resp.json()


# This method toggle the Dag as off in the airflow instance
def PauseDagRun(dagId):
    resp = requests.get(base_url + '/dags/' + dagId + '/paused/true')
    if resp.status_code != 200:
        raise ApiError('PauseDagRun {}'.format(resp))
    return resp.json()


# This method toggle the Dag as on in the airflow instance
def UnPauseDagRun(dagId):
    resp = requests.get(base_url + '/dags/' + dagId + '/paused/false')
    if resp.status_code != 200:
        raise ApiError('UnPauseDagRun {}'.format(resp))
    return resp.json()


# It checks if Apache Airflow instance is up and running
def TestAPI():
    resp = requests.get(base_url + '/test')
    if resp.status_code != 200:
        raise ApiError('TestAPI {}'.format(resp))
    return resp.json()


# It return the latest dag run info for each available dag
def GetLatestDagRun():
    resp = requests.get(base_url + '/latest_runs')
    if resp.status_code != 200:
        raise ApiError('GetLatestDagRun {}'.format(resp))
    dfData = ConvertJSONtoDF(resp.json()['items'])
    return dfData


# It will return the list of available pools
def GetPoolsList():
    resp = requests.get(base_url + '/pools')
    if resp.status_code != 200:
        raise ApiError('GetPoolsList {}'.format(resp))
    return resp.json()


# It return the specific pool info by pool Name
def GetPoolInfo(poolName):
    resp = requests.get(base_url + '/pools/' + poolName)
    if resp.status_code != 200:
        raise ApiError('GetPoolInfo {}'.format(resp))
    return resp.json()


# Return the task info created within the DAG
def GetDagTaskInfo(dagId, taskId):
    resp = requests.get(base_url + '/dags/' + dagId + '/tasks/' + taskId)
    if resp.status_code != 200:
        raise ApiError('GetDagTaskInfo {}'.format(resp))
    return resp.json()


# Returns the Paused state of a DAG
def GetDagPausedState(dagId):
    resp = requests.get(base_url + '/dags/' + dagId + '/paused')
    if resp.status_code != 200:
        raise ApiError('GetDagPausedState {}'.format(resp))
    return resp.json()


# It will create a pool into the Airflow instance
def CreatePool(name, description, slots):
    paramJson = {""description"": description, ""name"": name, ""slots"": slots}
    resp = requests.post(base_url + '/pools', json=paramJson)
    if resp.status_code != 200:
        raise ApiError('CreatePool {}'.format(resp))
    return resp.json()


# It is responsible to delete the specific pool by pool Name
def DeletePool(name):
    resp = requests.delete(base_url + '/pools/' + name)
    if resp.status_code != 200:
        raise ApiError('DeletePool {}'.format(resp))
    return resp.json()


def ConvertJSONtoDF(jsonData):
    df = pd.json_normalize(jsonData)
    return df"
settings_views.py,"from django.shortcuts import render
from django.urls import reverse
from django.http import HttpResponse
from django.shortcuts import redirect
from appbe.pages import getusercasestatus
from appbe.pages import getversion
AION_VERSION = getversion()
from appfe.modelTraining.models import usecasedetails
from appfe.modelTraining.models import Existusecases
from appbe.aion_config import getrunningstatus
import time
def computetoGCPLLaMA13B(request):
    from appbe import compute
    from appbe.pages import get_usecase_page
    try:
        compute.updateToComputeSettings('GCP')
        time.sleep(2)       
        request.session['IsRetraining'] = 'No'
        status,context,action = get_usecase_page(request,usecasedetails,Existusecases)
        context['version'] = AION_VERSION
        return render(request,action,context)
    except Exception as e:   
        print(e)    
        return render(request, 'usecases.html',{'error': 'Fail to update ComputeSettings','version':AION_VERSION})
        
def computetoLLaMMA7b(request):
    from appbe import compute
    from appbe.pages import get_usecase_page
    try:
        compute.updateToComputeSettings('AWS')
        time.sleep(2)       
        #print(1)       
        request.session['IsRetraining'] = 'No'
        status,context,action = get_usecase_page(request,usecasedetails,Existusecases)
        context['version'] = AION_VERSION
        return render(request,action,context)
    except Exception as e:   
        print(e)    
        return render(request, 'usecases.html',{'error': 'Fail to update ComputeSettings','version':AION_VERSION})
        
def computetoAWS(request):
    from appbe import compute
    from appbe.pages import get_usecase_page
    try:
        compute.updateToComputeSettings('AWS')
        time.sleep(2)       
        #print(1)       
        request.session['IsRetraining'] = 'No'
        status,context,action = get_usecase_page(request,usecasedetails,Existusecases)
        context['version'] = AION_VERSION
        return render(request,action,context)
    except Exception as e:   
        print(e)    
        return render(request, 'usecases.html',{'error': 'Fail to update ComputeSettings','version':AION_VERSION})
def setting_context(request):
    from appbe.aion_config import get_graviton_data
    from appbe.aion_config import get_edafeatures
    from appbe.aion_config import get_telemetryoptout
    from appbe.aion_config import get_llm_data
    from appbe.aion_config import running_setting
    from appbe import compute
    from appbe.s3bucketsDB import get_s3_bucket
    from appbe.gcsbucketsDB import get_gcs_bucket
    from appbe.azureStorageDB import get_azureStorage
    from appbe.aion_config import settings
    usecasetab = settings()
    selected_use_case,ModelVersion,ModelStatus = getusercasestatus(request)
    graviton_url, graviton_userid = get_graviton_data()
    No_of_Permissible_Features_EDA = get_edafeatures()
    telemetryoptout = get_telemetryoptout()
    llm_key,llm_url,api_type,api_version =get_llm_data()
    ruuningSetting = running_setting()
    computeinfrastructure = compute.readComputeConfig()
    try:
        context = {'computeinfrastructure':computeinfrastructure,'graviton_url':graviton_url,'graviton_userid':graviton_userid,'FeaturesEDA':No_of_Permissible_Features_EDA,'llm_key':llm_key,'llm_url':llm_url,'ruuningSetting':ruuningSetting,'s3buckets':get_s3_bucket(),'gcsbuckets':get_gcs_bucket(),'api_type':api_type,'api_version':api_version,'telemetryoptout':telemetryoptout,
        'selected_use_case': selected_use_case,'ModelStatus': ModelStatus, 'ModelVersion':ModelVersion,'usecasetab':usecasetab,'azurestorage':get_azureStorage()}
        context['version'] = AION_VERSION
        return context
    except Exception as e:
        print(e)
        context = {'computeinfrastructure':computeinfrastructure,'error':'Error in Settings'}
        context['version'] = AION_VERSION
        return context

def startKafka(request):
    try:
        nooftasks = getrunningstatus('AION_Consumer')
        if len(nooftasks):
            status = 'AION Kafka Consumer Already Running'
        else:
            import subprocess
            kafkapath = os.path.normpath(os.path.join(os.path.dirname(os.path.abspath(__file__)),'..','..','sbin','AION_Consumer.bat'))
            #subprocess.Popen(kafkapath, shell=True)
            os.system('start cmd /c ""'+kafkapath+'""')
            #addKafkaModel(request,request.session['datalocation'])
            status = 'Kafka Consumer Initiated Successfully'
        context = settings(request)
        context['status'] = status
        return render(request, 'settings_page.html', context)
    except:
        return render(request, 'settings_page.html', {'error':'Fail to start Kafka'}) 
        
def startPublishServices(request):
    from appbe.models import startServices
    startServices(request,usecasedetails,Existusecases)
    status = 'Publish services start successfully'
    context = setting_context(request)
    context['status'] = status
    return render(request, 'settings_page.html', context)

def saveopenaiconfig(request):
    from appbe.aion_config import saveopenaisettings
    try:
        saveopenaisettings(request)
        context = setting_context(request)
        context['version'] = AION_VERSION
        context['success'] = True
        return render(request, 'settings_page.html', context)
    except:
        context = {'error': 'error', 'runtimeerror': 'runtimeerror'}
        return render(request, 'settings_page.html', context)
def savegravitonconfig(request):
    from appbe.aion_config import savegravitonconfig
    try:
        savegravitonconfig(request)
        context = setting_context(request)
        context['version'] = AION_VERSION
        context['success'] = True
        return render(request, 'settings_page.html', context)
    except:
        context={'error':'error','runtimeerror':'runtimeerror'}
        return render(request, 'settings_page.html',context)

def saveaionconfig(request):
    from appbe.aion_config import saveconfigfile
    try:
        saveconfigfile(request)
        context = setting_context(request)
        context['version'] = AION_VERSION
        context['success'] = True
        return render(request, 'settings_page.html', context)
    except:
        context={'error':'error','runtimeerror':'runtimeerror'}
        return render(request, 'settings_page.html',context)         
def settings_page(request):
    try:
        context = setting_context(request)
        context['version'] = AION_VERSION
        context['selected'] = 'Settings'
        return render(request, 'settings_page.html', context)
    except:
        return render(request, 'settings_page.html', {'error':'Please enter valid inputs','version':AION_VERSION})

def adds3bucket(request):
    try:
        if request.method == 'POST':
            from appbe.s3bucketsDB import add_new_s3bucket
            status = add_new_s3bucket(request)
        context = setting_context(request)
        context['version'] = AION_VERSION
        if status == 'error':
            from appbe.s3bucketsDB import get_s3_bucket
            from appbe.gcsbucketsDB import get_gcs_bucket
            from appbe.azureStorageDB import get_azureStorage
            context = {'error':'Some values are missing','s3buckets':get_s3_bucket(),'gcsbuckets':get_gcs_bucket(),'azurestorage':get_azureStorage(),'version':AION_VERSION}
        if status == 'error1':
            from appbe.s3bucketsDB import get_s3_bucket
            from appbe.gcsbucketsDB import get_gcs_bucket
            from appbe.azureStorageDB import get_azureStorage
            context = {'error':'Bucket with same name already exist','s3buckets':get_s3_bucket(),'gcsbuckets':get_gcs_bucket(),'azurestorage':get_azureStorage(),'version':AION_VERSION}
        
        return render(request,'settings_page.html',context)
    except:
        return render(request, 'settings_page.html',{'error': 'Fail to Add S3bucket'})
        
def GCSbucketAdd(request):
    try:
        if request.method == 'POST':
            from appbe.gcsbucketsDB import add_new_GCSBucket
            status = add_new_GCSBucket(request)
        context = setting_context(request)
        context['version'] = AION_VERSION
        if status == 'error':
            from appbe.s3bucketsDB import get_s3_bucket
            from appbe.gcsbucketsDB import get_gcs_bucket
            from appbe.azureStorageDB import get_azureStorage
            context = {'error':'Some values are missing','gcsbuckets':get_gcs_bucket(),'s3buckets':get_s3_bucket(),'azurestorage':get_azureStorage(),'version':AION_VERSION}
        if status == 'error1':
            from appbe.s3bucketsDB import get_s3_bucket
            from appbe.gcsbucketsDB import get_gcs_bucket
            from appbe.azureStorageDB import get_azureStorage
            context = {'error':'Bucket with same name already exist','s3buckets':get_s3_bucket(),'gcsbuckets':get_gcs_bucket(),'azurestorage':get_azureStorage(),'version':AION_VERSION}
       
        return render(request,'settings_page.html',context)
    except Exception as e:
        print(e)
        return render(request, 'settings_page.html',{'error': 'Fail to Add GCSbucket','version':AION_VERSION})         
    
def azurestorageAdd(request):
    try:
        if request.method == 'POST':
            from appbe.azureStorageDB import add_new_azureStorage
            status = add_new_azureStorage(request)
        context = setting_context(request)
        context['version'] = AION_VERSION
        if status == 'error':
            from appbe.s3bucketsDB import get_s3_bucket
            from appbe.gcsbucketsDB import get_gcs_bucket
            from appbe.azureStorageDB import get_azureStorage
            context = {'error':'Some values are missing','gcsbuckets':get_gcs_bucket(),'s3buckets':get_s3_bucket(),'azurestorage':get_azureStorage(),'version':AION_VERSION}
        if status == 'error1':
            from appbe.s3bucketsDB import get_s3_bucket
            from appbe.gcsbucketsDB import get_gcs_bucket
            from appbe.azureStorageDB import get_azureStorage
            context = {'error':'Bucket with same name already exist','s3buckets':get_s3_bucket(),'gcsbuckets':get_gcs_bucket(),'azurestorage':get_azureStorage(),'version':AION_VERSION}
       
        return render(request,'settings_page.html',context)
    except:
        return render(request, 'settings_page.html',{'error': 'Fail to Add Azure Container'}) 

def removeazurebucket(request,name):
    try:
        if request.method == 'GET':
            from appbe.azureStorageDB import remove_azure_bucket
            status = remove_azure_bucket(name)
        context = setting_context(request)
        context['version'] = AION_VERSION
        if status == 'error':
            from appbe.s3bucketsDB import get_s3_bucket
            from appbe.gcsbucketsDB import get_gcs_bucket
            from appbe.azureStorageDB import get_azureStorage
            context = {'error':'Failed to delete Azure Bucket','gcsbuckets':get_gcs_bucket(),'s3buckets':get_s3_bucket(),'azurestorage':get_azureStorage(),'version':AION_VERSION}
           
        return render(request,'settings_page.html',context)
        
    except:
        return render(request, 'settings_page.html',{'error': 'Failed to delete Azure Bucket'})
        
def removes3bucket(request,name):
    try:
        if request.method == 'GET':
            from appbe.s3bucketsDB import remove_s3_bucket
            status = remove_s3_bucket(name)
        context = setting_context(request)
        context['version'] = AION_VERSION
        if status == 'error':
            from appbe.s3bucketsDB import get_s3_bucket
            from appbe.gcsbucketsDB import get_gcs_bucket
            from appbe.azureStorageDB import get_azureStorage
            context = {'error':'Failed to delete S3bucket','s3buckets':get_s3_bucket(),'gcsbuckets':get_gcs_bucket(),'azurestorage':get_azureStorage(),'version':AION_VERSION}
           
        return render(request,'settings_page.html',context)
        
    except:
        return render(request, 'settings_page.html',{'error': 'Failed to delete S3bucket'})

def removegcsbucket(request,name):
    try:
        if request.method == 'GET':
            from appbe.gcsbucketsDB import remove_gcs_bucket
            status = remove_gcs_bucket(name)
            context = setting_context(request)
            context['version'] = AION_VERSION
        if status == 'error':
            from appbe.s3bucketsDB import get_s3_bucket
            from appbe.gcsbucketsDB import get_gcs_bucket
            from appbe.azureStorageDB import get_azureStorage
            context = {'error':'Failed to delete GCS Bucket','gcsbuckets':get_gcs_bucket(),'s3buckets':get_s3_bucket(),'azurestorage':get_azureStorage(),'version':AION_VERSION}
           
        return render(request,'settings_page.html',context)
        
    except:
        return render(request, 'settings_page.html',{'error': 'Failed to delete GCS Bucket'})

def gcpcomputesettings(request):
    try:
        from appbe import compute
        status = compute.updateGCPConfig(request)
        context = setting_context(request)
        if status == 'error':
            context['ErrorMsg'] = 'Some values are missing'
        context['version'] = AION_VERSION
        context['success'] = True
        return render(request, 'settings_page.html',context)
    except:
        return render(request, 'settings_page.html',{'error': 'Fail to Save GCP Settings','version':AION_VERSION})
        
def amazonec2settings(request):
    try:
        from appbe import compute
        status = compute.updateComputeConfig(request)
        context = setting_context(request)
        if status == 'error':
            context['ErrorMsg'] = 'Some values are missing'
        context['version'] = AION_VERSION
        context['success'] = True
        return render(request, 'settings_page.html',context)
    except:
        return render(request, 'settings_page.html',{'error': 'Fail to Save AWS Settings','version':AION_VERSION})"
dg_views.py,"from django.shortcuts import render
from django.urls import reverse
from django.http import HttpResponse
from appbe.pages import getversion
AION_VERSION = getversion()

def datagenrate(request):
    from appbe.aion_config import settings
    usecasetab = settings()
    context = {'selected':'DataOperations','usecasetab':usecasetab}
    context['version'] = AION_VERSION
    return render(request, ""datagenrate.html"",context)

def generateconfig(request):
    from appbe import generate_json_config as gjc
    try:
        gjc.generate_json_config(request)   
        return render(request, ""datagenrate.html"",context={'success':'success','selected':'DataOperations'})
    except Exception as e:
        print(e)
        return render(request, ""datagenrate.html"",context={'error':str(e),'selected':'DataOperations'})"
admin.py,"from django.contrib import admin

# Register your models here.
"
prediction_views.py,"from django.shortcuts import render
from django.urls import reverse
from django.http import HttpResponse
from django.shortcuts import redirect
from appbe.pages import getusercasestatus
from appbe.pages import getversion
AION_VERSION = getversion()
from appfe.modelTraining.models import usecasedetails
from appfe.modelTraining.models import Existusecases
import os
from django.db.models import Max, F
import pandas as pd
from appbe.publish import check_input_data
from appbe.dataPath import DEFAULT_FILE_PATH
from appbe.dataPath import DATA_FILE_PATH
from appbe.dataPath import CONFIG_FILE_PATH
from appbe.dataPath import DEPLOY_LOCATION
import json
from appbe import compute

import logging
def get_instance_id(modelID):
    from appbe.sqliteUtility import sqlite_db
    from appbe.dataPath import DATA_DIR
    file_path = os.path.join(DATA_DIR,'sqlite')
    sqlite_obj = sqlite_db(file_path,'config.db')
    if sqlite_obj.table_exists(""LLMTuning""):
        data = sqlite_obj.get_data('LLMTuning','usecaseid',modelID)
        print(data)
        if len(data) > 0:
            return (data[3]+' instance '+data[2])
        else:
            return 'Instance ID not available'
    else:
        return 'Instance ID not available'

def PredictForSingleInstance(request):
    from appbe.trainresult import ParseResults
    submittype = request.POST.get('predictsubmit')
    from appbe.prediction import singleInstancePredict
    context = singleInstancePredict(request,Existusecases,usecasedetails)
    if submittype.lower() == 'predict':
        from appbe.train_output import get_train_model_details
        trainingStatus,modelType,bestmodel = get_train_model_details(DEPLOY_LOCATION,request)
        imagedf = ''        

        model_count = Existusecases.objects.filter(ModelName=request.session['ModelName'],Version=request.session['ModelVersion'],Status='SUCCESS').count()
        model = Existusecases.objects.get(ModelName=request.session['ModelName'],
                                      Version=request.session['ModelVersion'])
        output_train_json_filename = str(model.TrainOuputLocation)
        f = open(output_train_json_filename, ""r+"", encoding=""utf-8"")
        training_output = f.read()
        f.close()
        
        result,survical_images = ParseResults(training_output)
        context.update({'result':result})
        context['version'] = AION_VERSION
        context['modelType'] = modelType
        context['bestmodel'] = bestmodel        
        return render(request, 'prediction.html', context)
    else:
        context['version'] = AION_VERSION
        return context
def getTrainingStatus(request):
    model = Existusecases.objects.get(ModelName=request.session['ModelName'],Version=request.session['ModelVersion'])
    output_train_json_filename = str(model.TrainOuputLocation)
    f = open(output_train_json_filename, ""r+"", encoding=""utf-8"")
    training_output = f.read()
    f.close()        
    from appbe.trainresult import FeaturesUsedForTraining
    return FeaturesUsedForTraining(training_output)
def Prediction(request):
    log = logging.getLogger('log_ux')
    from appbe.trainresult import ParseResults
    from appbe.dataIngestion import delimitedsetting
    from appbe import service_url
    from appbe.aion_config import settings
    usecasetab = settings()
    try:
        selected_use_case,ModelVersion,ModelStatus = getusercasestatus(request)
        computeinfrastructure = compute.readComputeConfig()
        #print(computeinfrastructure)
        if ModelStatus != 'SUCCESS':
            log.info('Prediction:' + str(selected_use_case) + ':' + str(ModelVersion) + ':' + '0' + 'sec' + ':' + 'Error: Please train the model first or launch an existing trained model')
            return render(request, 'prediction.html', {
                'error': 'Please train the model first or launch an existing trained model',
                'selected': 'prediction','selected_use_case': selected_use_case,'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion,'usecasetab':usecasetab,'computeinfrastructure':computeinfrastructure,'version':AION_VERSION})
        else:
            if 'ModelVersion' not in request.session:
                log.info('Prediction:' + str(selected_use_case) + ':' + str(
                    ModelVersion) + ':' + '0' + 'sec' + ':' + 'Error: Please train the model first')
                return render(request, 'prediction.html',
                              {'usecasetab':usecasetab,'error': 'Please train the model first', 'selected': 'prediction','version':AION_VERSION})
            elif request.session['ModelVersion'] == 0:
                log.info('Prediction:' + str(selected_use_case) + ':' + str(
                    ModelVersion) + ':' + '0' + 'sec' + ':' + 'Error: Please train the model first')
                return render(request,'prediction.html',{'usecasetab':usecasetab,'error':'Please train the model first','selected':'prediction','version':AION_VERSION})    
            else:   
                from appbe.train_output import get_train_model_details
                trainingStatus,modelType,bestmodel = get_train_model_details(DEPLOY_LOCATION,request)
                imagedf = ''        

                model_count = Existusecases.objects.filter(ModelName=request.session['ModelName'],Version=request.session['ModelVersion'],Status='SUCCESS').count()
                model = Existusecases.objects.get(ModelName=request.session['ModelName'],
                                              Version=request.session['ModelVersion'])
                output_train_json_filename = str(model.TrainOuputLocation)
                f = open(output_train_json_filename, ""r+"")
                training_output = f.read()
                f.close()
                
                
                result,survical_images = ParseResults(training_output)
                if model_count >= 1:
                    updatedConfigFile = request.session['config_json']
                    #print(updatedConfigFile)
                    f = open(updatedConfigFile, ""r"")
                    configSettings = f.read()
                    f.close()
                    configSettingsJson = json.loads(configSettings)
                    analysisType = configSettingsJson['basic']['analysisType']
                    problem_type = """"
                    for k in analysisType.keys():
                        if configSettingsJson['basic']['analysisType'][k] == 'True':
                            problem_type = k
                            break
                    if problem_type.lower() == 'recommendersystem':
                        modelName = """"
                        recommender_models = configSettingsJson['basic']['algorithms']['recommenderSystem']
                        for k in recommender_models.keys():
                            if configSettingsJson['basic']['algorithms']['recommenderSystem'][k] == 'True':
                                modelName = k
                                break
                        if modelName.lower() == 'associationrules-apriori':
                            return render(request, 'prediction.html', {
                        'error': 'Prediction not supported for Association Rules (Apriori)',
                            'selected': 'prediction','selected_use_case': selected_use_case,'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion,'computeinfrastructure':computeinfrastructure,'version':AION_VERSION})
                    delimiters,textqualifier = delimitedsetting(configSettingsJson['basic']['fileSettings']['delimiters'],configSettingsJson['basic']['fileSettings']['textqualifier'])                    
                    #problemtypes = configSettingsJson['basic']['analysisType'] 
                    #print(problemtypes.keys())
                    from appfe.modelTraining.train_views import getMLModels 
                    problem_type,dproblemtype,sc,mlmodels,dlmodels,smodelsize =  getMLModels(configSettingsJson)
                    iterName = request.session['usecaseid'].replace("" "", ""_"")
                    selected_use_case = request.session['UseCaseName']
                    ModelVersion = request.session['ModelVersion']
                    ModelStatus = request.session['ModelStatus']
                    if problem_type == 'timeSeriesForecasting': #task 11997
                        inputFieldsDict = {'noofforecasts': 10}
                    elif problem_type == 'recommenderSystem' and mlmodels=='ItemRating':
                        inputFieldsDict = {""uid"": 1, ""numberOfRecommendation"":10}  #Task 11190
                    elif problem_type == 'stateTransition':  
                        inputFeatures = configSettingsJson['basic']['trainingFeatures']
                        targetFeature = configSettingsJson['basic']['targetFeature']
                        if inputFeatures != '':
                            inputFeaturesList = inputFeatures.split(',')
                        else:
                            inputFeaturesList = []
                        inputFieldsDict = {inputFeatures:'session',targetFeature:'Activity'}
                    else:
                        inputFeatures = configSettingsJson['basic']['trainingFeatures']
                        targetFeature = configSettingsJson['basic']['targetFeature']
                        if inputFeatures != '':
                            inputFeaturesList = inputFeatures.split(',')
                        else:
                            inputFeaturesList = []
                        if targetFeature in inputFeaturesList:
                            inputFeaturesList.remove(targetFeature)
                        
                        if configSettingsJson['basic']['contextFeature'] != '':
                            inputFeaturesList.append(configSettingsJson['basic']['contextFeature'])
                        if problem_type == 'llmFineTuning':
                            inputFeaturesList.append('Temperature')
                            inputFeaturesList.append('Max Tokens')
                        if problem_type in ['survivalAnalysis','anomalyDetection', 'timeSeriesAnomalyDetection']: #task 11997
                            if configSettingsJson['basic']['dateTimeFeature'] != '' and configSettingsJson['basic']['dateTimeFeature'] != 'na':
                                inputFeaturesList.insert(0,configSettingsJson['basic']['dateTimeFeature'])

                        dataFilePath = str(configSettingsJson['basic']['dataLocation'])
                        if problem_type != 'llmFineTuning':
                            if os.path.isfile(dataFilePath):
                                df = pd.read_csv(dataFilePath,encoding='utf8',nrows=2,sep=delimiters,quotechar=textqualifier,skipinitialspace = True,encoding_errors= 'replace')
                                try:
                                    inputFieldsDict = df.to_dict(orient='index')[0]
                                except:
                                    inputFieldsDict = pd.Series(0, index =inputFeaturesList).to_dict()
                            else:
                                inputFieldsDict =  {""File"":""EnterFileContent""}                      
                        else:
                            inputFieldsDict = pd.Series('', index =inputFeaturesList).to_dict()
                            inputFieldsDict['Temperature'] = '0.1'
                            from appbe.prediction import get_instance
                            hypervisor,instanceid,region,image = get_instance(iterName+'_'+str(ModelVersion))
                            if hypervisor.lower() == 'aws':
                                inputFieldsDict['Max Tokens'] = '1024'
                            else:
                                inputFieldsDict['Max Tokens'] = '4096'
                    inputFields = []
                    inputFields.append(inputFieldsDict)
                    settings_url = ''
                    if problem_type == 'llmFineTuning':
                        ser_url = get_instance_id(iterName+'_'+str(ModelVersion))
                        settings_url = ''
                        modelSize = ''
                        if 'modelSize' in configSettingsJson['basic']:
                            selectedModelSize = configSettingsJson['basic']['modelSize']['llmFineTuning'][mlmodels]
                            for k in selectedModelSize.keys():
                                if configSettingsJson['basic']['modelSize']['llmFineTuning'][mlmodels][k] == 'True':
                                    modelSize = k
                                    break
                            mlmodels = mlmodels+'-'+modelSize
                    elif problem_type == 'stateTransition':
                        ser_url = service_url.read_service_url_params(request)
                        settings_url = service_url.read_service_url_params(request)
                        ser_url = ser_url+'pattern_anomaly_predict?usecaseid='+iterName+'&version='+str(ModelVersion)
                        settings_url = settings_url+'pattern_anomaly_settings?usecaseid='+iterName+'&version='+str(ModelVersion)
                    else:
                        ser_url = service_url.read_service_url_params(request)
                        ser_url = ser_url+'predict?usecaseid='+iterName+'&version='+str(ModelVersion)
                    onnx_runtime = False
                    analyticsTypes = problem_type
                    usecasename = request.session['usecaseid'].replace("" "", ""_"")
                    
                    return render(request, 'prediction.html',
                                  {'inputFields': inputFields,'usecasename':usecasename,'mlmodels':mlmodels,'configSettingsJson':configSettingsJson,'result':result,'imagedf':imagedf, 'selected_use_case': selected_use_case,'ser_url':ser_url,'analyticsType':analyticsTypes,'settings_url':settings_url,
                                   'ModelStatus': ModelStatus,'onnx_edge':onnx_runtime,'ModelVersion': ModelVersion, 'selected': 'prediction','computeinfrastructure':computeinfrastructure,'version':AION_VERSION,'modelType':modelType,'bestmodel':bestmodel,'usecasetab':usecasetab})
                else:
                    log.info('Prediction; Error: Please train the model first')
                    return render(request, 'prediction.html',
                                  {'usecasetab':usecasetab,'error': 'Please train the model first', 'selected': 'prediction','version':AION_VERSION})
    except Exception as e:
        print(e)
        log.info('Prediction:' + str(selected_use_case) + ':' + str(
            ModelVersion) + ':' + '0' + 'sec' + ':' + 'Error:'+str(e))
        return render(request, 'prediction.html',{'usecasetab':usecasetab,'error': 'Failed to perform prediction', 'selected': 'prediction','version':AION_VERSION})"
drift_views.py,"from django.shortcuts import render
from django.urls import reverse
from django.http import HttpResponse
from django.shortcuts import redirect
from appbe.pages import getusercasestatus
from appbe.pages import getversion
AION_VERSION = getversion()
from appfe.modelTraining.models import usecasedetails
from appfe.modelTraining.models import Existusecases
import os
from django.db.models import Max, F
import pandas as pd
from appbe.publish import check_input_data
from appbe.dataPath import DEFAULT_FILE_PATH
from appbe.dataPath import DATA_FILE_PATH
from appbe.dataPath import CONFIG_FILE_PATH
from appbe.dataPath import DEPLOY_LOCATION
from appbe import installPackage
import json
from appbe import service_url
from appbe import compute
import sys
import csv
import time
from appbe.training import checkModelUnderTraining
import logging
def Distribution(request):
    from appbe import exploratory_Analysis as ea
    log = logging.getLogger('log_ux')
    from appbe.aion_config import settings
    usecasetab = settings()
    computeinfrastructure = compute.readComputeConfig()     
    try:
        from appbe.telemetry import UpdateTelemetry
        UpdateTelemetry(request.session['usecaseid']+'-'+str(request.session['ModelVersion']),'Drift','Yes')
        t1 = time.time()
        model = Existusecases.objects.get(ModelName=request.session['ModelName'],
                                          Version=request.session['ModelVersion'])
                                          
        output_train_json_filename = str(model.TrainOuputLocation)
        f = open(output_train_json_filename, ""r+"")
        training_output = f.read()
        f.close()
        training_output = json.loads(training_output)
        featuresused = training_output['data']['featuresused']
        feature = eval(featuresused)
        dataFilePath = request.session['datalocation']
        selected_use_case = request.session['UseCaseName']
        ModelVersion = request.session['ModelVersion']
        ModelStatus = request.session['ModelStatus']
        ser_url = service_url.read_monitoring_service_url_params(request)    
        iterName = request.session['usecaseid'].replace("" "", ""_"")
        ModelVersion = request.session['ModelVersion']
        ser_url = ser_url+'monitoring?usecaseid='+iterName+'&version='+str(ModelVersion)    
        pser_url = service_url.read_performance_service_url_params(request)
        pser_url = pser_url+'performanceusecaseid='+iterName+'&version='+str(ModelVersion)     
        if request.POST.get('inputdriftsubmit') == 'trainingdatadrift':
            historicadata = request.session['datalocation']
            trainingdf = pd.read_csv(historicadata)
            trainingDrift = ea.getDriftDistribution(feature, trainingdf)
            newDataDrift = ''
            concatDataDrift = ''
            drift_msg = ''
            driftdata = 'NA'
        else:
            historicadata = request.session['datalocation']
            trainingdf = pd.read_csv(historicadata)
            trainingDrift = ''
            type = request.POST.get(""optradio"")  
            if type == ""url"":
                try:
                    url = request.POST.get('urlpathinput')
                    newdatadf = pd.read_csv(url)
                    filetimestamp = str(int(time.time()))
                    dataFile = os.path.join(DATA_FILE_PATH,'AION_' + filetimestamp+'.csv')
                    newdatadf.to_csv(dataFile, index=False)
                    
                    request.session['drift_datalocations']= dataFile
                    driftdata = request.session['drift_datalocations']
                except Exception as e:
                    request.session['currentstate'] = 0
                    e = str(e)
                    if e.find(""tokenizing"")!=-1:
                        error = ""This is not an open source URL to access data""
                    elif e.find(""connection"")!=-1:
                        error = ""Can not access the URL through HCL network, please try with other network""
                    else:
                        error = 'Please provide a correct URL'
                    context = {'error': error,'ModelVersion': ModelVersion,'computeinfrastructure':computeinfrastructure,'emptycsv':'emptycsv','s3buckets':    get_s3_bucket(),'gcsbuckets':get_gcs_bucket(),
                    'kafkaSetting':'kafkaSetting','ruuningSetting':'ruuningSetting','usecasetab':usecasetab}
                    log.info('Input Drift : ' + str(selected_use_case) + ' : ' + str(ModelVersion) + ' : ' + '0 ' + 'sec' + ' : ' + 'Error : '+error+', ' + e)
                    return render(request, 'upload.html', context)
            else:           
            
                if request.FILES:
                    Datapath = request.FILES['DataFilePath']
                    from io import StringIO
                    content = StringIO(Datapath.read().decode('utf-8'))
                    reader = csv.reader(content)
                    df = pd.DataFrame(reader)
                    df.columns = df.iloc[0]
                    df = df[1:]
                    ext = str(Datapath).split('.')[-1]
                    filetimestamp = str(int(time.time()))
                    if ext.lower() in ['csv','tsv','tar','zip','avro','parquet']:
                        dataFile = os.path.join(DATA_FILE_PATH,'AION_' + filetimestamp+'.'+ext)
                    else:
                        dataFile = os.path.join(DATA_FILE_PATH,'AION_' + filetimestamp)
                    with open(dataFile, 'wb+') as destination:
                        for chunk in Datapath.chunks():
                            destination.write(chunk)
                    destination.close()
                if(os.path.isfile(dataFile) == False):
                    context = {'error': 'Data file does not exist', 'selected_use_case': selected_use_case,
                   '    ModelStatus': ModelStatus, 'ModelVersion': ModelVersion}
                    log.info('Input Drift : ' + str(selected_use_case) + ' : ' + str(
                        ModelVersion) + ' : ' + '0 ' + 'sec' + ' : ' + 'Error : Data file does not exist')
                    return render(request, 'inputdrif.html', context)    
                request.session['drift_datalocations'] = dataFile
                driftdata = request.session['drift_datalocations']
                newdatadf = pd.read_csv(driftdata)

            newDataDrift = ea.getDriftDistribution(feature, trainingdf, newdatadf)
            condf = pd.concat([trainingdf, newdatadf], ignore_index=True, sort=True)
            concatDataDrift = ea.getDriftDistribution(feature,trainingdf,condf)
            drift_msg,htmlPath = Drift(request,historicadata, dataFile, feature)
            
            if htmlPath != 'NA':
                 file = open(htmlPath, ""r"",errors='ignore')
                 driftdata = file.read()
                 file.close()
            else:
                driftdata = 'NA'
            t2 = time.time()
            log.info('Input Drift : ' + str(selected_use_case) + ' : ' + str(
                ModelVersion) + ' : ' + str(round(t2 - t1)) + ' sec' + ' : ' + 'Success')
         
        return render(request, 'inputdrif.html',
                      {'trainingDrift': trainingDrift, 'newDataDrift': newDataDrift, 'concatDataDrift': concatDataDrift,'usecasetab':usecasetab,
                       'selected_use_case': selected_use_case, 'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion,'version' :AION_VERSION,
                       'selected': 'monitoring', 'drift_msg': drift_msg,'htmlPath':driftdata,'ser_url':ser_url,'pser_url':pser_url,'trainingDataLocation':request.session['datalocation'],'computeinfrastructure':computeinfrastructure})

    except Exception as inst:
        print(inst)
        exc_type, exc_obj, exc_tb = sys.exc_info()
        fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
        print(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))
        selected_use_case = request.session['UseCaseName']
        ModelVersion = request.session['ModelVersion']
        ModelStatus = request.session['ModelStatus']
        ser_url = service_url.read_monitoring_service_url_params(request)    
        iterName = request.session['usecaseid'].replace("" "", ""_"")
        ModelVersion = request.session['ModelVersion']
        ser_url = ser_url+'monitoring?usecaseid='+iterName+'&version='+str(ModelVersion)    
        pser_url = service_url.read_performance_service_url_params(request)
        pser_url = pser_url+'performanceusecaseid='+iterName+'&version='+str(ModelVersion)
        context = {'ser_url':ser_url,'pser_url':pser_url,'trainingDataLocation':request.session['datalocation'],'error': 'Failed to perform drift analysis', 'selected_use_case': selected_use_case,'usecasetab':usecasetab,
                   'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion,'computeinfrastructure':computeinfrastructure,'version' : AION_VERSION}
        log.info('Input Drift : ' + str(selected_use_case) + ' : ' + str(
            ModelVersion) + ' : ' + '0 ' + 'sec' + ' : ' + 'Error : Failed to do drift analysis'+', '+str(inst))
        log.info('Details : '+str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))
        return render(request, 'inputdrif.html', context)

def Drift(request,trainingdatalocation, newdatalocation, features):
    log = logging.getLogger('log_ux')
    selected_use_case,ModelVersion,ModelStatus = getusercasestatus(request)
    try:
        inputFieldsJson = {""trainingDataLocation"":trainingdatalocation,""currentDataLocation"":newdatalocation}
        inputFieldsJson = json.dumps(inputFieldsJson)
        iterName = request.session['usecaseid'].replace("" "", ""_"")
        ModelVersion = request.session['ModelVersion']    
        ser_url = service_url.read_monitoring_service_url_params(request)
        ser_url = ser_url+'monitoring?usecaseid='+iterName+'&version='+str(ModelVersion)
        import requests
        try:
            #print(inputFieldsJson)
            #print(ser_url)
            response = requests.post(ser_url,data=inputFieldsJson,headers={""Content-Type"":""application/json"",})
            if response.status_code != 200:
                outputStr=response.content
                return outputStr
        except Exception as inst:
            print(inst)
            if 'Failed to establish a new connection' in str(inst):
                Msg = 'AION Service needs to be started'
            else:
                Msg = 'Error during Drift Analysis'
            log.info('Drift : ' + str(selected_use_case) + ' : ' + str(
                ModelVersion) + ' : ' + '0 ' + 'sec' + ' : ' + 'Error : ' + Msg+', '+str(inst))
            return Msg   
        outputStr=response.content
        outputStr = outputStr.decode('utf-8')
        outputStr = outputStr.strip()
        decoded_data = json.loads(outputStr)
        #print(decoded_data)
        htmlPath = 'NA'
        if decoded_data['status'] == 'SUCCESS':
            data = decoded_data['data']
            htmlPath = decoded_data['htmlPath']
            if 'Message' in data:
                Msg = []
                Msg.append(data['Message'])
            else:
                Msg = data['Affected Columns']
            log.info('Drift : ' + str(selected_use_case) + ' : ' + str(ModelVersion) + ' : ' + '0' + 'sec' + ' : ' + 'Success')
        else:
            Msg = 'Error during Drift Analysis'
            htmlPath = 'NA'
            log.info('Drift : ' + str(selected_use_case) + ' : ' + str(ModelVersion) + ' : ' + '0 ' + 'sec' + ' : ' + 'Error : ' +str(Msg))
        return Msg,htmlPath
    except Exception as e:
        print(e)
        exc_type, exc_obj, exc_tb = sys.exc_info()
        fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
        print(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))
        selected_use_case,ModelVersion,ModelStatus = getusercasestatus(request)        
        log.info('Drift : ' + str(selected_use_case) + ' : ' + str(
                ModelVersion) + ' : ' + '0 ' + 'sec' + ' : ' + 'Error : ' + str(e))
        log.info('Details : ' +str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))       

def Evaluate(request):
    from appbe.aion_config import settings
    usecasetab = settings()
    log = logging.getLogger('log_ux')
    try:
        from appbe.telemetry import UpdateTelemetry
        UpdateTelemetry(request.session['usecaseid']+'-'+str(request.session['ModelVersion']),'Drift','Yes')
        t1 = time.time()
        selected_use_case,ModelVersion,ModelStatus = getusercasestatus(request)
        computeinfrastructure = compute.readComputeConfig() 
        type = request.POST.get(""optradio"")  
        ser_url = service_url.read_monitoring_service_url_params(request)    
        iterName = request.session['usecaseid'].replace("" "", ""_"")
        ModelVersion = request.session['ModelVersion']
        ser_url = ser_url+'monitoring?usecaseid='+iterName+'_'+str(ModelVersion)
        pser_url = service_url.read_performance_service_url_params(request)
        pser_url = pser_url+'performance?usecaseid='+iterName+'&version='+str(ModelVersion)
        if type == ""url"":
            try:
                url = request.POST.get('urlpathinput')
                newdatadf = pd.read_csv(url)
                filetimestamp = str(int(time.time()))
                dataFile = os.path.join(DATA_FILE_PATH,'AION_' + filetimestamp+'.csv')
                newdatadf.to_csv(dataFile, index=False)
            except Exception as e:
                request.session['currentstate'] = 0
                e = str(e)
                if e.find(""tokenizing"")!=-1:
                    error = ""This is not an open source URL to access data""
                    log.info('Performance Drift : ' + str(selected_use_case) + ' : ' + str(ModelVersion) + ' : ' + '0 ' + 'sec' + ' : ' + 'Error : '+error+', '+str(e))
                elif e.find(""connection"")!=-1:
                    error = ""Can not access the URL through HCL network, please try with other network""
                    log.info('Performance Drift : ' + str(selected_use_case) + ' : ' + str(
                        ModelVersion) + ' : ' + '0 ' + 'sec' + ' : ' + 'Error : ' + error +', '+e)
                else:
                    error = 'Please provide a correct URL'
                    log.info('Performance Drift : ' + str(selected_use_case) + ' : ' + str(
                        ModelVersion) + ' : ' + '0 ' + 'sec' + ' : ' + 'Error:' + error+', '+e)
                context = {'ser_url':ser_url,'pser_url':pser_url,'trainingDataLocation':request.session['datalocation'],'error': error,'ModelVersion': ModelVersion,'computeinfrastructure':computeinfrastructure,'emptycsv':'emptycsv','kafkaSetting':'kafkaSetting','ruuningSetting':'ruuningSetting','usecasetab':usecasetab,'version':AION_VERSION}
                return render(request, 'upload.html', context)
        else:        
            if request.FILES:
                Datapath = request.FILES['DataFilePath']
                from io import StringIO
                content = StringIO(Datapath.read().decode('utf-8'))
                reader = csv.reader(content)
                df = pd.DataFrame(reader)
                df.columns = df.iloc[0]
                df = df[1:]

                ext = str(Datapath).split('.')[-1]
                filetimestamp = str(int(time.time()))
                if ext.lower() in ['csv','tsv','tar','zip','avro','parquet']:
                    dataFile = os.path.join(DATA_FILE_PATH,'AION_' + filetimestamp+'.'+ext)
                else:
                    dataFile = os.path.join(DATA_FILE_PATH,'AION_' + filetimestamp)
                with open(dataFile, 'wb+') as destination:
                    for chunk in Datapath.chunks():
                        destination.write(chunk)
                destination.close()
            if(os.path.isfile(dataFile) == False):
                context = {'error': 'Data file does not exist', 'selected_use_case': selected_use_case,
                           'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion,'version':AION_VERSION}
                log.info('Performance Drift : ' + str(selected_use_case) + ' : ' + str(
                    ModelVersion) + ' : ' + '0 ' + 'sec' + ' : ' + ' Error : Data file does not exist')
                return render(request, 'inputdrif.html', context)
        trainingdatalocation = request.session['datalocation']
        inputFieldsJson = {""trainingDataLocation"":trainingdatalocation,""currentDataLocation"":dataFile}
        inputFieldsJson = json.dumps(inputFieldsJson)
        import requests
        try:
            #response = requests.post(pser_url,auth=(aion_service_username,aion_service_password),data=inputFieldsJson,headers={""Content-Type"":""application/json"",})
            response = requests.post(pser_url,data=inputFieldsJson,headers={""Content-Type"":""application/json"",})
            if response.status_code != 200:
                outputStr=response.content
                log.info('Performance Drift:' + str(selected_use_case) + ' : ' + str(ModelVersion) + ' : ' + '0' + 'sec' + ' : ' + 'Error: Status code != 200')
                return outputStr
        except Exception as inst:
            if 'Failed to establish a new connection' in str(inst):
                Msg = 'AION Service needs to be started'
            else:
                Msg = 'Error during Drift Analysis'
            log.info('Performance Drift : ' + str(selected_use_case) + ' : ' + str(ModelVersion) + ' : ' +'0 ' + 'sec' + ' : ' + 'Error : '+Msg+', ' + str(inst))
            return Msg
        outputStr=response.content
        
        outputStr = outputStr.decode('utf-8')
        outputStr = outputStr.strip()
        
        decoded_data = json.loads(outputStr)
        

        #print(decoded_data)
        if decoded_data['status'] == 'SUCCESS':
            htmlPath = decoded_data['htmlPath']
            #print(htmlPath)
            if htmlPath != 'NA':
                file = open(htmlPath, ""r"",errors='ignore')
                driftdata = file.read()
                file.close()
            else:
                driftdata = 'NA'
            print(htmlPath)    
            context = {'status':'SUCCESS','ser_url':ser_url,'pser_url':pser_url,'trainingDataLocation':request.session['datalocation'],'htmlPath': driftdata,'selected_use_case': selected_use_case,'usecasetab':usecasetab,
                       'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion, 'selected': 'monitoring','computeinfrastructure':computeinfrastructure,'version':AION_VERSION}
            t2 = time.time()
            log.info('Performance Drift:' + str(selected_use_case) + ' : ' + str(
                ModelVersion) + ' : ' + str(round(t2-t1)) + 'sec' + ' : ' + 'Success')
            return render(request, 'inputdrif.html', context=context)

        else:
            driftdata = 'Error'
            context = {'status':'ERROR','ser_url':ser_url,'pser_url':pser_url,'trainingDataLocation':request.session['datalocation'],'htmlPath': driftdata,'selected_use_case': selected_use_case,'usecasetab':usecasetab,
                       'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion, 'selected': 'monitoring','computeinfrastructure':computeinfrastructure,'version':AION_VERSION}
            log.info('Performance Drift : ' + str(selected_use_case) + ' : ' + str(
                ModelVersion) + ' : ' + '0 ' + 'sec' + ' : ' + 'Error : driftdata = Error')
            return render(request, 'inputdrif.html', context=context)
    except Exception as e:
        print(e)      
        context = {'ser_url':ser_url,'pser_url':pser_url,'trainingDataLocation':request.session['datalocation'],'error': 'Fail to perform Drift Analysis', 'selected_use_case': selected_use_case,'usecasetab':usecasetab,
                           'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion,'selected': 'monitoring','computeinfrastructure':computeinfrastructure,'version':AION_VERSION}
        log.info('Performance Drift : ' + str(selected_use_case) + ' : ' + str(
            ModelVersion) + ' : ' + '0 ' + 'sec' + ' : ' + 'Error : Fail to perform Drift Analysis' + ', ' + str(e))
        return render(request, 'inputdrif.html', context=context)        "
llm_views.py,"from django.shortcuts import render
from django.urls import reverse
from django.http import HttpResponse
from django.shortcuts import redirect
import time
from django.template import loader
from django import template
from appbe.aion_config import get_llm_data
from django.views.decorators.csrf import csrf_exempt
import os
import json
from appbe.dataPath import DATA_FILE_PATH
from appbe.dataPath import CONFIG_FILE_PATH
from appbe.dataPath import DEPLOY_LOCATION
from utils.file_ops import read_df_compressed
from appbe.dataPath import LOG_LOCATION
from appbe.pages import getversion
AION_VERSION = getversion()

def QueryToOpenAI(text,tempPrompt):    
    FragmentationAllowed=""yes""  #yes or no 
    try:
        import openai
        key,url,api_type,api_version=get_llm_data()        
        if (key == """") and (url == """") :
            print(""No API Key"")
            return(""API Key and URL not provided"")      
        openai.api_key = key                 
        openai.api_base = url         
        openai.api_type = 'azure'
        openai.api_version = '2023-05-15' 
        deployment_name=""Text-Datvinci-03""
        import tiktoken
        encoding = tiktoken.encoding_for_model(""text-davinci-003"")
        maxTokens=1024  #4096-1024 == 3072
        lgt=0
        
        if FragmentationAllowed==""yes"" :
            words = text.split(""."")        
            chunk=""""
            chunks=[]
            multipleChunk=""no""
            partialData=""no""
            for i in range(len(words)):            
                chunk=chunk+words[i]+"".""
                chunk_token_count = encoding.encode(chunk)
                length=len(chunk_token_count)
                partialData=""yes""
                if length > 2800 :
                    chunks.append(chunk)
                    chunk=""""
                    #print(""\n\n\n"")        
                    partialData=""no""                    
                    multipleChunk=""yes""                    
            if (multipleChunk ==""no"" ):
                chunks.append(chunk)
                chunk=""""                
            if ((partialData ==""yes"") and (multipleChunk ==""yes"")):
                chunks.append(chunk)
                chunk=""""                
            summaries = []
            for chunk in chunks:
                response = openai.Completion.create(engine=deployment_name, prompt=f""{tempPrompt}: {chunk}"",temperature=0.2, max_tokens=maxTokens,frequency_penalty=0,presence_penalty=0)
                summary = response['choices'][0]['text'].replace('\n', '').replace(' .', '.').strip()
                summaries.append(summary)
                wordsInSum = summary.split()
            summaries=' '.join(summaries)
            wordsInSum = summaries.split()
            return summaries                
        else :
            return ""ok""    
    except openai.error.Timeout as e:        
        return ""exception : Timeout Error due to Network Connection""
    except Exception as e:
        return ""exception : ""+str(e)

def azureOpenAiDavinciSumarization(request):
    inputDataType = str(request.GET.get('FileType'))
    import time    
    t1=time.time()            
    documentType=""""
    if inputDataType == 'file':
        dataPath = str(request.GET.get('dataPath'))
        #print(""Datapath--"",dataPath)        
        if dataPath.endswith("".pdf""):
            from appbe.dataIngestion import pdf2text
            originalText=pdf2text(dataPath)
        if dataPath.endswith("".txt""):
            data=[]
            with open(dataPath, ""r"",encoding=""utf-8"") as f:
                data.append(f.read())
            str1 = """"
            for ele in data:
                str1 += ele
            originalText=str1            
        if dataPath.endswith("".docx""):
            import docx
            doc = docx.Document(dataPath)
            fullText = []
            for para in doc.paragraphs:
                fullText.append(para.text)
            fullText= '\n'.join(fullText)
            originalText=fullText
    if inputDataType == 'rawText':
        originalText = str(request.GET.get('textDataProcessing'))
        dataPath=""""
    if originalText== ""None"" or originalText== """":
        context = {'originalText': originalText,'returnedText': ""No Input given""}
        print(""returned due to None"")
        return render(request, ""textsummarization.html"",context)
    KeyWords=str(request.GET.get('userUpdatedKeyword'))
    contextOfText=str(request.GET.get('userUpdatedContext'))
    doctype = str(request.GET.get('doctypeUserProvided'))
    docDomainType = [""medical"",""other""]  
    Prompts = [
    ""Summarize the following article  within 500 words  with proper sub-heading so that summarization include all main points from topics like: study objective; study design;demographics of patients; devices used in study; duration of exposure to device; study outcomes; complications;adverse events;confounding factors; study limitations and weakness;usability of the device; misuse and off-label use of the device;conflict of interest;statistical analysis;conclusions;"",
    ""Summarize the following article  with minimum 500 words so that summarization include all main points from topics like: ""
    ]     
    for i in range (len(docDomainType)) : 
        if docDomainType[i] in doctype.lower() :
            docDomainPrompts=Prompts[i]
            if docDomainType[i]==""medical"" :
                print(""medical doc"")
                documentType=""medical""
                docDomainFinalPrompts=docDomainPrompts
                tempPrompt1=""Summarize the following article so that summarization must include all main points from topics like: study objective; study design;demographics of patients; devices used in study; duration of exposure to device; study outcomes; complications;adverse events;confounding factors; study limitations and weakness;usability of the device; misuse and off-label use of the device;conflict of interest;statistical analysis;conclusions;""

                tempPrompt2=""Summarize the following article  within 500 words  with proper sub-heading so that summarization include all main points from topics like: study objective; study design;demographics of patients; devices used in study; duration of exposure to device; study outcomes; complications;adverse events;confounding factors; study limitations and weakness;usability of the device; misuse and off-label use of the device;conflict of interest;statistical analysis;conclusions;""                
            else :
                print(""other doc-a-"")            
                docDomainFinalPrompts=docDomainPrompts+"" ""+contextOfText
                tempPrompt1=""Summarize the following article  with minimum 500 words so that summarization include all main points from topics like:        ""+contextOfText 
                tempPrompt2=tempPrompt1
            break
        if (i== len(docDomainType)-1) :
            print(""other doc-b-"")                    
            docDomainPrompts=Prompts[i]
            docDomainFinalPrompts=docDomainPrompts+"" ""+contextOfText 
            tempPrompt1=""Summarize the following article so that summarization include all main points from topics like:        ""+contextOfText 
            tempPrompt2=tempPrompt1             
        

    try:
        pattern =['Summary','Study Objective','Study Design', 'Demographics of Patients', 'Devices Used in Study','Duration of Exposure to Device','Study Outcomes','Complications','Adverse Events','Confounding Factors','Study Limitations and Weakness','Usability of the Device','Misuse and Off-Label Use of the Device','Conflict of Interest','Statistical Analysis','Conclusions']


        import tiktoken
        encoding = tiktoken.encoding_for_model(""text-davinci-003"")
        encodedData = encoding.encode(originalText)        
        totalToken=len(encodedData)
        while totalToken > 2800:
            originalText=QueryToOpenAI(originalText,tempPrompt1)
            encodedData = encoding.encode(originalText)        
            totalToken=len(encodedData)
        retText=QueryToOpenAI(originalText,tempPrompt2)        

        import re
        summary1=retText
        summary2=retText
        if  documentType==""medical""   :     
            for i in range(len(pattern)):
                summary1=summary1.replace(pattern[i]+':','<br>'+'<u>'+pattern[i]+'</u>'+'<br>')
            for i in range(len(pattern)):
                summary1=summary1.replace(pattern[i],'<br>'+'<u>'+pattern[i]+'</u>'+'<br>')
                
            for i in range(len(pattern)):
                summary2=summary2.replace(pattern[i]+':','')            
            for i in range(len(pattern)):
                summary2=summary2.replace(pattern[i],'')
        #retText2=""""
        #tempPrompt=""Find some most highlighting points in the  following article""      
        #retText2=QueryToOpenAI(originalText,tempPrompt)
        
        #retText3=""""
        #tempPrompt=""Find only one or two risk factors that are mentioned in the following article""      
        #retText3=QueryToOpenAI(originalText,tempPrompt)
        
        #retText4=""""
        #tempPrompt=""Find statistical informtation that are mentioned in the following article""      
        #retText4=QueryToOpenAI(originalText,tempPrompt)
        
        #retText5=""""
        #tempPrompt=""Find name of the author only one time  that are mentioned in the following article""      
        #retText5=QueryToOpenAI(originalText,tempPrompt)
        
        #retText6=""""
        #tempPrompt=""Suggest the name of the title for the following article""      
        #retText6=QueryToOpenAI(originalText,tempPrompt)
        
        t2=time.time()
        #print(""\n time taken-->"", t2-t1 ,""length of sum"",str(length))
        print(""\n time taken-->"", t2-t1 )        
        #print(""\n summary  from LLM-->\n"",returnedText)
        #context = {'title': retText6, 'summary': summary1, 'summary2': summary2, 'AuthorName': ""Author names :""+retText5,'BulletPoints': retText2,'Riskfactor': retText3,'StatInfo': retText4}        
        
        context = {'title': """", 'summary': summary1, 'summary2': summary2, 'AuthorName': """",'BulletPoints': """",'Riskfactor': """",'StatInfo': """"}                
        return HttpResponse(json.dumps(context), content_type=""application/json"")
    except:
        context = {'returnedText': ""exception""}
        return HttpResponse(json.dumps(context), content_type=""application/json"")

def azureOpenAiDavinci(request):
    key,url,api_type,api_version=get_llm_data()
    inputDataType = str(request.POST.get('FileType'))
    if inputDataType == 'file':
        Datapath = request.FILES['file']
        #dataPath = str(request.GET.get('dataPath'))
        ext = str(Datapath).split('.')[-1]
        temp1=str(Datapath).split('.')
        filetimestamp = str(int(time.time()))
        if ext.lower() in ['pdf','txt','docx']:
            dataFile = os.path.join(DATA_FILE_PATH,'AION_' +temp1[0]+'_'+filetimestamp+'.'+ext)        
            #dataFile = os.path.join(DATA_FILE_PATH,'AION_' +filetimestamp+'.'+ext)                    
            with open(dataFile, 'wb+') as destination:
                for chunk in Datapath.chunks():
                    destination.write(chunk)
            destination.close()
            dataPath = dataFile
            if dataPath.endswith("".pdf""):
                from appbe.dataIngestion import pdf2text
                originalText=pdf2text(dataPath)
            if dataPath.endswith("".txt""):
                data=[]
                with open(dataPath, ""r"",encoding=""utf-8"") as f:
                    data.append(f.read())
                str1 = """"
                for ele in data:
                    str1 += ele
                originalText=str1
            if dataPath.endswith("".docx""):
                import docx
                doc = docx.Document(dataPath)
                fullText = []
                for para in doc.paragraphs:
                    fullText.append(para.text)
                fullText= '\n'.join(fullText)
                originalText=fullText
    if inputDataType == 'rawText':
        originalText = str(request.POST.get('textDataProcessing'))
        dataPath=""""
    doctype = str(request.POST.get('doctypeUserProvided'))
    if originalText== ""None"" or originalText== """":
        context = {'originalText': originalText,'returnedText': ""No Input given""}
        print(""returned due to None"")
        return render(request, ""textsummarization.html"",context)

    length=len(originalText.split())
    inputTextPromptForKeyWords=""Create a list of keywords to summrizing the following document.""
    inputTextPromptForKeyWords=""Suggest only ten most important keywords from the following document.""
    inputTextPromptForContext=""Suggest ten most important context in the following article. ""
    #inputTextPromptForDocType=""Suggest on which domain or field or area the following article is or the article is on sports or politics or medical or music or technology or legal field. ""   
    try:
        tempPrompt=inputTextPromptForKeyWords
        retText=QueryToOpenAI(originalText,tempPrompt)
        KeyWords=retText
        tempPrompt=inputTextPromptForContext
        retText=QueryToOpenAI(originalText,tempPrompt)
        contextOfText=retText
        #tempPrompt=inputTextPromptForDocType
        #retText=QueryToOpenAI(originalText,tempPrompt)
        #doctype=retText
        context = {'originalText': originalText,'KeyWords': KeyWords,'contextOfText': contextOfText,'doctype': doctype,'dataPath' :dataPath}
        return HttpResponse(json.dumps(context), content_type=""application/json"")
    except Exception as e: 
        print(e)
        context = {'originalText': originalText,'KeyWords': KeyWords,'contextOfText': contextOfText,'doctype': doctype,'dataPath' :dataPath}
        return HttpResponse(json.dumps(context), content_type=""application/json"")        

# Text Data Labelling using LLM related changes
# --------------------------------------------------------
def uploadedTextData(request):
    from appbe.dataIngestion import ingestTextData
    context = ingestTextData(request,DATA_FILE_PATH)
    context['version'] = AION_VERSION
    return render(request, 'textdatalabelling.html', context)        

def getTextLabel(request):
    from appbe.llm_textdatalabelling import generateTextLabel
    context = generateTextLabel(request,DATA_FILE_PATH)
    context['version'] = AION_VERSION
    return render(request, 'textdatalabelling.html', context)    
    
def downloadTextLabelReport(request):
    file_path = request.session['texttopicdatapath']
    if os.path.exists(file_path):
        with open(file_path, 'rb') as fh:    
            response = HttpResponse(fh.read(), content_type='application/vnd.openxmlformats-officedocument.spreadsheetml.sheet')
            response['Content-Disposition'] = 'attachment; filename=' + os.path.basename(file_path)
            return response
    raise Http404



# QnA Generator using LLM related changes
# --------------------------------------------------------
def genearateQA(request):
    from appbe.llm_generateQnA import ingestDataForQA
    context = ingestDataForQA(request,DATA_FILE_PATH)
    context['version'] = AION_VERSION
    context['selected'] = ""llm_features""
    return render(request, 'QnA.html', context)
    

def downloadQnAReport(request):
    file_path = request.session['QnAfilepath']
    if os.path.exists(file_path):
        with open(file_path, 'rb') as fh:    
            response = HttpResponse(fh.read(), content_type='application/vnd.openxmlformats-officedocument.spreadsheetml.sheet')
            response['Content-Disposition'] = 'attachment; filename=' + os.path.basename(file_path)
            return response
    raise Http404
# --------------------------------------------------------"
0002_auto_20200803_1820.py,"# Generated by Django 3.0.8 on 2020-08-03 12:50

from django.db import migrations, models
import django.db.models.deletion


class Migration(migrations.Migration):

    dependencies = [
        ('modelTraining', '0001_initial'),
    ]

    operations = [
        migrations.AlterField(
            model_name='existusecases',
            name='ModelName',
            field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='modelTraining.usecasedetails'),
        ),
        migrations.AlterField(
            model_name='existusecases',
            name='id',
            field=models.AutoField(primary_key=True, serialize=False),
        ),
        migrations.AlterField(
            model_name='usecasedetails',
            name='Description',
            field=models.CharField(max_length=200),
        ),
        migrations.AlterField(
            model_name='usecasedetails',
            name='UsecaseName',
            field=models.CharField(max_length=50),
        ),
    ]
"
0011_existusecases_trainingpid_and_more.py,"# Generated by Django 4.1.7 on 2023-05-17 10:46

from django.db import migrations, models


class Migration(migrations.Migration):

    dependencies = [
        ('modelTraining', '0010_existusecases_modeltype'),
    ]

    operations = [
        migrations.AddField(
            model_name='existusecases',
            name='trainingPID',
            field=models.IntegerField(blank=True, null=True),
        ),
        migrations.AlterField(
            model_name='existusecases',
            name='ProblemType',
            field=models.CharField(blank=True, max_length=20, null=True),
        ),
        migrations.AlterField(
            model_name='existusecases',
            name='TrainOuputLocation',
            field=models.CharField(blank=True, max_length=200, null=True),
        ),
        migrations.AlterField(
            model_name='existusecases',
            name='driftStatus',
            field=models.CharField(blank=True, max_length=20, null=True),
        ),
        migrations.AlterField(
            model_name='existusecases',
            name='modelType',
            field=models.CharField(blank=True, max_length=40, null=True),
        ),
        migrations.AlterField(
            model_name='existusecases',
            name='portNo',
            field=models.IntegerField(blank=True, null=True),
        ),
        migrations.AlterField(
            model_name='existusecases',
            name='publishPID',
            field=models.IntegerField(blank=True, null=True),
        ),
    ]
"
0008_existusecases_publishtask.py,"# Generated by Django 3.2.8 on 2023-03-28 18:50

from django.db import migrations, models


class Migration(migrations.Migration):

    dependencies = [
        ('modelTraining', '0007_auto_20230328_1823'),
    ]

    operations = [
        migrations.AddField(
            model_name='existusecases',
            name='publishtask',
            field=models.CharField(default='', max_length=500),
        ),
    ]
"
0009_auto_20230329_0541.py,"# Generated by Django 3.2.8 on 2023-03-29 05:41

from django.db import migrations, models


class Migration(migrations.Migration):

    dependencies = [
        ('modelTraining', '0008_existusecases_publishtask'),
    ]

    operations = [
        migrations.RemoveField(
            model_name='existusecases',
            name='publishtask',
        ),
        migrations.AddField(
            model_name='existusecases',
            name='publishPID',
            field=models.IntegerField(default=0),
        ),
        migrations.AlterField(
            model_name='existusecases',
            name='Version',
            field=models.IntegerField(default=0),
        ),
        migrations.AlterField(
            model_name='existusecases',
            name='portNo',
            field=models.IntegerField(default=0),
        ),
    ]
"
0005_usecasedetails_userdefinedname.py,"# Generated by Django 3.2.8 on 2023-02-06 17:14

from django.db import migrations, models


class Migration(migrations.Migration):

    dependencies = [
        ('modelTraining', '0004_existusecases_problemtype'),
    ]

    operations = [
        migrations.AddField(
            model_name='usecasedetails',
            name='UserDefinedName',
            field=models.CharField(default=models.CharField(max_length=50), max_length=50),
        ),
    ]
"
0001_initial.py,"# Generated by Django 3.0.8 on 2020-08-01 17:33

from django.db import migrations, models


class Migration(migrations.Migration):

    initial = True

    dependencies = [
    ]

    operations = [
        migrations.CreateModel(
            name='Existusecases',
            fields=[
                ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')),
                ('ModelName', models.CharField(max_length=200)),
                ('Version', models.IntegerField()),
                ('DataFilePath', models.FileField(upload_to=None)),
                ('ConfigPath', models.FileField(upload_to=None)),
                ('DeployPath', models.FileField(upload_to=None)),
                ('Status', models.CharField(max_length=200)),
            ],
            options={
                'db_table': 'Existusecases',
            },
        ),
        migrations.CreateModel(
            name='usecasedetails',
            fields=[
                ('id', models.AutoField(primary_key=True, serialize=False)),
                ('UsecaseName', models.CharField(max_length=20)),
                ('Description', models.CharField(max_length=100)),
            ],
            options={
                'db_table': 'usecasedetails',
            },
        ),
    ]
"
0003_existusecases_trainouputlocation.py,"# Generated by Django 3.0.8 on 2020-09-18 12:00

from django.db import migrations, models


class Migration(migrations.Migration):

    dependencies = [
        ('modelTraining', '0002_auto_20200803_1820'),
    ]

    operations = [
        migrations.AddField(
            model_name='existusecases',
            name='TrainOuputLocation',
            field=models.CharField(default='', max_length=200),
        ),
    ]
"
0010_existusecases_modeltype.py,"# Generated by Django 3.2.8 on 2023-03-29 18:37

from django.db import migrations, models


class Migration(migrations.Migration):

    dependencies = [
        ('modelTraining', '0009_auto_20230329_0541'),
    ]

    operations = [
        migrations.AddField(
            model_name='existusecases',
            name='modelType',
            field=models.CharField(default='', max_length=40),
        ),
    ]
"
0006_auto_20230206_1759.py,"# Generated by Django 3.2.8 on 2023-02-06 17:59

from django.db import migrations, models


class Migration(migrations.Migration):

    dependencies = [
        ('modelTraining', '0005_usecasedetails_userdefinedname'),
    ]

    operations = [
        migrations.RemoveField(
            model_name='usecasedetails',
            name='UserDefinedName',
        ),
        migrations.AddField(
            model_name='usecasedetails',
            name='usecaseid',
            field=models.CharField(default=models.CharField(max_length=50), max_length=10),
        ),
    ]
"
0007_auto_20230328_1823.py,"# Generated by Django 3.2.8 on 2023-03-28 18:23

from django.db import migrations, models


class Migration(migrations.Migration):

    dependencies = [
        ('modelTraining', '0006_auto_20230206_1759'),
    ]

    operations = [
        migrations.AddField(
            model_name='existusecases',
            name='driftStatus',
            field=models.CharField(default='', max_length=20),
        ),
        migrations.AddField(
            model_name='existusecases',
            name='portNo',
            field=models.CharField(default='', max_length=5),
        ),
        migrations.AddField(
            model_name='existusecases',
            name='publishStatus',
            field=models.CharField(default='', max_length=20),
        ),
        migrations.AlterField(
            model_name='existusecases',
            name='ProblemType',
            field=models.CharField(default='', max_length=20),
        ),
    ]
"
0004_existusecases_problemtype.py,"# Generated by Django 3.2.8 on 2022-10-28 09:07

from django.db import migrations, models


class Migration(migrations.Migration):

    dependencies = [
        ('modelTraining', '0003_existusecases_trainouputlocation'),
    ]

    operations = [
        migrations.AddField(
            model_name='existusecases',
            name='ProblemType',
            field=models.CharField(default='', max_length=100),
        ),
    ]
"
runaion.py,"from django.contrib.staticfiles.management.commands.runserver import Command as RunServer

class Command(RunServer):

    def check(self, *args, **kwargs):
        self.stdout.write(self.style.WARNING(""SKIPPING SYSTEM CHECKS!\n""))

    def check_migrations(self, *args, **kwargs):
        self.stdout.write(self.style.WARNING(""SKIPPING MIGRATION CHECKS!\n""))"
__init__.py,"""""""
/**
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  © Copyright HCL Technologies Ltd. 2021, 2022
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*/
"""""""
__init__.py,"""""""
/**
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  © Copyright HCL Technologies Ltd. 2021, 2022
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*/
""""""
"
input_drift.py,"""""""
/**
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  © Copyright HCL Technologies Ltd. 2021, 2022
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*/
""""""

class input_drift():

    def __init__(self, tab_size=4):
        self.tab = ' ' * tab_size
        self.codeText = ''
        
    def addInputDriftClass(self):
        text = ""\
        \nclass inputdrift():\
        \n\
        \n    def __init__(self,base_config):\
        \n        self.usecase = base_config['modelName'] + '_' + base_config['modelVersion']\
        \n        self.currentDataLocation = base_config['currentDataLocation']\
        \n        home = Path.home()\
        \n        if platform.system() == 'Windows':\
        \n            from pathlib import WindowsPath\
        \n            output_data_dir = WindowsPath(home)/'AppData'/'Local'/'HCLT'/'AION'/'Data'\
        \n            output_model_dir = WindowsPath(home)/'AppData'/'Local'/'HCLT'/'AION'/'target'/self.usecase\
        \n        else:\
        \n            from pathlib import PosixPath\
        \n            output_data_dir = PosixPath(home)/'HCLT'/'AION'/'Data'\
        \n            output_model_dir = PosixPath(home)/'HCLT'/'AION'/'target'/self.usecase\
        \n        if not output_model_dir.exists():\
        \n            raise ValueError(f'Configuration file not found at {output_model_dir}')\
        \n\
        \n        tracking_uri = 'file:///' + str(Path(output_model_dir)/'mlruns')\
        \n        registry_uri = 'sqlite:///' + str(Path(output_model_dir)/'mlruns.db')\
        \n        mlflow.set_tracking_uri(tracking_uri)\
        \n        mlflow.set_registry_uri(registry_uri)\
        \n        client = mlflow.tracking.MlflowClient(\
        \n                tracking_uri=tracking_uri,\
        \n                registry_uri=registry_uri,\
        \n            )\
        \n        model_version_uri = 'models:/{model_name}/production'.format(model_name=self.usecase)\
        \n        model = mlflow.pyfunc.load_model(model_version_uri)\
        \n        run = client.get_run(model.metadata.run_id)\
        \n        if run.info.artifact_uri.startswith('file:'):\
        \n            artifact_path = Path(run.info.artifact_uri[len('file:///') : ])\
        \n        else:\
        \n            artifact_path = Path(run.info.artifact_uri)\
        \n        self.trainingDataPath = artifact_path/(self.usecase + '_data.csv')\
        \n\
        \n    def get_input_drift(self,current_data, historical_data):\
        \n        curr_num_feat = current_data.select_dtypes(include='number')\
        \n        hist_num_feat = historical_data.select_dtypes(include='number')\
        \n        num_features = [feat for feat in historical_data.columns if feat in curr_num_feat]\
        \n        alert_count = 0\
        \n        data = {\
        \n            'current':{'data':current_data},\
        \n            'hist': {'data': historical_data}\
        \n            }\
        \n        dist_changed_columns = []\
        \n        dist_change_message = []\
        \n        for feature in num_features:\
        \n            curr_static_value = st.ks_2samp( hist_num_feat[feature], curr_num_feat[feature]).pvalue\
        \n            if (curr_static_value < 0.05):\
        \n                distribution = {}\
        \n                distribution['hist'] = self.DistributionFinder( historical_data[feature])\
        \n                distribution['curr'] = self.DistributionFinder( current_data[feature])\
        \n                if(distribution['hist']['name'] == distribution['curr']['name']):\
        \n                    pass\
        \n                else:\
        \n                    alert_count = alert_count + 1\
        \n                    dist_changed_columns.append(feature)\
        \n                    changed_column = {}\
        \n                    changed_column['Feature'] = feature\
        \n                    changed_column['KS_Training'] = curr_static_value\
        \n                    changed_column['Training_Distribution'] = distribution['hist']['name']\
        \n                    changed_column['New_Distribution'] = distribution['curr']['name']\
        \n                    dist_change_message.append(changed_column)\
        \n        if alert_count:\
        \n            resultStatus = dist_change_message\
        \n        else :\
        \n            resultStatus='Model is working as expected'\
        \n        return(alert_count, resultStatus)\
        \n\
        \n    def DistributionFinder(self,data):\
        \n        best_distribution =''\
        \n        best_sse =0.0\
        \n        if(data.dtype in ['int','int64']):\
        \n            distributions= {'bernoulli':{'algo':st.bernoulli},\
        \n                            'binom':{'algo':st.binom},\
        \n                            'geom':{'algo':st.geom},\
        \n                            'nbinom':{'algo':st.nbinom},\
        \n                            'poisson':{'algo':st.poisson}\
        \n                            }\
        \n            index, counts = np.unique(data.astype(int),return_counts=True)\
        \n            if(len(index)>=2):\
        \n                best_sse = np.inf\
        \n                y1=[]\
        \n                total=sum(counts)\
        \n                mean=float(sum(index*counts))/total\
        \n                variance=float((sum(index**2*counts) -total*mean**2))/(total-1)\
        \n                dispersion=mean/float(variance)\
        \n                theta=1/float(dispersion)\
        \n                r=mean*(float(theta)/1-theta)\
        \n\
        \n                for j in counts:\
        \n                        y1.append(float(j)/total)\
        \n                distributions['bernoulli']['pmf'] = distributions['bernoulli']['algo'].pmf(index,mean)\
        \n                distributions['binom']['pmf'] = distributions['binom']['algo'].pmf(index,len(index),p=mean/len(index))\
        \n                distributions['geom']['pmf'] = distributions['geom']['algo'].pmf(index,1/float(1+mean))\
        \n                distributions['nbinom']['pmf'] = distributions['nbinom']['algo'].pmf(index,mean,r)\
        \n                distributions['poisson']['pmf'] = distributions['poisson']['algo'].pmf(index,mean)\
        \n\
        \n                sselist = []\
        \n                for dist in distributions.keys():\
        \n                    distributions[dist]['sess'] = np.sum(np.power(y1 - distributions[dist]['pmf'], 2.0))\
        \n                    if np.isnan(distributions[dist]['sess']):\
        \n                        distributions[dist]['sess'] = float('inf')\
        \n                best_dist = min(distributions, key=lambda v: distributions[v]['sess'])\
        \n                best_distribution = best_dist\
        \n                best_sse = distributions[best_dist]['sess']\
        \n\
        \n            elif (len(index) == 1):\
        \n                best_distribution = 'Constant Data-No Distribution'\
        \n                best_sse = 0.0\
        \n        elif(data.dtype in ['float64','float32']):\
        \n            distributions = [st.uniform,st.expon,st.weibull_max,st.weibull_min,st.chi,st.norm,st.lognorm,st.t,st.gamma,st.beta]\
        \n            best_distribution = st.norm.name\
        \n            best_sse = np.inf\
        \n            nrange = data.max() - data.min()\
        \n\
        \n            y, x = np.histogram(data.astype(float), bins='auto', density=True)\
        \n            x = (x + np.roll(x, -1))[:-1] / 2.0\
        \n\
        \n            for distribution in distributions:\
        \n                with warnings.catch_warnings():\
        \n                    warnings.filterwarnings('ignore')\
        \n                    params = distribution.fit(data.astype(float))\
        \n                    arg = params[:-2]\
        \n                    loc = params[-2]\
        \n                    scale = params[-1]\
        \n                    pdf = distribution.pdf(x, loc=loc, scale=scale, *arg)\
        \n                    sse = np.sum(np.power(y - pdf, 2.0))\
        \n                    if( sse < best_sse):\
        \n                        best_distribution = distribution.name\
        \n                        best_sse = sse\
        \n\
        \n        return {'name':best_distribution, 'sse': best_sse}\
        \n\
        ""
        return text
        
    def addSuffixCode(self, indent=1):
        text =""\n\
        \ndef check_drift( config):\
        \n    inputdriftObj = inputdrift(config)\
        \n    historicaldataFrame=pd.read_csv(inputdriftObj.trainingDataPath)\
        \n    currentdataFrame=pd.read_csv(inputdriftObj.currentDataLocation)\
        \n    dataalertcount,message = inputdriftObj.get_input_drift(currentdataFrame,historicaldataFrame)\
        \n    if message == 'Model is working as expected':\
        \n        output_json = {'status':'SUCCESS','data':{'Message':'Model is working as expected'}}\
        \n    else:\
        \n        output_json = {'status':'SUCCESS','data':{'Affected Columns':message}}\
        \n    return(output_json)\
        \n\
        \nif __name__ == '__main__':\
        \n    try:\
        \n        if len(sys.argv) < 2:\
        \n            raise ValueError('config file not present')\
        \n        config = sys.argv[1]\
        \n        if Path(config).is_file() and Path(config).suffix == '.json':\
        \n            with open(config, 'r') as f:\
        \n                config = json.load(f)\
        \n        else:\
        \n            config = json.loads(config)\
        \n        output = check_drift(config)\
        \n        status = {'Status':'Success','Message':output}\
        \n        print('input_drift:'+json.dumps(status))\
        \n    except Exception as e:\
        \n        status = {'Status':'Failure','Message':str(e)}\
        \n        print('input_drift:'+json.dumps(status))""
        return text

    def addStatement(self, statement, indent=1):
        self.codeText += '\n' + self.tab * indent + statement
                
    def generateCode(self):
        self.codeText += self.addInputDriftClass()
        self.codeText += self.addSuffixCode()
        
    def getCode(self):
        return self.codeText
"
output_drift.py,"""""""
/**
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  © Copyright HCL Technologies Ltd. 2021, 2022
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*/
""""""

class output_drift():

    def __init__(self, missing=False, word2num_features = None, cat_encoder=False, target_encoder=False, normalizer=False, text_profiler=False, feature_reducer=False, score_smaller_is_better=True, problem_type='classification', tab_size=4):
        self.tab = ' ' * tab_size
        self.codeText = ''
        self.missing = missing
        self.word2num_features = word2num_features
        self.cat_encoder = cat_encoder
        self.target_encoder = target_encoder
        self.normalizer = normalizer
        self.text_profiler = text_profiler
        self.feature_reducer = feature_reducer
        self.score_smaller_is_better = score_smaller_is_better
        self.problem_type = problem_type
        
    def addDatabaseClass(self, indent=0):
        text = ""\
        \nclass database():\
        \n    def __init__(self, config):\
        \n        self.host = config['host']\
        \n        self.port = config['port']\
        \n        self.user = config['user']\
        \n        self.password = config['password']\
        \n        self.database = config['database']\
        \n        self.measurement = config['measurement']\
        \n        self.tags = config['tags']\
        \n        self.client = self.get_client()\
        \n\
        \n    def read_data(self, query)->pd.DataFrame:\
        \n        cursor = self.client.query(query)\
        \n        points = cursor.get_points()\
        \n        my_list=list(points)\
        \n        df=pd.DataFrame(my_list)\
        \n        return df\
        \n\
        \n    def get_client(self):\
        \n        client = InfluxDBClient(self.host,self.port,self.user,self.password)\
        \n        databases = client.get_list_database()\
        \n        databases = [x['name'] for x in databases]\
        \n        if self.database not in databases:\
        \n            client.create_database(self.database)\
        \n        return InfluxDBClient(self.host,self.port,self.user,self.password, self.database)\
        \n\
        \n    def write_data(self,data):\
        \n        if isinstance(data, pd.DataFrame):\
        \n            sorted_col = data.columns.tolist()\
        \n            sorted_col.sort()\
        \n            data = data[sorted_col]\
        \n            data = data.to_dict(orient='records')\
        \n        for row in data:\
        \n            if 'time' in row.keys():\
        \n                p = '%Y-%m-%dT%H:%M:%S.%fZ'\
        \n                time_str = datetime.strptime(row['time'], p)\
        \n                del row['time']\
        \n            else:\
        \n                time_str = None\
        \n            if 'model_ver' in row.keys():\
        \n                self.tags['model_ver']= row['model_ver']\
        \n                del row['model_ver']\
        \n            json_body = [{\
        \n                'measurement': self.measurement,\
        \n                'time': time_str,\
        \n                'tags': self.tags,\
        \n                'fields': row\
        \n            }]\
        \n            self.client.write_points(json_body)\
        \n\
        \n    def close(self):\
        \n        self.client.close()\
        \n""
        if indent:
            text = text.replace('\n', (self.tab * indent) + '\n')
        return text

    def addPredictClass(self, indent=0):
        text = ""\
        \nclass predict():\
        \n\
        \n    def __init__(self, base_config):\
        \n        self.usecase = base_config['modelName'] + '_' + base_config['modelVersion']\
        \n        self.dataLocation = base_config['dataLocation']\
        \n        self.db_enabled = base_config.get('db_enabled', False)\
        \n        if self.db_enabled:\
        \n            self.db_config = base_config['db_config']\
        \n        home = Path.home()\
        \n        if platform.system() == 'Windows':\
        \n            from pathlib import WindowsPath\
        \n            output_data_dir = WindowsPath(home)/'AppData'/'Local'/'HCLT'/'AION'/'Data'\
        \n            output_model_dir = WindowsPath(home)/'AppData'/'Local'/'HCLT'/'AION'/'target'/self.usecase\
        \n        else:\
        \n            from pathlib import PosixPath\
        \n            output_data_dir = PosixPath(home)/'HCLT'/'AION'/'Data'\
        \n            output_model_dir = PosixPath(home)/'HCLT'/'AION'/'target'/self.usecase\
        \n        if not output_model_dir.exists():\
        \n            raise ValueError(f'Configuration file not found at {output_model_dir}')\
        \n\
        \n        tracking_uri = 'file:///' + str(Path(output_model_dir)/'mlruns')\
        \n        registry_uri = 'sqlite:///' + str(Path(output_model_dir)/'mlruns.db')\
        \n        mlflow.set_tracking_uri(tracking_uri)\
        \n        mlflow.set_registry_uri(registry_uri)\
        \n        client = mlflow.tracking.MlflowClient(\
        \n                tracking_uri=tracking_uri,\
        \n                registry_uri=registry_uri,\
        \n            )\
        \n        self.model_version = client.get_latest_versions(self.usecase, stages=['production'] )[0].version\
        \n        model_version_uri = 'models:/{model_name}/production'.format(model_name=self.usecase)\
        \n        self.model = mlflow.pyfunc.load_model(model_version_uri)\
        \n        run = client.get_run(self.model.metadata.run_id)\
        \n        if run.info.artifact_uri.startswith('file:'): #remove file:///\
        \n            self.artifact_path = Path(run.info.artifact_uri[len('file:///') : ])\
        \n        else:\
        \n            self.artifact_path = Path(run.info.artifact_uri)\
        \n        with open(self.artifact_path/'deploy.json', 'r') as f:\
        \n            deployment_dict = json.load(f)\
        \n        with open(self.artifact_path/'features.txt', 'r') as f:\
        \n            self.train_features = f.readline().rstrip().split(',')\
        \n\
        \n        self.dataLocation = base_config['dataLocation']\
        \n        self.selected_features = deployment_dict['load_data']['selected_features']\
        \n        self.target_feature = deployment_dict['load_data']['target_feature']\
        \n        self.output_model_dir = output_model_dir""
        if self.missing:
            text += ""\n        self.missing_values = deployment_dict['transformation']['fillna']""
        if self.word2num_features:
            text += ""\n        self.word2num_features = deployment_dict['transformation']['word2num_features']""
        if self.cat_encoder == 'labelencoding':
            text += ""\n        self.cat_encoder = deployment_dict['transformation']['cat_encoder']""
        elif (self.cat_encoder == 'targetencoding') or (self.cat_encoder == 'onehotencoding'):
            text += ""\n        self.cat_encoder = deployment_dict['transformation']['cat_encoder']['file']""
            text += ""\n        self.cat_encoder_cols = deployment_dict['transformation']['cat_encoder']['features']""
        if self.target_encoder:
            text += ""\n        self.target_encoder = joblib.load(self.artifact_path/deployment_dict['transformation']['target_encoder'])""
        if self.normalizer:
            text += ""\n        self.normalizer = joblib.load(self.artifact_path/deployment_dict['transformation']['normalizer']['file'])\
\n        self.normalizer_col = deployment_dict['transformation']['normalizer']['features']""
        if self.text_profiler:
            text += ""\n        self.text_profiler = joblib.load(self.artifact_path/deployment_dict['transformation']['Status']['text_profiler']['file'])\
\n        self.text_profiler_col = deployment_dict['transformation']['Status']['text_profiler']['features']""
        if self.feature_reducer:
            text += ""\n        self.feature_reducer = joblib.load(self.artifact_path/deployment_dict['featureengineering']['feature_reducer']['file'])\
\n        self.feature_reducer_cols = deployment_dict['featureengineering']['feature_reducer']['features']""
        text += """"""
        
    def read_data_from_db(self):
        if self.db_enabled:
            try:
                db = database(self.db_config)
                query = ""SELECT * FROM {} WHERE model_ver = '{}' AND {} != ''"".format(db.measurement, self.model_version, self.target_feature)
                if 'read_time' in self.db_config.keys() and self.db_config['read_time']:
                    query += f"" time > now() - {self.db_config['read_time']}""
                data = db.read_data(query)
            except:
                raise ValueError('Unable to read from the database')
            finally:
                if db:
                    db.close()
            return data
        return None""""""
        text += ""\
        \n    def predict(self, data):\
        \n        df = pd.DataFrame()\
        \n        if Path(data).exists():\
        \n            if Path(data).suffix == '.tsv':\
        \n                df=read_data(data,encoding='utf-8',sep='\t')\
        \n            elif Path(data).suffix == '.csv':\
        \n                df=read_data(data,encoding='utf-8')\
        \n            else:\
        \n                if Path(data).suffix == '.json':\
        \n                    jsonData = read_json(data)\
        \n                    df = pd.json_normalize(jsonData)\
        \n        elif is_file_name_url(data):\
        \n            df = read_data(data,encoding='utf-8')\
        \n        else:\
        \n            jsonData = json.loads(data)\
        \n            df = pd.json_normalize(jsonData)\
        \n        if len(df) == 0:\
        \n            raise ValueError('No data record found')\
        \n        missing_features = [x for x in self.selected_features if x not in df.columns]\
        \n        if missing_features:\
        \n            raise ValueError(f'some feature/s is/are missing: {missing_features}')\
        \n        if self.target_feature not in df.columns:\
        \n            raise ValueError(f'Ground truth values/target column({self.target_feature}) not found in current data')\
        \n        df_copy = df.copy()\
        \n        df = df[self.selected_features]""
        if self.word2num_features:
            text += ""\n        for feat in self.word2num_features:""
            text += ""\n            df[ feat ] = df[feat].apply(lambda x: s2n(x))""
        if self.missing:
            text += ""\n        df.fillna(self.missing_values, inplace=True)""
        if self.cat_encoder == 'labelencoding':
            text += ""\n        df.replace(self.cat_encoder, inplace=True)""
        elif self.cat_encoder == 'targetencoding':
            text += ""\n        cat_enc = joblib.load(self.artifact_path/self.cat_encoder)""
            text += ""\n        df = cat_enc.transform(df)""
        elif self.cat_encoder == 'onehotencoding':
            text += ""\n        cat_enc = joblib.load(self.artifact_path/self.cat_encoder)""
            text += ""\n        transformed_data = cat_enc.transform(df[self.cat_encoder_cols]).toarray()""
            text += ""\n        df[cat_enc.get_feature_names()] = pd.DataFrame(transformed_data, columns=cat_enc.get_feature_names())[cat_enc.get_feature_names()]""
        if self.normalizer:
            text += ""\n        df[self.normalizer_col] = self.normalizer.transform(df[self.normalizer_col])""
        if self.text_profiler:
            text += ""\n        text_corpus = df[self.text_profiler_col].apply(lambda row: ' '.join(row.values.astype(str)), axis=1)\
\n        df_vect=self.text_profiler.transform(text_corpus)\
\n        if isinstance(df_vect, np.ndarray):\
\n            df1 = pd.DataFrame(df_vect)\
\n        else:\
\n            df1 = pd.DataFrame(df_vect.toarray(),columns = self.text_profiler.named_steps['vectorizer'].get_feature_names())\
\n        df1 = df1.add_suffix('_vect')\
\n        df = pd.concat([df, df1],axis=1)""
        if self.feature_reducer:
            text += ""\n        df = self.feature_reducer.transform(df[self.feature_reducer_cols])""
        else:
            text += ""\n        df = df[self.train_features]""
        if self.target_encoder:
            text += ""\n        output = pd.DataFrame(self.model._model_impl.predict_proba(df), columns=self.target_encoder.classes_)\
        \n        df_copy['prediction'] = output.idxmax(axis=1)""
        else:
            text += ""\n        output = self.model.predict(df).reshape(1, -1)[0].round(2)\
        \n        df_copy['prediction'] = output""
        text += ""\n        return df_copy""
        if indent:
            text = text.replace('\n', (self.tab * indent) + '\n')
        return text

    def getClassificationMatrixCode(self, indent=0):
        text = ""\
        \ndef get_classification_metrices(actual_values, predicted_values):\
        \n    result = {}\
        \n    accuracy_score = sklearn.metrics.accuracy_score(actual_values, predicted_values)\
        \n    avg_precision = sklearn.metrics.precision_score(actual_values, predicted_values,\
        \n        average='macro')\
        \n    avg_recall = sklearn.metrics.recall_score(actual_values, predicted_values,\
        \n        average='macro')\
        \n    avg_f1 = sklearn.metrics.f1_score(actual_values, predicted_values,\
        \n        average='macro')\
        \n\
        \n    result['accuracy'] = accuracy_score\
        \n    result['precision'] = avg_precision\
        \n    result['recall'] = avg_recall\
        \n    result['f1'] = avg_f1\
        \n    return result\
        \n\
        ""
        if indent:
            text = text.replace('\n', (self.tab * indent) + '\n')
        return text

    def getRegrssionMatrixCode(self, indent=0):
        text = ""\
        \ndef get_regression_metrices( actual_values, predicted_values):\
        \n    result = {}\
        \n\
        \n    me = np.mean(predicted_values - actual_values)\
        \n    sde = np.std(predicted_values - actual_values, ddof = 1)\
        \n\
        \n    abs_err = np.abs(predicted_values - actual_values)\
        \n    mae = np.mean(abs_err)\
        \n    sdae = np.std(abs_err, ddof = 1)\
        \n\
        \n    abs_perc_err = 100.*np.abs(predicted_values - actual_values) / actual_values\
        \n    mape = np.mean(abs_perc_err)\
        \n    sdape = np.std(abs_perc_err, ddof = 1)\
        \n\
        \n    result['mean_error'] = me\
        \n    result['mean_abs_error'] = mae\
        \n    result['mean_abs_perc_error'] = mape\
        \n    result['error_std'] = sde\
        \n    result['abs_error_std'] = sdae\
        \n    result['abs_perc_error_std'] = sdape\
        \n    return result\
        \n\
        ""
        if indent:
            text = text.replace('\n', (self.tab * indent) + '\n')
        return text
        
    def addSuffixCode(self, indent=1):
        text =""\n\
        \ndef check_drift( config):\
        \n    prediction = predict(config)\
        \n    usecase = config['modelName'] + '_' + config['modelVersion']\
        \n    train_data_path = prediction.artifact_path/(usecase+'_data.csv')\
        \n    if not train_data_path.exists():\
        \n        raise ValueError(f'Training data not found at {train_data_path}')\
        \n    curr_with_pred = prediction.read_data_from_db()\
        \n    if prediction.target_feature not in curr_with_pred.columns:\
        \n        raise ValueError('Ground truth not updated for corresponding data in database')\
        \n    train_with_pred = prediction.predict(train_data_path)\
        \n    performance = {}""
        if self.problem_type == 'classification':
            text += ""\n\
        \n    performance['train'] = get_classification_metrices(train_with_pred[prediction.target_feature], train_with_pred['prediction'])\
        \n    performance['current'] = get_classification_metrices(curr_with_pred[prediction.target_feature], curr_with_pred['prediction'])""
        else:
            text += ""\n\
        \n    performance['train'] = get_regression_metrices(train_with_pred[prediction.target_feature], train_with_pred['prediction'])\
        \n    performance['current'] = get_regression_metrices(curr_with_pred[prediction.target_feature], curr_with_pred['prediction'])""
        text += ""\n    return performance""
        text += ""\n\
        \nif __name__ == '__main__':\
        \n    try:\
        \n        if len(sys.argv) < 2:\
        \n            raise ValueError('config file not present')\
        \n        config = sys.argv[1]\
        \n        if Path(config).is_file() and Path(config).suffix == '.json':\
        \n            with open(config, 'r') as f:\
        \n                config = json.load(f)\
        \n        else:\
        \n            config = json.loads(config)\
        \n        output = check_drift(config)\
        \n        status = {'Status':'Success','Message':json.loads(output)}\
        \n        print('output_drift:'+json.dumps(status))\
        \n    except Exception as e:\
        \n        status = {'Status':'Failure','Message':str(e)}\
        \n        print('output_drift:'+json.dumps(status))""
        if indent:
            text = text.replace('\n', (self.tab * indent) + '\n')
        return text
        
    def addStatement(self, statement, indent=1):
        self.codeText += '\n' + self.tab * indent + statement
                
    def generateCode(self):
        self.codeText += self.addDatabaseClass()
        self.codeText += self.addPredictClass()
        if self.problem_type == 'classification':
            self.codeText += self.getClassificationMatrixCode()
        elif self.problem_type == 'regression':
            self.codeText += self.getRegrssionMatrixCode()
        else:
            raise ValueError(f""Unsupported problem type: {self.problem_type}"")
        self.codeText += self.addSuffixCode()
        
    def getCode(self):
        return self.codeText
"
deploy.py,"""""""
/**
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  © Copyright HCL Technologies Ltd. 2021, 2022
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*/
""""""
import json

class deploy():

    def __init__(self, target_encoder=False, feature_reducer=False, score_smaller_is_better=True, tab_size=4):
        self.tab = ' ' * tab_size
        self.codeText = ""\n\n\
\nclass deploy():\
\n\
\n    def __init__(self, base_config, log=None):\
        \n        self.targetPath = (Path('aion')/base_config['targetPath']).resolve()\
        \n        if log:\
        \n            self.logger = log\
        \n        else:\
        \n            log_file = self.targetPath/IOFiles['log']\
        \n            self.logger = logger(log_file, mode='a', logger_name=Path(__file__).parent.stem)\
        \n        try:\
        \n            self.initialize(base_config)\
        \n        except Exception as e:\
        \n            self.logger.error(e, exc_info=True)\
        \n\
\n    def initialize(self, base_config):\
        \n        self.usecase = base_config['targetPath']\
        \n        monitoring_data = read_json(self.targetPath/IOFiles['monitor'])\
        \n        self.prod_db_type = monitoring_data['prod_db_type']\
        \n        self.db_config = monitoring_data['db_config']\
        \n        mlflow_default_config = {'artifacts_uri':'','tracking_uri_type':'','tracking_uri':'','registry_uri':''}\
        \n        tracking_uri, artifact_uri, registry_uri = get_mlflow_uris(monitoring_data.get('mlflow_config',mlflow_default_config), self.targetPath)\
        \n        mlflow.tracking.set_tracking_uri(tracking_uri)\
        \n        mlflow.tracking.set_registry_uri(registry_uri)\
        \n        client = mlflow.tracking.MlflowClient()\
        \n        self.model_version = client.get_latest_versions(self.usecase, stages=['production'] )\
        \n        model_version_uri = 'models:/{model_name}/production'.format(model_name=self.usecase)\
        \n        self.model = mlflow.pyfunc.load_model(model_version_uri)\
        \n        run = client.get_run(self.model.metadata.run_id)\
        \n        if run.info.artifact_uri.startswith('file:'): #remove file:///\
        \n            skip_name = 'file:'\
        \n            if run.info.artifact_uri.startswith('file:///'):\
        \n                skip_name = 'file:///'\
        \n            self.artifact_path = Path(run.info.artifact_uri[len(skip_name) : ])\
        \n            self.artifact_path_type = 'file'\
        \n            meta_data = read_json(self.artifact_path/IOFiles['metaData'])\
        \n        else:\
        \n            self.artifact_path = run.info.artifact_uri\
        \n            self.artifact_path_type = 'url'\
        \n            meta_data_file = mlflow.artifacts.download_artifacts(self.artifact_path+'/'+IOFiles['metaData'])\
        \n            meta_data = read_json(meta_data_file)\
        \n        self.selected_features = meta_data['load_data']['selected_features']\
        \n        self.train_features = meta_data['training']['features']""
        if target_encoder:
            self.codeText += ""\
            \n        if self.artifact_path_type == 'url':\
            \n            preprocessor_file = mlflow.artifacts.download_artifacts(self.artifact_path+'/'+meta_data['transformation']['preprocessor'])\
            \n            target_encoder_file = mlflow.artifacts.download_artifacts(self.artifact_path+'/'+meta_data['transformation']['target_encoder'])\
            \n        else:\
            \n            preprocessor_file = self.artifact_path/meta_data['transformation']['preprocessor']\
            \n            target_encoder_file = self.artifact_path/meta_data['transformation']['target_encoder']\
            \n        self.target_encoder = joblib.load(target_encoder_file)""
        else:
            self.codeText += ""\
            \n        if self.artifact_path_type == 'url':\
            \n            preprocessor_file = mlflow.artifacts.download_artifacts(self.artifact_path+'/'+meta_data['transformation']['preprocessor'])\
            \n        else:\
            \n            preprocessor_file = self.artifact_path/meta_data['transformation']['preprocessor']""
        self.codeText += ""\
            \n        self.preprocessor = joblib.load(preprocessor_file)\
            \n        self.preprocess_out_columns = meta_data['transformation']['preprocess_out_columns']\
            ""
        if feature_reducer:
                self.codeText += ""\
                \n        if self.artifact_path_type == 'url':\
                \n            feature_reducer_file = mlflow.artifacts.download_artifacts(self.artifact_path+'/'+meta_data['featureengineering']['feature_reducer']['file'])\
                \n        else:\
                \n            feature_reducer_file = self.artifact_path/meta_data['featureengineering']['feature_reducer']['file']\
                \n        self.feature_reducer = joblib.load(feature_reducer_file)\
                \n        self.feature_reducer_cols = meta_data['featureengineering']['feature_reducer']['features']""
        self.codeText +=""\n\
\n    def write_to_db(self, data):\
\n        prod_file = IOFiles['prodData']\
\n        writer = dataReader(reader_type=self.prod_db_type,target_path=self.targetPath, config=self.db_config )\
\n        writer.write(data, prod_file)\
\n        writer.close()\
\n\
\n    def predict(self, data=None):\
\n        try:\
\n            return self.__predict(data)\
\n        except Exception as e:\
\n            if self.logger:\
\n                self.logger.error(e, exc_info=True)\
\n            raise ValueError(json.dumps({'Status':'Failure', 'Message': str(e)}))\
\n\
\n    def __predict(self, data=None):\
\n        df = pd.DataFrame()\
\n        jsonData = json.loads(data)\
\n        df = pd.json_normalize(jsonData)\
\n        if len(df) == 0:\
\n            raise ValueError('No data record found')\
\n        missing_features = [x for x in self.selected_features if x not in df.columns]\
\n        if missing_features:\
\n            raise ValueError(f'some feature/s is/are missing: {missing_features}')\
\n        df_copy = df.copy()\
\n        df = df[self.selected_features]\
\n        df = self.preprocessor.transform(df)\
\n        if isinstance(df, scipy.sparse.spmatrix):\
\n            df = df.toarray()\
\n        df = pd.DataFrame(df, columns=self.preprocess_out_columns)""
        if feature_reducer:
            self.codeText += ""\n        df = self.feature_reducer.transform(df[self.feature_reducer_cols])""
        else:
            self.codeText += ""\n        df = df[self.train_features]""
        if target_encoder:
            self.codeText += ""\n        df = df.astype(np.float32)\
		\n        output = pd.DataFrame(self.model._model_impl.predict_proba(df), columns=self.target_encoder.classes_)\
        \n        df_copy['prediction'] = output.idxmax(axis=1)\
        \n        self.write_to_db(df_copy)\
        \n        df_copy['probability'] = output.max(axis=1).round(2)\
        \n        df_copy['remarks'] = output.apply(lambda x: x.to_json(), axis=1)\
        \n        output = df_copy.to_json(orient='records')""
        else:
            self.codeText += ""\n        output = self.model._model_impl.predict(df).reshape(1, -1)[0].round(2)\
        \n        df_copy['prediction'] = output\
        \n        self.write_to_db(df_copy)\
        \n        output = df_copy.to_json(orient='records')""
        self.codeText += ""\n        return output""
        self.input_files = {}
        self.output_files = {}
        self.addInputFiles({'inputData' : 'rawData.dat', 'metaData' : 'modelMetaData.json', 'performance' : 'performance.json','monitor':'monitoring.json','log':'predict.log','prodData':'prodData'})
        
    def addInputFiles(self, files):
        if not isinstance(files, dict):
            raise TypeError(f""Required dict type got {type(files)} type"")
        for k,v in files.items():
            self.input_files[k] = v
            
    def addOutputFiles(self, files):
        if not isinstance(files, dict):
            raise TypeError(f""Required dict type got {type(files)} type"")
        for k,v in files.items():
            self.input_files[k] = v
            
    def getInputFiles(self):        
        text = 'IOFiles = '
        if not self.input_files:
            text += '{ }'
        else:
            text += json.dumps(self.input_files, indent=4)
        return text
        
    def getOutputFiles(self):
        text = 'output_file = '
        if not self.output_files:
            text += '{ }'
        else:
            text += json.dumps(self.output_files, indent=4)
        return text
    
    def getInputOutputFiles(self, indent=0):
        text = '\n'
        text += self.getInputFiles()
        text += '\n'
        text += self.getOutputFiles()
        if indent:
            text = text.replace('\n', self.tab * indent + '\n')
        return text

    def addStatement(self, statement, indent=1):
        pass
                
    def getCode(self):
        return self.codeText

    def getGroundtruthCode(self):
        return """"""
import sys
import math
import json
import sqlite3
import pandas as pd
from datetime import datetime
from pathlib import Path
import platform
from utility import *
from data_reader import dataReader

IOFiles = {
        ""monitoring"":""monitoring.json"", 
        ""prodDataGT"":""prodDataGT""
    }

class groundtruth():
    
    def __init__(self, base_config):        
        self.targetPath = Path('aion')/base_config['targetPath']  
        data = read_json(self.targetPath/IOFiles['monitoring'])
        self.prod_db_type = data['prod_db_type']
        self.db_config = data['db_config']
	
    def actual(self, data=None):
        df = pd.DataFrame()
        jsonData = json.loads(data)
        df = pd.json_normalize(jsonData)
        if len(df) == 0:
            raise ValueError('No data record found')
        self.write_to_db(df)
        status = {'Status':'Success','Message':'uploaded'}
        return json.dumps(status)
		
    def write_to_db(self, data):
        prod_file = IOFiles['prodDataGT']
        writer = dataReader(reader_type=self.prod_db_type, target_path=self.targetPath, config=self.db_config )
        writer.write(data, prod_file)
        writer.close()
			
""""""
    def getServiceCode(self):
        return """"""

from http.server import BaseHTTPRequestHandler,HTTPServer        
from socketserver import ThreadingMixIn        
import os        
from os.path import expanduser        
import platform        
import threading        
import subprocess        
import argparse        
import re        
import cgi        
import json        
import shutil
import logging
import sys        
import time
import seaborn as sns
from pathlib import Path        
from predict import deploy
from groundtruth import groundtruth       
import pandas as pd
import scipy.stats as st
import numpy as np
import warnings
from utility import *
from data_reader import dataReader

warnings.filterwarnings(""ignore"")
config_input = None   
     
IOFiles = {
	""inputData"": ""rawData.dat"",
	""metaData"": ""modelMetaData.json"",
	""production"": ""production.json"",  
	""log"": ""aion.log"",
	""monitoring"":""monitoring.json"",
	""prodData"": ""prodData"",
	""prodDataGT"":""prodDataGT""
}

def DistributionFinder(data):
    try:
        distributionName = """"
        sse = 0.0
        KStestStatic = 0.0
        dataType = """"
        if (data.dtype == ""float64"" or data.dtype == ""float32""):
            dataType = ""Continuous""
        elif (data.dtype == ""int""):
            dataType = ""Discrete""
        elif (data.dtype == ""int64""):
            dataType = ""Discrete""
        if (dataType == ""Discrete""):
            distributions = [st.bernoulli, st.binom, st.geom, st.nbinom, st.poisson]
            index, counts = np.unique(data.astype(int), return_counts=True)

            if (len(index) >= 2):
                best_sse = np.inf
                y1 = []
                total = sum(counts)
                mean = float(sum(index * counts)) / total
                variance = float((sum(index ** 2 * counts) - total * mean ** 2)) / (total - 1)
                dispersion = mean / float(variance)
                theta = 1 / float(dispersion)
                r = mean * (float(theta) / 1 - theta)

                for j in counts:
                    y1.append(float(j) / total)

                pmf1 = st.bernoulli.pmf(index, mean)
                pmf2 = st.binom.pmf(index, len(index), p=mean / len(index))
                pmf3 = st.geom.pmf(index, 1 / float(1 + mean))
                pmf4 = st.nbinom.pmf(index, mean, r)
                pmf5 = st.poisson.pmf(index, mean)

                sse1 = np.sum(np.power(y1 - pmf1, 2.0))
                sse2 = np.sum(np.power(y1 - pmf2, 2.0))
                sse3 = np.sum(np.power(y1 - pmf3, 2.0))
                sse4 = np.sum(np.power(y1 - pmf4, 2.0))
                sse5 = np.sum(np.power(y1 - pmf5, 2.0))

                sselist = [sse1, sse2, sse3, sse4, sse5]
                best_distribution = 'NA'
                for i in range(0, len(sselist)):
                    if best_sse > sselist[i] > 0:
                        best_distribution = distributions[i].name
                        best_sse = sselist[i]

            elif (len(index) == 1):
                best_distribution = ""Constant Data-No Distribution""
                best_sse = 0.0

            distributionName = best_distribution
            sse = best_sse

        elif (dataType == ""Continuous""):

            distributions = [st.uniform, st.expon, st.weibull_max, st.weibull_min, st.chi, st.norm, st.lognorm, st.t,
                             st.gamma, st.beta]
            best_distribution = st.norm.name
            best_sse = np.inf
            datamin = data.min()
            datamax = data.max()
            nrange = datamax - datamin

            y, x = np.histogram(data.astype(float), bins='auto', density=True)
            x = (x + np.roll(x, -1))[:-1] / 2.0

            for distribution in distributions:
                params = distribution.fit(data.astype(float))
                arg = params[:-2]
                loc = params[-2]
                scale = params[-1]
                pdf = distribution.pdf(x, loc=loc, scale=scale, *arg)
                sse = np.sum(np.power(y - pdf, 2.0))
                if (best_sse > sse > 0):
                    best_distribution = distribution.name
                    best_sse = sse
            distributionName = best_distribution
            sse = best_sse
    except:
        response = str(sys.exc_info()[0])
        message = 'Job has Failed' + response
        exc_type, exc_obj, exc_tb = sys.exc_info()
        fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
        print(str(exc_type) + ' ' + str(fname) + ' ' + str(exc_tb.tb_lineno))
        print(message)
    return distributionName, sse
    
def getDriftDistribution(feature, dataframe, newdataframe=pd.DataFrame()):
    import matplotlib.pyplot as plt
    import math
    import io, base64, urllib
    np.seterr(divide='ignore', invalid='ignore')
    try:	
        plt.clf()
    except:
        pass
    plt.rcParams.update({'figure.max_open_warning': 0})
    sns.set(color_codes=True)
    pandasNumericDtypes = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64']
    if len(feature) > 4:
        numneroffeatures = len(feature)
        plt.figure(figsize=(10, numneroffeatures*2))
    else:
        plt.figure(figsize=(10,5))
    
    for i in enumerate(feature):
        
        dataType = dataframe[i[1]].dtypes
        if dataType not in pandasNumericDtypes:
            dataframe[i[1]] = pd.Categorical(dataframe[i[1]])
            dataframe[i[1]] = dataframe[i[1]].cat.codes
            dataframe[i[1]] = dataframe[i[1]].astype(int)
            dataframe[i[1]] = dataframe[i[1]].fillna(dataframe[i[1]].mode()[0])
        else:
            dataframe[i[1]] = dataframe[i[1]].fillna(dataframe[i[1]].mean())
        
        plt.subplots_adjust(hspace=0.5, wspace=0.7, top=1)
        plt.subplot(math.ceil((len(feature) / 2)), 2, i[0] + 1)
        distname, sse = DistributionFinder(dataframe[i[1]])        
        print(distname)        
        ax = sns.distplot(dataframe[i[1]], label=distname)
        ax.legend(loc='best')
        if newdataframe.empty == False:
            dataType = newdataframe[i[1]].dtypes
            if dataType not in pandasNumericDtypes:
                newdataframe[i[1]] = pd.Categorical(newdataframe[i[1]])
                newdataframe[i[1]] = newdataframe[i[1]].cat.codes
                newdataframe[i[1]] = newdataframe[i[1]].astype(int)
                newdataframe[i[1]] = newdataframe[i[1]].fillna(newdataframe[i[1]].mode()[0])
            else:
                newdataframe[i[1]] = newdataframe[i[1]].fillna(newdataframe[i[1]].mean())
            distname, sse = DistributionFinder(newdataframe[i[1]])                
            print(distname)
            ax = sns.distplot(newdataframe[i[1]],label=distname)
            ax.legend(loc='best')
    buf = io.BytesIO()
    plt.savefig(buf, format='png')
    buf.seek(0)
    string = base64.b64encode(buf.read())
    uri = urllib.parse.quote(string)
    return uri
	
def read_json(file_path):        
    data = None        
    with open(file_path,'r') as f:        
        data = json.load(f)        
    return data        
        
class HTTPRequestHandler(BaseHTTPRequestHandler):        
        
	def do_POST(self):        
		print('PYTHON ######## REQUEST ####### STARTED')        
		if None != re.search('/AION/', self.path) or None != re.search('/aion/', self.path):
			ctype, pdict = cgi.parse_header(self.headers.get('content-type'))        
			if ctype == 'application/json':        
				length = int(self.headers.get('content-length'))        
				data = self.rfile.read(length)        
				usecase = self.path.split('/')[-2]
				if usecase.lower() == config_input['targetPath'].lower():					
					operation = self.path.split('/')[-1]        
					data = json.loads(data)        
					dataStr = json.dumps(data)        
					if operation.lower() == 'predict':        
						output=deployobj.predict(dataStr)        
						resp = output        
					elif operation.lower() == 'groundtruth':
						gtObj = groundtruth(config_input)				
						output = gtObj.actual(dataStr)
						resp = output        
					elif operation.lower() == 'delete':
						targetPath = Path('aion')/config_input['targetPath']                    
						for file in data:
							x = targetPath/file                           
							if x.exists():
								os.remove(x)                        
						resp = json.dumps({'Status':'Success'})
					else:        
						outputStr = json.dumps({'Status':'Error','Msg':'Operation not supported'})        
						resp = outputStr        
				else:
					outputStr = json.dumps({'Status':'Error','Msg':'Wrong URL'})        
					resp = outputStr
        
			else:        
				outputStr = json.dumps({'Status':'ERROR','Msg':'Content-Type Not Present'})        
				resp = outputStr        
			resp=resp+'\\n'        
			resp=resp.encode()        
			self.send_response(200)        
			self.send_header('Content-Type', 'application/json')        
			self.end_headers()        
			self.wfile.write(resp)        
		else:        
			print('python ==> else1')        
			self.send_response(403)        
			self.send_header('Content-Type', 'application/json')        
			self.end_headers()        
			print('PYTHON ######## REQUEST ####### ENDED')        
		return        
        
	def do_GET(self):        
		print('PYTHON ######## REQUEST ####### STARTED')        
		if None != re.search('/AION/', self.path) or None != re.search('/aion/', self.path):        
			usecase = self.path.split('/')[-2]        
			self.send_response(200)        
			self.targetPath = Path('aion')/config_input['targetPath']			
			meta_data_file = self.targetPath/IOFiles['metaData']        
			if meta_data_file.exists():        
				meta_data = read_json(meta_data_file)        
			else:        
				raise ValueError(f'Configuration file not found: {meta_data_file}')
			production_file = self.targetPath/IOFiles['production']            
			if production_file.exists():        
				production_data = read_json(production_file)        
			else:        
				raise ValueError(f'Production Details not found: {production_file}')           
			operation = self.path.split('/')[-1]                
			if (usecase.lower() == config_input['targetPath'].lower()) and (operation.lower() == 'metrices'):
				self.send_header('Content-Type', 'text/html')        
				self.end_headers()            
				ModelString = production_data['Model']
				ModelPerformance = ModelString+'_performance.json'                
				performance_file = self.targetPath/ModelPerformance                
				if performance_file.exists():        
					performance_data = read_json(performance_file)        
				else:        
					raise ValueError(f'Production Details not found: {performance_data}')
				Scoring_Creteria =  performance_data['scoring_criteria']                   
				train_score =  round(performance_data['metrices']['train_score'],2)                
				test_score =  round(performance_data['metrices']['test_score'],2)  
				current_score = 'NA'                        
				monitoring = read_json(self.targetPath/IOFiles['monitoring'])
				reader = dataReader(reader_type=monitoring['prod_db_type'],target_path=self.targetPath, config=monitoring['db_config'])
				inputDatafile = self.targetPath/IOFiles['inputData']                
				NoOfPrediction = 0
				NoOfGroundTruth = 0 
				inputdistribution = ''                
				if reader.file_exists(IOFiles['prodData']):        
					dfPredict = reader.read(IOFiles['prodData'])
					dfinput = pd.read_csv(inputDatafile)
					features = meta_data['training']['features']
					inputdistribution = getDriftDistribution(features,dfinput,dfPredict)                    
					NoOfPrediction = len(dfPredict)				
					if reader.file_exists(IOFiles['prodDataGT']):        
						dfGroundTruth = reader.read(IOFiles['prodDataGT'])
						NoOfGroundTruth = len(dfGroundTruth)                    
						common_col = [k for k in dfPredict.columns.tolist() if k in dfGroundTruth.columns.tolist()]				
						proddataDF = pd.merge(dfPredict, dfGroundTruth, on =common_col,how = 'inner')
						if Scoring_Creteria.lower() == 'accuracy':    
							from sklearn.metrics import accuracy_score                        
							current_score = accuracy_score(proddataDF[config_input['target_feature']], proddataDF['prediction'])
							current_score = round((current_score*100),2)                            
						elif Scoring_Creteria.lower() == 'recall':    
							from sklearn.metrics import accuracy_score                        
							current_score = recall_score(proddataDF[config_input['target_feature']], proddataDF['prediction'],average='macro')
							current_score = round((current_score*100),2)                           
				msg = \""""""<html>
<head>
<title>Performance Details</title>
</head>
<style>
table, th, td {border}
</style>
<body>
<h2><b>Deployed Model:</b>{ModelString}</h2>
<br/>
<table style=""width:50%"">
<tr>
<td>No of Prediction</td>
<td>{NoOfPrediction}</td>
</tr>
<tr>
<td>No of GroundTruth</td>
<td>{NoOfGroundTruth}</td>
</tr>
</table>
<br/>
<table style=""width:100%"">
<tr>
<th>Score Type</th>
<th>Train Score</th>
<th>Test Score</th>
<th>Production Score</th>
</tr>
<tr>
<td>{Scoring_Creteria}</td>
<td>{train_score}</td>
<td>{test_score}</td>
<td>{current_score}</td>
</tr>
</table>
<br/>
<br/>
<img src=""data:image/png;base64,{newDataDrift}"" alt="""" >
</body>
</html>
\"""""".format(border='{border: 1px solid black;}',ModelString=ModelString,Scoring_Creteria=Scoring_Creteria,NoOfPrediction=NoOfPrediction,NoOfGroundTruth=NoOfGroundTruth,train_score=train_score,test_score=test_score,current_score=current_score,newDataDrift=inputdistribution)
			elif (usecase.lower() == config_input['targetPath'].lower()) and (operation.lower() == 'logs'):    
				self.send_header('Content-Type', 'text/plain')        
				self.end_headers()                           
				log_file = self.targetPath/IOFiles['log']                
				if log_file.exists():
					with open(log_file) as f:
						msg = f.read()                
					f.close()
				else:        
					raise ValueError(f'Log Details not found: {log_file}')            
			else:
				self.send_header('Content-Type', 'application/json')        
				self.end_headers()            
				features = meta_data['load_data']['selected_features']
				bodydes='['
				for x in features:
					if bodydes != '[':
						bodydes = bodydes+','
					bodydes = bodydes+'{""'+x+'"":""value""}'	
				bodydes+=']'
				urltext = '/AION/'+config_input['targetPath']+'/predict'
				urltextgth='/AION/'+config_input['targetPath']+'/groundtruth'
				urltextproduction='/AION/'+config_input['targetPath']+'/metrices'
				msg=\""""""
Version:{modelversion}
RunNo: {runNo}
URL for Prediction
==================
URL:{url}
RequestType: POST
Content-Type=application/json
Body: {displaymsg}
Output: prediction,probability(if Applicable),remarks corresponding to each row.

URL for GroundTruth
===================
URL:{urltextgth}
RequestType: POST
Content-Type=application/json
Note: Make Sure that one feature (ID) should be unique in both predict and groundtruth. Otherwise outputdrift will not work  

URL for Model In Production Analysis
====================================
URL:{urltextproduction}
RequestType: GET
Content-Type=application/json

\"""""".format(modelversion=config_input['modelVersion'],runNo=config_input['deployedRunNo'],url=urltext,urltextgth=urltextgth,urltextproduction=urltextproduction,displaymsg=bodydes)        
			self.wfile.write(msg.encode())        
		else:        
			self.send_response(403)        
			self.send_header('Content-Type', 'application/json')        
			self.end_headers()        
		return        
        
class ThreadedHTTPServer(ThreadingMixIn, HTTPServer):        
	allow_reuse_address = True        
        
	def shutdown(self):        
		self.socket.close()        
		HTTPServer.shutdown(self)        
        
class file_status():
	
	def __init__(self, reload_function, params, file, logger):
		self.files_status = {}
		self.initializeFileStatus(file)
		self.reload_function = reload_function
		self.params = params
		self.logger = logger
		
	def initializeFileStatus(self, file):
		self.files_status = {'path': file, 'time':file.stat().st_mtime}

	def is_file_changed(self):
		if self.files_status['path'].stat().st_mtime > self.files_status['time']:
			self.files_status['time'] = self.files_status['path'].stat().st_mtime
			return True
		return False
		
	def run(self):
		global config_input    
		while( True):
			time.sleep(30)
			if self.is_file_changed():
				production_details = targetPath/IOFiles['production']
				if not production_details.exists():        
					raise ValueError(f'Model in production details does not exist')
				productionmodel = read_json(production_details)
				config_file = Path(__file__).parent/'config.json'        
				if not Path(config_file).exists():        
					raise ValueError(f'Config file is missing: {config_file}')        
				config_input = read_json(config_file)				
				config_input['deployedModel'] =  productionmodel['Model']
				config_input['deployedRunNo'] =  productionmodel['runNo']
				self.logger.info('Model changed Reloading.....')
				self.logger.info(f'Model: {config_input[""deployedModel""]}')				
				self.logger.info(f'Version: {str(config_input[""modelVersion""])}')
				self.logger.info(f'runNo: {str(config_input[""deployedRunNo""])}')
				self.reload_function(config_input)
			
class SimpleHttpServer():        
	def __init__(self, ip, port, model_file_path,reload_function,params, logger):        
		self.server = ThreadedHTTPServer((ip,port), HTTPRequestHandler)        
		self.status_checker = file_status( reload_function, params, model_file_path, logger)
		
	def start(self):        
		self.server_thread = threading.Thread(target=self.server.serve_forever)        
		self.server_thread.daemon = True        
		self.server_thread.start()        
		self.status_thread = threading.Thread(target=self.status_checker.run)        
		self.status_thread.start()        
		
	def waitForThread(self):        
		self.server_thread.join()        
		self.status_thread.join()        
		
	def stop(self):        
		self.server.shutdown()        
		self.waitForThread()        
        
if __name__=='__main__':        
	parser = argparse.ArgumentParser(description='HTTP Server')        
	parser.add_argument('-ip','--ipAddress', help='HTTP Server IP')        
	parser.add_argument('-pn','--portNo', type=int, help='Listening port for HTTP Server')        
	args = parser.parse_args()        
	config_file = Path(__file__).parent/'config.json'        
	if not Path(config_file).exists():        
		raise ValueError(f'Config file is missing: {config_file}')        
	config = read_json(config_file)        
	if args.ipAddress:        
		config['ipAddress'] = args.ipAddress        
	if args.portNo:        
		config['portNo'] = args.portNo        
	targetPath = Path('aion')/config['targetPath']        
	if not targetPath.exists():        
		raise ValueError(f'targetPath does not exist')
	production_details = targetPath/IOFiles['production']
	if not production_details.exists():        
		raise ValueError(f'Model in production details does not exist')
	productionmodel = read_json(production_details)
	config['deployedModel'] =  productionmodel['Model']
	config['deployedRunNo'] =  productionmodel['runNo']	
	#server = SimpleHttpServer(config['ipAddress'],int(config['portNo']))        
	config_input = config        
	logging.basicConfig(filename= Path(targetPath)/IOFiles['log'], filemode='a', format='%(asctime)s %(name)s- %(message)s', level=logging.INFO, datefmt='%d-%b-%y %H:%M:%S')                    
	logger = logging.getLogger(Path(__file__).parent.name)                    
	deployobj = deploy(config_input, logger)
	server = SimpleHttpServer(config['ipAddress'],int(config['portNo']),targetPath/IOFiles['production'],deployobj.initialize,config_input, logger)
	logger.info('HTTP Server Running...........')
	logger.info(f""IP Address: {config['ipAddress']}"")
	logger.info(f""Port No.: {config['portNo']}"")
	print('HTTP Server Running...........')  
	print('For Prediction')
	print('================')
	print('Request Type: Post')
	print('Content-Type: application/json')	
	print('URL: /AION/'+config['targetPath']+'/predict')	
	print('\\nFor GroundTruth')
	print('================')
	print('Request Type: Post')
	print('Content-Type: application/json')	
	print('URL: /AION/'+config['targetPath']+'/groundtruth')	
	print('\\nFor Help')
	print('================')
	print('Request Type: Get')
	print('Content-Type: application/json')	
	print('URL: /AION/'+config['targetPath']+'/help')	
	print('\\nFor Model In Production Analysis')
	print('================')
	print('Request Type: Get')
	print('Content-Type: application/json')	
	print('URL: /AION/'+config['targetPath']+'/metrices')    
	server.start()        
	server.waitForThread()
"""""""
trainer.py,"""""""
/**
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  © Copyright HCL Technologies Ltd. 2021, 2022
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*/
""""""

import json

class learner():

    def __init__(self, problem_type=""classification"", target_feature="""", sample_method=None,indent=0, tab_size=4):
        self.tab = "" ""*tab_size
        self.df_name = 'df'
        self.problem_type = problem_type
        self.target_feature = target_feature
        self.search_space = []
        self.codeText = f""\ndef train(log):""
        self.input_files = {}
        self.output_files = {}
        self.function_code = ''
        self.addInputFiles({'inputData' : 'featureEngineeredData.dat','testData' : 'test.dat', 'metaData' : 'modelMetaData.json','monitor':'monitoring.json','log' : 'aion.log'})

    def addInputFiles(self, files):
        if not isinstance(files, dict):
            raise TypeError(f""Required dict type got {type(files)} type"")
        for k,v in files.items():
            self.input_files[k] = v
            
    def addOutputFiles(self, files):
        if not isinstance(files, dict):
            raise TypeError(f""Required dict type got {type(files)} type"")
        for k,v in files.items():
            self.input_files[k] = v
            
    def getInputFiles(self):        
        text = 'IOFiles = '
        if not self.input_files:
            text += '{ }'
        else:
            text += json.dumps(self.input_files, indent=4)
        return text
        
    def getOutputFiles(self):
        text = 'output_file = '
        if not self.output_files:
            text += '{ }'
        else:
            text += json.dumps(self.output_files, indent=4)
        return text
    
    def getInputOutputFiles(self, indent=0):
        text = '\n'
        text += self.getInputFiles()
        if indent:
            text = text.replace('\n', self.tab * indent + '\n')
        return text
        
    def __addValidateConfigCode(self):
        text = ""\n\
        \ndef validateConfig():\
        \n    config_file = Path(__file__).parent/'config.json'\
        \n    if not Path(config_file).exists():\
        \n        raise ValueError(f'Config file is missing: {config_file}')\
        \n    config = read_json(config_file)\
        \n    return config""
        return text

    def __addSaveModelCode(self):
        text = ""\n\
        \ndef save_model( experiment_id, estimator, features, metrices, params,tags, scoring):\
        \n        # mlflow log model, metrices and parameters\
        \n        with mlflow.start_run(experiment_id = experiment_id, run_name = model_name):\
        \n            return logMlflow(params, metrices, estimator, tags, model_name.split('_')[0])""
        return text

    def addStatement(self, statement, indent=1):
        self.codeText += '\n' + self.tab * indent + statement
                
    def getCode(self):
        return self.function_code + '\n' + self.codeText

    def addLocalFunctionsCode(self):
        self.function_code += self.__addValidateConfigCode()
        self.function_code += self.__addSaveModelCode()

    def getPrefixModules(self):
        modules = [{'module':'Path', 'mod_from':'pathlib'}
            ,{'module':'pandas', 'mod_as':'pd'}
            ]
        return modules
    
    def addPrefixCode(self, indent=1):
        self.codeText += ""\
        \n    config = validateConfig()\
        \n    targetPath = Path('aion')/config['targetPath']\
        \n    if not targetPath.exists():\
        \n        raise ValueError(f'targetPath does not exist')\
        \n    meta_data_file = targetPath/IOFiles['metaData']\
        \n    if meta_data_file.exists():\
        \n        meta_data = read_json(meta_data_file)\
        \n    else:\
        \n        raise ValueError(f'Configuration file not found: {meta_data_file}')\
        \n    log_file = targetPath/IOFiles['log']\
        \n    log = logger(log_file, mode='a', logger_name=Path(__file__).parent.stem)\
        \n    dataLoc = targetPath/IOFiles['inputData']\
        \n    if not dataLoc.exists():\
        \n        return {'Status':'Failure','Message':'Data location does not exists.'}\
        \n\
        \n    status = dict()\
        \n    usecase = config['targetPath']\
        \n    df = pd.read_csv(dataLoc)\
        \n    prev_step_output = meta_data['featureengineering']['Status']""

    def getSuffixModules(self):
        modules = [{'module':'platform'}
            ,{'module':'time'}
            ,{'module':'mlflow'}
            ]
        return modules
    def add_100_trainsize_code(self):
        self.codeText +=""\n\
        \n    else:\
        \n        test_score = train_score\
        \n        metrices = {}""
    def addSuffixCode(self, indent=1):
        self.codeText += ""\n\
        \n    meta_data['training'] = {}\
        \n    meta_data['training']['features'] = features\
        \n    scoring = config['scoring_criteria']\
        \n    tags = {'estimator_name': model_name}\
        \n    monitoring_data = read_json(targetPath/IOFiles['monitor'])\
        \n    mlflow_default_config = {'artifacts_uri':'','tracking_uri_type':'','tracking_uri':'','registry_uri':''}\
        \n    mlflow_client, experiment_id = mlflow_create_experiment(monitoring_data.get('mlflow_config',mlflow_default_config), targetPath, usecase)\
        \n    run_id = save_model(experiment_id, estimator,features, metrices,best_params,tags,scoring)\
        \n    write_json(meta_data,  targetPath/IOFiles['metaDataOutput'])\
        \n    write_json({'scoring_criteria': scoring, 'metrices':metrices, 'param':best_params},  targetPath/IOFiles['performance'])\
        \n\
        \n    # return status\
        \n    status = {'Status':'Success','mlflow_run_id':run_id,'FeaturesUsed':features,'test_score':metrices['test_score'],'train_score':metrices['train_score']}\
        \n    log.info(f'Test score: {test_score}')\
        \n    log.info(f'Train score: {train_score}')\
        \n    log.info(f'MLflow run id: {run_id}')\
        \n    log.info(f'output: {status}')\
        \n    return json.dumps(status)""

    def getMainCodeModules(self):
        modules = [{'module':'Path', 'mod_from':'pathlib'}
            ,{'module':'sys'}
            ,{'module':'json'}
            ,{'module':'logging'}
            ]
        return modules

    def addMainCode(self, indent=1):
        self.codeText += ""\n\
        \nif __name__ == '__main__':\
        \n    log = None\
        \n    try:\
        \n        print(train(log))\
        \n    except Exception as e:\
        \n        if log:\
        \n            log.error(e, exc_info=True)\
        \n        status = {'Status':'Failure','Message':str(e)}\
        \n        print(json.dumps(status))\
        ""

    def add_variable(self, name, value, indent=1):
        if isinstance(value, str):
            self.codeText += f""\n{self.tab * indent}{name} = '{value}'""
        else:
            self.codeText += f""\n{self.tab * indent}{name} = {value}""
        
    def addStatement(self, statement, indent=1):
        self.codeText += f""\n{self.tab * indent}{statement}""
        
    def add_search_space_w(self, algoritms):
        for model, params in algoritms.items():
            d = {'clf': f""[{model}()]""}
            for k,v in params.items():
                if isinstance(v, str):
                    d[f'clf__{k}']=f""'{v}'""
                else:
                    d[f'clf__{k}']= f""{v}""
            self.search_space.append(d)
        
    def add_search_space(self, indent=1):
        self.codeText += f""\n{self.tab}search_space = config['search_space']""
        
    def add_train_test_split(self, train_feature, target_feature,test_ratio, indent=1):
        self.codeText += ""\n\n    # split the data for training\
        \n    selected_features = prev_step_output['selected_features']\
        \n    target_feature = config['target_feature']\
        \n    train_features = prev_step_output['total_features'].copy()\
        \n    train_features.remove(target_feature)\
        \n    X_train = df[train_features]\
        \n    y_train = df[target_feature]\
        \n    if config['test_ratio'] > 0.0:\
        \n       test_data = read_data(targetPath/IOFiles['testData'])\
        \n       X_test = test_data[train_features]\
        \n       y_test = test_data[target_feature]\
        \n    else:\
        \n       X_test = pd.DataFrame()\
        \n       y_test = pd.DataFrame()""
        
    def add_model_fit(self, estimator, optimizer, selector_method, importer, indent=1):
    # need to adjust the indent
        importer.addModule('importlib')
        importer.addModule('operator')
        text = f""\n    features = selected_features['{selector_method}']\
            \n    estimator = {estimator}()\
            \n    param = config['algorithms']['{estimator}']""
        if optimizer == 'GridSearchCV':
            text += ""\n    grid = GridSearchCV(estimator, param,cv=config['optimization_param']['trainTestCVSplit'])\
            \n    grid.fit(X_train[features], y_train)\
            \n    train_score = grid.best_score_ * 100\
            \n    best_params = grid.best_params_\
            \n    estimator = grid.best_estimator_""
        elif optimizer == 'GeneticSelectionCV':
            text += ""\n    grid = GeneticSelectionCV(estimator, scoring=scorer, n_generations=config['optimization_param']['iterations'],cv=config['optimization_param']['trainTestCVSplit'],n_population=config['optimization_param']['geneticparams']['n_population'],crossover_proba=config['optimization_param']['geneticparams']['crossover_proba'],mutation_proba=config['optimization_param']['geneticparams']['mutation_proba'],crossover_independent_proba=config['optimization_param']['geneticparams']['crossover_independent_proba'],mutation_independent_proba=config['optimization_param']['geneticparams']['mutation_independent_proba'],tournament_size=config['optimization_param']['geneticparams']['tournament_size'],n_gen_no_change=config['optimization_param']['geneticparams']['n_gen_no_change'])\
            \n    grid.fit(X_train[features], y_train)\
            \n    train_score = grid.score(X_train[features], y_train)\
            \n    best_params = grid.estimator_.get_params()\
            \n    estimator = grid.estimator_""
        else:
            text += f""\n    grid = {optimizer}(estimator, param, scoring=scorer, n_iter=config['optimization_param']['iterations'],cv=config['optimization_param']['trainTestCVSplit'])\
            \n    grid.fit(X_train[features], y_train)\
            \n    train_score = grid.best_score_ * 100\
            \n    best_params = grid.best_params_\
            \n    estimator = grid.best_estimator_""
        self.codeText += text
        
    def addLearner(self, model_name, params, importer, indent=1):
        importer.addModule('Pipeline', mod_from='sklearn.pipeline')
        importer.addModule('ColumnTransformer', mod_from='sklearn.compose')
        importer.addModule('confusion_matrix', mod_from='sklearn.metrics')
        model_params = []
        for k,v in params.items():
            if isinstance(v, str):
                model_params.append(f""{k}='{v}'"")
            else:
                model_params.append(f""{k}={v}"")
        model_params = "","".join(model_params)
        self.codeText += self.getTransformer()
        text = f""\n{self.tab * indent}pipeline = Pipeline(steps = [('preprocessor', preprocessor),('learner',{model_name}({model_params}))])""
        self.codeText += text
        self.codeText += self.splitTargetFeature(importer)
        if self.balancing:
            self.codeText += self.balancingCode(importer)
        self.codeText += self.fitModelCode(importer)
    
    def splitTargetFeature(self, importer, indent=1):
        importer.addModule('train_test_split', mod_from='sklearn.model_selection')
        return f""\n{self.tab * indent}target = df['{self.target_feature}']\
        \n{self.tab * indent}df = df.drop(['{self.target_feature}'], axis=1)\
        \n{self.tab * indent}X_train, X_test, y_train, y_test = train_test_split(df,target, train_size = percentage/100.0)""
    
    def getCode_remove(self, model_name=None, indent=1):
        return self.codeText
    
    def getDFName(self):
        return self.df_name
        
    def copyCode(self, learner):
        self.codeText = learner.getCode()
"
selector.py,"""""""
/**
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  © Copyright HCL Technologies Ltd. 2021, 2022
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*/
""""""
import json

class selector():

    def __init__(self, indent=0, tab_size=4):
        self.tab = "" ""*tab_size
        self.codeText = f""\n\ndef featureSelector(log):""
        self.pipe = 'pipe'
        self.code_generated = False
        self.input_files = {}
        self.output_files = {}
        self.function_code = ''
        self.addInputFiles({'inputData' : 'transformedData.dat', 'metaData' : 'modelMetaData.json','log' : 'aion.log','outputData' : 'featureEngineeredData.dat'})

    def addInputFiles(self, files):
        if not isinstance(files, dict):
            raise TypeError(f""Required dict type got {type(files)} type"")
        for k,v in files.items():
            self.input_files[k] = v
            
    def addOutputFiles(self, files):
        if not isinstance(files, dict):
            raise TypeError(f""Required dict type got {type(files)} type"")
        for k,v in files.items():
            self.input_files[k] = v
            
    def getInputFiles(self):        
        text = 'IOFiles = '
        if not self.input_files:
            text += '{ }'
        else:
            text += json.dumps(self.input_files, indent=4)
        return text
        
    def getOutputFiles(self):
        text = 'output_file = '
        if not self.output_files:
            text += '{ }'
        else:
            text += json.dumps(self.output_files, indent=4)
        return text
    
    def getInputOutputFiles(self, indent=0):
        text = '\n'
        text += self.getInputFiles()
        if indent:
            text = text.replace('\n', self.tab * indent + '\n')
        return text
        
    def __addValidateConfigCode(self):
        text = ""\n\
        \ndef validateConfig():\
        \n    config_file = Path(__file__).parent/'config.json'\
        \n    if not Path(config_file).exists():\
        \n        raise ValueError(f'Config file is missing: {config_file}')\
        \n    config = read_json(config_file)\
        \n    return config""
        return text

    def addMainCode(self):
        self.codeText += ""\n\
        \nif __name__ == '__main__':\
        \n    log = None\
        \n    try:\
        \n        print(featureSelector(log))\
        \n    except Exception as e:\
        \n        if log:\
        \n            log.error(e, exc_info=True)\
        \n        status = {'Status':'Failure','Message':str(e)}\
        \n        print(json.dumps(status))\
        ""
    def addValidateConfigCode(self, indent=1):
        self.function_code += self.__addValidateConfigCode()

    def addStatement(self, statement, indent=1):
        self.codeText += '\n' + self.tab * indent + statement
                
    def getCode(self):
        return self.function_code + '\n' + self.codeText

    def addLocalFunctionsCode(self):
        self.addValidateConfigCode()
    

    def getPrefixModules(self):
        modules = [{'module':'Path', 'mod_from':'pathlib'}
            ,{'module':'pandas', 'mod_as':'pd'}
            ]
        return modules
    
    def addPrefixCode(self, indent=1):
        self.codeText += ""\
        \n    config = validateConfig()\
        \n    targetPath = Path('aion')/config['targetPath']\
        \n    if not targetPath.exists():\
        \n        raise ValueError(f'targetPath does not exist')\
        \n    meta_data_file = targetPath/IOFiles['metaData']\
        \n    if meta_data_file.exists():\
        \n        meta_data = read_json(meta_data_file)\
        \n    else:\
        \n        raise ValueError(f'Configuration file not found: {meta_data_file}')\
        \n    log_file = targetPath/IOFiles['log']\
        \n    log = logger(log_file, mode='a', logger_name=Path(__file__).parent.stem)\
        \n    dataLoc = targetPath/IOFiles['inputData']\
        \n    if not dataLoc.exists():\
        \n        return {'Status':'Failure','Message':'Data location does not exists.'}\
        \n\
        \n    status = dict()\
        \n    df = pd.read_csv(dataLoc)\
        \n    prev_step_output = meta_data['transformation']""

    def getSuffixModules(self):
        modules = [{'module':'platform'}
            ,{'module':'time'}
            ]
        return modules
    
    def addSuffixCode(self, indent=1):
        self.codeText += ""\n\
                \n    csv_path = str(targetPath/IOFiles['outputData'])\
                \n    write_data(df, csv_path,index=False)\
                \n    status = {'Status':'Success','DataFilePath':IOFiles['outputData'],'total_features':total_features, 'selected_features':selected_features}\
                \n    log.info(f'Selected data saved at {csv_path}')\
                \n    meta_data['featureengineering']['Status'] = status\
                \n    write_json(meta_data, str(targetPath/IOFiles['metaData']))\
                \n    log.info(f'output: {status}')\
                \n    return json.dumps(status)""

    def getMainCodeModules(self):
        modules = [{'module':'Path', 'mod_from':'pathlib'}
            ,{'module':'sys'}
            ,{'module':'json'}
            ,{'module':'logging'}
            ,{'module':'argparse'}
            ]
        return modules
    
    def add_variable(self, name, value, indent=1):
        if isinstance(value, str):
            self.codeText += f""\n{self.tab * indent}{name} = '{value}'""
        else:
            self.codeText += f""\n{self.tab * indent}{name} = {value}""
        
    def addStatement(self, statement, indent=1):
        self.codeText += f""\n{self.tab * indent}{statement}""
        
    def modelBased(self, problem_type, indent=1):
        if problem_type == 'classification':
            self.codeText += f""\n{self.tab * indent}selector = SelectFromModel(ExtraTreesClassifier())""
            self.codeText += f""\n{self.tab * indent}selector()""
        if problem_type == 'regression':
            self.codeText += f""\n{self.tab * indent}pipe = Pipeline([('selector', SelectFromModel(Lasso()))])""
        self.codeText += f""\n{self.tab * indent}selector.fit(df[train_features],df[target_feature])""
        self.codeText += f""\n{self.tab * indent}selected_features = [x for x,y in zip(train_features, selector.get_support()) if y]""
        self.codeText += f""\n{self.tab * indent}df = df[selected_features + [target_feature]]""
        
    def featureReductionBased(self, reducer, n_components, indent=1):
        if reducer == 'pca':
            if n_components == 0:
                self.codeText += f""\n{self.tab * indent}pipe = Pipeline([('selector', PCA(n_components='mle',svd_solver = 'full'))])""
            elif n_components < 1:
                self.codeText += f""\n{self.tab * indent}pipe = Pipeline([('selector', PCA(n_components={n_components},svd_solver = 'full'))])""
            else:
                self.codeText += f""\n{self.tab * indent}pipe = Pipeline([('selector', PCA(n_components=int({n_components})))])""
            self.codeText += ""pipe.fit_transform(df)""

    def getPipe(self):
        return self.pipe
        
"
utility.py,"""""""
/**
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  © Copyright HCL Technologies Ltd. 2021, 2022
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*/
""""""
from .imports import importModule

utility_functions = {
'load_data': ['read_json','write_json','read_data','write_data','is_file_name_url','logger_class'],
'transformer': ['read_json','write_json','read_data','write_data','is_file_name_url','logger_class'],
'selector': ['read_json','write_json','read_data','write_data','is_file_name_url','logger_class'],
'train': ['read_json','write_json','read_data','write_data','is_file_name_url','logger_class'],
'register': ['read_json','write_json','read_data','write_data','is_file_name_url','logger_class'],
'Prediction': ['read_json','write_json','read_data','write_data','is_file_name_url','logger_class'],
'drift': ['read_json','write_json','read_data','write_data','is_file_name_url','logger_class'],
}

#TODO convert read and write functions in to class functions
functions_code = {
    'read_json':{'imports':[{'mod':'json'}],'code':""\n\
        \ndef read_json(file_path):\
        \n    data = None\
        \n    with open(file_path,'r') as f:\
        \n        data = json.load(f)\
        \n    return data\
        \n""},
    'write_json':{'imports':[{'mod':'json'}],'code':""\n\
        \ndef write_json(data, file_path):\
        \n    with open(file_path,'w') as f:\
        \n        json.dump(data, f)\
        \n""},
    'read_data':{'imports':[{'mod':'pandas','mod_as':'pd'}],'code':""\n\
        \ndef read_data(file_path, encoding='utf-8', sep=','):\
        \n    return pd.read_csv(file_path, encoding=encoding, sep=sep)\
        \n""},
    'write_data':{'imports':[{'mod':'pandas','mod_as':'pd'}],'code':""\n\
        \ndef write_data(data, file_path, index=False):\
        \n    return data.to_csv(file_path, index=index)\
        \n\
        \n#Uncomment and change below code for google storage\
        \n#from google.cloud import storage\
        \n#def write_data(data, file_path, index=False):\
        \n#    file_name= file_path.name\
        \n#    data.to_csv('output_data.csv')\
        \n#    storage_client = storage.Client()\
        \n#    bucket = storage_client.bucket('aion_data')\
        \n#    bucket.blob('prediction/'+file_name).upload_from_filename('output_data.csv', content_type='text/csv')\
        \n#    return data\
        \n""},
    'is_file_name_url':{'imports':[],'code':""\n\
        \ndef is_file_name_url(file_name):\
        \n    supported_urls_starts_with = ('gs://','https://','http://')\
        \n    return file_name.startswith(supported_urls_starts_with)\
        \n""},
    'logger_class':{'imports':[{'mod':'logging'}, {'mod':'io'}],'code':""\n\
        \nclass logger():\
        \n    #setup the logger\
        \n    def __init__(self, log_file, mode='w', logger_name=None):\
        \n        logging.basicConfig(filename=log_file, filemode=mode, format='%(asctime)s %(name)s- %(message)s', level=logging.INFO, datefmt='%d-%b-%y %H:%M:%S')\
        \n        self.log = logging.getLogger(logger_name)\
        \n\
        \n    #get logger\
        \n    def getLogger(self):\
        \n        return self.log\
        \n\
        \n    def info(self, msg):\
        \n        self.log.info(msg)\
        \n\
        \n    def error(self, msg, exc_info=False):\
        \n        self.log.error(msg,exc_info)\
        \n\
        \n    # format and log dataframe\
        \n    def log_dataframe(self, df, rows=2, msg=None):\
        \n        buffer = io.StringIO()\
        \n        df.info(buf=buffer)\
        \n        log_text = 'Data frame{}'.format(' after ' + msg + ':' if msg else ':')\
        \n        log_text += '\\n\\t'+str(df.head(rows)).replace('\\n','\\n\\t')\
        \n        log_text += ('\\n\\t' + buffer.getvalue().replace('\\n','\\n\\t'))\
        \n        self.log.info(log_text)\
        \n""},
}
    
class utility_function():

    def __init__(self, module):
        if module in utility_functions.keys():
            self.module_name = module
        else:
            self.module_name = None
        self.importer = importModule()
        self.codeText = """"
        
    def get_code(self):
        code = """"
        if self.module_name:
            functions = utility_functions[self.module_name]
            for function in functions:
                self.codeText += self.get_function_code(function)
            code = self.importer.getCode()
            code += self.codeText
        return code
        
    def get_function_code(self, name):
        code = """"
        if name in functions_code.keys():
            code += functions_code[name]['code']
        if self.importer:
            if 'imports' in functions_code[name].keys():
                for module in functions_code[name]['imports']:
                    mod_name = module['mod']
                    mod_from = module.get('mod_from', None)
                    mod_as = module.get('mod_as', None)
                    self.importer.addModule(mod_name, mod_from=mod_from, mod_as=mod_as)
        return code

    def get_importer(self):
        return self.importer

if __name__ == '__main__':
    obj = utility_function('load_data')
    p = obj.get_utility_code()
    print(p)"
drift_analysis.py,"""""""
/**
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  © Copyright HCL Technologies Ltd. 2021, 2022
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*/
""""""
import json

class drift():

    def __init__(self, tab_size=4):
        self.tab = ' ' * tab_size
        self.codeText = ''
                
    def getInputFiles(self):
        IOFiles = {
            ""log"": ""aion.log"",
            ""trainingData"":""rawData.dat"",
            ""production"": ""production.json"",
            ""monitoring"":""monitoring.json"",
            ""prodData"": ""prodData"",
            ""prodDataGT"":""prodDataGT""
		}
        text = 'IOFiles = '
        if not IOFiles:
            text += '{ }'
        else:
            text += json.dumps(IOFiles, indent=4)
        return text

    def getInputOutputFiles(self, indent=0):
        text = '\n'
        text += self.getInputFiles()
        if indent:
            text = text.replace('\n', self.tab * indent + '\n')
        return text

    def addStatement(self, statement, indent=1):
        self.codeText += '\n' + self.tab * indent + statement
                
    def getCode(self):
        return self.codeText

# temporary code

    def get_input_drift_import_modules(self):
        return [
                {'module': 'sys', 'mod_from': None, 'mod_as': None},
                {'module': 'json', 'mod_from': None, 'mod_as': None},
                {'module': 'mlflow', 'mod_from': None, 'mod_as': None},
                {'module': 'stats', 'mod_from': 'scipy', 'mod_as': 'st'},
                {'module': 'numpy', 'mod_from': None, 'mod_as': 'np'},
                {'module': 'Path', 'mod_from': 'pathlib', 'mod_as': None},
                {'module': 'pandas', 'mod_from': None, 'mod_as': 'pd'},
                {'module': 'warnings', 'mod_from': None, 'mod_as': None},
                {'module': 'platform', 'mod_from': None, 'mod_as': None }   
            ]
         
    def get_input_drift_code(self):
        return """"""
        
class inputdrift():        
        
    def __init__(self,base_config):
        if 'mlflowURL' in base_config:	
            self.usecase = base_config['modelName'] + '_' + base_config['modelVersion']        
            self.currentDataLocation = base_config['currentDataLocation']        
            home = Path.home()        
            if platform.system() == 'Windows':        
                from pathlib import WindowsPath        
                output_data_dir = WindowsPath(home)/'AppData'/'Local'/'HCLT'/'AION'/'Data'        
                output_model_dir = WindowsPath(home)/'AppData'/'Local'/'HCLT'/'AION'/'target'/self.usecase        
            else:        
                from pathlib import PosixPath        
                output_data_dir = PosixPath(home)/'HCLT'/'AION'/'Data'        
                output_model_dir = PosixPath(home)/'HCLT'/'AION'/'target'/self.usecase        
            if not output_model_dir.exists():        
                raise ValueError(f'Configuration file not found at {output_model_dir}')        
        
            tracking_uri = 'file:///' + str(Path(output_model_dir)/'mlruns')        
            registry_uri = 'sqlite:///' + str(Path(output_model_dir)/'mlruns.db')        
            mlflow.set_tracking_uri(tracking_uri)        
            mlflow.set_registry_uri(registry_uri)        
            client = mlflow.tracking.MlflowClient(        
                tracking_uri=tracking_uri,        
                registry_uri=registry_uri,        
                )        
            model_version_uri = 'models:/{model_name}/production'.format(model_name=self.usecase)        
            model = mlflow.pyfunc.load_model(model_version_uri)        
            run = client.get_run(model.metadata.run_id)        
            if run.info.artifact_uri.startswith('file:'):        
                artifact_path = Path(run.info.artifact_uri[len('file:///') : ])        
            else:        
                artifact_path = Path(run.info.artifact_uri)        
            self.trainingDataPath = artifact_path/(self.usecase + '_data.csv')        
        
    def get_input_drift(self,current_data, historical_data):        
        curr_num_feat = current_data.select_dtypes(include='number')        
        hist_num_feat = historical_data.select_dtypes(include='number')        
        num_features = [feat for feat in historical_data.columns if feat in curr_num_feat]        
        alert_count = 0        
        data = {        
            'current':{'data':current_data},        
            'hist': {'data': historical_data}        
            }        
        dist_changed_columns = []        
        dist_change_message = []        
        for feature in num_features:        
            curr_static_value = round(st.ks_2samp( hist_num_feat[feature], curr_num_feat[feature]).pvalue,3)        
            if (curr_static_value < 0.05):
                try:            
                    distribution = {}        
                    distribution['hist'] = self.DistributionFinder( historical_data[feature])        
                    distribution['curr'] = self.DistributionFinder( current_data[feature])        
                    if(distribution['hist']['name'] == distribution['curr']['name']):        
                        pass        
                    else:        
                        alert_count = alert_count + 1        
                        dist_changed_columns.append(feature)        
                        changed_column = {}        
                        changed_column['Feature'] = feature        
                        changed_column['KS_Training'] = curr_static_value        
                        changed_column['Training_Distribution'] = distribution['hist']['name']        
                        changed_column['New_Distribution'] = distribution['curr']['name']        
                        dist_change_message.append(changed_column)        
                except:
                    pass                
        if alert_count:        
            resultStatus = dist_change_message        
        else :        
            resultStatus='Model is working as expected'        
        return(alert_count, resultStatus)        
        
    def DistributionFinder(self,data):        
        best_distribution =''        
        best_sse =0.0        
        if(data.dtype in ['int','int64']):        
            distributions= {'bernoulli':{'algo':st.bernoulli},        
                            'binom':{'algo':st.binom},        
                            'geom':{'algo':st.geom},        
                            'nbinom':{'algo':st.nbinom},        
                            'poisson':{'algo':st.poisson}        
                            }        
            index, counts = np.unique(data.astype(int),return_counts=True)        
            if(len(index)>=2):        
                best_sse = np.inf        
                y1=[]        
                total=sum(counts)        
                mean=float(sum(index*counts))/total        
                variance=float((sum(index**2*counts) -total*mean**2))/(total-1)        
                dispersion=mean/float(variance)        
                theta=1/float(dispersion)        
                r=mean*(float(theta)/1-theta)        
        
                for j in counts:        
                        y1.append(float(j)/total)        
                distributions['bernoulli']['pmf'] = distributions['bernoulli']['algo'].pmf(index,mean)        
                distributions['binom']['pmf'] = distributions['binom']['algo'].pmf(index,len(index),p=mean/len(index))        
                distributions['geom']['pmf'] = distributions['geom']['algo'].pmf(index,1/float(1+mean))        
                distributions['nbinom']['pmf'] = distributions['nbinom']['algo'].pmf(index,mean,r)        
                distributions['poisson']['pmf'] = distributions['poisson']['algo'].pmf(index,mean)        
        
                sselist = []        
                for dist in distributions.keys():        
                    distributions[dist]['sess'] = np.sum(np.power(y1 - distributions[dist]['pmf'], 2.0))        
                    if np.isnan(distributions[dist]['sess']):        
                        distributions[dist]['sess'] = float('inf')        
                best_dist = min(distributions, key=lambda v: distributions[v]['sess'])        
                best_distribution = best_dist        
                best_sse = distributions[best_dist]['sess']        
        
            elif (len(index) == 1):        
                best_distribution = 'Constant Data-No Distribution'        
                best_sse = 0.0        
        elif(data.dtype in ['float64','float32']):        
            distributions = [st.uniform,st.expon,st.weibull_max,st.weibull_min,st.chi,st.norm,st.lognorm,st.t,st.gamma,st.beta]        
            best_distribution = st.norm.name        
            best_sse = np.inf        
            nrange = data.max() - data.min()        
        
            y, x = np.histogram(data.astype(float), bins='auto', density=True)        
            x = (x + np.roll(x, -1))[:-1] / 2.0        
        
            for distribution in distributions:        
                with warnings.catch_warnings():        
                    warnings.filterwarnings('ignore')        
                    params = distribution.fit(data.astype(float))        
                    arg = params[:-2]        
                    loc = params[-2]        
                    scale = params[-1]        
                    pdf = distribution.pdf(x, loc=loc, scale=scale, *arg)        
                    sse = np.sum(np.power(y - pdf, 2.0))        
                    if( sse < best_sse):        
                        best_distribution = distribution.name        
                        best_sse = sse        
        
        return {'name':best_distribution, 'sse': best_sse}        
        
        
def check_drift( config):        
    inputdriftObj = inputdrift(config)        
    historicaldataFrame=pd.read_csv(inputdriftObj.trainingDataPath,skipinitialspace = True,na_values=['-','?'])        
    currentdataFrame=pd.read_csv(inputdriftObj.currentDataLocation,skipinitialspace = True,na_values=['-','?'])
    historicaldataFrame.columns = historicaldataFrame.columns.str.strip()
    currentdataFrame.columns = currentdataFrame.columns.str.strip()        
    dataalertcount,message = inputdriftObj.get_input_drift(currentdataFrame,historicaldataFrame)        
    if message == 'Model is working as expected':        
        output_json = {'status':'SUCCESS','data':{'Message':'Model is working as expected'}}        
    else:        
        output_json = {'status':'SUCCESS','data':{'Affected Columns':message}}        
    return(output_json)        
""""""

    def get_main_drift_code(self, problem_type, smaller_is_better=True):
        text = ''
        if problem_type == 'classification':
            text += """"""
def is_drift_within_limits(production, current_matrices,scoring_criteria,threshold = 5):
    testscore = production['score']
    current_score = current_matrices[scoring_criteria]
    threshold_value = testscore * threshold / 100.0
    if current_score > (testscore - threshold_value) :
        return True
    else:
        return False

def get_metrices(actual_values, predicted_values):        
    from sklearn.metrics import accuracy_score
    from sklearn.metrics import precision_score
    from sklearn.metrics import recall_score
    from sklearn.metrics import f1_score
    result = {} 
    accuracy_score = accuracy_score(actual_values, predicted_values)        
    avg_precision = precision_score(actual_values, predicted_values,        
        average='macro')        
    avg_recall = recall_score(actual_values, predicted_values,        
        average='macro')        
    avg_f1 = f1_score(actual_values, predicted_values,        
        average='macro')        
        
    result['accuracy'] = round((accuracy_score*100),2)        
    result['precision'] = round((avg_precision*100),2)    
    result['recall'] = round((avg_recall*100),2)        
    result['f1'] = round((avg_f1*100),2)        
    return result            
            """"""
        else:
            text += """"""	
def is_drift_within_limits(production, current_matrices,scoring_criteria,threshold = 5):
    testscore = production['score']
    current_score = current_matrices[scoring_criteria]
    threshold_value = testscore * threshold / 100.0
""""""
            if smaller_is_better:
                text += """"""
    if current_score < (testscore + threshold_value) :""""""
            else:
                text += """"""
    if current_score > (testscore - threshold_value) :""""""
            text += """"""
        return True
    else:
        return False

def get_metrices(actual_values, predicted_values):        
    import numpy as np
    result = {}
    me = np.mean(predicted_values - actual_values)
    sde = np.std(predicted_values - actual_values, ddof = 1)

    abs_err = np.abs(predicted_values - actual_values)
    mae = np.mean(abs_err)
    sdae = np.std(abs_err, ddof = 1)

    abs_perc_err = 100.0 * np.abs(predicted_values - actual_values) / actual_values
    mape = np.mean(abs_perc_err)
    sdape = np.std(abs_perc_err, ddof = 1)

    result['mean_error'] = me
    result['mean_abs_error'] = mae
    result['mean_abs_perc_error'] = mape
    result['error_std'] = sde
    result['abs_error_std'] = sdae
    result['abs_perc_error_std'] = sdape
    return result
            """"""
        text += """"""	                
def monitoring(config, log=None):
    targetPath = Path('aion')/config['targetPath']
    targetPath.mkdir(parents=True, exist_ok=True)	 	
    log_file = targetPath/IOFiles['log']
    log = logger(log_file, mode='a', logger_name=Path(__file__).parent.stem)
    output_json = {}
    trainingDataLocation = targetPath/IOFiles['trainingData']
    monitoring = targetPath/IOFiles['monitoring']	
    log.info(f'Input Location External: {config[""inputUriExternal""]}')
    trainingStatus = 'False'
    dataFileLocation = ''	
    driftStatus = 'No Drift'
    if monitoring.exists(): 	
        monitoring_data = read_json(monitoring)
        if monitoring_data.get('runNo', False):
            reader = dataReader(reader_type=monitoring_data.get('prod_db_type','sqlite'),target_path=targetPath, config=config.get('db_config',None))
            production= targetPath/IOFiles['production']
            proddataDF = pd.DataFrame()
            predicted_data = pd.DataFrame() 		
            if production.exists():        
                production = read_json(production)  
                if reader.file_exists(IOFiles['prodData']) and reader.file_exists(IOFiles['prodDataGT']):
                    predicted_data = reader.read(IOFiles['prodData'])       		
                    actual_data = reader.read(IOFiles['prodDataGT'])
                    common_col = [k for k in predicted_data.columns.tolist() if k in actual_data.columns.tolist()]				
                    proddataDF = pd.merge(actual_data, predicted_data, on =common_col,how = 'inner')
                    currentPerformance = {} 			
                    currentPerformance = get_metrices(proddataDF[config['target_feature']], proddataDF['prediction'])
                    if is_drift_within_limits(production, currentPerformance,config['scoring_criteria']):
                        log.info(f'OutputDrift: No output drift found')				
                        output_json.update({'outputDrift':'Model score is with in limits'}) 					
                    else:
                        log.info(f'OutputDrift: Found Output Drift')				
                        log.info(f'Original Test Score: {production[""score""]}')					
                        log.info(f'Current Score: {currentPerformance[config[""scoring_criteria""]]}')				
                        output_json.update({'outputDrift':{'Meassage': 'Model output is drifted','trainedScore':production[""score""], 'currentScore':currentPerformance[config[""scoring_criteria""]]}})
                        trainingStatus = 'True'
                        driftStatus = 'Output Drift'					
                else:
                    if reader.file_exists(IOFiles['prodData']):
                        predicted_data = reader.read(IOFiles['prodData'])            
                    log.info(f'OutputDrift: Prod Data not found')			
                    output_json.update({'outputDrift':'Prod Data not found'}) 
            else:
                log.info(f'Last Time pipeline not executed completely')		
                output_json.update({'Msg':'Pipeline is not executed completely'})
                trainingStatus = 'True'
                if config['inputUriExternal']:		
                    dataFileLocation = config['inputUriExternal']
                elif 's3' in config.keys():
                    dataFileLocation = 'cloud'
                else:
                    dataFileLocation = config['inputUri']			
                    
                
            if trainingStatus == 'False':	       			
                historicaldataFrame=pd.read_csv(trainingDataLocation)
                if config['inputUriExternal']:			
                    currentdataFrame=pd.read_csv(config['inputUriExternal'])
                elif not predicted_data.empty:
                    currentdataFrame = predicted_data.copy()            			
                elif 's3' in config.keys():
                    reader = dataReader(reader_type='s3',target_path=config['targetPath'], config=config['s3'])
                    currentdataFrame = reader.read(config['s3']['file_name'])
                else:
                    currentdataFrame=pd.read_csv(config['inputUri']) 			
                inputdriftObj = inputdrift(config)
                dataalertcount,inputdrift_message = inputdriftObj.get_input_drift(currentdataFrame,historicaldataFrame)	

                if inputdrift_message == 'Model is working as expected':
                    log.info(f'InputDrift: No input drift found')			
                    output_json.update({'Status':'SUCCESS','inputDrift':'Model is working as expected'})        
                else:        
                    log.info(f'InputDrift: Input drift found')			
                    log.info(f'Affected Columns {inputdrift_message}')			
                    output_json.update({'inputDrift':{'Affected Columns':inputdrift_message}})        
                    trainingStatus = 'True'
                    driftStatus = 'Input Drift'                
                    if config['inputUriExternal']:
                        dataFileLocation = config['inputUriExternal']
                    elif actual_data_path.exists() and predict_data_path.exists():	
                        dataFileLocation = ''
                    elif 's3' in config.keys():
                        dataFileLocation = 'cloud'
                    else:
                        dataFileLocation = config['inputUri']					
        else:
            log.info(f'Pipeline Executing first Time')	
            output_json.update({'Msg':'Pipeline executing first time'}) 	
            trainingStatus = 'True'
            if config['inputUriExternal']:		
                dataFileLocation = config['inputUriExternal']
            elif 's3' in config.keys():
                dataFileLocation = 'cloud'
            else:
                dataFileLocation = config['inputUri']
    else:
        log.info(f'Pipeline Executing first Time')	
        output_json.update({'Msg':'Pipeline executing first time'}) 	
        trainingStatus = 'True'
        if config['inputUriExternal']:		
            dataFileLocation = config['inputUriExternal']
        elif 's3' in config.keys():
            dataFileLocation = 'cloud'
        else:
            dataFileLocation = config['inputUri']
    if monitoring.exists():
        monitoring_data['runNo'] = int(monitoring_data.get('runNo', '0')) + 1		
    else:
        monitoring_data = {}
        monitoring_data['runNo'] = 1
        monitoring_data['prod_db_type'] = config.get('prod_db_type', 'sqlite')
        monitoring_data['db_config'] = config.get('db_config', {})
        monitoring_data['mlflow_config'] = config.get('mlflow_config', None)
        if 's3' in config.keys():
            monitoring_data['s3'] = config['s3']
    monitoring_data['dataLocation'] = dataFileLocation
    monitoring_data['driftStatus'] = driftStatus
    write_json(monitoring_data,targetPath/IOFiles['monitoring'])
    output = {'Status':'SUCCESS'}
    output.update(output_json)
    return(json.dumps(output))       
        	
if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('-i', '--inputUri', help='Training Data Location')

    args = parser.parse_args()
    config_file = Path(__file__).parent/'config.json'
    if not Path(config_file).exists():
        raise ValueError(f'Config file is missing: {config_file}')
    config = read_json(config_file)
    config['inputUriExternal'] = None
    if args.inputUri:
        if 	args.inputUri != '':
            config['inputUriExternal'] = args.inputUri
    log = None
    try:
        print(monitoring(config, log))
    except Exception as e:
        if log:
            log.error(e, exc_info=True)
        status = {'Status':'Failure','Message':str(e)}
        print(json.dumps(status))
        raise Exception(str(e))
""""""
        return text"
data_reader.py,"""""""
/**
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  © Copyright HCL Technologies Ltd. 2021, 2022
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*/
""""""

from .imports import importModule

supported_reader = ['sqlite', 'influx','s3']



functions_code = {
    'dataReader':{'imports':[{'mod':'json'},{'mod': 'Path', 'mod_from': 'pathlib', 'mod_as': None},{'mod': 'pandas', 'mod_from': None, 'mod_as': 'pd'}],'code':""""""

class dataReader():
    
    def get_reader(self, reader_type, target_path=None, config=None):
        if reader_type == 'sqlite':
            return sqlite_writer(target_path=target_path)
        elif reader_type == 'influx':
            return Influx_writer(config=config)
        elif reader_type == 'gcs':
            return gcs(config=config)
        elif reader_type == 'azure':
            return azure(config=config)
        elif reader_type == 's3':
            return s3bucket(config=config)
        else:
            raise ValueError(reader_type)
""""""
    },
    'sqlite':{'imports':[{'mod':'sqlite3'},{'mod': 'pandas', 'mod_from': None, 'mod_as': 'pd'},{'mod': 'Path', 'mod_from': 'pathlib', 'mod_as': None}],'code':""""""\n\
class sqlite_writer():
    def __init__(self, target_path):
        self.target_path = Path(target_path)
        database_file = self.target_path.stem + '.db'
        self.db = sqlite_db(self.target_path, database_file)

    def file_exists(self, file):
        if file:
            return self.db.table_exists(file)
        else:
            return False

    def read(self, file):
        return self.db.read(file)
        
    def write(self, data, file):
        self.db.write(data, file)

    def close(self):
        self.db.close()

class sqlite_db():

    def __init__(self, location, database_file=None):
        if not isinstance(location, Path):
            location = Path(location)
        if database_file:
            self.database_name = database_file
        else:
            self.database_name = location.stem + '.db'
        db_file = str(location/self.database_name)
        self.conn = sqlite3.connect(db_file)
        self.cursor = self.conn.cursor()
        self.tables = []

    def table_exists(self, name):
        if name in self.tables:
            return True
        elif name:
            query = f""SELECT name FROM sqlite_master WHERE type='table' AND name='{name}';""
            listOfTables = self.cursor.execute(query).fetchall()
            if len(listOfTables) > 0 :
                self.tables.append(name)
                return True
        return False

    def read(self, table_name):
        return pd.read_sql_query(f""SELECT * FROM {table_name}"", self.conn)

    def create_table(self,name, columns, dtypes):
        query = f'CREATE TABLE IF NOT EXISTS {name} ('
        
        for column, data_type in zip(columns, dtypes):
            query += f""'{column}'   TEXT,""
        query = query[:-1]
        query += ');'
        self.conn.execute(query)
        return True
        
    def write(self,data, table_name):
        if not self.table_exists(table_name):
            self.create_table(table_name, data.columns, data.dtypes)
        tuple_data = list(data.itertuples(index=False, name=None))
        insert_query = f'INSERT INTO {table_name} VALUES('
        for i in range(len(data.columns)):
            insert_query += '?,'
        insert_query = insert_query[:-1] + ')'
        self.cursor.executemany(insert_query, tuple_data)
        self.conn.commit()
        return True
        
    def delete(self, name):
        pass
        
    def close(self):
        self.conn.close()

    """"""
    },
    'influx':{'imports':[{'mod':'InfluxDBClient','mod_from':'influxdb'},{'mod': 'Path', 'mod_from': 'pathlib', 'mod_as': None},{'mod': 'pandas', 'mod_from': None, 'mod_as': 'pd'}],'code':""""""\n\
class Influx_writer():

    def __init__(self, config):
        self.db = influx_db(config)

    def file_exists(self, file):
        if file:
            return self.db.table_exists(file)
        else:
            return False

    def read(self, file):
        query = ""SELECT * FROM {}"".format(file)
        if 'read_time' in self.db_config.keys() and self.db_config['read_time']:
            query += f"" time > now() - {self.db_config['read_time']}""
        return self.db.read(query)

    def write(self, data, file):
        self.db.write(data, file)

    def close(self):
        pass


class influx_db():

    def __init__(self, config):
        self.host = config['host']
        self.port = config['port']
        self.user = config.get('user', None)
        self.password = config.get('password', None)
        self.token = config.get('token', None)
        self.database = config['database']
        self.measurement = config['measurement']
        self.tags = config['tags']
        self.client = self.get_client()

    def table_exists(self, name):
        query = f""SHOW MEASUREMENTS ON {self.database}""
        result = self.client(query)
        for measurement in result['measurements']:
            if measurement['name'] == name:
                return True
        return False
        
    def read(self, query)->pd.DataFrame:
        cursor = self.client.query(query)
        points = cursor.get_points()
        my_list=list(points)
        df=pd.DataFrame(my_list)
        return df

    def get_client(self):
        headers = None
        if self.token:
            headers={""Authorization"": self.token} 
        client = InfluxDBClient(self.host,self.port,self.user, self.password,headers=headers)
        databases = client.get_list_database()
        databases = [x['name'] for x in databases]
        if self.database not in databases:
            client.create_database(self.database)
        return InfluxDBClient(self.host,self.port,self.user,self.password,self.database,headers=headers)

    def write(self,data, measurement=None):
        if isinstance(data, pd.DataFrame):
            sorted_col = data.columns.tolist()
            sorted_col.sort()
            data = data[sorted_col]
            data = data.to_dict(orient='records')
        if not measurement:
            measurement = self.measurement
        for row in data:
            if 'time' in row.keys():
                p = '%Y-%m-%dT%H:%M:%S.%fZ'
                time_str = datetime.strptime(row['time'], p)
                del row['time']
            else:
                time_str = None
            if 'model_ver' in row.keys():
                self.tags['model_ver']= row['model_ver']
                del row['model_ver']
            json_body = [{
                'measurement': measurement,
                'time': time_str,
                'tags': self.tags,
                'fields': row
            }]
            self.client.write_points(json_body)

    def delete(self, name):
        pass
        
    def close(self):
        self.client.close()
""""""
},
    's3':{'imports':[{'mod':'boto3'},{'mod': 'ClientError', 'mod_from': 'botocore.exceptions'},{'mod': 'Path', 'mod_from': 'pathlib'},{'mod': 'pandas', 'mod_as': 'pd'}],'code':""""""\n\
class s3bucket():
    
    def __init__(self, config={}):
        if 's3' in config.keys():
            config = config['s3']
        aws_access_key_id = config.get('aws_access_key_id','')
        aws_secret_access_key = config.get('aws_secret_access_key','')
        bucket_name = config.get('bucket_name','')
        if not aws_access_key_id:
            raise ValueError('aws_access_key_id can not be empty')
        if not aws_secret_access_key:
            raise ValueError('aws_secret_access_key can not be empty')
        self.client = boto3.client('s3', aws_access_key_id=aws_access_key_id, aws_secret_access_key=str(aws_secret_access_key))
        self.bucket_name = bucket_name
        
    def read(self, file_name):
        try:
            response = self.client.get_object(Bucket=self.bucket_name, Key=file_name)
            return pd.read_csv(response['Body'])
        except  ClientError as ex:
            if ex.response['Error']['Code'] == 'NoSuchBucket':
                raise ValueError(f""Bucket '{self.bucket_name}' not found in aws s3 storage"")
            elif ex.response['Error']['Code'] == 'NoSuchKey':
                raise ValueError(f""File '{file_name}' not found in s3 bucket '{self.bucket_name}'"")
            else:
                raise

    """"""
},    
    'azure':{'imports':[{'mod':'DataLakeServiceClient', 'mod_from':'azure.storage.filedatalake'},{'mod':'detect', 'mod_from':'detect_delimiter'},{'mod':'pandavro', 'mod_as':'pdx'},{'mod':'io'},{'mod': 'Path', 'mod_from': 'pathlib'},{'mod': 'pandas', 'mod_as': 'pd'}],'code':""""""\n\
def azure():

    def __init__(self,config={}):
        if 'azure' in config.keys():
            config = config['azure']
        account_name = config.get('account_name','')
        account_key = config.get('account_key','')
        container_name = config.get('container_name','')
        if not account_name:
            raise ValueError('Account name can not be empty')
        if not account_key:
            raise ValueError('Account key can not be empty')
        if not container_name:
            raise ValueError('Container name can not be empty')
        service_client = DataLakeServiceClient(account_url=""{}://{}.dfs.core.windows.net"".format(""https"", account_name), credential=account_key)
        self.file_system_client = service_client.get_file_system_client(container_name)
        
    def read(self, directory_name):
        root_dir = str(directory_name)
        file_paths = self.file_system_client.get_paths(path=root_dir)				
        main_df = pd.DataFrame()
        for path in file_paths:
            if not path.is_directory:
                file_client = file_system_client.get_file_client(path.name)
                file_ext = Path(path.name).suffix
                if file_ext in ["".csv"", "".tsv""]:
                    with open(csv_local, ""wb"") as my_file:
                        file_client.download_file().readinto(my_file)
                    with open(csv_local, 'r') as file:
                        data = file.read()
                    row_delimiter = detect(text=data, default=None, whitelist=[',', ';', ':', '|', '\t'])
                    processed_df = pd.read_csv(csv_local, sep=row_delimiter)
                elif file_ext == "".parquet"":
                    stream = io.BytesIO()
                    file_client.download_file().readinto(stream)
                    processed_df = pd.read_parquet(stream, engine='pyarrow')
                elif file_ext == "".avro"": 
                    with open(avro_local, ""wb"") as my_file:
                        file_client.download_file().readinto(my_file)
                    processed_df = pdx.read_avro(avro_local)
                if main_df.empty:
                    main_df = pd.DataFrame(processed_df)
                else:
                    main_df = main_df.append(processed_df, ignore_index=True)
        return main_df

    """"""
    },
    'gcs':{'imports':[{'mod':'storage','mod_from':'google.cloud'},{'mod': 'Path', 'mod_from': 'pathlib'},{'mod': 'pandas', 'mod_as': 'pd'}],'code':""""""\n\
class gcs():
    
    def __init__(self, config={}):
        if 'gcs' in config.keys():
            config = config['gcs']
        account_key = config.get('account_key','')
        bucket_name = config.get('bucket_name','')
        if not account_key:
            raise ValueError('Account key can not be empty')
        if not bucket_name:
            raise ValueError('bucket name can not be empty')
        storage_client = storage.Client.from_service_account_json(account_key)
        self.bucket = storage_client.get_bucket(bucket_name)
            
    def read(self, bucket_name, file_name):
        data = self.bucket.blob(file_name).download_as_text()
        return pd.read_csv(data, encoding = 'utf-8', sep = ',')
    """"""
    }
}

class data_reader():

    def __init__(self, reader_type=[]):
        self.supported_readers = supported_reader
        if isinstance(reader_type, str):
            self.readers = [reader_type]
        elif not reader_type:
            self.readers = self.supported_readers
        else:
            self.readers = reader_type
        unsupported_reader = [ x for x in self.readers if x not in self.supported_readers]
        if unsupported_reader:
            raise ValueError(f""reader type '{unsupported_reader}' is not supported\nSupported readers are {self.supported_readers}"")
        self.codeText = """"
        self.importer = importModule()
    
    def get_reader_code(self, readers):
        reader_code = {
            'sqlite': 'return sqlite_writer(target_path=target_path)',
            'influx': 'return Influx_writer(config=config)',
            'gcs': 'return gcs(config=config)',
            'azure': 'return azure(config=config)',
            's3': 'return s3bucket(config=config)'
            }
        code = ""\n\ndef dataReader(reader_type, target_path=None, config=None):\n""
        for i, reader in enumerate(readers):
            if not i:
                code += f""    if reader_type == '{reader}':\n""
            else:
                code += f""    elif reader_type == '{reader}':\n""
            code += f""        {reader_code[reader]}\n""
        if readers:
            code += ""    else:\n""
            code += f""""""        raise ValueError(""'{{reader_type}}' not added during code generation"")\n""""""
        else:
            code += f""""""    raise ValueError(""'{{reader_type}}' not added during code generation"")\n""""""
        return code

    def get_code(self):
        code = self.get_reader_code(self.readers)
        functions = []
        for reader in self.readers:
            functions.append(reader)
        for function in functions:
            code += self.get_function_code(function)
        self.codeText += self.importer.getCode()
        self.codeText += code
        return self.codeText
        
    def get_function_code(self, name):
        code = """"
        if name in functions_code.keys():
            code += functions_code[name]['code']
        if self.importer:
            if 'imports' in functions_code[name].keys():
                for module in functions_code[name]['imports']:
                    mod_name = module['mod']
                    mod_from = module.get('mod_from', None)
                    mod_as = module.get('mod_as', None)
                    self.importer.addModule(mod_name, mod_from=mod_from, mod_as=mod_as)
        return code

    def get_importer(self):
        return self.importer
"
imports.py,"""""""
/**
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  © Copyright HCL Technologies Ltd. 2021, 2022
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*/
""""""

from importlib.metadata import version
import sys

    
class importModule():

    def __init__(self):
        self.importModule = {}
        self.stdlibModule = []
        self.localModule = {}
    
    def addLocalModule(self,module, mod_from=None, mod_as=None):
        if module == '*':
            if module not in self.localModule.keys():
                self.localModule[module]= [mod_from]
            else:
                self.localModule[module].append(mod_from)
        elif module not in self.localModule.keys():
            self.localModule[module] = {'from':mod_from, 'as':mod_as}
        
    def addModule(self, module, mod_from=None, mod_as=None):
        if module not in self.importModule.keys():
            self.importModule[module] = {'from':mod_from, 'as':mod_as}
            if module in sys.stdlib_module_names:
                self.stdlibModule.append(module)
        elif isinstance(self.importModule[module], list):
            if mod_as not in [x['as'] for x in self.importModule[module]]:
                self.importModule[module].append({'from':mod_from, 'as':mod_as})
            elif mod_as not in [x['from'] for x in self.importModule[module]]:
                self.importModule[module].append({'from':mod_from, 'as':mod_as})
        elif mod_as != self.importModule[module]['as']:
            as_list = [self.importModule[module]]
            as_list.append({'from':mod_from, 'as':mod_as})
            self.importModule[module] = as_list
        elif mod_from != self.importModule[module]['from']:
            as_list = [self.importModule[module]]
            as_list.append({'from':mod_from, 'as':mod_as})
            self.importModule[module] = as_list

    def getModules(self):
        return (self.importModule, self.stdlibModule)
        
    def getBaseModule(self, extra_importers=[]):
        modules_alias = {   'sklearn':'scikit-learn', 
                            'genetic_selection':'sklearn-genetic',
                            'google': 'google-cloud-storage',
                            'azure':'azure-storage-file-datalake'}
        local_modules = {'AIX':'/app/AIX-0.1-py3-none-any.whl'}
        modules = []
        require = """"
        if extra_importers:
            extra_importers = [importer.importModule for importer in extra_importers if isinstance(importer, importModule)]
        importers_module = [self.importModule] + extra_importers
        for importer_module in importers_module:
            for k,v in importer_module.items():
                if v['from']:
                    mod = v['from'].split('.')[0]
                else:
                    mod = k
                if mod in modules_alias.keys():
                    mod = modules_alias[mod]
                modules.append(mod)
        modules = list(set(modules))
        for mod in modules:
            try:
                if mod in local_modules.keys():
                    require += f""{local_modules[mod]}\n""
                else:
                    require += f""{mod}=={version(mod)}\n""
            except :
                if mod not in sys.stdlib_module_names:
                    raise  
        return require

    def getCode(self):
        def to_string(k, v):
            mod = ''
            if v['from']:
                mod += 'from {} '.format(v['from'])
            mod += 'import {}'.format(k)
            if v['as']:
                mod += ' as {} '.format(v['as'])
            return mod
        
        modules = """"
        local_modules = """"
        std_lib_modules = """"
        third_party_modules = """"
        for k,v in self.importModule.items():
            if k in self.stdlibModule:
                std_lib_modules = std_lib_modules + '\n' + to_string(k, v)
            elif isinstance(v, dict):
               third_party_modules = third_party_modules + '\n' + to_string(k, v)
            elif isinstance(v, list):
                for alias in v:
                    third_party_modules = third_party_modules + '\n' + to_string(k, alias)
        for k,v in self.localModule.items():
            if k != '*':
                local_modules = local_modules + '\n' + to_string(k, v)
            else:
                for mod_from in v:
                    local_modules = local_modules + '\n' + f'from {mod_from} import {k}'
        if std_lib_modules:
            modules = modules + ""\n#Standard Library modules"" + std_lib_modules
        if third_party_modules:
            modules = modules + ""\n\n#Third Party modules"" + third_party_modules
        if local_modules:
            modules = modules + ""\n\n#local modules"" + local_modules + '\n'
        return modules

    def copyCode(self, importer):
        self.importModule, self.stdlibModule = importer.getModules()
"
transformer.py,"""""""
/**
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  © Copyright HCL Technologies Ltd. 2021, 2022
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*/
""""""
import json

class transformer():
    
    def __init__(self, indent=0, tab_size=4):
        self.df_name = 'df'
        self.tab = ' ' * tab_size
        self.codeText = """"
        self.transformers = []
        self.TxCols = []
        self.imputers = {}
        self.input_files = {}
        self.output_files = {}
        self.function_code = ''
        self.addInputFiles({'inputData' : 'rawData.dat', 'metaData' : 'modelMetaData.json','log' : 'aion.log','trainData' : 'transformedData.dat','testData' : 'test.dat','preprocessor' : 'preprocessor.pkl'})
        
    def addInputFiles(self, files):
        if not isinstance(files, dict):
            raise TypeError(f""Required dict type got {type(files)} type"")
        for k,v in files.items():
            self.input_files[k] = v
            
    def addOutputFiles(self, files):
        if not isinstance(files, dict):
            raise TypeError(f""Required dict type got {type(files)} type"")
        for k,v in files.items():
            self.input_files[k] = v
            
    def getInputFiles(self):        
        text = 'IOFiles = '
        if not self.input_files:
            text += '{ }'
        else:
            text += json.dumps(self.input_files, indent=4)
        return text
        
    def getOutputFiles(self):
        text = 'output_file = '
        if not self.output_files:
            text += '{ }'
        else:
            text += json.dumps(self.output_files, indent=4)
        return text
    
    def getInputOutputFiles(self, indent=0):
        text = '\n'
        text += self.getInputFiles()
        if indent:
            text = text.replace('\n', self.tab * indent + '\n')
        return text
        
    def __addValidateConfigCode(self):
        text = ""\n\
        \ndef validateConfig():\
        \n    config_file = Path(__file__).parent/'config.json'\
        \n    if not Path(config_file).exists():\
        \n        raise ValueError(f'Config file is missing: {config_file}')\
        \n    config = read_json(config_file)\
        \n    return config""
        return text

    def getPrefixModules(self):
        modules = [
            {'module':'Path', 'mod_from':'pathlib'}
            ,{'module':'pandas', 'mod_as':'pd'}
            ,{'module':'numpy', 'mod_as':'np'}
            ,{'module':'scipy'}
            ]
        return modules
    
    def addPrefixCode(self, indent=1):
        self.codeText += """"""
def transformation(log):
    config = validateConfig()        
    targetPath = Path('aion')/config['targetPath']        
    if not targetPath.exists():        
        raise ValueError(f'targetPath does not exist')        
    meta_data_file = targetPath/IOFiles['metaData']        
    if meta_data_file.exists():        
        meta_data = read_json(meta_data_file)        
    else:        
        raise ValueError(f'Configuration file not found: {meta_data_file}')        
    log_file = targetPath/IOFiles['log']        
    log = logger(log_file, mode='a', logger_name=Path(__file__).parent.stem)        
    dataLoc = targetPath/IOFiles['inputData']        
    if not dataLoc.exists():        
        return {'Status':'Failure','Message':'Data location does not exists.'}        
    status = dict()        
    df = read_data(dataLoc)        
    log.log_dataframe(df)        
    target_feature = config['target_feature']
    if config['test_ratio'] == 0.0:
        train_data = df
        test_data = pd.DataFrame()
    else:
    """"""
    def getSuffixModules(self):
        modules = [{'module':'pandas','mod_as':'pd'}
            ,{'module':'json'}
            ,{'module':'joblib'}
            ]
        return modules
    
    def addSuffixCode(self,encoder=False, indent=1):
        self.codeText += """"""
    train_data, preprocess_pipe, label_encoder = profilerObj.transform()
    if not preprocess_pipe:
        raise ValueError('Pipeline not created')
    joblib.dump(preprocess_pipe, targetPath/IOFiles['preprocessor'])
    test_data.reset_index(inplace=True)    

        """"""
        if encoder:
            self.codeText += """"""
    joblib.dump(label_encoder, targetPath/IOFiles['targetEncoder'])
    if not test_data.empty:
        ytest = label_encoder.transform(test_data[target_feature])
        """"""
        else:
            self.codeText += """"""
    if not test_data.empty:
        ytest = test_data[target_feature]
        """"""
        self.codeText += """"""
        test_data.astype(profilerObj.train_features_type)
        test_data = preprocess_pipe.transform(test_data)
        if isinstance(test_data, scipy.sparse.spmatrix):
            test_data = test_data.toarray()
    preprocess_out_columns = train_data.columns.tolist()
    preprocess_out_columns.remove(target_feature)
    write_data(train_data,targetPath/IOFiles['trainData'],index=False)
    if isinstance( test_data, np.ndarray):
        test_data = pd.DataFrame(test_data, columns=preprocess_out_columns)
        test_data[target_feature] = ytest
    
        write_data(test_data,targetPath/IOFiles['testData'],index=False)
        
    log.log_dataframe(train_data)                
    status = {'Status':'Success','trainData':IOFiles['trainData'],'testData':IOFiles['testData']}                
    meta_data['transformation'] = {}
    meta_data['transformation']['cat_features'] = train_data.select_dtypes('category').columns.tolist()
    meta_data['transformation']['preprocessor'] = IOFiles['preprocessor']
    meta_data['transformation']['preprocess_out_columns'] = preprocess_out_columns
        """"""
        if encoder:
            self.codeText += """"""
    meta_data['transformation']['target_encoder'] = IOFiles['targetEncoder']
        """"""
        self.codeText += """"""
    meta_data['transformation']['Status'] = status                
    write_json(meta_data, str(targetPath/IOFiles['metaData']))                
    log.info(f""Transformed data saved at {targetPath/IOFiles['trainData']}"")                
    log.info(f'output: {status}')                
    return json.dumps(status)
        """"""
    def getMainCodeModules(self):
        modules = [{'module':'Path', 'mod_from':'pathlib'}
            ,{'module':'sys'}
            ,{'module':'json'}
            ,{'module':'logging'}
            ,{'module':'argparse'}
            ]
        return modules
    
    def addMainCode(self, indent=1):
        self.codeText += ""\n\
        \nif __name__ == '__main__':\
        \n    log = None\
        \n    try:\
        \n        print(transformation(log))\
        \n    except Exception as e:\
        \n        if log:\
        \n            log.error(e, exc_info=True)\
        \n        status = {'Status':'Failure','Message':str(e)}\
        \n        print(json.dumps(status))""
        
    def addValidateConfigCode(self, indent=1):
        self.function_code += self.__addValidateConfigCode()

    def addLocalFunctionsCode(self):
        self.addValidateConfigCode()

    def addStatement(self, statement, indent=1):
        self.codeText += '\n' + self.tab * indent + statement

    def getCode(self, indent=1):
        return self.function_code + '\n' + self.codeText
    
    def getDFName(self):
        return self.df_name

class data_profiler():

    def __init__(self, importer, text_features=False):
        self.importer = importer
        self.codeText = """"
        self.text_features = text_features
        
    def addStatement(self, statement, indent=1):
        self.codeText += '\n' + self.tab * indent + statement

    def get_module_import_statement(self, mod):
        text = """"
        if not mod.get('module', None):
            return text
        if mod.get('mod_from', None):
            text += f""from {mod['mod_from']} ""
        text += f""import {mod['module']} ""
        if mod.get('mod_as', None):
            text += f""as {mod['mod_as']}""
        text += ""\n""
        return text
        
    def get_import_modules(self):
        profiler_importes = [
            {'module': 'scipy', 'mod_from': None, 'mod_as': None},
            {'module': 'numpy', 'mod_from': None, 'mod_as': 'np'},
            {'module': 'Path', 'mod_from': 'pathlib', 'mod_as': None},
            {'module': 'pandas', 'mod_from': None, 'mod_as': 'pd'},
            {'module': 'w2n', 'mod_from': 'word2number', 'mod_as': None},
            {'module': 'LabelEncoder', 'mod_from': 'sklearn.preprocessing', 'mod_as': None },
            {'module': 'OrdinalEncoder', 'mod_from': 'sklearn.preprocessing', 'mod_as': None },
            {'module': 'OneHotEncoder', 'mod_from': 'sklearn.preprocessing', 'mod_as': None },
            {'module': 'SimpleImputer', 'mod_from': 'sklearn.impute', 'mod_as': None },
            {'module': 'KNNImputer', 'mod_from': 'sklearn.impute', 'mod_as': None },
            {'module': 'Pipeline', 'mod_from': 'sklearn.pipeline', 'mod_as': None },
            {'module': 'FeatureUnion', 'mod_from': 'sklearn.pipeline', 'mod_as': None },
            {'module': 'MinMaxScaler', 'mod_from': 'sklearn.preprocessing', 'mod_as': None },
            {'module': 'StandardScaler', 'mod_from': 'sklearn.preprocessing', 'mod_as': None },
            {'module': 'PowerTransformer', 'mod_from': 'sklearn.preprocessing', 'mod_as': None },
            {'module': 'ColumnTransformer', 'mod_from': 'sklearn.compose', 'mod_as': None },
            {'module': 'TransformerMixin', 'mod_from': 'sklearn.base', 'mod_as': None },
            {'module': 'IsolationForest', 'mod_from': 'sklearn.ensemble', 'mod_as': None },
            {'module': 'TargetEncoder', 'mod_from': 'category_encoders', 'mod_as': None }
        ]
        if self.text_features:
            profiler_importes.append({'module': 'textProfiler', 'mod_from': 'text.textProfiler', 'mod_as': None })
            profiler_importes.append({'module': 'textCombine', 'mod_from': 'text.textProfiler', 'mod_as': None })
        return profiler_importes
    
    def get_importer(self):
        return self.importer
    
    def get_code(self):
        common_importes = self.get_import_modules()
        for module in common_importes:
            mod_name = module['module']
            mod_from = module.get('mod_from', None)
            mod_as = module.get('mod_as', None)
            if module['module'] in ['textProfiler','textCombine']:
                self.importer.addLocalModule(mod_name, mod_from=mod_from, mod_as=mod_as)
            else:
                self.importer.addModule(mod_name, mod_from=mod_from, mod_as=mod_as)

        self.codeText += """"""
STR_TO_CAT_CONVERSION_LEN_MAX = 10
log_suffix = f'[{Path(__file__).stem}] '

target_encoding_method_change = {'targetencoding': 'labelencoding'}

supported_method = {
    'fillNa':
        {
            'categorical' : ['mode','zero','na'],
            'numeric' : ['median','mean','knnimputer','zero','drop','na'],
        },
    'categoryEncoding': ['labelencoding','targetencoding','onehotencoding','na','none'],
    'normalization': ['standardscaler','minmax','lognormal', 'na','none'],
    'outlier_column_wise': ['iqr','zscore', 'disable'],
    'outlierOperation': ['dropdata', 'average', 'nochange']
    }
    
def findiqrOutlier(df):
    Q1 = df.quantile(0.25)
    Q3 = df.quantile(0.75)
    IQR = Q3 - Q1
    index = ~((df < (Q1 - 1.5 * IQR)) |(df > (Q3 + 1.5 * IQR)))
    return index
    
def findzscoreOutlier(df):
    z = np.abs(scipy.stats.zscore(df))
    index = (z < 3)
    return index
    
def findiforestOutlier(df):
    isolation_forest = IsolationForest(n_estimators=100)
    isolation_forest.fit(df)
    y_pred_train = isolation_forest.predict(df)
    return y_pred_train == 1

def get_one_true_option(d, default_value=None):
	if isinstance(d, dict):
		for k,v in d.items():
			if (isinstance(v, str) and v.lower() == 'true') or (isinstance(v, bool) and v == True):
				return k
	return default_value

def get_boolean(value):
    if (isinstance(value, str) and value.lower() == 'true') or (isinstance(value, bool) and value == True):
        return True
    else:
        return False
        
class profiler():

    def __init__(self, xtrain, ytrain=None, target=None, encode_target = True, config={}, keep_unprocessed=[], log=None):
        if not isinstance(xtrain, pd.DataFrame):
            raise ValueError(f'{log_suffix}supported data type is pandas.DataFrame but provide data is of {type(xtrain)} type')
        if xtrain.empty:
            raise ValueError(f'{log_suffix}Data frame is empty')
        if target and target in xtrain.columns:
            self.target = xtrain[target]
            xtrain.drop(target, axis=1, inplace=True)
            self.target_name = target
        elif ytrain:
            self.target = ytrain
            self.target_name = 'target'
        else:
            self.target = pd.Series()
            self.target_name = None
        self.encode_target = encode_target
        self.label_encoder = None
        keep_unprocessed = [x for x in keep_unprocessed if x in xtrain.columns]
        if keep_unprocessed:
            self.unprocessed = xtrain[keep_unprocessed]
            self.data = xtrain.drop(keep_unprocessed, axis=1)
        else:
            self.data = xtrain        
            self.unprocessed = pd.DataFrame()
        self.colm_type = {}
        for colm, infer_type in zip(self.data.columns, self.data.dtypes):
            self.colm_type[colm] = infer_type
        self.numeric_feature = []
        self.cat_feature = []
        self.text_feature = []
        self.wordToNumericFeatures = []
        self.added_features = []
        self.pipeline = []
        self.dropped_features = {}
        self.train_features_type={}
        self.__update_type()
        self.config = config
        self.featureDict = config.get('featureDict', [])
        self.output_columns = []
        self.feature_expender = []
        self.text_to_num = {}
        if log:
            self.log = log
        else:
            self.log = logging.getLogger('eion')
        self.type_conversion = {}

    def log_dataframe(self, msg=None):                    
        import io                    
        buffer = io.StringIO()                    
        self.data.info(buf=buffer)                    
        if msg:                    
            log_text = f'Data frame after {msg}:'                    
        else:                    
            log_text = 'Data frame:'                    
        log_text += '\\n\\t'+str(self.data.head(2)).replace('\\n','\\n\\t')                    
        log_text += ('\\n\\t' + buffer.getvalue().replace('\\n','\\n\\t'))                    
        self.log.info(log_text)

    def transform(self):
        if self.is_target_available():
            if self.target_name:
                self.log.info(f""Target feature name: '{self.target_name}'"")
            self.log.info(f""Target feature size: {len(self.target)}"")
        else:
            self.log.info(f""Target feature not present"")
        self.log_dataframe()
        try:
            self.process()
        except Exception as e:            
            self.log.error(e, exc_info=True)
            raise
        pipe = FeatureUnion(self.pipeline)
        self.log.info(pipe)
        process_data = pipe.fit_transform(self.data, y=self.target)
        self.update_output_features_names(pipe)
        if isinstance(process_data, scipy.sparse.spmatrix):
            process_data = process_data.toarray()        
        df = pd.DataFrame(process_data, columns=self.output_columns)
        
        if self.is_target_available() and self.target_name:
            df[self.target_name] = self.target
        if not self.unprocessed.empty:
            df[self.unprocessed.columns] = self.unprocessed
        self.log_numerical_fill()
        self.log_categorical_fill()
        self.log_normalization()
        return df, pipe, self.label_encoder
    
    def log_type_conversion(self):
        if self.log:
            self.log.info('-----------  Inspecting Features -----------')
            self.log.info('-----------  Type Conversion -----------')
            count = 0
            for k, v in self.type_conversion.items():
                if v[0] != v[1]:
                    self.log.info(f'{k} -> from {v[0]} to {v[1]} : {v[2]}')
            self.log.info('Status:- |... Feature inspection done')
    
    def check_config(self):
        removeDuplicate = self.config.get('removeDuplicate', False)
        self.config['removeDuplicate'] = get_boolean(removeDuplicate)
        self.config['misValueRatio'] = float(self.config.get('misValueRatio', '1.0'))
        self.config['numericFeatureRatio'] = float(self.config.get('numericFeatureRatio', '1.0'))
        self.config['categoryMaxLabel'] = int(self.config.get('categoryMaxLabel', '20'))
        featureDict = self.config.get('featureDict', [])
        if isinstance(featureDict, dict):
            self.config['featureDict'] = []
        if isinstance(featureDict, str):
            self.config['featureDict'] = []
                
    def process(self):
        #remove duplicate not required at the time of prediction
        self.check_config()
        self.remove_constant_feature()
        self.remove_empty_feature(self.config['misValueRatio'])
        self.remove_index_features()
        self.drop_na_target()
        if self.config['removeDuplicate']:
            self.drop_duplicate()
        self.check_categorical_features()
        self.string_to_numeric()
        self.process_target()
        self.train_features_type = dict(zip(self.data.columns, self.data.dtypes))
        self.parse_process_step_config()
        self.process_drop_fillna()
        #self.log_type_conversion()
        self.update_num_fill_dict()
        #print(self.num_fill_method_dict)
        self.update_cat_fill_dict()
        self.create_pipeline()
        self.text_pipeline(self.config)
        self.apply_outlier()
        self.log.info(self.process_method)
        self.log.info(self.train_features_type)
    
    def is_target_available(self):
        return (isinstance(self.target, pd.Series) and not self.target.empty) or len(self.target)
    
    def process_target(self, operation='encode', arg=None):
        if self.encode_target:
            if self.is_target_available():
                self.label_encoder = LabelEncoder()
                self.target = self.label_encoder.fit_transform(self.target)
                return self.label_encoder
        return None
        
    def is_target_column(self, column):
        return column == self.target_name
    
    def fill_default_steps(self):
        
        num_fill_method = get_one_true_option(self.config.get('numericalFillMethod',None))
        normalization_method = get_one_true_option(self.config.get('normalization',None))
        for colm in self.numeric_feature:
            if num_fill_method:
                self.fill_missing_value_method(colm, num_fill_method.lower())
            if normalization_method:
                self.fill_normalizer_method(colm, normalization_method.lower())
        
        cat_fill_method = get_one_true_option(self.config.get('categoricalFillMethod',None))
        cat_encode_method = get_one_true_option(self.config.get('categoryEncoding',None))
        for colm in self.cat_feature:
            if cat_fill_method:
                self.fill_missing_value_method(colm, cat_fill_method.lower())
            if cat_encode_method:
                self.fill_encoder_value_method(colm, cat_encode_method.lower(), default=True)
    
    def parse_process_step_config(self):
        self.process_method = {}
        user_provided_data_type = {}
        for feat_conf in self.featureDict:
            colm = feat_conf.get('feature', '')
            if not self.is_target_column(colm):
                if colm in self.data.columns:
                    user_provided_data_type[colm] = feat_conf['type']
        if user_provided_data_type:
            self.update_user_provided_type(user_provided_data_type)
                    
        self.fill_default_steps()
        for feat_conf in self.featureDict:
            colm = feat_conf.get('feature', '')
            if not self.is_target_column(colm):
                if colm in self.data.columns:
                    if feat_conf.get('fillMethod', None):
                        self.fill_missing_value_method(colm, feat_conf['fillMethod'].lower())
                    if feat_conf.get('categoryEncoding', None):
                        self.fill_encoder_value_method(colm, feat_conf['categoryEncoding'].lower())
                    if feat_conf.get('normalization', None):
                        self.fill_normalizer_method(colm, feat_conf['normalization'].lower())
                    if feat_conf.get('outlier', None):
                        self.fill_outlier_method(colm, feat_conf['outlier'].lower())
                    if feat_conf.get('outlierOperation', None):
                        self.fill_outlier_process(colm, feat_conf['outlierOperation'].lower())
        
    
    def update_output_features_names(self, pipe):
        columns = self.output_columns
        start_index = {}
        for feat_expender in self.feature_expender:
            if feat_expender:
                step_name = list(feat_expender.keys())[0]
                index = list(feat_expender.values())[0]
                for transformer_step in pipe.transformer_list:
                    if transformer_step[1].steps[-1][0] in step_name:
                        start_index[index] = {transformer_step[1].steps[-1][0]: transformer_step[1].steps[-1][1].get_feature_names()}
        if start_index:
            index_shifter = 0
            for key,value in start_index.items():
                for k,v in value.items():
                    if k == 'vectorizer':
                        v = [f'{x}_vect' for x in v]    
                    key = key + index_shifter
                    self.output_columns[key:key] = v
                    index_shifter += len(v)
                    self.added_features = [*self.added_features, *v]
                    
                    
    def text_pipeline(self, conf_json):
        if self.text_feature:
            pipeList = []
            max_features = 2000
            text_pipe = Pipeline([ 
                ('selector', ColumnTransformer([
                        (""selector"", ""passthrough"", self.text_feature)
                        ], remainder=""drop"")),
                (""text_fillNa"",SimpleImputer(strategy='constant', fill_value='')),
                (""merge_text_feature"", textCombine())])
            obj = textProfiler()
            pipeList = obj.textProfiler(conf_json, pipeList, max_features)
            last_step = ""merge_text_feature""
            for pipe_elem in pipeList:
                text_pipe.steps.append((pipe_elem[0], pipe_elem[1]))
                last_step = pipe_elem[0]
            text_transformer = ('text_process', text_pipe)
            self.pipeline.append(text_transformer)
            self.feature_expender.append({last_step:len(self.output_columns)})
            
    def create_pipeline(self):
        num_pipe = {}
        for k,v in self.num_fill_method_dict.items():
            for k1,v1 in v.items():
                if k1 and k1 != 'none':
                    num_pipe[f'{k}_{k1}'] = Pipeline([
                        ('selector', ColumnTransformer([
                                (""selector"", ""passthrough"", v1)
                                ], remainder=""drop"")),
                        (k, self.get_num_imputer(k)),
                        (k1, self.get_num_scaler(k1))
                    ])
                else:
                    num_pipe[f'{k}_{k1}'] = Pipeline([
                        ('selector', ColumnTransformer([
                                (""selector"", ""passthrough"", v1)
                                ], remainder=""drop"")),
                        (k, self.get_num_imputer(k))
                    ])
                self.output_columns.extend(v1)
        cat_pipe = {}
        for k,v in self.cat_fill_method_dict.items():
            for k1,v1 in v.items():
                cat_pipe[f'{k}_{k1}'] = Pipeline([
                    ('selector', ColumnTransformer([
                            (""selector"", ""passthrough"", v1)
                            ], remainder=""drop"")),
                    (k, self.get_cat_imputer(k)),
                    (k1, self.get_cat_encoder(k1))
                ])
                if k1 not in ['onehotencoding']:
                    self.output_columns.extend(v1)
                else:
                    self.feature_expender.append({k1:len(self.output_columns)})
        for key, pipe in num_pipe.items():            
            self.pipeline.append((key, pipe))
        for key, pipe in cat_pipe.items():            
            self.pipeline.append((key, pipe))
        if not self.unprocessed.empty:
            self.pipeline.append(Pipeline([
                    ('selector', ColumnTransformer([
                    (""selector"", ""passthrough"", self.unprocessed.columns)
                    ], remainder=""drop""))]))

    ""Drop: feature during training but replace with zero during prediction ""
    def process_drop_fillna(self):
        drop_column = []
        if 'numFill' in self.process_method.keys():
            for col, method in self.process_method['numFill'].items():
                if method == 'drop':
                    self.process_method['numFill'][col] = 'zero'
                    drop_column.append(col)
        if 'catFill' in self.process_method.keys():
            for col, method in self.process_method['catFill'].items():
                if method == 'drop':
                    self.process_method['catFill'][col] = 'zero'
                    drop_column.append(col)
        if drop_column:
            self.data.dropna(subset=drop_column, inplace=True)

    def update_num_fill_dict(self):
        self.num_fill_method_dict = {}
        if 'numFill' in self.process_method.keys():
            for f in supported_method['fillNa']['numeric']:
                self.num_fill_method_dict[f] = {}
                for en in supported_method['normalization']:
                    self.num_fill_method_dict[f][en] = []
                    for col in self.numeric_feature:
                        numFillDict = self.process_method.get('numFill',{})
                        normalizationDict = self.process_method.get('normalization',{})
                        if f == numFillDict.get(col, '') and en == normalizationDict.get(col,''):
                            self.num_fill_method_dict[f][en].append(col)
                    if not self.num_fill_method_dict[f][en] :
                        del self.num_fill_method_dict[f][en]
                if not self.num_fill_method_dict[f]:
                    del self.num_fill_method_dict[f]

    def update_cat_fill_dict(self):
        self.cat_fill_method_dict = {}
        if 'catFill' in self.process_method.keys():
            for f in supported_method['fillNa']['categorical']:
                self.cat_fill_method_dict[f] = {}
                for en in supported_method['categoryEncoding']:
                    self.cat_fill_method_dict[f][en] = []
                    for col in self.cat_feature:
                        catFillDict = self.process_method.get('catFill',{})
                        catEncoderDict = self.process_method.get('catEncoder',{})
                        if f == catFillDict.get(col, '') and en == catEncoderDict.get(col,''):
                            self.cat_fill_method_dict[f][en].append(col)
                    if not self.cat_fill_method_dict[f][en] :
                        del self.cat_fill_method_dict[f][en]
                if not self.cat_fill_method_dict[f]:
                    del self.cat_fill_method_dict[f]


    def __update_type(self):
        self.numeric_feature = self.data.select_dtypes(include='number').columns.tolist()
        self.cat_feature = self.data.select_dtypes(include='category').columns.tolist()
        self.date_time = self.data.select_dtypes(include='datetime').columns.tolist()
        self.text_feature = self.data.select_dtypes(include='object').columns.tolist()
        
    def update_user_provided_type(self, data_types):
        allowed_types = ['numerical','categorical', 'text','date','index']
        type_mapping = {'numerical': np.dtype('float'), 'float': np.dtype('float'),'categorical': 'category', 'text':np.dtype('object'),'date':'datetime64[ns]','index': np.dtype('int64'),}
        mapped_type = {k:type_mapping[v] for k,v in data_types.items()}
        #self.log.info(mapped_type)
        self.update_type(mapped_type, 'user provided data type')
        
    def get_type(self, as_list=False):
        if as_list:
            return [self.colm_type.values()]
        else:
            return self.colm_type
    
    def update_type(self, data_types={}, reason=''):
        invalid_features = [x for x in data_types.keys() if x not in self.data.columns]
        if invalid_features:
            valid_feat = list(set(data_types.keys()) - set(invalid_features))
            valid_feat_type = {k:v for k,v in data_types if k in valid_feat}
        else:
            valid_feat_type = data_types
        for k,v in valid_feat_type.items():
            if v != self.colm_type[k].name:
                try:
                    self.data.astype({k:v})
                    self.colm_type.update({k:self.data[k].dtype})
                    self.type_conversion[k] = (self.colm_type[k] , v, 'Done', reason)
                except:
                    self.type_conversion[k] = (self.colm_type[k] , v, 'Fail', reason)
        self.data = self.data.astype(valid_feat_type)
        self.__update_type()
        
    def string_to_numeric(self):
        def to_number(x):
            try:
                return w2n.word_to_num(x)
            except:
                return np.nan
        for col in self.text_feature:
            col_values = self.data[col].copy()
            col_values = pd.to_numeric(col_values, errors='coerce')
            if col_values.count() >= (self.config['numericFeatureRatio'] * len(col_values)):
                self.text_to_num[col] = 'float64'
                self.wordToNumericFeatures.append(col)
        if self.text_to_num:
            columns = list(self.text_to_num.keys())
            self.data[columns] = self.data[columns].apply(lambda x: to_number(x))
            self.update_type(self.text_to_num)
        self.log.info('-----------  Inspecting Features -----------')
        for col in self.text_feature:
            self.log.info(f'-------> Feature : {col}')
            if col in self.text_to_num:
                self.log.info('----------> Numeric Status :Yes')
                self.log.info('----------> Data Type Converting to numeric :Yes')
            else:
                self.log.info('----------> Numeric Status :No')
        self.log.info(f'\\nStatus:- |... Feature inspection done for numeric data: {len(self.text_to_num)} feature(s) converted to numeric')
        self.log.info(f'\\nStatus:- |... Feature word to numeric treatment done: {self.text_to_num}')
        self.log.info('-----------   Inspecting Features End -----------')
            
    def check_categorical_features(self):
        num_data = self.data.select_dtypes(include='number')
        num_data_unique = num_data.nunique()
        num_to_cat_col = {}
        for i, value in enumerate(num_data_unique):
            if value < self.config['categoryMaxLabel']:
                num_to_cat_col[num_data_unique.index[i]] = 'category'
        if num_to_cat_col:
            self.update_type(num_to_cat_col, 'numerical to categorical')
        str_to_cat_col = {}
        str_data = self.data.select_dtypes(include='object')
        str_data_unique = str_data.nunique()
        for i, value in enumerate(str_data_unique):
            if value < self.config['categoryMaxLabel']:
                str_to_cat_col[str_data_unique.index[i]] = 'category'
        for colm in str_data.columns:
            if self.data[colm].str.len().max() < STR_TO_CAT_CONVERSION_LEN_MAX:
                str_to_cat_col[colm] = 'category'
        if str_to_cat_col:
            self.update_type(str_to_cat_col, 'text to categorical')        
        
    def drop_features(self, features=[], reason='unspecified'):
        if isinstance(features, str):
            features = [features]
        feat_to_remove = [x for x in features if x in self.data.columns]
        if feat_to_remove:
            self.data.drop(feat_to_remove, axis=1, inplace=True)
            for feat in feat_to_remove:
                self.dropped_features[feat] = reason        
            self.log_drop_feature(feat_to_remove, reason)
            self.__update_type()
    
    def drop_duplicate(self):
        index = self.data.duplicated(keep='first')
        if index.sum():
            self.remove_rows(index, 'duplicate rows')
    
    def drop_na_target(self):
        if self.is_target_available():
            self.remove_rows(self.target.isna(), 'null target values')

    def log_drop_feature(self, columns, reason):
        self.log.info(f'---------- Dropping {reason} features ----------')
        self.log.info(f'\\nStatus:- |... {reason} feature treatment done: {len(columns)} {reason} feature(s) found')
        self.log.info(f'-------> Drop Features: {columns}')
        self.log.info(f'Data Frame Shape After Dropping (Rows,Columns): {self.data.shape}')
    
    def log_normalization(self):
        if self.process_method.get('normalization', None):
            self.log.info(f'\\nStatus:- !... Normalization treatment done')
            for method in supported_method['normalization']:
                cols = []
                for col, m in self.process_method['normalization'].items():
                    if m == method:
                        cols.append(col)
                if cols and method != 'none':
                    self.log.info(f'Running {method} on features: {cols}')

    def log_numerical_fill(self):
        if self.process_method.get('numFill', None):
            self.log.info(f'\\nStatus:- !... Fillna for numeric feature done')
            for method in supported_method['fillNa']['numeric']:
                cols = []
                for col, m in self.process_method['numFill'].items():
                    if m == method:
                        cols.append(col)
                if cols:
                    self.log.info(f'-------> Running {method} on features: {cols}')

    def log_categorical_fill(self):
        if self.process_method.get('catFill', None):
            self.log.info(f'\\nStatus:-!... FillNa for categorical feature done')
            for method in supported_method['fillNa']['categorical']:
                cols = []
                for col, m in self.process_method['catFill'].items():
                    if m == method:
                        cols.append(col)
                if cols:
                    self.log.info(f'-------> Running {method} on features: {cols}')
    
    def remove_constant_feature(self):
        unique_values = self.data.nunique()
        constant_features = []
        for i, value in enumerate(unique_values):
            if value == 1:
                constant_features.append(unique_values.index[i])
        if constant_features:
            self.drop_features(constant_features, ""constant"")
            for i in constant_features:
                try:
                    self.numeric_feature.remove(i)
                except ValueError:
                    pass 
                try:
                    self.cat_feature.remove(i)
                except ValueError:
                    pass
        
    def remove_empty_feature(self, misval_ratio=1.0):
        missing_ratio = self.data.isnull().sum() / len(self.data)
        missing_ratio = {k:v for k,v in zip(self.data.columns, missing_ratio)}
        empty_features = [k for k,v in missing_ratio.items() if v > misval_ratio]
        if empty_features:
            self.drop_features(empty_features, ""empty"")
        for i in empty_features:
            try:
                self.numeric_feature.remove(i)
            except ValueError:
                pass
            try:
                self.cat_feature.remove(i)
            except:
                pass

    def remove_index_features(self):
        index_feature = []
        
        for feat in self.numeric_feature:
            if self.data[feat].nunique() == len(self.data):
                if (self.data[feat].sum()- sum(self.data.index) == (self.data.iloc[0][feat]-self.data.index[0])*len(self.data)):
                    index_feature.append(feat)
        self.drop_features(index_feature, ""index"")
        for i in index_feature:
            try:
                self.numeric_feature.remove(i)
            except ValueError:
                pass
            try:
                self.cat_feature.remove(i)
            except:
                pass                        

    def fill_missing_value_method(self, colm, method):
        if colm in self.numeric_feature:
            if method in supported_method['fillNa']['numeric']:
                if 'numFill' not in self.process_method.keys():
                    self.process_method['numFill'] = {}
                if method == 'na' and self.process_method['numFill'].get(colm, None):
                    pass # don't overwrite
                else:
                    self.process_method['numFill'][colm] = method
        if colm in self.cat_feature:
            if method in supported_method['fillNa']['categorical']:
                if 'catFill' not in self.process_method.keys():
                    self.process_method['catFill'] = {}
                if method == 'na' and self.process_method['catFill'].get(colm, None):
                    pass
                else:
                    self.process_method['catFill'][colm] = method
    
    def check_encoding_method(self, method, colm,default=False):
        if not self.is_target_available() and (method.lower() == list(target_encoding_method_change.keys())[0]):
            method = target_encoding_method_change[method.lower()]
            if default:
                self.log.info(f""Applying Label encoding instead of Target encoding on feature '{colm}' as target feature is not present"")
        return method
    
    def fill_encoder_value_method(self,colm, method, default=False):
        if colm in self.cat_feature:
            if method.lower() in supported_method['categoryEncoding']:
                if 'catEncoder' not in self.process_method.keys():
                    self.process_method['catEncoder'] = {}
                if method == 'na' and self.process_method['catEncoder'].get(colm, None):
                    pass
                else:
                    self.process_method['catEncoder'][colm] = self.check_encoding_method(method, colm,default)
            else:
                self.log.info(f""-------> categorical encoding method '{method}' is not supported. supported methods are {supported_method['categoryEncoding']}"")

    def fill_normalizer_method(self,colm, method):
        if colm in self.numeric_feature:
            if method in supported_method['normalization']:
                if 'normalization' not in self.process_method.keys():
                    self.process_method['normalization'] = {}
                if (method == 'na' or method == 'none')  and self.process_method['normalization'].get(colm, None):
                    pass
                else:
                    self.process_method['normalization'][colm] = method
            else:
                self.log.info(f""-------> Normalization method '{method}' is not supported. supported methods are {supported_method['normalization']}"")

    def apply_outlier(self):
        inlier_indices = np.array([True] * len(self.data))        
        if self.process_method.get('outlier', None):
            self.log.info('-------> Feature wise outlier detection:')
            for k,v in self.process_method['outlier'].items():
                if k in self.numeric_feature:
                    if v == 'iqr':
                        index = findiqrOutlier(self.data[k])
                    elif v == 'zscore':
                        index = findzscoreOutlier(self.data[k])
                    elif v == 'disable':
                        index = None
                    if k in self.process_method['outlierOperation'].keys():
                        if self.process_method['outlierOperation'][k] == 'dropdata':
                            inlier_indices = np.logical_and(inlier_indices, index)
                        elif self.process_method['outlierOperation'][k] == 'average':
                            mean = self.data[k].mean()
                            index = ~index
                            self.data.loc[index,[k]] = mean
                            self.log.info(f'------->     {k}: Replaced by Mean {mean}: total replacement {index.sum()}')
                        elif self.process_method['outlierOperation'][k] == 'nochange' and v != 'disable':
                            self.log.info(f'------->     Total outliers in ""{k}"": {(~index).sum()}')
        if self.config.get('outlierDetection',None):
            if self.config['outlierDetection'].get('IsolationForest','False') == 'True':
                index = findiforestOutlier(self.data[self.numeric_feature])
                inlier_indices = np.logical_and(inlier_indices, index)
                self.log.info(f'-------> Numeric feature based Outlier detection(IsolationForest):')
        if inlier_indices.sum() != len(self.data):
            self.remove_rows( inlier_indices == False, 'outlier detection')
        self.log.info('Status:- |... Outlier treatment done')
        self.log.info(f'-------> Data Frame Shape After Outlier treatment (Rows,Columns): {self.data.shape}')

    def remove_rows(self, indices, msg=''):
        if indices.sum():
            indices = ~indices
            if len(indices) != len(self.data):
                raise ValueError('Data Frame length mismatch')
            self.data = self.data[indices]
            self.data.reset_index(drop=True, inplace=True)
            if self.is_target_available():
                self.target = self.target[indices]
                if isinstance(self.target, pd.Series):
                    self.target.reset_index(drop=True, inplace=True)
            if not self.unprocessed.empty:
                self.unprocessed = self.unprocessed[indices]
                self.unprocessed.reset_index(drop=True, inplace=True)
            self.log.info(f'------->     {msg} dropped rows count: {(indices == False).sum()}')
        
    def fill_outlier_method(self,colm, method):
        if colm in self.numeric_feature:
            if method in supported_method['outlier_column_wise']:
                if 'outlier' not in self.process_method.keys():
                    self.process_method['outlier'] = {}
                if method != 'Disable':
                    self.process_method['outlier'][colm] = method
            else:
                self.log.info(f""-------> outlier detection method '{method}' is not supported for column wise. supported methods are {supported_method['outlier_column_wise']}"")

    def fill_outlier_process(self,colm, method):
        if colm in self.numeric_feature:
            if method in supported_method['outlierOperation']:
                if 'outlierOperation' not in self.process_method.keys():
                    self.process_method['outlierOperation'] = {}
                self.process_method['outlierOperation'][colm] = method
            else:
                self.log.info(f""-------> outlier process method '{method}' is not supported for column wise. supported methods are {supported_method['outlieroperation']}"")
        
    def get_cat_imputer(self,method):
        if method == 'mode':
            return SimpleImputer(strategy='most_frequent')
        elif method == 'zero':
            return SimpleImputer(strategy='constant', fill_value=0)
            
    def get_cat_encoder(self,method):
        if method == 'labelencoding':
            return OrdinalEncoder(handle_unknown=""error"")
        elif method == 'onehotencoding':
            return OneHotEncoder(sparse=False,handle_unknown=""error"")
        elif method == 'targetencoding':
            if not self.is_target_available():
                raise ValueError('Can not apply Target Encoding when target feature is not present')
            return TargetEncoder(handle_unknown='error')

    def get_num_imputer(self,method):
        if method == 'mode':
            return SimpleImputer(strategy='most_frequent')
        elif method == 'mean':
            return SimpleImputer(strategy='mean')
        elif method == 'median':
            return SimpleImputer(strategy='median')
        elif method == 'knnimputer':
            return KNNImputer()
        elif method == 'zero':
            return SimpleImputer(strategy='constant', fill_value=0)
            
    def get_num_scaler(self,method):
        if method == 'minmax':
            return MinMaxScaler()
        elif method == 'standardscaler':
            return StandardScaler()
        elif method == 'lognormal':
            return PowerTransformer(method='yeo-johnson', standardize=False)
        """"""
        return self.codeText
        
"
functions.py,"""""""
/**
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  © Copyright HCL Technologies Ltd. 2021, 2022
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*/
""""""

class global_function():

    def __init__(self, tab_size=4):
        self.tab = ' ' * tab_size
        self.codeText = """"
        self.available_functions = {
            'iqr':{'name':'iqrOutlier','code':f""\n\ndef iqrOutlier(df):\
                    \n{self.tab}Q1 = df.quantile(0.25)\
                    \n{self.tab}Q3 = df.quantile(0.75)\
                    \n{self.tab}IQR = Q3 - Q1\
                    \n{self.tab}index = ~((df < (Q1 - 1.5 * IQR)) |(df > (Q3 + 1.5 * IQR))).any(axis=1)\
                    \n{self.tab}return index""},
            'zscore':{'name':'zscoreOutlier','imports':[{'mod':'stats','mod_from':'scipy'},{'mod':'numpy'}],'code':f""\n\ndef zscoreOutlier(df):\
                    \n{self.tab}z = numpy.abs(stats.zscore(df))\
                    \n{self.tab}index = (z < 3).all(axis=1)\
                    \n{self.tab}return index""},
            'iforest':{'name':'iforestOutlier','imports':[{'mod':'IsolationForest','mod_from':'sklearn.ensemble'}],'code':f""\n\ndef iforestOutlier(df):\
                    \n{self.tab}from sklearn.ensemble import IsolationForest\
                    \n{self.tab}isolation_forest = IsolationForest(n_estimators=100)\
                    \n{self.tab}isolation_forest.fit(df)\
                    \n{self.tab}y_pred_train = isolation_forest.predict(df)\
                    \n{self.tab}return y_pred_train == 1""},
            'minMaxImputer':{'name':'minMaxImputer','code':f""\n\nclass minMaxImputer(TransformerMixin):\
                    \n{self.tab}def __init__(self, strategy='max'):\
                    \n{self.tab}{self.tab}self.strategy = strategy\
                    \n{self.tab}def fit(self, X, y=None):\
                    \n{self.tab}{self.tab}self.feature_names_in_ = X.columns\
                    \n{self.tab}{self.tab}if self.strategy == 'min':\
                    \n{self.tab}{self.tab}{self.tab}self.statistics_ = X.min()\
                    \n{self.tab}{self.tab}else:\
                    \n{self.tab}{self.tab}{self.tab}self.statistics_ = X.max()\
                    \n{self.tab}{self.tab}return self\
                    \n{self.tab}def transform(self, X):\
                    \n{self.tab}{self.tab}import numpy\
                    \n{self.tab}{self.tab}return numpy.where(X.isna(), self.statistics_, X)""},
            'DummyEstimator':{'name':'DummyEstimator','code':f""\n\nclass DummyEstimator(BaseEstimator):\
                    \n{self.tab}def fit(self): pass\
                    \n{self.tab}def score(self): pass""},
            'start_reducer':{'name':'start_reducer','imports':[{'mod':'itertools'},{'mod':'numpy','mod_as':'np'},{'mod':'pandas','mod_as':'pd'},{'mod':'VarianceThreshold','mod_from':'sklearn.feature_selection'}], 'code':""""""
def start_reducer(df,target_feature,corr_threshold=0.85,var_threshold=0.05):

    qconstantColumns = []
    train_features = df.columns.tolist()
    train_features.remove(target_feature)
    df = df.loc[:, (df != df.iloc[0]).any()] #remove constant feature
    numeric_features = df.select_dtypes(include='number').columns.tolist()
    non_numeric_features = df.select_dtypes(exclude='number').columns.tolist()
    if numeric_features and var_threshold:
        qconstantFilter = VarianceThreshold(threshold=var_threshold)
        tempDf=df[numeric_features]
        qconstantFilter.fit(tempDf)
        qconstantColumns = [column for column in numeric_features if column not in tempDf.columns[qconstantFilter.get_support()]]
        if target_feature in qconstantColumns:
            qconstantColumns.remove(target_feature)
        numeric_features = list(set(numeric_features) - set(qconstantColumns))
    if numeric_features:
        numColPairs = list(itertools.product(numeric_features, numeric_features))
        for item in numColPairs:
            if(item[0] == item[1]):
                numColPairs.remove(item)
        tempArray = []
        for item in numColPairs:
            tempCorr = np.abs(df[item[0]].corr(df[item[1]]))
            if(tempCorr > corr_threshold):
                tempArray.append(item[0])
        tempArray = np.unique(tempArray).tolist()
        nonsimilarNumericalCols = list(set(numeric_features) - set(tempArray))
        groupedFeatures = []
        if tempArray:
            corrDic = {}
            for feature in tempArray:
                temp = []
                for col in tempArray:
                    tempCorr = np.abs(df[feature].corr(df[col]))
                    temp.append(tempCorr)
                corrDic[feature] = temp
            #Similar correlation df
            corrDF = pd.DataFrame(corrDic,index = tempArray)
            corrDF.loc[:,:] =  np.tril(corrDF, k=-1)
            alreadyIn = set()
            similarFeatures = []
            for col in corrDF:
                perfectCorr = corrDF[col][corrDF[col] > corr_threshold].index.tolist()
                if perfectCorr and col not in alreadyIn:
                    alreadyIn.update(set(perfectCorr))
                    perfectCorr.append(col)
                    similarFeatures.append(perfectCorr)
            updatedSimFeatures = []
            for items in similarFeatures:
                if(target_feature != '' and target_feature in items):
                    for p in items:
                        updatedSimFeatures.append(p)
                else:
                    updatedSimFeatures.append(items[0])
            newTempFeatures = list(set(updatedSimFeatures + nonsimilarNumericalCols))
            updatedFeatures = list(set(newTempFeatures + non_numeric_features))
        else:
            updatedFeatures = list(set(df.columns) -set(qconstantColumns))
    else:
        updatedFeatures = list(set(df.columns) -set(qconstantColumns))
    return updatedFeatures
    """"""},
            'feature_importance_class':{'name':'feature_importance_class','code':""\n\
                    \ndef feature_importance_class(df, numeric_features, cat_features,target_feature,pValTh,corrTh):\
                    \n    import pandas as pd\
                    \n    from sklearn.feature_selection import chi2\
                    \n    from sklearn.feature_selection import f_classif\
                    \n    from sklearn.feature_selection import mutual_info_classif\
                    \n    \
                    \n    impFeatures = []\
                    \n    if cat_features:\
                    \n        categoricalData=df[cat_features]\
                    \n        chiSqCategorical=chi2(categoricalData,df[target_feature])[1]\
                    \n        corrSeries=pd.Series(chiSqCategorical, index=cat_features)\
                    \n        impFeatures.append(corrSeries[corrSeries<pValTh].index.tolist())\
                    \n    if numeric_features:\
                    \n        quantData=df[numeric_features]\
                    \n        fclassScore=f_classif(quantData,df[target_feature])[1]\
                    \n        miClassScore=mutual_info_classif(quantData,df[target_feature])\
                    \n        fClassSeries=pd.Series(fclassScore,index=numeric_features)\
                    \n        miClassSeries=pd.Series(miClassScore,index=numeric_features)\
                    \n        impFeatures.append(fClassSeries[fClassSeries<pValTh].index.tolist())\
                    \n        impFeatures.append(miClassSeries[miClassSeries>corrTh].index.tolist())\
                    \n    pearsonScore=df.corr()    \
                    \n    targetPScore=abs(pearsonScore[target_feature])\
                    \n    impFeatures.append(targetPScore[targetPScore<pValTh].index.tolist())\
                    \n    return list(set(sum(impFeatures, [])))""},
            'feature_importance_reg':{'name':'feature_importance_reg','code':""\n\
                    \ndef feature_importance_reg(df, numeric_features, target_feature,pValTh,corrTh):\
                    \n    import pandas as pd\
                    \n    from sklearn.feature_selection import f_regression\
                    \n    from sklearn.feature_selection import mutual_info_regression\
                    \n    \
                    \n    impFeatures = []\
                    \n    if numeric_features:\
                    \n        quantData =df[numeric_features]\
                    \n        fregScore=f_regression(quantData,df[target_feature])[1]\
                    \n        miregScore=mutual_info_regression(quantData,df[target_feature])\
                    \n        fregSeries=pd.Series(fregScore,index=numeric_features)\
                    \n        miregSeries=pd.Series(miregScore,index=numeric_features)\
                    \n        impFeatures.append(fregSeries[fregSeries<pValTh].index.tolist())\
                    \n        impFeatures.append(miregSeries[miregSeries>corrTh].index.tolist())\
                    \n    pearsonScore=df.corr()\
                    \n    targetPScore=abs(pearsonScore[target_feature])\
                    \n    impFeatures.append(targetPScore[targetPScore<pValTh].index.tolist())\
                    \n    return list(set(sum(impFeatures, [])))""},
            'scoring_criteria':{'name':'scoring_criteria','imports':[{'mod':'make_scorer','mod_from':'sklearn.metrics'},{'mod':'roc_auc_score','mod_from':'sklearn.metrics'}], 'code':""\n\
                    \ndef scoring_criteria(score_param, problem_type, class_count):\
                    \n    if problem_type == 'classification':\
                    \n        scorer_mapping = {\
                    \n                    'recall':{'binary_class': 'recall', 'multi_class': 'recall_weighted'},\
                    \n                    'precision':{'binary_class': 'precision', 'multi_class': 'precision_weighted'},\
                    \n                    'f1_score':{'binary_class': 'f1', 'multi_class': 'f1_weighted'},\
                    \n                    'roc_auc':{'binary_class': 'roc_auc', 'multi_class': 'roc_auc_ovr_weighted'}\
                    \n                   }\
                    \n        if (score_param.lower() == 'roc_auc') and (class_count > 2):\
                    \n            score_param = make_scorer(roc_auc_score, needs_proba=True,multi_class='ovr',average='weighted')\
                    \n        else:\
                    \n            class_type = 'binary_class' if class_count == 2 else 'multi_class'\
                    \n            if score_param in scorer_mapping.keys():\
                    \n                score_param = scorer_mapping[score_param][class_type]\
                    \n            else:\
                    \n                score_param = 'accuracy'\
                    \n    return score_param""},
            'log_dataframe':{'name':'log_dataframe','code':f""\n\
                    \ndef log_dataframe(df, msg=None):\
                    \n    import io\
                    \n    buffer = io.StringIO()\
                    \n    df.info(buf=buffer)\
                    \n    if msg:\
                    \n        log_text = f'Data frame after {{msg}}:'\
                    \n    else:\
                    \n        log_text = 'Data frame:'\
                    \n    log_text += '\\n\\t'+str(df.head(2)).replace('\\n','\\n\\t')\
                    \n    log_text += ('\\n\\t' + buffer.getvalue().replace('\\n','\\n\\t'))\
                    \n    get_logger().info(log_text)""},
            'BayesSearchCV':{'name':'BayesSearchCV','imports':[{'mod':'cross_val_score','mod_from':'sklearn.model_selection'},{'mod':'fmin','mod_from':'hyperopt'},{'mod':'tpe','mod_from':'hyperopt'},{'mod':'hp','mod_from':'hyperopt'},{'mod':'STATUS_OK','mod_from':'hyperopt'},{'mod':'Trials','mod_from':'hyperopt'},{'mod':'numpy','mod_as':'np'}],'code':""\n\
                    \nclass BayesSearchCV():\
                    \n\
                    \n    def __init__(self, estimator, params, scoring, n_iter, cv):\
                    \n        self.estimator = estimator\
                    \n        self.params = params\
                    \n        self.scoring = scoring\
                    \n        self.iteration = n_iter\
                    \n        self.cv = cv\
                    \n        self.best_estimator_ = None\
                    \n        self.best_score_ = None\
                    \n        self.best_params_ = None\
                    \n\
                    \n    def __min_fun(self, params):\
                    \n        score=cross_val_score(self.estimator, self.X, self.y,scoring=self.scoring,cv=self.cv)\
                    \n        acc = score.mean()\
                    \n        return {'loss':-acc,'score': acc, 'status': STATUS_OK,'model' :self.estimator,'params': params}\
                    \n\
                    \n    def fit(self, X, y):\
                    \n        trials = Trials()\
                    \n        self.X = X\
                    \n        self.y = y\
                    \n        best = fmin(self.__min_fun,self.params,algo=tpe.suggest, max_evals=self.iteration, trials=trials)\
                    \n        result = sorted(trials.results, key = lambda x: x['loss'])[0]\
                    \n        self.best_estimator_ = result['model']\
                    \n        self.best_score_ = result['score']\
                    \n        self.best_params_ = result['params']\
                    \n        self.best_estimator_.fit(X, y)\
                    \n\
                    \n    def hyperOptParamConversion( paramSpace):\
                    \n        paramDict = {}\
                    \n        for j in list(paramSpace.keys()):\
                    \n            inp = paramSpace[j]\
                    \n            isLog = False\
                    \n            isLin = False\
                    \n            isRan = False\
                    \n            isList = False\
                    \n            isString = False\
                    \n            try:\
                    \n                # check if functions are given as input and reassign paramspace\
                    \n                v = paramSpace[j]\
                    \n                if 'logspace' in paramSpace[j]:\
                    \n                    paramSpace[j] = v[v.find('(') + 1:v.find(')')].replace(' ', '')\
                    \n                    isLog = True\
                    \n                elif 'linspace' in paramSpace[j]:\
                    \n                    paramSpace[j] = v[v.find('(') + 1:v.find(')')].replace(' ', '')\
                    \n                    isLin = True\
                    \n                elif 'range' in paramSpace[j]:\
                    \n                    paramSpace[j] = v[v.find('(') + 1:v.find(')')].replace(' ', '')\
                    \n                    isRan = True\
                    \n                elif 'list' in paramSpace[j]:\
                    \n                    paramSpace[j] = v[v.find('(') + 1:v.find(')')].replace(' ', '')\
                    \n                    isList = True\
                    \n                elif '[' and ']' in paramSpace[j]:\
                    \n                    paramSpace[j] = v.split('[')[1].split(']')[0].replace(' ', '')\
                    \n                    isList = True\
                    \n                x = paramSpace[j].split(',')\
                    \n            except:\
                    \n                x = paramSpace[j]\
                    \n            str_arg = paramSpace[j]\
                    \n\
                    \n            # check if arguments are string\
                    \n            try:\
                    \n                test = eval(x[0])\
                    \n            except:\
                    \n                isString = True\
                    \n\
                    \n            if isString:\
                    \n                paramDict.update({j: hp.choice(j, x)})\
                    \n            else:\
                    \n                res = eval(str_arg)\
                    \n                if isLin:\
                    \n                    y = eval('np.linspace' + str(res))\
                    \n                    paramDict.update({j: hp.uniform(j, eval(x[0]), eval(x[1]))})\
                    \n                elif isLog:\
                    \n                    y = eval('np.logspace' + str(res))\
                    \n                    paramDict.update(\
                    \n                        {j: hp.uniform(j, 10 ** eval(x[0]), 10 ** eval(x[1]))})\
                    \n                elif isRan:\
                    \n                    y = eval('np.arange' + str(res))\
                    \n                    paramDict.update({j: hp.choice(j, y)})\
                    \n                # check datatype of argument\
                    \n                elif isinstance(eval(x[0]), bool):\
                    \n                    y = list(map(lambda i: eval(i), x))\
                    \n                    paramDict.update({j: hp.choice(j, eval(str(y)))})\
                    \n                elif isinstance(eval(x[0]), float):\
                    \n                    res = eval(str_arg)\
                    \n                    if len(str_arg.split(',')) == 3 and not isList:\
                    \n                        y = eval('np.linspace' + str(res))\
                    \n                        #print(y)\
                    \n                        paramDict.update({j: hp.uniform(j, eval(x[0]), eval(x[1]))})\
                    \n                    else:\
                    \n                        y = list(res) if isinstance(res, tuple) else [res]\
                    \n                        paramDict.update({j: hp.choice(j, y)})\
                    \n                else:\
                    \n                    res = eval(str_arg)\
                    \n                    if len(str_arg.split(',')) == 3 and not isList:\
                    \n                        y = eval('np.linspace' +str(res)) if eval(x[2]) >= eval(x[1]) else eval('np.arange'+str(res))\
                    \n                    else:\
                    \n                        y = list(res) if isinstance(res, tuple) else [res]\
                    \n                    paramDict.update({j: hp.choice(j, y)})\
                    \n        return paramDict""},
            's2n':{'name':'s2n','imports':[{'mod':'word2number','mod_as':'w2n'},{'mod':'numpy','mod_as':'np'}],'code':""\n\
                    \ndef s2n(value):\
                    \n  try:\
                    \n      x=eval(value)\
                    \n      return x\
                    \n  except:\
                    \n      try:\
                    \n          return w2n.word_to_num(value)\
                    \n      except:\
                    \n          return np.nan""},
            'readWrite':{'name':'readWrite','imports':[{'mod':'json'},{'mod':'pandas','mod_as':'pd'}],'code':""\n\
                    \ndef read_json(file_path):\
                    \n    data = None\
                    \n    with open(file_path,'r') as f:\
                    \n        data = json.load(f)\
                    \n    return data\
                    \n\
                    \ndef write_json(data, file_path):\
                    \n    with open(file_path,'w') as f:\
                    \n        json.dump(data, f)\
                    \n\
                    \ndef read_data(file_path, encoding='utf-8', sep=','):\
                    \n    return pd.read_csv(file_path, encoding=encoding, sep=sep)\
                    \n\
                    \ndef write_data(data, file_path, index=False):\
                    \n    return data.to_csv(file_path, index=index)\
                    \n\
                    \n#Uncomment and change below code for google storage\
                    \n#def write_data(data, file_path, index=False):\
                    \n#    file_name= file_path.name\
                    \n#    data.to_csv('output_data.csv')\
                    \n#    storage_client = storage.Client()\
                    \n#    bucket = storage_client.bucket('aion_data')\
                    \n#    bucket.blob('prediction/'+file_name).upload_from_filename('output_data.csv', content_type='text/csv')\
                    \n#    return data\
                    \n\
                    \ndef is_file_name_url(file_name):\
                    \n    supported_urls_starts_with = ('gs://','https://','http://')\
                    \n    return file_name.startswith(supported_urls_starts_with)\
                    \n""},
            'logger':{'name':'set_logger','imports':[{'mod':'logging'}],'code':f""\n\
                    \nlog = None\
                    \ndef set_logger(log_file, mode='a'):\
                    \n    global log\
                    \n    logging.basicConfig(filename=log_file, filemode=mode, format='%(asctime)s %(name)s- %(message)s', level=logging.INFO, datefmt='%d-%b-%y %H:%M:%S')\
                    \n    log = logging.getLogger(Path(__file__).parent.name)\
                    \n    return log\
                    \n\
                    \ndef get_logger():\
                    \n    return log\n""},
            'mlflowSetPath':{'name':'mlflowSetPath','code':f""\n\ndef mlflowSetPath(path, name):\
                    \n{self.tab}db_name = str(Path(path)/'mlruns')\
                    \n{self.tab}mlflow.set_tracking_uri('file:///' + db_name)\
                    \n{self.tab}mlflow.set_experiment(str(Path(path).name))\
                    \n""},
            'mlflow_create_experiment':{'name':'mlflow_create_experiment','code':f""\n\ndef mlflow_create_experiment(config, path, name):\
                    \n{self.tab}tracking_uri, artifact_uri, registry_uri = get_mlflow_uris(config, path)\
                    \n{self.tab}mlflow.tracking.set_tracking_uri(tracking_uri)\
                    \n{self.tab}mlflow.tracking.set_registry_uri(registry_uri)\
                    \n{self.tab}client = mlflow.tracking.MlflowClient()\
                    \n{self.tab}experiment = client.get_experiment_by_name(name)\
                    \n{self.tab}if experiment:\
                    \n{self.tab}{self.tab}experiment_id = experiment.experiment_id\
                    \n{self.tab}else:\
                    \n{self.tab}{self.tab}experiment_id = client.create_experiment(name, artifact_uri)\
                    \n{self.tab}return client, experiment_id\
                    \n""},
            'get_mlflow_uris':{'name':'get_mlflow_uris','code':f""\n\ndef get_mlflow_uris(config, path):\
                    \n    artifact_uri = None\
                    \n    tracking_uri_type = config.get('tracking_uri_type',None)\
                    \n    if tracking_uri_type == 'localDB':\
                    \n        tracking_uri = 'sqlite:///' + str(path.resolve()/'mlruns.db')\
                    \n    elif tracking_uri_type == 'server' and config.get('tracking_uri', None):\
                    \n        tracking_uri = config['tracking_uri']\
                    \n        if config.get('artifacts_uri', None):\
                    \n            if Path(config['artifacts_uri']).exists():\
                    \n                artifact_uri = 'file:' + config['artifacts_uri']\
                    \n            else:\
                    \n                artifact_uri = config['artifacts_uri']\
                    \n        else:\
                    \n            artifact_uri = 'file:' + str(path.resolve()/'mlruns')\
                    \n    else:\
                    \n        tracking_uri = 'file:' + str(path.resolve()/'mlruns')\
                    \n        artifact_uri = None\
                    \n    if config.get('registry_uri', None):\
                    \n        registry_uri = config['registry_uri']\
                    \n    else:\
                    \n        registry_uri = 'sqlite:///' + str(path.resolve()/'registry.db')\
                    \n    return tracking_uri, artifact_uri, registry_uri\
                    \n""},
            'logMlflow':{'name':'logMlflow','code':f""\n\ndef logMlflow( params, metrices, estimator,tags={{}}, algoName=None):\
                    \n{self.tab}run_id = None\
                    \n{self.tab}for k,v in params.items():\
                    \n{self.tab}{self.tab}mlflow.log_param(k, v)\
                    \n{self.tab}for k,v in metrices.items():\
                    \n{self.tab}{self.tab}mlflow.log_metric(k, v)\
                    \n{self.tab}if 'CatBoost' in algoName:\
                    \n{self.tab}{self.tab}model_info = mlflow.catboost.log_model(estimator, 'model')\
                    \n{self.tab}else:\
                    \n{self.tab}{self.tab}model_info = mlflow.sklearn.log_model(sk_model=estimator, artifact_path='model')\
                    \n{self.tab}tags['processed'] = 'no'\
                    \n{self.tab}tags['registered'] = 'no'\
                    \n{self.tab}mlflow.set_tags(tags)\
                    \n{self.tab}if model_info:\
                    \n{self.tab}{self.tab}run_id = model_info.run_id\
                    \n{self.tab}return run_id\
                    \n""},
            'classification_metrices':{'name':'classification_metrices','imports':[{'mod':'sklearn'},{'mod':'math'}],'code':""\ndef get_classification_metrices( actual_values, predicted_values):\
                    \n    result = {}\
                    \n    accuracy_score = sklearn.metrics.accuracy_score(actual_values, predicted_values)\
                    \n    avg_precision = sklearn.metrics.precision_score(actual_values, predicted_values,\
                    \n        average='macro')\
                    \n    avg_recall = sklearn.metrics.recall_score(actual_values, predicted_values,\
                    \n        average='macro')\
                    \n    avg_f1 = sklearn.metrics.f1_score(actual_values, predicted_values,\
                    \n        average='macro')\
                    \n\
                    \n    result['accuracy'] = math.floor(accuracy_score*10000)/100\
                    \n    result['precision'] = math.floor(avg_precision*10000)/100\
                    \n    result['recall'] = math.floor(avg_recall*10000)/100\
                    \n    result['f1'] = math.floor(avg_f1*10000)/100\
                    \n    return result\
                    \n""},
            'regression_metrices':{'name':'regression_metrices','imports':[{'mod':'numpy', 'mod_as':'np'}],'code':""\ndef get_regression_metrices( actual_values, predicted_values):\
                    \n    result = {}\
                    \n\
                    \n    me = np.mean(predicted_values - actual_values)\
                    \n    sde = np.std(predicted_values - actual_values, ddof = 1)\
                    \n\
                    \n    abs_err = np.abs(predicted_values - actual_values)\
                    \n    mae = np.mean(abs_err)\
                    \n    sdae = np.std(abs_err, ddof = 1)\
                    \n\
                    \n    abs_perc_err = 100.*np.abs(predicted_values - actual_values) / actual_values\
                    \n    mape = np.mean(abs_perc_err)\
                    \n    sdape = np.std(abs_perc_err, ddof = 1)\
                    \n\
                    \n    result['mean_error'] = me\
                    \n    result['mean_abs_error'] = mae\
                    \n    result['mean_abs_perc_error'] = mape\
                    \n    result['error_std'] = sde\
                    \n    result['abs_error_std'] = sdae\
                    \n    result['abs_perc_error_std'] = sdape\
                    \n    return result\
                    \n""}
            }
            
    def add_function(self, name, importer=None):
        if name in self.available_functions.keys():
            self.codeText += self.available_functions[name]['code']
        if importer:
            if 'imports' in self.available_functions[name].keys():
                for module in self.available_functions[name]['imports']:
                    mod_name = module['mod']
                    mod_from = module.get('mod_from', None)
                    mod_as = module.get('mod_as', None)
                    importer.addModule(mod_name, mod_from=mod_from, mod_as=mod_as)
    
    def get_function_name(self, name):
        if name in self.available_functions.keys():
            return self.available_functions[name]['name']
        return None
    
    def getCode(self):
        return self.codeText
"
register.py,"""""""
/**
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  © Copyright HCL Technologies Ltd. 2021, 2022
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*/
""""""
import json

class register():

    def __init__(self, importer, indent=0, tab_size=4):
        self.tab = "" ""*tab_size
        self.codeText = """"
        self.function_code = """"
        self.importer = importer
        self.input_files = {}
        self.output_files = {}
        self.addInputFiles({'log' : 'aion.log', 'metaData' : 'modelMetaData.json','model' : 'model.pkl', 'performance': 'performance.json','production':'production.json','monitor':'monitoring.json'})
        
    def addInputFiles(self, files):
        if not isinstance(files, dict):
            raise TypeError(f""Required dict type got {type(files)} type"")
        for k,v in files.items():
            self.input_files[k] = v
            
    def addOutputFiles(self, files):
        if not isinstance(files, dict):
            raise TypeError(f""Required dict type got {type(files)} type"")
        for k,v in files.items():
            self.input_files[k] = v
            
    def getInputFiles(self):        
        text = 'IOFiles = '
        if not self.input_files:
            text += '{ }'
        else:
            text += json.dumps(self.input_files, indent=4)
        return text
        
    def getOutputFiles(self):
        text = 'output_file = '
        if not self.output_files:
            text += '{ }'
        else:
            text += json.dumps(self.output_files, indent=4)
        return text
    
    def getInputOutputFiles(self, indent=0):
        text = '\n'
        text += self.getInputFiles()
        if indent:
            text = text.replace('\n', self.tab * indent + '\n')
        return text
        
    def code_imports(self):
        modules = [{'module':'sys'}
            ,{'module':'json'}
            ,{'module':'time'}
            ,{'module':'platform'}
            ,{'module':'tempfile'}
            ,{'module':'sqlite3'}
            ,{'module':'mlflow'}
            ,{'module':'Path', 'mod_from':'pathlib'}
            ,{'module':'ViewType', 'mod_from':'mlflow.entities'}
            ,{'module':'MlflowClient', 'mod_from':'mlflow.tracking'}
            ,{'module':'ModelVersionStatus', 'mod_from':'mlflow.entities.model_registry.model_version_status'}
            ]
        self.import_modules(modules)

    def import_module(self, module, mod_from=None, mod_as=None):
        self.importer.addModule(module, mod_from=mod_from, mod_as=mod_as)
    
    def import_modules(self, modules):
        if isinstance(modules, list):
            for mod in modules:
                if isinstance(mod, dict):
                    self.importer.addModule(mod['module'], mod_from= mod.get('mod_from', None), mod_as=mod.get('mod_as', None))

    def getImportCode(self):
        return self.importer.getCode()

    def __addValidateConfigCode(self, models=None):
        text = ""\n\
        \ndef validateConfig():\
        \n    config_file = Path(__file__).parent/'config.json'\
        \n    if not Path(config_file).exists():\
        \n        raise ValueError(f'Config file is missing: {config_file}')\
        \n    config = read_json(config_file)\
		\n    return config\
		""
        return text
        
    def addLocalFunctionsCode(self, models):
        self.function_code += self.__addValidateConfigCode(models)
        
    def addPrefixCode(self, indent=1):
        self.code_imports()
        self.codeText += ""\n\
        \ndef __merge_logs(log_file_sequence,path, files):\
        \n    if log_file_sequence['first'] in files:\
        \n        with open(path/log_file_sequence['first'], 'r') as f:\
        \n            main_log = f.read()\
        \n        files.remove(log_file_sequence['first'])\
        \n        for file in files:\
        \n            with open(path/file, 'r') as f:\
        \n                main_log = main_log + f.read()\
        \n            (path/file).unlink()\
        \n        with open(path/log_file_sequence['merged'], 'w') as f:\
        \n            f.write(main_log)\
        \n\
        \ndef merge_log_files(folder, models):\
        \n    log_file_sequence = {\
        \n        'first': 'aion.log',\
        \n        'merged': 'aion.log'\
        \n    }\
        \n    log_file_suffix = '_aion.log'\
        \n    log_files = [x+log_file_suffix for x in models if (folder/(x+log_file_suffix)).exists()]\
        \n    log_files.append(log_file_sequence['first'])\
        \n    __merge_logs(log_file_sequence, folder, log_files)\
        \n\
        \ndef register_model(targetPath,models,usecasename, meta_data):\
        \n    register = mlflow_register(targetPath, usecasename, meta_data)\
        \n    register.setup_registration()\
        \n\
        \n    runs_with_score = register.get_unprocessed_runs(models)\
        \n    best_run = register.get_best_run(runs_with_score)\
        \n    register.update_unprocessed(runs_with_score)\
        \n    return register.register_model(models, best_run)\
        \n\
        \ndef register(log):\
        \n    config = validateConfig()\
        \n    targetPath = Path('aion')/config['targetPath']\
        \n    models = config['models']\
        \n    merge_log_files(targetPath, models)\
        \n    meta_data_file = targetPath/IOFiles['metaData']\
        \n    if meta_data_file.exists():\
        \n        meta_data = read_json(meta_data_file)\
        \n    else:\
        \n        raise ValueError(f'Configuration file not found: {meta_data_file}')\
        \n    usecase = config['targetPath']\
        \n    # enable logging\
        \n    log_file = targetPath/IOFiles['log']\
        \n    log = logger(log_file, mode='a', logger_name=Path(__file__).parent.stem)\
        \n    register_model_name = register_model(targetPath,models,usecase, meta_data)\
        \n    status = {'Status':'Success','Message':f'Model Registered: {register_model_name}'}\
        \n    log.info(f'output: {status}')\
        \n    return json.dumps(status)""

    def getMainCodeModules(self):
        modules = [{'module':'Path', 'mod_from':'pathlib'}
            ,{'module':'sys'}
            ,{'module':'os'}            
            ,{'module':'json'}
            ,{'module':'logging'}
            ,{'module':'shutil'}
            ,{'module':'argparse'}
            ]
        return modules
    
    def addMainCode(self, models, indent=1):
        self.codeText += ""\n\
		\nif __name__ == '__main__':\
        \n    log = None\
        \n    try:\
        \n        print(register(log))\
        \n    except Exception as e:\
        \n        if log:\
        \n            log.error(e, exc_info=True)\
        \n        status = {'Status':'Failure','Message':str(e)}\
        \n        print(json.dumps(status))""
                
    def addStatement(self, statement, indent=1):
        self.codeText += f""\n{self.tab * indent}{statement}""
        
    def query_with_quetes_code(self, decs=True, indent=1):
        return """"""\n{first_indentation}def __get_unprocessed_runs_sorted(self):
{indentation}query = ""tags.processed = 'no'""
{indentation}runs = self.client.search_runs(
{indentation}  experiment_ids=self.experiment_id,
{indentation}  filter_string=query,
{indentation}  run_view_type=ViewType.ACTIVE_ONLY,
{indentation}  order_by=['metrics.test_score {0}']
{indentation})
{indentation}return runs\n"""""".format('DESC' if decs else 'ASC', first_indentation=indent*self.tab, indentation=(1+indent)*self.tab)
        

    def addClassCode(self, smaller_is_better=False):
        self.codeText += ""\
        \nclass mlflow_register():\
        \n\
        \n    def __init__(self, input_path, model_name, meta_data):\
        \n        self.input_path = Path(input_path).resolve()\
        \n        self.model_name = model_name\
        \n        self.meta_data = meta_data\
        \n        self.logger = logging.getLogger('ModelRegister')\
        \n        self.client = None\
        \n        self.monitoring_data = read_json(self.input_path/IOFiles['monitor'])\
        \n        mlflow_default_config = {'artifacts_uri':'','tracking_uri_type':'','tracking_uri':'','registry_uri':''}\
        \n        if not self.monitoring_data.get('mlflow_config',False):\
        \n            self.monitoring_data['mlflow_config'] = mlflow_default_config\
        \n\
        \n    def setup_registration(self):\
        \n        tracking_uri, artifact_uri, registry_uri = get_mlflow_uris(self.monitoring_data['mlflow_config'],self.input_path)\
        \n        self.logger.info(f'MLflow tracking uri: {tracking_uri}')\
        \n        self.logger.info(f'MLflow registry uri: {registry_uri}')\
        \n        mlflow.set_tracking_uri(tracking_uri)\
        \n        mlflow.set_registry_uri(registry_uri)\
        \n        self.client = mlflow.tracking.MlflowClient(\
        \n                tracking_uri=tracking_uri,\
        \n                registry_uri=registry_uri,\
        \n            )\
        \n        self.experiment_id = self.client.get_experiment_by_name(self.model_name).experiment_id\
        \n""
        self.codeText += self.query_with_quetes_code(smaller_is_better == False)
        self.codeText += ""\
        \n    def __log_unprocessed_runs(self, runs):\
        \n        self.logger.info('Unprocessed runs:')\
        \n        for run in runs:\
        \n            self.logger.info('	{}: {}'.format(run.info.run_id,run.data.metrics['test_score']))\
        \n\
        \n    def get_unprocessed_runs(self, model_path):\
        \n        unprocessed_runs = self.__get_unprocessed_runs_sorted()\
        \n        if not unprocessed_runs:\
        \n            raise ValueError('Registering fail: No new trained model')\
        \n        self.__log_unprocessed_runs( unprocessed_runs)\
        \n        return unprocessed_runs\
        \n\
        \n    def __wait_until_ready(self, model_name, model_version):\
        \n        client = MlflowClient()\
        \n        for _ in range(10):\
        \n            model_version_details = self.client.get_model_version(\
        \n              name=model_name,\
        \n              version=model_version,\
        \n            )\
        \n            status = ModelVersionStatus.from_string(model_version_details.status)\
        \n            if status == ModelVersionStatus.READY:\
        \n              break\
        \n            time.sleep(1)\
        \n\
        \n    def __create_model(self, run):\
        \n        artifact_path = 'model'\
        \n        model_uri = 'runs:/{run_id}/{artifact_path}'.format(run_id=run.info.run_id, artifact_path=artifact_path)\
        \n        self.logger.info(f'Registering model (run id): {run.info.run_id}')\
        \n        model_details = mlflow.register_model(model_uri=model_uri, name=self.model_name)\
        \n        self.__wait_until_ready(model_details.name, model_details.version)\
        \n        self.client.set_tag(run.info.run_id, 'registered', 'yes' )\
        \n        state_transition = self.client.transition_model_version_stage(\
        \n            name=model_details.name,\
        \n            version=model_details.version,\
        \n            stage='Production',\
        \n        )\
        \n        self.logger.info(state_transition)\
        \n        return model_details\
        \n\
        \n    def get_best_run(self, models):\
        \n        return models[0]\
        \n\
        \n    def __validate_config(self):\
        \n        try:\
        \n            load_data_loc = self.meta_data['load_data']['Status']['DataFilePath']\
        \n        except KeyError:\
        \n            raise ValueError('DataIngestion step output is corrupted')\
        \n\
        \n    def __mlflow_log_transformer_steps(self, best_run):\
        \n        run_id = best_run.info.run_id\
        \n        meta_data = read_json(self.input_path/(best_run.data.tags['mlflow.runName']+'_'+IOFiles['metaData']))\
        \n        self.__validate_config()\
        \n        with mlflow.start_run(run_id):\
        \n            if 'transformation' in meta_data.keys():\
        \n                if 'target_encoder' in meta_data['transformation'].keys():\
        \n                    source_loc = meta_data['transformation']['target_encoder']\
        \n                    mlflow.log_artifact(str(self.input_path/source_loc))\
        \n                    meta_data['transformation']['target_encoder'] = Path(source_loc).name\
        \n                if 'preprocessor' in meta_data['transformation'].keys():\
        \n                    source_loc = meta_data['transformation']['preprocessor']\
        \n                    mlflow.log_artifact(str(self.input_path/source_loc))\
        \n                    meta_data['transformation']['preprocessor'] = Path(source_loc).name\
        \n\
        \n            write_json(meta_data, self.input_path/IOFiles['metaData'])\
        \n            mlflow.log_artifact(str(self.input_path/IOFiles['metaData']))\
        \n\
        \n    def __update_processing_tag(self, processed_runs):\
        \n        self.logger.info('Changing status to processed:')\
        \n        for run in processed_runs:\
        \n            self.client.set_tag(run.info.run_id, 'processed', 'yes')\
        \n            self.logger.info(f'	run id: {run.info.run_id}')\
        \n\
        \n    def update_unprocessed(self, runs):\
        \n        return self.__update_processing_tag( runs)\
        \n\
        \n    def __force_register(self, best_run):\
        \n        self.__create_model( best_run)\
        \n        self.__mlflow_log_transformer_steps( best_run)\
        \n        production_json = self.input_path/IOFiles['production']\
        \n        production_model = {'Model':best_run.data.tags['mlflow.runName'],'runNo':self.monitoring_data['runNo'],'score':best_run.data.metrics['test_score']}\
        \n        write_json(production_model, production_json)\
        \n        database_path = self.input_path/(self.input_path.stem + '.db')\
        \n        if database_path.exists():\
        \n            database_path.unlink()\
        \n        return best_run.data.tags['mlflow.runName']\
        \n\
        \n    def __get_register_model_score(self):\
        \n        reg = self.client.list_registered_models()\
        \n        if not reg:\
        \n            return '', 0\
        \n        run_id = reg[0].latest_versions[0].run_id\
        \n        run = self.client.get_run(run_id)\
        \n        score = run.data.metrics['test_score']\
        \n        return run_id, score\
        \n\
        \n    def register_model(self, models, best_run):\
        \n        return self.__force_register(best_run)""
        
    def local_functions_code(self, smaller_is_better=True, indent=1):
        if smaller_is_better:
            min_max = 'min'
        else:
            min_max = 'max'
        self.codeText += ""\ndef validate_config(deploy_dict):\
        \n    try:\
        \n        load_data_loc = deploy_dict['load_data']['Status']['DataFilePath']\
        \n    except KeyError:\
        \n        raise ValueError('DataIngestion step output is corrupted')\
        \n\
        \ndef get_digest(fname):\
        \n    import hashlib\
        \n    hash_algo = hashlib.sha256()\
        \n    with open(fname, 'rb') as f:\
        \n        for chunk in iter(lambda: f.read(2 ** 20), b''):\
        \n            hash_algo.update(chunk)\
        \n    return hash_algo.hexdigest()\
        \n""
        
    def getCode(self, indent=1):
        return self.function_code + '\n' + self.codeText
"
__init__.py,"""""""
/**
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  © Copyright HCL Technologies Ltd. 2021, 2022
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*/
""""""

from .imports import importModule
from .load_data import tabularDataReader
from .transformer import transformer as profiler
from .transformer import data_profiler
from .selector import selector
from .trainer import learner
from .register import register
from .deploy import deploy
from .drift_analysis import drift
from .functions import global_function
from .data_reader import data_reader
from .utility import utility_function
"
load_data.py,"""""""
/**
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  © Copyright HCL Technologies Ltd. 2021, 2022
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*/
""""""
import json

class tabularDataReader():

    def __init__(self, tab_size=4):
        self.tab = ' ' * tab_size
        self.function_code = ''
        self.codeText = ''
        self.code_generated = False
        
    def getInputFiles(self):
        IOFiles = {
			""rawData"": ""rawData.dat"",
			""metaData"" : ""modelMetaData.json"",
			""log"" : ""aion.log"",
			""outputData"" : ""rawData.dat"",
			""monitoring"":""monitoring.json"",
			""prodData"": ""prodData"",
			""prodDataGT"":""prodDataGT""            
		}
        text = 'IOFiles = '
        if not IOFiles:
            text += '{ }'
        else:
            text += json.dumps(IOFiles, indent=4)
        return text
        
    def getOutputFiles(self):
        output_files = {
                'metaData' : 'modelMetaData.json',
                'log' : 'aion.log',
                'outputData' : 'rawData.dat'
            }
        text = 'output_file = '
        if not output_files:
            text += '{ }'
        else:
            text += json.dumps(output_files, indent=4)
        return text
    
    def getInputOutputFiles(self, indent=0):
        text = '\n'
        text += self.getInputFiles()
        if indent:
            text = text.replace('\n', self.tab * indent + '\n')
        return text
        
    def __addValidateConfigCode(self):
        text = ""\n\
        \ndef validateConfig():\
        \n    config_file = Path(__file__).parent/'config.json'\
        \n    if not Path(config_file).exists():\
        \n        raise ValueError(f'Config file is missing: {config_file}')\
        \n    config = read_json(config_file)\
		\n    if not config['targetPath']:\
        \n        raise ValueError(f'Target Path is not configured')\
        \n    return config""
        return text

    def addMainCode(self):
        self.codeText += ""\n\
        \nif __name__ == '__main__':\
        \n    log = None\
        \n    try:\
        \n        print(load_data(log))\
        \n    except Exception as e:\
        \n        if log:\
        \n            log.getLogger().error(e, exc_info=True)\
        \n        status = {'Status':'Failure','Message':str(e)}\
        \n        print(json.dumps(status))\
        \n        raise Exception(str(e))\
        ""
    def addLoadDataCode(self):
        self.codeText += """"""
#This function will read the data and save the data on persistent storage        
def load_data(log):        
    config = validateConfig()
    targetPath = Path('aion')/config['targetPath']       
    targetPath.mkdir(parents=True, exist_ok=True)	
    log_file = targetPath/IOFiles['log']        
    log = logger(log_file, mode='a', logger_name=Path(__file__).parent.stem)
    monitoring = targetPath/IOFiles['monitoring']	
    if monitoring.exists():        
        monitoringStatus = read_json(monitoring)
        if monitoringStatus['dataLocation'] == '' and monitoringStatus['driftStatus'] != 'No Drift':
            reader = dataReader(reader_type=monitoring_data.get('prod_db_type','sqlite'),target_path=targetPath, config=config.get('db_config',None))
            
            raw_data_location = targetPath/IOFiles['rawData']		
            if reader.file_exists(IOFiles['prodData']) and reader.file_exists(IOFiles['prodDataGT']): 		
                predicted_data = reader.read(IOFiles['prodData'])
                actual_data = reader.read(IOFiles['prodDataGT'])
                common_col = [k for k in predicted_data.columns.tolist() if k in actual_data.columns.tolist()]				
                mergedRes = pd.merge(actual_data, predicted_data, on =common_col,how = 'inner')
                raw_data_path = pd.read_csv(raw_data_location)			
                df = pd.concat([raw_data_path,mergedRes])
            else:
                raise ValueError(f'Prod Data not found')			
        elif monitoringStatus['dataLocation'] == '':
            raise ValueError(f'Data Location does not exist')
        else:
            if 's3' in monitoringStatus.keys():
                input_reader = dataReader(reader_type='s3',target_path=None, config=monitoringStatus['s3'])
                log.info(f""Downloading '{monitoringStatus['s3']['file_name']}' from s3 bucket '{monitoringStatus['s3']['bucket_name']}'"")
                df = input_reader.read(monitoringStatus['s3']['file_name'])
            else:
                location = monitoringStatus['dataLocation']
                log.info(f'Dataset path: {location}')
                df = read_data(location)
    else:
        raise ValueError(f'Monitoring.json does not exist')		

    status = {}        
    output_data_path = targetPath/IOFiles['outputData']       
    log.log_dataframe(df)        
    required_features = list(set(config['selected_features'] + [config['target_feature']]))        
    log.info('Dataset features required: ' + ','.join(required_features))        
    missing_features = [x for x in required_features if x not in df.columns.tolist()]        
    if missing_features:        
        raise ValueError(f'Some feature/s is/are missing: {missing_features}')        
    log.info('Removing unused features: '+','.join(list(set(df.columns) - set(required_features))))        
    df = df[required_features]        
    log.info(f'Required features: {required_features}')        
    try:        
        log.info(f'Saving Dataset: {str(output_data_path)}')        
        write_data(df, output_data_path, index=False)        
        status = {'Status':'Success','DataFilePath':IOFiles['outputData'],'Records':len(df)}        
    except:        
        raise ValueError('Unable to create data file')        
        
    meta_data_file = targetPath/IOFiles['metaData']        
    meta_data = dict()        
    meta_data['load_data'] = {}        
    meta_data['load_data']['selected_features'] = [x for x in config['selected_features'] if x != config['target_feature']]        
    meta_data['load_data']['Status'] = status        
    write_json(meta_data, meta_data_file)        
    output = json.dumps(status)        
    log.info(output)        
    return output
""""""
    def addValidateConfigCode(self, indent=1):
        self.function_code += self.__addValidateConfigCode()

    def generateCode(self):
        self.addValidateConfigCode()
        self.addLoadDataCode()
        self.addMainCode()
        self.code_generated = True
        
    def addStatement(self, statement, indent=1):
        self.codeText += '\n' + self.tab * indent + statement
                
    def getCode(self):
        if not self.code_generated:
            self.generateCode()
        return self.function_code + '\n' + self.codeText
"
input_drift.py,"""""""
/**
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  © Copyright HCL Technologies Ltd. 2021, 2022
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*/
""""""

from pathlib import Path
import json
from mlac.ml.core import *
from .utility import *


def run_input_drift(config):
    importer = importModule()
    drifter = input_drift()
    importer.addModule('sys')
    importer.addModule('json')
    importer.addModule('mlflow')
    importer.addModule('platform')
    importer.addModule('warnings')    
    importer.addModule('numpy', mod_as='np')
    importer.addModule('pandas', mod_as='pd')
    importer.addModule('stats', mod_from='scipy', mod_as='st')
    importer.addModule('Path', mod_from='pathlib')
    code = file_header(config['modelName']+'_'+config['modelVersion'])
    code += importer.getCode()
    drifter.generateCode()
    code += drifter.getCode()
    deploy_path = Path(config[""deploy_path""])/'MLaC'/'InputDrift'
    deploy_path.mkdir(parents=True, exist_ok=True)
    py_file = deploy_path/""input_drift.py""
    with open(py_file, ""w"") as f:
        f.write(code)
    req_file = deploy_path/""requirements.txt""
    with open(req_file, ""w"") as f:
        f.write(importer.getBaseModule())
    create_docker_file('input_drift', deploy_path)
"
output_drift.py,"""""""
/**
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  © Copyright HCL Technologies Ltd. 2021, 2022
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*/
""""""

from pathlib import Path
import json
from mlac.ml.core import *
from .utility import *

def run_output_drift(config):
    importer = importModule()
    drifter = output_drift(missing = get_variable('fillna', False), word2num_features= get_variable('word2num_features', False), cat_encoder = get_variable('cat_encoder', False),target_encoder = get_variable('target_encoder', False),normalizer = get_variable('normalizer', False),text_profiler = get_variable('text_features', False),feature_reducer = get_variable('feature_reducer', False),score_smaller_is_better = get_variable('smaller_is_better', False),problem_type=config['problem_type'])
    function = global_function()
    importer.addModule('sys')
    importer.addModule('math')
    importer.addModule('json')
    importer.addModule('platform')
    importer.addModule('joblib')
    importer.addModule('mlflow')
    importer.addModule('sklearn')
    importer.addModule('numpy', mod_as='np')
    importer.addModule('pandas', mod_as='pd')
    importer.addModule('Path', mod_from='pathlib')
    importer.addModule('InfluxDBClient', mod_from='influxdb')
    function.add_function('readWrite')
    code = file_header(config['modelName']+'_'+config['modelVersion'])
    code += importer.getCode()
    code += function.getCode()
    drifter.generateCode()
    code += drifter.getCode()
    deploy_path = Path(config[""deploy_path""])/'MLaC'/'OutputDrift'
    deploy_path.mkdir(parents=True, exist_ok=True)
    py_file = deploy_path/""output_drift.py""
    with open(py_file, ""w"") as f:
        f.write(code)
    req_file = deploy_path/""requirements.txt""
    with open(req_file, ""w"") as f:
        f.write(importer.getBaseModule())
    create_docker_file('output_drift', deploy_path)
"
deploy.py,"""""""
/**
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  © Copyright HCL Technologies Ltd. 2021, 2022
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*/
""""""

import shutil
from pathlib import Path
import json
from mlac.ml.core import *
from .utility import *
import tarfile
def add_text_dependency():
    return """"""nltk==3.6.3
textblob==0.15.3
spacy==3.1.3
demoji==1.1.0
bs4==0.0.1
text_unidecode==1.3
contractions==0.1.73
""""""
    
def get_deploy_params(config):
    param_keys = [""modelVersion"",""problem_type"",""target_feature""]
    data = {key:value for (key,value) in config.items() if key in param_keys}
    data['targetPath'] = config['modelName']
    data['ipAddress'] = '127.0.0.1'
    data['portNo'] = '8094'
    return data

def import_trainer_module(importer):
    non_sklearn_modules = get_variable('non_sklearn_modules')
    if non_sklearn_modules:
        for mod in non_sklearn_modules:
            module = get_module_mapping(mod)
            mod_from = module.get('mod_from',None)
            mod_as = module.get('mod_as',None)
            importer.addModule(module['module'], mod_from=mod_from, mod_as=mod_as)

imported_modules = [
        {'module': 'sys', 'mod_from': None, 'mod_as': None},
        {'module': 'math', 'mod_from': None, 'mod_as': None},
        {'module': 'json', 'mod_from': None, 'mod_as': None},
        {'module': 'scipy', 'mod_from': None, 'mod_as': None},
        {'module': 'joblib', 'mod_from': None, 'mod_as': None},
        {'module': 'shutil', 'mod_from': None, 'mod_as': None},
        {'module': 'mlflow', 'mod_from': None, 'mod_as': None},
        {'module': 'sklearn', 'mod_from': None, 'mod_as': None},
        {'module': 'numpy', 'mod_from': None, 'mod_as': 'np'},
        {'module': 'Path', 'mod_from': 'pathlib', 'mod_as': None},
        {'module': 'pandas', 'mod_from': None, 'mod_as': 'pd'},
        {'module': 'argparse', 'mod_from': None, 'mod_as': None},
        {'module': 'platform', 'mod_from': None, 'mod_as': None}        
    ]

def run_deploy(config):
    generated_files = []
    importer = importModule()
    deployer = deploy(target_encoder = get_variable('target_encoder', False),feature_reducer = get_variable('feature_reducer', False),score_smaller_is_better = get_variable('smaller_is_better', False))

    function = global_function()
    importModules(importer, imported_modules)

    if get_variable('cat_encoder', False):
        importer.addModule('category_encoders')
    import_trainer_module(importer)
    if get_variable('word2num_features'):
        function.add_function('s2n', importer)
    if get_variable('text_features'):
        importer.addLocalModule('textProfiler', mod_from='text.textProfiler')

    usecase = config['modelName']+'_'+config['modelVersion']
    deploy_path = Path(config[""deploy_path""])/'MLaC'/'ModelServing'
    deploy_path.mkdir(parents=True, exist_ok=True)

    # create the utility file
    importer.addLocalModule('*', mod_from='utility')
    utility_obj = utility_function('Prediction')
    with open(deploy_path/""utility.py"", 'w') as f:
        f.write(file_header(usecase) + utility_obj.get_code())
    generated_files.append(""utility.py"")   
    
    # create the production data reader file
    importer.addLocalModule('*', mod_from='data_reader')
    reader_obj = data_reader(['sqlite','influx'])
    with open(deploy_path/""data_reader.py"", 'w') as f:
        f.write(file_header(usecase) + reader_obj.get_code())
    generated_files.append(""data_reader.py"")   

    # need to copy data profiler from AION code as code is splitted and merging code amnnually
    # can add bugs
    aion_utilities = Path(__file__).parent.parent.parent.parent / 'utilities'

    with tarfile.open(aion_utilities / 'text.tar') as file:
        file.extractall(deploy_path)
    if (deploy_path / 'utils').exists():
        shutil.rmtree(deploy_path / 'utils')
    with tarfile.open(aion_utilities / 'utils.tar') as file:
        file.extractall(deploy_path )
    generated_files.append(""text"")   
    generated_files.append(""utils"")   
        
    # create empty init file required for creating a package    
    with open(deploy_path/""__init__.py"", 'w') as f:
        f.write(file_header(usecase))
    generated_files.append(""__init__.py"")   

    function.add_function('get_mlflow_uris')
    code = file_header(usecase)
    code += importer.getCode()
    code += deployer.getInputOutputFiles()
    code += function.getCode()
    code += deployer.getCode()

    # create prediction file
    with open(deploy_path/""predict.py"", 'w') as f:
        f.write(code)
    generated_files.append(""predict.py"")   
    
    # create groundtruth file
    with open(deploy_path/""groundtruth.py"", 'w') as f:
        f.write(file_header(usecase) + deployer.getGroundtruthCode())
    generated_files.append(""groundtruth.py"")   

    # create create service file
    with open(deploy_path/""aionCode.py"", 'w') as f:
        f.write(file_header(usecase) + deployer.getServiceCode())
    generated_files.append(""aionCode.py"")   
    importer.addModule('seaborn')
    # create requirements file
    req_file = deploy_path/""requirements.txt""
    with open(req_file, ""w"") as f:
        req=importer.getBaseModule(extra_importers=[utility_obj.get_importer(), reader_obj.get_importer()])
        if config[""text_features""]:
            req += add_text_dependency()
        f.write(req)
    generated_files.append(""requirements.txt"")
    
    # create config file
    config_file = deploy_path/""config.json""
    config_data = get_deploy_params(config)
    with open (config_file, ""w"") as f:
        json.dump(config_data, f, indent=4)
    generated_files.append(""config.json"")   
    
    # create docker file
    create_docker_file('Prediction', deploy_path,config['modelName'], generated_files, True if config[""text_features""] else False)"
trainer.py,"""""""
/**
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  © Copyright HCL Technologies Ltd. 2021, 2022
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*/
""""""

from pathlib import Path
import json
from mlac.ml.core import *
from .utility import *

def get_model_name(algo, method):
    if method == 'modelBased':
        return algo + '_' + 'MLBased'
    if method == 'statisticalBased':
        return algo + '_' + 'StatisticsBased'
    else:
        return algo


def get_training_params(config, algo):
    param_keys = [""modelVersion"",""problem_type"",""target_feature"",""train_features"",""scoring_criteria"",""test_ratio"",""optimization_param""]
    data = {key:value for (key,value) in config.items() if key in param_keys}
    data['algorithms'] = {algo: config['algorithms'][algo]}
    data['targetPath'] = config['modelName']
    return data

def addImporterLearner(model, importer):
    module = get_module_mapping(model)
    mod_from = module.get('mod_from',None)
    mod_as = module.get('mod_as',None)
    importer.addModule(module['module'], mod_from=mod_from, mod_as=mod_as)
    if not get_variable('non_sklearn_modules'):
        update_variable('non_sklearn_modules', [])
    if 'sklearn' not in mod_from:
        modules = get_variable('non_sklearn_modules')
        modules.append(model)
        update_variable('non_sklearn_modules', modules)

def addEvaluator(scorer_type, optimizer,trainer, importer):
    trainer.addStatement(""if not X_test.empty:"")
    if optimizer == 'genetic':
        trainer.addStatement('features = [x for i,x in enumerate(features) if grid.support_[i]]',indent=2)
    trainer.addStatement('y_pred = estimator.predict(X_test[features])',indent=2)
    if scorer_type == 'accuracy':
        importer.addModule('accuracy_score', mod_from='sklearn.metrics')
        trainer.addStatement(f""test_score = round(accuracy_score(y_test,y_pred),2) * 100"",indent=2)
        importer.addModule('confusion_matrix', mod_from='sklearn.metrics')
        trainer.addStatement(""log.info('Confusion Matrix:')"",indent=2)
        trainer.addStatement(""log.info('\\n' + pd.DataFrame(confusion_matrix(y_test,y_pred)).to_string())"",indent=2)
    elif scorer_type == 'recall':
        importer.addModule('recall_score', mod_from='sklearn.metrics')
        trainer.addStatement(f""test_score = round(recall_score(y_test,y_pred,average='macro'),2) * 100"",indent=2)
        importer.addModule('confusion_matrix', mod_from='sklearn.metrics')
        trainer.addStatement(f""log.info('Confusion Matrix:\\n')"",indent=2)
        trainer.addStatement(f'log.info(pd.DataFrame(confusion_matrix(y_test,y_pred)))',indent=2)
    elif scorer_type == 'precision':
        importer.addModule('precision_score', mod_from='sklearn.metrics')
        trainer.addStatement(f""test_score = round(precision_score(y_test,y_pred,average='macro'),2) * 100"",indent=2)
        importer.addModule('confusion_matrix', mod_from='sklearn.metrics')
        trainer.addStatement(f""log.info('Confusion Matrix:\\n')"",indent=2)
        trainer.addStatement(f'log.info(pd.DataFrame(confusion_matrix(y_test,y_pred)))',indent=2)
    elif scorer_type == 'f1_score':
        importer.addModule('f1_score', mod_from='sklearn.metrics')
        trainer.addStatement(f""test_score = round(f1_score(y_test,y_pred,average='macro'),2) * 100"",indent=2)
        importer.addModule('confusion_matrix', mod_from='sklearn.metrics')
        trainer.addStatement(f""log.info('Confusion Matrix:\\n')"",indent=2)
        trainer.addStatement(f'log.info(pd.DataFrame(confusion_matrix(y_test,y_pred)))',indent=2)
    elif scorer_type == 'roc_auc':
        importer.addModule('roc_auc_score', mod_from='sklearn.metrics')
        trainer.addStatement(""try:"")
        trainer.addStatement(f""test_score = round(roc_auc_score(y_test,y_pred),2) * 100"", indent=3)
        importer.addModule('confusion_matrix', mod_from='sklearn.metrics')
        trainer.addStatement(f""log.info('Confusion Matrix:\\n')"",indent=3)
        trainer.addStatement(f'log.info(pd.DataFrame(confusion_matrix(y_test,y_pred)))',indent=3)
        trainer.addStatement(""except:"")
        trainer.addStatement(""try:"",indent=3)
        trainer.addStatement(""actual = pd.get_dummies(y_test)"",indent=4)
        trainer.addStatement(""y_pred = pd.get_dummies(y_pred)"",indent=4)
        trainer.addStatement(f""test_score = round(roc_auc_score(y_test,y_pred,average='weighted', multi_class='ovr'),2) * 100"", indent=3)
        trainer.addStatement(f""log.info('Confusion Matrix:\\n')"",indent=4)
        trainer.addStatement(f'log.info(pd.DataFrame(confusion_matrix(y_test,y_pred)))',indent=4)
        trainer.addStatement(""except:"",indent=3)
        trainer.addStatement(f""test_score = 0.0"", indent=4)
    elif scorer_type == 'neg_mean_squared_error' or scorer_type == 'mse':
        importer.addModule('mean_squared_error', mod_from='sklearn.metrics')
        trainer.addStatement(f'test_score = round(mean_squared_error(y_test,y_pred),2)',indent=2)
        update_variable('smaller_is_better', True)
    elif scorer_type == 'neg_root_mean_squared_error' or scorer_type == 'rmse':
        importer.addModule('mean_squared_error', mod_from='sklearn.metrics')
        trainer.addStatement(f'test_score = round(mean_squared_error(y_test,y_pred,squared=False),2)',indent=2)
        update_variable('smaller_is_better', True)
    elif scorer_type == 'neg_mean_absolute_error' or scorer_type == 'mae':
        importer.addModule('mean_absolute_error', mod_from='sklearn.metrics')
        trainer.addStatement(f'test_score = round(mean_absolute_error(y_test,y_pred),2)',indent=2)
        update_variable('smaller_is_better', True)
    elif scorer_type == 'r2':
        importer.addModule('r2_score', mod_from='sklearn.metrics')
        trainer.addStatement(f'test_score = round(r2_score(y_test,y_pred),2)',indent=2)
def update_search_space(algo, config):
    search_space = []
    algoritms = config[""algorithms""]
    model = algo
    params = algoritms[model]
    model_dict = {model:get_module_mapping(model)['mod_from']}
    d = {'algo': model_dict}
    d['param'] = params
    search_space.append(d)
    config['search_space'] = search_space

def get_optimization(optimization, importer, function=None):
    if optimization == 'grid':
        importer.addModule('GridSearchCV', mod_from='sklearn.model_selection')
        optimization = 'GridSearchCV'
    elif optimization == 'random':
        importer.addModule('RandomizedSearchCV', mod_from='sklearn.model_selection')
        optimization = 'RandomizedSearchCV'
    elif optimization == 'genetic':
        importer.addModule('GeneticSelectionCV', mod_from='genetic_selection')
        optimization = 'GeneticSelectionCV'
    elif optimization == 'bayesopt':
        optimization = 'BayesSearchCV'
        function.add_function(optimization,importer)
    return optimization
    
def scoring_criteria_reg(score_param):
    scorer_mapping = {                    
                        'mse':'neg_mean_squared_error',                    
                        'rmse':'neg_root_mean_squared_error',                    
                        'mae':'neg_mean_absolute_error',                    
                        'r2':'r2'                    
                     }                    
    return scorer_mapping.get(score_param, 'neg_mean_squared_error')                     

def addBalancing(balancingMethod, importer, code):
    if balancingMethod == 'oversample':
        importer.addModule('SMOTE', mod_from='imblearn.over_sampling')
        code.addStatement(""\n    # data balancing"")
        code.addStatement(""X_train, y_train = SMOTE(sampling_strategy='auto', k_neighbors=1, random_state=100).fit_resample(X_train, y_train)"")
    if balancingMethod == 'undersample':
        importer.addModule('TomekLinks', mod_from='imblearn.under_sampling')
        code.addStatement(""\n    # data balancing"")
        code.addStatement(""X_train, y_train = TomekLinks().fit_resample(X_train, y_train)"")

def run_trainer(base_config):    
    base_trainer = learner()
    base_importer = importModule()
    function = global_function()
    base_importer.addModule('joblib')
    base_importer.addModule('warnings')
    base_importer.addModule('argparse')
    base_importer.addModule('pandas', mod_as='pd')
    base_importer.addModule('Path', mod_from='pathlib')
    function.add_function('get_mlflow_uris')
    function.add_function('mlflow_create_experiment')
    importModules(base_importer,base_trainer.getPrefixModules())
    base_trainer.addPrefixCode()
    if base_config[""algorithms""]:
        base_trainer.add_train_test_split('train_features', 'target_feature', ""config['test_ratio']"")
        if base_config[""problem_type""] == 'classification':
            if base_config[""balancingMethod""]:
                addBalancing(base_config[""balancingMethod""],base_importer,base_trainer)
                base_trainer.addStatement(f""log.info('Data balancing done')"")
        base_trainer.addStatement(""\n    #select scorer"")
        if base_config[""problem_type""] == 'classification':
            function.add_function('scoring_criteria', base_importer)
            base_trainer.addStatement(""scorer = scoring_criteria(config['scoring_criteria'],config['problem_type'], df[target_feature].nunique())"")
        else:
            base_config['scoring_criteria'] = scoring_criteria_reg(base_config['scoring_criteria'])
            base_trainer.addStatement(f""scorer = config['scoring_criteria']"")
        base_trainer.addStatement(f""log.info('Scoring criteria: {base_config['scoring_criteria']}')"")
        feature_selector = []
        if base_config['feature_reducer']:
            feature_selector.append(base_config['feature_reducer'])
        elif base_config['feature_selector']:
            feature_selector = base_config['feature_selector']
        for algo in base_config[""algorithms""].keys():
            for method in feature_selector:
                trainer = learner()
                importer = importModule()
                trainer.copyCode(base_trainer)
                importer.copyCode(base_importer)
                config = base_config
                usecase = config['modelName']+'_'+config['modelVersion']				
                addImporterLearner(algo, importer)
                trainer.addStatement(""\n    #Training model"")
                trainer.addStatement(f""log.info('Training {algo} for {method}')"")
                trainer.add_model_fit(algo, get_optimization(config[""optimization""], importer, function), method, importer)
                trainer.addStatement(""\n    #model evaluation"")
                addEvaluator(config['scoring_criteria'],config[""optimization""], trainer, importer)
                function.add_function('mlflowSetPath')
                function.add_function('logMlflow')
                importModules(importer, trainer.getSuffixModules())
                importModules(importer, trainer.getMainCodeModules())
                if base_config[""problem_type""] == 'classification':
                    function.add_function('classification_metrices', importer)
                    trainer.addStatement(""metrices = get_classification_metrices(y_test,y_pred)"",indent=2)
                    trainer.add_100_trainsize_code()
                    trainer.addStatement(""metrices.update({'train_score': train_score, 'test_score':test_score})"")
                else:
                    function.add_function('regression_metrices', importer)
                    trainer.addStatement(""metrices = get_regression_metrices(y_test,y_pred)"",indent=2)
                    trainer.add_100_trainsize_code()
                    trainer.addStatement(""metrices.update({'train_score': train_score, 'test_score':test_score})"")
                trainer.addSuffixCode()
                trainer.addMainCode()

                model_name = get_model_name(algo,method)
                deploy_path = Path(config[""deploy_path""])/'MLaC'/('ModelTraining'+'_' + model_name)
                deploy_path.mkdir(parents=True, exist_ok=True)
                generated_files = []
                
                # create the utility file
                importer.addLocalModule('*', mod_from='utility')
                utility_obj = utility_function('train')
                with open(deploy_path/""utility.py"", 'w') as f:
                    f.write(file_header(usecase) + utility_obj.get_code())
                generated_files.append(""utility.py"")   

                # create empty init file to make a package    
                with open(deploy_path/""__init__.py"", 'w') as f:
                    f.write(file_header(usecase))
                generated_files.append(""__init__.py"")   
                
                code  = importer.getCode()
                code += 'warnings.filterwarnings(""ignore"")\n'
                code += f""\nmodel_name = '{model_name}'\n""
                append_variable('models_name',model_name)
                out_files = {'log':f'{model_name}_aion.log','model':f'{model_name}_model.pkl','performance':f'{model_name}_performance.json','metaDataOutput':f'{model_name}_modelMetaData.json'}
                trainer.addOutputFiles(out_files)
                code += trainer.getInputOutputFiles()
                code += function.getCode()
                trainer.addLocalFunctionsCode()
                code += trainer.getCode()
                with open(deploy_path/""aionCode.py"", ""w"") as f:
                    f.write(code)
                generated_files.append(""aionCode.py"")   

                with open(deploy_path/""requirements.txt"", ""w"") as f:
                    req=importer.getBaseModule(extra_importers=[utility_obj.get_importer()])
                    f.write(req)
                generated_files.append(""requirements.txt"")   

                with open (deploy_path/""config.json"", ""w"") as f:
                    json.dump(get_training_params(config, algo), f, indent=4)
                generated_files.append(""config.json"")   

                create_docker_file('train', deploy_path,config['modelName'], generated_files)
"
selector.py,"""""""
/**
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  © Copyright HCL Technologies Ltd. 2021, 2022
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*/
""""""

from pathlib import Path
import json
import platform
from mlac.ml.core import *
from .utility import *

output_file_map = {
    'feature_reducer' : {'feature_reducer' : 'feature_reducer.pkl'}
}

def get_selector_params(config):
    param_keys = [""modelVersion"",""problem_type"",""target_feature"",""train_features"",""cat_features"",""n_components""]
    data = {key:value for (key,value) in config.items() if key in param_keys}
    data['targetPath'] = config['modelName']
    return data
        
def run_selector(config):    
    select = selector()
    importer = importModule()
    function = global_function()
    importModules(importer,select.getPrefixModules())
    select.addPrefixCode()
    if config[""target_feature""] in config[""train_features""]:
        config[""train_features""].remove(config[""target_feature""])
    select.addStatement(""train_features = df.columns.tolist()"")
    select.addStatement(""target_feature = config['target_feature']"")
    select.addStatement(""train_features.remove(target_feature)"")
    select.addStatement(""cat_features = prev_step_output['cat_features']"")
    select.add_variable('total_features',[])
    select.addStatement(""log.log_dataframe(df)"")
    methods = config.get(""feature_selector"", None)
    feature_reducer = config.get(""feature_reducer"", None)
    select.addStatement(""selected_features = {}"")
    select.addStatement(""meta_data['featureengineering']= {}"")
    if feature_reducer:
        update_variable('feature_reducer', True)
        select.addStatement(f""log.info('Running dimensionality reduction technique( {feature_reducer})')"")
        if feature_reducer == 'pca':
            importer.addModule('PCA', mod_from='sklearn.decomposition')
            if int(config[""n_components""]) == 0:
                select.addStatement(""dimension_reducer = PCA(n_components='mle',svd_solver = 'full')"")
            elif int(config[""n_components""]) < 1:
                select.addStatement(""dimension_reducer = PCA(n_components=config['n_components'],svd_solver = 'full')"")
            else:
                select.addStatement(""dimension_reducer = PCA(n_components=config['n_components'])"")
        elif feature_reducer == 'svd':
            importer.addModule('TruncatedSVD', mod_from='sklearn.decomposition')
            if config[""n_components""] < 2:
                config[""n_components""] = 2
            select.addStatement(""dimension_reducer = TruncatedSVD(n_components=config['n_components'], n_iter=7, random_state=42)"")
        elif feature_reducer == 'factoranalysis':
            importer.addModule('FactorAnalysis', mod_from='sklearn.decomposition')
            if config[""n_components""] == 0:
                select.addStatement(""dimension_reducer = FactorAnalysis()"")
            else:
                select.addStatement(""dimension_reducer = FactorAnalysis(n_components=config['n_components'])"")
        elif feature_reducer == 'ica':
            importer.addModule('FastICA', mod_from='sklearn.decomposition')
            if config[""n_components""] == 0:
                select.addStatement(""dimension_reducer = FastICA()"")
            else:
                select.addStatement(""dimension_reducer = FastICA(n_components=config['n_components'])"")
        select.addStatement(""pca_array = dimension_reducer.fit_transform(df[train_features])"")
        select.addStatement(""pca_columns = ['pca_'+str(e) for e in list(range(pca_array.shape[1]))]"")
        select.addStatement(""scaledDF = pd.DataFrame(pca_array, columns=pca_columns)"")
        select.addStatement(""scaledDF[target_feature] = df[target_feature]"")
        select.addStatement(""df = scaledDF"")
        select.addStatement(f""selected_features['{feature_reducer}'] = pca_columns"")
        select.addStatement(""total_features = df.columns.tolist()"")
        select.addStatement(""meta_data['featureengineering']['feature_reducer']= {}"")
        select.addStatement(""reducer_file_name = str(targetPath/IOFiles['feature_reducer'])"")
        importer.addModule('joblib')
        select.addStatement(""joblib.dump(dimension_reducer, reducer_file_name)"")
        select.addStatement(""meta_data['featureengineering']['feature_reducer']['file']= IOFiles['feature_reducer']"")
        select.addStatement(""meta_data['featureengineering']['feature_reducer']['features']= train_features"")
        select.addOutputFiles(output_file_map['feature_reducer'])
        
    elif methods:
        if 'allFeatures' in methods:
            addDropFeature('target_feature', 'train_features', select)
            select.addStatement(""selected_features['allFeatures'] = train_features"")
        if 'modelBased' in methods:
            select.addStatement(f""log.info('Model Based Correlation Analysis Start')"")
            select.addStatement(""model_based_feat = []"")
            importer.addModule('numpy', mod_as='np')
            importer.addModule('RFE', mod_from='sklearn.feature_selection')
            importer.addModule('MinMaxScaler', mod_from='sklearn.preprocessing')
            if config[""problem_type""] == 'classification':
                importer.addModule('ExtraTreesClassifier', mod_from='sklearn.ensemble')
                select.addStatement(""estimator = ExtraTreesClassifier(n_estimators=100)"")
            else:
                importer.addModule('Lasso', mod_from='sklearn.linear_model')
                select.addStatement(""estimator = Lasso()"")
            select.addStatement(""estimator.fit(df[train_features],df[target_feature])"")
            select.addStatement(""rfe = RFE(estimator, n_features_to_select=1, verbose =0 )"")
            select.addStatement(""rfe.fit(df[train_features],df[target_feature])"")
            select.addStatement(""ranks = MinMaxScaler().fit_transform(-1*np.array([list(map(float, rfe.ranking_))]).T).T[0]"")
            select.addStatement(""ranks = list(map(lambda x: round(x,2), ranks))"")
            select.addStatement(""for item, rank in zip(df.columns,ranks):"")
            select.addStatement(""if rank > 0.30:"", indent=2)
            select.addStatement(""model_based_feat.append(item)"", indent=3)
            addDropFeature('target_feature', 'model_based_feat', select)
            select.addStatement(""selected_features['modelBased'] = model_based_feat"")
            select.addStatement(f""log.info(f'Highly Correlated Features : {{model_based_feat}}')"")
        if 'statisticalBased' in methods:
            select.addStatement(f""log.info('Statistical Based Correlation Analysis Start')"")
            function.add_function('start_reducer',importer)
            select.addStatement(f""features = start_reducer(df, target_feature, {config['corr_threshold']},{config['var_threshold']})"")
            select.addStatement(""train_features = [x for x in features if x in train_features]"")
            select.addStatement(""cat_features = [x for x in cat_features if x in features]"")
            select.addStatement(""numeric_features = df[features].select_dtypes('number').columns.tolist()"")
            if config[""problem_type""] == 'classification':
                function.add_function('feature_importance_class')
                select.addStatement(f""statistics_based_feat = feature_importance_class(df[features], numeric_features, cat_features, target_feature, {config['pValueThreshold']},{config['corr_threshold']})"")
            else:
                function.add_function('feature_importance_reg')
                select.addStatement(f""statistics_based_feat = feature_importance_reg(df[features], numeric_features, target_feature, {config['pValueThreshold']},{config['corr_threshold']})"")
            addDropFeature('target_feature', 'statistics_based_feat', select)
            select.addStatement(""selected_features['statisticalBased'] = statistics_based_feat"")
            select.addStatement(f""log.info('Highly Correlated Features : {{statistics_based_feat}}')"")
        select.addStatement(""total_features = list(set([x for y in selected_features.values() for x in y] + [target_feature]))"")
        select.addStatement(f""df = df[total_features]"")
    select.addStatement(""log.log_dataframe(df)"")
    select.addSuffixCode()
    importModules(importer, select.getSuffixModules())
    importModules(importer, select.getMainCodeModules())
    select.addMainCode()
    
    generated_files = []
    usecase = config['modelName']+'_'+config['modelVersion']
    deploy_path = Path(config[""deploy_path""])/'MLaC'/'FeatureEngineering'
    deploy_path.mkdir(parents=True, exist_ok=True)
    
    # create the utility file
    importer.addLocalModule('*', mod_from='utility')
    utility_obj = utility_function('selector')
    with open(deploy_path/""utility.py"", 'w') as f:
        f.write(file_header(usecase) + utility_obj.get_code())
    generated_files.append(""utility.py"")   

    # create empty init file to make a package    
    with open(deploy_path/""__init__.py"", 'w') as f:
        f.write(file_header(usecase))
    generated_files.append(""__init__.py"")   
        
    code  = file_header(usecase)
    code += importer.getCode()
    code += select.getInputOutputFiles()
    code += function.getCode()
    select.addLocalFunctionsCode()
    code += select.getCode()
    with open(deploy_path/""aionCode.py"", ""w"") as f:
        f.write(code)
    generated_files.append(""aionCode.py"")   

    with open(deploy_path/""requirements.txt"", ""w"") as f:
        req=importer.getBaseModule(extra_importers=[utility_obj.get_importer()])
        f.write(req)
    generated_files.append(""requirements.txt"")   

    config_file = deploy_path/""config.json""
    config_data = get_selector_params(config)
    with open (config_file, ""w"") as f:
        json.dump(config_data, f, indent=4)
    generated_files.append(""config.json"")   

    create_docker_file('selector', deploy_path,config['modelName'], generated_files)"
utility.py,"""""""
/**
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  © Copyright HCL Technologies Ltd. 2021, 2022
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*/
""""""

import datetime
from pathlib import Path

variables = {}

def init_variables():
    global variables
    variables = {}
def update_variable(name, value):
    variables[name] = value
    
def get_variable(name, default=None):
    return variables.get(name, default)

def append_variable(name, value):
    data = get_variable(name)
    if not data:
        update_variable(name, [value])
    elif not isinstance(data, list):
        update_variable(name, [data, value])
    else:
        data.append(value)
        update_variable(name, data)
    
def addDropFeature(feature, features_list, coder, indent=1):
    coder.addStatement(f'if {feature} in {features_list}:', indent=indent)
    coder.addStatement(f'{features_list}.remove({feature})', indent=indent+1)
    
def importModules(importer, modules_list):
    for module in modules_list:
        mod_from = module.get('mod_from',None)
        mod_as = module.get('mod_as',None)
        importer.addModule(module['module'], mod_from=mod_from, mod_as=mod_as)
                
def file_header(use_case, module_name=None):
    time_str = datetime.datetime.now().isoformat(timespec='seconds', sep=' ')
    text = ""#!/usr/bin/env python\n# -*- coding: utf-8 -*-\n""
    return text + f""'''\nThis file is automatically generated by AION for {use_case} usecase.\nFile generation time: {time_str}\n'''""

def get_module_mapping(module):
    mapping = {
        ""LogisticRegression"": {'module':'LogisticRegression', 'mod_from':'sklearn.linear_model'}
        ,""GaussianNB"": {'module':'GaussianNB', 'mod_from':'sklearn.naive_bayes'}
        ,""DecisionTreeClassifier"": {'module':'DecisionTreeClassifier', 'mod_from':'sklearn.tree'}
        ,""SVC"": {'module':'SVC', 'mod_from':'sklearn.svm'}
        ,""KNeighborsClassifier"": {'module':'KNeighborsClassifier', 'mod_from':'sklearn.neighbors'}
        ,""GradientBoostingClassifier"": {'module':'GradientBoostingClassifier', 'mod_from':'sklearn.ensemble'}
        ,'RandomForestClassifier':{'module':'RandomForestClassifier','mod_from':'sklearn.ensemble'}
        ,'XGBClassifier':{'module':'XGBClassifier','mod_from':'xgboost'}
        ,'LGBMClassifier':{'module':'LGBMClassifier','mod_from':'lightgbm'}
        ,'CatBoostClassifier':{'module':'CatBoostClassifier','mod_from':'catboost'}

        ,""LinearRegression"": {'module':'LinearRegression', 'mod_from':'sklearn.linear_model'}
        ,""Lasso"": {'module':'Lasso', 'mod_from':'sklearn.linear_model'}
        ,""Ridge"": {'module':'Ridge', 'mod_from':'sklearn.linear_model'}
        ,""DecisionTreeRegressor"": {'module':'DecisionTreeRegressor', 'mod_from':'sklearn.tree'}
        ,'RandomForestRegressor':{'module':'RandomForestRegressor','mod_from':'sklearn.ensemble'}
        ,'XGBRegressor':{'module':'XGBRegressor','mod_from':'xgboost'}
        ,'LGBMRegressor':{'module':'LGBMRegressor','mod_from':'lightgbm'}
        ,'CatBoostRegressor':{'module':'CatBoostRegressor','mod_from':'catboost'}
    }
    return mapping.get(module, None)

def create_docker_file(name, path,usecasename,files=[],text_feature=False):
    text = """"
    if name == 'load_data':
        text='FROM python:3.8-slim-buster'
        text+='\n'
        text+='LABEL ""usecase""=""'+str(usecasename)+'""'
        text+='\n'
        text+='LABEL ""usecase_test""=""'+str(usecasename)+'_test'+'""'
        for file in files:
            text+=f'\nCOPY  {file} {file}'
        text+='\n'
        text+='RUN pip install --no-cache-dir -r requirements.txt'
    elif name == 'transformer':
        text='FROM python:3.8-slim-buster\n'
        text+='LABEL ""usecase""=""'+str(usecasename)+'""'
        text+='\n'
        text+='LABEL ""usecase_test""=""'+str(usecasename)+'_test'+'""'
        text+='\n'		
        for file in files:
            text+=f'\nCOPY  {file} {file}'
        text+='\n'
        text+='''RUN \
'''
        text+=''' pip install --no-cache-dir -r requirements.txt\
'''
        if text_feature:
            text += ''' &&  python -m nltk.downloader stopwords && python -m nltk.downloader punkt && python -m nltk.downloader wordnet && python -m nltk.downloader averaged_perceptron_tagger\
'''
        text+='\n'
    elif name == 'selector':
        text='FROM python:3.8-slim-buster'
        text+='\n'
        text+='LABEL ""usecase""=""'+str(usecasename)+'""'
        text+='\n'
        text+='LABEL ""usecase_test""=""'+str(usecasename)+'_test'+'""'
        text+='\n'				
        for file in files:
            text+=f'\nCOPY  {file} {file}'
        text+='\n'
        text+='RUN pip install --no-cache-dir -r requirements.txt'
    elif name == 'train':
        text='FROM python:3.8-slim-buster'
        text+='\n'
        text+='LABEL ""usecase""=""'+str(usecasename)+'""'
        text+='\n'
        text+='LABEL ""usecase_test""=""'+str(usecasename)+'_test'+'""'
        text+='\n'
        text+='COPY  requirements.txt requirements.txt'
        text+='\n'
        text+='COPY  config.json config.json'
        text+='\n'
        text+='COPY  aionCode.py aionCode.py'
        text+='\n'
        text+='COPY  utility.py utility.py'        
        text+='\n'
        text+='RUN pip install --no-cache-dir -r requirements.txt'
    elif name == 'register':
        text='FROM python:3.8-slim-buster'
        text+='\n'
        text+='LABEL ""usecase""=""'+str(usecasename)+'""'
        text+='\n'
        text+='LABEL ""usecase_test""=""'+str(usecasename)+'_test'+'""'
        text+='\n'
        for file in files:
            text+=f'\nCOPY  {file} {file}'
        text+='\n'
        text+='RUN pip install --no-cache-dir -r requirements.txt'
    elif name == 'Prediction':
        text='FROM python:3.8-slim-buster'
        text+='\n'
        text+='LABEL ""usecase""=""'+str(usecasename)+'""'
        text+='\n'
        text+='LABEL ""usecase_test""=""'+str(usecasename)+'_test'+'""'
        text+='\n'
        for file in files:
            text+=f'\nCOPY  {file} {file}'
        text+='\n'				
        text+='''RUN \
'''		
        text+='''pip install --no-cache-dir -r requirements.txt\
'''
        if text_feature:
            text += ''' &&  python -m nltk.downloader stopwords && python -m nltk.downloader punkt && python -m nltk.downloader wordnet && python -m nltk.downloader averaged_perceptron_tagger\
'''
        text+='\n'
        text+='ENTRYPOINT [""python"", ""aionCode.py"",""-ip"",""0.0.0.0"",""-pn"",""8094""]\n'
    elif name == 'input_drift':
        text='FROM python:3.8-slim-buster'
        text+='\n'
        text+='LABEL ""usecase""=""'+str(usecasename)+'""'
        text+='\n'
        text+='LABEL ""usecase_test""=""'+str(usecasename)+'_test'+'""'
        text+='\n'
        for file in files:
            text+=f'\nCOPY  {file} {file}'
        text+='\n'
        text+='RUN pip install --no-cache-dir -r requirements.txt'
    file_name = Path(path)/'Dockerfile'
    with open(file_name, 'w') as f:
        f.write(text)"
drift_analysis.py,"""""""
/**
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  © Copyright HCL Technologies Ltd. 2021, 2022
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*/
""""""

from pathlib import Path
import json
from mlac.ml.core import *
from .utility import *

imported_modules = [
        {'module': 'sys', 'mod_from': None, 'mod_as': None},
        {'module': 'json', 'mod_from': None, 'mod_as': None},
        {'module': 'math', 'mod_from': None, 'mod_as': None},
        {'module': 'joblib', 'mod_from': None, 'mod_as': None},
        {'module': 'mlflow', 'mod_from': None, 'mod_as': None},
        {'module': 'sklearn', 'mod_from': None, 'mod_as': None},
        {'module': 'Path', 'mod_from': 'pathlib', 'mod_as': None},
        {'module': 'numpy', 'mod_from': None, 'mod_as': 'np'},
        {'module': 'pandas', 'mod_from': None, 'mod_as': 'pd'},
        {'module': 'argparse', 'mod_from': None, 'mod_as': None},
        {'module': 'stats', 'mod_from': 'scipy', 'mod_as': 'st'},
        {'module': 'platform', 'mod_from': None, 'mod_as': None }   
    ]

def get_drift_params(config):
    param_keys = [""modelVersion"",""problem_type"",""target_feature"",""selected_features"",""scoring_criteria"",""s3""]
    data = {key:value for (key,value) in config.items() if key in param_keys}
    usecase = config['modelName']
    data['targetPath'] = usecase
    if config['dataLocation'] != '':
        data['inputUri'] = config['dataLocation']	
    else:	
        data['inputUri'] = '<input datalocation>'	
    data['prod_db_type'] = config.get('prod_db_type', 'sqlite')
    data['db_config'] = config.get('db_config', {})
    data['mlflow_config'] = config.get('mlflow_config', {'artifacts_uri':'','tracking_uri_type':'','tracking_uri':'','registry_uri':''})
    return data

def run_drift_analysis(config):
    init_variables()
    importer = importModule()
    function = global_function()
    drifter = drift()
    importModules(importer, imported_modules)
    usecase = config['modelName']+'_'+config['modelVersion']
    deploy_path = Path(config[""deploy_path""])/'MLaC'/'ModelMonitoring'
    deploy_path.mkdir(parents=True, exist_ok=True)
    
    generated_files = []
    # create the utility file
    importer.addLocalModule('*', mod_from='utility')
    utility_obj = utility_function('drift')
    with open(deploy_path/""utility.py"", 'w') as f:
        f.write(file_header(usecase) + utility_obj.get_code())
    generated_files.append(""utility.py"")   
    # create the production data reader file
    importer.addLocalModule('dataReader', mod_from='data_reader')
    readers = ['sqlite','influx']
    if 's3' in config.keys():
        readers.append('s3')
    reader_obj = data_reader(readers)
    with open(deploy_path/""data_reader.py"", 'w') as f:
        f.write(file_header(usecase) + reader_obj.get_code())
    generated_files.append(""data_reader.py"")   
        
    # create empty init file to make a package    
    with open(deploy_path/""__init__.py"", 'w') as f:
        f.write(file_header(usecase))
    generated_files.append(""__init__.py"")   
    importer.addLocalModule('inputdrift', mod_from='input_drift')
        
    code = file_header(usecase)
    code += importer.getCode()
    code += drifter.getInputOutputFiles()
    code += function.getCode()
    code += drifter.get_main_drift_code(config['problem_type'], get_variable('smaller_is_better', False))
    with open(deploy_path/""aionCode.py"", ""w"") as f:
        f.write(code)
    generated_files.append(""aionCode.py"")   

    input_drift_importer = importModule()
    importModules(input_drift_importer, drifter.get_input_drift_import_modules())
    code = file_header(usecase)
    code += input_drift_importer.getCode()
    code += drifter.get_input_drift_code()
    with open(deploy_path/""input_drift.py"", ""w"") as f:
        f.write(code)
    generated_files.append(""input_drift.py"")   

    with open (deploy_path/""config.json"", ""w"") as f:
        json.dump(get_drift_params(config), f, indent=4)
    generated_files.append(""config.json"")   

    req_file = deploy_path/""requirements.txt""
    with open(req_file, ""w"") as f:
        f.write(importer.getBaseModule(extra_importers=[utility_obj.get_importer(), reader_obj.get_importer(), input_drift_importer]))
    generated_files.append(""requirements.txt"")   
    create_docker_file('input_drift', deploy_path,config['modelName'], generated_files)
"
transformer.py,"""""""
/**
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  © Copyright HCL Technologies Ltd. 2021, 2022
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*/
""""""

import shutil
from pathlib import Path
import json
from mlac.ml.core import *
from .utility import *
import tarfile

output_file_map = {
    'text' : {'text' : 'text_profiler.pkl'},
    'targetEncoder' : {'targetEncoder' : 'targetEncoder.pkl'},
    'featureEncoder' : {'featureEncoder' : 'inputEncoder.pkl'},
    'normalizer' : {'normalizer' : 'normalizer.pkl'}
}

def add_common_imports(importer):
    common_importes = [
    {'module': 'json', 'mod_from': None, 'mod_as': None},
    {'module': 'Path', 'mod_from': 'pathlib', 'mod_as': None},
    {'module': 'pandas', 'mod_from': None, 'mod_as': 'pd'},
    {'module': 'argparse', 'mod_from': None, 'mod_as': None},
    {'module': 'platform', 'mod_from': None, 'mod_as': None }   
    ]
    for mod in common_importes:
        importer.addModule(mod['module'], mod_from=mod['mod_from'], mod_as=mod['mod_as'])

def add_text_dependency():
    return """"""nltk==3.6.3
textblob==0.15.3
spacy==3.1.3
demoji==1.1.0
bs4==0.0.1
text_unidecode==1.3
contractions==0.1.73
""""""
    
def get_transformer_params(config):
    param_keys = [""modelVersion"",""problem_type"",""target_feature"",""train_features"",""text_features"",""profiler"",""test_ratio""]   #Bugid 13217
    data = {key:value for (key,value) in config.items() if key in param_keys}
    data['targetPath'] = config['modelName']
    return data
        
def run_transformer(config):
    transformer = profiler()
    importer = importModule()
    function = global_function()
    importModules(importer, transformer.getPrefixModules())
    importer.addModule('warnings')    
    transformer.addPrefixCode()
    importer.addModule('train_test_split', mod_from='sklearn.model_selection')
    if config[""problem_type""] == 'classification':
        importer.addModule('LabelEncoder', mod_from='sklearn.preprocessing')
        transformer.addInputFiles({'targetEncoder':'targetEncoder.pkl'})
        update_variable('target_encoder', True)
        transformer.addStatement(""train_data, test_data = train_test_split(df,stratify=df[target_feature],test_size=config['test_ratio'])"",indent=2)   #Bugid 13217
        transformer.addStatement(""profilerObj = profiler(xtrain=train_data, target=target_feature, encode_target=True, config=config['profiler'],log=log)"")  #Bugid 13217
    else:
        transformer.addStatement(""train_data, test_data = train_test_split(df,test_size=config['test_ratio'])"",indent=2)
        transformer.addStatement(""profilerObj = profiler(xtrain=train_data, target=target_feature,  config=config['profiler'],log=log)"")
    
    importModules(importer, transformer.getSuffixModules())
    importModules(importer, transformer.getMainCodeModules())
    transformer.addSuffixCode( config[""problem_type""] == 'classification')
    transformer.addMainCode()
    usecase = config['modelName']+'_'+config['modelVersion']
    deploy_path = Path(config[""deploy_path""])/'MLaC'/'DataTransformation'
    deploy_path.mkdir(parents=True, exist_ok=True)
    generated_files = []
    
    # create the utility file
    importer.addLocalModule('*', mod_from='utility')
    utility_obj = utility_function('transformer')
    with open(deploy_path/""utility.py"", 'w') as f:
        f.write(file_header(usecase) + utility_obj.get_code())
    generated_files.append(""utility.py"")   

    # create empty init file to make a package    
    with open(deploy_path/""__init__.py"", 'w') as f:
        f.write(file_header(usecase))
    generated_files.append(""__init__.py"")   
        
    # create the dataProfiler file
    profiler_importer = importModule()
    importer.addLocalModule('profiler', mod_from='dataProfiler')
    profiler_obj = data_profiler(profiler_importer, True if config[""text_features""] else False)
    code_text = profiler_obj.get_code() # import statement will be generated when profiler_obj.get_code is called.
    # need to copy data profiler from AION code as code is splitted and merging code amnnually
    # can add bugs. need a better way to find the imported module
    #aion_transformer = Path(__file__).parent.parent.parent.parent/'transformations'
    aion_utilities = Path(__file__).parent.parent.parent.parent/'utilities'  #added for non encryption --Usnish
    (deploy_path/'transformations').mkdir(parents=True, exist_ok=True)
    if not (aion_utilities/'transformations'/'dataProfiler.py').exists():
        raise ValueError('Data profiler file removed from AION')
    shutil.copy(aion_utilities/'transformations'/'dataProfiler.py',deploy_path/""dataProfiler.py"")
    shutil.copy(aion_utilities/'transformations'/'data_profiler_functions.py',deploy_path/""transformations""/""data_profiler_functions.py"")

    
    if (deploy_path/'text').exists():
        shutil.rmtree(deploy_path/'text')

    with tarfile.open(aion_utilities/'text.tar') as file:
        file.extractall(deploy_path)
    if (deploy_path/'utils').exists():
        shutil.rmtree(deploy_path/'utils')
    with tarfile.open(aion_utilities / 'utils.tar') as file:
        file.extractall(deploy_path)

    generated_files.append(""dataProfiler.py"")
    generated_files.append(""transformations"")
    generated_files.append(""text"")
    generated_files.append(""utils"")

    code  = file_header(usecase)
    code += ""\nimport os\nos.path.abspath(os.path.join(__file__, os.pardir))\n"" #chdir to import from current dir
    code += importer.getCode()
    code += '\nwarnings.filterwarnings(""ignore"")\n'
    code += transformer.getInputOutputFiles()
    code += function.getCode()
    transformer.addLocalFunctionsCode()
    code += transformer.getCode()
    with open(deploy_path/""aionCode.py"", ""w"") as f:
        f.write(code)
    generated_files.append(""aionCode.py"")   

    with open(deploy_path/""requirements.txt"", ""w"") as f:
        req=importer.getBaseModule(extra_importers=[utility_obj.get_importer(), profiler_importer])
        if config[""text_features""]:
            req += add_text_dependency()
        f.write(req)
    generated_files.append(""requirements.txt"")   

    config_file = deploy_path/""config.json""
    config_data = get_transformer_params(config)
    with open (config_file, ""w"") as f:
        json.dump(config_data, f, indent=4)
    generated_files.append(""config.json"")   

    create_docker_file('transformer', deploy_path,config['modelName'], generated_files,True if config[""text_features""] else False)
"
register.py,"""""""
/**
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  © Copyright HCL Technologies Ltd. 2021, 2022
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*/
""""""

from pathlib import Path
import json
from mlac.ml.core import *
from .utility import *

def get_register_params(config, models):
    param_keys = [""modelVersion"",""problem_type""]
    data = {key:value for (key,value) in config.items() if key in param_keys}
    data['targetPath'] = config['modelName']
    data['models'] = models
    return data

def run_register(config):
    importer = importModule()
    function = global_function()
    registration = register(importer)
    function.add_function('get_mlflow_uris')
    models = get_variable('models_name')
    smaller_is_better = get_variable('smaller_is_better', False)
    registration.addClassCode(smaller_is_better)
    registration.addLocalFunctionsCode(models)
    registration.addPrefixCode()
    registration.addMainCode(models)
    importModules(importer, registration.getMainCodeModules())
    importer.addModule('warnings')

    generated_files = []
    usecase = config['modelName']+'_'+config['modelVersion']
    deploy_path = Path(config[""deploy_path""])/'MLaC'/'ModelRegistry'
    deploy_path.mkdir(parents=True, exist_ok=True)

    # create the utility file
    importer.addLocalModule('*', mod_from='utility')
    utility_obj = utility_function('register')
    with open(deploy_path/""utility.py"", 'w') as f:
        f.write(file_header(usecase) + utility_obj.get_code())
    generated_files.append(""utility.py"")   

    # create empty init file required for creating a package    
    with open(deploy_path/""__init__.py"", 'w') as f:
        f.write(file_header(usecase))
    generated_files.append(""__init__.py"")   

    code = registration.getImportCode()
    code += '\nwarnings.filterwarnings(""ignore"")\n'
    code += registration.getInputOutputFiles()
    code += function.getCode()
    code += registration.getCode()
    # create serving file
    with open(deploy_path/""aionCode.py"", 'w') as f:
        f.write(file_header(usecase) + code)
    generated_files.append(""aionCode.py"")   

    # create requirements file
    req_file = deploy_path/""requirements.txt""
    with open(req_file, ""w"") as f:
        req=importer.getBaseModule(extra_importers=[utility_obj.get_importer()])
        f.write(req)
    generated_files.append(""requirements.txt"")
    
    # create config file
    with open (deploy_path/""config.json"", ""w"") as f:
        json.dump(get_register_params(config, models), f, indent=4)
    generated_files.append(""config.json"")   
    
    # create docker file
    create_docker_file('register', deploy_path,config['modelName'], generated_files)    "
__init__.py,"""""""
/**
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  © Copyright HCL Technologies Ltd. 2021, 2022
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*/
""""""

from .load_data import run_loader
from .transformer import run_transformer
from .selector import run_selector
from .trainer import run_trainer
from .register import run_register
from .deploy import run_deploy
from .drift_analysis import run_drift_analysis
        
"
load_data.py,"""""""
/**
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  © Copyright HCL Technologies Ltd. 2021, 2022
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*/
""""""

from pathlib import Path
import json
import platform
from mlac.ml.core import *
from .utility import *

imported_modules = [
        {'module': 'json', 'mod_from': None, 'mod_as': None},
        {'module': 'Path', 'mod_from': 'pathlib', 'mod_as': None},
        {'module': 'pandas', 'mod_from': None, 'mod_as': 'pd'},
        {'module': 'argparse', 'mod_from': None, 'mod_as': None},
        {'module': 'platform', 'mod_from': None, 'mod_as': None }   
    ]

def get_load_data_params(config):
    param_keys = [""modelVersion"",""problem_type"",""target_feature"",""selected_features""]
    data = {key:value for (key,value) in config.items() if key in param_keys}
    data['targetPath'] = config['modelName']
    return data

def run_loader(config):
    generated_files = []
    importer = importModule()
    loader = tabularDataReader()
    importModules(importer, imported_modules)
    usecase = config['modelName']+'_'+config['modelVersion']
    deploy_path = Path(config[""deploy_path""])/'MLaC'/'DataIngestion'
    deploy_path.mkdir(parents=True, exist_ok=True)
    
    # create the utility file
    importer.addLocalModule('*', mod_from='utility')
    utility_obj = utility_function('load_data')
    with open(deploy_path/""utility.py"", 'w') as f:
        f.write(file_header(usecase) + utility_obj.get_code())
    generated_files.append(""utility.py"")   
    # create the production data reader file
    importer.addLocalModule('dataReader', mod_from='data_reader')
    readers = ['sqlite','influx']
    if 's3' in config.keys():
        readers.append('s3')
    reader_obj = data_reader(readers)
    with open(deploy_path/""data_reader.py"", 'w') as f:
        f.write(file_header(usecase) + reader_obj.get_code())
    generated_files.append(""data_reader.py"")   
        
    # create empty init file to make a package    
    with open(deploy_path/""__init__.py"", 'w') as f:
        f.write(file_header(usecase))
    generated_files.append(""__init__.py"")   
        
    code  = file_header(usecase)
    code += importer.getCode()
    code += loader.getInputOutputFiles()
    code += loader.getCode()
    with open(deploy_path/""aionCode.py"", ""w"") as f:
        f.write(code)
    generated_files.append(""aionCode.py"")   

    with open(deploy_path/""requirements.txt"", ""w"") as f:
        req=importer.getBaseModule(extra_importers=[utility_obj.get_importer(), reader_obj.get_importer()])
        f.write(req)
    generated_files.append(""requirements.txt"")   
    
    config_file = deploy_path/""config.json""
    config_data = get_load_data_params(config)
    with open (config_file, ""w"") as f:
        json.dump(config_data, f, indent=4)
    generated_files.append(""config.json"")   
    
    create_docker_file('load_data', deploy_path,config['modelName'],generated_files)"
__init__.py,"""""""
/**
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  © Copyright HCL Technologies Ltd. 2021, 2022
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*/
""""""
"
input_drift.py,"""""""
/**
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  © Copyright HCL Technologies Ltd. 2021, 2022
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*/
""""""

class input_drift():

    def __init__(self, tab_size=4):
        self.tab = ' ' * tab_size
        self.codeText = ''
        
    def addInputDriftClass(self):
        text = ""\
        \nclass inputdrift():\
        \n\
        \n    def __init__(self,base_config):\
        \n        self.usecase = base_config['modelName'] + '_' + base_config['modelVersion']\
        \n        self.currentDataLocation = base_config['currentDataLocation']\
        \n        home = Path.home()\
        \n        if platform.system() == 'Windows':\
        \n            from pathlib import WindowsPath\
        \n            output_data_dir = WindowsPath(home)/'AppData'/'Local'/'HCLT'/'AION'/'Data'\
        \n            output_model_dir = WindowsPath(home)/'AppData'/'Local'/'HCLT'/'AION'/'target'/self.usecase\
        \n        else:\
        \n            from pathlib import PosixPath\
        \n            output_data_dir = PosixPath(home)/'HCLT'/'AION'/'Data'\
        \n            output_model_dir = PosixPath(home)/'HCLT'/'AION'/'target'/self.usecase\
        \n        if not output_model_dir.exists():\
        \n            raise ValueError(f'Configuration file not found at {output_model_dir}')\
        \n\
        \n        tracking_uri = 'file:///' + str(Path(output_model_dir)/'mlruns')\
        \n        registry_uri = 'sqlite:///' + str(Path(output_model_dir)/'mlruns.db')\
        \n        mlflow.set_tracking_uri(tracking_uri)\
        \n        mlflow.set_registry_uri(registry_uri)\
        \n        client = mlflow.tracking.MlflowClient(\
        \n                tracking_uri=tracking_uri,\
        \n                registry_uri=registry_uri,\
        \n            )\
        \n        model_version_uri = 'models:/{model_name}/production'.format(model_name=self.usecase)\
        \n        model = mlflow.pyfunc.load_model(model_version_uri)\
        \n        run = client.get_run(model.metadata.run_id)\
        \n        if run.info.artifact_uri.startswith('file:'):\
        \n            artifact_path = Path(run.info.artifact_uri[len('file:///') : ])\
        \n        else:\
        \n            artifact_path = Path(run.info.artifact_uri)\
        \n        self.trainingDataPath = artifact_path/(self.usecase + '_data.csv')\
        \n\
        \n    def get_input_drift(self,current_data, historical_data):\
        \n        curr_num_feat = current_data.select_dtypes(include='number')\
        \n        hist_num_feat = historical_data.select_dtypes(include='number')\
        \n        num_features = [feat for feat in historical_data.columns if feat in curr_num_feat]\
        \n        alert_count = 0\
        \n        data = {\
        \n            'current':{'data':current_data},\
        \n            'hist': {'data': historical_data}\
        \n            }\
        \n        dist_changed_columns = []\
        \n        dist_change_message = []\
        \n        for feature in num_features:\
        \n            curr_static_value = st.ks_2samp( hist_num_feat[feature], curr_num_feat[feature]).pvalue\
        \n            if (curr_static_value < 0.05):\
        \n                distribution = {}\
        \n                distribution['hist'] = self.DistributionFinder( historical_data[feature])\
        \n                distribution['curr'] = self.DistributionFinder( current_data[feature])\
        \n                if(distribution['hist']['name'] == distribution['curr']['name']):\
        \n                    pass\
        \n                else:\
        \n                    alert_count = alert_count + 1\
        \n                    dist_changed_columns.append(feature)\
        \n                    changed_column = {}\
        \n                    changed_column['Feature'] = feature\
        \n                    changed_column['KS_Training'] = curr_static_value\
        \n                    changed_column['Training_Distribution'] = distribution['hist']['name']\
        \n                    changed_column['New_Distribution'] = distribution['curr']['name']\
        \n                    dist_change_message.append(changed_column)\
        \n        if alert_count:\
        \n            resultStatus = dist_change_message\
        \n        else :\
        \n            resultStatus='Model is working as expected'\
        \n        return(alert_count, resultStatus)\
        \n\
        \n    def DistributionFinder(self,data):\
        \n        best_distribution =''\
        \n        best_sse =0.0\
        \n        if(data.dtype in ['int','int64']):\
        \n            distributions= {'bernoulli':{'algo':st.bernoulli},\
        \n                            'binom':{'algo':st.binom},\
        \n                            'geom':{'algo':st.geom},\
        \n                            'nbinom':{'algo':st.nbinom},\
        \n                            'poisson':{'algo':st.poisson}\
        \n                            }\
        \n            index, counts = np.unique(data.astype(int),return_counts=True)\
        \n            if(len(index)>=2):\
        \n                best_sse = np.inf\
        \n                y1=[]\
        \n                total=sum(counts)\
        \n                mean=float(sum(index*counts))/total\
        \n                variance=float((sum(index**2*counts) -total*mean**2))/(total-1)\
        \n                dispersion=mean/float(variance)\
        \n                theta=1/float(dispersion)\
        \n                r=mean*(float(theta)/1-theta)\
        \n\
        \n                for j in counts:\
        \n                        y1.append(float(j)/total)\
        \n                distributions['bernoulli']['pmf'] = distributions['bernoulli']['algo'].pmf(index,mean)\
        \n                distributions['binom']['pmf'] = distributions['binom']['algo'].pmf(index,len(index),p=mean/len(index))\
        \n                distributions['geom']['pmf'] = distributions['geom']['algo'].pmf(index,1/float(1+mean))\
        \n                distributions['nbinom']['pmf'] = distributions['nbinom']['algo'].pmf(index,mean,r)\
        \n                distributions['poisson']['pmf'] = distributions['poisson']['algo'].pmf(index,mean)\
        \n\
        \n                sselist = []\
        \n                for dist in distributions.keys():\
        \n                    distributions[dist]['sess'] = np.sum(np.power(y1 - distributions[dist]['pmf'], 2.0))\
        \n                    if np.isnan(distributions[dist]['sess']):\
        \n                        distributions[dist]['sess'] = float('inf')\
        \n                best_dist = min(distributions, key=lambda v: distributions[v]['sess'])\
        \n                best_distribution = best_dist\
        \n                best_sse = distributions[best_dist]['sess']\
        \n\
        \n            elif (len(index) == 1):\
        \n                best_distribution = 'Constant Data-No Distribution'\
        \n                best_sse = 0.0\
        \n        elif(data.dtype in ['float64','float32']):\
        \n            distributions = [st.uniform,st.expon,st.weibull_max,st.weibull_min,st.chi,st.norm,st.lognorm,st.t,st.gamma,st.beta]\
        \n            best_distribution = st.norm.name\
        \n            best_sse = np.inf\
        \n            nrange = data.max() - data.min()\
        \n\
        \n            y, x = np.histogram(data.astype(float), bins='auto', density=True)\
        \n            x = (x + np.roll(x, -1))[:-1] / 2.0\
        \n\
        \n            for distribution in distributions:\
        \n                with warnings.catch_warnings():\
        \n                    warnings.filterwarnings('ignore')\
        \n                    params = distribution.fit(data.astype(float))\
        \n                    arg = params[:-2]\
        \n                    loc = params[-2]\
        \n                    scale = params[-1]\
        \n                    pdf = distribution.pdf(x, loc=loc, scale=scale, *arg)\
        \n                    sse = np.sum(np.power(y - pdf, 2.0))\
        \n                    if( sse < best_sse):\
        \n                        best_distribution = distribution.name\
        \n                        best_sse = sse\
        \n\
        \n        return {'name':best_distribution, 'sse': best_sse}\
        \n\
        ""
        return text
        
    def addSuffixCode(self, indent=1):
        text =""\n\
        \ndef check_drift( config):\
        \n    inputdriftObj = inputdrift(config)\
        \n    historicaldataFrame=pd.read_csv(inputdriftObj.trainingDataPath)\
        \n    currentdataFrame=pd.read_csv(inputdriftObj.currentDataLocation)\
        \n    dataalertcount,message = inputdriftObj.get_input_drift(currentdataFrame,historicaldataFrame)\
        \n    if message == 'Model is working as expected':\
        \n        output_json = {'status':'SUCCESS','data':{'Message':'Model is working as expected'}}\
        \n    else:\
        \n        output_json = {'status':'SUCCESS','data':{'Affected Columns':message}}\
        \n    return(output_json)\
        \n\
        \nif __name__ == '__main__':\
        \n    try:\
        \n        if len(sys.argv) < 2:\
        \n            raise ValueError('config file not present')\
        \n        config = sys.argv[1]\
        \n        if Path(config).is_file() and Path(config).suffix == '.json':\
        \n            with open(config, 'r') as f:\
        \n                config = json.load(f)\
        \n        else:\
        \n            config = json.loads(config)\
        \n        output = check_drift(config)\
        \n        status = {'Status':'Success','Message':output}\
        \n        print('input_drift:'+json.dumps(status))\
        \n    except Exception as e:\
        \n        status = {'Status':'Failure','Message':str(e)}\
        \n        print('input_drift:'+json.dumps(status))""
        return text

    def addStatement(self, statement, indent=1):
        self.codeText += '\n' + self.tab * indent + statement
                
    def generateCode(self):
        self.codeText += self.addInputDriftClass()
        self.codeText += self.addSuffixCode()
        
    def getCode(self):
        return self.codeText
"
output_drift.py,"""""""
/**
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  © Copyright HCL Technologies Ltd. 2021, 2022
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*/
""""""

class output_drift():

    def __init__(self, missing=False, word2num_features = None, cat_encoder=False, target_encoder=False, normalizer=False, text_profiler=False, feature_reducer=False, score_smaller_is_better=True, problem_type='classification', tab_size=4):
        self.tab = ' ' * tab_size
        self.codeText = ''
        self.missing = missing
        self.word2num_features = word2num_features
        self.cat_encoder = cat_encoder
        self.target_encoder = target_encoder
        self.normalizer = normalizer
        self.text_profiler = text_profiler
        self.feature_reducer = feature_reducer
        self.score_smaller_is_better = score_smaller_is_better
        self.problem_type = problem_type
        
    def addDatabaseClass(self, indent=0):
        text = ""\
        \nclass database():\
        \n    def __init__(self, config):\
        \n        self.host = config['host']\
        \n        self.port = config['port']\
        \n        self.user = config['user']\
        \n        self.password = config['password']\
        \n        self.database = config['database']\
        \n        self.measurement = config['measurement']\
        \n        self.tags = config['tags']\
        \n        self.client = self.get_client()\
        \n\
        \n    def read_data(self, query)->pd.DataFrame:\
        \n        cursor = self.client.query(query)\
        \n        points = cursor.get_points()\
        \n        my_list=list(points)\
        \n        df=pd.DataFrame(my_list)\
        \n        return df\
        \n\
        \n    def get_client(self):\
        \n        client = InfluxDBClient(self.host,self.port,self.user,self.password)\
        \n        databases = client.get_list_database()\
        \n        databases = [x['name'] for x in databases]\
        \n        if self.database not in databases:\
        \n            client.create_database(self.database)\
        \n        return InfluxDBClient(self.host,self.port,self.user,self.password, self.database)\
        \n\
        \n    def write_data(self,data):\
        \n        if isinstance(data, pd.DataFrame):\
        \n            sorted_col = data.columns.tolist()\
        \n            sorted_col.sort()\
        \n            data = data[sorted_col]\
        \n            data = data.to_dict(orient='records')\
        \n        for row in data:\
        \n            if 'time' in row.keys():\
        \n                p = '%Y-%m-%dT%H:%M:%S.%fZ'\
        \n                time_str = datetime.strptime(row['time'], p)\
        \n                del row['time']\
        \n            else:\
        \n                time_str = None\
        \n            if 'model_ver' in row.keys():\
        \n                self.tags['model_ver']= row['model_ver']\
        \n                del row['model_ver']\
        \n            json_body = [{\
        \n                'measurement': self.measurement,\
        \n                'time': time_str,\
        \n                'tags': self.tags,\
        \n                'fields': row\
        \n            }]\
        \n            self.client.write_points(json_body)\
        \n\
        \n    def close(self):\
        \n        self.client.close()\
        \n""
        if indent:
            text = text.replace('\n', (self.tab * indent) + '\n')
        return text

    def addPredictClass(self, indent=0):
        text = ""\
        \nclass predict():\
        \n\
        \n    def __init__(self, base_config):\
        \n        self.usecase = base_config['modelName'] + '_' + base_config['modelVersion']\
        \n        self.dataLocation = base_config['dataLocation']\
        \n        self.db_enabled = base_config.get('db_enabled', False)\
        \n        if self.db_enabled:\
        \n            self.db_config = base_config['db_config']\
        \n        home = Path.home()\
        \n        if platform.system() == 'Windows':\
        \n            from pathlib import WindowsPath\
        \n            output_data_dir = WindowsPath(home)/'AppData'/'Local'/'HCLT'/'AION'/'Data'\
        \n            output_model_dir = WindowsPath(home)/'AppData'/'Local'/'HCLT'/'AION'/'target'/self.usecase\
        \n        else:\
        \n            from pathlib import PosixPath\
        \n            output_data_dir = PosixPath(home)/'HCLT'/'AION'/'Data'\
        \n            output_model_dir = PosixPath(home)/'HCLT'/'AION'/'target'/self.usecase\
        \n        if not output_model_dir.exists():\
        \n            raise ValueError(f'Configuration file not found at {output_model_dir}')\
        \n\
        \n        tracking_uri = 'file:///' + str(Path(output_model_dir)/'mlruns')\
        \n        registry_uri = 'sqlite:///' + str(Path(output_model_dir)/'mlruns.db')\
        \n        mlflow.set_tracking_uri(tracking_uri)\
        \n        mlflow.set_registry_uri(registry_uri)\
        \n        client = mlflow.tracking.MlflowClient(\
        \n                tracking_uri=tracking_uri,\
        \n                registry_uri=registry_uri,\
        \n            )\
        \n        self.model_version = client.get_latest_versions(self.usecase, stages=['production'] )[0].version\
        \n        model_version_uri = 'models:/{model_name}/production'.format(model_name=self.usecase)\
        \n        self.model = mlflow.pyfunc.load_model(model_version_uri)\
        \n        run = client.get_run(self.model.metadata.run_id)\
        \n        if run.info.artifact_uri.startswith('file:'): #remove file:///\
        \n            self.artifact_path = Path(run.info.artifact_uri[len('file:///') : ])\
        \n        else:\
        \n            self.artifact_path = Path(run.info.artifact_uri)\
        \n        with open(self.artifact_path/'deploy.json', 'r') as f:\
        \n            deployment_dict = json.load(f)\
        \n        with open(self.artifact_path/'features.txt', 'r') as f:\
        \n            self.train_features = f.readline().rstrip().split(',')\
        \n\
        \n        self.dataLocation = base_config['dataLocation']\
        \n        self.selected_features = deployment_dict['load_data']['selected_features']\
        \n        self.target_feature = deployment_dict['load_data']['target_feature']\
        \n        self.output_model_dir = output_model_dir""
        if self.missing:
            text += ""\n        self.missing_values = deployment_dict['transformation']['fillna']""
        if self.word2num_features:
            text += ""\n        self.word2num_features = deployment_dict['transformation']['word2num_features']""
        if self.cat_encoder == 'labelencoding':
            text += ""\n        self.cat_encoder = deployment_dict['transformation']['cat_encoder']""
        elif (self.cat_encoder == 'targetencoding') or (self.cat_encoder == 'onehotencoding'):
            text += ""\n        self.cat_encoder = deployment_dict['transformation']['cat_encoder']['file']""
            text += ""\n        self.cat_encoder_cols = deployment_dict['transformation']['cat_encoder']['features']""
        if self.target_encoder:
            text += ""\n        self.target_encoder = joblib.load(self.artifact_path/deployment_dict['transformation']['target_encoder'])""
        if self.normalizer:
            text += ""\n        self.normalizer = joblib.load(self.artifact_path/deployment_dict['transformation']['normalizer']['file'])\
\n        self.normalizer_col = deployment_dict['transformation']['normalizer']['features']""
        if self.text_profiler:
            text += ""\n        self.text_profiler = joblib.load(self.artifact_path/deployment_dict['transformation']['Status']['text_profiler']['file'])\
\n        self.text_profiler_col = deployment_dict['transformation']['Status']['text_profiler']['features']""
        if self.feature_reducer:
            text += ""\n        self.feature_reducer = joblib.load(self.artifact_path/deployment_dict['featureengineering']['feature_reducer']['file'])\
\n        self.feature_reducer_cols = deployment_dict['featureengineering']['feature_reducer']['features']""
        text += """"""
        
    def read_data_from_db(self):
        if self.db_enabled:
            try:
                db = database(self.db_config)
                query = ""SELECT * FROM {} WHERE model_ver = '{}' AND {} != ''"".format(db.measurement, self.model_version, self.target_feature)
                if 'read_time' in self.db_config.keys() and self.db_config['read_time']:
                    query += f"" time > now() - {self.db_config['read_time']}""
                data = db.read_data(query)
            except:
                raise ValueError('Unable to read from the database')
            finally:
                if db:
                    db.close()
            return data
        return None""""""
        text += ""\
        \n    def predict(self, data):\
        \n        df = pd.DataFrame()\
        \n        if Path(data).exists():\
        \n            if Path(data).suffix == '.tsv':\
        \n                df=read_data(data,encoding='utf-8',sep='\t')\
        \n            elif Path(data).suffix == '.csv':\
        \n                df=read_data(data,encoding='utf-8')\
        \n            else:\
        \n                if Path(data).suffix == '.json':\
        \n                    jsonData = read_json(data)\
        \n                    df = pd.json_normalize(jsonData)\
        \n        elif is_file_name_url(data):\
        \n            df = read_data(data,encoding='utf-8')\
        \n        else:\
        \n            jsonData = json.loads(data)\
        \n            df = pd.json_normalize(jsonData)\
        \n        if len(df) == 0:\
        \n            raise ValueError('No data record found')\
        \n        missing_features = [x for x in self.selected_features if x not in df.columns]\
        \n        if missing_features:\
        \n            raise ValueError(f'some feature/s is/are missing: {missing_features}')\
        \n        if self.target_feature not in df.columns:\
        \n            raise ValueError(f'Ground truth values/target column({self.target_feature}) not found in current data')\
        \n        df_copy = df.copy()\
        \n        df = df[self.selected_features]""
        if self.word2num_features:
            text += ""\n        for feat in self.word2num_features:""
            text += ""\n            df[ feat ] = df[feat].apply(lambda x: s2n(x))""
        if self.missing:
            text += ""\n        df.fillna(self.missing_values, inplace=True)""
        if self.cat_encoder == 'labelencoding':
            text += ""\n        df.replace(self.cat_encoder, inplace=True)""
        elif self.cat_encoder == 'targetencoding':
            text += ""\n        cat_enc = joblib.load(self.artifact_path/self.cat_encoder)""
            text += ""\n        df = cat_enc.transform(df)""
        elif self.cat_encoder == 'onehotencoding':
            text += ""\n        cat_enc = joblib.load(self.artifact_path/self.cat_encoder)""
            text += ""\n        transformed_data = cat_enc.transform(df[self.cat_encoder_cols]).toarray()""
            text += ""\n        df[cat_enc.get_feature_names()] = pd.DataFrame(transformed_data, columns=cat_enc.get_feature_names())[cat_enc.get_feature_names()]""
        if self.normalizer:
            text += ""\n        df[self.normalizer_col] = self.normalizer.transform(df[self.normalizer_col])""
        if self.text_profiler:
            text += ""\n        text_corpus = df[self.text_profiler_col].apply(lambda row: ' '.join(row.values.astype(str)), axis=1)\
\n        df_vect=self.text_profiler.transform(text_corpus)\
\n        if isinstance(df_vect, np.ndarray):\
\n            df1 = pd.DataFrame(df_vect)\
\n        else:\
\n            df1 = pd.DataFrame(df_vect.toarray(),columns = self.text_profiler.named_steps['vectorizer'].get_feature_names())\
\n        df1 = df1.add_suffix('_vect')\
\n        df = pd.concat([df, df1],axis=1)""
        if self.feature_reducer:
            text += ""\n        df = self.feature_reducer.transform(df[self.feature_reducer_cols])""
        else:
            text += ""\n        df = df[self.train_features]""
        if self.target_encoder:
            text += ""\n        output = pd.DataFrame(self.model._model_impl.predict_proba(df), columns=self.target_encoder.classes_)\
        \n        df_copy['prediction'] = output.idxmax(axis=1)""
        else:
            text += ""\n        output = self.model.predict(df).reshape(1, -1)[0].round(2)\
        \n        df_copy['prediction'] = output""
        text += ""\n        return df_copy""
        if indent:
            text = text.replace('\n', (self.tab * indent) + '\n')
        return text

    def getClassificationMatrixCode(self, indent=0):
        text = ""\
        \ndef get_classification_metrices(actual_values, predicted_values):\
        \n    result = {}\
        \n    accuracy_score = sklearn.metrics.accuracy_score(actual_values, predicted_values)\
        \n    avg_precision = sklearn.metrics.precision_score(actual_values, predicted_values,\
        \n        average='macro')\
        \n    avg_recall = sklearn.metrics.recall_score(actual_values, predicted_values,\
        \n        average='macro')\
        \n    avg_f1 = sklearn.metrics.f1_score(actual_values, predicted_values,\
        \n        average='macro')\
        \n\
        \n    result['accuracy'] = accuracy_score\
        \n    result['precision'] = avg_precision\
        \n    result['recall'] = avg_recall\
        \n    result['f1'] = avg_f1\
        \n    return result\
        \n\
        ""
        if indent:
            text = text.replace('\n', (self.tab * indent) + '\n')
        return text

    def getRegrssionMatrixCode(self, indent=0):
        text = ""\
        \ndef get_regression_metrices( actual_values, predicted_values):\
        \n    result = {}\
        \n\
        \n    me = np.mean(predicted_values - actual_values)\
        \n    sde = np.std(predicted_values - actual_values, ddof = 1)\
        \n\
        \n    abs_err = np.abs(predicted_values - actual_values)\
        \n    mae = np.mean(abs_err)\
        \n    sdae = np.std(abs_err, ddof = 1)\
        \n\
        \n    abs_perc_err = 100.*np.abs(predicted_values - actual_values) / actual_values\
        \n    mape = np.mean(abs_perc_err)\
        \n    sdape = np.std(abs_perc_err, ddof = 1)\
        \n\
        \n    result['mean_error'] = me\
        \n    result['mean_abs_error'] = mae\
        \n    result['mean_abs_perc_error'] = mape\
        \n    result['error_std'] = sde\
        \n    result['abs_error_std'] = sdae\
        \n    result['abs_perc_error_std'] = sdape\
        \n    return result\
        \n\
        ""
        if indent:
            text = text.replace('\n', (self.tab * indent) + '\n')
        return text
        
    def addSuffixCode(self, indent=1):
        text =""\n\
        \ndef check_drift( config):\
        \n    prediction = predict(config)\
        \n    usecase = config['modelName'] + '_' + config['modelVersion']\
        \n    train_data_path = prediction.artifact_path/(usecase+'_data.csv')\
        \n    if not train_data_path.exists():\
        \n        raise ValueError(f'Training data not found at {train_data_path}')\
        \n    curr_with_pred = prediction.read_data_from_db()\
        \n    if prediction.target_feature not in curr_with_pred.columns:\
        \n        raise ValueError('Ground truth not updated for corresponding data in database')\
        \n    train_with_pred = prediction.predict(train_data_path)\
        \n    performance = {}""
        if self.problem_type == 'classification':
            text += ""\n\
        \n    performance['train'] = get_classification_metrices(train_with_pred[prediction.target_feature], train_with_pred['prediction'])\
        \n    performance['current'] = get_classification_metrices(curr_with_pred[prediction.target_feature], curr_with_pred['prediction'])""
        else:
            text += ""\n\
        \n    performance['train'] = get_regression_metrices(train_with_pred[prediction.target_feature], train_with_pred['prediction'])\
        \n    performance['current'] = get_regression_metrices(curr_with_pred[prediction.target_feature], curr_with_pred['prediction'])""
        text += ""\n    return performance""
        text += ""\n\
        \nif __name__ == '__main__':\
        \n    try:\
        \n        if len(sys.argv) < 2:\
        \n            raise ValueError('config file not present')\
        \n        config = sys.argv[1]\
        \n        if Path(config).is_file() and Path(config).suffix == '.json':\
        \n            with open(config, 'r') as f:\
        \n                config = json.load(f)\
        \n        else:\
        \n            config = json.loads(config)\
        \n        output = check_drift(config)\
        \n        status = {'Status':'Success','Message':json.loads(output)}\
        \n        print('output_drift:'+json.dumps(status))\
        \n    except Exception as e:\
        \n        status = {'Status':'Failure','Message':str(e)}\
        \n        print('output_drift:'+json.dumps(status))""
        if indent:
            text = text.replace('\n', (self.tab * indent) + '\n')
        return text
        
    def addStatement(self, statement, indent=1):
        self.codeText += '\n' + self.tab * indent + statement
                
    def generateCode(self):
        self.codeText += self.addDatabaseClass()
        self.codeText += self.addPredictClass()
        if self.problem_type == 'classification':
            self.codeText += self.getClassificationMatrixCode()
        elif self.problem_type == 'regression':
            self.codeText += self.getRegrssionMatrixCode()
        else:
            raise ValueError(f""Unsupported problem type: {self.problem_type}"")
        self.codeText += self.addSuffixCode()
        
    def getCode(self):
        return self.codeText
"
deploy.py,"""""""
/**
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  © Copyright HCL Technologies Ltd. 2021, 2022
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*/
""""""
import json

class deploy():

    def __init__(self, tab_size=4):
        self.tab = ' ' * tab_size
        self.codeText = """"
        self.input_files = {}
        self.output_files = {}
        self.addInputFiles({'metaData' : 'modelMetaData.json','log':'predict.log'})
        
    def addInputFiles(self, files):
        if not isinstance(files, dict):
            raise TypeError(f""Required dict type got {type(files)} type"")
        for k,v in files.items():
            self.input_files[k] = v
            
    def addOutputFiles(self, files):
        if not isinstance(files, dict):
            raise TypeError(f""Required dict type got {type(files)} type"")
        for k,v in files.items():
            self.input_files[k] = v
            
    def getInputFiles(self):        
        text = 'IOFiles = '
        if not self.input_files:
            text += '{ }'
        else:
            text += json.dumps(self.input_files, indent=4)
        return text
        
    def getOutputFiles(self):
        text = 'output_file = '
        if not self.output_files:
            text += '{ }'
        else:
            text += json.dumps(self.output_files, indent=4)
        return text
    
    def getInputOutputFiles(self, indent=0):
        text = '\n'
        text += self.getInputFiles()
        text += '\n'
        text += self.getOutputFiles()
        if indent:
            text = text.replace('\n', self.tab * indent + '\n')
        return text

    def addStatement(self, statement, indent=1):
        pass

    def getPredictionCodeModules(self):
        modules = [{'module':'json'}
            ,{'module':'joblib'}
            ,{'module':'pandas', 'mod_as':'pd'}
            ,{'module':'numpy', 'mod_as':'np'}
            ,{'module':'Path', 'mod_from':'pathlib'}
            ,{'module':'json_normalize', 'mod_from':'pandas'}
            ,{'module':'load_model', 'mod_from':'tensorflow.keras.models'}
            ]
        return modules
                
    def addPredictionCode(self):
        self.codeText += """"""
class deploy():

    def __init__(self, base_config, log=None):
        self.targetPath = (Path('aion') / base_config['targetPath']).resolve()
        if log:
            self.logger = log
        else:
            log_file = self.targetPath / IOFiles['log']
            self.logger = logger(log_file, mode='a', logger_name=Path(__file__).parent.stem)
        try:
            self.initialize(base_config)
        except Exception as e:
            self.logger.error(e, exc_info=True)

    def initialize(self, base_config):
        targetPath = Path('aion') / base_config['targetPath']
        meta_data_file = targetPath / IOFiles['metaData']
        if meta_data_file.exists():
            meta_data = utils.read_json(meta_data_file)
        self.dateTimeFeature = meta_data['training']['dateTimeFeature']
        self.targetFeature = meta_data['training']['target_feature']

        normalization_file = meta_data['transformation']['Status']['Normalization_file']
        self.normalizer = joblib.load(normalization_file)
        self.lag_order = base_config['lag_order']
        self.noofforecasts = base_config['noofforecasts']
        run_id = str(meta_data['register']['runId'])
        model_path = str(targetPath/'runs'/str(meta_data['register']['runId'])/meta_data['register']['model']/'model')
        self.model = load_model(model_path)
        self.model_name = meta_data['register']['model']

    def predict(self, data=None):
        try:
            return self.__predict(data)
        except Exception as e:
            if self.logger:
                self.logger.error(e, exc_info=True)
            raise ValueError(json.dumps({'Status': 'Failure', 'Message': str(e)}))

    def __predict(self, data=None):
        jsonData = json.loads(data)

        dataFrame = json_normalize(jsonData)

        xtrain = dataFrame
        if len(dataFrame) == 0:
            raise ValueError('No data record found')

        df_l = len(dataFrame)
        pred_threshold = 0.1
        max_pred_by_user = round((df_l) * pred_threshold)
        # prediction for 24 steps or next 24 hours
        if self.noofforecasts == -1:
            self.noofforecasts = max_pred_by_user
        no_of_prediction = self.noofforecasts
        if (str(no_of_prediction) > str(max_pred_by_user)):
            no_of_prediction = max_pred_by_user
        noofforecasts = no_of_prediction

        # self.sfeatures.remove(self.datetimeFeature)
        features = self.targetFeature
        if len(features) == 1:
            xt = xtrain[features].values
        else:
            xt = xtrain[features].values
        xt = xt.astype('float32')
        xt = self.normalizer.transform(xt)
        pred_data = xt
        y_future = []
        self.lag_order = int(self.lag_order)
        for i in range(int(no_of_prediction)):
            pdata = pred_data[-self.lag_order:]
            if len(features) == 1:
                pdata = pdata.reshape((1, self.lag_order))
            else:
                pdata = pdata.reshape((1, self.lag_order, len(features)))

            if (len(features) > 1):
                pred = self.model.predict(pdata)
                predout = self.normalizer.inverse_transform(pred)
                y_future.append(predout)
                pred_data = np.append(pred_data, pred, axis=0)
            else:
                pred = self.model.predict(pdata)
                predout = self.normalizer.inverse_transform(pred)
                y_future.append(predout.flatten()[-1])
                pred_data = np.append(pred_data, pred)
        pred = pd.DataFrame(index=range(0, len(y_future)), columns=self.targetFeature)
        for i in range(0, len(y_future)):
            pred.iloc[i] = y_future[i]
        predictions = pred
        forecast_output = predictions.to_json(orient='records')
        return forecast_output        
        """"""
                
    def getCode(self):
        return self.codeText

    def getServiceCode(self):
        return """"""

from http.server import BaseHTTPRequestHandler,HTTPServer        
from socketserver import ThreadingMixIn        
import os        
from os.path import expanduser        
import platform        
import threading        
import subprocess        
import argparse        
import re        
import cgi        
import json        
import shutil
import logging
import sys        
import time
import seaborn as sns
from pathlib import Path        
from predict import deploy
import pandas as pd
import scipy.stats as st
import numpy as np
import warnings
from utility import *

warnings.filterwarnings(""ignore"")
config_input = None   
     
IOFiles = {
	""inputData"": ""rawData.dat"",
	""metaData"": ""modelMetaData.json"",
	""production"": ""production.json"",  
	""log"": ""aion.log"",
	""monitoring"":""monitoring.json"",
	""prodData"": ""prodData"",
	""prodDataGT"":""prodDataGT""
}

def DistributionFinder(data):
    try:
        distributionName = """"
        sse = 0.0
        KStestStatic = 0.0
        dataType = """"
        if (data.dtype == ""float64"" or data.dtype == ""float32""):
            dataType = ""Continuous""
        elif (data.dtype == ""int""):
            dataType = ""Discrete""
        elif (data.dtype == ""int64""):
            dataType = ""Discrete""
        if (dataType == ""Discrete""):
            distributions = [st.bernoulli, st.binom, st.geom, st.nbinom, st.poisson]
            index, counts = np.unique(data.astype(int), return_counts=True)

            if (len(index) >= 2):
                best_sse = np.inf
                y1 = []
                total = sum(counts)
                mean = float(sum(index * counts)) / total
                variance = float((sum(index ** 2 * counts) - total * mean ** 2)) / (total - 1)
                dispersion = mean / float(variance)
                theta = 1 / float(dispersion)
                r = mean * (float(theta) / 1 - theta)

                for j in counts:
                    y1.append(float(j) / total)

                pmf1 = st.bernoulli.pmf(index, mean)
                pmf2 = st.binom.pmf(index, len(index), p=mean / len(index))
                pmf3 = st.geom.pmf(index, 1 / float(1 + mean))
                pmf4 = st.nbinom.pmf(index, mean, r)
                pmf5 = st.poisson.pmf(index, mean)

                sse1 = np.sum(np.power(y1 - pmf1, 2.0))
                sse2 = np.sum(np.power(y1 - pmf2, 2.0))
                sse3 = np.sum(np.power(y1 - pmf3, 2.0))
                sse4 = np.sum(np.power(y1 - pmf4, 2.0))
                sse5 = np.sum(np.power(y1 - pmf5, 2.0))

                sselist = [sse1, sse2, sse3, sse4, sse5]
                best_distribution = 'NA'
                for i in range(0, len(sselist)):
                    if best_sse > sselist[i] > 0:
                        best_distribution = distributions[i].name
                        best_sse = sselist[i]

            elif (len(index) == 1):
                best_distribution = ""Constant Data-No Distribution""
                best_sse = 0.0

            distributionName = best_distribution
            sse = best_sse

        elif (dataType == ""Continuous""):

            distributions = [st.uniform, st.expon, st.weibull_max, st.weibull_min, st.chi, st.norm, st.lognorm, st.t,
                             st.gamma, st.beta]
            best_distribution = st.norm.name
            best_sse = np.inf
            datamin = data.min()
            datamax = data.max()
            nrange = datamax - datamin

            y, x = np.histogram(data.astype(float), bins='auto', density=True)
            x = (x + np.roll(x, -1))[:-1] / 2.0

            for distribution in distributions:
                params = distribution.fit(data.astype(float))
                arg = params[:-2]
                loc = params[-2]
                scale = params[-1]
                pdf = distribution.pdf(x, loc=loc, scale=scale, *arg)
                sse = np.sum(np.power(y - pdf, 2.0))
                if (best_sse > sse > 0):
                    best_distribution = distribution.name
                    best_sse = sse
            distributionName = best_distribution
            sse = best_sse
    except:
        response = str(sys.exc_info()[0])
        message = 'Job has Failed' + response
        exc_type, exc_obj, exc_tb = sys.exc_info()
        fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
        print(str(exc_type) + ' ' + str(fname) + ' ' + str(exc_tb.tb_lineno))
        print(message)
    return distributionName, sse
    
def getDriftDistribution(feature, dataframe, newdataframe=pd.DataFrame()):
    import matplotlib.pyplot as plt
    import math
    import io, base64, urllib
    np.seterr(divide='ignore', invalid='ignore')
    try:	
        plt.clf()
    except:
        pass
    plt.rcParams.update({'figure.max_open_warning': 0})
    sns.set(color_codes=True)
    pandasNumericDtypes = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64']
    if len(feature) > 4:
        numneroffeatures = len(feature)
        plt.figure(figsize=(10, numneroffeatures*2))
    else:
        plt.figure(figsize=(10,5))
    
    for i in enumerate(feature):
        
        dataType = dataframe[i[1]].dtypes
        if dataType not in pandasNumericDtypes:
            dataframe[i[1]] = pd.Categorical(dataframe[i[1]])
            dataframe[i[1]] = dataframe[i[1]].cat.codes
            dataframe[i[1]] = dataframe[i[1]].astype(int)
            dataframe[i[1]] = dataframe[i[1]].fillna(dataframe[i[1]].mode()[0])
        else:
            dataframe[i[1]] = dataframe[i[1]].fillna(dataframe[i[1]].mean())
        
        plt.subplots_adjust(hspace=0.5, wspace=0.7, top=1)
        plt.subplot(math.ceil((len(feature) / 2)), 2, i[0] + 1)
        distname, sse = DistributionFinder(dataframe[i[1]])        
        print(distname)        
        ax = sns.distplot(dataframe[i[1]], label=distname)
        ax.legend(loc='best')
        if newdataframe.empty == False:
            dataType = newdataframe[i[1]].dtypes
            if dataType not in pandasNumericDtypes:
                newdataframe[i[1]] = pd.Categorical(newdataframe[i[1]])
                newdataframe[i[1]] = newdataframe[i[1]].cat.codes
                newdataframe[i[1]] = newdataframe[i[1]].astype(int)
                newdataframe[i[1]] = newdataframe[i[1]].fillna(newdataframe[i[1]].mode()[0])
            else:
                newdataframe[i[1]] = newdataframe[i[1]].fillna(newdataframe[i[1]].mean())
            distname, sse = DistributionFinder(newdataframe[i[1]])                
            print(distname)
            ax = sns.distplot(newdataframe[i[1]],label=distname)
            ax.legend(loc='best')
    buf = io.BytesIO()
    plt.savefig(buf, format='png')
    buf.seek(0)
    string = base64.b64encode(buf.read())
    uri = urllib.parse.quote(string)
    return uri
	
def read_json(file_path):        
    data = None        
    with open(file_path,'r') as f:        
        data = json.load(f)        
    return data        
        
class HTTPRequestHandler(BaseHTTPRequestHandler):        
        
	def do_POST(self):        
		print('PYTHON ######## REQUEST ####### STARTED')        
		if None != re.search('/AION/', self.path) or None != re.search('/aion/', self.path):
			ctype, pdict = cgi.parse_header(self.headers.get('content-type'))        
			if ctype == 'application/json':        
				length = int(self.headers.get('content-length'))        
				data = self.rfile.read(length)        
				usecase = self.path.split('/')[-2]
				if usecase.lower() == config_input['targetPath'].lower():					
					operation = self.path.split('/')[-1]        
					data = json.loads(data)        
					dataStr = json.dumps(data)        
					if operation.lower() == 'predict':        
						output=deployobj.predict(dataStr)        
						resp = output        
					elif operation.lower() == 'groundtruth':
						gtObj = groundtruth(config_input)				
						output = gtObj.actual(dataStr)
						resp = output        
					elif operation.lower() == 'delete':
						targetPath = Path('aion')/config_input['targetPath']                    
						for file in data:
							x = targetPath/file                           
							if x.exists():
								os.remove(x)                        
						resp = json.dumps({'Status':'Success'})
					else:        
						outputStr = json.dumps({'Status':'Error','Msg':'Operation not supported'})        
						resp = outputStr        
				else:
					outputStr = json.dumps({'Status':'Error','Msg':'Wrong URL'})        
					resp = outputStr
        
			else:        
				outputStr = json.dumps({'Status':'ERROR','Msg':'Content-Type Not Present'})        
				resp = outputStr        
			resp=resp+'\\n'        
			resp=resp.encode()        
			self.send_response(200)        
			self.send_header('Content-Type', 'application/json')        
			self.end_headers()        
			self.wfile.write(resp)        
		else:        
			print('python ==> else1')        
			self.send_response(403)        
			self.send_header('Content-Type', 'application/json')        
			self.end_headers()        
			print('PYTHON ######## REQUEST ####### ENDED')        
		return        
        
	def do_GET(self):        
		print('PYTHON ######## REQUEST ####### STARTED')        
		if None != re.search('/AION/', self.path) or None != re.search('/aion/', self.path):        
			usecase = self.path.split('/')[-2]        
			self.send_response(200)        
			self.targetPath = Path('aion')/config_input['targetPath']			
			meta_data_file = self.targetPath/IOFiles['metaData']        
			if meta_data_file.exists():        
				meta_data = read_json(meta_data_file)        
			else:        
				raise ValueError(f'Configuration file not found: {meta_data_file}')
			production_file = self.targetPath/IOFiles['production']            
			if production_file.exists():        
				production_data = read_json(production_file)        
			else:        
				raise ValueError(f'Production Details not found: {production_file}')           
			operation = self.path.split('/')[-1]                
			if (usecase.lower() == config_input['targetPath'].lower()) and (operation.lower() == 'metrices'):
				self.send_header('Content-Type', 'text/html')        
				self.end_headers()            
				ModelString = production_data['Model']
				ModelPerformance = ModelString+'_performance.json'                
				performance_file = self.targetPath/ModelPerformance                
				if performance_file.exists():        
					performance_data = read_json(performance_file)        
				else:        
					raise ValueError(f'Production Details not found: {performance_data}')
				Scoring_Creteria =  performance_data['scoring_criteria']                   
				train_score =  round(performance_data['metrices']['train_score'],2)                
				test_score =  round(performance_data['metrices']['test_score'],2)  
				current_score = 'NA'                        
				monitoring = read_json(self.targetPath/IOFiles['monitoring'])
				reader = dataReader(reader_type=monitoring['prod_db_type'],target_path=self.targetPath, config=monitoring['db_config'])
				inputDatafile = self.targetPath/IOFiles['inputData']                
				NoOfPrediction = 0
				NoOfGroundTruth = 0 
				inputdistribution = ''                
				if reader.file_exists(IOFiles['prodData']):        
					dfPredict = reader.read(IOFiles['prodData'])
					dfinput = pd.read_csv(inputDatafile)
					features = meta_data['training']['features']
					inputdistribution = getDriftDistribution(features,dfinput,dfPredict)                    
					NoOfPrediction = len(dfPredict)				
					if reader.file_exists(IOFiles['prodDataGT']):        
						dfGroundTruth = reader.read(IOFiles['prodDataGT'])
						NoOfGroundTruth = len(dfGroundTruth)                    
						common_col = [k for k in dfPredict.columns.tolist() if k in dfGroundTruth.columns.tolist()]				
						proddataDF = pd.merge(dfPredict, dfGroundTruth, on =common_col,how = 'inner')
						if Scoring_Creteria.lower() == 'accuracy':    
							from sklearn.metrics import accuracy_score                        
							current_score = accuracy_score(proddataDF[config_input['target_feature']], proddataDF['prediction'])
							current_score = round((current_score*100),2)                            
						elif Scoring_Creteria.lower() == 'recall':    
							from sklearn.metrics import accuracy_score                        
							current_score = recall_score(proddataDF[config_input['target_feature']], proddataDF['prediction'],average='macro')
							current_score = round((current_score*100),2)                           
				msg = \""""""<html>
<head>
<title>Performance Details</title>
</head>
<style>
table, th, td {border}
</style>
<body>
<h2><b>Deployed Model:</b>{ModelString}</h2>
<br/>
<table style=""width:50%"">
<tr>
<td>No of Prediction</td>
<td>{NoOfPrediction}</td>
</tr>
<tr>
<td>No of GroundTruth</td>
<td>{NoOfGroundTruth}</td>
</tr>
</table>
<br/>
<table style=""width:100%"">
<tr>
<th>Score Type</th>
<th>Train Score</th>
<th>Test Score</th>
<th>Production Score</th>
</tr>
<tr>
<td>{Scoring_Creteria}</td>
<td>{train_score}</td>
<td>{test_score}</td>
<td>{current_score}</td>
</tr>
</table>
<br/>
<br/>
<img src=""data:image/png;base64,{newDataDrift}"" alt="""" >
</body>
</html>
\"""""".format(border='{border: 1px solid black;}',ModelString=ModelString,Scoring_Creteria=Scoring_Creteria,NoOfPrediction=NoOfPrediction,NoOfGroundTruth=NoOfGroundTruth,train_score=train_score,test_score=test_score,current_score=current_score,newDataDrift=inputdistribution)
			elif (usecase.lower() == config_input['targetPath'].lower()) and (operation.lower() == 'logs'):    
				self.send_header('Content-Type', 'text/plain')        
				self.end_headers()                           
				log_file = self.targetPath/IOFiles['log']                
				if log_file.exists():
					with open(log_file) as f:
						msg = f.read()                
					f.close()
				else:        
					raise ValueError(f'Log Details not found: {log_file}')            
			else:
				self.send_header('Content-Type', 'application/json')        
				self.end_headers()            
				features = meta_data['load_data']['selected_features']
				bodydes='['
				for x in features:
					if bodydes != '[':
						bodydes = bodydes+','
					bodydes = bodydes+'{""'+x+'"":""value""}'	
				bodydes+=']'
				urltext = '/AION/'+config_input['targetPath']+'/predict'
				urltextgth='/AION/'+config_input['targetPath']+'/groundtruth'
				urltextproduction='/AION/'+config_input['targetPath']+'/metrices'
				msg=\""""""
Version:{modelversion}
RunNo: {runNo}
URL for Prediction
==================
URL:{url}
RequestType: POST
Content-Type=application/json
Body: {displaymsg}
Output: prediction,probability(if Applicable),remarks corresponding to each row.

URL for GroundTruth
===================
URL:{urltextgth}
RequestType: POST
Content-Type=application/json
Note: Make Sure that one feature (ID) should be unique in both predict and groundtruth. Otherwise outputdrift will not work  

URL for Model In Production Analysis
====================================
URL:{urltextproduction}
RequestType: GET
Content-Type=application/json

\"""""".format(modelversion=config_input['modelVersion'],runNo=config_input['deployedRunNo'],url=urltext,urltextgth=urltextgth,urltextproduction=urltextproduction,displaymsg=bodydes)        
			self.wfile.write(msg.encode())        
		else:        
			self.send_response(403)        
			self.send_header('Content-Type', 'application/json')        
			self.end_headers()        
		return        
        
class ThreadedHTTPServer(ThreadingMixIn, HTTPServer):        
	allow_reuse_address = True        
        
	def shutdown(self):        
		self.socket.close()        
		HTTPServer.shutdown(self)        
        
class file_status():
	
	def __init__(self, reload_function, params, file, logger):
		self.files_status = {}
		self.initializeFileStatus(file)
		self.reload_function = reload_function
		self.params = params
		self.logger = logger
		
	def initializeFileStatus(self, file):
		self.files_status = {'path': file, 'time':file.stat().st_mtime}

	def is_file_changed(self):
		if self.files_status['path'].stat().st_mtime > self.files_status['time']:
			self.files_status['time'] = self.files_status['path'].stat().st_mtime
			return True
		return False
		
	def run(self):
		global config_input    
		while( True):
			time.sleep(30)
			if self.is_file_changed():
				production_details = targetPath/IOFiles['production']
				if not production_details.exists():        
					raise ValueError(f'Model in production details does not exist')
				productionmodel = read_json(production_details)
				config_file = Path(__file__).parent/'config.json'        
				if not Path(config_file).exists():        
					raise ValueError(f'Config file is missing: {config_file}')        
				config_input = read_json(config_file)				
				config_input['deployedModel'] =  productionmodel['Model']
				config_input['deployedRunNo'] =  productionmodel['runNo']
				self.logger.info('Model changed Reloading.....')
				self.logger.info(f'Model: {config_input[""deployedModel""]}')				
				self.logger.info(f'Version: {str(config_input[""modelVersion""])}')
				self.logger.info(f'runNo: {str(config_input[""deployedRunNo""])}')
				self.reload_function(config_input)
			
class SimpleHttpServer():        
	def __init__(self, ip, port, model_file_path,reload_function,params, logger):        
		self.server = ThreadedHTTPServer((ip,port), HTTPRequestHandler)        
		self.status_checker = file_status( reload_function, params, model_file_path, logger)
		
	def start(self):        
		self.server_thread = threading.Thread(target=self.server.serve_forever)        
		self.server_thread.daemon = True        
		self.server_thread.start()        
		self.status_thread = threading.Thread(target=self.status_checker.run)        
		self.status_thread.start()        
		
	def waitForThread(self):        
		self.server_thread.join()        
		self.status_thread.join()        
		
	def stop(self):        
		self.server.shutdown()        
		self.waitForThread()        
        
if __name__=='__main__':        
	parser = argparse.ArgumentParser(description='HTTP Server')        
	parser.add_argument('-ip','--ipAddress', help='HTTP Server IP')        
	parser.add_argument('-pn','--portNo', type=int, help='Listening port for HTTP Server')        
	args = parser.parse_args()        
	config_file = Path(__file__).parent/'config.json'        
	if not Path(config_file).exists():        
		raise ValueError(f'Config file is missing: {config_file}')        
	config = read_json(config_file)        
	if args.ipAddress:        
		config['ipAddress'] = args.ipAddress        
	if args.portNo:        
		config['portNo'] = args.portNo        
	targetPath = Path('aion')/config['targetPath']        
	if not targetPath.exists():        
		raise ValueError(f'targetPath does not exist')
	production_details = targetPath/IOFiles['production']
	if not production_details.exists():        
		raise ValueError(f'Model in production details does not exist')
	productionmodel = read_json(production_details)
	config['deployedModel'] =  productionmodel['Model']
	config['deployedRunNo'] =  productionmodel['runNo']	
	#server = SimpleHttpServer(config['ipAddress'],int(config['portNo']))        
	config_input = config        
	logging.basicConfig(filename= Path(targetPath)/IOFiles['log'], filemode='a', format='%(asctime)s %(name)s- %(message)s', level=logging.INFO, datefmt='%d-%b-%y %H:%M:%S')                    
	logger = logging.getLogger(Path(__file__).parent.name)                    
	deployobj = deploy(config_input, logger)
	server = SimpleHttpServer(config['ipAddress'],int(config['portNo']),targetPath/IOFiles['production'],deployobj.initialize,config_input, logger)
	logger.info('HTTP Server Running...........')
	logger.info(f""IP Address: {config['ipAddress']}"")
	logger.info(f""Port No.: {config['portNo']}"")
	print('HTTP Server Running...........')  
	print('For Prediction')
	print('================')
	print('Request Type: Post')
	print('Content-Type: application/json')	
	print('URL: /AION/'+config['targetPath']+'/predict')	
	print('\\nFor GroundTruth')
	print('================')
	print('Request Type: Post')
	print('Content-Type: application/json')	
	print('URL: /AION/'+config['targetPath']+'/groundtruth')	
	print('\\nFor Help')
	print('================')
	print('Request Type: Get')
	print('Content-Type: application/json')	
	print('URL: /AION/'+config['targetPath']+'/help')	
	print('\\nFor Model In Production Analysis')
	print('================')
	print('Request Type: Get')
	print('Content-Type: application/json')	
	print('URL: /AION/'+config['targetPath']+'/metrices')    
	server.start()        
	server.waitForThread()
"""""""
trainer.py,"""""""
/**
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  © Copyright HCL Technologies Ltd. 2021, 2022
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*/
""""""

import json

class learner():

    def __init__(self, problem_type=""classification"", target_feature="""", sample_method=None,indent=0, tab_size=4):
        self.tab = "" ""*tab_size
        self.df_name = 'df'
        self.problem_type = problem_type
        self.target_feature = target_feature
        self.search_space = []
        self.codeText = f""\ndef train(log):""
        self.input_files = {}
        self.output_files = {}
        self.function_code = ''
        self.addInputFiles({'inputData' : 'featureEngineeredData.dat', 'metaData' : 'modelMetaData.json','monitor':'monitoring.json'})

    def addInputFiles(self, files):
        if not isinstance(files, dict):
            raise TypeError(f""Required dict type got {type(files)} type"")
        for k,v in files.items():
            self.input_files[k] = v
            
    def addOutputFiles(self, files):
        if not isinstance(files, dict):
            raise TypeError(f""Required dict type got {type(files)} type"")
        for k,v in files.items():
            self.input_files[k] = v
            
    def getInputFiles(self):        
        text = 'IOFiles = '
        if not self.input_files:
            text += '{ }'
        else:
            text += json.dumps(self.input_files, indent=4)
        return text
        
    def getOutputFiles(self):
        text = 'output_file = '
        if not self.output_files:
            text += '{ }'
        else:
            text += json.dumps(self.output_files, indent=4)
        return text
    
    def getInputOutputFiles(self, indent=0):
        text = '\n'
        text += self.getInputFiles()
        if indent:
            text = text.replace('\n', self.tab * indent + '\n')
        return text
        
    def __addValidateConfigCode(self):
        text = ""\n\
        \ndef validateConfig():\
        \n    config_file = Path(__file__).parent/'config.json'\
        \n    if not Path(config_file).exists():\
        \n        raise ValueError(f'Config file is missing: {config_file}')\
        \n    config = utils.read_json(config_file)\
        \n    return config""
        return text

    def addStatement(self, statement, indent=1):
        self.codeText += '\n' + self.tab * indent + statement
                
    def getCode(self):
        return self.function_code + '\n' + self.codeText

    def addLocalFunctionsCode(self):
        self.function_code += self.__addValidateConfigCode()

    def getPrefixModules(self):
        modules = [{'module':'Path', 'mod_from':'pathlib'}
            ,{'module':'pandas', 'mod_as':'pd'}
            ]
        return modules
    
    def addPrefixCode(self, indent=1):
        self.codeText += ""\
        ""
    def getSuffixModules(self):
        modules = []
        return modules

    def addSuffixCode(self, indent=1):
        self.codeText += ""\n\
        ""
    def getMainCodeModules(self):
        modules = [{'module':'logging'}
            ]
        return modules

    def getMlpCodeModules(self):
        modules = [{'module':'math'}
            ,{'module':'json'}
            ,{'module':'joblib'}
            ,{'module':'keras_tuner'}
            ,{'module':'pandas', 'mod_as':'pd'}
            ,{'module':'numpy', 'mod_as':'np'}
            ,{'module':'Path', 'mod_from':'pathlib'}
            ,{'module':'r2_score', 'mod_from':'sklearn.metrics'}
            ,{'module':'mean_squared_error', 'mod_from':'sklearn.metrics'}
            ,{'module':'mean_absolute_error', 'mod_from':'sklearn.metrics'}
            ,{'module':'Dense', 'mod_from':'tensorflow.keras.layers'}
            ,{'module':'Sequential', 'mod_from':'tensorflow.keras'}
            ,{'module':'Dropout', 'mod_from':'tensorflow.keras.layers'}
            ]
        return modules

    def addMlpCode(self):
        self.codeText = """"""
def getdlparams(config):   
    for k, v in config.items():
        if (k == ""activation""):
            activation_fn = str(v)
        elif (k == ""optimizer""):
            optimizer = str(v)
        elif (k == ""loss""):
            loss_fn = str(v)
        elif (k == ""first_layer""):
            if not isinstance(k, list):
                first_layer = str(v).split(',')
            else:
                first_layer = k
        elif (k == ""lag_order""):
           lag_order = int(v)
        elif (k == ""hidden_layers""):
            hidden_layers = int(v)
        elif (k == ""dropout""):
            if not isinstance(k, list):
                dropout = str(v).split(',')
            else:
                dropout = k
        elif (k == ""batch_size""):
            batch_size = int(v)
        elif (k == ""epochs""):
            epochs = int(v)
        elif (k == ""model_name""):
            model_name = str(v)
    return activation_fn, optimizer, loss_fn, first_layer, lag_order, hidden_layers, dropout, batch_size, epochs, model_name
def numpydf(dataset, look_back):
    dataX, dataY = [], []
    for i in range(len(dataset) - look_back - 1):
        subset = dataset[i:(i + look_back), 0]
        dataX.append(subset)
        dataY.append(dataset[i + look_back, 0])
    return np.array(dataX), np.array(dataY)

def startTraining(dataset,train_size,mlpConfig,filename_scaler,target_feature,scoreParam,log):
    log.info('Training started')
    activation_fn, optimizer, loss_fn, first_layer, hidden_layers, look_back, dropout, batch_size, epochs, model_name = getdlparams(mlpConfig)
    hp = keras_tuner.HyperParameters()              
    first_layer_min = round(int(first_layer[0]))
    first_layer_max = round(int(first_layer[1]))
    dropout_min = float(dropout[0])
    dropout_max = float(dropout[1])                  
    dataset = dataset.values
    train, test = dataset[0:train_size, :], dataset[train_size:len(dataset), :]
    trainX, trainY = numpydf(train, look_back)
    testX, testY = numpydf(test, look_back)
    # create and fit Multilayer Perceptron model
    model = Sequential()
    model.add(Dense(units=hp.Int('units',min_value=first_layer_min,max_value=first_layer_max,step=16), input_dim=look_back, activation=activation_fn)) #BUGID 13484
    model.add(Dropout(hp.Float('Dropout_rate',min_value=dropout_min,max_value=dropout_max,step=0.1)))  #BUGID 13484
    model.add(Dense(1, activation='sigmoid'))
    model.compile(loss=loss_fn, optimizer=optimizer)
    model_fit = model.fit(trainX, trainY, epochs=epochs, batch_size=batch_size, verbose=2)
    # Estimate model performance
    trainScore = model.evaluate(trainX, trainY, verbose=0)
    testScore = model.evaluate(testX, testY, verbose=0)
    # Scoring values for the model
    mse_eval = testScore
    rmse_eval = math.sqrt(testScore)
    # generate predictions for training
    trainPredict = model.predict(trainX)
    testPredict = model.predict(testX)
    scaler = joblib.load(filename_scaler)

    trainY = scaler.inverse_transform([trainY])
    trainPredict = scaler.inverse_transform(trainPredict)
    ## For test data
    testY = scaler.inverse_transform([testY])
    testPredict = scaler.inverse_transform(testPredict)
    mse_mlp = mean_squared_error(testY.T, testPredict)
    scores = {}
    r2 = round(r2_score(testY.T, testPredict), 2)
    scores['R2'] = r2
    
    mae = round(mean_absolute_error(testY.T, testPredict), 2)
    scores['MAE'] = mae
    
    scores['MSE'] = round(mse_mlp, 2)
    
    rmse = round(math.sqrt(mse_mlp), 2)
    scores['RMSE'] = rmse
  
    
    scores[scoreParam] = scores.get(scoreParam.upper(), scores['MSE'])
    log.info(""mlp rmse: ""+str(rmse))
    log.info(""mlp mse: ""+str(round(mse_mlp, 2)))
    log.info(""mlp r2: ""+str(r2))
    log.info(""mlp mae: ""+str(mae))

    return model, look_back, scaler,testScore,trainScore,scores

def train(config, targetPath, log):

    dataLoc = targetPath / IOFiles['inputData']
    if not dataLoc.exists():
        return {'Status': 'Failure', 'Message': 'Data location does not exists.'}

    status = dict()
    usecase = config['targetPath']
    df = utils.read_data(dataLoc)
    target_feature = config['target_feature']
    dateTimeFeature= config['dateTimeFeature']
    df.set_index(dateTimeFeature, inplace=True)
    train_size = int(len(df) * (1-config['test_ratio']))   #BugID:13217
    mlpConfig = config['algorithms']['MLP']
    filename = meta_data['transformation']['Status']['Normalization_file']
    scoreParam = config['scoring_criteria']
    log.info('Training MLP for TimeSeries')
    mlp_model, look_back, scaler,testScore,trainScore, error_matrix = startTraining(df,train_size,mlpConfig,filename,target_feature,scoreParam,log)
    score = error_matrix[scoreParam]
    # Training model
    

    model_path = targetPath/'runs'/str(meta_data['monitoring']['runId'])/model_name
    model_file_name = str(model_path/'model')
    mlp_model.save(model_file_name)
    meta_data['training'] = {}
    meta_data['training']['model_filename'] = model_file_name
    meta_data['training']['dateTimeFeature'] = dateTimeFeature
    meta_data['training']['target_feature'] = target_feature
    utils.write_json(meta_data, targetPath / IOFiles['metaData'])
    utils.write_json({'scoring_criteria': scoreParam, 'metrices': error_matrix,'score':error_matrix[scoreParam]}, model_path / IOFiles['metrics'])
    # return status
    status = {'Status': 'Success', 'errorMatrix': error_matrix, 'test_score':testScore, 'train_score': trainScore,'score':error_matrix[scoreParam]}
    log.info(f'Test score: {testScore}')
    log.info(f'Train score: {trainScore}')
    log.info(f'output: {status}')
    return json.dumps(status)
    """"""

    def getLstmCodeModules(self):
        modules = [{'module':'math'}
            ,{'module':'json'}
            ,{'module':'joblib'}
            ,{'module':'keras_tuner'}
            ,{'module':'pandas', 'mod_as':'pd'}
            ,{'module':'numpy', 'mod_as':'np'}
            ,{'module':'Path', 'mod_from':'pathlib'}
            ,{'module':'r2_score', 'mod_from':'sklearn.metrics'}
            ,{'module':'mean_squared_error', 'mod_from':'sklearn.metrics'}
            ,{'module':'mean_absolute_error', 'mod_from':'sklearn.metrics'}
            ,{'module':'Dense', 'mod_from':'tensorflow.keras.layers'}
            ,{'module':'Sequential', 'mod_from':'tensorflow.keras'}
            ,{'module':'Dropout', 'mod_from':'tensorflow.keras.layers'}
            ,{'module':'LSTM', 'mod_from':'tensorflow.keras.layers'}
            ,{'module':'TimeseriesGenerator', 'mod_from':'tensorflow.keras.preprocessing.sequence'}
            ,{'module':'train_test_split', 'mod_from':'sklearn.model_selection'}
            ]
        return modules

    def addLstmCode(self):
        self.codeText = """"""
def getdlparams(config):
    for k, v in config.items():
        if (k == ""activation""):
            activation_fn = str(v)
        elif (k == ""optimizer""):
            optimizer = str(v)
        elif (k == ""loss""):
            loss_fn = str(v)
        elif (k == ""first_layer""):
            if not isinstance(k, list):
                first_layer = str(v).split(',')
            else:
                first_layer = k
        elif (k == ""lag_order""):
           lag_order = int(v)
        elif (k == ""hidden_layers""):
            hidden_layers = int(v)
        elif (k == ""dropout""):
            if not isinstance(k, list):
                dropout = str(v).split(',')
            else:
                dropout = k
        elif (k == ""batch_size""):
            batch_size = int(v)
        elif (k == ""epochs""):
            epochs = int(v)

    return activation_fn, optimizer, loss_fn, first_layer, lag_order, hidden_layers, dropout, batch_size, epochs

def numpydf(dataset, look_back):
    dataX, dataY = [], []
    for i in range(len(dataset) - look_back - 1):
        subset = dataset[i:(i + look_back), 0]
        dataX.append(subset)
        dataY.append(dataset[i + look_back, 0])
    return np.array(dataX), np.array(dataY)

def startTraining(dataset,test_size,mlpConfig,filename_scaler,target_feature,scoreParam,log):
    log.info('Training started')
    activation_fn, optimizer, loss_fn, first_layer,  look_back,hidden_layers, dropout, batch_size, epochs= getdlparams(mlpConfig)
    n_features = len(target_feature)
    n_input = look_back
    hp = keras_tuner.HyperParameters()              
    first_layer_min = round(int(first_layer[0]))
    first_layer_max = round(int(first_layer[1]))
    dropout_min = float(dropout[0])
    dropout_max = float(dropout[1])
    dataset = dataset[target_feature]
    dataset_np = dataset.values
    train, test = train_test_split(dataset_np, test_size=test_size, shuffle=False)
    generatorTrain = TimeseriesGenerator(train, train, length=n_input, batch_size=8)
    generatorTest = TimeseriesGenerator(test, test, length=n_input, batch_size=8)
    batch_0 = generatorTrain[0]
    x, y = batch_0
    epochs = int(epochs)
    ##Multivariate LSTM model
    model = Sequential()
    model.add(LSTM(units=hp.Int('units',min_value=first_layer_min,max_value=first_layer_max,step=16), activation=activation_fn, input_shape=(n_input, n_features)))
    model.add(Dropout(hp.Float('Dropout_rate',min_value=dropout_min,max_value=dropout_max,step=0.1)))
    model.add(Dense(n_features))
    model.compile(optimizer=optimizer, loss=loss_fn)
    # model.fit(generatorTrain,epochs=epochs,batch_size=self.batch_size,shuffle=False)
    model.fit_generator(generatorTrain, steps_per_epoch=1, epochs=epochs, shuffle=False, verbose=0)
    # lstm_mv_testScore_mse = model.evaluate(x, y, verbose=0)


    predictions = []
    future_pred_len = n_input
    # To get values for prediction,taking look_back steps of rows
    first_batch = train[-future_pred_len:]
    c_batch = first_batch.reshape((1, future_pred_len, n_features))
    current_pred = None
    for i in range(len(test)):
        # get pred for firstbatch
        current_pred = model.predict(c_batch)[0]
        predictions.append(current_pred)
        # remove first val
        c_batch_rmv_first = c_batch[:, 1:, :]
        # update
        c_batch = np.append(c_batch_rmv_first, [[current_pred]], axis=1)
    ## Prediction, inverse the minmax transform
    scaler = joblib.load(filename_scaler)
    prediction_actual = scaler.inverse_transform(predictions)
    test_data_actual = scaler.inverse_transform(test)
    mse = None
    rmse = None
    ## Creating dataframe for actual,predictions
    pred_cols = list()
    for i in range(len(target_feature)):
        pred_cols.append(target_feature[i] + '_pred')

    predictions = pd.DataFrame(prediction_actual, columns=pred_cols)
    actual = pd.DataFrame(test_data_actual, columns=target_feature)
    actual.columns = [str(col) + '_actual' for col in dataset.columns]
    df_predicted = pd.concat([actual, predictions], axis=1)
    print(""LSTM Multivariate prediction dataframe: \\n"" + str(df_predicted))
    # df_predicted.to_csv('mlp_prediction.csv')
    from math import sqrt
    from sklearn.metrics import mean_squared_error
    from sklearn.metrics import r2_score
    from sklearn.metrics import mean_absolute_error
    target = target_feature
    mse_dict = {}
    rmse_dict = {}
    mae_dict = {}
    r2_dict = {}
    lstm_var = 0
    for name in target:
        index =  dataset.columns.get_loc(name)
        mse = mean_squared_error(test_data_actual[:, index], prediction_actual[:, index])
        mse_dict[name] = mse
        rmse = sqrt(mse)
        rmse_dict[name] = rmse
        lstm_var = lstm_var + rmse
        print(""Name of the target feature: "" + str(name))
        print(""RMSE of the target feature: "" + str(rmse))
        r2 = r2_score(test_data_actual[:, index], prediction_actual[:, index])
        r2_dict[name] = r2
        mae = mean_absolute_error(test_data_actual[:, index], prediction_actual[:, index])
        mae_dict[name] = mae
    ## For VAR comparison, send last target mse and rmse from above dict
    lstm_var = lstm_var / len(target)
    select_msekey = list(mse_dict.keys())[-1]
    l_mse = list(mse_dict.values())[-1]
    select_rmsekey = list(rmse_dict.keys())[-1]
    l_rmse = list(rmse_dict.values())[-1]
    select_r2key = list(r2_dict.keys())[-1]
    l_r2 = list(r2_dict.values())[-1]
    select_maekey = list(mae_dict.keys())[-1]
    l_mae = list(mae_dict.values())[-1]
    log.info('Selected target feature of LSTM for best model selection: ' + str(select_rmsekey))
    scores = {}
    scores['R2'] = l_r2
    scores['MAE'] = l_mae
    scores['MSE'] = l_mse
    scores['RMSE'] = l_rmse
    scores[scoreParam] = scores.get(scoreParam.upper(), scores['MSE'])
    log.info(""lstm rmse: ""+str(l_rmse))
    log.info(""lstm mse: ""+str(l_mse))
    log.info(""lstm r2: ""+str(l_r2))
    log.info(""lstm mae: ""+str(l_mae))

    return model,look_back,scaler, scores

def train(config, targetPath, log):
    dataLoc = targetPath / IOFiles['inputData']
    if not dataLoc.exists():
        return {'Status': 'Failure', 'Message': 'Data location does not exists.'}
    status = dict()
    usecase = config['targetPath']
    df = utils.read_data(dataLoc)
    target_feature = config['target_feature']
    dateTimeFeature= config['dateTimeFeature']
    scoreParam = config['scoring_criteria']
    testSize = config['test_ratio']
    lstmConfig = config['algorithms']['LSTM']
    filename = meta_data['transformation']['Status']['Normalization_file']
    if (type(target_feature) is list):
        pass
    else:
        target_feature = list(target_feature.split("",""))
    df.set_index(dateTimeFeature, inplace=True)
    log.info('Training LSTM for TimeSeries')
    mlp_model, look_back, scaler, error_matrix = startTraining(df,testSize,lstmConfig,filename,target_feature,scoreParam,log)
    score = error_matrix[scoreParam]
    log.info(""LSTM Multivariant all scoring param results: ""+str(error_matrix))
    # Training model
    


    model_path = targetPath/'runs'/str(meta_data['monitoring']['runId'])/model_name
    model_file_name = str(model_path/'model')
    mlp_model.save(model_file_name)
    meta_data['training'] = {}
    meta_data['training']['model_filename'] = model_file_name
    meta_data['training']['dateTimeFeature'] = dateTimeFeature
    meta_data['training']['target_feature'] = target_feature
    utils.write_json(meta_data, targetPath / IOFiles['metaData'])
    utils.write_json({'scoring_criteria': scoreParam, 'metrices': error_matrix,'score':error_matrix[scoreParam]}, model_path / IOFiles['metrics'])
    # return status
    status = {'Status': 'Success', 'errorMatrix': error_matrix,'score':error_matrix[scoreParam]}
    log.info(f'score: {error_matrix[scoreParam]}')
    log.info(f'output: {status}')
    return json.dumps(status)
    """"""
    def addMainCode(self, indent=1):
        self.codeText += """"""
if __name__ == '__main__':
    config = validateConfig()
    targetPath = Path('aion') / config['targetPath']
    if not targetPath.exists():
        raise ValueError(f'targetPath does not exist')
    meta_data_file = targetPath / IOFiles['metaData']
    if meta_data_file.exists():
        meta_data = utils.read_json(meta_data_file)
    else:
        raise ValueError(f'Configuration file not found: {meta_data_file}')
    log_file = targetPath / IOFiles['log']
    log = utils.logger(log_file, mode='a', logger_name=Path(__file__).parent.stem)
    try:
        print(train(config, targetPath, log))
    except Exception as e:
        
        status = {'Status': 'Failure', 'Message': str(e)}
        print(json.dumps(status))
    """"""

    def add_variable(self, name, value, indent=1):
        if isinstance(value, str):
            self.codeText += f""\n{self.tab * indent}{name} = '{value}'""
        else:
            self.codeText += f""\n{self.tab * indent}{name} = {value}""
        
    def addStatement(self, statement, indent=1):
        self.codeText += f""\n{self.tab * indent}{statement}""
            
"
selector.py,"""""""
/**
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  © Copyright HCL Technologies Ltd. 2021, 2022
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*/
""""""
import json

class selector():

    def __init__(self, indent=0, tab_size=4):
        self.tab = "" ""*tab_size
        self.codeText = """"
        self.pipe = 'pipe'
        self.code_generated = False
        self.input_files = {}
        self.output_files = {}
        self.function_code = ''
        self.addInputFiles({'inputData' : 'transformedData.dat', 'metaData' : 'modelMetaData.json','log' : 'aion.log','outputData' : 'featureEngineeredData.dat'})

    def addInputFiles(self, files):
        if not isinstance(files, dict):
            raise TypeError(f""Required dict type got {type(files)} type"")
        for k,v in files.items():
            self.input_files[k] = v
            
    def addOutputFiles(self, files):
        if not isinstance(files, dict):
            raise TypeError(f""Required dict type got {type(files)} type"")
        for k,v in files.items():
            self.input_files[k] = v
            
    def getInputFiles(self):        
        text = 'IOFiles = '
        if not self.input_files:
            text += '{ }'
        else:
            text += json.dumps(self.input_files, indent=4)
        return text
        
    def getOutputFiles(self):
        text = 'output_file = '
        if not self.output_files:
            text += '{ }'
        else:
            text += json.dumps(self.output_files, indent=4)
        return text
    
    def getInputOutputFiles(self, indent=0):
        text = '\n'
        text += self.getInputFiles()
        if indent:
            text = text.replace('\n', self.tab * indent + '\n')
        return text
        
    def __addValidateConfigCode(self):
        text = ""\n\
        \ndef validateConfig():\
        \n    config_file = Path(__file__).parent/'config.json'\
        \n    if not Path(config_file).exists():\
        \n        raise ValueError(f'Config file is missing: {config_file}')\
        \n    config = read_json(config_file)\
        \n    return config""
        return text

    def addMainCode(self):
        self.codeText += """"""
if __name__ == '__main__':
    config = validateConfig()
    targetPath = Path('aion') / config['targetPath']
    if not targetPath.exists():
        raise ValueError(f'targetPath does not exist')
    meta_data_file = targetPath / IOFiles['metaData']
    if meta_data_file.exists():
        meta_data = read_json(meta_data_file)
    else:
        raise ValueError(f'Configuration file not found: {meta_data_file}')
    log_file = targetPath / IOFiles['log']
    log = logger(log_file, mode='a', logger_name=Path(__file__).parent.stem)
    try:
        print(featureSelector(config,targetPath, log))
    except Exception as e:
        
        status = {'Status': 'Failure', 'Message': str(e)}
        print(json.dumps(status))
    """"""

    def addValidateConfigCode(self, indent=1):
        self.function_code += self.__addValidateConfigCode()

    def addStatement(self, statement, indent=1):
        self.codeText += '\n' + self.tab * indent + statement
                
    def getCode(self):
        return self.function_code + '\n' + self.codeText

    def addLocalFunctionsCode(self):
        self.addValidateConfigCode()
    
    def getPrefixModules(self):
        modules = [{'module':'Path', 'mod_from':'pathlib'}
            ,{'module':'pandas', 'mod_as':'pd'}
            ]
        return modules
    
    def addPrefixCode(self, indent=1):
        self.codeText += """"""
def featureSelector(config, targetPath, log):
    dataLoc = targetPath / IOFiles['inputData']
    if not dataLoc.exists():
        return {'Status': 'Failure', 'Message': 'Data location does not exists.'}

    status = dict()
    df = pd.read_csv(dataLoc)
    log.log_dataframe(df)

    csv_path = str(targetPath / IOFiles['outputData'])
    write_data(df, csv_path, index=False)
    status = {'Status': 'Success', 'dataFilePath': IOFiles['outputData']}
    log.info(f'Selected data saved at {csv_path}')
    meta_data['featureengineering'] = {}
    meta_data['featureengineering']['Status'] = status
    write_json(meta_data, str(targetPath / IOFiles['metaData']))
    log.info(f'output: {status}')
    return json.dumps(status)
    """"""
    
    def getSuffixModules(self):
        modules = []
        return modules
    
    def addSuffixCode(self, indent=1):
        self.codeText += """"

    def getMainCodeModules(self):
        modules = [
            {'module':'json'}
            ,{'module':'logging'}
            ]
        return modules
        
    def addStatement(self, statement, indent=1):
        self.codeText += f""\n{self.tab * indent}{statement}""

    def getPipe(self):
        return self.pipe
    "
utility.py,"""""""
/**
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  © Copyright HCL Technologies Ltd. 2021, 2022
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*/
""""""
from .imports import importModule

utility_functions = {
'load_data': ['read_json','write_json','read_data','write_data','is_file_name_url','logger_class'],
'transformer': ['read_json','write_json','read_data','write_data','is_file_name_url','logger_class'],
'selector': ['read_json','write_json','read_data','write_data','is_file_name_url','logger_class'],
'train': ['read_json','write_json','read_data','write_data','is_file_name_url','logger_class'],
'register': ['read_json','write_json','read_data','write_data','is_file_name_url','logger_class'],
'Prediction': ['read_json','write_json','read_data','write_data','is_file_name_url','logger_class'],
'drift': ['read_json','write_json','read_data','write_data','is_file_name_url','logger_class'],
}

#TODO convert read and write functions in to class functions
functions_code = {
    'read_json':{'imports':[{'mod':'json'}],'code':""\n\
        \ndef read_json(file_path):\
        \n    data = None\
        \n    with open(file_path,'r') as f:\
        \n        data = json.load(f)\
        \n    return data\
        \n""},
    'write_json':{'imports':[{'mod':'json'}],'code':""\n\
        \ndef write_json(data, file_path):\
        \n    with open(file_path,'w') as f:\
        \n        json.dump(data, f)\
        \n""},
    'read_data':{'imports':[{'mod':'pandas','mod_as':'pd'}],'code':""\n\
        \ndef read_data(file_path, encoding='utf-8', sep=','):\
        \n    return pd.read_csv(file_path, encoding=encoding, sep=sep)\
        \n""},
    'write_data':{'imports':[{'mod':'pandas','mod_as':'pd'}],'code':""\n\
        \ndef write_data(data, file_path, index=False):\
        \n    return data.to_csv(file_path, index=index)\
        \n\
        \n#Uncomment and change below code for google storage\
        \n#from google.cloud import storage\
        \n#def write_data(data, file_path, index=False):\
        \n#    file_name= file_path.name\
        \n#    data.to_csv('output_data.csv')\
        \n#    storage_client = storage.Client()\
        \n#    bucket = storage_client.bucket('aion_data')\
        \n#    bucket.blob('prediction/'+file_name).upload_from_filename('output_data.csv', content_type='text/csv')\
        \n#    return data\
        \n""},
    'is_file_name_url':{'imports':[],'code':""\n\
        \ndef is_file_name_url(file_name):\
        \n    supported_urls_starts_with = ('gs://','https://','http://')\
        \n    return file_name.startswith(supported_urls_starts_with)\
        \n""},
    'logger_class':{'imports':[{'mod':'logging'}, {'mod':'io'}],'code':""\n\
        \nclass logger():\
        \n    #setup the logger\
        \n    def __init__(self, log_file, mode='w', logger_name=None):\
        \n        logging.basicConfig(filename=log_file, filemode=mode, format='%(asctime)s %(name)s- %(message)s', level=logging.INFO, datefmt='%d-%b-%y %H:%M:%S')\
        \n        self.log = logging.getLogger(logger_name)\
        \n\
        \n    #get logger\
        \n    def getLogger(self):\
        \n        return self.log\
        \n\
        \n    def info(self, msg):\
        \n        self.log.info(msg)\
        \n\
        \n    def error(self, msg, exc_info=False):\
        \n        self.log.error(msg,exc_info)\
        \n\
        \n    # format and log dataframe\
        \n    def log_dataframe(self, df, rows=2, msg=None):\
        \n        buffer = io.StringIO()\
        \n        df.info(buf=buffer)\
        \n        log_text = 'Data frame{}'.format(' after ' + msg + ':' if msg else ':')\
        \n        log_text += '\\n\\t'+str(df.head(rows)).replace('\\n','\\n\\t')\
        \n        log_text += ('\\n\\t' + buffer.getvalue().replace('\\n','\\n\\t'))\
        \n        self.log.info(log_text)\
        \n""},
}
    
class utility_function():

    def __init__(self, module):
        if module in utility_functions.keys():
            self.module_name = module
        else:
            self.module_name = None
        self.importer = importModule()
        self.codeText = """"
        
    def get_code(self):
        code = """"
        if self.module_name:
            functions = utility_functions[self.module_name]
            for function in functions:
                self.codeText += self.get_function_code(function)
            code = self.importer.getCode()
            code += self.codeText
        return code
        
    def get_function_code(self, name):
        code = """"
        if name in functions_code.keys():
            code += functions_code[name]['code']
        if self.importer:
            if 'imports' in functions_code[name].keys():
                for module in functions_code[name]['imports']:
                    mod_name = module['mod']
                    mod_from = module.get('mod_from', None)
                    mod_as = module.get('mod_as', None)
                    self.importer.addModule(mod_name, mod_from=mod_from, mod_as=mod_as)
        return code

    def get_importer(self):
        return self.importer

if __name__ == '__main__':
    obj = utility_function('load_data')
    p = obj.get_utility_code()
    print(p)"
drift_analysis.py,"""""""
/**
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  © Copyright HCL Technologies Ltd. 2021, 2022
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*/
""""""
import json

class drift():

    def __init__(self, indent=0, tab_size=4):
        self.tab = "" ""*tab_size
        self.codeText = """"
        self.function_code = """"
        self.input_files = {}
        self.output_files = {}
        self.addInputFiles({'log' : 'aion.log', 'metaData' : 'modelMetaData.json'})
        
    def addInputFiles(self, files):
        if not isinstance(files, dict):
            raise TypeError(f""Required dict type got {type(files)} type"")
        for k,v in files.items():
            self.input_files[k] = v
            
    def addOutputFiles(self, files):
        if not isinstance(files, dict):
            raise TypeError(f""Required dict type got {type(files)} type"")
        for k,v in files.items():
            self.input_files[k] = v
            
    def getInputFiles(self):        
        text = 'IOFiles = '
        if not self.input_files:
            text += '{ }'
        else:
            text += json.dumps(self.input_files, indent=4)
        return text
        
    def getOutputFiles(self):
        text = 'output_file = '
        if not self.output_files:
            text += '{ }'
        else:
            text += json.dumps(self.output_files, indent=4)
        return text
    
    def getInputOutputFiles(self, indent=0):
        text = '\n'
        text += self.getInputFiles()
        if indent:
            text = text.replace('\n', self.tab * indent + '\n')
        return text

    def __addValidateConfigCode(self):
        text = ""\n\
        \ndef validateConfig():\
        \n    config_file = Path(__file__).parent/'config.json'\
        \n    if not Path(config_file).exists():\
        \n        raise ValueError(f'Config file is missing: {config_file}')\
        \n    config = utils.read_json(config_file)\
		\n    return config\
		""
        return text
        
    def addLocalFunctionsCode(self):
        self.function_code += self.__addValidateConfigCode()
        
    def addPrefixCode(self, smaller_is_better=False, indent=1):
        self.codeText += """"""
def monitoring(config, targetPath, log):
    retrain = False
    last_run_id = 0
    retrain_threshold = config.get('retrainThreshold', 100)
    meta_data_file = targetPath / IOFiles['metaData']
    if meta_data_file.exists():
        meta_data = utils.read_json(meta_data_file)
        if not meta_data.get('register', None):
            log.info('Last time Pipeline not executed properly')
            retrain = True
        else:
            last_run_id = meta_data['register']['runId']
            df = utils.read_data(config['dataLocation'])
            df_len = len(df)
            if not meta_data['monitoring'].get('endIndex', None):
                meta_data['monitoring']['endIndex'] = int(meta_data['load_data']['Status']['Records'])
                meta_data['monitoring']['endIndexTemp'] = meta_data['monitoring']['endIndex']
            if meta_data['register'].get('registered', False):
                meta_data['monitoring']['endIndex'] = meta_data['monitoring']['endIndexTemp']
                meta_data['register']['registered'] = False #ack registery
            if (meta_data['monitoring']['endIndex'] + retrain_threshold) < df_len:
                meta_data['monitoring']['endIndexTemp'] = df_len
                retrain = True
    else:
        log.info('Pipeline running first time')
        meta_data = {}
        meta_data['monitoring'] = {}
        retrain = True
    if retrain:
        meta_data['monitoring']['runId'] = last_run_id + 1
    meta_data['monitoring']['retrain'] = retrain
    utils.write_json(meta_data, targetPath/IOFiles['metaData'])
    status = {'Status':'Success','retrain': retrain, 'runId':meta_data['monitoring']['runId']}        
    log.info(f'output: {status}')        
    return json.dumps(status)
        """"""
    def getMainCodeModules(self):
        modules = [{'module':'Path', 'mod_from':'pathlib'}
            ,{'module':'pandas','mod_as':'pd'}
            ,{'module':'json'}
            ]
        return modules
    
    def addMainCode(self, indent=1):
        self.codeText += """"""
if __name__ == '__main__':
    config = validateConfig()
    targetPath = Path('aion') / config['targetPath']
    targetPath.mkdir(parents=True, exist_ok=True)
    log_file = targetPath / IOFiles['log']
    log = utils.logger(log_file, mode='a', logger_name=Path(__file__).parent.stem)
    try:
        print(monitoring(config, targetPath, log))
    except Exception as e:
        status = {'Status': 'Failure', 'Message': str(e)}
        print(json.dumps(status))
        """"""

    def addStatement(self, statement, indent=1):
        self.codeText += f""\n{self.tab * indent}{statement}""
        
    def getCode(self, indent=1):
        return self.function_code + '\n' + self.codeText
"
data_reader.py,"""""""
/**
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  © Copyright HCL Technologies Ltd. 2021, 2022
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*/
""""""

from .imports import importModule

supported_reader = ['sqlite', 'influx','s3']



functions_code = {
    'dataReader':{'imports':[{'mod':'json'},{'mod': 'Path', 'mod_from': 'pathlib', 'mod_as': None},{'mod': 'pandas', 'mod_from': None, 'mod_as': 'pd'}],'code':""""""

class dataReader():
    
    def get_reader(self, reader_type, target_path=None, config=None):
        if reader_type == 'sqlite':
            return sqlite_writer(target_path=target_path)
        elif reader_type == 'influx':
            return Influx_writer(config=config)
        elif reader_type == 'gcs':
            return gcs(config=config)
        elif reader_type == 'azure':
            return azure(config=config)
        elif reader_type == 's3':
            return s3bucket(config=config)
        else:
            raise ValueError(reader_type)
""""""
    },
    'sqlite':{'imports':[{'mod':'sqlite3'},{'mod': 'pandas', 'mod_from': None, 'mod_as': 'pd'},{'mod': 'Path', 'mod_from': 'pathlib', 'mod_as': None}],'code':""""""\n\
class sqlite_writer():
    def __init__(self, target_path):
        self.target_path = Path(target_path)
        database_file = self.target_path.stem + '.db'
        self.db = sqlite_db(self.target_path, database_file)

    def file_exists(self, file):
        if file:
            return self.db.table_exists(file)
        else:
            return False

    def read(self, file):
        return self.db.read(file)
        
    def write(self, data, file):
        self.db.write(data, file)

    def close(self):
        self.db.close()

class sqlite_db():

    def __init__(self, location, database_file=None):
        if not isinstance(location, Path):
            location = Path(location)
        if database_file:
            self.database_name = database_file
        else:
            self.database_name = location.stem + '.db'
        db_file = str(location/self.database_name)
        self.conn = sqlite3.connect(db_file)
        self.cursor = self.conn.cursor()
        self.tables = []

    def table_exists(self, name):
        if name in self.tables:
            return True
        elif name:
            query = f""SELECT name FROM sqlite_master WHERE type='table' AND name='{name}';""
            listOfTables = self.cursor.execute(query).fetchall()
            if len(listOfTables) > 0 :
                self.tables.append(name)
                return True
        return False

    def read(self, table_name):
        return pd.read_sql_query(f""SELECT * FROM {table_name}"", self.conn)

    def create_table(self,name, columns, dtypes):
        query = f'CREATE TABLE IF NOT EXISTS {name} ('
        
        for column, data_type in zip(columns, dtypes):
            query += f""'{column}'   TEXT,""
        query = query[:-1]
        query += ');'
        self.conn.execute(query)
        return True
        
    def write(self,data, table_name):
        if not self.table_exists(table_name):
            self.create_table(table_name, data.columns, data.dtypes)
        tuple_data = list(data.itertuples(index=False, name=None))
        insert_query = f'INSERT INTO {table_name} VALUES('
        for i in range(len(data.columns)):
            insert_query += '?,'
        insert_query = insert_query[:-1] + ')'
        self.cursor.executemany(insert_query, tuple_data)
        self.conn.commit()
        return True
        
    def delete(self, name):
        pass
        
    def close(self):
        self.conn.close()

    """"""
    },
    'influx':{'imports':[{'mod':'InfluxDBClient','mod_from':'influxdb'},{'mod': 'Path', 'mod_from': 'pathlib', 'mod_as': None},{'mod': 'pandas', 'mod_from': None, 'mod_as': 'pd'}],'code':""""""\n\
class Influx_writer():

    def __init__(self, config):
        self.db = influx_db(config)

    def file_exists(self, file):
        if file:
            return self.db.table_exists(file)
        else:
            return False

    def read(self, file):
        query = ""SELECT * FROM {}"".format(file)
        if 'read_time' in self.db_config.keys() and self.db_config['read_time']:
            query += f"" time > now() - {self.db_config['read_time']}""
        return self.db.read(query)

    def write(self, data, file):
        self.db.write(data, file)

    def close(self):
        pass


class influx_db():

    def __init__(self, config):
        self.host = config['host']
        self.port = config['port']
        self.user = config.get('user', None)
        self.password = config.get('password', None)
        self.token = config.get('token', None)
        self.database = config['database']
        self.measurement = config['measurement']
        self.tags = config['tags']
        self.client = self.get_client()

    def table_exists(self, name):
        query = f""SHOW MEASUREMENTS ON {self.database}""
        result = self.client(query)
        for measurement in result['measurements']:
            if measurement['name'] == name:
                return True
        return False
        
    def read(self, query)->pd.DataFrame:
        cursor = self.client.query(query)
        points = cursor.get_points()
        my_list=list(points)
        df=pd.DataFrame(my_list)
        return df

    def get_client(self):
        headers = None
        if self.token:
            headers={""Authorization"": self.token} 
        client = InfluxDBClient(self.host,self.port,self.user, self.password,headers=headers)
        databases = client.get_list_database()
        databases = [x['name'] for x in databases]
        if self.database not in databases:
            client.create_database(self.database)
        return InfluxDBClient(self.host,self.port,self.user,self.password,self.database,headers=headers)

    def write(self,data, measurement=None):
        if isinstance(data, pd.DataFrame):
            sorted_col = data.columns.tolist()
            sorted_col.sort()
            data = data[sorted_col]
            data = data.to_dict(orient='records')
        if not measurement:
            measurement = self.measurement
        for row in data:
            if 'time' in row.keys():
                p = '%Y-%m-%dT%H:%M:%S.%fZ'
                time_str = datetime.strptime(row['time'], p)
                del row['time']
            else:
                time_str = None
            if 'model_ver' in row.keys():
                self.tags['model_ver']= row['model_ver']
                del row['model_ver']
            json_body = [{
                'measurement': measurement,
                'time': time_str,
                'tags': self.tags,
                'fields': row
            }]
            self.client.write_points(json_body)

    def delete(self, name):
        pass
        
    def close(self):
        self.client.close()
""""""
},
    's3':{'imports':[{'mod':'boto3'},{'mod': 'ClientError', 'mod_from': 'botocore.exceptions'},{'mod': 'Path', 'mod_from': 'pathlib'},{'mod': 'pandas', 'mod_as': 'pd'}],'code':""""""\n\
class s3bucket():
    
    def __init__(self, config={}):
        if 's3' in config.keys():
            config = config['s3']
        aws_access_key_id = config.get('aws_access_key_id','')
        aws_secret_access_key = config.get('aws_secret_access_key','')
        bucket_name = config.get('bucket_name','')
        if not aws_access_key_id:
            raise ValueError('aws_access_key_id can not be empty')
        if not aws_secret_access_key:
            raise ValueError('aws_secret_access_key can not be empty')
        self.client = boto3.client('s3', aws_access_key_id=aws_access_key_id, aws_secret_access_key=str(aws_secret_access_key))
        self.bucket_name = bucket_name
        
    def read(self, file_name):
        try:
            response = self.client.get_object(Bucket=self.bucket_name, Key=file_name)
            return pd.read_csv(response['Body'])
        except  ClientError as ex:
            if ex.response['Error']['Code'] == 'NoSuchBucket':
                raise ValueError(f""Bucket '{self.bucket_name}' not found in aws s3 storage"")
            elif ex.response['Error']['Code'] == 'NoSuchKey':
                raise ValueError(f""File '{file_name}' not found in s3 bucket '{self.bucket_name}'"")
            else:
                raise

    """"""
},    
    'azure':{'imports':[{'mod':'DataLakeServiceClient', 'mod_from':'azure.storage.filedatalake'},{'mod':'detect', 'mod_from':'detect_delimiter'},{'mod':'pandavro', 'mod_as':'pdx'},{'mod':'io'},{'mod': 'Path', 'mod_from': 'pathlib'},{'mod': 'pandas', 'mod_as': 'pd'}],'code':""""""\n\
def azure():

    def __init__(self,config={}):
        if 'azure' in config.keys():
            config = config['azure']
        account_name = config.get('account_name','')
        account_key = config.get('account_key','')
        container_name = config.get('container_name','')
        if not account_name:
            raise ValueError('Account name can not be empty')
        if not account_key:
            raise ValueError('Account key can not be empty')
        if not container_name:
            raise ValueError('Container name can not be empty')
        service_client = DataLakeServiceClient(account_url=""{}://{}.dfs.core.windows.net"".format(""https"", account_name), credential=account_key)
        self.file_system_client = service_client.get_file_system_client(container_name)
        
    def read(self, directory_name):
        root_dir = str(directory_name)
        file_paths = self.file_system_client.get_paths(path=root_dir)				
        main_df = pd.DataFrame()
        for path in file_paths:
            if not path.is_directory:
                file_client = file_system_client.get_file_client(path.name)
                file_ext = Path(path.name).suffix
                if file_ext in ["".csv"", "".tsv""]:
                    with open(csv_local, ""wb"") as my_file:
                        file_client.download_file().readinto(my_file)
                    with open(csv_local, 'r') as file:
                        data = file.read()
                    row_delimiter = detect(text=data, default=None, whitelist=[',', ';', ':', '|', '\t'])
                    processed_df = pd.read_csv(csv_local, sep=row_delimiter)
                elif file_ext == "".parquet"":
                    stream = io.BytesIO()
                    file_client.download_file().readinto(stream)
                    processed_df = pd.read_parquet(stream, engine='pyarrow')
                elif file_ext == "".avro"": 
                    with open(avro_local, ""wb"") as my_file:
                        file_client.download_file().readinto(my_file)
                    processed_df = pdx.read_avro(avro_local)
                if main_df.empty:
                    main_df = pd.DataFrame(processed_df)
                else:
                    main_df = main_df.append(processed_df, ignore_index=True)
        return main_df

    """"""
    },
    'gcs':{'imports':[{'mod':'storage','mod_from':'google.cloud'},{'mod': 'Path', 'mod_from': 'pathlib'},{'mod': 'pandas', 'mod_as': 'pd'}],'code':""""""\n\
class gcs():
    
    def __init__(self, config={}):
        if 'gcs' in config.keys():
            config = config['gcs']
        account_key = config.get('account_key','')
        bucket_name = config.get('bucket_name','')
        if not account_key:
            raise ValueError('Account key can not be empty')
        if not bucket_name:
            raise ValueError('bucket name can not be empty')
        storage_client = storage.Client.from_service_account_json(account_key)
        self.bucket = storage_client.get_bucket(bucket_name)
            
    def read(self, bucket_name, file_name):
        data = self.bucket.blob(file_name).download_as_text()
        return pd.read_csv(data, encoding = 'utf-8', sep = ',')
    """"""
    }
}

class data_reader():

    def __init__(self, reader_type=[]):
        self.supported_readers = supported_reader
        if isinstance(reader_type, str):
            self.readers = [reader_type]
        elif not reader_type:
            self.readers = self.supported_readers
        else:
            self.readers = reader_type
        unsupported_reader = [ x for x in self.readers if x not in self.supported_readers]
        if unsupported_reader:
            raise ValueError(f""reader type '{unsupported_reader}' is not supported\nSupported readers are {self.supported_readers}"")
        self.codeText = """"
        self.importer = importModule()
    
    def get_reader_code(self, readers):
        reader_code = {
            'sqlite': 'return sqlite_writer(target_path=target_path)',
            'influx': 'return Influx_writer(config=config)',
            'gcs': 'return gcs(config=config)',
            'azure': 'return azure(config=config)',
            's3': 'return s3bucket(config=config)'
            }
        code = ""\n\ndef dataReader(reader_type, target_path=None, config=None):\n""
        for i, reader in enumerate(readers):
            if not i:
                code += f""    if reader_type == '{reader}':\n""
            else:
                code += f""    elif reader_type == '{reader}':\n""
            code += f""        {reader_code[reader]}\n""
        if readers:
            code += ""    else:\n""
            code += f""""""        raise ValueError(""'{{reader_type}}' not added during code generation"")\n""""""
        else:
            code += f""""""    raise ValueError(""'{{reader_type}}' not added during code generation"")\n""""""
        return code

    def get_code(self):
        code = self.get_reader_code(self.readers)
        functions = []
        for reader in self.readers:
            functions.append(reader)
        for function in functions:
            code += self.get_function_code(function)
        self.codeText += self.importer.getCode()
        self.codeText += code
        return self.codeText
        
    def get_function_code(self, name):
        code = """"
        if name in functions_code.keys():
            code += functions_code[name]['code']
        if self.importer:
            if 'imports' in functions_code[name].keys():
                for module in functions_code[name]['imports']:
                    mod_name = module['mod']
                    mod_from = module.get('mod_from', None)
                    mod_as = module.get('mod_as', None)
                    self.importer.addModule(mod_name, mod_from=mod_from, mod_as=mod_as)
        return code

    def get_importer(self):
        return self.importer
"
imports.py,"""""""
/**
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  © Copyright HCL Technologies Ltd. 2021, 2022
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*/
""""""

from importlib.metadata import version
import sys

    
class importModule():

    def __init__(self):
        self.importModule = {}
        self.stdlibModule = []
        self.localModule = {}
    
    def addLocalModule(self,module, mod_from=None, mod_as=None):
        if module == '*':
            if module not in self.localModule.keys():
                self.localModule[module]= [mod_from]
            else:
                self.localModule[module].append(mod_from)
        elif module not in self.localModule.keys():
            self.localModule[module] = {'from':mod_from, 'as':mod_as}
        
    def addModule(self, module, mod_from=None, mod_as=None):
        if module not in self.importModule.keys():
            self.importModule[module] = {'from':mod_from, 'as':mod_as}
            if module in sys.stdlib_module_names:
                self.stdlibModule.append(module)
        elif isinstance(self.importModule[module], list):
            if mod_as not in [x['as'] for x in self.importModule[module]]:
                self.importModule[module].append({'from':mod_from, 'as':mod_as})
            elif mod_as not in [x['from'] for x in self.importModule[module]]:
                self.importModule[module].append({'from':mod_from, 'as':mod_as})
        elif mod_as != self.importModule[module]['as']:
            as_list = [self.importModule[module]]
            as_list.append({'from':mod_from, 'as':mod_as})
            self.importModule[module] = as_list
        elif mod_from != self.importModule[module]['from']:
            as_list = [self.importModule[module]]
            as_list.append({'from':mod_from, 'as':mod_as})
            self.importModule[module] = as_list

    def getModules(self):
        return (self.importModule, self.stdlibModule)
        
    def getBaseModule(self, extra_importers=[]):
        modules_alias = {   'sklearn':'scikit-learn', 
                            'genetic_selection':'sklearn-genetic',
                            'google': 'google-cloud-storage',
                            'azure':'azure-storage-file-datalake'}
        local_modules = {'AIX':'/app/AIX-0.1-py3-none-any.whl'}
        modules = []
        require = """"
        if extra_importers:
            extra_importers = [importer.importModule for importer in extra_importers if isinstance(importer, importModule)]
        importers_module = [self.importModule] + extra_importers
        for importer_module in importers_module:
            for k,v in importer_module.items():
                if v['from']:
                    mod = v['from'].split('.')[0]
                else:
                    mod = k
                if mod in modules_alias.keys():
                    mod = modules_alias[mod]
                modules.append(mod)
        modules = list(set(modules))
        for mod in modules:
            try:
                if mod in local_modules.keys():
                    require += f""{local_modules[mod]}\n""
                else:
                    require += f""{mod}=={version(mod)}\n""
            except :
                if mod not in sys.stdlib_module_names:
                    raise  
        return require

    def getCode(self):
        def to_string(k, v):
            mod = ''
            if v['from']:
                mod += 'from {} '.format(v['from'])
            mod += 'import {}'.format(k)
            if v['as']:
                mod += ' as {} '.format(v['as'])
            return mod
        
        modules = """"
        local_modules = """"
        std_lib_modules = """"
        third_party_modules = """"
        for k,v in self.importModule.items():
            if k in self.stdlibModule:
                std_lib_modules = std_lib_modules + '\n' + to_string(k, v)
            elif isinstance(v, dict):
               third_party_modules = third_party_modules + '\n' + to_string(k, v)
            elif isinstance(v, list):
                for alias in v:
                    third_party_modules = third_party_modules + '\n' + to_string(k, alias)
        for k,v in self.localModule.items():
            if k != '*':
                local_modules = local_modules + '\n' + to_string(k, v)
            else:
                for mod_from in v:
                    local_modules = local_modules + '\n' + f'from {mod_from} import {k}'
        if std_lib_modules:
            modules = modules + ""\n#Standard Library modules"" + std_lib_modules
        if third_party_modules:
            modules = modules + ""\n\n#Third Party modules"" + third_party_modules
        if local_modules:
            modules = modules + ""\n\n#local modules"" + local_modules + '\n'
        return modules

    def copyCode(self, importer):
        self.importModule, self.stdlibModule = importer.getModules()
"
transformer.py,"""""""
/**
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  © Copyright HCL Technologies Ltd. 2021, 2022
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*/
""""""
import json

class transformer():
    
    def __init__(self, indent=0, tab_size=4):
        self.df_name = 'df'
        self.tab = ' ' * tab_size
        self.codeText = """"
        self.transformers = []
        self.TxCols = []
        self.imputers = {}
        self.input_files = {}
        self.output_files = {}
        self.function_code = ''
        self.addInputFiles({'inputData' : 'rawData.dat', 'metaData' : 'modelMetaData.json','log' : 'aion.log','transformedData' : 'transformedData.dat','normalization' : 'normalization.pkl'})
        
    def addInputFiles(self, files):
        if not isinstance(files, dict):
            raise TypeError(f""Required dict type got {type(files)} type"")
        for k,v in files.items():
            self.input_files[k] = v
            
    def addOutputFiles(self, files):
        if not isinstance(files, dict):
            raise TypeError(f""Required dict type got {type(files)} type"")
        for k,v in files.items():
            self.input_files[k] = v
            
    def getInputFiles(self):        
        text = 'IOFiles = '
        if not self.input_files:
            text += '{ }'
        else:
            text += json.dumps(self.input_files, indent=4)
        return text
        
    def getOutputFiles(self):
        text = 'output_file = '
        if not self.output_files:
            text += '{ }'
        else:
            text += json.dumps(self.output_files, indent=4)
        return text
    
    def getInputOutputFiles(self, indent=0):
        text = '\n'
        text += self.getInputFiles()
        if indent:
            text = text.replace('\n', self.tab * indent + '\n')
        return text
        
    def __addValidateConfigCode(self):
        text = ""\n\
        \ndef validateConfig():\
        \n    config_file = Path(__file__).parent/'config.json'\
        \n    if not Path(config_file).exists():\
        \n        raise ValueError(f'Config file is missing: {config_file}')\
        \n    config = read_json(config_file)\
        \n    return config""
        return text

    def getPrefixModules(self):
        modules = [
            {'module':'Path', 'mod_from':'pathlib'}
            ,{'module':'pandas', 'mod_as':'pd'}
            ,{'module':'warnings'}
            ,{'module':'json'}
            ,{'module':'logging'}
            ,{'module':'joblib'}
            ,{'module':'MinMaxScaler', 'mod_from':'sklearn.preprocessing'}
            ]
        return modules
    
    def addPrefixCode(self, indent=1):
        self.codeText += """"""
def transformation(config, targetPath, log):
    dataLoc = targetPath / IOFiles['inputData']
    if not dataLoc.exists():
        return {'Status': 'Failure', 'Message': 'Data location does not exists.'}
    df = read_data(dataLoc)
    log.log_dataframe(df)

    target_feature = config['target_feature']
    dateTimeFeature=config['dateTimeFeature']
    df.set_index(dateTimeFeature, inplace=True)
    df = df.dropna()
    df=df.fillna(df.mean())
    if len(target_feature) == 1:
        trainX = df[target_feature].to_numpy().reshape(-1,1)
    else:
        trainX = df[target_feature].to_numpy()
    
    scaler = MinMaxScaler(feature_range=(0, 1))
    trainX = scaler.fit_transform(trainX)
    normalization_file_name = str(targetPath / IOFiles['normalization'])
    joblib.dump(scaler, normalization_file_name)
    
    df[target_feature] = trainX
    log.log_dataframe(df)
    csv_path = str(targetPath / IOFiles['transformedData'])
    write_data(df, csv_path, index=True)

    status = {'Status': 'Success', 'DataFilePath': IOFiles['transformedData'],
            'target_feature': target_feature,'dateTimeFeature':dateTimeFeature,
              ""Normalization_file"":normalization_file_name }
    meta_data['transformation'] = {}
    meta_data['transformation']['Status'] = status
    write_json(meta_data, str(targetPath / IOFiles['metaData']))
    log.info(f'Transformed data saved at {csv_path}')
    log.info(f'output: {status}')
    return json.dumps(status)
        """"""
    def getMainCodeModules(self):
        modules = [{'module':'Path', 'mod_from':'pathlib'}
            ,{'module':'sys'}
            ,{'module':'json'}
            ,{'module':'logging'}
            ,{'module':'argparse'}
            ]
        return modules
    
    def addMainCode(self, indent=1):
        self.codeText += """"""
if __name__ == '__main__':
    config = validateConfig()
    targetPath = Path('aion') / config['targetPath']
    if not targetPath.exists():
        raise ValueError(f'targetPath does not exist')
    meta_data_file = targetPath / IOFiles['metaData']
    if meta_data_file.exists():
        meta_data = read_json(meta_data_file)
    else:
        raise ValueError(f'Configuration file not found: {meta_data_file}')
    log_file = targetPath / IOFiles['log']
    log = logger(log_file, mode='a', logger_name=Path(__file__).parent.stem)
    try:
        print(transformation(config, targetPath, log))
    except Exception as e:
        
        status = {'Status': 'Failure', 'Message': str(e)}
        print(json.dumps(status))
    """"""
    def addValidateConfigCode(self, indent=1):
        self.function_code += self.__addValidateConfigCode()

    def addLocalFunctionsCode(self):
        self.addValidateConfigCode()

    def addStatement(self, statement, indent=1):
        self.codeText += '\n' + self.tab * indent + statement

    def getCode(self, indent=1):
        return self.function_code + '\n' + self.codeText
    
    def getDFName(self):
        return self.df_name
"
functions.py,"""""""
/**
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  © Copyright HCL Technologies Ltd. 2021, 2022
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*/
""""""

class global_function():

    def __init__(self, tab_size=4):
        self.tab = ' ' * tab_size
        self.codeText = """"
        self.available_functions = {
            'iqr':{'name':'iqrOutlier','code':f""\n\ndef iqrOutlier(df):\
                    \n{self.tab}Q1 = df.quantile(0.25)\
                    \n{self.tab}Q3 = df.quantile(0.75)\
                    \n{self.tab}IQR = Q3 - Q1\
                    \n{self.tab}index = ~((df < (Q1 - 1.5 * IQR)) |(df > (Q3 + 1.5 * IQR))).any(axis=1)\
                    \n{self.tab}return index""},
            'zscore':{'name':'zscoreOutlier','imports':[{'mod':'stats','mod_from':'scipy'},{'mod':'numpy'}],'code':f""\n\ndef zscoreOutlier(df):\
                    \n{self.tab}z = numpy.abs(stats.zscore(df))\
                    \n{self.tab}index = (z < 3).all(axis=1)\
                    \n{self.tab}return index""},
            'iforest':{'name':'iforestOutlier','imports':[{'mod':'IsolationForest','mod_from':'sklearn.ensemble'}],'code':f""\n\ndef iforestOutlier(df):\
                    \n{self.tab}from sklearn.ensemble import IsolationForest\
                    \n{self.tab}isolation_forest = IsolationForest(n_estimators=100)\
                    \n{self.tab}isolation_forest.fit(df)\
                    \n{self.tab}y_pred_train = isolation_forest.predict(df)\
                    \n{self.tab}return y_pred_train == 1""},
            'minMaxImputer':{'name':'minMaxImputer','code':f""\n\nclass minMaxImputer(TransformerMixin):\
                    \n{self.tab}def __init__(self, strategy='max'):\
                    \n{self.tab}{self.tab}self.strategy = strategy\
                    \n{self.tab}def fit(self, X, y=None):\
                    \n{self.tab}{self.tab}self.feature_names_in_ = X.columns\
                    \n{self.tab}{self.tab}if self.strategy == 'min':\
                    \n{self.tab}{self.tab}{self.tab}self.statistics_ = X.min()\
                    \n{self.tab}{self.tab}else:\
                    \n{self.tab}{self.tab}{self.tab}self.statistics_ = X.max()\
                    \n{self.tab}{self.tab}return self\
                    \n{self.tab}def transform(self, X):\
                    \n{self.tab}{self.tab}import numpy\
                    \n{self.tab}{self.tab}return numpy.where(X.isna(), self.statistics_, X)""},
            'DummyEstimator':{'name':'DummyEstimator','code':f""\n\nclass DummyEstimator(BaseEstimator):\
                    \n{self.tab}def fit(self): pass\
                    \n{self.tab}def score(self): pass""},
            'start_reducer':{'name':'start_reducer','code':""\n\
                    \ndef start_reducer(df,target_feature,corr_threshold=0.85,var_threshold=0.05):\
                    \n    import numpy as np\
                    \n    import pandas as pd\
                    \n    import itertools\
                    \n    from sklearn.feature_selection import VarianceThreshold\
                    \n\
                    \n    train_features = df.columns.tolist()\
                    \n    train_features.remove(target_feature)\
                    \n    df = df.loc[:, (df != df.iloc[0]).any()] #remove constant feature\
                    \n    numeric_features = df.select_dtypes(include='number').columns.tolist()\
                    \n    non_numeric_features = df.select_dtypes(exclude='number').columns.tolist()\
                    \n    if numeric_features and var_threshold:\
                    \n        qconstantFilter = VarianceThreshold(threshold=var_threshold)\
                    \n        tempDf=df[numeric_features]\
                    \n        qconstantFilter.fit(tempDf)\
                    \n        numeric_features = [x for x,y in zip(numeric_features,qconstantFilter.get_support()) if y]\
                    \n    if numeric_features:\
                    \n        numColPairs = list(itertools.product(numeric_features, numeric_features))\
                    \n        for item in numColPairs:\
                    \n            if(item[0] == item[1]):\
                    \n                numColPairs.remove(item)\
                    \n        tempArray = []\
                    \n        for item in numColPairs:\
                    \n            tempCorr = np.abs(df[item[0]].corr(df[item[1]]))\
                    \n            if(tempCorr > corr_threshold):\
                    \n                tempArray.append(item[0])\
                    \n        tempArray = np.unique(tempArray).tolist()\
                    \n        nonsimilarNumericalCols = list(set(numeric_features) - set(tempArray))\
                    \n        groupedFeatures = []\
                    \n        if tempArray:\
                    \n            corrDic = {}\
                    \n            for feature in tempArray:\
                    \n                temp = []\
                    \n                for col in tempArray:\
                    \n                    tempCorr = np.abs(df[feature].corr(df[col]))\
                    \n                    temp.append(tempCorr)\
                    \n                corrDic[feature] = temp\
                    \n            #Similar correlation df\
                    \n            corrDF = pd.DataFrame(corrDic,index = tempArray)\
                    \n            corrDF.loc[:,:] =  np.tril(corrDF, k=-1)\
                    \n            alreadyIn = set()\
                    \n            similarFeatures = []\
                    \n            for col in corrDF:\
                    \n                perfectCorr = corrDF[col][corrDF[col] > corr_threshold].index.tolist()\
                    \n                if perfectCorr and col not in alreadyIn:\
                    \n                    alreadyIn.update(set(perfectCorr))\
                    \n                    perfectCorr.append(col)\
                    \n                    similarFeatures.append(perfectCorr)\
                    \n            updatedSimFeatures = []\
                    \n            for items in similarFeatures:\
                    \n                if(target_feature != '' and target_feature in items):\
                    \n                    for p in items:\
                    \n                        updatedSimFeatures.append(p)\
                    \n                else:\
                    \n                    updatedSimFeatures.append(items[0])\
                    \n            newTempFeatures = list(set(updatedSimFeatures + nonsimilarNumericalCols))\
                    \n            updatedFeatures = list(set(newTempFeatures + non_numeric_features))\
                    \n        else:\
                    \n            updatedFeatures = list(set(columns) - set(constFeatures)-set(qconstantColumns))\
                    \n    else:\
                    \n        updatedFeatures = list(set(columns) - set(constFeatures)-set(qconstantColumns))\
                    \n    return updatedFeatures""},
            'feature_importance_class':{'name':'feature_importance_class','code':""\n\
                    \ndef feature_importance_class(df, numeric_features, cat_features,target_feature,pValTh,corrTh):\
                    \n    import pandas as pd\
                    \n    from sklearn.feature_selection import chi2\
                    \n    from sklearn.feature_selection import f_classif\
                    \n    from sklearn.feature_selection import mutual_info_classif\
                    \n    \
                    \n    impFeatures = []\
                    \n    if cat_features:\
                    \n        categoricalData=df[cat_features]\
                    \n        chiSqCategorical=chi2(categoricalData,df[target_feature])[1]\
                    \n        corrSeries=pd.Series(chiSqCategorical, index=cat_features)\
                    \n        impFeatures.append(corrSeries[corrSeries<pValTh].index.tolist())\
                    \n    if numeric_features:\
                    \n        quantData=df[numeric_features]\
                    \n        fclassScore=f_classif(quantData,df[target_feature])[1]\
                    \n        miClassScore=mutual_info_classif(quantData,df[target_feature])\
                    \n        fClassSeries=pd.Series(fclassScore,index=numeric_features)\
                    \n        miClassSeries=pd.Series(miClassScore,index=numeric_features)\
                    \n        impFeatures.append(fClassSeries[fClassSeries<pValTh].index.tolist())\
                    \n        impFeatures.append(miClassSeries[miClassSeries>corrTh].index.tolist())\
                    \n    pearsonScore=df.corr()    \
                    \n    targetPScore=abs(pearsonScore[target_feature])\
                    \n    impFeatures.append(targetPScore[targetPScore<pValTh].index.tolist())\
                    \n    return list(set(sum(impFeatures, [])))""},
            'feature_importance_reg':{'name':'feature_importance_reg','code':""\n\
                    \ndef feature_importance_reg(df, numeric_features, target_feature,pValTh,corrTh):\
                    \n    import pandas as pd\
                    \n    from sklearn.feature_selection import f_regression\
                    \n    from sklearn.feature_selection import mutual_info_regression\
                    \n    \
                    \n    impFeatures = []\
                    \n    if numeric_features:\
                    \n        quantData =df[numeric_features]\
                    \n        fregScore=f_regression(quantData,df[target_feature])[1]\
                    \n        miregScore=mutual_info_regression(quantData,df[target_feature])\
                    \n        fregSeries=pd.Series(fregScore,index=numeric_features)\
                    \n        miregSeries=pd.Series(miregScore,index=numeric_features)\
                    \n        impFeatures.append(fregSeries[fregSeries<pValTh].index.tolist())\
                    \n        impFeatures.append(miregSeries[miregSeries>corrTh].index.tolist())\
                    \n    pearsonScore=df.corr()\
                    \n    targetPScore=abs(pearsonScore[target_feature])\
                    \n    impFeatures.append(targetPScore[targetPScore<pValTh].index.tolist())\
                    \n    return list(set(sum(impFeatures, [])))""},
            'scoring_criteria':{'name':'scoring_criteria','imports':[{'mod':'make_scorer','mod_from':'sklearn.metrics'},{'mod':'roc_auc_score','mod_from':'sklearn.metrics'}], 'code':""\n\
                    \ndef scoring_criteria(score_param, problem_type, class_count):\
                    \n    if problem_type == 'classification':\
                    \n        scorer_mapping = {\
                    \n                    'recall':{'binary_class': 'recall', 'multi_class': 'recall_weighted'},\
                    \n                    'precision':{'binary_class': 'precision', 'multi_class': 'precision_weighted'},\
                    \n                    'f1_score':{'binary_class': 'f1', 'multi_class': 'f1_weighted'},\
                    \n                    'roc_auc':{'binary_class': 'roc_auc', 'multi_class': 'roc_auc_ovr_weighted'}\
                    \n                   }\
                    \n        if (score_param.lower() == 'roc_auc') and (class_count > 2):\
                    \n            score_param = make_scorer(roc_auc_score, needs_proba=True,multi_class='ovr',average='weighted')\
                    \n        else:\
                    \n            class_type = 'binary_class' if class_count == 2 else 'multi_class'\
                    \n            if score_param in scorer_mapping.keys():\
                    \n                score_param = scorer_mapping[score_param][class_type]\
                    \n            else:\
                    \n                score_param = 'accuracy'\
                    \n    return score_param""},
            'log_dataframe':{'name':'log_dataframe','code':f""\n\
                    \ndef log_dataframe(df, msg=None):\
                    \n    import io\
                    \n    buffer = io.StringIO()\
                    \n    df.info(buf=buffer)\
                    \n    if msg:\
                    \n        log_text = f'Data frame after {{msg}}:'\
                    \n    else:\
                    \n        log_text = 'Data frame:'\
                    \n    log_text += '\\n\\t'+str(df.head(2)).replace('\\n','\\n\\t')\
                    \n    log_text += ('\\n\\t' + buffer.getvalue().replace('\\n','\\n\\t'))\
                    \n    get_logger().info(log_text)""},
            'BayesSearchCV':{'name':'BayesSearchCV','imports':[{'mod':'cross_val_score','mod_from':'sklearn.model_selection'},{'mod':'fmin','mod_from':'hyperopt'},{'mod':'tpe','mod_from':'hyperopt'},{'mod':'hp','mod_from':'hyperopt'},{'mod':'STATUS_OK','mod_from':'hyperopt'},{'mod':'Trials','mod_from':'hyperopt'},{'mod':'numpy','mod_as':'np'}],'code':""\n\
                    \nclass BayesSearchCV():\
                    \n\
                    \n    def __init__(self, estimator, params, scoring, n_iter, cv):\
                    \n        self.estimator = estimator\
                    \n        self.params = params\
                    \n        self.scoring = scoring\
                    \n        self.iteration = n_iter\
                    \n        self.cv = cv\
                    \n        self.best_estimator_ = None\
                    \n        self.best_score_ = None\
                    \n        self.best_params_ = None\
                    \n\
                    \n    def __min_fun(self, params):\
                    \n        score=cross_val_score(self.estimator, self.X, self.y,scoring=self.scoring,cv=self.cv)\
                    \n        acc = score.mean()\
                    \n        return {'loss':-acc,'score': acc, 'status': STATUS_OK,'model' :self.estimator,'params': params}\
                    \n\
                    \n    def fit(self, X, y):\
                    \n        trials = Trials()\
                    \n        self.X = X\
                    \n        self.y = y\
                    \n        best = fmin(self.__min_fun,self.params,algo=tpe.suggest, max_evals=self.iteration, trials=trials)\
                    \n        result = sorted(trials.results, key = lambda x: x['loss'])[0]\
                    \n        self.best_estimator_ = result['model']\
                    \n        self.best_score_ = result['score']\
                    \n        self.best_params_ = result['params']\
                    \n        self.best_estimator_.fit(X, y)\
                    \n\
                    \n    def hyperOptParamConversion( paramSpace):\
                    \n        paramDict = {}\
                    \n        for j in list(paramSpace.keys()):\
                    \n            inp = paramSpace[j]\
                    \n            isLog = False\
                    \n            isLin = False\
                    \n            isRan = False\
                    \n            isList = False\
                    \n            isString = False\
                    \n            try:\
                    \n                # check if functions are given as input and reassign paramspace\
                    \n                v = paramSpace[j]\
                    \n                if 'logspace' in paramSpace[j]:\
                    \n                    paramSpace[j] = v[v.find('(') + 1:v.find(')')].replace(' ', '')\
                    \n                    isLog = True\
                    \n                elif 'linspace' in paramSpace[j]:\
                    \n                    paramSpace[j] = v[v.find('(') + 1:v.find(')')].replace(' ', '')\
                    \n                    isLin = True\
                    \n                elif 'range' in paramSpace[j]:\
                    \n                    paramSpace[j] = v[v.find('(') + 1:v.find(')')].replace(' ', '')\
                    \n                    isRan = True\
                    \n                elif 'list' in paramSpace[j]:\
                    \n                    paramSpace[j] = v[v.find('(') + 1:v.find(')')].replace(' ', '')\
                    \n                    isList = True\
                    \n                elif '[' and ']' in paramSpace[j]:\
                    \n                    paramSpace[j] = v.split('[')[1].split(']')[0].replace(' ', '')\
                    \n                    isList = True\
                    \n                x = paramSpace[j].split(',')\
                    \n            except:\
                    \n                x = paramSpace[j]\
                    \n            str_arg = paramSpace[j]\
                    \n\
                    \n            # check if arguments are string\
                    \n            try:\
                    \n                test = eval(x[0])\
                    \n            except:\
                    \n                isString = True\
                    \n\
                    \n            if isString:\
                    \n                paramDict.update({j: hp.choice(j, x)})\
                    \n            else:\
                    \n                res = eval(str_arg)\
                    \n                if isLin:\
                    \n                    y = eval('np.linspace' + str(res))\
                    \n                    paramDict.update({j: hp.uniform(j, eval(x[0]), eval(x[1]))})\
                    \n                elif isLog:\
                    \n                    y = eval('np.logspace' + str(res))\
                    \n                    paramDict.update(\
                    \n                        {j: hp.uniform(j, 10 ** eval(x[0]), 10 ** eval(x[1]))})\
                    \n                elif isRan:\
                    \n                    y = eval('np.arange' + str(res))\
                    \n                    paramDict.update({j: hp.choice(j, y)})\
                    \n                # check datatype of argument\
                    \n                elif isinstance(eval(x[0]), bool):\
                    \n                    y = list(map(lambda i: eval(i), x))\
                    \n                    paramDict.update({j: hp.choice(j, eval(str(y)))})\
                    \n                elif isinstance(eval(x[0]), float):\
                    \n                    res = eval(str_arg)\
                    \n                    if len(str_arg.split(',')) == 3 and not isList:\
                    \n                        y = eval('np.linspace' + str(res))\
                    \n                        #print(y)\
                    \n                        paramDict.update({j: hp.uniform(j, eval(x[0]), eval(x[1]))})\
                    \n                    else:\
                    \n                        y = list(res) if isinstance(res, tuple) else [res]\
                    \n                        paramDict.update({j: hp.choice(j, y)})\
                    \n                else:\
                    \n                    res = eval(str_arg)\
                    \n                    if len(str_arg.split(',')) == 3 and not isList:\
                    \n                        y = eval('np.linspace' +str(res)) if eval(x[2]) >= eval(x[1]) else eval('np.arange'+str(res))\
                    \n                    else:\
                    \n                        y = list(res) if isinstance(res, tuple) else [res]\
                    \n                    paramDict.update({j: hp.choice(j, y)})\
                    \n        return paramDict""},
            's2n':{'name':'s2n','imports':[{'mod':'word2number','mod_as':'w2n'},{'mod':'numpy','mod_as':'np'}],'code':""\n\
                    \ndef s2n(value):\
                    \n  try:\
                    \n      x=eval(value)\
                    \n      return x\
                    \n  except:\
                    \n      try:\
                    \n          return w2n.word_to_num(value)\
                    \n      except:\
                    \n          return np.nan""},
            'readWrite':{'name':'readWrite','imports':[{'mod':'json'},{'mod':'pandas','mod_as':'pd'}],'code':""\n\
                    \ndef read_json(file_path):\
                    \n    data = None\
                    \n    with open(file_path,'r') as f:\
                    \n        data = json.load(f)\
                    \n    return data\
                    \n\
                    \ndef write_json(data, file_path):\
                    \n    with open(file_path,'w') as f:\
                    \n        json.dump(data, f)\
                    \n\
                    \ndef read_data(file_path, encoding='utf-8', sep=','):\
                    \n    return pd.read_csv(file_path, encoding=encoding, sep=sep)\
                    \n\
                    \ndef write_data(data, file_path, index=False):\
                    \n    return data.to_csv(file_path, index=index)\
                    \n\
                    \n#Uncomment and change below code for google storage\
                    \n#def write_data(data, file_path, index=False):\
                    \n#    file_name= file_path.name\
                    \n#    data.to_csv('output_data.csv')\
                    \n#    storage_client = storage.Client()\
                    \n#    bucket = storage_client.bucket('aion_data')\
                    \n#    bucket.blob('prediction/'+file_name).upload_from_filename('output_data.csv', content_type='text/csv')\
                    \n#    return data\
                    \n\
                    \ndef is_file_name_url(file_name):\
                    \n    supported_urls_starts_with = ('gs://','https://','http://')\
                    \n    return file_name.startswith(supported_urls_starts_with)\
                    \n""},
            'logger':{'name':'set_logger','imports':[{'mod':'logging'}],'code':f""\n\
                    \nlog = None\
                    \ndef set_logger(log_file, mode='a'):\
                    \n    global log\
                    \n    logging.basicConfig(filename=log_file, filemode=mode, format='%(asctime)s %(name)s- %(message)s', level=logging.INFO, datefmt='%d-%b-%y %H:%M:%S')\
                    \n    log = logging.getLogger(Path(__file__).parent.name)\
                    \n    return log\
                    \n\
                    \ndef get_logger():\
                    \n    return log\n""},
            'mlflowSetPath':{'name':'mlflowSetPath','code':f""\n\ndef mlflowSetPath(path, name):\
                    \n{self.tab}db_name = str(Path(path)/'mlruns')\
                    \n{self.tab}mlflow.set_tracking_uri('file:///' + db_name)\
                    \n{self.tab}mlflow.set_experiment(str(Path(path).name))\
                    \n""},
            'mlflow_create_experiment':{'name':'mlflow_create_experiment','code':f""\n\ndef mlflow_create_experiment(config, path, name):\
                    \n{self.tab}tracking_uri, artifact_uri, registry_uri = get_mlflow_uris(config, path)\
                    \n{self.tab}mlflow.tracking.set_tracking_uri(tracking_uri)\
                    \n{self.tab}mlflow.tracking.set_registry_uri(registry_uri)\
                    \n{self.tab}client = mlflow.tracking.MlflowClient()\
                    \n{self.tab}experiment = client.get_experiment_by_name(name)\
                    \n{self.tab}if experiment:\
                    \n{self.tab}{self.tab}experiment_id = experiment.experiment_id\
                    \n{self.tab}else:\
                    \n{self.tab}{self.tab}experiment_id = client.create_experiment(name, artifact_uri)\
                    \n{self.tab}return client, experiment_id\
                    \n""},
            'get_mlflow_uris':{'name':'get_mlflow_uris','code':f""\n\ndef get_mlflow_uris(config, path):\
                    \n    artifact_uri = None\
                    \n    tracking_uri_type = config.get('tracking_uri_type',None)\
                    \n    if tracking_uri_type == 'localDB':\
                    \n        tracking_uri = 'sqlite:///' + str(path.resolve()/'mlruns.db')\
                    \n    elif tracking_uri_type == 'server' and config.get('tracking_uri', None):\
                    \n        tracking_uri = config['tracking_uri']\
                    \n        if config.get('artifacts_uri', None):\
                    \n            if Path(config['artifacts_uri']).exists():\
                    \n                artifact_uri = 'file:' + config['artifacts_uri']\
                    \n            else:\
                    \n                artifact_uri = config['artifacts_uri']\
                    \n        else:\
                    \n            artifact_uri = 'file:' + str(path.resolve()/'mlruns')\
                    \n    else:\
                    \n        tracking_uri = 'file:' + str(path.resolve()/'mlruns')\
                    \n        artifact_uri = None\
                    \n    if config.get('registry_uri', None):\
                    \n        registry_uri = config['registry_uri']\
                    \n    else:\
                    \n        registry_uri = 'sqlite:///' + str(path.resolve()/'registry.db')\
                    \n    return tracking_uri, artifact_uri, registry_uri\
                    \n""},
            'logMlflow':{'name':'logMlflow','code':f""\n\ndef logMlflow( params, metrices, estimator,tags={{}}, algoName=None):\
                    \n{self.tab}run_id = None\
                    \n{self.tab}for k,v in params.items():\
                    \n{self.tab}{self.tab}mlflow.log_param(k, v)\
                    \n{self.tab}for k,v in metrices.items():\
                    \n{self.tab}{self.tab}mlflow.log_metric(k, v)\
                    \n{self.tab}if 'CatBoost' in algoName:\
                    \n{self.tab}{self.tab}model_info = mlflow.catboost.log_model(estimator, 'model')\
                    \n{self.tab}else:\
                    \n{self.tab}{self.tab}model_info = mlflow.sklearn.log_model(sk_model=estimator, artifact_path='model')\
                    \n{self.tab}tags['processed'] = 'no'\
                    \n{self.tab}tags['registered'] = 'no'\
                    \n{self.tab}mlflow.set_tags(tags)\
                    \n{self.tab}if model_info:\
                    \n{self.tab}{self.tab}run_id = model_info.run_id\
                    \n{self.tab}return run_id\
                    \n""},
            'classification_metrices':{'name':'classification_metrices','imports':[{'mod':'sklearn'},{'mod':'math'}],'code':""\ndef get_classification_metrices( actual_values, predicted_values):\
                    \n    result = {}\
                    \n    accuracy_score = sklearn.metrics.accuracy_score(actual_values, predicted_values)\
                    \n    avg_precision = sklearn.metrics.precision_score(actual_values, predicted_values,\
                    \n        average='macro')\
                    \n    avg_recall = sklearn.metrics.recall_score(actual_values, predicted_values,\
                    \n        average='macro')\
                    \n    avg_f1 = sklearn.metrics.f1_score(actual_values, predicted_values,\
                    \n        average='macro')\
                    \n\
                    \n    result['accuracy'] = math.floor(accuracy_score*10000)/100\
                    \n    result['precision'] = math.floor(avg_precision*10000)/100\
                    \n    result['recall'] = math.floor(avg_recall*10000)/100\
                    \n    result['f1'] = math.floor(avg_f1*10000)/100\
                    \n    return result\
                    \n""},
            'regression_metrices':{'name':'regression_metrices','imports':[{'mod':'numpy', 'mod_as':'np'}],'code':""\ndef get_regression_metrices( actual_values, predicted_values):\
                    \n    result = {}\
                    \n\
                    \n    me = np.mean(predicted_values - actual_values)\
                    \n    sde = np.std(predicted_values - actual_values, ddof = 1)\
                    \n\
                    \n    abs_err = np.abs(predicted_values - actual_values)\
                    \n    mae = np.mean(abs_err)\
                    \n    sdae = np.std(abs_err, ddof = 1)\
                    \n\
                    \n    abs_perc_err = 100.*np.abs(predicted_values - actual_values) / actual_values\
                    \n    mape = np.mean(abs_perc_err)\
                    \n    sdape = np.std(abs_perc_err, ddof = 1)\
                    \n\
                    \n    result['mean_error'] = me\
                    \n    result['mean_abs_error'] = mae\
                    \n    result['mean_abs_perc_error'] = mape\
                    \n    result['error_std'] = sde\
                    \n    result['abs_error_std'] = sdae\
                    \n    result['abs_perc_error_std'] = sdape\
                    \n    return result\
                    \n""}
            }
            
    def add_function(self, name, importer=None):
        if name in self.available_functions.keys():
            self.codeText += self.available_functions[name]['code']
        if importer:
            if 'imports' in self.available_functions[name].keys():
                for module in self.available_functions[name]['imports']:
                    mod_name = module['mod']
                    mod_from = module.get('mod_from', None)
                    mod_as = module.get('mod_as', None)
                    importer.addModule(mod_name, mod_from=mod_from, mod_as=mod_as)
    
    def get_function_name(self, name):
        if name in self.available_functions.keys():
            return self.available_functions[name]['name']
        return None
    
    def getCode(self):
        return self.codeText
"
register.py,"""""""
/**
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  © Copyright HCL Technologies Ltd. 2021, 2022
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*/
""""""
import json

class register():

    def __init__(self, importer, indent=0, tab_size=4):
        self.tab = "" ""*tab_size
        self.codeText = """"
        self.function_code = """"
        self.importer = importer
        self.input_files = {}
        self.output_files = {}
        self.addInputFiles({'log' : 'aion.log', 'metaData' : 'modelMetaData.json','metrics': 'metrics.json','production': 'production.json'})
        
    def addInputFiles(self, files):
        if not isinstance(files, dict):
            raise TypeError(f""Required dict type got {type(files)} type"")
        for k,v in files.items():
            self.input_files[k] = v
            
    def addOutputFiles(self, files):
        if not isinstance(files, dict):
            raise TypeError(f""Required dict type got {type(files)} type"")
        for k,v in files.items():
            self.input_files[k] = v
            
    def getInputFiles(self):        
        text = 'IOFiles = '
        if not self.input_files:
            text += '{ }'
        else:
            text += json.dumps(self.input_files, indent=4)
        return text
        
    def getOutputFiles(self):
        text = 'output_file = '
        if not self.output_files:
            text += '{ }'
        else:
            text += json.dumps(self.output_files, indent=4)
        return text
    
    def getInputOutputFiles(self, indent=0):
        text = '\n'
        text += self.getInputFiles()
        if indent:
            text = text.replace('\n', self.tab * indent + '\n')
        return text

    def __addValidateConfigCode(self, models=None):
        text = ""\n\
        \ndef validateConfig():\
        \n    config_file = Path(__file__).parent/'config.json'\
        \n    if not Path(config_file).exists():\
        \n        raise ValueError(f'Config file is missing: {config_file}')\
        \n    config = utils.read_json(config_file)\
        \n    return config\
        ""
        return text
        
    def addLocalFunctionsCode(self, models):
        self.function_code += self.__addValidateConfigCode(models)
        
    def addPrefixCode(self, smaller_is_better=False, indent=1):
        compare = 'min' if smaller_is_better else 'max'
        self.codeText += f""""""
def get_best_model(run_path):
    models_path = [d for d in run_path.iterdir() if d.is_dir]
    scores = {{}}
    for model in models_path:
        metrics = utils.read_json(model/IOFiles['metrics'])
        if metrics.get('score', None):
            scores[model.stem] = metrics['score']
    best_model = {compare}(scores, key=scores.get)    
    return best_model

def __merge_logs(log_file_sequence,path, files):        
    if log_file_sequence['first'] in files:        
        with open(path/log_file_sequence['first'], 'r') as f:        
            main_log = f.read()        
        files.remove(log_file_sequence['first'])        
        for file in files:        
            with open(path/file, 'r') as f:        
                main_log = main_log + f.read()        
            (path/file).unlink()        
        with open(path/log_file_sequence['merged'], 'w') as f:        
            f.write(main_log)        
        
def merge_log_files(folder, models):        
    log_file_sequence = {{        
        'first': 'aion.log',        
        'merged': 'aion.log'        
    }}       
    log_file_suffix = '_aion.log'        
    log_files = [x+log_file_suffix for x in models if (folder/(x+log_file_suffix)).exists()]        
    log_files.append(log_file_sequence['first'])        
    __merge_logs(log_file_sequence, folder, log_files)  

def register(config, targetPath, log):        
    meta_data_file = targetPath / IOFiles['metaData']
    if meta_data_file.exists():
        meta_data = utils.read_json(meta_data_file)
    else:
        raise ValueError(f'Configuration file not found: {{meta_data_file}}')
    run_id = meta_data['monitoring']['runId']
    usecase = config['targetPath']
    current_run_path = targetPath/'runs'/str(run_id)
    register_model_name = get_best_model(current_run_path)
    models = config['models']        
    merge_log_files(targetPath, models) 
    meta_data['register'] = {{'runId':run_id, 'model': register_model_name}}
    utils.write_json(meta_data, targetPath/IOFiles['metaData'])
    utils.write_json({{'Model':register_model_name,'runNo':str(run_id)}}, targetPath/IOFiles['production'])
    status = {{'Status':'Success','Message':f'Model Registered: {{register_model_name}}'}}        
    log.info(f'output: {{status}}')        
    return json.dumps(status)
        """"""
    def getMainCodeModules(self):
        modules = [{'module':'Path', 'mod_from':'pathlib'}
            ,{'module':'json'}
            ]
        return modules
    
    def addMainCode(self, models, indent=1):
        self.codeText += """"""
if __name__ == '__main__':
    config = validateConfig()
    targetPath = Path('aion') / config['targetPath']
    if not targetPath.exists():
        raise ValueError(f'targetPath does not exist')
    log_file = targetPath / IOFiles['log']
    log = utils.logger(log_file, mode='a', logger_name=Path(__file__).parent.stem)
    try:
        print(register(config, targetPath, log))
    except Exception as e:
        
        status = {'Status': 'Failure', 'Message': str(e)}
        print(json.dumps(status))
        """"""

    def addStatement(self, statement, indent=1):
        self.codeText += f""\n{self.tab * indent}{statement}""
        
    def getCode(self, indent=1):
        return self.function_code + '\n' + self.codeText
"
__init__.py,"""""""
/**
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  © Copyright HCL Technologies Ltd. 2021, 2022
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*/
""""""

from mlac.timeseries.core.imports import importModule
from mlac.timeseries.core.load_data import tabularDataReader
from mlac.timeseries.core.transformer import transformer as profiler
from mlac.timeseries.core.selector import selector
from mlac.timeseries.core.trainer import learner
from mlac.timeseries.core.register import register
from mlac.timeseries.core.deploy import deploy
from mlac.timeseries.core.drift_analysis import drift
from mlac.timeseries.core.functions import global_function
from mlac.timeseries.core.data_reader import data_reader
from mlac.timeseries.core.utility import utility_function
"
load_data.py,"""""""
/**
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  © Copyright HCL Technologies Ltd. 2021, 2022
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*/
""""""
import json

class tabularDataReader():

    def __init__(self, tab_size=4):
        self.tab = ' ' * tab_size
        self.function_code = ''
        self.codeText = ''
        self.code_generated = False
        
    def getInputFiles(self):
        IOFiles = {
			""rawData"": ""rawData.dat"",
			""metaData"" : ""modelMetaData.json"",
			""log"" : ""aion.log"",
			""outputData"" : ""rawData.dat"",
			""monitoring"":""monitoring.json"",
			""prodData"": ""prodData"",
			""prodDataGT"":""prodDataGT""            
		}
        text = 'IOFiles = '
        if not IOFiles:
            text += '{ }'
        else:
            text += json.dumps(IOFiles, indent=4)
        return text
        
    def getOutputFiles(self):
        output_files = {
                'metaData' : 'modelMetaData.json',
                'log' : 'aion.log',
                'outputData' : 'rawData.dat'
            }
        text = 'output_file = '
        if not output_files:
            text += '{ }'
        else:
            text += json.dumps(output_files, indent=4)
        return text
    
    def getInputOutputFiles(self, indent=0):
        text = '\n'
        text += self.getInputFiles()
        if indent:
            text = text.replace('\n', self.tab * indent + '\n')
        return text
        
    def __addValidateConfigCode(self):
        text = ""\n\
        \ndef validateConfig():\
        \n    config_file = Path(__file__).parent/'config.json'\
        \n    if not Path(config_file).exists():\
        \n        raise ValueError(f'Config file is missing: {config_file}')\
        \n    config = read_json(config_file)\
		\n    if not config['targetPath']:\
        \n        raise ValueError(f'Target Path is not configured')\
        \n    return config""
        return text

    def addMainCode(self, indent=1):
        self.codeText += """"""
if __name__ == '__main__':
    config = validateConfig()
    targetPath = Path('aion') / config['targetPath']
    targetPath.mkdir(parents=True, exist_ok=True)	
    if not targetPath.exists():
        raise ValueError(f'targetPath does not exist')
    meta_data_file = targetPath / IOFiles['metaData']
    if not meta_data_file.exists():
        raise ValueError(f'Configuration file not found: {meta_data_file}')
    log_file = targetPath / IOFiles['log']
    log = logger(log_file, mode='a', logger_name=Path(__file__).parent.stem)
    try:
        print(load_data(config, targetPath, log))
    except Exception as e:
        status = {'Status': 'Failure', 'Message': str(e)}
        print(json.dumps(status))
    """"""

    def addLoadDataCode(self):
        self.codeText += """"""
#This function will read the data and save the data on persistent storage        
def load_data(config, targetPath, log):        
    meta_data_file = targetPath / IOFiles['metaData']
    meta_data = read_json(meta_data_file)
    if meta_data.get('monitoring', False) and not meta_data['monitoring'].get('retrain', False):
        raise ValueError('New data is not enougth to retrain model')
    df = read_data(config['dataLocation'])
    status = {}
    output_data_path = targetPath / IOFiles['outputData']
    log.log_dataframe(df)
    required_features = list(set(config['selected_features'] + config['dateTimeFeature'] + config['target_feature']))
    log.info('Dataset features required: ' + ','.join(required_features))
    missing_features = [x for x in required_features if x not in df.columns.tolist()]
    if missing_features:
        raise ValueError(f'Some feature/s is/are missing: {missing_features}')
    log.info('Removing unused features: ' + ','.join(list(set(df.columns) - set(required_features))))
    df = df[required_features]
    log.info(f'Required features: {required_features}')
    try:
        log.info(f'Saving Dataset: {str(output_data_path)}')
        write_data(df, output_data_path, index=False)
        status = {'Status': 'Success', 'DataFilePath': IOFiles['outputData'], 'Records': len(df)}
    except:
        raise ValueError('Unable to create data file')

    meta_data['load_data'] = {}
    meta_data['load_data']['selected_features'] = [x for x in config['selected_features'] if
            x != config['target_feature']]
    meta_data['load_data']['Status'] = status
    write_json(meta_data, meta_data_file)
    output = json.dumps(status)
    log.info(output)
    return output
""""""
    def addValidateConfigCode(self, indent=1):
        self.function_code += self.__addValidateConfigCode()

    def addLocalFunctionsCode(self):
        self.addValidateConfigCode()

    def addStatement(self, statement, indent=1):
        self.codeText += '\n' + self.tab * indent + statement
                
    def getCode(self):
        return self.function_code + '\n' + self.codeText
"
deploy.py,"""""""
/**
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  © Copyright HCL Technologies Ltd. 2021, 2022
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*/
""""""

from pathlib import Path
import json
from mlac.timeseries.core import *
from .utility import *

def get_deploy_params(config):
    param_keys = [""modelVersion"",""problem_type"",""target_feature"",""lag_order"",""noofforecasts""]
    data = {key:value for (key,value) in config.items() if key in param_keys}
    data['targetPath'] = config['modelName']
    data['ipAddress'] = '127.0.0.1'
    data['portNo'] = '8094'
    return data

def import_trainer_module(importer):
    non_sklearn_modules = get_variable('non_sklearn_modules')
    if non_sklearn_modules:
        for mod in non_sklearn_modules:
            module = get_module_mapping(mod)
            mod_from = module.get('mod_from',None)
            mod_as = module.get('mod_as',None)
            importer.addModule(module['module'], mod_from=mod_from, mod_as=mod_as)

imported_modules = [
    ]

def run_deploy(config):
    generated_files = []
    importer = importModule()
    deployer = deploy()
    importModules(importer, imported_modules)

    usecase = config['modelName']+'_'+config['modelVersion']
    deploy_path = Path(config[""deploy_path""])/'MLaC'/'ModelServing'
    deploy_path.mkdir(parents=True, exist_ok=True)

    # create the utility file
    importer.addLocalModule('utility', mod_as='utils')
    utility_obj = utility_function('Prediction')
    with open(deploy_path/""utility.py"", 'w') as f:
        f.write(file_header(usecase) + utility_obj.get_code())
    generated_files.append(""utility.py"")   
    
    # create empty init file required for creating a package    
    with open(deploy_path/""__init__.py"", 'w') as f:
        f.write(file_header(usecase))
    generated_files.append(""__init__.py"")   

    importModules(importer,deployer.getPredictionCodeModules())
    code = file_header(usecase)
    code += importer.getCode()
    code += deployer.getInputOutputFiles()
    deployer.addPredictionCode()
    code += deployer.getCode()

    # create prediction file
    with open(deploy_path/""predict.py"", 'w') as f:
        f.write(code)
    generated_files.append(""predict.py"")   
    
    # create create service file
    with open(deploy_path/""aionCode.py"", 'w') as f:
        f.write(file_header(usecase) + deployer.getServiceCode())
    generated_files.append(""aionCode.py"")   
    importer.addModule('seaborn')
    importer.addModule('sklearn')

    # create requirements file
    req_file = deploy_path/""requirements.txt""
    with open(req_file, ""w"") as f:
        req=importer.getBaseModule(extra_importers=[utility_obj.get_importer()])
        f.write(req)
    generated_files.append(""requirements.txt"")
    
    # create config file
    config_file = deploy_path/""config.json""
    config_data = get_deploy_params(config)
    with open (config_file, ""w"") as f:
        json.dump(config_data, f, indent=4)
    generated_files.append(""config.json"")   
    
    # create docker file
    create_docker_file('Prediction', deploy_path,config['modelName'], generated_files)"
trainer.py,"""""""
/**
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  © Copyright HCL Technologies Ltd. 2021, 2022
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*/
""""""

from pathlib import Path
import json
from mlac.timeseries.core import *
from mlac.timeseries.app import utility as utils

def get_model_name(algo, method):
    if method == 'modelBased':
        return algo + '_' + 'MLBased'
    if method == 'statisticalBased':
        return algo + '_' + 'StatisticsBased'
    else:
        return algo


def get_training_params(config, algo):
    param_keys = [""modelVersion"",""problem_type"",""target_feature"",""train_features"",""scoring_criteria"",""test_ratio"",""optimization_param"",""dateTimeFeature""]#BugID:13217
    data = {key:value for (key,value) in config.items() if key in param_keys}
    data['algorithms'] = {algo: config['algorithms'][algo]}
    data['targetPath'] = config['modelName']
    return data

def update_score_comparer(scorer):
    smaller_is_better_scorer = ['neg_mean_squared_error','mse','neg_root_mean_squared_error','rmse','neg_mean_absolute_error','mae']
    if scorer.lower() in smaller_is_better_scorer:
        utils.update_variable('smaller_is_better', True)
    else:
        utils.update_variable('smaller_is_better', False)

def run_trainer(config):    
    trainer = learner()
    importer = importModule()
    function = global_function()
    utils.importModules(importer,trainer.getPrefixModules())
    update_score_comparer(config['scoring_criteria'])
    model_name = list(config['algorithms'].keys())[0]
    if model_name == 'MLP':
        utils.importModules(importer,trainer.getMlpCodeModules())
        trainer.addMlpCode()
    elif model_name == 'LSTM':
        utils.importModules(importer,trainer.getLstmCodeModules())
        trainer.addLstmCode()
    trainer.addMainCode()

    usecase = config['modelName']+'_'+config['modelVersion']
    deploy_path = Path(config[""deploy_path""])/'MLaC'/('ModelTraining'+'_' + model_name)
    deploy_path.mkdir(parents=True, exist_ok=True)
    generated_files = []
    
    # create the utility file
    importer.addLocalModule('utility', mod_as='utils')
    utility_obj = utility_function('train')
    with open(deploy_path/""utility.py"", 'w') as f:
        f.write(utils.file_header(usecase) + utility_obj.get_code())
    generated_files.append(""utility.py"")   

    # create empty init file to make a package    
    with open(deploy_path/""__init__.py"", 'w') as f:
        f.write(utils.file_header(usecase))
    generated_files.append(""__init__.py"")   
    importer.addModule(""warnings"")
    code  = importer.getCode()
    code += 'warnings.filterwarnings(""ignore"")\n'
    code += f""\nmodel_name = '{model_name}'\n""
    utils.append_variable('models_name',model_name)
    out_files = {'log':f'{model_name}_aion.log','model':f'{model_name}_model.pkl','metrics':'metrics.json','metaDataOutput':f'{model_name}_modelMetaData.json','production':'production.json'}
    trainer.addOutputFiles(out_files)
    code += trainer.getInputOutputFiles()
    code += function.getCode()
    trainer.addLocalFunctionsCode()
    code += trainer.getCode()
    with open(deploy_path/""aionCode.py"", ""w"") as f:
        f.write(code)
    generated_files.append(""aionCode.py"")   

    with open(deploy_path/""requirements.txt"", ""w"") as f:
        req=importer.getBaseModule(extra_importers=[utility_obj.get_importer()])
        f.write(req)
    generated_files.append(""requirements.txt"")   

    with open (deploy_path/""config.json"", ""w"") as f:
        json.dump(get_training_params(config, model_name), f, indent=4)
    generated_files.append(""config.json"")   

    utils.create_docker_file('train', deploy_path,config['modelName'], generated_files)
"
selector.py,"""""""
/**
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  © Copyright HCL Technologies Ltd. 2021, 2022
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*/
""""""

from pathlib import Path
import json
import platform
from mlac.timeseries.core import *
from .utility import *

output_file_map = {
    'feature_reducer' : {'feature_reducer' : 'feature_reducer.pkl'}
}

def get_selector_params(config):
    param_keys = [""modelVersion"",""problem_type"",""target_feature"",""train_features"",""cat_features"",""n_components""]
    data = {key:value for (key,value) in config.items() if key in param_keys}
    data['targetPath'] = config['modelName']
    return data
        
def run_selector(config):    
    select = selector()
    importer = importModule()
    function = global_function()
    importModules(importer,select.getPrefixModules())
    importModules(importer, select.getSuffixModules())
    importModules(importer, select.getMainCodeModules())
    select.addPrefixCode()
    select.addSuffixCode()
    select.addMainCode()
    
    generated_files = []
    usecase = config['modelName']+'_'+config['modelVersion']
    deploy_path = Path(config[""deploy_path""])/'MLaC'/'FeatureEngineering'
    deploy_path.mkdir(parents=True, exist_ok=True)
    
    # create the utility file
    importer.addLocalModule('*', mod_from='utility')
    utility_obj = utility_function('selector')
    with open(deploy_path/""utility.py"", 'w') as f:
        f.write(file_header(usecase) + utility_obj.get_code())
    generated_files.append(""utility.py"")   

    # create empty init file to make a package    
    with open(deploy_path/""__init__.py"", 'w') as f:
        f.write(file_header(usecase))
    generated_files.append(""__init__.py"")   
        
    code  = file_header(usecase)
    code += importer.getCode()
    code += select.getInputOutputFiles()
    code += function.getCode()
    select.addLocalFunctionsCode()
    code += select.getCode()
    with open(deploy_path/""aionCode.py"", ""w"") as f:
        f.write(code)
    generated_files.append(""aionCode.py"")   

    with open(deploy_path/""requirements.txt"", ""w"") as f:
        req=importer.getBaseModule(extra_importers=[utility_obj.get_importer()])
        f.write(req)
    generated_files.append(""requirements.txt"")   

    config_file = deploy_path/""config.json""
    config_data = get_selector_params(config)
    with open (config_file, ""w"") as f:
        json.dump(config_data, f, indent=4)
    generated_files.append(""config.json"")   

    create_docker_file('selector', deploy_path,config['modelName'], generated_files)"
utility.py,"""""""
/**
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  © Copyright HCL Technologies Ltd. 2021, 2022
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*/
""""""

import datetime
from pathlib import Path

variables = {}

def update_variable(name, value):
    variables[name] = value
    
def get_variable(name, default=None):
    return variables.get(name, default)

def append_variable(name, value):
    data = get_variable(name)
    if not data:
        update_variable(name, [value])
    elif not isinstance(data, list):
        update_variable(name, [data, value])
    else:
        data.append(value)
        update_variable(name, data)
    
def addDropFeature(feature, features_list, coder, indent=1):
    coder.addStatement(f'if {feature} in {features_list}:', indent=indent)
    coder.addStatement(f'{features_list}.remove({feature})', indent=indent+1)
    
def importModules(importer, modules_list):
    for module in modules_list:
        mod_from = module.get('mod_from',None)
        mod_as = module.get('mod_as',None)
        importer.addModule(module['module'], mod_from=mod_from, mod_as=mod_as)
                
def file_header(use_case, module_name=None):
    time_str = datetime.datetime.now().isoformat(timespec='seconds', sep=' ')
    text = ""#!/usr/bin/env python\n# -*- coding: utf-8 -*-\n""
    return text + f""'''\nThis file is automatically generated by AION for {use_case} usecase.\nFile generation time: {time_str}\n'''""

def get_module_mapping(module):
    mapping = {
        ""LogisticRegression"": {'module':'LogisticRegression', 'mod_from':'sklearn.linear_model'}
        ,""GaussianNB"": {'module':'GaussianNB', 'mod_from':'sklearn.naive_bayes'}
        ,""DecisionTreeClassifier"": {'module':'DecisionTreeClassifier', 'mod_from':'sklearn.tree'}
        ,""SVC"": {'module':'SVC', 'mod_from':'sklearn.svm'}
        ,""KNeighborsClassifier"": {'module':'KNeighborsClassifier', 'mod_from':'sklearn.neighbors'}
        ,""GradientBoostingClassifier"": {'module':'GradientBoostingClassifier', 'mod_from':'sklearn.ensemble'}
        ,'RandomForestClassifier':{'module':'RandomForestClassifier','mod_from':'sklearn.ensemble'}
        ,'XGBClassifier':{'module':'XGBClassifier','mod_from':'xgboost'}
        ,'LGBMClassifier':{'module':'LGBMClassifier','mod_from':'lightgbm'}
        ,'CatBoostClassifier':{'module':'CatBoostClassifier','mod_from':'catboost'}

        ,""LinearRegression"": {'module':'LinearRegression', 'mod_from':'sklearn.linear_model'}
        ,""Lasso"": {'module':'Lasso', 'mod_from':'sklearn.linear_model'}
        ,""Ridge"": {'module':'Ridge', 'mod_from':'sklearn.linear_model'}
        ,""DecisionTreeRegressor"": {'module':'DecisionTreeRegressor', 'mod_from':'sklearn.tree'}
        ,'RandomForestRegressor':{'module':'RandomForestRegressor','mod_from':'sklearn.ensemble'}
        ,'XGBRegressor':{'module':'XGBRegressor','mod_from':'xgboost'}
        ,'LGBMRegressor':{'module':'LGBMRegressor','mod_from':'lightgbm'}
        ,'CatBoostRegressor':{'module':'CatBoostRegressor','mod_from':'catboost'}
    }
    return mapping.get(module, None)

def create_docker_file(name, path,usecasename,files=[],text_feature=False):
    text = """"
    if name == 'load_data':
        text='FROM python:3.8-slim-buster'
        text+='\n'
        text+='LABEL ""usecase""=""'+str(usecasename)+'""'
        text+='\n'
        text+='LABEL ""usecase_test""=""'+str(usecasename)+'_test'+'""'
        for file in files:
            text+=f'\nCOPY  {file} {file}'
        text+='\n'
        text+='RUN pip install --no-cache-dir -r requirements.txt'
    elif name == 'transformer':
        text='FROM python:3.8-slim-buster\n'
        text+='LABEL ""usecase""=""'+str(usecasename)+'""'
        text+='\n'
        text+='LABEL ""usecase_test""=""'+str(usecasename)+'_test'+'""'
        text+='\n'		
        for file in files:
            text+=f'\nCOPY  {file} {file}'
        if text_feature:
            text+='COPY  AIX-0.1-py3-none-any.whl AIX-0.1-py3-none-any.whl\n'
        text+='\n'
        text+='''RUN \
'''
        if text_feature:
            text += ''' git && pip install requests && pip install git+https://github.com/MCFreddie777/language-check.git\ &&
'''
        text+=''' pip install --no-cache-dir -r requirements.txt\
'''
        if text_feature:
            text += ''' &&  python -m nltk.downloader stopwords && python -m nltk.downloader punkt && python -m nltk.downloader wordnet && python -m nltk.downloader averaged_perceptron_tagger\
'''
        text+='\n'
    elif name == 'selector':
        text='FROM python:3.8-slim-buster'
        text+='\n'
        text+='LABEL ""usecase""=""'+str(usecasename)+'""'
        text+='\n'
        text+='LABEL ""usecase_test""=""'+str(usecasename)+'_test'+'""'
        text+='\n'				
        for file in files:
            text+=f'\nCOPY  {file} {file}'
        text+='\n'
        text+='RUN pip install --no-cache-dir -r requirements.txt'
    elif name == 'train':
        text='FROM python:3.8-slim-buster'
        text+='\n'
        text+='LABEL ""usecase""=""'+str(usecasename)+'""'
        text+='\n'
        text+='LABEL ""usecase_test""=""'+str(usecasename)+'_test'+'""'
        text+='\n'
        for file in files:
            text+=f'\nCOPY  {file} {file}'
        text+='\n'
        text+='RUN pip install --no-cache-dir -r requirements.txt'
    elif name == 'register':
        text='FROM python:3.8-slim-buster'
        text+='\n'
        text+='LABEL ""usecase""=""'+str(usecasename)+'""'
        text+='\n'
        text+='LABEL ""usecase_test""=""'+str(usecasename)+'_test'+'""'
        text+='\n'
        for file in files:
            text+=f'\nCOPY  {file} {file}'
        text+='\n'
        text+='RUN pip install --no-cache-dir -r requirements.txt'
    elif name == 'Prediction':
        text='FROM python:3.8-slim-buster'
        text+='\n'
        text+='LABEL ""usecase""=""'+str(usecasename)+'""'
        text+='\n'
        text+='LABEL ""usecase_test""=""'+str(usecasename)+'_test'+'""'
        text+='\n'
        for file in files:
            text+=f'\nCOPY  {file} {file}'
        text+='\n'				
        if text_feature:
            text+='COPY  AIX-0.1-py3-none-any.whl AIX-0.1-py3-none-any.whl\n'
        text+='''RUN \
'''		
        if text_feature:
            text += ''' git && pip install requests && pip install git+https://github.com/MCFreddie777/language-check.git\ &&
'''
        text+='''pip install --no-cache-dir -r requirements.txt\
'''
        if text_feature:
            text += ''' &&  python -m nltk.downloader stopwords && python -m nltk.downloader punkt && python -m nltk.downloader wordnet && python -m nltk.downloader averaged_perceptron_tagger\
'''
        text+='\n'
        text+='ENTRYPOINT [""python"", ""aionCode.py"",""-ip"",""0.0.0.0"",""-pn"",""8094""]\n'
    elif name == 'input_drift':
        text='FROM python:3.8-slim-buster'
        text+='\n'
        text+='LABEL ""usecase""=""'+str(usecasename)+'""'
        text+='\n'
        text+='LABEL ""usecase_test""=""'+str(usecasename)+'_test'+'""'
        text+='\n'
        for file in files:
            text+=f'\nCOPY  {file} {file}'
        text+='\n'
        text+='RUN pip install --no-cache-dir -r requirements.txt'
    file_name = Path(path)/'Dockerfile'
    with open(file_name, 'w') as f:
        f.write(text)"
drift_analysis.py,"""""""
/**
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  © Copyright HCL Technologies Ltd. 2021, 2022
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*/
""""""

from pathlib import Path
import json
from mlac.timeseries.core import *
from .utility import *

def get_drift_params(config):
    param_keys = [""modelVersion"",""problem_type"",""retrainThreshold"",""dataLocation""]
    data = {key:value for (key,value) in config.items() if key in param_keys}
    data['targetPath'] = config['modelName']
    return data

def run_drift_analysis(config):
    importer = importModule()

    monitor = drift()
    monitor.addLocalFunctionsCode()
    monitor.addPrefixCode()
    monitor.addMainCode()
    importModules(importer, monitor.getMainCodeModules())
    importer.addModule('warnings')

    generated_files = []
    usecase = config['modelName']+'_'+config['modelVersion']
    deploy_path = Path(config[""deploy_path""])/'MLaC'/'ModelMonitoring'
    deploy_path.mkdir(parents=True, exist_ok=True)

    # create the utility file
    importer.addLocalModule('utility', mod_as='utils')
    utility_obj = utility_function('load_data')
    with open(deploy_path/""utility.py"", 'w') as f:
        f.write(file_header(usecase) + utility_obj.get_code())
    generated_files.append(""utility.py"")   

    # create empty init file required for creating a package    
    with open(deploy_path/""__init__.py"", 'w') as f:
        f.write(file_header(usecase))
    generated_files.append(""__init__.py"")   

    code = importer.getCode()
    code += '\nwarnings.filterwarnings(""ignore"")\n'
    code += monitor.getInputOutputFiles()
    code += monitor.getCode()
    # create serving file
    with open(deploy_path/""aionCode.py"", 'w') as f:
        f.write(file_header(usecase) + code)
    generated_files.append(""aionCode.py"")   

    # create requirements file
    req_file = deploy_path/""requirements.txt""
    with open(req_file, ""w"") as f:
        req=importer.getBaseModule(extra_importers=[utility_obj.get_importer()])
        f.write(req)
    generated_files.append(""requirements.txt"")
    
    # create config file
    with open (deploy_path/""config.json"", ""w"") as f:
        json.dump(get_drift_params(config), f, indent=4)
    generated_files.append(""config.json"")   
    
    # create docker file
    create_docker_file('input_drift', deploy_path,config['modelName'], generated_files)    
"
transformer.py,"""""""
/**
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  © Copyright HCL Technologies Ltd. 2021, 2022
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*/
""""""

from pathlib import Path
import json
import platform
from mlac.timeseries.core import *
from .utility import *

output_file_map = {
    'text' : {'text' : 'text_profiler.pkl'},
    'targetEncoder' : {'targetEncoder' : 'targetEncoder.pkl'},
    'featureEncoder' : {'featureEncoder' : 'inputEncoder.pkl'},
    'normalizer' : {'normalizer' : 'normalizer.pkl'}
}

def add_common_imports(importer):
    common_importes = [
    {'module': 'json', 'mod_from': None, 'mod_as': None},
    {'module': 'Path', 'mod_from': 'pathlib', 'mod_as': None},
    {'module': 'pandas', 'mod_from': None, 'mod_as': 'pd'},
    {'module': 'argparse', 'mod_from': None, 'mod_as': None},
    {'module': 'platform', 'mod_from': None, 'mod_as': None }   
    ]
    for mod in common_importes:
        importer.addModule(mod['module'], mod_from=mod['mod_from'], mod_as=mod['mod_as'])

def get_transformer_params(config):
    param_keys = [""modelVersion"",""problem_type"",""target_feature"",""train_features"",""text_features"",""profiler"",""test_ratio"",""dateTimeFeature""] #BugID:13217
    data = {key:value for (key,value) in config.items() if key in param_keys}
    data['targetPath'] = config['modelName']
    return data
        
def run_transformer(config):
    transformer = profiler()
    importer = importModule()
    function = global_function()
    importModules(importer, transformer.getPrefixModules())
    importer.addModule('warnings')    
    transformer.addPrefixCode()
    importModules(importer, transformer.getMainCodeModules())
    transformer.addMainCode()
    usecase = config['modelName']+'_'+config['modelVersion']
    deploy_path = Path(config[""deploy_path""])/'MLaC'/'DataTransformation'
    deploy_path.mkdir(parents=True, exist_ok=True)
    generated_files = []
    
    # create the utility file
    importer.addLocalModule('*', mod_from='utility')
    utility_obj = utility_function('transformer')
    with open(deploy_path/""utility.py"", 'w') as f:
        f.write(file_header(usecase) + utility_obj.get_code())
    generated_files.append(""utility.py"")   

    # create empty init file to make a package    
    with open(deploy_path/""__init__.py"", 'w') as f:
        f.write(file_header(usecase))
    generated_files.append(""__init__.py"")   
        
    code  = file_header(usecase)
    code += ""\nimport os\nos.path.abspath(os.path.join(__file__, os.pardir))\n"" #chdir to import from current dir
    code += importer.getCode()
    code += '\nwarnings.filterwarnings(""ignore"")\n'
    code += transformer.getInputOutputFiles()
    code += function.getCode()
    transformer.addLocalFunctionsCode()
    code += transformer.getCode()
    with open(deploy_path/""aionCode.py"", ""w"") as f:
        f.write(code)
    generated_files.append(""aionCode.py"")   

    with open(deploy_path/""requirements.txt"", ""w"") as f:
        req=importer.getBaseModule(extra_importers=[utility_obj.get_importer()])
        f.write(req)
    generated_files.append(""requirements.txt"")   

    config_file = deploy_path/""config.json""
    config_data = get_transformer_params(config)
    with open (config_file, ""w"") as f:
        json.dump(config_data, f, indent=4)
    generated_files.append(""config.json"")   

    create_docker_file('transformer', deploy_path,config['modelName'], generated_files)
"
register.py,"""""""
/**
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  © Copyright HCL Technologies Ltd. 2021, 2022
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*/
""""""

from pathlib import Path
import json
from mlac.timeseries.core import *
from .utility import *

def get_register_params(config, models):
    param_keys = [""modelVersion"",""problem_type""]
    data = {key:value for (key,value) in config.items() if key in param_keys}
    data['targetPath'] = config['modelName']
    data['models'] = models
    return data

def run_register(config):
    importer = importModule()

    registration = register(importer)
    models = get_variable('models_name')
    smaller_is_better = get_variable('smaller_is_better', False)
    registration.addLocalFunctionsCode(models)
    registration.addPrefixCode(smaller_is_better)
    registration.addMainCode(models)
    importModules(importer, registration.getMainCodeModules())
    importer.addModule('warnings')

    generated_files = []
    usecase = config['modelName']+'_'+config['modelVersion']
    deploy_path = Path(config[""deploy_path""])/'MLaC'/'ModelRegistry'
    deploy_path.mkdir(parents=True, exist_ok=True)

    # create the utility file
    importer.addLocalModule('utility', mod_as='utils')
    utility_obj = utility_function('register')
    with open(deploy_path/""utility.py"", 'w') as f:
        f.write(file_header(usecase) + utility_obj.get_code())
    generated_files.append(""utility.py"")   

    # create empty init file required for creating a package    
    with open(deploy_path/""__init__.py"", 'w') as f:
        f.write(file_header(usecase))
    generated_files.append(""__init__.py"")   

    code = importer.getCode()
    code += '\nwarnings.filterwarnings(""ignore"")\n'
    code += registration.getInputOutputFiles()
    code += registration.getCode()
    # create serving file
    with open(deploy_path/""aionCode.py"", 'w') as f:
        f.write(file_header(usecase) + code)
    generated_files.append(""aionCode.py"")   

    # create requirements file
    req_file = deploy_path/""requirements.txt""
    with open(req_file, ""w"") as f:
        req=importer.getBaseModule(extra_importers=[utility_obj.get_importer()])
        f.write(req)
    generated_files.append(""requirements.txt"")
    
    # create config file
    with open (deploy_path/""config.json"", ""w"") as f:
        json.dump(get_register_params(config, models), f, indent=4)
    generated_files.append(""config.json"")   
    
    # create docker file
    create_docker_file('register', deploy_path,config['modelName'], generated_files)    
"
__init__.py,"""""""
/**
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  © Copyright HCL Technologies Ltd. 2021, 2022
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*/
""""""

from .load_data import run_loader
from .transformer import run_transformer
from .selector import run_selector
from .trainer import run_trainer
from .register import run_register
from .deploy import run_deploy
from .drift_analysis import run_drift_analysis
        
"
load_data.py,"""""""
/**
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  © Copyright HCL Technologies Ltd. 2021, 2022
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*/
""""""

from pathlib import Path
import json
import platform
from mlac.timeseries.core import *
from .utility import *

imported_modules = [
        {'module': 'json', 'mod_from': None, 'mod_as': None},
        {'module': 'Path', 'mod_from': 'pathlib', 'mod_as': None},
        {'module': 'pandas', 'mod_from': None, 'mod_as': 'pd'},
        {'module': 'argparse', 'mod_from': None, 'mod_as': None},
        {'module': 'platform', 'mod_from': None, 'mod_as': None }   
    ]

def get_load_data_params(config):
    param_keys = [""modelVersion"",""problem_type"",""target_feature"",""selected_features"",""dateTimeFeature"",""dataLocation""]
    data = {key:value for (key,value) in config.items() if key in param_keys}
    data['targetPath'] = config['modelName']
    return data

def run_loader(config):
    generated_files = []
    importer = importModule()
    loader = tabularDataReader()
    importModules(importer, imported_modules)
    usecase = config['modelName']+'_'+config['modelVersion']
    deploy_path = Path(config[""deploy_path""])/'MLaC'/'DataIngestion'
    deploy_path.mkdir(parents=True, exist_ok=True)
    
    # create the utility file
    importer.addLocalModule('*', mod_from='utility')
    utility_obj = utility_function('load_data')
    with open(deploy_path/""utility.py"", 'w') as f:
        f.write(file_header(usecase) + utility_obj.get_code())
    generated_files.append(""utility.py"")   
    # create the production data reader file
    importer.addLocalModule('dataReader', mod_from='data_reader')
    readers = ['sqlite','influx']
    if 's3' in config.keys():
        readers.append('s3')
    reader_obj = data_reader(readers)
    with open(deploy_path/""data_reader.py"", 'w') as f:
        f.write(file_header(usecase) + reader_obj.get_code())
    generated_files.append(""data_reader.py"")   
        
    # create empty init file to make a package    
    with open(deploy_path/""__init__.py"", 'w') as f:
        f.write(file_header(usecase))
    generated_files.append(""__init__.py"")   
        
    code  = file_header(usecase)
    code += importer.getCode()
    code += loader.getInputOutputFiles()
    loader.addLocalFunctionsCode()
    loader.addLoadDataCode()
    loader.addMainCode()
    code += loader.getCode()
    with open(deploy_path/""aionCode.py"", ""w"") as f:
        f.write(code)
    generated_files.append(""aionCode.py"")   

    with open(deploy_path/""requirements.txt"", ""w"") as f:
        req=importer.getBaseModule(extra_importers=[utility_obj.get_importer(), reader_obj.get_importer()])
        f.write(req)
    generated_files.append(""requirements.txt"")   
    
    config_file = deploy_path/""config.json""
    config_data = get_load_data_params(config)
    with open (config_file, ""w"") as f:
        json.dump(config_data, f, indent=4)
    generated_files.append(""config.json"")   
    
    create_docker_file('load_data', deploy_path,config['modelName'],generated_files)"
__init__.py,"""""""
/**
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  © Copyright HCL Technologies Ltd. 2021, 2022
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*/
""""""

from .imports import importModule
from .load_data import tabularDataReader
from .transformer import transformer as profiler
from .selector import selector
from .trainer import learner
from .deploy import deploy
from .functions import global_function
"
__init__.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''"
baseline.py,"import joblib
import pandas as pd
import sys
import math
import time
import pandas as pd
import numpy as np
from sklearn.metrics import confusion_matrix
from sklearn.metrics import precision_score, recall_score, f1_score, accuracy_score
from sklearn.metrics import r2_score,mean_absolute_error,mean_squared_error
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report, confusion_matrix
from sklearn.svm import SVC
from sklearn.linear_model import LinearRegression
import argparse
import json

def mltesting(modelfile,datafile,features,target):


    model = joblib.load(modelfile)

    ProblemName = model.__class__.__name__


    if ProblemName in  ['LogisticRegression','SGDClassifier','SVC','DecissionTreeClassifier','RandomForestClassifier','GaussianNB','KNeighborsClassifier','DecisionTreeClassifier','GradientBoostingClassifier','XGBClassifier','LGBMClassifier','CatBoostClassifier']:
        Problemtype = 'Classification'
    elif ProblemName in  ['LinearRegression','Lasso','Ridge','DecisionTreeRegressor','RandomForestRegressor','GradientBoostingRegressor','XGBRegressor','LGBMRegressor','CatBoostRegressor']:
        Problemtype = 'Regression'
    else:
        Problemtype = 'Unknown'
    if Problemtype == 'Classification':
        Params = model.get_params()
        try:
            df = pd.read_csv(datafile,encoding='utf-8',skipinitialspace = True)
            if ProblemName == 'LogisticRegression' or ProblemName == 'DecisionTreeClassifier' or ProblemName == 'RandomForestClassifier'     or ProblemName == 'GaussianNB' or ProblemName == 'KNeighborsClassifier' or ProblemName == 'GradientBoostingClassifier' or ProblemName == 'SVC':
                features = model.feature_names_in_
            elif ProblemName == 'XGBClassifier':
                features = model.get_booster().feature_names
            elif ProblemName == 'LGBMClassifier':
                features = model.feature_name_
            elif ProblemName == 'CatBoostClassifier':
                features = model.feature_names_           
            
            modelfeatures = features
            dfp = df[modelfeatures]
            tar = target
            target = df[tar]
            predic = model.predict(dfp)
            output = {}
            matrixconfusion = pd.DataFrame(confusion_matrix(predic,target))
            matrixconfusion = matrixconfusion.to_json(orient='index')
            classificationreport = pd.DataFrame(classification_report(target,predic,output_dict=True)).transpose()
            classificationreport = round(classificationreport,2)
            classificationreport = classificationreport.to_json(orient='index')
            output[""Precision""] = ""%.2f"" % precision_score(target, predic,average='weighted')
            output[""Recall""] = ""%.2f"" % recall_score(target, predic,average='weighted')
            output[""Accuracy""] = ""%.2f"" % accuracy_score(target, predic)
            output[""ProblemName""] = ProblemName
            output[""Status""] = ""Success""
            output[""Params""] =  Params
            output[""Problemtype""] =  Problemtype
            output[""Confusionmatrix""] =  matrixconfusion
            output[""classificationreport""] =  classificationreport
            
            # import statistics
            # timearray = []
            # for i in range(0,5):
                # start = time.time()
                # predic1 = model.predict(dfp.head(1))
                # end = time.time()
                # timetaken =  (round((end - start) * 1000,2),'Seconds')
                # timearray.append(timetaken)
            # print(timearray)
                
          
            start = time.time()
            for i in range(0,5):
                predic1 = model.predict(dfp.head(1)) 
            end = time.time()
            timetaken =  (round((end - start) * 1000,2),'Seconds')
            
            # print(timetaken)
           
            start1 = time.time()
            for i in range(0,5):
                predic2 = model.predict(dfp.head(10))
            end1 = time.time()
            timetaken1 =  (round((end1 - start1) * 1000,2) ,'Seconds')
            # print(timetaken1)
            
            
            start2 = time.time()
            for i in range(0,5):
                predic3 = model.predict(dfp.head(100))
            end2 = time.time()
            timetaken2 =  (round((end2 - start2) * 1000,2) ,'Seconds')
            # print(timetaken2)
            
            output[""onerecord""] = timetaken
            output[""tenrecords""] = timetaken1
            output[""hundrecords""] = timetaken2
            print(json.dumps(output))
        except Exception as e:
            output = {}
            output['Problemtype']='Classification'
            output['Status']= ""Fail""
            output[""ProblemName""] = ProblemName
            output[""Msg""] = 'Detected Model : {} \\n Problem Type : Classification \\n Error : {}'.format(ProblemName, str(e).replace('""','//""').replace('\n', '\\n'))
            print(output[""Msg""])
            print(json.dumps(output))
            
    elif Problemtype == 'Regression':
        Params = model.get_params()
        try:
            df = pd.read_csv(datafile,encoding='utf-8',skipinitialspace = True)            
            if ProblemName == 'LinearRegression' or ProblemName == 'Lasso' or ProblemName == 'Ridge' or ProblemName == 'DecisionTreeRegressor' or ProblemName == 'RandomForestRegressor'     or ProblemName == 'GaussianNB' or ProblemName == 'KNeighborsRegressor' or ProblemName == 'GradientBoostingRegressor':
                features = model.feature_names_in_
            elif ProblemName == 'XGBRegressor':
                features = model.get_booster().feature_names
            elif ProblemName == 'LGBMRegressor':
                features = model.feature_name_
            elif ProblemName == 'CatBoostRegressor':
                features = model.feature_names_  
            modelfeatures = features
            dfp = df[modelfeatures]
            tar = target 
            target = df[tar] 
            predict = model.predict(dfp)
            mse = mean_squared_error(target, predict)
            mae = mean_absolute_error(target, predict)
            rmse = math.sqrt(mse)
            r2 = r2_score(target,predict,multioutput='variance_weighted')
            output = {}
            output[""MSE""] = ""%.2f"" % mean_squared_error(target, predict)
            output[""MAE""] = ""%.2f"" % mean_absolute_error(target, predict)
            output[""RMSE""] = ""%.2f"" % math.sqrt(mse)
            output[""R2""] =  ""%.2f"" %r2_score(target,predict,multioutput='variance_weighted')
            output[""ProblemName""] = ProblemName
            output[""Problemtype""] =  Problemtype
            output[""Params""] =  Params
            output['Status']='Success'
            start = time.time()
            predic1 = model.predict(dfp.head(1)) 
            end = time.time()
            timetaken =  (round((end - start) * 1000,2) ,'Seconds')
            
            # print(timetaken)
           
            start1 = time.time()
            predic2 = model.predict(dfp.head(10))
            end1 = time.time()
            timetaken1 =  (round((end1 - start1) * 1000,2),'Seconds')
            # print(timetaken1)
            
            
            start2 = time.time()
            predic3 = model.predict(dfp.head(100))
            end2 = time.time()
            timetaken2 =  (round((end2 - start2) * 1000,2) ,'Seconds')
            # print(timetaken2)
            
            output[""onerecord""] = timetaken
            output[""tenrecords""] = timetaken1
            output[""hundrecords""] = timetaken2
            print(json.dumps(output))
        except Exception as e:
            output = {}
            output['Problemtype']='Regression'
            output['Status']='Fail'
            output[""ProblemName""] = ProblemName
            output[""Msg""] = 'Detected Model : {} \\n Problem Type : Regression \\n Error : {}'.format(ProblemName, str(e).replace('""','//""').replace('\n', '\\n'))
            print(json.dumps(output))
        
    else:
        output = {}
        output['Problemtype']='Unknown'
        output['Status']='Fail'
        output['Params'] = ''
        output[""ProblemName""] = ProblemName
        output[""Msg""] = 'Detected Model : {} \\n Error : {}'.format(ProblemName, 'Model not supported')
        print(json.dumps(output))
    return(json.dumps(output))
    
def baseline_testing(modelFile,csvFile,features,target):
    features = [x.strip() for x in features.split(',')]    
    return mltesting(modelFile,csvFile,features,target)"
uq_interface.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
#from sklearn.externals import joblib
import joblib
# import pyreadstat
# import sys
# import math
import time
import pandas as pd
import numpy as np
from sklearn.metrics import confusion_matrix
from sklearn.metrics import precision_score, recall_score, f1_score, accuracy_score
from sklearn.metrics import r2_score,mean_absolute_error,mean_squared_error
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report, confusion_matrix
from sklearn.svm import SVC
from sklearn.linear_model import LinearRegression
import argparse
import json
import os
import pathlib
from tensorflow.keras.models import load_model
# from tensorflow.keras import backend as K
import tensorflow as tf
# from sklearn.decomposition import LatentDirichletAllocation
from pathlib import Path
#from aionUQ import aionUQ
from uq_main import aionUQ						   
import os
from datetime import datetime
from sklearn.model_selection import train_test_split
parser = argparse.ArgumentParser()
parser.add_argument('savFile')
parser.add_argument('csvFile')
parser.add_argument('features')
parser.add_argument('target')
args = parser.parse_args()
from appbe.dataPath import DEPLOY_LOCATION

if ',' in args.features:
	args.features = [x.strip() for x in args.features.split(',')]
else:
	args.features = args.features.split("","")
models = args.savFile	
if Path(models).is_file():
# if Path(args.savFile.is_file()):
	model = joblib.load(args.savFile)
	# print(model.__class__.__name__)
	# print('class:',model.__class__)
	# print(type(model).__name__)

	# try:
		# print('Classess=',model.classes_)
		
	# except:
		# print(""Classess=N/A"")
		
	# print('params:',model.get_params())

	# try:
		# print('fea_imp =',model.feature_importances_)
		
	# except:
		# print(""fea_imp =N/A"")

	ProblemName = model.__class__.__name__
	Params = model.get_params()
	# print(""ProblemName: \n"",ProblemName)
	# print(""Params: \n"",Params)

	# print('ProblemName:',model.__doc__)
	# print(type(ProblemName))
	if ProblemName in  ['LogisticRegression','SGDClassifier','SVC','DecissionTreeClassifier','RandomForestClassifier','GaussianNB','KNeighboursClassifier','DecisionTreeClassifier','GradientBoostingClassifier']:
		Problemtype = 'Classification'
	else :
		Problemtype = 'Regression'
		
	if Problemtype == 'Classification':
		
		df = pd.read_csv(args.csvFile)
		object_cols = [col for col, col_type in df.dtypes.items() if col_type == 'object']		  
		df = df.drop(object_cols, axis=1)
		df = df.dropna(axis=1)
		df = df.reset_index(drop=True)		  
		modelfeatures = args.features
		# dfp = df[modelfeatures]
		tar = args.target
		# target = df[tar]		 
		y=df[tar]
		X = df.drop(tar, axis=1)
		#for dummy test,train values pass
		X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)
		uqObj=aionUQ(df,X,y,ProblemName,Params,model,modelfeatures,tar)
		#accuracy,uq_ece,output_jsonobject,model_confidence_per,model_uncertaitny_per=uqObj.uqMain_BBMClassification(X_train, X_test, y_train, y_test,""uqtest"")
		accuracy,uq_ece,output_jsonobject,model_confidence_per,model_uncertaitny_per=uqObj.uqMain_BBMClassification()																											 
		# print(""UQ Classification: \n"",output_jsonobject)
		print(accuracy,uq_ece,output_jsonobject,model_confidence_per,model_uncertaitny_per)
		print(""End of UQ Classification.\n"")

	else:

		df = pd.read_csv(args.csvFile)
		modelfeatures = args.features
		# print(""modelfeatures: \n"",modelfeatures)
		# print(""type modelfeatures: \n"",type(modelfeatures))
		dfp = df[modelfeatures]
		tar = args.target
		target = df[tar]
		#Not used, just dummy X,y split
		y=df[tar]		 
		X = df.drop(tar, axis=1)
		X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)
		uqObj=aionUQ(df,dfp,target,ProblemName,Params,model,modelfeatures,tar)
		total_picp_percentage,total_Uncertainty_percentage,uq_medium,uq_best,scoringCriteria,uq_jsonobject=uqObj.uqMain_BBMRegression()		
		print(total_picp_percentage,total_Uncertainty_percentage,uq_medium,uq_best,scoringCriteria,uq_jsonobject)
		print(""End of UQ reg\n"")

elif Path(models).is_dir():


	os.environ['TF_XLA_FLAGS'] = '--tf_xla_enable_xla_devices'
	os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
	model = load_model(models)
	ProblemName = model.__class__.__name__
	Problemtype = 'Classification'
	# print('class:',model.__class__)
	# print('class1',model.__class__.__name__)
	# print(model.summary())
	# print('ProblemName1:',model.get_config())
	


	 
	def Params(model: tf.keras.Model):
	  Params = []
	  model.Params(print_fn=lambda x: Params.append(x))
	  return '\n'.join(Params)
 

	
	df = pd.read_csv(args.csvFile)
	modelfeatures = args.features
	dfp = df[modelfeatures]
	tar = args.target
	target = df[tar]
	df3 = dfp.astype(np.float32)
	predic = model.predict(df3)
	if predic.shape[-1] > 1:
		predic = np.argmax(predic, axis=-1)
	else:
		predic = (predic > 0.5).astype(""int32"")
		
	matrixconfusion = pd.DataFrame(confusion_matrix(predic,target))
	matrixconfusion = matrixconfusion.to_json(orient='index')

	classificationreport = pd.DataFrame(classification_report(target,predic,output_dict=True)).transpose()
	classificationreport = round(classificationreport,2)
	classificationreport = classificationreport.to_json(orient='index')
	output = {}
	output[""Precision""] = ""%.3f"" % precision_score(target, predic,average='weighted')
	output[""Recall""] = ""%.3f"" % recall_score(target, predic,average='weighted')
	output[""Accuracy""] = ""%.3f"" % accuracy_score(target, predic)
	output[""ProblemName""] = ProblemName
	output[""Params""] =	Params
	output[""Problemtype""] =	 Problemtype
	output[""Confusionmatrix""] =	 matrixconfusion
	output[""classificationreport""] =  classificationreport
	print(json.dumps(output))
"
aionUQ.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''

import logging
logging.getLogger('tensorflow').disabled = True
import json
#from nltk.corpus import stopwords
from collections import Counter
from matplotlib import pyplot
import sys
import os
import json
import matplotlib.pyplot as plt
from uq360.algorithms.blackbox_metamodel import BlackboxMetamodelRegression
from uq360.algorithms.ucc_recalibration import UCCRecalibration
from sklearn import datasets
from sklearn.model_selection import train_test_split
import pandas as pd
from uq360.metrics.regression_metrics import compute_regression_metrics
import numpy as np
from sklearn.metrics import accuracy_score
from sklearn.metrics import precision_score
from sklearn.metrics import recall_score
from sklearn.metrics import f1_score
from sklearn.metrics import roc_curve
# from math import sqrt
from sklearn.metrics import r2_score,mean_squared_error, explained_variance_score,mean_absolute_error
# from uq360.metrics import picp, mpiw, compute_regression_metrics, plot_uncertainty_distribution, plot_uncertainty_by_feature, plot_picp_by_feature
from uq360.metrics import plot_uncertainty_by_feature, plot_picp_by_feature

#Added libs from MLTest
import sys
import time
from sklearn.metrics import confusion_matrix
from pathlib import Path
import logging
# import json

class aionUQ:
	# def __init__(self,uqdf,targetFeature,xtrain,ytrain,xtest,ytest,uqconfig_base,uqconfig_meta,deployLocation,saved_model):
	def __init__(self,df,dfp,target,ProblemName,Params,model,modelfeatures,targetfeature,deployLocation):
		# #printprint(""Inside aionUQ \n"")
		try:
			#print(""Inside aionUQ init\n "")
			self.data=df
			self.dfFeatures=dfp
			self.uqconfig_base=Params
			self.uqconfig_meta=Params
			self.targetFeature=targetfeature
			self.target=target
			self.selectedfeature=modelfeatures
			self.y=self.target
			self.X=self.dfFeatures
			self.log = logging.getLogger('eion')
			self.basemodel=model
			self.model_name=ProblemName
			self.Deployment = os.path.join(deployLocation,'log','UQ')
			os.makedirs(self.Deployment,exist_ok=True)
			self.uqgraphlocation = os.path.join(self.Deployment,'UQgraph')
			os.makedirs(self.uqgraphlocation,exist_ok=True)
		except Exception as e:
			self.log.info('<!------------- UQ model INIT Error ---------------> '+str(e))
			exc_type, exc_obj, exc_tb = sys.exc_info()
			fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
			self.log.info(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))
 
	def totalUncertainty(self,df,basemodel,model_params,xtrain, xtest, ytrain, ytest,aionstatus):
		from sklearn.model_selection import train_test_split
		# To get each class values and uncertainty
		if (aionstatus.lower() == 'aionuq'):
			X_train, X_test, y_train, y_test = xtrain, xtest, ytrain, ytest
			# y_val = y_train.append(y_test)
		else:
			# y_val = self.y
			df=self.data
			y=df[self.targetFeature]
			X = df.drop(self.targetFeature, axis=1)
			X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)
		key = 'criterion'
		#if key in model_params:
		try:
			#if model_params.has_key(key):
			if key in model_params:
				if (model_params['criterion']):						   
					uq_scoring_param=model_params.get('criterion')
				elif(model_params['criterion'] == None):
					uq_scoring_param='picp'
				else:
					uq_scoring_param='picp'
			else:
				uq_scoring_param='picp'
				pass
		except Exception as inst:
			uq_scoring_param='picp'
			
		
		# from sklearn.tree import DecisionTreeRegressor
		# from sklearn.linear_model import LinearRegression,Lasso,Ridge
		# from sklearn import linear_model
		# from sklearn.ensemble import RandomForestRegressor
		if uq_scoring_param in ['rmse', 'nll','auucc_gain','picp','mpiw','r2']:
			uq_scoring_param=uq_scoring_param
		else:
			uq_scoring_param='picp'
		uq_model = BlackboxMetamodelRegression(base_model=basemodel, meta_model=basemodel, base_config=model_params, meta_config=model_params)
		# this will fit both the base and the meta model  
		uqmodel_fit = uq_model.fit(X_train, y_train)
		y_hat, y_hat_lb, y_hat_ub = uq_model.predict(X_test)
		y_hat_total_mean=np.mean(y_hat)
		y_hat_lb_total_mean=np.mean(y_hat_lb)
		y_hat_ub_total_mean=np.mean(y_hat_ub) 
		mpiw_20_per=(y_hat_total_mean*20/100)
		mpiw_lower_range = y_hat_total_mean - mpiw_20_per
		mpiw_upper_range = y_hat_total_mean + mpiw_20_per
		from uq360.metrics import picp, mpiw
		observed_alphas_picp = picp(y_test, y_hat_lb, y_hat_ub)
		observed_widths_mpiw = mpiw(y_hat_lb, y_hat_ub)
		observed_alphas_picp=round(observed_alphas_picp,2)
		observed_widths_mpiw=round(observed_widths_mpiw,2)
		picp_percentage= round(observed_alphas_picp*100)
		Uncertainty_percentage=round(100-picp_percentage)
		self.log.info('Model total observed_widths_mpiw :  '+str(observed_widths_mpiw))
		self.log.info('Model mpiw_lower_range :	 '+str(mpiw_lower_range))
		self.log.info('Model mpiw_upper_range :	 '+str(mpiw_upper_range))
		self.log.info('Model total picp_percentage :  '+str(picp_percentage))
		return observed_alphas_picp,observed_widths_mpiw,picp_percentage,Uncertainty_percentage,mpiw_lower_range,mpiw_upper_range
		
	def display_results(self,X_test, y_test, y_mean, y_lower, y_upper):
		try:
			global x_feature,y_feature
			if (isinstance(self.selectedfeature, list) or isinstance(self.selectedfeature, tuple)):
				x_feature=''.join(map(str, self.selectedfeature))
			else:
				x_feature= str(self.selectedfeature)
			# self.selectedfeature=str(self.selectedfeature)
			X_test=np.squeeze(X_test)
			y_feature=str(self.targetFeature)
			pred_dict = {x_feature: X_test,
						 'y': y_test,
						 'y_mean': y_mean,
						 'y_upper': y_upper,
						 'y_lower': y_lower
						}
			pred_df = pd.DataFrame(data=pred_dict)
			pred_df_sorted = pred_df.sort_values(by=x_feature)
			plt.plot(pred_df_sorted[x_feature], pred_df_sorted['y'], 'o', label='Observed')
			plt.plot(pred_df_sorted[x_feature], pred_df_sorted['y_mean'], '-', lw=2, label='Predicted')
			plt.plot(pred_df_sorted[x_feature], pred_df_sorted['y_upper'], 'r--', lw=2, label='Upper Bound')
			plt.plot(pred_df_sorted[x_feature], pred_df_sorted['y_lower'], 'r--', lw=2, label='Lower Bound')
			plt.legend()
			plt.xlabel(x_feature)
			plt.ylabel(y_feature)
			plt.title('UQ Confidence Interval Plot.')
			# plt.savefig('uq_test_plt.png')
			if os.path.exists(str(self.uqgraphlocation)+'/uq_test_plt.png'):
				os.remove(str(self.uqgraphlocation)+'/uq_test_plt.png')
			plt.savefig(str(self.Deployment)+'/uq_test_plt.png')
			plt.savefig(str(self.uqgraphlocation)+'/uq_test_plt.png')
			plt.clf()
			plt.cla()
			plt.close()
			pltreg=plot_picp_by_feature(X_test, y_test,
					 y_lower, y_upper,
					 xlabel=x_feature)
			#pltreg.savefig('x.png')
			pltr=pltreg.figure
			if os.path.exists(str(self.uqgraphlocation)+'/picp_per_feature.png'):
				os.remove(str(self.uqgraphlocation)+'/picp_per_feature.png')
			pltr.savefig(str(self.Deployment)+'/picp_per_feature.png')
			pltr.savefig(str(self.uqgraphlocation)+'/picp_per_feature.png')
			plt.clf()
			plt.cla()
			plt.close()
		except Exception as e:
			# #print(""display exception: \n"",e)
			self.log.info('<!------------- UQ model Display Error ---------------> '+str(e))

	def classUncertainty(self,pred,score):
		try:
			outuq = {}
			classes = np.unique(pred)
			for c in classes:
				ids = pred == c
				class_score = score[ids]
				predc = 'Class_'+str(c)
				outuq[predc]=np.mean(class_score)
				x = np.mean(class_score)
				#Uncertaininty in percentage
				x=x*100								   
				self.log.info('----------------> Class '+str(c)+' Confidence Score '+str(round(x)))
			return outuq
		except Exception as e:
			# #print(""display exception: \n"",e)
			self.log.info('<!------------- UQ classUncertainty Error ---------------> '+str(e))
			exc_type, exc_obj, exc_tb = sys.exc_info()
			fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
			self.log.info(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))
		
	def uqMain_BBMClassification(self,x_train, x_test, y_train, y_test,aionstatus):
		try:
			# print(""Inside uqMain_BBMClassification\n"")
			# print(""lenth of x_train {}, x_test {}, y_train {}, y_test {}"".format(x_train, x_test, y_train, y_test))
			aionstatus = str(aionstatus)
			if (aionstatus.lower() == 'aionuq'):
				X_train, X_test, y_train, y_test = x_train, x_test, y_train, y_test
			else:
				X_train, X_test, y_train, y_test = train_test_split(self.X, self.y, test_size=0.3, random_state=0)	  
			from uq360.algorithms.blackbox_metamodel import BlackboxMetamodelClassification
			from uq360.metrics.classification_metrics import plot_reliability_diagram,area_under_risk_rejection_rate_curve,plot_risk_vs_rejection_rate,expected_calibration_error,compute_classification_metrics
			from sklearn.ensemble import GradientBoostingClassifier
			from sklearn.linear_model import LogisticRegression
			from sklearn.linear_model import SGDClassifier
			from sklearn.naive_bayes import GaussianNB
			from sklearn.tree import DecisionTreeClassifier
			from sklearn.ensemble import RandomForestClassifier
			from sklearn.svm import SVC
			from xgboost import XGBClassifier
			from lightgbm import LGBMClassifier
			from sklearn.neighbors import KNeighborsClassifier
		 
			base_modelname=__class__.__name__
			base_config = self.uqconfig_base
			meta_config = self.uqconfig_base
			model_name=self.basemodel.__class__.__name__
			#print(model_name)
			try:
				#geting used features
				model_used_features=self.basemodel.feature_names_in_
				self.log.info(""Base model used training features are (UQ Testing): \n""+str(model_used_features))
			except:
				pass
			model_params=self.basemodel.get_params()
			uq_scoring_param='accuracy'
			basemodel=None
			if (model_name == ""GradientBoostingClassifier""):
				basemodel=GradientBoostingClassifier
			elif (model_name == ""SGDClassifier""):
				basemodel=SGDClassifier
			elif (model_name == ""GaussianNB""):
				basemodel=GaussianNB
			elif (model_name == ""DecisionTreeClassifier""):
				basemodel=DecisionTreeClassifier
			elif(model_name == ""RandomForestClassifier""):
				basemodel=RandomForestClassifier
			elif (model_name == ""SVC""):
				basemodel=SVC
			elif(model_name == ""KNeighborsClassifier""):
				basemodel=KNeighborsClassifier
			elif(model_name.lower() == ""logisticregression""):
				basemodel=LogisticRegression
			elif(model_name == ""XGBClassifier""):
				basemodel=XGBClassifier
			elif(model_name == ""LGBMClassifier""):
				basemodel=LGBMClassifier
			else:
				basemodel=LogisticRegression
			
			calibrated_mdl=None
			if (model_name == ""SVC""):
				from sklearn.calibration import CalibratedClassifierCV
				basemodel=SVC(**model_params)
				calibrated_mdl = CalibratedClassifierCV(basemodel,method='sigmoid',cv=3)
				calibrated_mdl.fit(X_train, y_train)
				basepredict = calibrated_mdl.predict(X_test)
				predprob_base = calibrated_mdl.predict_proba(X_test)[:, :] 
			elif (model_name == ""SGDClassifier""):
				from sklearn.calibration import CalibratedClassifierCV
				basemodel=SGDClassifier(**model_params)
				calibrated_mdl = CalibratedClassifierCV(basemodel,method='sigmoid',cv=3)
				calibrated_mdl.fit(X_train, y_train)
				basepredict = calibrated_mdl.predict(X_test)
				predprob_base = calibrated_mdl.predict_proba(X_test)[:, :] 
			else:
				from sklearn.calibration import CalibratedClassifierCV
				base_mdl = basemodel(**model_params)
				calibrated_mdl = CalibratedClassifierCV(base_mdl,method='sigmoid',cv=3)
				basemodelfit = calibrated_mdl.fit(X_train, y_train)
				basepredict = calibrated_mdl.predict(X_test)		
				predprob_base=calibrated_mdl.predict_proba(X_test)[:, :]
				cal_model_params=calibrated_mdl.get_params()			
						
			acc_score_base=accuracy_score(y_test, basepredict)
			base_estimator_calibrate = cal_model_params['base_estimator']
			
			
			uq_model = BlackboxMetamodelClassification(base_model=self.basemodel, meta_model=basemodel, 
												base_config=model_params, meta_config=model_params)
			
			try:
				X_train=X_train[model_used_features]
				X_test=X_test[model_used_features]
			except:
				pass
			uqmodel_fit = uq_model.fit(X_train, y_train,base_is_prefitted=True,meta_train_data=(X_train, y_train))
			# uqmodel_fit = uq_model.fit(X_train, y_train)
			y_t_pred, y_t_score = uq_model.predict(X_test)
			acc_score=accuracy_score(y_test, y_t_pred)
			test_accuracy_perc=round(100*acc_score) 
			if(aionstatus == ""aionuq""):
				test_accuracy_perc=round(test_accuracy_perc,2)
				#uq_aurrrc not used for any aion gui configuration, so it initialized as 0. if we use area_under_risk_rejection_rate_curve(), it shows plot in cmd prompt,so code execution interuupted.so we make it 0.
				uq_aurrrc=0
				pass
			else:
				bbm_c_plot = plot_risk_vs_rejection_rate(
					y_true=y_test,
					y_prob=predprob_base,
					selection_scores=y_t_score,
					y_pred=y_t_pred,
					plot_label=['UQ_risk_vs_rejection'],
					risk_func=accuracy_score,
					num_bins = 10 )
				# This done by kiran, need to uncomment for GUI integration.
				# bbm_c_plot_sub = bbm_c_plot[4]
				bbm_c_plot_sub = bbm_c_plot
				if os.path.exists(str(self.uqgraphlocation)+'/plot_risk_vs_rejection_rate.png'):
					os.remove(str(self.uqgraphlocation)+'/plot_risk_vs_rejection_rate.png')
				# bbm_c_plot_sub.savefig(str(self.uqgraphlocation)+'/plot_risk_vs_rejection_rate.png')			 
				re_plot=plot_reliability_diagram(y_true=y_test,
								y_prob=predprob_base,
								y_pred=y_t_pred,
								plot_label=['UQModel reliability_diagram'],						   
								num_bins=10 )
				# This done by kiran, need to uncomment for GUI integration.
				# re_plot_sub = re_plot[4]
				re_plot_sub = re_plot
				if os.path.exists(str(self.uqgraphlocation)+'/plot_reliability_diagram.png'):
					os.remove(str(self.uqgraphlocation)+'/plot_reliability_diagram.png')
				# re_plot_sub.savefig(str(DEFAULT_FILE_PATH)+'/plot_reliability_diagram.png')	
				
				uq_aurrrc=area_under_risk_rejection_rate_curve( y_true=y_test,
							y_prob=predprob_base,
							y_pred=y_t_pred,
							selection_scores=y_t_score,
							attributes=None,
							risk_func=accuracy_score,subgroup_ids=None, return_counts=False,
							num_bins=10)
				uq_aurrrc=uq_aurrrc
			test_accuracy_perc=round(test_accuracy_perc)
			#metric_all=compute_classification_metrics(y_test, y_prob, option='all')
			metric_all=compute_classification_metrics(y_test, predprob_base, option='accuracy')
			#expected_calibration_error
			uq_ece=expected_calibration_error(y_test, y_prob=predprob_base,y_pred=basepredict, num_bins=10, return_counts=False)
			# uq_aurrrc=uq_aurrrc
			confidence_score=acc_score_base-uq_ece
			ece_confidence_score=round(confidence_score,2)
			# Model uncertainty using ECE score
			# model_uncertainty_ece = 1-ece_confidence_score
			#Uncertainty Using model inherent predict probability
		   
			mean_predprob_total=np.mean(y_t_score)
			model_confidence=mean_predprob_total
			model_uncertainty = 1-mean_predprob_total
			
			model_confidence = round(model_confidence,2)	 
			# To get each class values and uncertainty
			if (aionstatus.lower() == 'aionuq'):
				y_val = np.append(y_train,y_test)
			else:
				y_val = self.y				 
			self.log.info('------------------> Model Confidence Score '+str(model_confidence))
			outuq = self.classUncertainty(y_t_pred,y_t_score)
			
			# Another way to get conf score
			model_uncertainty_per=round((model_uncertainty*100),2)
			model_confidence_per=round((model_confidence*100),2)
			acc_score_per = round((acc_score*100),2)
			uq_ece_per=round((uq_ece*100),2)
			output={}
			recommendation = """"
			if (uq_ece > 0.5):
				# RED text
				recommendation = 'Model has high ece (expected calibration error) score compare to threshold (0.5),not good to be deploy. need to be add more input data across all feature ranges to train base model, also try with different classification algorithms/ensembling to reduce ECE (ECE~0).'
			else:
				# self.log.info('Model has good ECE score and accuracy, ready to deploy.\n.')
				if (uq_ece <= 0.1 and model_confidence >= 0.9):
					# Green Text
					recommendation = 'Model has best calibration score (near to 0) and good confidence score  , ready to deploy. '
				else:
					# Orange
					recommendation = 'Model has good ECE score (between 0.1-0.5), but less confidence score compare to threshold (90%). If user wants,model can be improve by adding more input data across all feature ranges and could be evaluate with different algorithms/ensembling. '
			#Adding each class uncertainty value
			classoutput = {}
			for k,v in outuq.items():
				classoutput[k]=(str(round((v*100),2)))
			output['classes'] = classoutput
			output['ModelConfidenceScore']=(str(model_confidence_per))
			output['ExpectedCalibrationError']=str(uq_ece_per)
			output['ModelUncertainty']=str(model_uncertainty_per)
			output['Recommendation']=recommendation
			# output['user_msg']='Please check the plot for more understanding of model uncertainty'
			#output['UQ_area_under_risk_rejection_rate_curve']=round(uq_aurrrc,4)
			output['Accuracy']=str(acc_score_per)
			output['Problem']= 'Classification'
			#self.log.info('Model Accuracy score in percentage :  '+str(test_accuracy_perc)+str(' %'))
			# #print(""Prediction mean for the given model:"",np.mean(y_hat),""\n"")
			#self.log.info(recommendation)
			#self.log.info(""Model_confidence_score: "" +str(confidence_score))
			#self.log.info(""Model_uncertainty: "" +str(round(model_uncertainty,2)))
			#self.log.info('Please check the plot for more understanding of model uncertainty.\n.')
			uq_jsonobject = json.dumps(output) 
			with open(str(self.Deployment)+""/uq_classification_log.json"", ""w"") as f:
				json.dump(output, f)
			return test_accuracy_perc,uq_ece,output,model_confidence_per,model_uncertainty_per
		except Exception as inst:
			self.log.info('\n < ---------- UQ Model Execution Failed Start--------->')
			self.log.info('\n<------Model Execution failed!!!.' + str(inst))
			exc_type, exc_obj, exc_tb = sys.exc_info()
			fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
			self.log.info(str(exc_type) + ' ' + str(fname) + ' ' + str(exc_tb.tb_lineno))
			self.log.info('\n < ---------- Model Execution Failed End --------->')	
	def aion_confidence_plot(self,df):
		df=df
		df = df.sort_values(by=self.selectedfeature)  
		best_values=df.Best_values.to_list()		
		best_upper=df.Best__upper.to_list()	 
		best_lower=df.Best__lower.to_list()
		Total_Upper_PI=df.Total_Upper_PI.to_list() 
		Total_Low_PI=df.Total_Low_PI.to_list()
		Obseved = df.Observed.to_list()

		plt.plot(df[x_feature], df['Observed'], 'o', label='Observed')
		plt.plot(df[x_feature], df['Best__upper'],'r--', lw=2, color='grey')
		plt.plot(df[x_feature], df['Best__lower'],'r--', lw=2, color='grey')
		plt.plot(df[x_feature], df['Best_values'], 'r--', lw=2, label='MeanPrediction',color='red')
		plt.fill_between(df[x_feature], Total_Upper_PI, Total_Low_PI, label='Good Confidence', color='lightblue', alpha=.5)
		plt.fill_between(df[x_feature],best_lower, best_upper,label='Best Confidence', color='orange', alpha=.5)
		plt.legend()
		plt.xlabel(self.selectedfeature)
		plt.ylabel(self.targetFeature)
		plt.title('UQ Best & Good Area Plot')
		if os.path.exists(str(self.uqgraphlocation)+'/uq_confidence_plt.png'):
			os.remove(str(self.uqgraphlocation)+'/uq_confidence_plt.png')
		plt.savefig(str(self.uqgraphlocation)+'/uq_confidence_plt.png')
		plt.savefig(str(self.Deployment)+'/uq_confidence_plt.png')


	def uqMain_BBMRegression(self,x_train, x_test, y_train, y_test,aionstatus):
		aionstatus = str(aionstatus)
		# if (aionstatus.lower() == 'aionuq'):
		#	  X_train, X_test, y_train, y_test = x_train, x_test, y_train, y_test
		#	  total_picp,total_mpiw,total_picp_percentage,total_Uncertainty_percentage,mpiw_lower_range,mpiw_upper_range = self.totalUncertainty(self.data,basemodel,model_params,x_train, x_test, y_train, y_test,aionstatus)
		# else:
		#	  X_train, X_test, y_train, y_test = train_test_split(self.X, self.y, test_size=0.3, random_state=0)	
		
		# modelName = """"
		self.log.info('<!------------- Inside BlackBox MetaModel Regression process. ---------------> ')
		try:
			from uq360.algorithms.blackbox_metamodel import BlackboxMetamodelRegression
			import pandas as pd
			base_modelname=__class__.__name__
			base_config = self.uqconfig_base
			meta_config = self.uqconfig_base
			model_name=self.basemodel.__class__.__name__
			model_params=self.basemodel.get_params()
			# #print(""model_params['criterion']: \n"",model_params['criterion'])
			key = 'criterion'
			#if key in model_params:
			try:
				#if model_params.has_key(key):
				if key in model_params:
					if (model_params['criterion']): 
						uq_scoring_param=model_params.get('criterion')
					elif(model_params['criterion'] == None):
						uq_scoring_param='picp'
					else:
						uq_scoring_param='picp'
				else:
					uq_scoring_param='picp'
					pass
			except Exception as inst:
				uq_scoring_param='picp'
			
			# modelname='sklearn.linear_model'+'.'+model_name
			# X_train, X_test, y_train, y_test = self.xtrain,self.xtest,self.ytrain,self.ytest
			#Geeting trained model name and to use the model in BlackboxMetamodelRegression
			from sklearn.tree import DecisionTreeRegressor
			from sklearn.linear_model import LinearRegression,Lasso,Ridge
			from sklearn.ensemble import RandomForestRegressor
			if (model_name == ""DecisionTreeRegressor""):
				basemodel=DecisionTreeRegressor
			elif (model_name == ""LinearRegression""):
				basemodel=LinearRegression
			elif (model_name == ""Lasso""):
				basemodel=Lasso
			elif (model_name == ""Ridge""):
				basemodel=Ridge
			elif(model_name == ""RandomForestRegressor""):
				basemodel=RandomForestRegressor
			else:
				basemodel=LinearRegression
				
			if (aionstatus.lower() == 'aionuq'):
				X_train, X_test, y_train, y_test = x_train, x_test, y_train, y_test
				total_picp,total_mpiw,total_picp_percentage,total_Uncertainty_percentage,mpiw_lower_range,mpiw_upper_range = self.totalUncertainty(self.data,basemodel,model_params,x_train, x_test, y_train, y_test,aionstatus)
			else:
				X_train, X_test, y_train, y_test = train_test_split(self.X, self.y, test_size=0.3, random_state=0)
				total_picp,total_mpiw,total_picp_percentage,total_Uncertainty_percentage,mpiw_lower_range,mpiw_upper_range = self.totalUncertainty(self.data,basemodel,model_params,None, None, None, None,aionstatus)
		
				
			
			if uq_scoring_param in ['rmse', 'nll','auucc_gain','picp','mpiw','r2']:
				uq_scoring_param=uq_scoring_param
			else:
				uq_scoring_param='picp'
				
			uq_model = BlackboxMetamodelRegression(base_model=basemodel, meta_model=basemodel, base_config=model_params, meta_config=model_params)
			# this will fit both the base and the meta model 
			uqmodel_fit = uq_model.fit(X_train, y_train)
			# #print(""X_train.shape: \n"",X_train.shape)
			y_hat, y_hat_lb, y_hat_ub = uq_model.predict(X_test) 
			from uq360.metrics import picp, mpiw
			observed_alphas_picp = picp(y_test, y_hat_lb, y_hat_ub)
			observed_widths_mpiw = mpiw(y_hat_lb, y_hat_ub)
			picp_percentage= round(observed_alphas_picp*100)
			Uncertainty_percentage=round(100-picp_percentage)
			self.log.info('<!------------- observed_picp: ---------------> '+str(observed_alphas_picp))
			self.log.info('<!------------- observed_widths_mpiw: ---------------> '+str(observed_widths_mpiw))
			# UQ metamodel regression have metrics as follows, “rmse”, “nll”, “auucc_gain”, “picp”, “mpiw”, “r2”
			#metric_all=compute_regression_metrics(y_test, y_hat,y_hat_lb, y_hat_ub,option='all',nll_fn=None) #nll - Gaussian negative log likelihood loss.
			metric_all=compute_regression_metrics(y_test, y_hat,y_hat_lb, y_hat_ub,option=uq_scoring_param,nll_fn=None)
			metric_used=''
			for k,v in metric_all.items():
				metric_used=str(round(v,2))
			self.log.info('<!------------- Metric used for regression UQ: ---------------> '+str(metric_all))
			# Determine the confidence level and recommentation to the tester
			# test_data=y_test
			observed_alphas_picp=round(observed_alphas_picp,2)
			observed_widths_mpiw=round(observed_widths_mpiw,2)
			#Calculate total uncertainty for all features
			# total_picp,total_mpiw,total_picp_percentage,total_Uncertainty_percentage = self.totalUncertainty(self.data)
			# df1=self.data
			total_picp,total_mpiw,total_picp_percentage,total_Uncertainty_percentage,mpiw_lower_range,mpiw_upper_range = self.totalUncertainty(self.data,basemodel,model_params,x_train, x_test, y_train, y_test,aionstatus)
			recommendation=""""
			output={}

			if (observed_alphas_picp >= 0.95 and total_picp >= 0.75):
				# Add GREEN text
				self.log.info('Model has good confidence for the selected feature, ready to deploy.\n.')
				recommendation = ""Model has good confidence score, ready to deploy.""
			elif ((observed_alphas_picp >= 0.50 and observed_alphas_picp <= 0.95)	and (total_picp >= 0.50)): 
				# Orange
				recommendation = ""Model has average confidence compare to threshold (95%), need to be add more input data across all feature ranges to train base model, also try with different regression algorithms/ensembling.""
				self.log.info('Model has average confidence score compare to threshold, need to be add more input data for training base model and again try with UQ .')
				
			else:
				# RED text
				recommendation = ""Model has less confidence compare to threshold (95%), need to be add more input data across all feature ranges to train base model, also try with different regression algorithms/ensembling.""
				self.log.info('Model has less confidence score compare to threshold, need to be add more input data for training base model and again try with UQ .')
			
			#Build uq json info dict
			output['ModelConfidenceScore']=(str(total_picp_percentage)+'%')
			output['ModelUncertainty']=(str(total_Uncertainty_percentage)+'%')
			output['SelectedFeatureConfidence']=(str(picp_percentage)+'%')
			output['SelectedFeatureUncertainty']=(str(Uncertainty_percentage)+'%')				  
			output['PredictionIntervalCoverageProbability']=observed_alphas_picp
			output['MeanPredictionIntervalWidth']=round(observed_widths_mpiw)
			output['DesirableMPIWRange: ']=(str(round(mpiw_lower_range))+str(' - ')+str(round(mpiw_upper_range)))
			output['Recommendation']=str(recommendation)
			output['Metric']=uq_scoring_param
			output['Score']=metric_used
			output['Problemtype']= 'Regression'
			self.log.info('Model confidence in percentage is:  '+str(picp_percentage)+str(' %'))
			self.log.info('Model Uncertainty is::  '+str(Uncertainty_percentage)+str(' %'))			   
			#self.log.info('Please check the plot for more understanding of model uncertainty.\n.')
			#self.display_results(X_test, y_test, y_mean=y_hat, y_lower=y_hat_lb, y_upper=y_hat_ub)
			uq_jsonobject = json.dumps(output)
			with open(str(self.Deployment)+""/uq_reg_log.json"", ""w"") as f:
				json.dump(output, f)
			#To get best and medium UQ range of values from total predict interval
			y_hat_m=y_hat.tolist()
			y_hat_lb=y_hat_lb.tolist()
			upper_bound=y_hat_ub.tolist()
			y_hat_ub=y_hat_ub.tolist()
			for x in y_hat_lb:
				y_hat_ub.append(x)			  
			total_pi=y_hat_ub			 
			medium_UQ_range = y_hat_ub
			best_UQ_range= y_hat.tolist()
			ymean_upper=[]
			ymean_lower=[]
			y_hat_m=y_hat.tolist()
			for i in y_hat_m:
				y_hat_m_range= (i*20/100)
				x=i+y_hat_m_range
				y=i-y_hat_m_range
				ymean_upper.append(x)
				ymean_lower.append(y)
			min_best_uq_dist=round(min(best_UQ_range))
			max_best_uq_dist=round(max(best_UQ_range)) 
			# initializing ranges
			list_medium=list(filter(lambda x:not(min_best_uq_dist<=x<=max_best_uq_dist), total_pi))
			list_best =	  y_hat_m 
			X_test = np.squeeze(X_test)
			'''
			uq_dict = {x_feature:X_test,'Observed':y_test,'Best_values': y_hat_m,
						   'Best__upper':ymean_upper,
						   'Best__lower':ymean_lower,
							 'Total_Low_PI': y_hat_lb,
							 'Total_Upper_PI': upper_bound,
										  }
			
			print(uq_dict)	  
			uq_pred_df = pd.DataFrame(data=uq_dict)
			uq_pred_df_sorted = uq_pred_df.sort_values(by='Best_values')
			uq_pred_df_sorted.to_csv(str(self.Deployment)+""/uq_pred_df.csv"",index = False)
			csv_path=str(self.Deployment)+""/uq_pred_df.csv""
			df=pd.read_csv(csv_path)
			self.log.info('uqMain() returns: observed_alphas_picp,observed_widths_mpiw,list_medium,list_best,metric_all.\n.')
			#Callconfidence olot fn only for UQTest interface
			
			if (aionstatus.lower() == 'aionuq'):
				#No need to showcase confidence plot for aion main
				pass
			else:
				self.aion_confidence_plot(df)
			'''
			return total_picp_percentage,total_Uncertainty_percentage,list_medium,list_best,metric_all,json.loads(uq_jsonobject)
			
		except Exception as inst:
			exc = {""status"":""FAIL"",""message"":str(inst).strip('""')}
			out_exc = json.dumps(exc)
			exc_type, exc_obj, exc_tb = sys.exc_info()
			fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
			self.log.info(str(exc_type) + ' ' + str(fname) + ' ' + str(exc_tb.tb_lineno))

					
		
	
	"
__init__.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''"
uq_main.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''

import logging
logging.getLogger('tensorflow').disabled = True
import json
#from nltk.corpus import stopwords
from collections import Counter
from matplotlib import pyplot
import sys
import os
import matplotlib.pyplot as plt
from uq360.algorithms.blackbox_metamodel import BlackboxMetamodelRegression
from sklearn import datasets
from sklearn.model_selection import train_test_split
import pandas as pd
from uq360.metrics.regression_metrics import compute_regression_metrics
import numpy as np
from sklearn.metrics import accuracy_score
from sklearn.metrics import precision_score
from sklearn.metrics import recall_score
from sklearn.metrics import f1_score
from sklearn.metrics import roc_curve
from sklearn.metrics import r2_score,mean_squared_error, explained_variance_score,mean_absolute_error
from uq360.metrics import plot_uncertainty_by_feature, plot_picp_by_feature
import sys
import time
from sklearn.metrics import confusion_matrix
from pathlib import Path
import logging
import logging.config
from os.path import expanduser
import platform
from sklearn.utils import shuffle

class aionUQ:
	# def __init__(self,uqdf,targetFeature,xtrain,ytrain,xtest,ytest,uqconfig_base,uqconfig_meta,deployLocation,saved_model):
	def __init__(self,df,dfp,target,ProblemName,Params,model,modelfeatures,targetfeature):
		try:
			self.data=df
			self.dfFeatures=dfp
			self.uqconfig_base=Params
			self.uqconfig_meta=Params
			self.targetFeature=targetfeature
			self.log = logging.getLogger('aionUQ')
			self.target=target
			self.selectedfeature=modelfeatures
			self.y=self.target
			self.X=self.dfFeatures
			from appbe.dataPath import DEPLOY_LOCATION
			self.Deployment = os.path.join(DEPLOY_LOCATION,('UQTEST_'+str(int(time.time()))))
			os.makedirs(self.Deployment,exist_ok=True)
			self.basemodel=model
			self.model_name=ProblemName			
			# self.X, self.y = shuffle(self.X, self.y)
			X_train, X_test, y_train, y_test = train_test_split(self.X, self.y, test_size=0.2, random_state=0)			  
			self.xtrain = X_train
			self.xtest = X_test
			self.ytrain = y_train
			self.ytest = y_test
			# self.deployLocation=deployLocation
			
			
		except Exception as e:
			# self.log.info('<!------------- UQ model INIT Error ---------------> '+str(e))
			exc_type, exc_obj, exc_tb = sys.exc_info()
			fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
			# self.log.info(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))
 
	def totalUncertainty(self,df,basemodel,model_params):
		try:
			# from sklearn.model_selection import train_test_split 
			# df=self.data
			# y=df[self.targetFeature]
			# X = df.drop(self.targetFeature, axis=1)
			if (isinstance(self.selectedfeature,list)):
				selectedfeature=[self.selectedfeature[0]]
				selectedfeature=' '.join(map(str,selectedfeature))
			if (isinstance(self.targetFeature,list)):
				targetFeature=[self.targetFeature[0]]
				targetFeature=' '.join(map(str,targetFeature))
			X = self.data[selectedfeature]
			y = self.data[targetFeature]
			X = X.values.reshape((-1,1))
			X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)
			key = 'criterion'
			#if key in model_params:
			try:
				#if model_params.has_key(key):
				if key in model_params:
					if (model_params['criterion']):						   
						uq_scoring_param=model_params.get('criterion')
					elif(model_params['criterion'] == None):
						uq_scoring_param='picp'
					else:
						uq_scoring_param='picp'
				else:
					uq_scoring_param='picp'
					pass
			except Exception as inst:
				uq_scoring_param='picp'
				
			# from sklearn.tree import DecisionTreeRegressor
			# from sklearn.linear_model import LinearRegression,Lasso,Ridge
			# from sklearn import linear_model
			# from sklearn.ensemble import RandomForestRegressor
			if uq_scoring_param in ['rmse', 'nll','auucc_gain','picp','mpiw','r2']:
				uq_scoring_param=uq_scoring_param
			else:
				uq_scoring_param='picp'
			uq_model = BlackboxMetamodelRegression(base_model=basemodel, meta_model=basemodel, base_config=model_params, meta_config=model_params)
			# this will fit both the base and the meta model  
			uqmodel_fit = uq_model.fit(X_train, y_train)
			y_hat, y_hat_lb, y_hat_ub = uq_model.predict(X_test)
			y_hat_total_mean=np.mean(y_hat)
			y_hat_lb_total_mean=np.mean(y_hat_lb)
			y_hat_ub_total_mean=np.mean(y_hat_ub) 
			mpiw_20_per=(y_hat_total_mean*20/100)
			mpiw_lower_range = y_hat_total_mean - mpiw_20_per
			mpiw_upper_range = y_hat_total_mean + mpiw_20_per
			from uq360.metrics import picp, mpiw
			observed_alphas_picp = picp(y_test, y_hat_lb, y_hat_ub)
			observed_widths_mpiw = mpiw(y_hat_lb, y_hat_ub)
			observed_alphas_picp=round(observed_alphas_picp,2)
			observed_widths_mpiw=round(observed_widths_mpiw,2)
			picp_percentage= round(observed_alphas_picp*100)
			Uncertainty_percentage=round(100-picp_percentage)
			# self.log.info('Model total observed_widths_mpiw :	 '+str(observed_widths_mpiw))
			# self.log.info('Model mpiw_lower_range :  '+str(mpiw_lower_range))
			# self.log.info('Model mpiw_upper_range :  '+str(mpiw_upper_range))
			# self.log.info('Model total picp_percentage :	'+str(picp_percentage))
		except Exception as e:
			print(""totalUncertainty fn error: \n"",e)

		return observed_alphas_picp,observed_widths_mpiw,picp_percentage,Uncertainty_percentage,mpiw_lower_range,mpiw_upper_range
		
	def display_results(self,X_test, y_test, y_mean, y_lower, y_upper):
		try:
			global x_feature,y_feature
			if (isinstance(self.selectedfeature, list) or isinstance(self.selectedfeature, tuple)):
				x_feature=','.join(map(str, self.selectedfeature))
			else:
				x_feature= str(self.selectedfeature)
			# self.selectedfeature=str(self.selectedfeature)
			
			X_test=np.squeeze(X_test)
			y_feature=str(self.targetFeature)
			pred_dict = {x_feature: X_test,
						 'y': y_test,
						 'y_mean': y_mean,
						 'y_upper': y_upper,
						 'y_lower': y_lower
						}
			pred_df = pd.DataFrame(data=pred_dict)
			x_feature1 = x_feature.split(',')
			pred_df_sorted = pred_df.sort_values(by=x_feature1)
			plt.plot(pred_df_sorted[x_feature1[0]], pred_df_sorted['y'], 'o', label='Observed')
			plt.plot(pred_df_sorted[x_feature1[0]], pred_df_sorted['y_mean'], '-', lw=2, label='Predicted')
			plt.plot(pred_df_sorted[x_feature1[0]], pred_df_sorted['y_upper'], 'r--', lw=2, label='Upper Bound')
			plt.plot(pred_df_sorted[x_feature1[0]], pred_df_sorted['y_lower'], 'r--', lw=2, label='Lower Bound')
			plt.legend()
			plt.xlabel(x_feature1[0])
			plt.ylabel(y_feature)
			plt.title('UQ Confidence Interval Plot.')
			# plt.savefig('uq_test_plt.png')
			'''
			if os.path.exists(str(DEFAULT_FILE_PATH)+'/uq_test_plt.png'):
				os.remove(str(DEFAULT_FILE_PATH)+'/uq_test_plt.png')
			'''
			plt.savefig(str(self.Deployment)+'/uq_test_plt.png')
			#plt.savefig(str(DEFAULT_FILE_PATH)+'/uq_test_plt.png')
			confidencePlot = os.path.join(self.Deployment,'picp_per_feature.png')
			plt.clf()
			plt.cla()
			plt.close()
			pltreg=plot_picp_by_feature(X_test, y_test,
					 y_lower, y_upper,
					 xlabel=x_feature)
			#pltreg.savefig('x.png')
			pltr=pltreg.figure
			'''
			if os.path.exists(str(DEFAULT_FILE_PATH)+'/picp_per_feature.png'):
				os.remove(str(DEFAULT_FILE_PATH)+'/picp_per_feature.png')
			'''
			pltr.savefig(str(self.Deployment)+'/picp_per_feature.png')
			picpPlot = os.path.join(self.Deployment,'picp_per_feature.png')
			#pltr.savefig(str(DEFAULT_FILE_PATH)+'/picp_per_feature.png')
			plt.clf()
			plt.cla()
			plt.close()
		except Exception as e:
			print(""display exception: \n"",e)
			# self.log.info('<!------------- UQ model Display Error ---------------> '+str(e))
		return confidencePlot,picpPlot

	def classUncertainty(self,predprob_base):
		# from collections import Counter
		predc=""Class_""
		classes = np.unique(self.y)
		total = len(self.y)
		list_predprob=[]		
		counter = Counter(self.y)
		#for loop for test class purpose
		for k,v in counter.items():
			n_samples = len(self.y[self.y==k])
			per = ((v/total) * 100)
			prob_c=predprob_base[:,int(k)]
			list_predprob.append(prob_c)
			# #print(""Class_{} : {}/{} percentage={}% \n"".format(k,n_samples,total,per ))		 
		outuq={}
		for k in classes:
			predc += str(k) 
			mean_predprob_class=np.mean(list_predprob[int(k)])
			uncertainty=1-mean_predprob_class
			predc+='_Uncertainty'
			outuq[predc]=uncertainty
			predc=""Class_""
		return outuq

		
	def uqMain_BBMClassification(self):
		# self.log.info('<!------------- Inside BlackBox MetaModel Classification process. ---------------> ')
		# import matplotlib.pyplot as plt
		try:
			from uq360.algorithms.blackbox_metamodel import BlackboxMetamodelClassification
		except:
			##In latest UQ360, library changed from BlackboxMetamodelClassification to MetamodelClassification.
			from uq360.algorithms.blackbox_metamodel import MetamodelClassification
		
		# from uq360.metrics.classification_metrics import area_under_risk_rejection_rate_curve,plot_risk_vs_rejection_rate,expected_calibration_error,compute_classification_metrics
		from uq360.metrics.classification_metrics import plot_reliability_diagram,area_under_risk_rejection_rate_curve,plot_risk_vs_rejection_rate,expected_calibration_error,compute_classification_metrics
		# from sklearn import datasets
		# from sklearn.model_selection import train_test_split
		# from sklearn.metrics import accuracy_score
		from sklearn.ensemble import GradientBoostingClassifier
		from sklearn.linear_model import LogisticRegression
		from sklearn.linear_model import SGDClassifier
		from sklearn.naive_bayes import GaussianNB
		from sklearn.tree import DecisionTreeClassifier
		from sklearn.ensemble import RandomForestClassifier
		from sklearn.svm import SVC
		from sklearn.neighbors import KNeighborsClassifier
		# from sklearn.linear_model import LogisticRegression
		
		# import pandas as pd
		base_modelname=__class__.__name__
		base_config = self.uqconfig_base
		meta_config = self.uqconfig_base
		model_name=self.basemodel.__class__.__name__
		model_params=self.basemodel.get_params()
		try:
			#geting used features
			model_used_features=self.basemodel.feature_names_in_
		except:
			pass
		X_train, X_test, y_train, y_test = self.xtrain,self.xtest,self.ytrain,self.ytest
		uq_scoring_param='accuracy'
		basemodel=None
		if (model_name == ""GradientBoostingClassifier""):
			basemodel=GradientBoostingClassifier
		elif (model_name == ""SGDClassifier""):
			basemodel=SGDClassifier
		elif (model_name == ""GaussianNB""):
			basemodel=GaussianNB
		elif (model_name == ""DecisionTreeClassifier""):
			basemodel=DecisionTreeClassifier
		elif(model_name == ""RandomForestClassifier""):
			basemodel=RandomForestClassifier
		elif (model_name == ""SVC""):
			basemodel=SVC
		elif(model_name == ""KNeighborsClassifier""):
			basemodel=KNeighborsClassifier
		elif(model_name == ""LogisticRegression""):
			basemodel=LogisticRegression
		else:
			basemodel=LogisticRegression
			
		try:
			try:
				##Removed meta_config because leave meta model config as default ml model params
				uq_model = BlackboxMetamodelClassification(base_model=self.basemodel, meta_model=basemodel,base_config=model_params)
			except:
				uq_model = BlackboxMetamodelClassification(base_model=self.basemodel, meta_model=basemodel,base_config=model_params, meta_config=model_params)
		except:
			##In latest version BlackboxMetamodelClassification name modified as MetamodelClassification
			try:
				##Removed meta_config because leave meta model config as default ml model params
				uq_model = MetamodelClassification(base_model=self.basemodel, meta_model=basemodel,base_config=model_params)
			except:
				uq_model = MetamodelClassification(base_model=self.basemodel, meta_model=basemodel,base_config=model_params, meta_config=model_params)
		
		# this will fit both the base and the meta model
		try:
			X_train=X_train[model_used_features]
			X_test=X_test[model_used_features]
		except:
			pass
			
		uqmodel_fit = uq_model.fit(X_train, y_train,base_is_prefitted=True,meta_train_data=(X_train, y_train))
		# uqmodel_fit = uq_model.fit(X_train, y_train)
		#Test data pred, score
		y_t_pred, y_t_score = uq_model.predict(X_test)
		#predict probability
		# uq_pred_prob=uq_model.predict_proba(X_test) 
		# predprob_base=basemodel.predict_proba(X_test)[:, :]
		#if (model_name == ""SVC"" or model_name == ""SGDClassifier""):
		# if model_name in ['SVC','SGDClassifier']:
		if (model_name == ""SVC""):
			from sklearn.calibration import CalibratedClassifierCV
			basemodel=SVC(**model_params)
			calibrated_svc = CalibratedClassifierCV(basemodel,method='sigmoid',cv=3)
			calibrated_svc.fit(X_train, y_train)
			basepredict = basemodel.predict(X_test)
			predprob_base = calibrated_svc.predict_proba(X_test)[:, :] 
		elif (model_name == ""SGDClassifier""):
			from sklearn.calibration import CalibratedClassifierCV
			basemodel=SGDClassifier(**model_params)
			calibrated_svc = CalibratedClassifierCV(basemodel,method='sigmoid',cv=3)
			calibrated_svc.fit(X_train, y_train)
			basepredict = basemodel.predict(X_test)
			predprob_base = calibrated_svc.predict_proba(X_test)[:, :] 
		else:
			base_mdl = basemodel(**model_params)
			basemodelfit = base_mdl.fit(X_train, y_train)
			basepredict = base_mdl.predict(X_test)		  
			predprob_base=base_mdl.predict_proba(X_test)[:, :]
			
		acc_score=accuracy_score(y_test, y_t_pred)
		test_accuracy_perc=round(100*acc_score)
 
		'''
		bbm_c_plot = plot_risk_vs_rejection_rate(
			y_true=y_test,
			y_prob=predprob_base,
			selection_scores=y_t_score,
			y_pred=y_t_pred,
			plot_label=['UQ_risk_vs_rejection'],
			risk_func=accuracy_score,
			num_bins = 10 )

		# This done by kiran, need to uncomment for GUI integration.
		try:
			bbm_c_plot_sub = bbm_c_plot[4]
			bbm_c_plot.savefig(str(self.Deployment)+'/plot_risk_vs_rejection_rate.png')				 
			riskPlot = os.path.join(self.Deployment,'plot_risk_vs_rejection_rate.png')
		except Exception as e:
			print(e)
			pass
			riskPlot = ''
		'''
		riskPlot = ''
		'''
		try:
			re_plot=plot_reliability_diagram(y_true=y_test,
						y_prob=predprob_base,
						y_pred=y_t_pred,
						plot_label=['UQModel reliability_diagram'],						   
						num_bins=10)
			# This done by kiran, need to uncomment for GUI integration.
			re_plot_sub = re_plot[4]
			# re_plot_sub = re_plot
			re_plot_sub.savefig(str(self.Deployment)+'/plot_reliability_diagram.png')	
			reliability_plot = os.path.join(self.Deployment,'plot_reliability_diagram.png')
		except Exception as e:
			print(e)
			pass
			reliability_plot = ''
		'''
		reliability_plot = ''
		uq_aurrrc=area_under_risk_rejection_rate_curve( y_true=y_test,
					y_prob=predprob_base,
					y_pred=y_t_pred,
					selection_scores=y_t_score,
					attributes=None,
					risk_func=accuracy_score,subgroup_ids=None, return_counts=False,
					num_bins=10)
		uq_aurrrc=uq_aurrrc
		test_accuracy_perc=round(test_accuracy_perc)
		
		#metric_all=compute_classification_metrics(y_test, y_prob, option='all')
		metric_all=compute_classification_metrics(y_test, predprob_base, option='accuracy')
		#expected_calibration_error
		uq_ece=expected_calibration_error(y_test, y_prob=predprob_base,y_pred=y_t_pred, num_bins=10, return_counts=False)
		uq_aurrrc=uq_aurrrc
		confidence_score=acc_score-uq_ece

		ece_confidence_score=round(confidence_score,2)
		# Model uncertainty using ECE score
		# model_uncertainty_ece = 1-ece_confidence_score
		# #print(""model_uncertainty1: \n"",model_uncertainty_ece)
		
		#Uncertainty Using model inherent predict probability
		mean_predprob_total=np.mean(predprob_base)
		model_uncertainty = 1-mean_predprob_total
		model_confidence=mean_predprob_total
		model_confidence = round(model_confidence,2)
		

		# To get each class values and uncertainty
		outuq = self.classUncertainty(predprob_base)
		# Another way to get conf score
		model_uncertainty_per=round((model_uncertainty*100),2)
		# model_confidence_per=round((model_confidence*100),2)
		model_confidence_per=round((ece_confidence_score*100),2)
		acc_score_per = round((acc_score*100),2)
		uq_ece_per=round((uq_ece*100),2)

		output={}
		recommendation = """"
	   
		if (uq_ece > 0.5):
			# RED text
			recommendation = 'Model has high ece (expected calibration error) score compare to threshold (50%),not good to deploy. Add more input data across all feature ranges to train base model, also try with different classification algorithms/ensembling to reduce ECE (ECE~0).'
			msg = 'Bad'
		else:
			# self.log.info('Model has good ECE score and accuracy, ready to deploy.\n.')

			if (uq_ece <= 0.1 and model_confidence >= 0.9):
				# Green Text
				recommendation = 'Model has best calibration score (near to 0) and good confidence score  , ready to deploy. '
				msg = 'Best'
			else:
				# Orange
				recommendation = 'Model has average confidence score (ideal is >90% confidence) and good ECE score (ideal is <10% error).Model can be improved by adding more training data across all feature ranges and re-training the model.'
				msg = 'Good'
		#Adding each class uncertainty value
		output['Problem']= 'Classification'
		output['recommend']= 'recommend'
		output['msg']= msg
		output['UQ_Area_Under_Risk_Rejection_Rate_Curve']=round(uq_aurrrc,4)
		
		output['Model_Total_Confidence']=(str(model_confidence_per)+str('%'))
		output['Expected_Calibration_Error']=(str(uq_ece_per)+str('%'))
		output['Model_Total_Uncertainty']=(str(model_uncertainty_per)+str('%'))
		# output['Risk Plot'] = str(riskPlot)
		# output['Reliability Plot'] = str(reliability_plot)
		for k,v in outuq.items():
			output[k]=(str(round((v*100),2))+str(' %'))
		output['Recommendation']=recommendation
		# output['user_msg']='Please check the plot for more understanding of model uncertainty'
		output['Metric_Accuracy_Score']=(str(acc_score_per)+str(' %'))	
		
		outputs = json.dumps(output) 
		
		with open(str(self.Deployment)+""/uq_classification_log.json"", ""w"") as f:
			json.dump(output, f)
		return test_accuracy_perc,uq_ece,outputs
	
	def aion_confidence_plot(self,df):
		try:
			global x_feature
			df=df
			df = df.sort_values(by=self.selectedfeature)		
			best_values=df.Best_values.to_list()		
			best_upper=df.Best__upper.to_list()		   
			best_lower=df.Best__lower.to_list()		   
			Total_Upper_PI=df.Total_Upper_PI.to_list()		  
			Total_Low_PI=df.Total_Low_PI.to_list()
			Obseved = df.Observed.to_list()
			x_feature1 = x_feature.split(',')
			plt.plot(df[x_feature1[0]], df['Observed'], 'o', label='Observed')
			plt.plot(df[x_feature1[0]], df['Best__upper'],'r--', lw=2, color='grey')
			plt.plot(df[x_feature1[0]], df['Best__lower'],'r--', lw=2, color='grey')
			plt.plot(df[x_feature1[0]], df['Best_values'], 'r--', lw=2, label='MeanPrediction',color='red')
			
			plt.fill_between(df[x_feature1[0]], Total_Upper_PI, Total_Low_PI, label='Good Confidence', color='lightblue', alpha=.5)
			plt.fill_between(df[x_feature1[0]],best_lower, best_upper,label='Best Confidence', color='orange', alpha=.5)
			plt.legend()
			plt.xlabel(x_feature1[0])
			plt.ylabel(self.targetFeature)
			plt.title('UQ Best & Good Area Plot')
			'''
			if os.path.exists(str(DEFAULT_FILE_PATH)+'/uq_confidence_plt.png'):
				os.remove(str(DEFAULT_FILE_PATH)+'/uq_confidence_plt.png')

			plt.savefig(str(DEFAULT_FILE_PATH)+'/uq_confidence_plt.png')
			'''
			plt.savefig(str(self.Deployment)+'/uq_confidence_plt.png')
			uq_confidence_plt = os.path.join(str(self.Deployment),'uq_confidence_plt.png')
		except Exception as inst:
			print('-----------dsdas->',inst)
			uq_confidence_plt = ''
		return uq_confidence_plt
	def uqMain_BBMRegression(self):
		# modelName = """"
		# self.log.info('<!------------- Inside BlockBox MetaModel Regression process. ---------------> ')
		try:
			
			from uq360.algorithms.blackbox_metamodel import BlackboxMetamodelRegression
			import pandas as pd
			base_modelname=__class__.__name__
			base_config = self.uqconfig_base
			meta_config = self.uqconfig_base
			model_name=self.basemodel.__class__.__name__
			model_params=self.basemodel.get_params()
			# #print(""model_params['criterion']: \n"",model_params['criterion'])
			key = 'criterion'
			#if key in model_params:
			try:
				#if model_params.has_key(key):
				if key in model_params:
					if (model_params['criterion']): 
						uq_scoring_param=model_params.get('criterion')
					elif(model_params['criterion'] == None):
						uq_scoring_param='picp'
					else:
						uq_scoring_param='picp'
				else:
					uq_scoring_param='picp'
					pass
			except Exception as inst:
				uq_scoring_param='picp'
			
			# modelname='sklearn.linear_model'+'.'+model_name
			# self.xtrain = self.xtrain.values.reshape((-1,1))
			# self.xtest = self.xtest.values.reshape((-1,1))
			if (isinstance(self.selectedfeature,list)):
				selectedfeature=[self.selectedfeature[0]]
				selectedfeature=' '.join(map(str,selectedfeature))
			if (isinstance(self.targetFeature,list)):
				targetFeature=[self.targetFeature[0]]
				targetFeature=' '.join(map(str,targetFeature))
		   
			X = self.data[selectedfeature]
			y = self.data[targetFeature]
			X = X.values.reshape((-1,1))
			X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)
			#Geeting trained model name and to use the model in BlackboxMetamodelRegression
			from sklearn.tree import DecisionTreeRegressor
			from sklearn.linear_model import LinearRegression,Lasso,Ridge
			from sklearn.ensemble import RandomForestRegressor
			if (model_name == ""DecisionTreeRegressor""):
				basemodel=DecisionTreeRegressor
			elif (model_name == ""LinearRegression""):
				basemodel=LinearRegression
			elif (model_name == ""Lasso""):
				basemodel=Lasso
			elif (model_name == ""Ridge""):
				basemodel=Ridge
			elif(model_name == ""RandomForestRegressor""):
				basemodel=RandomForestRegressor
			else:
				basemodel=LinearRegression
				
			if uq_scoring_param in ['rmse', 'nll','auucc_gain','picp','mpiw','r2']:
				if (uq_scoring_param.lower() == 'picp'):
					uq_scoring_param='prediction interval coverage probability score (picp)'
				else:
					uq_scoring_param=uq_scoring_param
			else:
				uq_scoring_param='prediction interval coverage probability score (picp)'
			uq_model = BlackboxMetamodelRegression(base_model=basemodel, meta_model=basemodel, base_config=model_params, meta_config=model_params)
			# this will fit both the base and the meta model 
			uqmodel_fit = uq_model.fit(X_train, y_train)			
			y_hat, y_hat_lb, y_hat_ub = uq_model.predict(X_test)
			from uq360.metrics import picp, mpiw
			observed_alphas_picp = picp(y_test, y_hat_lb, y_hat_ub)
			observed_widths_mpiw = mpiw(y_hat_lb, y_hat_ub)
			picp_percentage= round(observed_alphas_picp*100)
			Uncertainty_percentage=round(100-picp_percentage)
			# UQ metamodel regression have metrics as follows, “rmse”, “nll”, “auucc_gain”, “picp”, “mpiw”, “r2”
			metric_all=compute_regression_metrics(y_test, y_hat,y_hat_lb, y_hat_ub,option=uq_scoring_param,nll_fn=None)			
			metric_used=''
			for k,v in metric_all.items():				
				metric_used=str(round(v,2))
				
			# Determine the confidence level and recommentation to the tester
			# test_data=y_test
			observed_alphas_picp=round(observed_alphas_picp,2)
			observed_widths_mpiw=round(observed_widths_mpiw,2)
			#Calculate total uncertainty for all features
			# total_picp,total_mpiw,total_picp_percentage,total_Uncertainty_percentage = self.totalUncertainty(self.data)
			# df1=self.data
			total_picp,total_mpiw,total_picp_percentage,total_Uncertainty_percentage,mpiw_lower_range,mpiw_upper_range = self.totalUncertainty(self.data,basemodel,model_params)
			recommendation=""""
			observed_widths_mpiw = round((observed_widths_mpiw/1000000)*100)
			if observed_widths_mpiw > 100:
				observed_widths_mpiw = 100
			output={}

			if (observed_alphas_picp >= 0.90 and total_picp >= 0.75):
				# GREEN text
				recommendation = ""Model has good confidence and MPIW score, ready to deploy.""
				msg='Good'
			elif ((observed_alphas_picp >= 0.50 and observed_alphas_picp <= 0.90)	and (total_picp >= 0.50)): 
				# Orange
				recommendation = "" Model has average confidence compare to threshold (ideal is both model confidence and MPIW should be >90%) .Model can be improved by adding more training data across all feature ranges and re-training the model.""
				msg = 'Average'
				
			else:
				# RED text
				recommendation = ""Model has less confidence compare to threshold (ideal is both model confidence and MPIW should be >90%), need to be add more input data across all feature ranges and retrain base model, also try with different regression algorithms/ensembling.""
				msg = 'Bad'


			#Build uq json info dict
			output['Model_total_confidence']=(str(total_picp_percentage)+'%')
			output['Model_total_Uncertainty']=(str(total_Uncertainty_percentage)+'%')
			output['Selected_feature_confidence']=(str(picp_percentage)+'%')
			output['Selected_feature_Uncertainty']=(str(Uncertainty_percentage)+'%')				
			output['Prediction_Interval_Coverage_Probability']=observed_alphas_picp
			output['Mean_Prediction_Interval_Width']=str(observed_widths_mpiw)+'%'
			output['Desirable_MPIW_range']=(str(round(mpiw_lower_range))+str('	-  ')+str(round(mpiw_upper_range)))
			output['Recommendation']=str(recommendation)
			output['Metric_used']=uq_scoring_param
			output['Metric_value']=metric_used
			output['Problem']= 'Regression'
			output['recommend']= 'recommend'
			output['msg'] = msg
			
			with open(str(self.Deployment)+""/uq_reg_log.json"", ""w"") as f:
				json.dump(output, f)
			#To get best and medium UQ range of values from total predict interval
			y_hat_m=y_hat.tolist()
			y_hat_lb=y_hat_lb.tolist()
			upper_bound=y_hat_ub.tolist()
			y_hat_ub=y_hat_ub.tolist()
			for x in y_hat_lb:
				y_hat_ub.append(x)			  
			total_pi=y_hat_ub			 
			medium_UQ_range = y_hat_ub
			best_UQ_range= y_hat.tolist()
			ymean_upper=[]
			ymean_lower=[]
			y_hat_m=y_hat.tolist()
			for i in y_hat_m:
				y_hat_m_range= (i*20/100)
				x=i+y_hat_m_range
				y=i-y_hat_m_range
				ymean_upper.append(x)
				ymean_lower.append(y)
			

			min_best_uq_dist=round(min(best_UQ_range))
			max_best_uq_dist=round(max(best_UQ_range)) 
			# initializing ranges
			list_medium=list(filter(lambda x:not(min_best_uq_dist<=x<=max_best_uq_dist), total_pi))
			list_best =	  y_hat_m 
			'''
			print(X_test)
			print(X_test)
			X_test = np.squeeze(X_test)
			print(x_feature)
			'''
			uq_dict = pd.DataFrame(X_test)
			#print(uq_dict)
			uq_dict['Observed'] = y_test
			uq_dict['Best_values'] = y_hat_m
			uq_dict['Best__upper'] = ymean_upper
			uq_dict['Best__lower'] = ymean_lower
			uq_dict['Total_Low_PI'] = y_hat_lb
			uq_dict['Total_Upper_PI'] = upper_bound
			'''
			uq_dict = {x_feature:X_test,'Observed':y_test,'Best_values': y_hat_m,
						   'Best__upper':ymean_upper,
						   'Best__lower':ymean_lower,
							 'Total_Low_PI': y_hat_lb,
							 'Total_Upper_PI': upper_bound,
											}'''
			uq_pred_df = pd.DataFrame(data=uq_dict)
			uq_pred_df_sorted = uq_pred_df.sort_values(by='Best_values')
			uq_pred_df_sorted.to_csv(str(self.Deployment)+""/uq_pred_df.csv"",index = False)
			csv_path=str(self.Deployment)+""/uq_pred_df.csv""
			df=pd.read_csv(csv_path)
 
			# self.log.info('uqMain() returns: observed_alphas_picp,observed_widths_mpiw,list_medium,list_best,metric_all.\n.')
			# confidenceplot = self.aion_confidence_plot(df)
			# output['Confidence Plot']= confidenceplot
			uq_jsonobject = json.dumps(output)
			print(""UQ regression problem training completed...\n"")
			return observed_alphas_picp,observed_widths_mpiw,list_medium,list_best,metric_all,uq_jsonobject
			
		except Exception as inst:
			print('-------',inst)
			exc = {""status"":""FAIL"",""message"":str(inst).strip('""')}
			out_exc = json.dumps(exc)

					
		
	"
__init__.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''"
associationrules.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import pandas as pd
import numpy as np
from mlxtend.frequent_patterns import apriori, association_rules
from mlxtend.preprocessing import TransactionEncoder
import matplotlib.pyplot as plt

import json
import logging
import os,sys

def hot_encode(x):
    if(int(x)<= 0):
        return 0
    if(int(x)>= 1):
        return 1
        
class associationrules:
	def __init__(self,dataframe,association_rule_conf,modelparam,invoiceNoFeature,itemFeature):
		self.minSupport = modelparam['minSupport']
		self.metric = modelparam['metric']
		self.minThreshold = modelparam['minThreshold']
		self.data = dataframe
		self.invoiceNoFeature = invoiceNoFeature
		self.itemFeature = itemFeature
		self.log = logging.getLogger('eion')
		
		
	def apply_associationRules(self,outputLocation):
		self.data= self.data[[self.itemFeature,self.invoiceNoFeature]]
		self.data[self.itemFeature] = self.data[self.itemFeature].str.strip()    
		self.data.dropna(axis = 0, subset =[self.invoiceNoFeature], inplace = True)
		self.data[self.invoiceNoFeature] = self.data[self.invoiceNoFeature].astype('str')        
		self.data = self.data.groupby([self.invoiceNoFeature,self.itemFeature]).size()
        
		self.data=self.data.unstack().reset_index().fillna('0').set_index(self.invoiceNoFeature)
		self.data = self.data.applymap(hot_encode)
		ohe_df = self.data
		'''
		print(self.data)
		sys.exit()     
		items = []
		for col in list(self.data):
			ucols = self.data[col].dropna().unique()
			#print('ucols :',ucols)
			if len(ucols) > 0:
				items = items + list(set(ucols) - set(items))
		#items = self.data.apply(lambda col: col.unique())
		#print(items)
		#items = (self.data[self.masterColumn].unique())
		#print(items)
		self.log.info(""-------> Total Unique Items: ""+str(len(items)))
		encoded_vals = []
		for index, row in self.data.iterrows():
			labels = {}
			uncommons = list(set(items) - set(row))
			commons = list(set(items).intersection(row))
			for uc in uncommons:
				labels[uc] = 0
			for com in commons:
				labels[com] = 1
			encoded_vals.append(labels)
		ohe_df = pd.DataFrame(encoded_vals)
		#print(ohe_df)
		'''
		freq_items = apriori(ohe_df, min_support=self.minSupport, use_colnames=True)
		self.log.info('Status:- |... AssociationRule Algorithm applied: Apriori')
		if not freq_items.empty:
			self.log.info(""\n------------ Frequent Item Set --------------- "")
			self.log.info(freq_items)
			save_freq_items = pd.DataFrame()
			save_freq_items[""itemsets""] = freq_items[""itemsets""].apply(lambda x: ', '.join(list(x))).astype(""unicode"")        
			outputfile = os.path.join(outputLocation,'frequentItems.csv')
			save_freq_items.to_csv(outputfile)            
			self.log.info('-------> FreqentItems  File Name:'+outputfile)            
			rules = association_rules(freq_items, metric=self.metric, min_threshold=self.minThreshold)
			if not rules.empty:		
				#rules = rules.sort_values(['confidence', 'lift'], ascending =[False, False]) 
				self.log.info(""\n------------ Rules --------------- "")
				for index, row in rules.iterrows():
					self.log.info(""------->Rule: ""+ str(row['antecedents']) + "" -> "" + str(row['consequents']))
					self.log.info(""---------->Support: ""+ str(row['support']))
					self.log.info(""---------->Confidence: ""+ str(row['confidence']))
					self.log.info(""---------->Lift: ""+ str(row['lift']))
				#rules['antecedents'] = list(rules['antecedents'])
				#rules['consequents'] = list(rules['consequents'])
				rules[""antecedents""] = rules[""antecedents""].apply(lambda x: ', '.join(list(x))).astype(""unicode"")
				rules[""consequents""] = rules[""consequents""].apply(lambda x: ', '.join(list(x))).astype(""unicode"")
				
				self.log.info(""\n------------ Rules End --------------- "")
				outputfile = os.path.join(outputLocation,'associationRules.csv')
				self.log.info('-------> AssciationRule  File Name:'+outputfile)
				rules.to_csv(outputfile)
			else:                
				self.log.info(""\n------------ Frequent Item Set --------------- "")			        
				self.log.info(""Status:- |... There are no association found in frequent items above that threshold (minThreshold)"")            
		else:
			self.log.info(""\n------------ Frequent Item Set --------------- "")			        
			self.log.info(""Status:- |... There are no frequent items above that threshold (minSupport)"")			                    
		evaulatemodel = '{""Model"":""Apriori"",""Score"":""NA""}'
		return(evaulatemodel)
"
featureReducer.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import os
import sys
import json
import datetime,time,timeit
import itertools

#Sci-Tools imports

import numpy as np
import pandas as pd
import math
from statsmodels.tsa.stattools import adfuller
from scipy.stats.stats import pearsonr
from numpy import cumsum, log, polyfit, sqrt, std, subtract
from numpy.random import randn
#SDP1 class import
from feature_engineering.featureImportance import featureImp
from sklearn.feature_selection import VarianceThreshold
import logging

class featureReducer():
	def __init__(self):
		self.pandasNumericDtypes = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64']
		self.log = logging.getLogger('eion')
	def startReducer(self,df,data_columns,target,var_threshold):
		self.log.info('\n---------- Feature Reducer Start ----------')
		dataframe = df
		columns=data_columns
		target = target
		corrThreshold=1.0
		categoricalFeatures=[]
		nonNumericFeatures=[]
		constFeatures=[]
		qconstantColumns=[]
		DtypesDic={}
		numericFeatures=[]
		nonNumericalFeatures=[]
		similarFeatureGroups=[]
		try:
			dataFDtypes=self.dataFramecolType(dataframe)
			for item in dataFDtypes:            
				DtypesDic[item[0]] = item[1]
				if item[1] in  self.pandasNumericDtypes:
					numericFeatures.append(item[0])
				else:
					nonNumericFeatures.append(item[0])
			#Checking for constant data features
			for col in columns:
				try:
					distCount = len(dataframe[col].unique())
					if(distCount == 1):
						constFeatures.append(col)
				except Exception as inst:
					self.log.info('Unique Testing Fail for Col '+str(col))

			numericalDataCols,nonNumericalDataCols = [],[]
			#Removing constant data features
			if(len(constFeatures) != 0):
				self.log.info( '-------> Constant Features: '+str(constFeatures))
				numericalDataCols = list(set(numericFeatures) - set(constFeatures))
				nonNumericalDataCols = list(set(nonNumericFeatures) - set(constFeatures))
			else:
				numericalDataCols = list(set(numericFeatures))
				nonNumericalDataCols = list(set(nonNumericFeatures))
			if(len(numericalDataCols) > 1):
				if var_threshold !=0:
					qconstantFilter = VarianceThreshold(threshold=var_threshold)
					tempDf=df[numericalDataCols]
					qconstantFilter.fit(tempDf)
					qconstantColumns = [column for column in numericalDataCols if column not in tempDf.columns[qconstantFilter.get_support()]]

					if(len(qconstantColumns) != 0):
						if target != '' and target in qconstantColumns:
							qconstantColumns.remove(target)
					self.log.info( '-------> Low Variant Features: '+str(qconstantColumns))
					self.log.info('Status:-  |... Low variance feature treatment done: '+str(len(qconstantColumns))+' low variance features found')
					numericalDataCols = list(set(numericalDataCols) - set(qconstantColumns))
			else:
				self.log.info('Status:-  |... Low variance feature treatment done: Found zero or 1 numeric feature')
            #Minimum of two columns required for data integration
			if(len(numericalDataCols) > 1):
				numColPairs = list(itertools.product(numericalDataCols, numericalDataCols))
				noDupList = []
				for item in numColPairs:
					if(item[0] != item[1]):
						noDupList.append(item)
				numColPairs = noDupList
				tempArray = []
				for item in numColPairs:
					tempCorr = np.abs(dataframe[item[0]].corr(dataframe[item[1]]))
					if(tempCorr > corrThreshold):
						tempArray.append(item[0])
				tempArray = np.unique(tempArray)
				nonsimilarNumericalCols = list(set(numericalDataCols) - set(tempArray))
				'''
				Notes:
				tempArray: List of all similar/equal data features
				nonsimilarNumericalCols: List of all non-correlatable data features
				'''
				#Grouping similar/equal features
				groupedFeatures = []
				if(len(numericalDataCols) != len(nonsimilarNumericalCols)):
					#self.log.info( '-------> Similar/Equal Features: Not Any')
                    #Correlation dictionary
					corrDic = {}
					for feature in tempArray:
						temp = []
						for col in tempArray:
							tempCorr = np.abs(dataframe[feature].corr(dataframe[col]))
							temp.append(tempCorr)
						corrDic[feature] = temp
                    #Similar correlation dataframe
					corrDF = pd.DataFrame(corrDic,index = tempArray)
					corrDF.loc[:,:] =  np.tril(corrDF, k=-1)
					alreadyIn = set()
					similarFeatures = []
					for col in corrDF:
						perfectCorr = corrDF[col][corrDF[col] > corrThreshold].index.tolist()
						if perfectCorr and col not in alreadyIn:
							alreadyIn.update(set(perfectCorr))
							perfectCorr.append(col)
							similarFeatures.append(perfectCorr)
					self.log.info( '-------> No Similar/Equal Features: '+str(len(similarFeatures)))
					for i in range(0,len(similarFeatures)):
						similarFeatureGroups.append(similarFeatures[i])
						#self.log.info((str(i+1)+' '+str(similarFeatures[i])))
					self.log.info('-------> Similar/Equal Features: '+str(similarFeatureGroups))
					self.log.info('-------> Non Similar Features :'+str(nonsimilarNumericalCols))
					updatedSimFeatures = []
					for items in similarFeatures:
						if(target != '' and target in items):
							for p in items:
								updatedSimFeatures.append(p)
						else:
							updatedSimFeatures.append(items[0])
					newTempFeatures = list(set(updatedSimFeatures + nonsimilarNumericalCols))
					updatedNumFeatures = newTempFeatures
					#self.log.info( '\n <--- Merged similar/equal features into one ---> ')
					updatedFeatures = list(set(newTempFeatures + nonNumericalDataCols))
					self.log.info('Status:-  |... Similar feature treatment done: '+str(len(similarFeatures))+' similar features found')
				else:
					updatedNumFeatures = numericalDataCols
					updatedFeatures = list(set(columns) - set(constFeatures)-set(qconstantColumns))
					self.log.info( '-------> Similar/Equal Features: Not Any')
					self.log.info('Status:-  |... Similar feature treatment done: No similar features found')
			else:
				updatedNumFeatures = numericalDataCols
				updatedFeatures = list(set(columns) - set(constFeatures)-set(qconstantColumns))
				self.log.info( '\n-----> Need minimum of two numerical features for data integration.')
				self.log.info('Status:-  |... Similar feature treatment done: Found zero or 1 numeric feature')
			self.log.info('---------- Feature Reducer End ----------\n')

			return updatedNumFeatures,updatedFeatures,similarFeatureGroups
		except Exception as inst:
			self.log.info(""feature Reducer failed ""+str(inst))
			exc_type, exc_obj, exc_tb = sys.exc_info()
			fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)[1]
			self.log.info(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))
			return [],[]
			
	def dataFramecolType(self,dataFrame):
		dataFDtypes=[]
		try:
			dataColumns=list(dataFrame.columns)
			for i in dataColumns:
				dataType=dataFrame[i].dtypes
				dataFDtypes.append(tuple([i,str(dataType)]))
			return dataFDtypes
		except:
			self.log.info(""error in dataFramecolyType"")
			return dataFDtypes
"
featureSelector.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import os
import sys
import json
import datetime,time,timeit
import itertools

#Sci-Tools imports

import numpy as np
import pandas as pd
import math
from statsmodels.tsa.stattools import adfuller
from scipy.stats.stats import pearsonr
from numpy import cumsum, log, polyfit, sqrt, std, subtract
from numpy.random import randn

from sklearn.metrics import normalized_mutual_info_score
from sklearn.feature_selection import mutual_info_regression
import logging

#SDP1 class import
from feature_engineering.featureImportance import featureImp
from feature_engineering.featureReducer import featureReducer
from sklearn.linear_model import Lasso, LogisticRegression
from sklearn.feature_selection import SelectFromModel
from sklearn.ensemble import ExtraTreesClassifier
from sklearn.decomposition import PCA
from sklearn.decomposition import TruncatedSVD
from sklearn.decomposition import FactorAnalysis
from sklearn.decomposition import FastICA
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.preprocessing import MinMaxScaler
from sklearn.feature_selection import RFE

def ranking(ranks, names, order=1):
    minmax = MinMaxScaler()
    ranks = minmax.fit_transform(order*np.array([ranks]).T).T[0]
    ranks = map(lambda x: round(x,2), ranks)
    return dict(zip(names, ranks))

# noinspection PyPep8Naming
class featureSelector():
	def __init__(self):
		self.pandasNumericDtypes = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64']
		self.log = logging.getLogger('eion')
		
	def startSelector(self,df,conf_json,textFeatures,targetFeature,problem_type):
		try:
			categoricalMaxLabel = int(conf_json['categoryMaxLabel'])		
			pca='None'
			pcaReducerStatus = conf_json['featureEngineering']['PCA']
			svdReducerStatus = conf_json['featureEngineering']['SVD']
			factorReducerStatus = conf_json['featureEngineering']['FactorAnalysis']
			icaReducerStatus = conf_json['featureEngineering']['ICA']
			nfeatures=float(conf_json['featureEngineering']['numberofComponents'])
			statisticalConfig = conf_json['statisticalConfig']
			corrThresholdInput = float(statisticalConfig.get('correlationThresholdFeatures',0.50))
			corrThresholdTarget = float(statisticalConfig.get('correlationThresholdTarget',0.85))
			pValThresholdInput = float(statisticalConfig.get('pValueThresholdFeatures',0.05))
			pValThresholdTarget = float(statisticalConfig.get('pValueThresholdTarget',0.04))
			varThreshold = float(statisticalConfig.get('varianceThreshold',0.01))
			allFeaturesSelector = conf_json['featureSelection']['allFeatures']
			correlationSelector = conf_json['featureSelection']['statisticalBased']            
			modelSelector = conf_json['featureSelection']['modelBased']
			featureSelectionMethod = conf_json['selectionMethod']['featureSelection']
			featureEngineeringSelector = conf_json['selectionMethod']['featureEngineering']            
			if featureSelectionMethod == 'True':
				featureEngineeringSelector = 'False' 
			
			# if feature engineering is true then we check weather PCA is true or svd is true. By default we will run PCA
			if featureEngineeringSelector == 'True':
				if pcaReducerStatus == 'True':
					svdReducerStatus = 'False'
					factorReducerStatus=='False'
					icaReducerStatus == 'False'
				elif svdReducerStatus == 'True':
					pcaReducerStatus = 'False'
					factorReducerStatus=='False'
					icaReducerStatus == 'False'
				elif factorReducerStatus=='True':
					pcaReducerStatus=='False'
					svdReducerStatus=='False'
					icaReducerStatus=='False'
				elif icaReducerStatus=='True':
					pcaReducerStatus==""False""
					svdReducerStatus==""False""
					factorReducerStatus==""False""
				else:
					pcaReducerStatus = 'True'
			if featureSelectionMethod == 'False' and featureEngineeringSelector == 'False':                
				featureSelectionMethod = 'True'
			if featureSelectionMethod == 'True':
				if  modelSelector == 'False' and correlationSelector == 'False' and  allFeaturesSelector == 'False':
					modelSelector = 'True'                            
			reductionMethod = 'na'
			bpca_features = []
			#nfeatures = 0
			
			if 'maxClasses' in conf_json:
				maxclasses = int(conf_json['maxClasses'])
			else:
				maxClasses = 20
			target = targetFeature
			self.log.info('-------> Feature: '+str(target))
			dataFrame = df
			pThresholdInput=pValThresholdInput
			pThresholdTarget=pValThresholdTarget
			cThresholdInput=corrThresholdInput
			cThresholdTarget=corrThresholdTarget
			numericDiscreteFeatures=[]
			similarGruops=[]
			numericContinuousFeatures=[]
			categoricalFeatures=[]
			nonNumericFeatures=[]
			apca_features = []
			dTypesDic={}
			dataColumns = list(dataFrame.columns)
			features_list = list(dataFrame.columns)
			modelselectedFeatures=[]
			topFeatures=[]
			allFeatures=[]
			targetType=""""
			# just to make sure feature engineering is false
			#print(svdReducerStatus)
			if featureEngineeringSelector.lower() == 'false' and correlationSelector.lower() == ""true"" and len(textFeatures) <= 0:
				reducerObj=featureReducer()
				self.log.info(featureReducer.__doc__)
				self.log.info('Status:- |... Feature reduction started')
				updatedNumericFeatures,updatedFeatures,similarGruops=reducerObj.startReducer(dataFrame,dataColumns,target,varThreshold)
				if len(updatedFeatures) <= 1:
					self.log.info('=======================================================')
					self.log.info('Most of the features are of low variance. Use Model based feature engineering for better result')
					self.log.info('=======================================================')
					raise Exception('Most of the features are of low variance. Use Model based feature engineering for better result')
				dataFrame=dataFrame[updatedFeatures]
				dataColumns=list(dataFrame.columns)
				self.log.info('Status:- |... Feature reduction completed')
			elif (pcaReducerStatus.lower() == ""true"" or svdReducerStatus.lower() == 'true' or factorReducerStatus.lower() == 'true' or icaReducerStatus.lower()=='true') and featureEngineeringSelector.lower() == 'true':
				# check is PCA or SVD is true
				pcaColumns=[]
				#print(svdReducerStatus.lower())
				if target != """":
					dataColumns.remove(target)
					targetArray=df[target].values
					targetArray.shape = (len(targetArray), 1)
				if pcaReducerStatus.lower() == ""true"":
					if nfeatures == 0:
						pca = PCA(n_components='mle',svd_solver = 'full')
					elif nfeatures < 1:
						pca = PCA(n_components=nfeatures,svd_solver = 'full')
					else:
						pca = PCA(n_components=int(nfeatures))
					pca.fit(df[dataColumns])
					bpca_features = dataColumns.copy()
					pcaArray=pca.transform(df[dataColumns])
					method = 'PCA'
				elif svdReducerStatus.lower() == 'true':
					if nfeatures < 2:
						nfeatures = 2
					pca = TruncatedSVD(n_components=int(nfeatures), n_iter=7, random_state=42)
					pca.fit(df[dataColumns])
					bpca_features = dataColumns.copy()
					pcaArray=pca.transform(df[dataColumns])
					method = 'SVD'
				elif factorReducerStatus.lower()=='true':
					if int(nfeatures) == 0:
						pca=FactorAnalysis()
					else:                     
						pca=FactorAnalysis(n_components=int(nfeatures))
					pca.fit(df[dataColumns])
					bpca_features = dataColumns.copy()
					pcaArray=pca.transform(df[dataColumns])
					method = 'FactorAnalysis'
				elif icaReducerStatus.lower()=='true':
					if int(nfeatures) == 0:
						pca=FastICA()
					else:                     
						pca=FastICA(n_components=int(nfeatures))
					pca.fit(df[dataColumns])
					bpca_features = dataColumns.copy()
					pcaArray=pca.transform(df[dataColumns])
					method = 'IndependentComponentAnalysis'
				pcaDF=pd.DataFrame(pcaArray)
				#print(pcaDF)
				for i in range(len(pcaDF.columns)):
					pcaColumns.append(method+str(i))
				topFeatures=pcaColumns
				apca_features= pcaColumns.copy()
				if target != '':
					pcaColumns.append(target)
					scaledDf = pd.DataFrame(np.hstack((pcaArray, targetArray)),columns=pcaColumns)
				else:
					scaledDf = pd.DataFrame(pcaArray,columns=pcaColumns)   
				self.log.info(""<--- dataframe after dimensionality reduction using ""+method)
				self.log.info(scaledDf.head())
				dataFrame=scaledDf
				dataColumns=list(dataFrame.columns)
				self.log.info('Status:- |... Feature reduction started')
				self.log.info('Status:-  |... '+method+' done')	
				self.log.info('Status:- |... Feature reduction completed')
			
			self.numofCols = dataFrame.shape[1]
			self.numOfRows = dataFrame.shape[0]
				
			dataFDtypes=[]
			for i in dataColumns:
				dataType=dataFrame[i].dtypes
				dataFDtypes.append(tuple([i,str(dataType)]))
			#Categoring datatypes
			for item in dataFDtypes:
				dTypesDic[item[0]] = item[1]
				if item[0] != target:
					if item[1] in ['int16', 'int32', 'int64'] :
						numericDiscreteFeatures.append(item[0])
					elif item[1] in ['float16', 'float32', 'float64']:
						numericContinuousFeatures.append(item[0])
					else:
						nonNumericFeatures.append(item[0])
			self.numOfRows = dataFrame.shape[0]		
			'''    
			cFRatio = 0.01
			if(self.numOfRows < 1000):
				cFRatio = 0.2
			elif(self.numOfRows < 10000):
				cFRatio = 0.1
			elif(self.numOfRows < 100000):
				cFRatio = 0.01            
			'''    
			for i in numericDiscreteFeatures:
				nUnique=len(dataFrame[i].unique().tolist())
				nRows=self.numOfRows
				if nUnique <= categoricalMaxLabel:
					categoricalFeatures.append(i)

			for i in numericContinuousFeatures:
				nUnique=len(dataFrame[i].unique().tolist())
				nRows=self.numOfRows
				if nUnique <= categoricalMaxLabel:
					categoricalFeatures.append(i)			
					
			discreteFeatures=list(set(numericDiscreteFeatures)-set(categoricalFeatures))
			numericContinuousFeatures=list(set(numericContinuousFeatures)-set(categoricalFeatures))
			self.log.info('-------> Numerical continuous features :'+(str(numericContinuousFeatures))[:500])
			self.log.info('-------> Numerical discrete features :'+(str(discreteFeatures))[:500])
			self.log.info('-------> Non numerical features :'+(str(nonNumericFeatures))[:500])
			self.log.info('-------> Categorical Features :'+(str(categoricalFeatures))[:500])
			
			if target !="""" and featureEngineeringSelector.lower() == ""false"" and correlationSelector.lower() == ""true"":
				self.log.info('\n------- Feature Based Correlation Analysis Start ------')
				start = time.time()
				featureImpObj = featureImp()
				topFeatures,targetType= featureImpObj.FFImpNew(dataFrame,numericContinuousFeatures,discreteFeatures,nonNumericFeatures,categoricalFeatures,dTypesDic,target,pThresholdInput,pThresholdTarget,cThresholdInput,cThresholdTarget,categoricalMaxLabel,problem_type,maxClasses)
				#topFeatures,targetType= featureImpObj.FFImp(dataFrame,numericContinuousFeatures,discreteFeatures,nonNumericFeatures,categoricalFeatures,dTypesDic,target,pThreshold,cThreshold,categoricalMaxLabel,problem_type,maxClasses)
				self.log.info('-------> Highly Correlated Features Using Correlation Techniques'+(str(topFeatures))[:500])
				executionTime=time.time() - start
				self.log.info('-------> Time Taken: '+str(executionTime))
				self.log.info('Status:- |... Correlation based feature selection done: '+str(len(topFeatures))+' out of '+str(len(dataColumns))+' selected')
				self.log.info('------- Feature Based Correlation Analysis End ------>\n')
			if targetType == '':
				if problem_type.lower() == 'classification':
					targetType = 'categorical'
					
				if problem_type.lower() == 'regression':
					targetType = 'continuous'
					
         
			if target !="""" and featureEngineeringSelector.lower() == ""false"" and modelSelector.lower() == ""true"":
				self.log.info('\n------- Model Based Correlation Analysis Start -------')
				start = time.time()
				updatedFeatures = dataColumns
				updatedFeatures.remove(target)
				#targetType = problem_type.lower() 
				modelselectedFeatures=[]
				if targetType == 'categorical':
					try:
						xtrain=dataFrame[updatedFeatures]
						ytrain=dataFrame[target]

						etc = ExtraTreesClassifier(n_estimators=100)

						etc.fit(xtrain, ytrain)
						rfe = RFE(etc, n_features_to_select=1, verbose =0 )
						rfe.fit(xtrain, ytrain)
						# total list of features
						ranks = {}
						ranks[""RFE_LR""] = ranking(list(map(float, rfe.ranking_)), dataColumns, order=-1)
						
						for item in ranks[""RFE_LR""]:
							if ranks[""RFE_LR""][item]>0.30:      #threshold as 30%
								modelselectedFeatures.append(item)
						modelselectedFeatures = list(modelselectedFeatures)
						self.log.info('-------> Highly Correlated Features Using Treeclassifier + RFE: '+(str(modelselectedFeatures))[:500])						
					except Exception as e:
						self.log.info('---------------->'+str(e))
						selector = SelectFromModel(ExtraTreesClassifier())
						xtrain=dataFrame[updatedFeatures]
						ytrain=dataFrame[target]
						selector.fit(xtrain,ytrain)
						modelselectedFeatures = xtrain.columns[(selector.get_support())].tolist()
						self.log.info('-------> Highly Correlated Features Using Treeclassifier: '+(str(modelselectedFeatures))[:500])
				else:
					try:
						xtrain=dataFrame[updatedFeatures]
						ytrain=dataFrame[target]
						ls = Lasso()
						ls.fit(xtrain, ytrain)
						rfe = RFE(ls, n_features_to_select=1, verbose  = 0 )
						rfe.fit(xtrain, ytrain)
						# total list of features
						ranks = {}
						ranks[""RFE_LR""] = ranking(list(map(float, rfe.ranking_)), dataColumns, order=-1)

						for item in ranks[""RFE_LR""]:
							if ranks[""RFE_LR""][item]>0.30:       #threshold as 30%
								modelselectedFeatures.append(item)
						modelselectedFeatures = list(modelselectedFeatures)
						self.log.info('-------> Highly Correlated Features Using LASSO + RFE: '+(str(modelselectedFeatures))[:500])						
					except Exception as e:
						self.log.info('---------------->'+str(e))
						selector = SelectFromModel(Lasso())
						xtrain=dataFrame[updatedFeatures]
						ytrain=dataFrame[target]
						selector.fit(xtrain,ytrain)
						modelselectedFeatures = xtrain.columns[(selector.get_support())].tolist()
						self.log.info('-------> Highly Correlated Features Using LASSO: '+(str(modelselectedFeatures))[:500])
				executionTime=time.time() - start
				self.log.info('-------> Time Taken: '+str(executionTime))
				self.log.info('Status:- |... Model based feature selection done: '+str(len(modelselectedFeatures))+' out of '+str(len(dataColumns))+' selected')
				self.log.info('--------- Model Based Correlation Analysis End -----\n')
                
			if target !="""" and featureEngineeringSelector.lower() == ""false"" and allFeaturesSelector.lower() == ""true"":
				allFeatures = features_list	
				if target != '':
					allFeatures.remove(target)                
				#print(allFeatures)
			if len(topFeatures) == 0 and len(modelselectedFeatures) == 0 and len(allFeatures) == 0:
				allFeatures = features_list    
                       
			return dataFrame,target,topFeatures,modelselectedFeatures,allFeatures,targetType,similarGruops,numericContinuousFeatures,discreteFeatures,nonNumericFeatures,categoricalFeatures,pca,bpca_features,apca_features,featureEngineeringSelector
		except Exception as inst:
			self.log.info('Feature selector failed: '+str(inst))
			exc_type, exc_obj, exc_tb = sys.exc_info()
			fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
			self.log.info(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))

			
			

"
featureImportance.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''

#System imports
import os
import sys
import json
import datetime,time,timeit
import itertools

#Sci-Tools imports

import numpy as np
import pandas as pd
import math


from sklearn.metrics import normalized_mutual_info_score
from sklearn.feature_selection import f_regression,mutual_info_regression
from sklearn.feature_selection import chi2,f_classif,mutual_info_classif

import scipy.stats
from scipy.stats import pearsonr, spearmanr, pointbiserialr, f_oneway, kendalltau, chi2_contingency
import statsmodels.api as sm
import statsmodels.formula.api as smf
import logging

def getHigherSignificanceColName(featureDict, colname1, colname2):
		if featureDict[colname1]<featureDict[colname2]:
			return colname2
		else:
			return colname1


class featureImp():

	def __init__(self):
		self.dTypesDic = {}
		self.featureImpDic={}
		self.indexedDic = {}
		self.log = logging.getLogger('eion')
	
	def FFImpNew(self,df,contFeatures,discreteFeatures,nonNumericFeatures,categoricalFeatures,dTypesDic,target,pValThInput,pValThTarget,corrThInput,corrThTarget,categoricalMaxLabel,problem_type,maxClasses):
		try:
			
			dataframe = df
			contiFeatures= contFeatures
			quantFeatures=discreteFeatures+contiFeatures
			categoricalFeatures=categoricalFeatures
			targetData=dataframe[target]
			nUnique=len(targetData.unique().tolist())
			
			if nUnique <= categoricalMaxLabel:
				targetType=""categorical""
			else:
				targetType=""continuous""		
			
			if problem_type.lower() == 'classification' and targetType == 'continuous':
				targetType = 'categorical'
				self.log.info( '-------> Change Target Type to Categorial as user defined')
			
			if problem_type.lower() == 'regression' and targetType == 'categorical':
				targetType = 'continuous'
				self.log.info( '-------> Change Target Type to Continuous as user defined')
			self.log.info( '-------> Target Type: '+str(targetType))
			
			impFeatures=[]
			
			
			catFeature = []
			numFeature = []
			
			catFeatureXYcat = []
			numFeatureXYcat = []
			catFeatureXYnum= []
			numFeatureXYnum = []
			
			dropFeatureCat= []
			dropFeatureNum = []
			
			featureDict = {}
			
			
			
			if targetType ==""categorical"":
				
				if len(categoricalFeatures) !=0:
					# input vs target
					# chi-square
					for col in categoricalFeatures: 
						contingency = pd.crosstab(dataframe[col], targetData)
						stat, p, dof, expected = chi2_contingency(contingency)
						if p <= pValThTarget:
							catFeatureXYcat.append(col)	  # categorical feature xy when target is cat
							featureDict[col] = p
					
					#input vs input 
					# chi_square  
					if len(catFeatureXYcat) != 0:
						length = len(catFeatureXYcat)
						for i in range(length):
							for j in range(i+1, length):
								contingency = pd.crosstab(dataframe[catFeatureXYcat[i]], dataframe[catFeatureXYcat[j]])
								stat, p, dof, expected = chi2_contingency(contingency)
								if p > pValThInput:
									highSignificanceColName = getHigherSignificanceColName(featureDict, catFeatureXYcat[i], catFeatureXYcat[j])
									dropFeatureCat.append(highSignificanceColName)
									break

						
					catFeature =  list(set(catFeatureXYcat) - set(dropFeatureCat))
					featureDict.clear()
					dropFeatureCat.clear()
				if len(quantFeatures) !=0:
					# input vs target
					# one way anova
					for col in quantFeatures:
						CategoryGroupLists = dataframe.groupby(target)[col].apply(list)
						AnovaResults = f_oneway(*CategoryGroupLists)
						if AnovaResults[1] <= pValThTarget:
							numFeatureXYcat.append(col)		 #numeric feature xy when target is cat
							featureDict[col] = AnovaResults[1]
						
										
					#input vs input 
					# preason/spearman/ols				  # numeric feature xx when target is cat
					if len(numFeatureXYcat) != 0:
						df_xx = dataframe[numFeatureXYcat]
						rows, cols = df_xx.shape
						flds = list(df_xx.columns)

						
						corr_pearson = df_xx.corr(method='pearson').values
						corr_spearman = df_xx.corr(method='spearman').values


						for i in range(cols):
							for j in range(i+1, cols):
								if corr_pearson[i,j] > -corrThInput and corr_pearson[i,j] < corrThInput:
									if corr_spearman[i,j] > -corrThInput and corr_spearman[i,j] < corrThInput:
										#f = ""'""+flds[i]+""'""+' ~ '+""'""+flds[j]+""'""
										#reg = smf.ols(formula=f, data=dataframe).fit() 
										tmpdf = pd.DataFrame({'x':dataframe[flds[j]], 'y':dataframe[flds[i]]})
										reg = smf.ols('y~x', data=tmpdf).fit()
										if len(reg.pvalues) > 1 and reg.pvalues[1] > pValThInput:
											highSignificanceColName = getHigherSignificanceColName(featureDict, flds[i], flds[j])
											dropFeatureNum.append(highSignificanceColName)
											break
							
									else:
										highSignificanceColName = getHigherSignificanceColName(featureDict, flds[i], flds[j])
										dropFeatureNum.append(highSignificanceColName)
										break
								else:
									highSignificanceColName = getHigherSignificanceColName(featureDict, flds[i], flds[j])
									dropFeatureNum.append(highSignificanceColName)
									break

						

					numFeature =	list(set(numFeatureXYcat) - set(dropFeatureNum))		
					dropFeatureNum.clear()
					featureDict.clear()
				
				impFeatures = numFeature+catFeature
				hCorrFeatures=list(set((impFeatures)))
				
				
			else: # targetType ==""continuous"":
				if len(categoricalFeatures) !=0:
					# input vs target
					# Anova 
					for col in categoricalFeatures:
						#f = target+' ~ C('+col+')'					
						#model = smf.ols(f, data=dataframe).fit()
						#table = sm.stats.anova_lm(model, typ=2)
						tmpdf = pd.DataFrame({'x':dataframe[col], 'y':dataframe[target]})
						model = smf.ols('y~x', data=tmpdf).fit()
						table = sm.stats.anova_lm(model, typ=2)
						if table['PR(>F)'][0] <= pValThTarget:
							catFeatureXYnum.append(col)					   #categorical feature xy when target is numeric	
							featureDict[col]=table['PR(>F)'][0]
					#input vs input 
					# chi_square
					if len(catFeatureXYnum) != 0:
						length = len(catFeatureXYnum)
						for i in range(length):
							for j in range(i+1, length):
								contingency = pd.crosstab(dataframe[catFeatureXYnum[i]], dataframe[catFeatureXYnum[j]])
								stat, p, dof, expected = chi2_contingency(contingency)
								if p > pValThInput:
									highSignificanceColName = getHigherSignificanceColName(featureDict, catFeatureXYnum[i], catFeatureXYnum[j])
									dropFeatureCat.append(highSignificanceColName)
									break
					catFeature = list(set(catFeatureXYnum) - set(dropFeatureCat))
					dropFeatureCat.clear()
					featureDict.clear()
				if len(quantFeatures) !=0:
					# input vs target
					# preason/spearman/ols
					for col in quantFeatures:
						pearson_corr = pearsonr(dataframe[col], targetData)
						coef = round(pearson_corr[0],5)
						p_value = round(pearson_corr[1],5)
						if coef > -corrThTarget and coef < corrThTarget:
							spearman_corr = spearmanr(dataframe[col], targetData)
							coef = round(spearman_corr[0],5)
							p_value = round(spearman_corr[1],5)
							if coef > -corrThTarget and coef < corrThTarget:
								#f = target+' ~ '+col
								#reg = smf.ols(formula=f, data=dataframe).fit() 
								tmpdf = pd.DataFrame({'x':dataframe[col], 'y':dataframe[target]})
								reg = smf.ols('y~x', data=tmpdf).fit()
								if len(reg.pvalues) > 1 and reg.pvalues[1] <= pValThTarget:
									numFeatureXYnum.append(col)		  # numeric feature xx when target is numeric
									featureDict[col]=reg.pvalues[1]
							else:
								numFeatureXYnum.append(col)
								featureDict[col]=p_value
						else:
							numFeatureXYnum.append(col) 
							featureDict[col]=p_value
					#input vs input 
					# preason/spearman/ols
					if len(numFeatureXYnum) != 0:
						df_xx = dataframe[numFeatureXYnum]
						rows, cols = df_xx.shape
						flds = list(df_xx.columns)
						corr_pearson = df_xx.corr(method='pearson').values
						corr_spearman = df_xx.corr(method='spearman').values


						for i in range(cols):
							for j in range(i+1, cols):
								if corr_pearson[i,j] > -corrThInput and corr_pearson[i,j] < corrThInput:
									if corr_spearman[i,j] > -corrThInput and corr_spearman[i,j] < corrThInput:
										#f = flds[i]+' ~ '+flds[j]
										#reg = smf.ols(formula=f, data=dataframe).fit() 
										tmpdf = pd.DataFrame({'x':dataframe[flds[j]], 'y':dataframe[flds[i]]})
										reg = smf.ols('y~x', data=tmpdf).fit()

										if len(reg.pvalues) > 1 and reg.pvalues[1] > pValThInput:
											highSignificanceColName = getHigherSignificanceColName(featureDict, flds[i], flds[j])
											dropFeatureNum.append(highSignificanceColName)
											break
							
									else:
										highSignificanceColName = getHigherSignificanceColName(featureDict, flds[i], flds[j])
										dropFeatureNum.append(highSignificanceColName)
										break
								else:
									highSignificanceColName = getHigherSignificanceColName(featureDict, flds[i], flds[j])
									dropFeatureNum.append(highSignificanceColName)
									break

						
					numFeature = list(set(numFeatureXYnum) - set(dropFeatureNum))			
					featureDict.clear()
					dropFeatureNum.clear()
				
				impFeatures = numFeature+catFeature
				hCorrFeatures=list(set(impFeatures))
			
			
			
			
			return hCorrFeatures,targetType
		except Exception as inst:
			self.log.info( '\n--> Failed calculating feature importance '+str(inst))
			hCorrFeatures=[]
			targetType=''
			exc_type, exc_obj, exc_tb = sys.exc_info()
			fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
			self.log.info(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))
			self.log.info('\n--> Taking all the features as highest correlation features')
			hCorrFeatures = list(dataframe.columns)            
			return hCorrFeatures,targetType				
			
			
	def FFImp(self,df,contFeatures,discreteFeatures,nonNumericFeatures,categoricalFeatures,dTypesDic,target,pValTh,corrTh,categoricalMaxLabel,problem_type,maxClasses):
		'''
		Input: dataframe, numeric continuous features, numeric discrete features
		Output: feature importance dictionary
		'''
		try:
			dataframe =df
			contiFeatures= contFeatures
			discreteFeatures = discreteFeatures
			nonNumeric = nonNumericFeatures
			categoricalFeatures=categoricalFeatures
			self.dTypesDic = dTypesDic
			numericFeatures = contiFeatures + discreteFeatures+categoricalFeatures
			quantFeatures=discreteFeatures+contiFeatures
			scorrDict={}
			fScoreDict={}
			pcorrDict={}
			miDict={}
			targetData=dataframe[target]
			data=dataframe[numericFeatures]
			nUnique=len(targetData.unique().tolist())
			nRows=targetData.shape[0]
			'''
			print(""\n ===> nUnique :"")
			print(nUnique)
			print(""\n ===> nRows :"")
			print(nRows)
			print(""\n ===> cFRatio :"")
			print(cFRatio)
			print(""\n ===> nUnique/nRows :"")
			'''
			#calratio = nUnique
			
			self.log.info( '-------> Target Column Unique Stats: '+str(nUnique)+' nRows: '+str(nRows)+' Unique:'+str(nUnique))
			#sys.exit()
			if nUnique <= categoricalMaxLabel:
				targetType=""categorical""
			else:
				targetType=""continuous""
			
			if problem_type.lower() == 'classification' and targetType == 'continuous':
				targetType = 'categorical'
				self.log.info( '-------> Change Target Type to Categorial as user defined')
			
			if problem_type.lower() == 'regression' and targetType == 'categorical':
				targetType = 'continuous'
				self.log.info( '-------> Change Target Type to Continuous as user defined')
			self.log.info( '-------> Target Type: '+str(targetType))
			impFeatures=[]
			featureImpDict={}
			if targetType ==""categorical"":
				try:
					if len(categoricalFeatures) !=0:
						categoricalData=dataframe[categoricalFeatures]
						chiSqCategorical=chi2(categoricalData,targetData)[1]
						corrSeries=pd.Series(chiSqCategorical, index=categoricalFeatures)
						impFeatures.append(corrSeries[corrSeries<pValTh].index.tolist())
						corrDict=corrSeries.to_dict()
						featureImpDict['chiSquaretestPValue']=corrDict
				except Exception as inst:
					self.log.info(""Found negative values in categorical variables ""+str(inst))
					
				if len(quantFeatures) !=0:
					try:
						quantData=dataframe[quantFeatures]
						fclassScore=f_classif(quantData,targetData)[1]
						miClassScore=mutual_info_classif(quantData,targetData)
						fClassSeries=pd.Series(fclassScore,index=quantFeatures)
						miClassSeries=pd.Series(miClassScore,index=quantFeatures)
						impFeatures.append(fClassSeries[fClassSeries<pValTh].index.tolist())
						impFeatures.append(miClassSeries[miClassSeries>corrTh].index.tolist())						
						featureImpDict['anovaPValue']=fClassSeries.to_dict()
						featureImpDict['MIScore']=miClassSeries.to_dict()	
					except MemoryError as inst:
						self.log.info( '-------> MemoryError in feature selection. '+str(inst))
						
				pearsonScore=dataframe.corr()
				
				targetPScore=abs(pearsonScore[target])
				impFeatures.append(targetPScore[targetPScore<pValTh].index.tolist())
				featureImpDict['pearsonCoff']=targetPScore.to_dict()
				
				
				hCorrFeatures=list(set(sum(impFeatures, [])))
			else:
				if len(quantFeatures) !=0:
					try:
						quantData =dataframe[quantFeatures]
						fregScore=f_regression(quantData,targetData)[1]
						miregScore=mutual_info_regression(quantData,targetData)
						fregSeries=pd.Series(fregScore,index=quantFeatures)
						miregSeries=pd.Series(miregScore,index=quantFeatures)
						impFeatures.append(fregSeries[fregSeries<pValTh].index.tolist())
						impFeatures.append(miregSeries[miregSeries>corrTh].index.tolist())						
						featureImpDict['anovaPValue']=fregSeries.to_dict()
						featureImpDict['MIScore']=miregSeries.to_dict()							
					except MemoryError as inst:
						self.log.info( '-------> MemoryError in feature selection. '+str(inst))
				
				pearsonScore=dataframe.corr()
				targetPScore=abs(pearsonScore[target])
				impFeatures.append(targetPScore[targetPScore<pValTh].index.tolist())
				featureImpDict['pearsonCoff']=targetPScore.to_dict()
				
				
				hCorrFeatures=list(set(sum(impFeatures, [])))

			return hCorrFeatures,targetType
		except Exception as inst:
			self.log.info( '\n--> Failed calculating feature importance '+str(inst))
			hCorrFeatures=[]
			targetType=''
			exc_type, exc_obj, exc_tb = sys.exc_info()
			fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
			self.log.info(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))

			return hCorrFeatures,targetType

	'''
	Importance degree
	Computes set of relational parameters
	pearson correlation, mutual information
	'''
	def importanceDegree(self,dataframe,feature1,feature2):
		try:
			tempList = []
			#Parameter 1: pearson correlation
			pcorr = self.pearsonCoff(dataframe,feature1,feature2)
			tempList.append(pcorr)
			#Parameter 2: mutual information
			#Testing
			mi = self.mutualInfo(dataframe,feature1,feature2,self.dTypesDic)
			tempList.append(mi)
			#return the highest parameter
			return np.max(tempList)
		except:
			return 0.0

	'''
	Compute pearson correlation
	'''
	def pearsonCoff(self,dataframe,feature1,feature2):
		try:
			value=dataframe[feature1].corr(dataframe[feature2])
			return np.abs(value)
		except:
			return 0.0

	'''
	Compute mutual information
	'''
	def mutualInfo(self,dataframe,feature1,feature2,typeDic):
		try:
			numType = {'int64': 'discrete','int32' : 'discrete','int16' : 'discrete','float16' : 'continuous','float32' : 'continuous','float64' : 'continuous'}
			featureType1 = numType[typeDic[feature1]]
			featureType2 = numType[typeDic[feature2]]
			bufferList1=dataframe[feature1].values.tolist()
			bufferList2=dataframe[feature2].values.tolist()
			#Case 1: Only if both are discrete
			if(featureType1 == 'discrete' and featureType2 == 'discrete'):
				tempResult = discreteMI(bufferList1,bufferList2)
				return np.mean(tempResult)
			#Case 2: If one of the features is continuous
			elif(featureType1 == 'continuous' and featureType2 == 'discrete'):
				tempResult = self.categoricalMI(bufferList1,bufferList2)
				return np.mean(tempResult)
			else:
				tempResult = self.continuousMI(bufferList1,bufferList2)
				return np.mean(tempResult)
		except:
			return 0.0

	
	def continuousMI(self,bufferList1,bufferList2):
		mi = 0.0
		#Using mutual info regression from feature selection
		mi = mutual_info_regression(self.vec(bufferList1),bufferList2)
		return mi
		
	def categoricalMI(self,bufferList1,bufferList2):
		mi = 0.0
		#Using mutual info classification from feature selection
		mi = mutual_info_classif(self.vec(bufferList1),bufferList2)
		return mi

	def discreteMI(self,bufferList1,bufferList2):
		mi = 0.0
		#Using scikit normalized mutual information function
		mi = normalized_mutual_info_score(bufferList1,bufferList2)
		return mi

	def vec(self,x):
		return [[i] for i in x]
	
	
	
		
"
__init__.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''"
AION_Gluon_MultiModalPrediction.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import warnings
warnings.filterwarnings(""ignore"")
import json
import os
import sys
import pandas as pd
import numpy as np

from pandas import json_normalize
from autogluon.text import TextPredictor
import os.path



def predict(data):
    try:
        
        if os.path.splitext(data)[1] == "".tsv"":
            df=pd.read_csv(data,encoding='utf-8',sep='\t')
        elif os.path.splitext(data)[1] == "".csv"":
            df=pd.read_csv(data,encoding='utf-8')
        else:
            if os.path.splitext(data)[1] == "".json"":
                with open(data,'r',encoding='utf-8') as f:
                    jsonData = json.load(f)
            else:
                jsonData = json.loads(data)
            df = json_normalize(jsonData)
        
        model_path = os.path.join(os.path.dirname(os.path.abspath(__file__)),'text_prediction')
        
        predictor = TextPredictor.load(model_path)        
        predictions = predictor.predict(df)
        df['predict'] = predictions
        outputjson = df.to_json(orient='records')
        outputjson = {""status"":""SUCCESS"",""data"":json.loads(outputjson)}
        output = json.dumps(outputjson)
        print(""predictions:"",output)
        return(output)

    except KeyError as e:
        output = {""status"":""FAIL"",""message"":str(e).strip('""')}
        print(""predictions:"",json.dumps(output))
        return (json.dumps(output))
    except Exception as e:
        output = {""status"":""FAIL"",""message"":str(e).strip('""')}
        print(""predictions:"",json.dumps(output))
        return (json.dumps(output))
        
        
if __name__ == ""__main__"":
	output = predict(sys.argv[1])
	
"
__init__.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''"
AION_Gluon_MultiLabelPrediction.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import warnings
warnings.filterwarnings(""ignore"")
import json
import os
import sys
import pandas as pd
from pandas import json_normalize

#from selector import selector
#from inputprofiler import inputprofiler
#from trained_model import trained_model
#from output_format import output_format

from autogluon.tabular import TabularDataset, TabularPredictor
from autogluon.core.utils.utils import setup_outputdir
from autogluon.core.utils.loaders import load_pkl
from autogluon.core.utils.savers import save_pkl
import os.path



class MultilabelPredictor():

    """""" Tabular Predictor for predicting multiple columns in table.
        Creates multiple TabularPredictor objects which you can also use individually.
        You can access the TabularPredictor for a particular label via: `multilabel_predictor.get_predictor(label_i)`

        Parameters
        ----------
        labels : List[str]
            The ith element of this list is the column (i.e. `label`) predicted by the ith TabularPredictor stored in this object.
        path : str
            Path to directory where models and intermediate outputs should be saved.
            If unspecified, a time-stamped folder called ""AutogluonModels/ag-[TIMESTAMP]"" will be created in the working directory to store all models.
            Note: To call `fit()` twice and save all results of each fit, you must specify different `path` locations or don't specify `path` at all.
            Otherwise files from first `fit()` will be overwritten by second `fit()`.
            Caution: when predicting many labels, this directory may grow large as it needs to store many TabularPredictors.
        problem_types : List[str]
            The ith element is the `problem_type` for the ith TabularPredictor stored in this object.
        eval_metrics : List[str]
            The ith element is the `eval_metric` for the ith TabularPredictor stored in this object.
        consider_labels_correlation : bool
            Whether the predictions of multiple labels should account for label correlations or predict each label independently of the others.
            If True, the ordering of `labels` may affect resulting accuracy as each label is predicted conditional on the previous labels appearing earlier in this list (i.e. in an auto-regressive fashion).
            Set to False if during inference you may want to individually use just the ith TabularPredictor without predicting all the other labels.
        kwargs :
            Arguments passed into the initialization of each TabularPredictor.

    """"""

    multi_predictor_file = 'multilabel_predictor.pkl'

    def __init__(self, labels, path, problem_types=None, eval_metrics=None, consider_labels_correlation=True, **kwargs):
        if len(labels) < 2:
            raise ValueError(""MultilabelPredictor is only intended for predicting MULTIPLE labels (columns), use TabularPredictor for predicting one label (column)."")
        self.path = setup_outputdir(path, warn_if_exist=False)
        self.labels = labels
        self.consider_labels_correlation = consider_labels_correlation
        self.predictors = {}  # key = label, value = TabularPredictor or str path to the TabularPredictor for this label
        if eval_metrics is None:
            self.eval_metrics = {}
        else:
            self.eval_metrics = {labels[i] : eval_metrics[i] for i in range(len(labels))}
        problem_type = None
        eval_metric = None
        for i in range(len(labels)):
            label = labels[i]
            path_i = self.path + ""Predictor_"" + label
            if problem_types is not None:
                problem_type = problem_types[i]
            if eval_metrics is not None:
                eval_metric = self.eval_metrics[i]
            self.predictors[label] = TabularPredictor(label=label, problem_type=problem_type, eval_metric=eval_metric, path=path_i, **kwargs)

    def fit(self, train_data, tuning_data=None, **kwargs):
        """""" Fits a separate TabularPredictor to predict each of the labels.

            Parameters
            ----------
            train_data, tuning_data : str or autogluon.tabular.TabularDataset or pd.DataFrame
                See documentation for `TabularPredictor.fit()`.
            kwargs :
                Arguments passed into the `fit()` call for each TabularPredictor.
        """"""
        if isinstance(train_data, str):
            train_data = TabularDataset(train_data)
        if tuning_data is not None and isinstance(tuning_data, str):
            tuning_data = TabularDataset(tuning_data)
        train_data_og = train_data.copy()
        if tuning_data is not None:
            tuning_data_og = tuning_data.copy()
        save_metrics = len(self.eval_metrics) == 0
        for i in range(len(self.labels)):
            label = self.labels[i]
            predictor = self.get_predictor(label)
            if not self.consider_labels_correlation:
                labels_to_drop = [l for l in self.labels if l!=label]
            else:
                labels_to_drop = [labels[j] for j in range(i+1,len(self.labels))]
            train_data = train_data_og.drop(labels_to_drop, axis=1)
            if tuning_data is not None:
                tuning_data = tuning_data_og.drop(labels_to_drop, axis=1)
            print(f""Fitting TabularPredictor for label: {label} ..."")
            predictor.fit(train_data=train_data, tuning_data=tuning_data, **kwargs)
            self.predictors[label] = predictor.path
            if save_metrics:
                self.eval_metrics[label] = predictor.eval_metric
        self.save()

    def predict(self, data, **kwargs):
        """""" Returns DataFrame with label columns containing predictions for each label.

            Parameters
            ----------
            data : str or autogluon.tabular.TabularDataset or pd.DataFrame
                Data to make predictions for. If label columns are present in this data, they will be ignored. See documentation for `TabularPredictor.predict()`.
            kwargs :
                Arguments passed into the predict() call for each TabularPredictor.
        """"""
        return self._predict(data, as_proba=False, **kwargs)

    def predict_proba(self, data, **kwargs):
        """""" Returns dict where each key is a label and the corresponding value is the `predict_proba()` output for just that label.

            Parameters
            ----------
            data : str or autogluon.tabular.TabularDataset or pd.DataFrame
                Data to make predictions for. See documentation for `TabularPredictor.predict()` and `TabularPredictor.predict_proba()`.
            kwargs :
                Arguments passed into the `predict_proba()` call for each TabularPredictor (also passed into a `predict()` call).
        """"""
        return self._predict(data, as_proba=True, **kwargs)

    def evaluate(self, data, **kwargs):
        """""" Returns dict where each key is a label and the corresponding value is the `evaluate()` output for just that label.

            Parameters
            ----------
            data : str or autogluon.tabular.TabularDataset or pd.DataFrame
                Data to evalate predictions of all labels for, must contain all labels as columns. See documentation for `TabularPredictor.evaluate()`.
            kwargs :
                Arguments passed into the `evaluate()` call for each TabularPredictor (also passed into the `predict()` call).
        """"""
        data = self._get_data(data)
        eval_dict = {}
        for label in self.labels:
            print(f""Evaluating TabularPredictor for label: {label} ..."")
            predictor = self.get_predictor(label)
            eval_dict[label] = predictor.evaluate(data, **kwargs)
            if self.consider_labels_correlation:
                data[label] = predictor.predict(data, **kwargs)
        return eval_dict

    def save(self):
        """""" Save MultilabelPredictor to disk. """"""
        for label in self.labels:
            if not isinstance(self.predictors[label], str):
                self.predictors[label] = self.predictors[label].path
        save_pkl.save(path=self.path+self.multi_predictor_file, object=self)
        print(f""MultilabelPredictor saved to disk. Load with: MultilabelPredictor.load('{self.path}')"")

    @classmethod
    def load(cls, path):
        """""" Load MultilabelPredictor from disk `path` previously specified when creating this MultilabelPredictor. """"""
        path = os.path.expanduser(path)
        if path[-1] != os.path.sep:
            path = path + os.path.sep
        return load_pkl.load(path=path+cls.multi_predictor_file)

    def get_predictor(self, label):
        """""" Returns TabularPredictor which is used to predict this label. """"""
        predictor = self.predictors[label]
        if isinstance(predictor, str):
            return TabularPredictor.load(path=predictor)
        return predictor

    def _get_data(self, data):
        if isinstance(data, str):
            return TabularDataset(data)
        return data.copy()

    def _predict(self, data, as_proba=False, **kwargs):
        data = self._get_data(data)
        if as_proba:
            predproba_dict = {}
        for label in self.labels:
            print(f""Predicting with TabularPredictor for label: {label} ..."")
            predictor = self.get_predictor(label)
            if as_proba:
                predproba_dict[label] = predictor.predict_proba(data, as_multiclass=True, **kwargs)
            data[label] = predictor.predict(data, **kwargs)
        if not as_proba:
            return data[self.labels]
        else:
            return predproba_dict



def predict(data):
    try:
        if os.path.splitext(data)[1] == "".tsv"":
            df=pd.read_csv(data,encoding='utf-8',sep='\t')
        elif os.path.splitext(data)[1] == "".csv"":
            df=pd.read_csv(data,encoding='utf-8')
        else:
            if os.path.splitext(data)[1] == "".json"":
                with open(data,'r',encoding='utf-8') as f:
                    jsonData = json.load(f)
            else:
                jsonData = json.loads(data)
            df = json_normalize(jsonData)
        #df0 = df.copy()
		
		
        #profilerobj = inputprofiler()
        #df = profilerobj.apply_profiler(df)
        #selectobj = selector()
        #df = selectobj.apply_selector(df)
        
		
		#modelobj = trained_model()
        #output = modelobj.predict(df,"""")
        
        # Load the Test data for Prediction
        # ----------------------------------------------------------------------------#
        test_data = df#TabularDataset(data)                #'testingDataset.csv'
        #subsample_size = 2
        # ----------------------------------------------------------------------------#
        
        
        # Specify the corresponding target features to be used
        # ----------------------------------------------------------------------------#
        #labels = ['education-num','education','class']
        configFile = os.path.join(os.path.dirname(os.path.abspath(__file__)),'etc','predictionConfig.json')
        with open(configFile, 'rb') as cfile:
           data = json.load(cfile)   
           labels = data['targetFeature']
        # ----------------------------------------------------------------------------#   
        
        for x in labels:
            if x in list(test_data.columns):
                test_data.drop(x,axis='columns', inplace=True)
        # ----------------------------------------------------------------------------#
        #test_data = test_data.sample(n=subsample_size, random_state=0)
        #print(test_data)
        #test_data_nolab = test_data.drop(columns=labels)
        #test_data_nolab.head()
        test_data_nolab = test_data
        # ----------------------------------------------------------------------------#
        
        
        # Load the trained model from where it's stored
        # ----------------------------------------------------------------------------#
        model_path = os.path.join(os.path.dirname(os.path.abspath(__file__)),'ModelPath')
        multi_predictor = MultilabelPredictor.load(model_path)          
        # ----------------------------------------------------------------------------#
        
        
        # Start the prediction and perform the evaluation 
        # ----------------------------------------------------------------------------#
        predictions = multi_predictor.predict(test_data_nolab)
        
        for label in labels:
            df[label+'_predict'] = predictions[label]
        
        #evaluations = multi_predictor.evaluate(test_data)
        #print(evaluations)
        #print(""Evaluated using metrics:"", multi_predictor.eval_metrics)
        # ----------------------------------------------------------------------------#
        
        
        # ----------------------------------------------------------------------------#
        #outputobj = output_format()
        #output = outputobj.apply_output_format(df0,output)                        
        outputjson = df.to_json(orient='records')
        outputjson = {""status"":""SUCCESS"",""data"":json.loads(outputjson)}
        output = json.dumps(outputjson)
        print(""predictions:"",output)
        return(output)
        # ----------------------------------------------------------------------------#
        
    except KeyError as e:
        output = {""status"":""FAIL"",""message"":str(e).strip('""')}
        print(""predictions:"",json.dumps(output))
        return (json.dumps(output))
    except Exception as e:
        output = {""status"":""FAIL"",""message"":str(e).strip('""')}
        print(""predictions:"",json.dumps(output))
        return (json.dumps(output))
        
        
if __name__ == ""__main__"":
	output = predict(sys.argv[1])
	
"
regression_metrics.py,"import numpy as np
from scipy.stats import norm
from sklearn.metrics import mean_squared_error, r2_score

from ..utils.misc import fitted_ucc_w_nullref


def picp(y_true, y_lower, y_upper):
    """"""
    Prediction Interval Coverage Probability (PICP). Computes the fraction of samples for which the grounds truth lies
    within predicted interval. Measures the prediction interval calibration for regression.

    Args:
        y_true: Ground truth
        y_lower: predicted lower bound
        y_upper: predicted upper bound

    Returns:
        float: the fraction of samples for which the grounds truth lies within predicted interval.
    """"""
    satisfies_upper_bound = y_true <= y_upper
    satisfies_lower_bound = y_true >= y_lower
    return np.mean(satisfies_upper_bound * satisfies_lower_bound)


def mpiw(y_lower, y_upper):
    """"""
    Mean Prediction Interval Width (MPIW). Computes the average width of the the prediction intervals. Measures the
    sharpness of intervals.

    Args:
        y_lower: predicted lower bound
        y_upper: predicted upper bound

    Returns:
        float: the average width the prediction interval across samples.
    """"""
    return np.mean(np.abs(y_lower - y_upper))


def auucc_gain(y_true, y_mean, y_lower, y_upper):
    """""" Computes the Area Under the Uncertainty Characteristics Curve (AUUCC) gain wrt to a null reference
    with constant band.

    Args:
        y_true: Ground truth
        y_mean: predicted mean
        y_lower: predicted lower bound
        y_upper: predicted upper bound

    Returns:
        float: AUUCC gain

    """"""
    u = fitted_ucc_w_nullref(y_true, y_mean, y_lower, y_upper)
    auucc = u.get_AUUCC()
    assert(isinstance(auucc, list) and len(auucc) == 2), ""Failed to calculate auucc gain""
    assert (not np.isclose(auucc[1], 0.)), ""Failed to calculate auucc gain""
    auucc_gain = (auucc[1]-auucc[0])/auucc[0]
    return auucc_gain


def negative_log_likelihood_Gaussian(y_true, y_mean, y_lower, y_upper):
    """""" Computes Gaussian negative_log_likelihood assuming symmetric band around the mean.

    Args:
        y_true: Ground truth
        y_mean: predicted mean
        y_lower: predicted lower bound
        y_upper: predicted upper bound

    Returns:
        float: nll

    """"""
    y_std = (y_upper - y_lower) / 4.0
    nll = np.mean(-norm.logpdf(y_true.squeeze(), loc=y_mean.squeeze(), scale=y_std.squeeze()))
    return nll


def compute_regression_metrics(y_true, y_mean, y_lower, y_upper, option=""all"", nll_fn=None):
    """"""
    Computes the metrics specified in the option which can be string or a list of strings. Default option `all` computes
    the [""rmse"", ""nll"", ""auucc_gain"", ""picp"", ""mpiw"", ""r2""] metrics.

    Args:
        y_true: Ground truth
        y_mean: predicted mean
        y_lower: predicted lower bound
        y_upper: predicted upper bound
        option: string or list of string contained the name of the metrics to be computed.
        nll_fn: function that evaluates NLL, if None, then computes Gaussian NLL using y_mean and y_lower.

    Returns:
        dict: dictionary containing the computed metrics.
    """"""

    assert y_true.shape == y_mean.shape, ""y_true shape: {}, y_mean shape: {}"".format(y_true.shape, y_mean.shape)
    assert y_true.shape == y_lower.shape, ""y_true shape: {}, y_mean shape: {}"".format(y_true.shape, y_lower.shape)
    assert y_true.shape == y_upper.shape, ""y_true shape: {}, y_mean shape: {}"".format(y_true.shape, y_upper.shape)

    results = {}
    if not isinstance(option, list):
        if option == ""all"":
            option_list = [""rmse"", ""nll"", ""auucc_gain"", ""picp"", ""mpiw"", ""r2""]
        else:
            option_list = [option]

    if ""rmse"" in option_list:
        results[""rmse""] = mean_squared_error(y_true, y_mean, squared=False)
    if ""nll"" in option_list:
        if nll_fn is None:
            nll = negative_log_likelihood_Gaussian(y_true, y_mean, y_lower, y_upper)
            results[""nll""] = nll
        else:
            results[""nll""] = np.mean(nll_fn(y_true))
    if ""auucc_gain"" in option_list:
        gain = auucc_gain(y_true, y_mean, y_lower, y_upper)
        results[""auucc_gain""] = gain
    if ""picp"" in option_list:
        results[""picp""] = picp(y_true, y_lower, y_upper)
    if ""mpiw"" in option_list:
        results[""mpiw""] = mpiw(y_lower, y_upper)
    if ""r2"" in option_list:
        results[""r2""] = r2_score(y_true, y_mean)

    return results


def _check_not_tuple_of_2_elements(obj, obj_name='obj'):
    """"""Check object is not tuple or does not have 2 elements.""""""
    if not isinstance(obj, tuple) or len(obj) != 2:
        raise TypeError('%s must be a tuple of 2 elements.' % obj_name)


def plot_uncertainty_distribution(dist, show_quantile_dots=False, qd_sample=20, qd_bins=7,
    ax=None, figsize=None, dpi=None,
    title='Predicted Distribution', xlims=None, xlabel='Prediction', ylabel='Density', **kwargs):
    """"""
    Plot the uncertainty distribution for a single distribution.

    Args:
        dist: scipy.stats._continuous_distns.
            A scipy distribution object.
        show_quantile_dots: boolean.
            Whether to show quantil dots on top of the density plot.
        qd_sample: int.
            Number of dots for the quantile dot plot.
        qd_bins: int.
            Number of bins for the quantile dot plot.
        ax: matplotlib.axes.Axes or None, optional (default=None).
            Target axes instance. If None, new figure and axes will be created.
        figsize: tuple of 2 elements or None, optional (default=None).
            Figure size.
        dpi : int or None, optional (default=None).
            Resolution of the figure.
        title : string or None, optional (default=Prediction Distribution)
            Axes title.
            If None, title is disabled.
        xlims : tuple of 2 elements or None, optional (default=None). Tuple passed to ``ax.xlim()``.
        xlabel : string or None, optional (default=Prediction)
            X-axis title label.
            If None, title is disabled.
        ylabel : string or None, optional (default=Density)
            Y-axis title label.
            If None, title is disabled.

    Returns:
        matplotlib.axes.Axes: ax : The plot with prediction distribution.
    """"""

    import matplotlib.pyplot as plt

    if ax is None:
        if figsize is not None:
            _check_not_tuple_of_2_elements(figsize, 'figsize')
        _, ax = plt.subplots(1, 1, figsize=figsize, dpi=dpi)

    x = np.linspace(dist.ppf(0.01), dist.ppf(0.99), 100)
    ax.plot(x, dist.pdf(x), **kwargs)

    if show_quantile_dots:
        from matplotlib.patches import Circle
        from matplotlib.collections import PatchCollection
        import matplotlib.ticker as ticker

        data = dist.rvs(size=10000)
        p_less_than_x = np.linspace(1 / qd_sample / 2, 1 - (1 / qd_sample / 2), qd_sample)
        x_ = np.percentile(data, p_less_than_x * 100)  # Inverce CDF (ppf)
        # Create bins
        hist = np.histogram(x_, bins=qd_bins)
        bins, edges = hist
        radius = (edges[1] - edges[0]) / 2

        ax2 = ax.twinx()
        patches = []
        max_y = 0
        for i in range(qd_bins):
            x_bin = (edges[i + 1] + edges[i]) / 2
            y_bins = [(i + 1) * (radius * 2) for i in range(bins[i])]

            max_y = max(y_bins) if max(y_bins) > max_y else max_y

            for _, y_bin in enumerate(y_bins):
                circle = Circle((x_bin, y_bin), radius)
                patches.append(circle)

        p = PatchCollection(patches, alpha=0.4)
        ax2.add_collection(p)

        # Axis tweek
        y_scale = (max_y + radius) / max(dist.pdf(x))
        ticks_y = ticker.FuncFormatter(lambda x, pos: '{0:g}'.format(x_ / y_scale))
        ax2.yaxis.set_major_formatter(ticks_y)
        ax2.set_yticklabels([])
        if xlims is not None:
            ax2.set_xlim(left=xlims[0], right=xlims[1])
        else:
            ax2.set_xlim([min(x_) - radius, max(x) + radius])
        ax2.set_ylim([0, max_y + radius])
        ax2.set_aspect(1)

    if title is not None:
        ax.set_title(title)
    if xlabel is not None:
        ax.set_xlabel(xlabel)
    if ylabel is not None:
        ax.set_ylabel(ylabel)
    
    return ax


def plot_picp_by_feature(x_test, y_test, y_test_pred_lower_total, y_test_pred_upper_total, num_bins=10,
                        ax=None, figsize=None, dpi=None, xlims=None, ylims=None, xscale=""linear"",
                                title=None, xlabel=None, ylabel=None):
    """"""
    Plot how prediction uncertainty varies across the entire range of a feature.

    Args:
        x_test: One dimensional ndarray.
            Feature column of the test dataset.
        y_test: One dimensional ndarray.
            Ground truth label of the test dataset.
        y_test_pred_lower_total: One dimensional ndarray.
            Lower bound of the total uncertainty range.
        y_test_pred_upper_total: One dimensional ndarray.
            Upper bound of the total uncertainty range.
        num_bins: int.
            Number of bins used to discritize x_test into equal-sample-sized bins.
        ax: matplotlib.axes.Axes or None, optional (default=None). Target axes instance. If None, new figure and axes will be created.
        figsize: tuple of 2 elements or None, optional (default=None). Figure size.
        dpi : int or None, optional (default=None). Resolution of the figure.
        xlims : tuple of 2 elements or None, optional (default=None). Tuple passed to ``ax.xlim()``.
        ylims: tuple of 2 elements or None, optional (default=None). Tuple passed to ``ax.ylim()``.
        xscale: Passed to ``ax.set_xscale()``.
        title : string or None, optional
            Axes title.
            If None, title is disabled.
        xlabel : string or None, optional
            X-axis title label.
            If None, title is disabled.
        ylabel : string or None, optional
            Y-axis title label.
            If None, title is disabled.

    Returns:
        matplotlib.axes.Axes: ax : The plot with PICP scores binned by a feature.

    """"""
    from scipy.stats.mstats import mquantiles
    import matplotlib.pyplot as plt

    if ax is None:
        if figsize is not None:
            _check_not_tuple_of_2_elements(figsize, 'figsize')
        _, ax = plt.subplots(1, 1, figsize=figsize, dpi=dpi)
    
    x_uniques_sorted = np.sort(np.unique(x_test))

    num_unique = len(x_uniques_sorted)
    sample_bin_ids = np.searchsorted(x_uniques_sorted, x_test)
    if len(x_uniques_sorted) > 10:  # bin the values
            q_bins = mquantiles(x_test, np.histogram_bin_edges([], bins=num_bins-1, range=(0.0, 1.0))[1:])
            q_sample_bin_ids = np.digitize(x_test, q_bins)
            picps = np.array([picp(y_test[q_sample_bin_ids==bin], y_test_pred_lower_total[q_sample_bin_ids==bin],
                                   y_test_pred_upper_total[q_sample_bin_ids==bin]) for bin in range(num_bins)])
            unique_sample_bin_ids = np.digitize(x_uniques_sorted, q_bins)
            picp_replicated = [len(x_uniques_sorted[unique_sample_bin_ids == bin]) * [picps[bin]] for bin in range(num_bins)]
            picp_replicated = np.array([item for sublist in picp_replicated for item in sublist])
    else:
        picps = np.array([picp(y_test[sample_bin_ids == bin], y_test_pred_lower_total[sample_bin_ids == bin],
                                y_test_pred_upper_total[sample_bin_ids == bin]) for bin in range(num_unique)])
        picp_replicated = picps

    ax.plot(x_uniques_sorted, picp_replicated, label='PICP')
    ax.axhline(0.95, linestyle='--', label='95%')
    ax.set_ylabel('PICP')

    ax.legend(loc='best')

    if title is None:
        title = 'Test data overall PICP: {:.2f} MPIW: {:.2f}'.format(
                    picp(y_test, 
                        y_test_pred_lower_total, 
                        y_test_pred_upper_total),
                    mpiw(y_test_pred_lower_total, 
                        y_test_pred_upper_total))    

    if xlims is not None:
        ax.set_xlim(left=xlims[0], right=xlims[1])

    if ylims is not None:
        ax.set_ylim(bottom=ylims[0], top=ylims[1])
                
    ax.set_title(title)
    if xlabel is not None:
        ax.set_xlabel(xlabel)
    if ylabel is not None:
        ax.set_ylabel(ylabel)
    if xscale is not None:
        ax.set_xscale(xscale)

    return ax


def plot_uncertainty_by_feature(x_test, y_test_pred_mean, y_test_pred_lower_total, y_test_pred_upper_total,
                                y_test_pred_lower_epistemic=None, y_test_pred_upper_epistemic=None,
                                ax=None, figsize=None, dpi=None, xlims=None, xscale=""linear"",
                                title=None, xlabel=None, ylabel=None):
    """"""
    Plot how prediction uncertainty varies across the entire range of a feature.

    Args:
        x_test: one dimensional ndarray.
            Feature column of the test dataset.
        y_test_pred_mean: One dimensional ndarray.
            Model prediction for the test dataset.
        y_test_pred_lower_total: One dimensional ndarray.
            Lower bound of the total uncertainty range.
        y_test_pred_upper_total: One dimensional ndarray.
            Upper bound of the total uncertainty range.
        y_test_pred_lower_epistemic: One dimensional ndarray.
            Lower bound of the epistemic uncertainty range.
        y_test_pred_upper_epistemic: One dimensional ndarray.
            Upper bound of the epistemic uncertainty range.
        ax: matplotlib.axes.Axes or None, optional (default=None). Target axes instance. If None, new figure and axes will be created.
        figsize: tuple of 2 elements or None, optional (default=None). Figure size.
        dpi : int or None, optional (default=None). Resolution of the figure.
        xlims : tuple of 2 elements or None, optional (default=None). Tuple passed to ``ax.xlim()``.
        xscale: Passed to ``ax.set_xscale()``.
        title : string or None, optional
            Axes title.
            If None, title is disabled.
        xlabel : string or None, optional
            X-axis title label.
            If None, title is disabled.
        ylabel : string or None, optional
            Y-axis title label.
            If None, title is disabled.

    Returns:
        matplotlib.axes.Axes: ax : The plot with model's uncertainty binned by a feature.

    """"""
    import matplotlib.pyplot as plt

    if ax is None:
        if figsize is not None:
            _check_not_tuple_of_2_elements(figsize, 'figsize')
        _, ax = plt.subplots(1, 1, figsize=figsize, dpi=dpi)

    x_uniques_sorted = np.sort(np.unique(x_test))

    y_pred_var = ((y_test_pred_upper_total - y_test_pred_lower_total) / 4.0)**2
    agg_y_std = np.array([np.sqrt(np.mean(y_pred_var[x_test==x])) for x in x_uniques_sorted])
    agg_y_mean = np.array([np.mean(y_test_pred_mean[x_test==x]) for x in x_uniques_sorted])

    ax.plot(x_uniques_sorted, agg_y_mean, '-b', lw=2, label='mean prediction')
    ax.fill_between(x_uniques_sorted,
                     agg_y_mean - 2.0 * agg_y_std,
                     agg_y_mean + 2.0 * agg_y_std,
                     alpha=0.3, label='total uncertainty')

    if y_test_pred_lower_epistemic is not None:
        y_pred_var_epistemic = ((y_test_pred_upper_epistemic - y_test_pred_lower_epistemic) / 4.0)**2
        agg_y_std_epistemic = np.array([np.sqrt(np.mean(y_pred_var_epistemic[x_test==x])) for x in x_uniques_sorted])
        ax.fill_between(x_uniques_sorted,
                         agg_y_mean - 2.0 * agg_y_std_epistemic,
                         agg_y_mean + 2.0 * agg_y_std_epistemic,
                         alpha=0.3, label='model uncertainty')

    ax.legend(loc='best')
            
    if xlims is not None:
        ax.set_xlim(left=xlims[0], right=xlims[1]) 

    if title is not None:
        ax.set_title(title)
    if xlabel is not None:
        ax.set_xlabel(xlabel)
    if ylabel is not None:
        ax.set_ylabel(ylabel)
    if xscale is not None:
        ax.set_xscale(xscale)

    return ax
"
classification_metrics.py,"import numpy as np
import pandas as pd
from scipy.stats import entropy
from sklearn.metrics import roc_auc_score, log_loss, accuracy_score


def entropy_based_uncertainty_decomposition(y_prob_samples):
    """""" Entropy based decomposition [2]_ of predictive uncertainty into aleatoric and epistemic components.

    References:
        .. [2] Depeweg, S., Hernandez-Lobato, J. M., Doshi-Velez, F., & Udluft, S. (2018, July). Decomposition of
            uncertainty in Bayesian deep learning for efficient and risk-sensitive learning. In International Conference
            on Machine Learning (pp. 1184-1193). PMLR.

    Args:
        y_prob_samples: list of array-like of shape (n_samples, n_classes) containing class prediction probabilities
            corresponding to samples from the model posterior.

    Returns:
        tuple:
            - total_uncertainty: entropy of the predictive distribution.
            - aleatoric_uncertainty: aleatoric component of the total_uncertainty.
            - epistemic_uncertainty: epistemic component of the total_uncertainty.

    """"""
    y_preds_samples_stacked = np.stack(y_prob_samples)
    preds_mean = np.mean(y_preds_samples_stacked, 0)

    total_uncertainty = entropy(preds_mean, axis=1)
    aleatoric_uncertainty = np.mean(
        np.concatenate([entropy(y_pred, axis=1).reshape(-1, 1) for y_pred in y_prob_samples], axis=1),
        axis=1)
    epistemic_uncertainty = total_uncertainty - aleatoric_uncertainty

    return total_uncertainty, aleatoric_uncertainty, epistemic_uncertainty


def multiclass_brier_score(y_true, y_prob):
    """"""Brier score for multi-class.

    Args:
        y_true: array-like of shape (n_samples,)
            ground truth labels.
        y_prob: array-like of shape (n_samples, n_classes).
            Probability scores from the base model.

    Returns:
        float: Brier score.

    """"""
    assert len(y_prob.shape) > 1, ""y_prob should be array-like of shape (n_samples, n_classes)""

    y_target = np.zeros_like(y_prob)
    y_target[:, y_true] = 1.0
    return np.mean(np.sum((y_target - y_prob) ** 2, axis=1))


def area_under_risk_rejection_rate_curve(y_true, y_prob, y_pred=None, selection_scores=None, risk_func=accuracy_score,
                                         attributes=None, num_bins=10, subgroup_ids=None,
                                         return_counts=False):
    """""" Computes risk vs rejection rate curve and the area under this curve. Similar to risk-coverage curves [3]_ where
    coverage instead of rejection rate is used.

    References:
        .. [3] Franc, Vojtech, and Daniel Prusa. ""On discriminative learning of prediction uncertainty.""
         In International Conference on Machine Learning, pp. 1963-1971. 2019.

    Args:
        y_true: array-like of shape (n_samples,)
            ground truth labels.
        y_prob: array-like of shape (n_samples, n_classes).
            Probability scores from the base model.
        y_pred: array-like of shape (n_samples,)
            predicted labels.
        selection_scores: scores corresponding to certainty in the predicted labels.
        risk_func: risk function under consideration.
        attributes: (optional) if risk function is a fairness metric also pass the protected attribute name.
        num_bins: number of bins.
        subgroup_ids: (optional) selectively compute risk on a subgroup of the samples specified by subgroup_ids.
        return_counts: set to True to return counts also.

    Returns:
        float or tuple:
            - aurrrc (float): area under risk rejection rate curve.
            - rejection_rates (list): rejection rates for each bin (returned only if return_counts is True).
            - selection_thresholds (list): selection threshold for each bin (returned only if return_counts is True).
            - risks (list): risk in each bin (returned only if return_counts is True).

    """"""

    if selection_scores is None:
        assert len(y_prob.shape) > 1, ""y_prob should be array-like of shape (n_samples, n_classes)""
        selection_scores = y_prob[np.arange(y_prob.shape[0]), np.argmax(y_prob, axis=1)]

    if y_pred is None:
        assert len(y_prob.shape) > 1, ""y_prob should be array-like of shape (n_samples, n_classes)""
        y_pred = np.argmax(y_prob, axis=1)

    order = np.argsort(selection_scores)[::-1]

    rejection_rates = []
    selection_thresholds = []
    risks = []
    for bin_id in range(num_bins):
        samples_in_bin = len(y_true) // num_bins
        selection_threshold = selection_scores[order[samples_in_bin * (bin_id+1)-1]]
        selection_thresholds.append(selection_threshold)
        ids = selection_scores >= selection_threshold
        if sum(ids) > 0:
            if attributes is None:
                if isinstance(y_true, pd.Series):
                    y_true_numpy = y_true.values
                else:
                    y_true_numpy = y_true
                if subgroup_ids is None:
                    risk_value = 1.0 - risk_func(y_true_numpy[ids], y_pred[ids])
                else:
                    if sum(subgroup_ids & ids) > 0:
                        risk_value = 1.0 - risk_func(y_true_numpy[subgroup_ids & ids], y_pred[subgroup_ids & ids])
                    else:
                        risk_value = 0.0
            else:
                risk_value = risk_func(y_true.iloc[ids], y_pred[ids], prot_attr=attributes)
        else:
            risk_value = 0.0
        risks.append(risk_value)
        rejection_rates.append(1.0 - 1.0 * sum(ids) / len(y_true))

    aurrrc = np.nanmean(risks)

    if not return_counts:
        return aurrrc
    else:
        return aurrrc, rejection_rates, selection_thresholds, risks


def expected_calibration_error(y_true, y_prob, y_pred=None, num_bins=10, return_counts=False):
    """""" Computes the reliability curve and the  expected calibration error [1]_ .

    References:
        .. [1] Chuan Guo, Geoff Pleiss, Yu Sun, Kilian Q. Weinberger; Proceedings of the 34th International Conference
         on Machine Learning, PMLR 70:1321-1330, 2017.

    Args:
        y_true: array-like of shape (n_samples,)
            ground truth labels.
        y_prob: array-like of shape (n_samples, n_classes).
            Probability scores from the base model.
        y_pred: array-like of shape (n_samples,)
            predicted labels.
        num_bins: number of bins.
        return_counts: set to True to return counts also.

    Returns:
        float or tuple:
            - ece (float): expected calibration error.
            - confidences_in_bins: average confidence in each bin (returned only if return_counts is True).
            - accuracies_in_bins: accuracy in each bin (returned only if return_counts is True).
            - frac_samples_in_bins: fraction of samples in each bin (returned only if return_counts is True).

    """"""

    assert len(y_prob.shape) > 1, ""y_prob should be array-like of shape (n_samples, n_classes)""
    num_samples, num_classes = y_prob.shape
    top_scores = np.max(y_prob, axis=1)

    if y_pred is None:
        y_pred = np.argmax(y_prob, axis=1)

    if num_classes == 2:
        bins_edges = np.histogram_bin_edges([], bins=num_bins, range=(0.5, 1.0))
    else:
        bins_edges = np.histogram_bin_edges([], bins=num_bins, range=(0.0, 1.0))

    non_boundary_bin_edges = bins_edges[1:-1]
    bin_centers = (bins_edges[1:] + bins_edges[:-1])/2

    sample_bin_ids = np.digitize(top_scores, non_boundary_bin_edges)

    num_samples_in_bins = np.zeros(num_bins)
    accuracies_in_bins = np.zeros(num_bins)
    confidences_in_bins = np.zeros(num_bins)

    for bin in range(num_bins):
        num_samples_in_bins[bin] = len(y_pred[sample_bin_ids == bin])
        if num_samples_in_bins[bin] > 0:
            accuracies_in_bins[bin] = np.sum(y_true[sample_bin_ids == bin] == y_pred[sample_bin_ids == bin]) / num_samples_in_bins[bin]
            confidences_in_bins[bin] = np.sum(top_scores[sample_bin_ids == bin]) / num_samples_in_bins[bin]

    ece = np.sum(
        num_samples_in_bins * np.abs(accuracies_in_bins - confidences_in_bins) / num_samples
    )
    frac_samples_in_bins = num_samples_in_bins / num_samples

    if not return_counts:
        return ece
    else:
        return ece, confidences_in_bins, accuracies_in_bins, frac_samples_in_bins, bin_centers


def compute_classification_metrics(y_true, y_prob, option='all'):
    """"""
    Computes the metrics specified in the option which can be string or a list of strings. Default option `all` computes
    the [aurrrc, ece, auroc, nll, brier, accuracy] metrics.

    Args:
        y_true: array-like of shape (n_samples,)
            ground truth labels.
        y_prob: array-like of shape (n_samples, n_classes).
            Probability scores from the base model.
        option: string or list of string contained the name of the metrics to be computed.

    Returns:
        dict: a dictionary containing the computed metrics.
    """"""
    results = {}
    if not isinstance(option, list):
        if option == ""all"":
            option_list = [""aurrrc"", ""ece"", ""auroc"", ""nll"", ""brier"", ""accuracy""]
        else:
            option_list = [option]

    if ""aurrrc"" in option_list:
        results[""aurrrc""] = area_under_risk_rejection_rate_curve(y_true=y_true, y_prob=y_prob)
    if ""ece"" in option_list:
        results[""ece""] = expected_calibration_error(y_true=y_true, y_prob=y_prob)
    if ""auroc"" in option_list:
        results[""auroc""], _ = roc_auc_score(y_true=y_true, y_score=y_prob)
    if ""nll"" in option_list:
        results[""nll""] = log_loss(y_true=y_true, y_pred=np.argmax(y_prob, axis=1))
    if ""brier"" in option_list:
        results[""brier""] = multiclass_brier_score(y_true=y_true, y_prob=y_prob)
    if ""accuracy"" in option_list:
        results[""accuracy""] = accuracy_score(y_true=y_true, y_pred=np.argmax(y_prob, axis=1))

    return results


def plot_reliability_diagram(y_true, y_prob, y_pred, plot_label=[""""], num_bins=10):
    """"""
    Plots the reliability diagram showing the calibration error for different confidence scores. Multiple curves
    can be plot by passing data as lists.

    Args:
        y_true: array-like or or a list of array-like of shape (n_samples,)
            ground truth labels.
        y_prob: array-like or or a list of array-like of shape (n_samples, n_classes).
            Probability scores from the base model.
        y_pred: array-like or or a list of array-like of shape (n_samples,)
            predicted labels.
        plot_label: (optional) list of names identifying each curve.
        num_bins: number of bins.

    Returns:
        tuple:
            - ece_list: ece: list containing expected calibration error for each curve.
            - accuracies_in_bins_list: list containing binned average accuracies for each curve.
            - frac_samples_in_bins_list: list containing binned sample frequencies for each curve.
            - confidences_in_bins_list: list containing binned average confidence for each curve.
    """"""
    import matplotlib.pyplot as plt

    if not isinstance(y_true, list):
        y_true, y_prob, y_pred = [y_true], [y_prob], [y_pred]
    if len(plot_label) != len(y_true):
        raise ValueError('y_true and plot_label should be of same length.')

    ece_list = []
    accuracies_in_bins_list = []
    frac_samples_in_bins_list = []
    confidences_in_bins_list = []

    for idx in range(len(plot_label)):
        ece, confidences_in_bins, accuracies_in_bins, frac_samples_in_bins, bins = expected_calibration_error(y_true[idx],
                                                                                                  y_prob[idx],
                                                                                                  y_pred[idx],
                                                                                                  num_bins=num_bins,
                                                                                                  return_counts=True)
        ece_list.append(ece)
        accuracies_in_bins_list.append(accuracies_in_bins)
        frac_samples_in_bins_list.append(frac_samples_in_bins)
        confidences_in_bins_list.append(confidences_in_bins)

    fig = plt.figure(figsize=(12, 5))

    plt.subplot(1, 2, 1)
    for idx in range(len(plot_label)):
        plt.plot(bins, frac_samples_in_bins_list[idx], 'o-', label=plot_label[idx])
    plt.title(""Confidence Histogram"")
    plt.xlabel(""Confidence"")
    plt.ylabel(""Fraction of Samples"")
    plt.grid()
    plt.ylim([0.0, 1.0])
    plt.legend()

    plt.subplot(1, 2, 2)
    for idx in range(len(plot_label)):
        plt.plot(bins, accuracies_in_bins_list[idx], 'o-',
                 label=""{} ECE = {:.2f}"".format(plot_label[idx], ece_list[idx]))
    plt.plot(np.linspace(0, 1, 50), np.linspace(0, 1, 50), 'b.', label=""Perfect Calibration"")
    plt.title(""Reliability Plot"")
    plt.xlabel(""Confidence"")
    plt.ylabel(""Accuracy"")
    plt.grid()
    plt.legend()

    plt.show()

    return ece_list, accuracies_in_bins_list, frac_samples_in_bins_list, confidences_in_bins_list


def plot_risk_vs_rejection_rate(y_true, y_prob, y_pred, selection_scores=None, plot_label=[""""], risk_func=None,
                                attributes=None, num_bins=10, subgroup_ids=None):
    """"""
    Plots the risk vs rejection rate curve showing the risk for different rejection rates. Multiple curves
    can be plot by passing data as lists.

    Args:
        y_true: array-like or or a list of array-like of shape (n_samples,)
            ground truth labels.
        y_prob: array-like or or a list of array-like of shape (n_samples, n_classes).
            Probability scores from the base model.
        y_pred: array-like or or a list of array-like of shape (n_samples,)
            predicted labels.
        selection_scores: ndarray or a list of ndarray containing scores corresponding to certainty in the predicted labels.
        risk_func: risk function under consideration.
        attributes: (optional) if risk function is a fairness metric also pass the protected attribute name.
        num_bins: number of bins.
        subgroup_ids: (optional) ndarray or a list of ndarray containing subgroup_ids to selectively compute risk on a
            subgroup of the samples specified by subgroup_ids.

    Returns:
        tuple:
            - aurrrc_list: list containing the area under risk rejection rate curves.
            - rejection_rate_list: list containing the binned rejection rates.
            - selection_thresholds_list: list containing the binned selection thresholds.
            - risk_list: list containing the binned risks.
    """"""
    import matplotlib.pyplot as plt

    if not isinstance(y_true, list):
        y_true, y_prob, y_pred, selection_scores, subgroup_ids = [y_true], [y_prob], [y_pred], [selection_scores], [subgroup_ids]
    if len(plot_label) != len(y_true):
        raise ValueError('y_true and plot_label should be of same length.')

    aurrrc_list = []
    rejection_rate_list = []
    risk_list = []
    selection_thresholds_list = []

    for idx in range(len(plot_label)):
        aursrc, rejection_rates, selection_thresholds, risks = area_under_risk_rejection_rate_curve(
            y_true[idx],
            y_prob[idx],
            y_pred[idx],
            selection_scores=selection_scores[idx],
            risk_func=risk_func,
            attributes=attributes,
            num_bins=num_bins,
            subgroup_ids=subgroup_ids[idx],
            return_counts=True
        )

        aurrrc_list.append(aursrc)
        rejection_rate_list.append(rejection_rates)
        risk_list.append(risks)
        selection_thresholds_list.append(selection_thresholds)

    plt.figure(figsize=(12, 5))

    plt.subplot(1, 2, 1)
    for idx in range(len(plot_label)):
        plt.plot(rejection_rate_list[idx], risk_list[idx], label=""{} AURRRC={:.5f}"".format(plot_label[idx], aurrrc_list[idx]))

    plt.legend(loc=""best"")
    plt.xlabel(""Rejection Rate"")
    if risk_func is None:
        ylabel = ""Prediction Error Rate""
    else:
        if 'accuracy' in risk_func.__name__:
            ylabel = ""1.0 - "" + risk_func.__name__
        else:
            ylabel = risk_func.__name__

    plt.ylabel(ylabel)
    plt.title(""Risk vs Rejection Rate Plot"")
    plt.grid()

    plt.subplot(1, 2, 2)
    for idx in range(len(plot_label)):
        plt.plot(selection_thresholds_list[idx], risk_list[idx], label=""{}"".format(plot_label[idx]))

    plt.legend(loc=""best"")
    plt.xlabel(""Selection Threshold"")
    if risk_func is None:
        ylabel = ""Prediction Error Rate""
    else:
        if 'accuracy' in risk_func.__name__:
            ylabel = ""1.0 - "" + risk_func.__name__
        else:
            ylabel = risk_func.__name__

    plt.ylabel(ylabel)
    plt.title(""Risk vs Selection Threshold Plot"")
    plt.grid()

    plt.show()

    return aurrrc_list, rejection_rate_list, selection_thresholds_list, risk_list
"
__init__.py,"from .classification_metrics import expected_calibration_error, area_under_risk_rejection_rate_curve, \
    compute_classification_metrics, entropy_based_uncertainty_decomposition
from .regression_metrics import picp, mpiw, compute_regression_metrics, plot_uncertainty_distribution, \
    plot_uncertainty_by_feature, plot_picp_by_feature
from .uncertainty_characteristics_curve import UncertaintyCharacteristicsCurve
"
__init__.py,"from .uncertainty_characteristics_curve import UncertaintyCharacteristicsCurve
"
uncertainty_characteristics_curve.py,"from copy import deepcopy

import matplotlib.pyplot as plt
import numpy as np
from scipy.integrate import simps, trapz
from sklearn.isotonic import IsotonicRegression

DEFAULT_X_AXIS_NAME = 'excess'
DEFAULT_Y_AXIS_NAME = 'missrate'


class UncertaintyCharacteristicsCurve:
    """"""
    Class with main functions of the Uncertainty Characteristics Curve (UCC).

    """"""

    def __init__(self, normalize=True, precompute_bias_data=True):
        """"""
        :param normalize: set initial axes normalization flag (can be changed via set_coordinates())
        :param precompute_bias_data: if True, fit() will compute statistics necessary to generate bias-based
            UCCs (in addition to the scale-based ones). Skipping this precomputation may speed up the fit() call
            if bias-based UCC is not needed.

        """"""
        self.axes_name2idx = {""missrate"": 1, ""bandwidth"": 2, ""excess"": 3, ""deficit"": 4}
        self.axes_idx2descr = {1: ""Missrate"", 2: ""Bandwidth"", 3: ""Excess"", 4: ""Deficit""}
        self.x_axis_idx = None
        self.y_axis_idx = None
        self.norm_x_axis = False
        self.norm_y_axis = False
        self.std_unit = None
        self.normalize = normalize
        self.d = None
        self.gt = None
        self.lb = None
        self.ub = None
        self.precompute_bias_data = precompute_bias_data
        self.set_coordinates(x_axis_name=DEFAULT_X_AXIS_NAME, y_axis_name=DEFAULT_Y_AXIS_NAME, normalize=normalize)

    def set_coordinates(self, x_axis_name=None, y_axis_name=None, normalize=None):
        """"""
        Assigns user-specified type to the axes and normalization behavior (sticky).

        :param x_axis_name: None-> unchanged, or name from self.axes_name2idx 
        :param y_axis_name: ditto
        :param normalize: True/False will activate/deactivate norming for specified axes. Behavior for
                          Axes_name that are None will not be changed.
                          Value None will leave norm status unchanged.
                          Note, axis=='missrate' will never get normalized, even with normalize == True
        :return: none
        """"""
        normalize = self.normalize if normalize is None else normalize
        if x_axis_name is None and self.x_axis_idx is None:
            raise ValueError(""ERROR(UCC): x-axis has not been defined."")
        if y_axis_name is None and self.y_axis_idx is None:
            raise ValueError(""ERROR(UCC): y-axis has not been defined."")
        if x_axis_name is None and y_axis_name is None and normalize is not None:
            # just set normalization on/off for both axes and return
            self.norm_x_axis = False if x_axis_name == 'missrate' else normalize
            self.norm_y_axis = False if y_axis_name == 'missrate' else normalize
            return
        if x_axis_name is not None:
            self.x_axis_idx = self.axes_name2idx[x_axis_name]
            self.norm_x_axis = False if x_axis_name == 'missrate' else normalize
        if y_axis_name is not None:
            self.y_axis_idx = self.axes_name2idx[y_axis_name]
            self.norm_y_axis = False if y_axis_name == 'missrate' else normalize

    def set_std_unit(self, std_unit=None):
        """"""
        Sets the UCC's unit to be used when displaying normalized axes.

        :param std_unit: if None, the unit will be calculated as stddev of the ground truth data 
                        (ValueError raised if data has not been set at this point)
                        or set to the user-specified value.
        :return: 
        """"""
        if std_unit is None:  # set it to stddev of data
            if self.gt is None:
                raise ValueError(""ERROR(UCC): No data specified - cannot set stddev unit."")
            self.std_unit = np.std(self.gt)

            if np.isclose(self.std_unit, 0.):
                print(""WARN(UCC): data-based stddev is zero - resetting axes unit to 1."")
                self.std_unit = 1.
        else:
            self.std_unit = float(std_unit)

    def fit(self, X, gt):
        """"""
        Calculates internal arrays necessary for other methods (plotting, auc, cost minimization).
        Re-entrant.

        :param X: [numsamples, 3] numpy matrix, or list of numpy matrices.
                    Col 1: predicted values
                    Col 2: lower band (deviate) wrt predicted value  (always positive)
                    Col 3: upper band wrt predicted value  (always positive)
                    If list is provided, all methods will output corresponding metrics as lists as well!
        :param gt: Ground truth array (i.e.,the 'actual' values corresponding to predictions in X
        :return: self

        """"""
        if not isinstance(X, list):
            X = [X]
        newX = []
        for x in X:
            assert (isinstance(x, np.ndarray) and len(x.shape) == 2 and x.shape[1] == 3 and x.shape[0] == len(gt))
            newX.append(self._sanitize_input(x))
        self.d = [gt - x[:, 0] for x in newX]
        self.lb = [x[:, 1] for x in newX]
        self.ub = [x[:, 2] for x in newX]
        self.gt = gt
        self.set_std_unit()
        self.plotdata_for_scale = []
        self.plotdata_for_bias = []
        # precompute plotdata:
        for i in range(len(self.d)):
            self.plotdata_for_scale.append(self._calc_plotdata(self.d[i], self.lb[i], self.ub[i], vary_bias=False))
            if self.precompute_bias_data:
                self.plotdata_for_bias.append(self._calc_plotdata(self.d[i], self.lb[i], self.ub[i], vary_bias=True))

        return self

    def minimize_cost(self, x_axis_cost=.5, y_axis_cost=.5, augment_cost_by_normfactor=True,
                      search=('scale', 'bias')):
        """"""
        Find minima of a linear cost function for each component.
        Cost function C = x_axis_cost * x_axis_value + y_axis_cost * y_axis_value.
        A minimum can occur in the scale-based or bias-based UCC (this can be constrained by the 'search' arg).
        The function returns a 'recipe' how to achieve the corresponding minimum, for each component.

        :param x_axis_cost: weight of one unit on x_axis
        :param y_axis_cost: weight of one unit on y_axis
        :param augment_cost_by_normfactor: when False, the cost multipliers will apply as is. If True, they will be
            pre-normed by the corresponding axis norm (where applicable), to account for range differences between axes.
        :param search: list of types over which minimization is to be performed, valid elements are 'scale' and 'bias'.

        :return: list of dicts - one per component, or a single dict, if there is only one component. Dict keys are -
            'operation': can be 'bias' (additive) or 'scale' (multiplicative), 'modvalue': value to multiply by or to
            add to error bars to achieve the minimum, 'new_x'/'new_y': new coordinates (operating point) with that
            minimum, 'cost': new cost at minimum point, 'original_cost': original cost (original operating point).

        """"""
        if self.d is None:
            raise ValueError(""ERROR(UCC): call fit() prior to using this method."")
        if augment_cost_by_normfactor:
            if self.norm_x_axis:
                x_axis_cost /= self.std_unit
            if self.norm_y_axis:
                y_axis_cost /= self.std_unit
            print(""INFO(UCC): Pre-norming costs by corresp. std deviation: new x_axis_cost = %.4f, y_axis_cost = %.4f"" %
                  (x_axis_cost, y_axis_cost))
        if isinstance(search, tuple):
            search = list(search)
        if not isinstance(search, list):
            search = [search]

        min_costs = []
        for d in range(len(self.d)):
            # original OP cost
            m, b, e, df = self._calc_missrate_bandwidth_excess_deficit(self.d[d], self.lb[d], self.ub[d])
            original_cost = x_axis_cost * [0., m, b, e, df][self.x_axis_idx] + y_axis_cost * [0., m, b, e, df][
                self.y_axis_idx]

            plotdata = self.plotdata_for_scale[d]
            cost_scale, minidx_scale = self._find_min_cost_in_component(plotdata, self.x_axis_idx, self.y_axis_idx,
                                                                        x_axis_cost, y_axis_cost)
            mcf_scale_multiplier = plotdata[minidx_scale][0]
            mcf_scale_x = plotdata[minidx_scale][self.x_axis_idx]
            mcf_scale_y = plotdata[minidx_scale][self.y_axis_idx]

            if 'bias' in search:
                if not self.precompute_bias_data:
                    raise ValueError(
                        ""ERROR(UCC): Cannot perform minimization - instantiated without bias data computation"")
                plotdata = self.plotdata_for_bias[d]
                cost_bias, minidx_bias = self._find_min_cost_in_component(plotdata, self.x_axis_idx, self.y_axis_idx,
                                                                          x_axis_cost, y_axis_cost)
                mcf_bias_add = plotdata[minidx_bias][0]
                mcf_bias_x = plotdata[minidx_bias][self.x_axis_idx]
                mcf_bias_y = plotdata[minidx_bias][self.y_axis_idx]

            if 'bias' in search and 'scale' in search:
                if cost_bias < cost_scale:
                    min_costs.append({'operation': 'bias', 'cost': cost_bias, 'modvalue': mcf_bias_add,
                                      'new_x': mcf_bias_x, 'new_y': mcf_bias_y, 'original_cost': original_cost})
                else:
                    min_costs.append({'operation': 'scale', 'cost': cost_scale, 'modvalue': mcf_scale_multiplier,
                                      'new_x': mcf_scale_x, 'new_y': mcf_scale_y, 'original_cost': original_cost})
            elif 'scale' in search:
                min_costs.append({'operation': 'scale', 'cost': cost_scale, 'modvalue': mcf_scale_multiplier,
                                  'new_x': mcf_scale_x, 'new_y': mcf_scale_y, 'original_cost': original_cost})
            elif 'bias' in search:
                min_costs.append({'operation': 'bias', 'cost': cost_bias, 'modvalue': mcf_bias_add,
                                  'new_x': mcf_bias_x, 'new_y': mcf_bias_y, 'original_cost': original_cost})
            else:
                raise ValueError(""(ERROR): Unknown search element (%s) requested."" % "","".join(search))

        if len(min_costs) < 2:
            return min_costs[0]
        else:
            return min_costs

    def get_specific_operating_point(self, req_x_axis_value=None, req_y_axis_value=None,
                                     req_critical_value=None, vary_bias=False):
        """"""
        Finds corresponding operating point on the current UCC, given a point on either x or y axis. Returns
        a list of recipes how to achieve the point (x,y), for each component. If there is only one component,
        returns a single recipe dict.

        :param req_x_axis_value: requested x value on UCC (normalization status is taken from current display)
        :param req_y_axis_value: requested y value on UCC (normalization status is taken from current display)
        :param vary_bias: set to True when referring to bias-induced UCC (scale UCC default)
        :return: list of dicts (recipes), or a single dict
        """"""
        if self.d is None:
            raise ValueError(""ERROR(UCC): call fit() prior to using this method."")
        if np.sum([req_x_axis_value is not None, req_y_axis_value is not None, req_critical_value is not None]) != 1:
            raise ValueError(""ERROR(UCC): exactly one axis value must be requested at a time."")
        if vary_bias and not self.precompute_bias_data:
            raise ValueError(""ERROR(UCC): Cannot vary bias - instantiated without bias data computation"")
        xnorm = self.std_unit if self.norm_x_axis else 1.
        ynorm = self.std_unit if self.norm_y_axis else 1.
        recipe = []
        for dc in range(len(self.d)):
            plotdata = self.plotdata_for_bias[dc] if vary_bias else self.plotdata_for_scale[dc]
            if req_x_axis_value is not None:
                tgtidx = self.x_axis_idx
                req_value = req_x_axis_value * xnorm
            elif req_y_axis_value is not None:
                tgtidx = self.y_axis_idx
                req_value = req_y_axis_value * ynorm
            elif req_critical_value is not None:
                req_value = req_critical_value
                tgtidx = 0  # first element in plotdata is always the critical value (scale of bias)
            else:
                raise RuntimeError(""Unhandled case"")
            closestidx = np.argmin(np.asarray([np.abs(p[tgtidx] - req_value) for p in plotdata]))
            recipe.append({'operation': ('bias' if vary_bias else 'scale'),
                           'modvalue': plotdata[closestidx][0],
                           'new_x': plotdata[closestidx][self.x_axis_idx] / xnorm,
                           'new_y': plotdata[closestidx][self.y_axis_idx] / ynorm})
        if len(recipe) < 2:
            return recipe[0]
        else:
            return recipe


    def _find_min_cost_in_component(self, plotdata, idx1, idx2, cost1, cost2):
        """"""
        Find s minimum cost function value and corresp. position index in plotdata

        :param plotdata: liste of tuples
        :param idx1: idx of  x-axis item within the tuple
        :param idx2: idx of y-axis item within the tuple
        :param cost1: cost factor for x-axis unit
        :param cost2: cost factor for y-axis unit
        :return: min cost value, index within plotdata where minimum occurs
        """"""
        raw = [cost1 * i[idx1] + cost2 * i[idx2] for i in plotdata]
        minidx = np.argmin(raw)
        return raw[minidx], minidx

    def _sanitize_input(self, x):
        """"""
        Replaces problematic values in input data (e.g, zero error bars)

        :param x: single matrix of input data [n, 3]
        :return: sanitized version of x
        """"""
        if np.isclose(np.sum(x[:, 1]), 0.):
            raise ValueError(""ERROR(UCC): Provided lower bands are all zero."")
        if np.isclose(np.sum(x[:, 2]), 0.):
            raise ValueError(""ERROR(UCC): Provided upper bands are all zero."")
        for i in [1, 2]:
            if any(np.isclose(x[:, i], 0.)):
                print(""WARN(UCC): some band values are 0. - REPLACING with positive minimum"")
                m = np.min(x[x[:, i] > 0, i])
                x = np.where(np.isclose(x, 0.), m, x)
        return x

    def _calc_avg_excess(self, d, lb, ub):
        """"""
        Excess is amount an error bar overshoots actual

        :param d: pred-actual array
        :param lb: lower band
        :param ub: upper band
        :return: average excess over array
        """"""
        excess = np.zeros(d.shape)
        posidx = np.where(d >= 0)[0]
        excess[posidx] = np.where(ub[posidx] - d[posidx] < 0., 0., ub[posidx] - d[posidx])
        negidx = np.where(d < 0)[0]
        excess[negidx] = np.where(lb[negidx] + d[negidx] < 0., 0., lb[negidx] + d[negidx])
        return np.mean(excess)

    def _calc_avg_deficit(self, d, lb, ub):
        """"""
        Deficit is error bar insufficiency: bar falls short of actual

        :param d: pred-actual array
        :param lb: lower band
        :param ub: upper band
        :return: average deficit over array
        """"""
        deficit = np.zeros(d.shape)
        posidx = np.where(d >= 0)[0]
        deficit[posidx] = np.where(- ub[posidx] + d[posidx] < 0., 0., - ub[posidx] + d[posidx])
        negidx = np.where(d < 0)[0]
        deficit[negidx] = np.where(- lb[negidx] - d[negidx] < 0., 0., - lb[negidx] - d[negidx])
        return np.mean(deficit)

    def _calc_missrate_bandwidth_excess_deficit(self, d, lb, ub, scale=1.0, bias=0.0):
        """"""
        Calculates recall at a given scale/bias, average bandwidth and average excess

        :param d: delta
        :param lb: lower band
        :param ub: upper band
        :param scale: scale * (x + bias)
        :param bias:
        :return: miss rate, average bandwidth, avg excess, avg deficit
        """"""
        abslband = scale * np.where((lb + bias) < 0., 0., lb + bias)
        absuband = scale * np.where((ub + bias) < 0., 0., ub + bias)
        recall = np.sum((d >= - abslband) & (d <= absuband)) / len(d)
        avgbandwidth = np.mean([absuband, abslband])
        avgexcess = self._calc_avg_excess(d, abslband, absuband)
        avgdeficit = self._calc_avg_deficit(d, abslband, absuband)
        return 1 - recall, avgbandwidth, avgexcess, avgdeficit

    def _calc_plotdata(self, d, lb, ub, vary_bias=False):
        """"""
        Generates data necessary for various UCC metrics.

        :param d: delta (predicted - actual) vector
        :param ub: upper uncertainty bandwidth (above predicted)
        :param lb: lower uncertainty bandwidth (below predicted) - all positive (bandwidth)
        :param vary_bias: True will switch to additive bias instead of scale
        :return: list. Elements are tuples (varyvalue, missrate, bandwidth, excess, deficit)
        """"""

        # step 1: collect critical scale or bias values
        critval = []
        for i in range(len(d)):
            if not vary_bias:
                if d[i] >= 0:
                    critval.append(d[i] / ub[i])
                else:
                    critval.append(-d[i] / lb[i])
            else:
                if d[i] >= 0:
                    critval.append(d[i] - ub[i])
                else:
                    critval.append(-lb[i] - d[i])
        critval = sorted(critval)
        plotdata = []
        for i in range(len(critval)):
            if not vary_bias:
                missrate, bandwidth, excess, deficit = self._calc_missrate_bandwidth_excess_deficit(d, lb, ub,
                                                                                                    scale=critval[i])
            else:
                missrate, bandwidth, excess, deficit = self._calc_missrate_bandwidth_excess_deficit(d, lb, ub,
                                                                                                    bias=critval[i])
            plotdata.append((critval[i], missrate, bandwidth, excess, deficit))

        return plotdata

    def get_AUUCC(self, vary_bias=False, aucfct=""trapz"", partial_x=None, partial_y=None):
        """"""
        returns approximate area under the curve on current coordinates, for each component.

        :param vary_bias: False == varies scale, True == varies bias
        :param aucfct: specifies AUC integrator (can be ""trapz"", ""simps"")
        :param partial_x: tuple (x_min, x_max) defining interval on x to calc a a partial AUC.
                        The interval bounds refer to axes as visualized (ie. potentially normed)
        :param partial_y: tuple (y_min, y_max) defining interval on y to calc a a partial AUC. partial_x must be None.
        :return: list of floats with AUUCCs for each input component, or a single float, if there is only 1 component.
        """"""
        if self.d is None:
            raise ValueError(""ERROR(UCC): call fit() prior to using this method."")
        if vary_bias and not self.precompute_bias_data:
            raise ValueError(""ERROR(UCC): Cannot vary bias - instantiated without bias data computation"")
        if partial_x is not None and partial_y is not None:
            raise ValueError(""ERROR(UCC): partial_x and partial_y can not be specified at the same time."")
        assert(partial_x is None or (isinstance(partial_x, tuple) and len(partial_x)==2))
        assert(partial_y is None or (isinstance(partial_y, tuple) and len(partial_y)==2))

        # find starting point (where the x axis value starts to actually change)
        rv = []
        # do this for individual streams 
        xind = self.x_axis_idx
        aucfct = simps if aucfct == ""simps"" else trapz
        for s in range(len(self.d)):
            plotdata = self.plotdata_for_bias[s] if vary_bias else self.plotdata_for_scale[s]
            prev = plotdata[0][xind]
            t = 1
            cval = plotdata[t][xind]
            while cval == prev and t < len(plotdata) - 1:
                t += 1
                prev = cval
                cval = plotdata[t][xind]
            startt = t - 1  # from here, it's a valid function
            endtt = len(plotdata)

            if startt >= endtt - 2:
                rvs = 0.  # no area
            else:
                xnorm = self.std_unit if self.norm_x_axis else 1.
                ynorm = self.std_unit if self.norm_y_axis else 1.
                y=[(plotdata[i][self.y_axis_idx]) / ynorm for i in range(startt, endtt)]
                x=[(plotdata[i][self.x_axis_idx]) / xnorm for i in range(startt, endtt)]
                if partial_x is not None:
                    from_i = self._find_closest_index(partial_x[0], x)
                    to_i = self._find_closest_index(partial_x[1], x) + 1
                elif partial_y is not None:
                    from_i = self._find_closest_index(partial_y[0], y)
                    to_i = self._find_closest_index(partial_y[1], y)
                    if from_i > to_i:   # y is in reverse order
                        from_i, to_i = to_i, from_i
                    to_i += 1 # as upper bound in array indexing
                else:
                    from_i = 0
                    to_i = len(x)
                to_i = min(to_i, len(x))
                if to_i < from_i:
                    raise ValueError(""ERROR(UCC): Failed to find an appropriate partial-AUC interval in the data."")
                if to_i - from_i < 2:
                    raise RuntimeError(""ERROR(UCC): There are too few samples (1) in the partial-AUC interval specified"")
                rvs = aucfct(x=x[from_i:to_i], y=y[from_i:to_i])
            rv.append(rvs)
        if len(rv) < 2:
            return rv[0]
        else:
            return rv

    @ staticmethod
    def _find_closest_index(value, array):
        """"""
        Returns an index of the 'array' element closest in value to 'value'

        :param value:
        :param array:
        :return:
        """"""
        return np.argmin(np.abs(np.asarray(array)-value))

    def _get_single_OP(self, d, lb, ub, scale=1., bias=0.):
        """"""
        Returns Operating Point for original input data, on coordinates currently set up, given a scale/bias.

        :param scale:
        :param bias: 
        :return: single tuple (x point, y point, unit of x, unit of y)
        """"""
        xnorm = self.std_unit if self.norm_x_axis else 1.
        ynorm = self.std_unit if self.norm_y_axis else 1.
        auxop = self._calc_missrate_bandwidth_excess_deficit(d, lb, ub, scale=scale, bias=bias)
        op = [0.] + [i for i in auxop]  # mimic plotdata (first element ignored here)
        return (op[self.x_axis_idx] / xnorm, op[self.y_axis_idx] / ynorm, xnorm, ynorm)

    def get_OP(self, scale=1., bias=0.):
        """"""
        Returns all Operating Points for original input data, on coordinates currently set up, given a scale/bias.

        :param scale:
        :param bias:
        :return: list of tuples (x point, y point, unit of x, unit of y) or a single tuple if there is only
                1 component.
        """"""
        if self.d is None:
            raise ValueError(""ERROR(UCC): call fit() prior to using this method."")
        op = []
        for dc in range(len(self.d)):
            op.append(self._get_single_OP(self.d[dc], self.lb[dc], self.ub[dc], scale=scale, bias=bias))
        if len(op) < 2:
            return op[0]
        else:
            return op

    def plot_UCC(self, titlestr='', syslabel='model', outfn=None, vary_bias=False, markers=None,
                 xlim=None, ylim=None, **kwargs):
        """""" Will plot/display the UCC based on current data and coordinates. Multiple curves will be shown
        if there are multiple data components (via fit())

        :param titlestr: Plot title string
        :param syslabel: list is label strings to appear in the plot legend. Can be single, if one component.
        :param outfn: base name of an image file to be created (will append .png before creating)
        :param vary_bias: True will switch to varying additive bias (default is multiplicative scale)
        :param markers: None or a list of marker styles to be used for each curve.
            List must be same or longer than number of components.
            Markers can be one among these ['o', 's', 'v', 'D', '+'].
        :param xlim: tuples or lists of specifying the range for the x axis, or None (auto)
        :param ylim: tuples or lists of specifying the range for the y axis, or None (auto)
        :param `**kwargs`: Additional arguments passed to the main plot call.

        :return: list of areas under the curve (or single area, if one data component)
                 list of operating points (or single op): format of an op is tuple (xaxis value, yaxis value, xunit, yunit)
        """"""
        if self.d is None:
            raise ValueError(""ERROR(UCC): call fit() prior to using this method."")
        if vary_bias and not self.precompute_bias_data:
            raise ValueError(""ERROR(UCC): Cannot vary bias - instantiated without bias data computation"")
        if not isinstance(syslabel, list):
            syslabel = [syslabel]
        assert (len(syslabel) == len(self.d))
        assert (markers is None or (isinstance(markers, list) and len(markers) >= len(self.d)))
        # main plot of (possibly multiple) datasets
        plt.figure()
        xnorm = self.std_unit if self.norm_x_axis else 1.
        ynorm = self.std_unit if self.norm_y_axis else 1.
        op_info = []
        auucc = self.get_AUUCC(vary_bias=vary_bias)
        auucc = [auucc] if not isinstance(auucc, list) else auucc
        for s in range(len(self.d)):
            # original operating point
            x_op, y_op, x_unit, y_unit = self._get_single_OP(self.d[s], self.lb[s], self.ub[s])
            op_info.append((x_op, y_op, x_unit, y_unit))
            # display chart
            plotdata = self.plotdata_for_scale[s] if not vary_bias else self.plotdata_for_bias[s]
            axisX_data = [i[self.x_axis_idx] / xnorm for i in plotdata]
            axisY_data = [i[self.y_axis_idx] / ynorm for i in plotdata]
            marker = None
            if markers is not None: marker = markers[s]
            p = plt.plot(axisX_data, axisY_data, label=syslabel[s] + ("" (AUC=%.3f)"" % auucc[s]), marker=marker, **kwargs)
            if s + 1 == len(self.d):
                oplab = 'OP'
            else:
                oplab = None
            plt.plot(x_op, y_op, marker='o', color=p[0].get_color(), label=oplab, markerfacecolor='w',
                     markeredgewidth=1.5, markeredgecolor=p[0].get_color())
        axisX_label = self.axes_idx2descr[self.x_axis_idx]
        axisY_label = self.axes_idx2descr[self.y_axis_idx]
        axisX_units = ""(raw)"" if np.isclose(xnorm, 1.0) else ""[in std deviations]""
        axisY_units = ""(raw)"" if np.isclose(ynorm, 1.0) else ""[in std deviations]""
        axisX_label += ' ' + axisX_units
        axisY_label += ' ' + axisY_units
        if ylim is not None:
            plt.ylim(ylim)
        if xlim is not None:
            plt.xlim(xlim)
        plt.xlabel(axisX_label)
        plt.ylabel(axisY_label)
        plt.legend()
        plt.title(titlestr)
        plt.grid()
        if outfn is None:
            plt.show()
        else:
            plt.savefig(outfn)
        if len(auucc) < 2:
            auucc = auucc[0]
            op_info = op_info[0]
        return auucc, op_info
"
heteroscedastic_mlp.py,"import torch
import torch.nn.functional as F
from uq360.models.noise_models.heteroscedastic_noise_models import GaussianNoise

class GaussianNoiseMLPNet(torch.nn.Module):

    def __init__(self, num_features, num_outputs, num_hidden):
        super(GaussianNoiseMLPNet, self).__init__()
        self.fc = torch.nn.Linear(num_features, num_hidden)
        self.fc_mu = torch.nn.Linear(num_hidden, num_outputs)
        self.fc_log_var = torch.nn.Linear(num_hidden, num_outputs)
        self.noise_layer = GaussianNoise()

    def forward(self, x):
        x = F.relu(self.fc(x))
        mu = self.fc_mu(x)
        log_var = self.fc_log_var(x)
        return mu, log_var

    def loss(self, y_true=None, mu_pred=None, log_var_pred=None):
        return self.noise_layer.loss(y_true, mu_pred, log_var_pred, reduce_mean=True)"
layer_utils.py,"""""""
  Contains implementations of various utilities used by Horseshoe Bayesian layers
""""""
import numpy as np
import torch
from torch.nn import Parameter

td = torch.distributions
gammaln = torch.lgamma


def diag_gaussian_entropy(log_std, D):
    return 0.5 * D * (1.0 + torch.log(2 * np.pi)) + torch.sum(log_std)


def inv_gamma_entropy(a, b):
    return torch.sum(a + torch.log(b) + torch.lgamma(a) - (1 + a) * torch.digamma(a))


def log_normal_entropy(log_std, mu, D):
    return torch.sum(log_std + mu + 0.5) + (D / 2) * np.log(2 * np.pi)


class InvGammaHalfCauchyLayer(torch.nn.Module):
    """"""
    Uses the inverse Gamma parameterization of the half-Cauchy distribution.
    a ~ C^+(0, b)  <==> a^2 ~ IGamma(0.5, 1/lambda), lambda ~ IGamma(0.5, 1/b^2), where lambda is an
    auxiliary latent variable.
    Uses a factorized variational approximation q(ln a^2)q(lambda) = N(mu, sigma^2) IGamma(ahat, bhat).
    This layer places a half Cauchy prior on the scales of each output node of the layer.
    """"""
    def __init__(self, out_features, b):
        """"""
        :param out_fatures: number of output nodes in the layer.
        :param b: scale of the half Cauchy
        """"""
        super(InvGammaHalfCauchyLayer, self).__init__()
        self.b = b
        self.out_features = out_features
        # variational parameters for q(ln a^2)
        self.mu = Parameter(torch.FloatTensor(out_features))
        self.log_sigma = Parameter(torch.FloatTensor(out_features))
        # self.log_sigma = torch.FloatTensor(out_features)
        # variational parameters for q(lambda). These will be updated via fixed point updates, hence not parameters.
        self.ahat = torch.FloatTensor([1.])  # The posterior parameter is always 1.
        self.bhat = torch.ones(out_features) * (1.0 / self.b ** 2)
        self.const = torch.FloatTensor([0.5])
        self.initialize_from_prior()

    def initialize_from_prior(self):
        """"""
        Initializes variational parameters by sampling from the prior.
        """"""
        # sample from half cauchy and log to initialize the mean of the log normal
        sample = np.abs(self.b * (np.random.randn(self.out_features) / np.random.randn(self.out_features)))
        self.mu.data = torch.FloatTensor(np.log(sample))
        self.log_sigma.data = torch.FloatTensor(np.random.randn(self.out_features) - 10.)

    def expectation_wrt_prior(self):
        """"""
        Computes E[ln p(a^2 | lambda)] + E[ln p(lambda)]
        """"""
        expected_a_given_lambda = -gammaln(self.const) - 0.5 * (torch.log(self.bhat) - torch.digamma(self.ahat)) + (
                -0.5 - 1.) * self.mu - torch.exp(-self.mu + 0.5 * self.log_sigma.exp() ** 2) * (self.ahat / self.bhat)
        expected_lambda = -gammaln(self.const) - 2 * 0.5 * np.log(self.b) + (-self.const - 1.) * (
                torch.log(self.bhat) - torch.digamma(self.ahat)) - (1. / self.b ** 2) * (self.ahat / self.bhat)
        return torch.sum(expected_a_given_lambda) + torch.sum(expected_lambda)

    def entropy(self):
        """"""
        Computes entropy of q(ln a^2) and q(lambda)
        """"""
        return self.entropy_lambda() + self.entropy_a2()

    def entropy_lambda(self):
        return inv_gamma_entropy(self.ahat, self.bhat)

    def entropy_a2(self):
        return log_normal_entropy(self.log_sigma, self.mu, self.out_features)

    def kl(self):
        """"""
        Computes KL(q(ln(a^2)q(lambda) || IG(a^2 | 0.5, 1/lambda) IG(lambda | 0.5, 1/b^2))
        """"""
        return -self.expectation_wrt_prior() - self.entropy()

    def fixed_point_updates(self):
        # update lambda moments
        self.bhat = torch.exp(-self.mu + 0.5 * self.log_sigma.exp() ** 2) + (1. / self.b ** 2)


class InvGammaLayer(torch.nn.Module):
    """"""
    Approximates the posterior of c^2 with prior IGamma(c^2 | a , b)
    using a log Normal approximation q(ln c^2) = N(mu, sigma^2)
    """"""

    def __init__(self, a, b, out_features=1):
        super(InvGammaLayer, self).__init__()
        self.a = torch.FloatTensor([a])
        self.b = torch.FloatTensor([b])
        # variational parameters for q(ln c^2)
        self.mu = Parameter(torch.FloatTensor(out_features))
        self.log_sigma = Parameter(torch.FloatTensor(out_features))
        self.out_features = out_features
        self.initialize_from_prior()

    def initialize_from_prior(self):
        """"""
        Initializes variational parameters by sampling from the prior.
        """"""
        self.mu.data = torch.log(self.b / (self.a + 1) * torch.ones(self.out_features)) # initialize at the mode
        self.log_sigma.data = torch.FloatTensor(np.random.randn(self.out_features) - 10.)

    def expectation_wrt_prior(self):
        """"""
        Computes E[ln p(c^2 | a, b)]
        """"""
        # return self.c_a * np.log(self.c_b) - gammaln(self.c_a) + (
        #                                             - self.c_a - 1) * c_mu - self.c_b * Ecinv
        return self.a * torch.log(self.b) - gammaln(self.a) + (- self.a - 1) \
               * self.mu - self.b * torch.exp(-self.mu + 0.5 * self.log_sigma.exp() ** 2)

    def entropy(self):
        return log_normal_entropy(self.log_sigma, self.mu, 1)

    def kl(self):
        """"""
        Computes KL(q(ln(c^2) || IG(c^2 | a, b))
        """"""
        return -self.expectation_wrt_prior().sum() - self.entropy()
"
layers.py,"""""""
  Contains implementations of various Bayesian layers
""""""
import numpy as np
import torch
import torch.nn.functional as F
from torch.nn import Parameter

from uq360.models.bayesian_neural_networks.layer_utils import InvGammaHalfCauchyLayer, InvGammaLayer

td = torch.distributions


def reparam(mu, logvar, do_sample=True, mc_samples=1):
    if do_sample:
        std = torch.exp(0.5 * logvar)
        eps = torch.FloatTensor(std.size()).normal_()
        sample = mu + eps * std
        for _ in np.arange(1, mc_samples):
            sample += mu + eps * std
        return sample / mc_samples
    else:
        return mu


class BayesianLinearLayer(torch.nn.Module):
    """"""
    Affine layer with N(0, v/H) or N(0, user specified v) priors on weights and
    fully factorized variational Gaussian approximation
    """"""

    def __init__(self, in_features, out_features, cuda=False, init_weight=None, init_bias=None, prior_stdv=None):
        super(BayesianLinearLayer, self).__init__()
        self.cuda = cuda
        self.in_features = in_features
        self.out_features = out_features

        # weight mean params
        self.weights = Parameter(torch.Tensor(out_features, in_features))
        self.bias = Parameter(torch.Tensor(out_features))
        # weight variance params
        self.weights_logvar = Parameter(torch.Tensor(out_features, in_features))
        self.bias_logvar = Parameter(torch.Tensor(out_features))

        # numerical stability
        self.fudge_factor = 1e-8
        if not prior_stdv:
            # We will use a N(0, 1/num_inputs) prior over weights
            self.prior_stdv = torch.FloatTensor([1. / np.sqrt(self.weights.size(1))])
        else:
            self.prior_stdv = torch.FloatTensor([prior_stdv])
        # self.prior_stdv = torch.Tensor([1. / np.sqrt(1e+3)])
        self.prior_mean = torch.FloatTensor([0.])
        # for Bias use a prior of N(0, 1)
        self.prior_bias_stdv = torch.FloatTensor([1.])
        self.prior_bias_mean = torch.FloatTensor([0.])

        # init params either random or with pretrained net
        self.init_parameters(init_weight, init_bias)

    def init_parameters(self, init_weight, init_bias):
        # init means
        if init_weight is not None:
            self.weights.data = torch.Tensor(init_weight)
        else:
            self.weights.data.normal_(0, np.float(self.prior_stdv.numpy()[0]))

        if init_bias is not None:
            self.bias.data = torch.Tensor(init_bias)
        else:
            self.bias.data.normal_(0, 1)

        # init variances
        self.weights_logvar.data.normal_(-9, 1e-2)
        self.bias_logvar.data.normal_(-9, 1e-2)

    def forward(self, x, do_sample=True, scale_variances=False):
        # local reparameterization trick
        mu_activations = F.linear(x, self.weights, self.bias)
        var_activations = F.linear(x.pow(2), self.weights_logvar.exp(), self.bias_logvar.exp())
        if scale_variances:
            activ = reparam(mu_activations, var_activations.log() - np.log(self.in_features), do_sample=do_sample)
        else:
            activ = reparam(mu_activations, var_activations.log(), do_sample=do_sample)
        return activ

    def kl(self):
        """"""
        KL divergence (q(W) || p(W))
        :return:
        """"""
        weights_logvar = self.weights_logvar
        kld_weights = self.prior_stdv.log() - weights_logvar.mul(0.5) + \
                      (weights_logvar.exp() + (self.weights.pow(2) - self.prior_mean)) / (
                                  2 * self.prior_stdv.pow(2)) - 0.5
        kld_bias = self.prior_bias_stdv.log() - self.bias_logvar.mul(0.5) + \
                   (self.bias_logvar.exp() + (self.bias.pow(2) - self.prior_bias_mean)) / (
                               2 * self.prior_bias_stdv.pow(2)) \
                   - 0.5
        return kld_weights.sum() + kld_bias.sum()


class HorseshoeLayer(BayesianLinearLayer):
    """"""
    Uses non-centered parametrization. w_k = v*tau_k*beta_k where k indexes an output unit and w_k and beta_k
    are vectors of all weights incident into the unit
    """"""
    def __init__(self, in_features, out_features, cuda=False, scale=1.):
        super(HorseshoeLayer, self).__init__(in_features, out_features)
        self.cuda = cuda
        self.in_features = in_features
        self.out_features = out_features
        self.nodescales = InvGammaHalfCauchyLayer(out_features=out_features, b=1.)
        self.layerscale = InvGammaHalfCauchyLayer(out_features=1, b=scale)
        # prior on beta is N(0, I) when employing non centered parameterization
        self.prior_stdv = torch.Tensor([1])
        self.prior_mean = torch.Tensor([0.])

    def forward(self,  x, do_sample=True, debug=False, eps_scale=None, eps_w=None):
        # At a particular unit k, preactivation_sample = scale_sample * pre_activation_sample
        # sample scales
        scale_mean = 0.5 * (self.nodescales.mu + self.layerscale.mu)
        scale_var = 0.25 * (self.nodescales.log_sigma.exp() ** 2 + self.layerscale.log_sigma.exp() ** 2)
        scale_sample = reparam(scale_mean, scale_var.log(), do_sample=do_sample).exp()
        # sample preactivations
        mu_activations = F.linear(x, self.weights, self.bias)
        var_activations = F.linear(x.pow(2), self.weights_logvar.exp(), self.bias_logvar.exp())
        activ_sample = reparam(mu_activations, var_activations.log(), do_sample=do_sample)
        return scale_sample * activ_sample

    def kl(self):
        return super(HorseshoeLayer, self).kl() + self.nodescales.kl() + self.layerscale.kl()

    def fixed_point_updates(self):
        self.nodescales.fixed_point_updates()
        self.layerscale.fixed_point_updates()


class RegularizedHorseshoeLayer(HorseshoeLayer):
    """"""
    Uses the regularized Horseshoe distribution. The regularized Horseshoe soft thresholds the tails of the Horseshoe.
    For all weights w_k incident upon node k in the layer we have:
    w_k ~ N(0, (tau_k * v)^2 I) N(0, c^2 I), c^2 ~ InverseGamma(c_a, b).
    c^2 controls the scale of the thresholding. As c^2 -> infinity, the regularized Horseshoe -> Horseshoe.
    """"""

    def __init__(self, in_features, out_features, cuda=False, scale=1., c_a=2., c_b=6.):
        super(RegularizedHorseshoeLayer, self).__init__(in_features, out_features, cuda=cuda, scale=scale)
        self.c = InvGammaLayer(a=c_a, b=c_b)

    def forward(self, x, do_sample=True, **kwargs):
        # At a particular unit k, preactivation_sample = scale_sample * pre_activation_sample
        # sample regularized scales
        scale_mean = self.nodescales.mu + self.layerscale.mu
        scale_var = self.nodescales.log_sigma.exp() ** 2 + self.layerscale.log_sigma.exp() ** 2
        scale_sample = reparam(scale_mean, scale_var.log(), do_sample=do_sample).exp()
        c_sample = reparam(self.c.mu, 2 * self.c.log_sigma, do_sample=do_sample).exp()
        regularized_scale_sample = (c_sample * scale_sample) / (c_sample + scale_sample)
        # sample preactivations
        mu_activations = F.linear(x, self.weights, self.bias)
        var_activations = F.linear(x.pow(2), self.weights_logvar.exp(), self.bias_logvar.exp())
        activ_sample = reparam(mu_activations, var_activations.log(), do_sample=do_sample)
        return torch.sqrt(regularized_scale_sample) * activ_sample

    def kl(self):
        return super(RegularizedHorseshoeLayer, self).kl() + self.c.kl()


class NodeSpecificRegularizedHorseshoeLayer(RegularizedHorseshoeLayer):
    """"""
    Uses the regularized Horseshoe distribution. The regularized Horseshoe soft thresholds the tails of the Horseshoe.
    For all weights w_k incident upon node k in the layer we have:
    w_k ~ N(0, (tau_k * v)^2 I) N(0, c_k^2 I), c_k^2 ~ InverseGamma(a, b).
    c_k^2 controls the scale of the thresholding. As c_k^2 -> infinity, the regularized Horseshoe -> Horseshoe
    Note that we now have a per-node c_k.
    """"""

    def __init__(self, in_features, out_features, cuda=False, scale=1., c_a=2., c_b=6.):
        super(NodeSpecificRegularizedHorseshoeLayer, self).__init__(in_features, out_features, cuda=cuda, scale=scale)
        self.c = InvGammaLayer(a=c_a, b=c_b, out_features=out_features)




"
misc.py,"import numpy as np
import torch
from uq360.models.noise_models.homoscedastic_noise_models import GaussianNoiseFixedPrecision

def compute_test_ll(y_test, y_pred_samples, std_y=1.):
    """"""
    Computes test log likelihoods = (1 / Ntest) * \sum_n p(y_n | x_n, D_train)
    :param y_test: True y
    :param y_pred_samples: y^s = f(x_test, w^s); w^s ~ q(w). S x Ntest, where S is the number of samples
    q(w) is either a trained variational posterior or an MCMC approximation to p(w | D_train)
    :param std_y: True std of y (assumed known)
    """"""
    S, _ = y_pred_samples.shape
    noise = GaussianNoiseFixedPrecision(std_y=std_y)
    ll = noise.loss(y_pred=y_pred_samples, y_true=y_test.unsqueeze(dim=0), reduce_sum=False)
    ll = torch.logsumexp(ll, dim=0) - np.log(S)  # mean over num samples
    return torch.mean(ll)  # mean over test points


"
horseshoe_mlp.py,"from abc import ABC

import numpy as np
import torch
from torch import nn

from uq360.models.bayesian_neural_networks.layers import HorseshoeLayer, BayesianLinearLayer, RegularizedHorseshoeLayer
from uq360.models.noise_models.homoscedastic_noise_models import GaussianNoiseGammaPrecision
import numpy as np
td = torch.distributions


class HshoeBNN(nn.Module, ABC):
    """"""
     Bayesian neural network with Horseshoe layers.
    """"""
    def __init__(self, ip_dim=1, op_dim=1, num_nodes=50, activation_type='relu', num_layers=1,
                 hshoe_scale=1e-1, use_reg_hshoe=False):
        if use_reg_hshoe:
            layer = RegularizedHorseshoeLayer
        else:
            layer = HorseshoeLayer
        super(HshoeBNN, self).__init__()
        self.num_layers = num_layers
        if activation_type == 'relu':
            # activation
            self.activation = nn.ReLU()
        elif activation_type == 'tanh':
            self.activation = nn.Tanh()
        else:
            print(""Activation Type not supported"")
        self.fc_hidden = []
        self.fc1 = layer(ip_dim, num_nodes, scale=hshoe_scale)
        for _ in np.arange(self.num_layers - 1):
            self.fc_hidden.append(layer(num_nodes, num_nodes))
        self.fc_out = BayesianLinearLayer(num_nodes, op_dim)
        self.noise_layer = None

    def forward(self, x, do_sample=True):
        x = self.fc1(x, do_sample=do_sample)
        x = self.activation(x)
        for layer in self.fc_hidden:
            x = layer(x, do_sample=do_sample)
            x = self.activation(x)
        return self.fc_out(x, do_sample=do_sample, scale_variances=True)

    def kl_divergence_w(self):
        kld = self.fc1.kl() + self.fc_out.kl()
        for layer in self.fc_hidden:
            kld += layer.kl()
        return kld

    def fixed_point_updates(self):
        if hasattr(self.fc1, 'fixed_point_updates'):
            self.fc1.fixed_point_updates()
        if hasattr(self.fc_out, 'fixed_point_updates'):
            self.fc_out.fixed_point_updates()
        for layer in self.fc_hidden:
            if hasattr(layer, 'fixed_point_updates'):
                layer.fixed_point_updates()

    def prior_predictive_samples(self, n_sample=100):
        n_eval = 1000
        x = torch.linspace(-2, 2, n_eval)[:, np.newaxis]
        y = np.zeros([n_sample, n_eval])
        for i in np.arange(n_sample):
            y[i] = self.forward(x).data.numpy().ravel()
        return x.data.numpy(), y

    ### get and set weights ###
    def get_weights(self):
        assert len(self.fc_hidden) == 0 # only works for one layer networks.
        weight_dict = {}
        weight_dict['layerip_means'] = torch.cat([self.fc1.weights, self.fc1.bias.unsqueeze(1)], dim=1).data.numpy()
        weight_dict['layerip_logvar'] = torch.cat([self.fc1.weights_logvar, self.fc1.bias_logvar.unsqueeze(1)], dim=1).data.numpy()
        weight_dict['layerop_means'] = torch.cat([self.fc_out.weights, self.fc_out.bias.unsqueeze(1)], dim=1).data.numpy()
        weight_dict['layerop_logvar'] = torch.cat([self.fc_out.weights_logvar, self.fc_out.bias_logvar.unsqueeze(1)], dim=1).data.numpy()
        return weight_dict

    def set_weights(self, weight_dict):
        assert len(self.fc_hidden) == 0  # only works for one layer networks.
        to_param = lambda x: nn.Parameter(torch.Tensor(x))
        self.fc1.weights = to_param(weight_dict['layerip_means'][:, :-1])
        self.fc1.weights = to_param(weight_dict['layerip_logvar'][:, :-1])
        self.fc1.bias = to_param(weight_dict['layerip_means'][:, -1])
        self.fc1.bias_logvar = to_param(weight_dict['layerip_logvar'][:, -1])

        self.fc_out.weights = to_param(weight_dict['layerop_means'][:, :-1])
        self.fc_out.weights = to_param(weight_dict['layerop_logvar'][:, :-1])
        self.fc_out.bias = to_param(weight_dict['layerop_means'][:, -1])
        self.fc_out.bias_logvar = to_param(weight_dict['layerop_logvar'][:, -1])


class HshoeRegressionNet(HshoeBNN, ABC):
    """"""
    Horseshoe net with N(y_true | f(x, w), \lambda^-1); \lambda ~ Gamma(a, b) likelihoods.
    """"""
    def __init__(self, ip_dim=1, op_dim=1, num_nodes=50, activation_type='relu',
                     num_layers=1, hshoe_scale=1e-5, use_reg_hshoe=False):
        super(HshoeRegressionNet, self).__init__(ip_dim=ip_dim, op_dim=op_dim,
                                                    num_nodes=num_nodes, activation_type=activation_type,
                                                    num_layers=num_layers,
                                                    hshoe_scale=hshoe_scale,
                                                    use_reg_hshoe=use_reg_hshoe)
        self.noise_layer = GaussianNoiseGammaPrecision(a0=6., b0=6.)

    def likelihood(self, x=None, y=None):
        out = self.forward(x)
        return -self.noise_layer.loss(y_pred=out, y_true=y)

    def neg_elbo(self, num_batches, x=None, y=None):
        # scale the KL terms by number of batches so that the minibatch elbo is an unbiased estiamte of the true elbo.
        Elik = self.likelihood(x, y)
        neg_elbo = (self.kl_divergence_w() + self.noise_layer.kl()) / num_batches - Elik
        return neg_elbo

    def mse(self, x, y):
        """"""
        scaled rmse (scaled by 1 / std_y**2)
        """"""
        E_noise_precision = 1. / self.noise_layer.get_noise_var()
        return (0.5 * E_noise_precision * (self.forward(x, do_sample=False) - y)**2).sum()

    def get_noise_var(self):
        return self.noise_layer.get_noise_var()


class HshoeClassificationNet(HshoeBNN, ABC):
    """"""
    Horseshoe net with Categorical(y_true | f(x, w)) likelihoods. Use for classification.
    """"""
    def __init__(self, ip_dim=1, op_dim=1, num_nodes=50, activation_type='relu',
                 num_layers=1, hshoe_scale=1e-5, use_reg_hshoe=False):
        super(HshoeClassificationNet, self).__init__(ip_dim=ip_dim, op_dim=op_dim,
                                                    num_nodes=num_nodes, activation_type=activation_type,
                                                    num_layers=num_layers,
                                                     hshoe_scale=hshoe_scale,
                                                     use_reg_hshoe=use_reg_hshoe)
        self.noise_layer = torch.nn.CrossEntropyLoss(reduction='sum')

    def likelihood(self, x=None, y=None):
        out = self.forward(x)
        return -self.noise_layer(out, y)

    def neg_elbo(self, num_batches, x=None, y=None):
        # scale the KL terms by number of batches so that the minibatch elbo is an unbiased estiamte of the true elbo.
        Elik = self.likelihood(x, y)
        neg_elbo = (self.kl_divergence_w()) / num_batches - Elik
        return neg_elbo




"
bayesian_mlp.py,"from abc import ABC
import torch
from torch import nn
from uq360.models.bayesian_neural_networks.layers import BayesianLinearLayer
from uq360.models.noise_models.homoscedastic_noise_models import GaussianNoiseGammaPrecision
import numpy as np
td = torch.distributions


class BayesianNN(nn.Module, ABC):
    """"""
     Bayesian neural network with zero mean Gaussian priors over weights.
    """"""
    def __init__(self, layer=BayesianLinearLayer, ip_dim=1, op_dim=1, num_nodes=50,
                 activation_type='relu', num_layers=1):
        super(BayesianNN, self).__init__()
        self.num_layers = num_layers
        if activation_type == 'relu':
            # activation
            self.activation = nn.ReLU()
        elif activation_type == 'tanh':
            self.activation = nn.Tanh()
        else:
            print(""Activation Type not supported"")
        self.fc_hidden = []
        self.fc1 = layer(ip_dim, num_nodes,)
        for _ in np.arange(self.num_layers - 1):
            self.fc_hidden.append(layer(num_nodes, num_nodes, ))
        self.fc_out = layer(num_nodes, op_dim, )
        self.noise_layer = None

    def forward(self, x, do_sample=True):
        x = self.fc1(x, do_sample=do_sample)
        x = self.activation(x)
        for layer in self.fc_hidden:
            x = layer(x, do_sample=do_sample)
            x = self.activation(x)
        return self.fc_out(x, do_sample=do_sample, scale_variances=True)

    def kl_divergence_w(self):
        kld = self.fc1.kl() + self.fc_out.kl()
        for layer in self.fc_hidden:
            kld += layer.kl()
        return kld

    def prior_predictive_samples(self, n_sample=100):
        n_eval = 1000
        x = torch.linspace(-2, 2, n_eval)[:, np.newaxis]
        y = np.zeros([n_sample, n_eval])
        for i in np.arange(n_sample):
            y[i] = self.forward(x).data.numpy().ravel()
        return x.data.numpy(), y

    ### get and set weights ###
    def get_weights(self):
        assert len(self.fc_hidden) == 0 # only works for one layer networks.
        weight_dict = {}
        weight_dict['layerip_means'] = torch.cat([self.fc1.weights, self.fc1.bias.unsqueeze(1)], dim=1).data.numpy()
        weight_dict['layerip_logvar'] = torch.cat([self.fc1.weights_logvar, self.fc1.bias_logvar.unsqueeze(1)], dim=1).data.numpy()
        weight_dict['layerop_means'] = torch.cat([self.fc_out.weights, self.fc_out.bias.unsqueeze(1)], dim=1).data.numpy()
        weight_dict['layerop_logvar'] = torch.cat([self.fc_out.weights_logvar, self.fc_out.bias_logvar.unsqueeze(1)], dim=1).data.numpy()
        return weight_dict

    def set_weights(self, weight_dict):
        assert len(self.fc_hidden) == 0  # only works for one layer networks.
        to_param = lambda x: nn.Parameter(torch.Tensor(x))
        self.fc1.weights = to_param(weight_dict['layerip_means'][:, :-1])
        self.fc1.weights = to_param(weight_dict['layerip_logvar'][:, :-1])
        self.fc1.bias = to_param(weight_dict['layerip_means'][:, -1])
        self.fc1.bias_logvar = to_param(weight_dict['layerip_logvar'][:, -1])

        self.fc_out.weights = to_param(weight_dict['layerop_means'][:, :-1])
        self.fc_out.weights = to_param(weight_dict['layerop_logvar'][:, :-1])
        self.fc_out.bias = to_param(weight_dict['layerop_means'][:, -1])
        self.fc_out.bias_logvar = to_param(weight_dict['layerop_logvar'][:, -1])


class BayesianRegressionNet(BayesianNN, ABC):
    """"""
    Bayesian neural net with N(y_true | f(x, w), \lambda^-1); \lambda ~ Gamma(a, b) likelihoods.
    """"""
    def __init__(self, layer=BayesianLinearLayer, ip_dim=1, op_dim=1, num_nodes=50, activation_type='relu',
                     num_layers=1):
        super(BayesianRegressionNet, self).__init__(layer=layer, ip_dim=ip_dim, op_dim=op_dim,
                                                    num_nodes=num_nodes, activation_type=activation_type,
                                                    num_layers=num_layers,
                                                    )
        self.noise_layer = GaussianNoiseGammaPrecision(a0=6., b0=6.)

    def likelihood(self, x=None, y=None):
        out = self.forward(x)
        return -self.noise_layer.loss(y_pred=out, y_true=y)

    def neg_elbo(self, num_batches, x=None, y=None):
        # scale the KL terms by number of batches so that the minibatch elbo is an unbiased estiamte of the true elbo.
        Elik = self.likelihood(x, y)
        neg_elbo = (self.kl_divergence_w() + self.noise_layer.kl()) / num_batches - Elik
        return neg_elbo

    def mse(self, x, y):
        """"""
        scaled rmse (scaled by 1 / std_y**2)
        """"""
        E_noise_precision = 1. / self.noise_layer.get_noise_var()
        return (0.5 * E_noise_precision * (self.forward(x, do_sample=False) - y)**2).sum()

    def get_noise_var(self):
        return self.noise_layer.get_noise_var()


class BayesianClassificationNet(BayesianNN, ABC):
    """"""
    Bayesian neural net with Categorical(y_true | f(x, w)) likelihoods. Use for classification.
    """"""
    def __init__(self, layer=BayesianLinearLayer, ip_dim=1, op_dim=1, num_nodes=50, activation_type='relu',
                 num_layers=1):
        super(BayesianClassificationNet, self).__init__(layer=layer, ip_dim=ip_dim, op_dim=op_dim,
                                                    num_nodes=num_nodes, activation_type=activation_type,
                                                    num_layers=num_layers)
        self.noise_layer = torch.nn.CrossEntropyLoss(reduction='sum')

    def likelihood(self, x=None, y=None):
        out = self.forward(x)
        return -self.noise_layer(out, y)

    def neg_elbo(self, num_batches, x=None, y=None):
        # scale the KL terms by number of batches so that the minibatch elbo is an unbiased estiamte of the true elbo.
        Elik = self.likelihood(x, y)
        neg_elbo = self.kl_divergence_w() / num_batches - Elik
        return neg_elbo




"
homoscedastic_noise_models.py,"import math

import numpy as np
import torch
from scipy.special import gammaln
from uq360.models.noise_models.noisemodel import AbstractNoiseModel
from torch.nn import Parameter

td = torch.distributions


def transform(a):
    return torch.log(1 + torch.exp(a))


class GaussianNoiseGammaPrecision(torch.nn.Module, AbstractNoiseModel):
    """"""
        N(y_true | f(x, w), \lambda^-1); \lambda ~ Gamma(a, b).
        Uses a variational approximation; q(lambda) = Gamma(ahat, bhat)
    """"""

    def __init__(self, a0=6, b0=6, cuda=False):
        super(GaussianNoiseGammaPrecision, self).__init__()
        self.cuda = cuda
        self.a0 = a0
        self.b0 = b0
        self.const = torch.log(torch.FloatTensor([2 * math.pi]))
        # variational parameters
        self.ahat = Parameter(torch.FloatTensor([10.]))
        self.bhat = Parameter(torch.FloatTensor([3.]))

    def loss(self, y_pred=None, y_true=None):
        """"""
        computes -1 *  E_q(\lambda)[ln N (y_pred | y_true, \lambda^-1)], where q(lambda) = Gamma(ahat, bhat)
        :param y_pred:
        :param y_true:
        :return:
        """"""
        n = y_pred.shape[0]
        ahat = transform(self.ahat)
        bhat = transform(self.bhat)
        return -1 * (-0.5 * n * self.const + 0.5 * n * (torch.digamma(ahat) - torch.log(bhat)) \
                     - 0.5 * (ahat/bhat) * ((y_pred - y_true) ** 2).sum())

    def kl(self):
        ahat = transform(self.ahat)
        bhat = transform(self.bhat)
        return (ahat - self.a0) * torch.digamma(ahat) - torch.lgamma(ahat) + gammaln(self.a0) + \
            self.a0 * (torch.log(bhat) - np.log(self.b0)) + ahat * (self.b0 - bhat) / bhat

    def get_noise_var(self):
        ahat = transform(self.ahat)
        bhat = transform(self.bhat)
        return (bhat / ahat).data.numpy()[0]


class GaussianNoiseFixedPrecision(torch.nn.Module, AbstractNoiseModel):
    """"""
        N(y_true | f(x, w), sigma_y**2); known sigma_y
    """"""

    def __init__(self, std_y=1., cuda=False):
        super(GaussianNoiseFixedPrecision, self).__init__()
        self.cuda = cuda
        self.const = torch.log(torch.FloatTensor([2 * math.pi]))
        self.sigma_y = std_y

    def loss(self, y_pred=None, y_true=None):
        """"""
        computes -1 *  ln N (y_pred | y_true, sigma_y**2)
        :param y_pred:
        :param y_true:
        :return:
        """"""
        ll = -0.5 * self.const - np.log(self.sigma_y) - 0.5 * (1. / self.sigma_y ** 2) * ((y_pred - y_true) ** 2)
        return -ll.sum(dim=0)

    def get_noise_var(self):
        return self.sigma_y ** 2"
heteroscedastic_noise_models.py,"import math

import numpy as np
import torch
from scipy.special import gammaln
from uq360.models.noise_models.noisemodel import AbstractNoiseModel
from torch.nn import Parameter

td = torch.distributions


def transform(a):
    return torch.log(1 + torch.exp(a))


class GaussianNoise(torch.nn.Module, AbstractNoiseModel):
    """"""
        N(y_true | f_\mu(x, w), f_\sigma^2(x, w))
    """"""

    def __init__(self, cuda=False):
        super(GaussianNoise, self).__init__()
        self.cuda = cuda
        self.const = torch.log(torch.FloatTensor([2 * math.pi]))

    def loss(self, y_true=None, mu_pred=None, log_var_pred=None, reduce_mean=True):
        """"""
        computes -1 *  ln N (y_true | mu_pred, softplus(log_var_pred))
        :param y_true:
        :param mu_pred:
        :param log_var_pred:

        :return:
        """"""
        var_pred = transform(log_var_pred)
        ll = -0.5 * self.const - 0.5 * torch.log(var_pred) - 0.5 * (1. / var_pred) * ((mu_pred - y_true) ** 2)
        if reduce_mean:
            return -ll.mean(dim=0)
        else:
            return -ll.sum(dim=0)

    def get_noise_var(self, log_var_pred):
        return transform(log_var_pred)


"
noisemodel.py,"import abc
import sys

# Ensure compatibility with Python 2/3
if sys.version_info >= (3, 4):
    ABC = abc.ABC
else:
    ABC = abc.ABCMeta(str('ABC'), (), {})


class AbstractNoiseModel(ABC):
    """""" Abstract class. All noise models inherit from here.
    """"""

    def __init__(self, *argv, **kwargs):
        """""" Initialize an AbstractNoiseModel object.
        """"""

    @abc.abstractmethod
    def loss(self, *argv, **kwargs):
        """""" Compute loss given predictions and groundtruth labels
        """"""
        raise NotImplementedError

    @abc.abstractmethod
    def get_noise_var(self, *argv, **kwargs):
        """"""
        Return the current estimate of noise variance
        """"""
        raise NotImplementedError
"
builtinuq.py,"import abc
import sys

# Ensure compatibility with Python 2/3
if sys.version_info >= (3, 4):
    ABC = abc.ABC
else:
    ABC = abc.ABCMeta(str('ABC'), (), {})


class BuiltinUQ(ABC):
    """""" BuiltinUQ is the base class for any algorithm that has UQ built into it.
    """"""

    def __init__(self, *argv, **kwargs):
        """""" Initialize a BuiltinUQ object.
        """"""

    @abc.abstractmethod
    def fit(self, *argv, **kwargs):
        """""" Learn the UQ related parameters..
        """"""
        raise NotImplementedError

    @abc.abstractmethod
    def predict(self, *argv, **kwargs):
        """""" Method to obtain the predicitve uncertainty, this can return the total, epistemic and/or aleatoric
         uncertainty in the predictions.
        """"""
        raise NotImplementedError

    def set_params(self, **parameters):
        for parameter, value in parameters.items():
            setattr(self, parameter, value)
        return self


"
posthocuq.py,"import abc
import sys

# Ensure compatibility with Python 2/3
if sys.version_info >= (3, 4):
    ABC = abc.ABC
else:
    ABC = abc.ABCMeta(str('ABC'), (), {})


class PostHocUQ(ABC):
    """""" PostHocUQ is the base class for any algorithm that quantifies uncertainty of a pre-trained model.
    """"""

    def __init__(self, *argv, **kwargs):
        """""" Initialize a BuiltinUQ object.
        """"""

    @abc.abstractmethod
    def _process_pretrained_model(self, *argv, **kwargs):
        """""" Method to process the pretrained model that requires UQ.
        """"""
        raise NotImplementedError

    @abc.abstractmethod
    def predict(self, *argv, **kwargs):
        """""" Method to obtain the predicitve uncertainty, this can return the total, epistemic and/or aleatoric
         uncertainty in the predictions.
        """"""
        raise NotImplementedError

    def set_params(self, **parameters):
        for parameter, value in parameters.items():
            setattr(self, parameter, value)
        return self

    def get_params(self):
        """"""
         This method should not take any arguments and returns a dict of the __init__ parameters.

        """"""
        raise NotImplementedError
"
__init__.py,"from .ucc_recalibration import UCCRecalibration
"
ucc_recalibration.py,"from collections import namedtuple

from uq360.algorithms.posthocuq import PostHocUQ
from uq360.utils.misc import form_D_for_auucc
from uq360.metrics.uncertainty_characteristics_curve.uncertainty_characteristics_curve import UncertaintyCharacteristicsCurve


class UCCRecalibration(PostHocUQ):
    """""" Recalibration a regression model to specified operating point using Uncertainty Characteristics Curve.
    """"""

    def __init__(self, base_model):
        """"""
        Args:
            base_model: pretrained model to be recalibrated.
        """"""
        super(UCCRecalibration).__init__()
        self.base_model = self._process_pretrained_model(base_model)
        self.ucc = None

    def get_params(self, deep=True):
        return {""base_model"": self.base_model}

    def _process_pretrained_model(self, base_model):
        return base_model

    def fit(self, X, y):
        """"""
        Fit the Uncertainty Characteristics Curve.

        Args:
            X: array-like of shape (n_samples, n_features).
                Features vectors of the test points.
            y: array-like of shape (n_samples,) or (n_samples, n_targets)
                Target values

        Returns:
            self

        """"""
        y_pred_mean, y_pred_lower, y_pred_upper = self.base_model.predict(X)[:3]
        bwu = y_pred_upper - y_pred_mean
        bwl = y_pred_mean - y_pred_lower
        self.ucc = UncertaintyCharacteristicsCurve()
        self.ucc.fit(form_D_for_auucc(y_pred_mean, bwl, bwu), y.squeeze())

        return self

    def predict(self, X, missrate=0.05):
        """"""
        Generate prediction and uncertainty bounds for data X.

        Args:
            X: array-like of shape (n_samples, n_features).
                Features vectors of the test points.
            missrate: desired missrate of the new operating point, set to 0.05 by default.

        Returns:
            namedtuple: A namedtupe that holds

            y_mean: ndarray of shape (n_samples, [n_output_dims])
                Mean of predictive distribution of the test points.
            y_lower: ndarray of shape (n_samples, [n_output_dims])
                Lower quantile of predictive distribution of the test points.
            y_upper: ndarray of shape (n_samples, [n_output_dims])
                Upper quantile of predictive distribution of the test points.
        """"""
        C = self.ucc.get_specific_operating_point(req_y_axis_value=missrate, vary_bias=False)
        new_scale = C['modvalue']

        y_pred_mean, y_pred_lower, y_pred_upper = self.base_model.predict(X)[:3]
        bwu = y_pred_upper - y_pred_mean
        bwl = y_pred_mean - y_pred_lower

        if C['operation'] == 'bias':
            calib_y_pred_upper = y_pred_mean + (new_scale + bwu)  # lower bound width
            calib_y_pred_lower = y_pred_mean - (new_scale + bwl)  # Upper bound width
        else:
            calib_y_pred_upper = y_pred_mean + (new_scale * bwu)  # lower bound width
            calib_y_pred_lower = y_pred_mean - (new_scale * bwl)  # Upper bound width

        Result = namedtuple('res', ['y_mean', 'y_lower', 'y_upper'])
        res = Result(y_pred_mean, calib_y_pred_lower, calib_y_pred_upper)

        return res
"
__init__.py,"from .classification_calibration import ClassificationCalibration
"
classification_calibration.py,"from collections import namedtuple

import numpy as np

from sklearn.calibration import CalibratedClassifierCV
from sklearn.preprocessing import LabelEncoder

from uq360.utils.misc import DummySklearnEstimator
from uq360.algorithms.posthocuq import PostHocUQ


class ClassificationCalibration(PostHocUQ):
    """"""Post hoc calibration of classification models. Currently wraps `CalibratedClassifierCV` from sklearn and allows
    non-sklearn models to be calibrated.

    """"""
    def __init__(self, num_classes, fit_mode=""features"", method='isotonic', base_model_prediction_func=None):
        """"""

        Args:
            num_classes: number of classes.
            fit_mode: features or probs. If probs the `fit` and `predict` operate on the base models probability scores,
                useful when these are precomputed.
            method: isotonic or sigmoid.
            base_model_prediction_func: the function that takes in the input features and produces base model's
                probability scores. This is ignored when operating in `probs` mode.
        """"""
        super(ClassificationCalibration).__init__()
        if fit_mode == ""probs"":
            # In this case, the fit assumes that it receives the probability scores of the base model.
            # create a dummy estimator
            self.base_model = DummySklearnEstimator(num_classes, lambda x: x)
        else:
            self.base_model = DummySklearnEstimator(num_classes, base_model_prediction_func)
        self.method = method

    def get_params(self, deep=True):
        return {""num_classes"": self.num_classes, ""fit_mode"": self.fit_mode, ""method"": self.method,
                ""base_model_prediction_func"": self.base_model_prediction_func}

    def _process_pretrained_model(self, base_model):
        return base_model

    def fit(self, X, y):
        """""" Fits calibration model using the provided calibration set.

        Args:
            X: array-like of shape (n_samples, n_features) or (n_samples, n_classes).
                Features vectors of the training data or the probability scores from the base model.
            y: array-like of shape (n_samples,) or (n_samples, n_targets)
                Target values

        Returns:
            self

        """"""

        self.base_model.label_encoder_ = LabelEncoder().fit(y)
        self.calib_model = CalibratedClassifierCV(base_estimator=self.base_model,
                                                  cv=""prefit"",
                                                  method=self.method)
        self.calib_model.fit(X, y)

        return self

    def predict(self, X):
        """"""
        Obtain calibrated predictions for the test points.

        Args:
            X: array-like of shape (n_samples, n_features) or (n_samples, n_classes).
                Features vectors of the training data or the probability scores from the base model.

        Returns:
            namedtuple: A namedtupe that holds

            y_pred: ndarray of shape (n_samples,)
                Predicted labels of the test points.
            y_prob: ndarray of shape (n_samples, n_classes)
                Predicted probability scores of the classes.

        """"""
        y_prob = self.calib_model.predict_proba(X)
        if len(np.shape(y_prob)) == 1:
            y_pred_labels = y_prob > 0.5

        else:
            y_pred_labels = np.argmax(y_prob, axis=1)

        Result = namedtuple('res', ['y_pred', 'y_prob'])
        res = Result(y_pred_labels, y_prob)

        return res
"
auxiliary_interval_predictor.py,"from collections import namedtuple

import numpy as np
import torch
import torch.nn.functional as F
from scipy.stats import norm
from torch.utils.data import DataLoader
from torch.utils.data import TensorDataset

from uq360.algorithms.builtinuq import BuiltinUQ

np.random.seed(42)
torch.manual_seed(42)


class _MLPNet_Main(torch.nn.Module):
    def __init__(self, num_features, num_outputs, num_hidden):
        super(_MLPNet_Main, self).__init__()
        self.fc = torch.nn.Linear(num_features, num_hidden)
        self.fc_mu = torch.nn.Linear(num_hidden, num_outputs)
        self.fc_log_var = torch.nn.Linear(num_hidden, num_outputs)

    def forward(self, x):
        x = F.relu(self.fc(x))
        mu = self.fc_mu(x)
        log_var = self.fc_log_var(x)
        return mu, log_var


class _MLPNet_Aux(torch.nn.Module):
    def __init__(self, num_features, num_outputs, num_hidden):
        super(_MLPNet_Aux, self).__init__()
        self.fc = torch.nn.Linear(num_features, num_hidden)
        self.fc_log_var = torch.nn.Linear(num_hidden, num_outputs)

    def forward(self, x):
        x = F.relu(self.fc(x))
        log_var = self.fc_log_var(x)
        return log_var


class AuxiliaryIntervalPredictor(BuiltinUQ):
    """""" Auxiliary Interval Predictor [1]_ uses an auxiliary model to encourage calibration of the main model.

    References:
        .. [1] Thiagarajan, J. J., Venkatesh, B., Sattigeri, P., & Bremer, P. T. (2020, April). Building calibrated deep
         models via uncertainty matching with auxiliary interval predictors. In Proceedings of the AAAI Conference on
         Artificial Intelligence (Vol. 34, No. 04, pp. 6005-6012). https://arxiv.org/abs/1909.04079
    """"""

    def __init__(self, model_type=None, main_model=None, aux_model=None, config=None, device=None, verbose=True):
        """"""
        Args:
            model_type: The model type used to build the main model and the auxiliary model. Currently supported values
             are [mlp, custom]. `mlp` modeltype learns a mlp neural network using pytorch framework. For `custom` the user
             provide `main_model` and `aux_model`.
            main_model: (optional) The main prediction model. Currently support pytorch models that return mean and log variance.
            aux_model: (optional) The auxiliary prediction model. Currently support pytorch models that return calibrated log variance.
            config: dictionary containing the config parameters for the model.
            device: device used for pytorch models ignored otherwise.
            verbose: if True, print statements with the progress are enabled.
        """"""

        super(AuxiliaryIntervalPredictor).__init__()
        self.config = config
        self.device = device
        self.verbose = verbose
        if model_type == ""mlp"":
            self.model_type = model_type
            self.main_model = _MLPNet_Main(
                num_features=self.config[""num_features""],
                num_outputs=self.config[""num_outputs""],
                num_hidden=self.config[""num_hidden""],
            )
            self.aux_model = _MLPNet_Aux(
                num_features=self.config[""num_features""],
                num_outputs=self.config[""num_outputs""],
                num_hidden=self.config[""num_hidden""],
            )
        elif model_type == ""custom"":
            self.model_type = model_type
            self.main_model = main_model
            self.aux_model = aux_model

        else:
            raise NotImplementedError

    def get_params(self, deep=True):
        return {""model_type"": self.model_type, ""config"": self.config, ""main_model"": self.main_model,
                ""aux_model"": self.aux_model, ""device"": self.device, ""verbose"": self.verbose}

    def _main_model_loss(self, y_true, y_pred_mu, y_pred_log_var, y_pred_log_var_aux):
        r = torch.abs(y_true - y_pred_mu)
        # + 0.5 * y_pred_log_var +
        loss = torch.mean(0.5 * torch.exp(-y_pred_log_var) * r ** 2) + \
               self.config[""lambda_match""] * torch.mean(torch.abs(torch.exp(0.5 * y_pred_log_var) - torch.exp(0.5 * y_pred_log_var_aux)))
        return loss

    def _aux_model_loss(self, y_true, y_pred_mu, y_pred_log_var_aux):
        deltal = deltau = 2.0 * torch.exp(0.5 * y_pred_log_var_aux)
        upper = y_pred_mu + deltau
        lower = y_pred_mu - deltal
        width = upper - lower
        r = torch.abs(y_true - y_pred_mu)

        emce = torch.mean(torch.sigmoid((y_true - lower) * (upper - y_true) * 100000))

        loss_emce = torch.abs(self.config[""calibration_alpha""]-emce)
        loss_noise = torch.mean(torch.abs(0.5 * width - r))
        loss_sharpness = torch.mean(torch.abs(upper - y_true)) + torch.mean(torch.abs(lower - y_true))

        #print(emce)
        return loss_emce + self.config[""lambda_noise""] * loss_noise + self.config[""lambda_sharpness""] * loss_sharpness

    def fit(self, X, y):
        """""" Fit the Auxiliary Interval Predictor model.

        Args:
            X: array-like of shape (n_samples, n_features).
                Features vectors of the training data.
            y: array-like of shape (n_samples,) or (n_samples, n_targets)
                Target values

        Returns:
            self

        """"""

        X = torch.from_numpy(X).float().to(self.device)
        y = torch.from_numpy(y).float().to(self.device)

        dataset_loader = DataLoader(
            TensorDataset(X,y),
            batch_size=self.config[""batch_size""]
        )
        optimizer_main_model = torch.optim.Adam(self.main_model.parameters(), lr=self.config[""lr""])
        optimizer_aux_model = torch.optim.Adam(self.aux_model.parameters(), lr=self.config[""lr""])

        for it in range(self.config[""num_outer_iters""]):

            # Train the main model
            for epoch in range(self.config[""num_main_iters""]):
                avg_mean_model_loss = 0.0
                for batch_x, batch_y in dataset_loader:
                    self.main_model.train()
                    self.aux_model.eval()
                    batch_y_pred_log_var_aux = self.aux_model(batch_x)
                    batch_y_pred_mu, batch_y_pred_log_var = self.main_model(batch_x)
                    main_loss = self._main_model_loss(batch_y, batch_y_pred_mu, batch_y_pred_log_var, batch_y_pred_log_var_aux)
                    optimizer_main_model.zero_grad()
                    main_loss.backward()
                    optimizer_main_model.step()

                    avg_mean_model_loss += main_loss.item()/len(dataset_loader)

                if self.verbose:
                    print(""Iter: {},  Epoch: {}, main_model_loss = {}"".format(it, epoch, avg_mean_model_loss))

            # Train the auxiliary model
            for epoch in range(self.config[""num_aux_iters""]):
                avg_aux_model_loss = 0.0
                for batch_x, batch_y in dataset_loader:
                    self.aux_model.train()
                    self.main_model.eval()
                    batch_y_pred_log_var_aux = self.aux_model(batch_x)
                    batch_y_pred_mu, batch_y_pred_log_var = self.main_model(batch_x)
                    aux_loss = self._aux_model_loss(batch_y, batch_y_pred_mu, batch_y_pred_log_var_aux)
                    optimizer_aux_model.zero_grad()
                    aux_loss.backward()
                    optimizer_aux_model.step()

                    avg_aux_model_loss += aux_loss.item() / len(dataset_loader)

                if self.verbose:
                    print(""Iter: {},  Epoch: {}, aux_model_loss = {}"".format(it, epoch, avg_aux_model_loss))

        return self

    def predict(self, X, return_dists=False):
        """"""
        Obtain predictions for the test points.

        In addition to the mean and lower/upper bounds, also returns full predictive distribution (return_dists=True).

        Args:
            X: array-like of shape (n_samples, n_features).
                Features vectors of the test points.
            return_dists: If True, the predictive distribution for each instance using scipy distributions is returned.

        Returns:
            namedtuple: A namedtupe that holds

            y_mean: ndarray of shape (n_samples, [n_output_dims])
                Mean of predictive distribution of the test points.
            y_lower: ndarray of shape (n_samples, [n_output_dims])
                Lower quantile of predictive distribution of the test points.
            y_upper: ndarray of shape (n_samples, [n_output_dims])
                Upper quantile of predictive distribution of the test points.
            dists: list of predictive distribution as `scipy.stats` objects with length n_samples.
                Only returned when `return_dists` is True.
        """"""

        self.main_model.eval()

        X = torch.from_numpy(X).float().to(self.device)
        dataset_loader = DataLoader(
            X,
            batch_size=self.config[""batch_size""]
        )

        y_mean_list = []
        y_log_var_list = []
        for batch_x in dataset_loader:
            batch_y_pred_mu, batch_y_pred_log_var = self.main_model(batch_x)
            y_mean_list.append(batch_y_pred_mu.data.cpu().numpy())
            y_log_var_list.append(batch_y_pred_log_var.data.cpu().numpy())

        y_mean = np.concatenate(y_mean_list)
        y_log_var = np.concatenate(y_log_var_list)
        y_std = np.sqrt(np.exp(y_log_var))
        y_lower = y_mean - 2.0*y_std
        y_upper = y_mean + 2.0*y_std

        Result = namedtuple('res', ['y_mean', 'y_lower', 'y_upper'])
        res = Result(y_mean, y_lower, y_upper)

        if return_dists:
            dists = [norm(loc=y_mean[i], scale=y_std[i]) for i in range(y_mean.shape[0])]
            Result = namedtuple('res', Result._fields + ('y_dists',))
            res = Result(*res, y_dists=dists)

        return res
"
__init__.py,"from .auxiliary_interval_predictor import AuxiliaryIntervalPredictor
"
bnn.py,"import copy
from collections import namedtuple

import numpy as np
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader
import torch.utils.data as data_utils
from scipy.stats import norm
from sklearn.preprocessing import StandardScaler

from uq360.algorithms.builtinuq import BuiltinUQ
from uq360.models.bayesian_neural_networks.bnn_models import horseshoe_mlp, bayesian_mlp


class BnnRegression(BuiltinUQ):
    """"""
    Variationally trained BNNs with Gaussian and Horseshoe [6]_ priors for regression.

    References:
        .. [6] Ghosh, Soumya, Jiayu Yao, and Finale Doshi-Velez. ""Structured variational learning of Bayesian neural
            networks with horseshoe priors."" International Conference on Machine Learning. PMLR, 2018.
    """"""
    def __init__(self,  config, prior=""Gaussian""):
        """"""

        Args:
            config: a dictionary specifying network and learning hyperparameters.
            prior: BNN priors specified as a string. Supported priors are Gaussian, Hshoe, RegHshoe
        """"""
        super(BnnRegression, self).__init__()
        self.config = config
        if prior == ""Gaussian"":
            self.net = bayesian_mlp.BayesianRegressionNet(ip_dim=config['ip_dim'], op_dim=config['op_dim'],
                                          num_nodes=config['num_nodes'], num_layers=config['num_layers'])
            self.config['use_reg_hshoe'] = None
        elif prior == ""Hshoe"":
            self.net = horseshoe_mlp.HshoeRegressionNet(ip_dim=config['ip_dim'], op_dim=config['op_dim'],
                                          num_nodes=config['num_nodes'], num_layers=config['num_layers'],
                                                       hshoe_scale=config['hshoe_scale'])
            self.config['use_reg_hshoe'] = False
        elif prior == ""RegHshoe"":
            self.net = horseshoe_mlp.HshoeRegressionNet(ip_dim=config['ip_dim'], op_dim=config['op_dim'],
                                                   num_nodes=config['num_nodes'], num_layers=config['num_layers'],
                                                   hshoe_scale=config['hshoe_scale'],
                                                   use_reg_hshoe=config['use_reg_hshoe'])
            self.config['use_reg_hshoe'] = True
        else:
            raise NotImplementedError(""'prior' must be a string. It can be one of Gaussian, Hshoe, RegHshoe"")

    def get_params(self, deep=True):
        return {""prior"": self.prior, ""config"": self.config}

    def fit(self, X, y):
        """""" Fit the BNN regression model.

        Args:
            X: array-like of shape (n_samples, n_features).
                Features vectors of the training data.
            y: array-like of shape (n_samples,) or (n_samples, n_targets)
                Target values

        Returns:
            self

        """"""
        torch.manual_seed(1234)
        optimizer = torch.optim.Adam(self.net.parameters(), lr=self.config['step_size'])
        neg_elbo = torch.zeros([self.config['num_epochs'], 1])
        params_store = {}
        for epoch in range(self.config['num_epochs']):
            loss = self.net.neg_elbo(num_batches=1, x=X, y=y.float().unsqueeze(dim=1)) / X.shape[0]
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            if hasattr(self.net, 'fixed_point_updates'):
                # for hshoe or regularized hshoe nets
                self.net.fixed_point_updates()
            neg_elbo[epoch] = loss.item()
            if (epoch + 1) % 10 == 0:
                # print ((net.noise_layer.bhat/net.noise_layer.ahat).data.numpy()[0])
                print('Epoch[{}/{}], neg elbo: {:.6f}, noise var: {:.6f}'
                      .format(epoch + 1, self.config['num_epochs'], neg_elbo[epoch].item() / X.shape[0],
                              self.net.get_noise_var()))
            params_store[epoch] = copy.deepcopy(self.net.state_dict()) # for small nets we can just store all.
        best_model_id = neg_elbo.argmin()  # loss_val_store.argmin() #
        self.net.load_state_dict(params_store[best_model_id.item()])

        return self

    def predict(self, X, mc_samples=100, return_dists=False, return_epistemic=True, return_epistemic_dists=False):
        """"""
        Obtain predictions for the test points.

        In addition to the mean and lower/upper bounds, also returns epistemic uncertainty (return_epistemic=True)
        and full predictive distribution (return_dists=True).

        Args:
            X: array-like of shape (n_samples, n_features).
                Features vectors of the test points.
            mc_samples: Number of Monte-Carlo samples.
            return_dists: If True, the predictive distribution for each instance using scipy distributions is returned.
            return_epistemic: if True, the epistemic upper and lower bounds are returned.
            return_epistemic_dists: If True, the epistemic distribution for each instance using scipy distributions
                is returned.

        Returns:
            namedtuple: A namedtupe that holds

            y_mean: ndarray of shape (n_samples, [n_output_dims])
                Mean of predictive distribution of the test points.
            y_lower: ndarray of shape (n_samples, [n_output_dims])
                Lower quantile of predictive distribution of the test points.
            y_upper: ndarray of shape (n_samples, [n_output_dims])
                Upper quantile of predictive distribution of the test points.
            y_lower_epistemic: ndarray of shape (n_samples, [n_output_dims])
                Lower quantile of epistemic component of the predictive distribution of the test points.
                Only returned when `return_epistemic` is True.
            y_upper_epistemic: ndarray of shape (n_samples, [n_output_dims])
                Upper quantile of epistemic component of the predictive distribution of the test points.
                Only returned when `return_epistemic` is True.
            dists: list of predictive distribution as `scipy.stats` objects with length n_samples.
                Only returned when `return_dists` is True.
        """"""
        epistemic_out = np.zeros([mc_samples, X.shape[0]])
        total_out = np.zeros([mc_samples, X.shape[0]])
        for s in np.arange(mc_samples):
            pred = self.net(X).data.numpy().ravel()
            epistemic_out[s] = pred
            total_out[s] = pred + np.sqrt(self.net.get_noise_var()) * np.random.randn(pred.shape[0])
        y_total_std = np.std(total_out, axis=0)
        y_epi_std = np.std(epistemic_out, axis=0)
        y_mean = np.mean(total_out, axis=0)
        y_lower = y_mean - 2 * y_total_std
        y_upper = y_mean + 2 * y_total_std
        y_epi_lower = y_mean - 2 * y_epi_std
        y_epi_upper = y_mean + 2 * y_epi_std

        Result = namedtuple('res', ['y_mean', 'y_lower', 'y_upper'])
        res = Result(y_mean, y_lower, y_upper)

        if return_epistemic:
            Result = namedtuple('res', Result._fields + ('lower_epistemic', 'upper_epistemic',))
            res = Result(*res, lower_epistemic=y_epi_lower, upper_epistemic=y_epi_upper)

        if return_dists:
            dists = [norm(loc=y_mean[i], scale=y_total_std[i]) for i in range(y_mean.shape[0])]
            Result = namedtuple('res', Result._fields + ('y_dists',))
            res = Result(*res, y_dists=dists)

        if return_epistemic_dists:
            epi_dists = [norm(loc=y_mean[i], scale=y_epi_std[i]) for i in range(y_mean.shape[0])]
            Result = namedtuple('res', Result._fields + ('y_epistemic_dists',))
            res = Result(*res, y_epistemic_dists=epi_dists)

        return res


class BnnClassification(BuiltinUQ):
    """"""
    Variationally trained BNNs with Gaussian and Horseshoe [6]_ priors for classification.
    """"""
    def __init__(self,  config, prior=""Gaussian"", device=None):
        """"""

        Args:
            config: a dictionary specifying network and learning hyperparameters.
            prior: BNN priors specified as a string. Supported priors are Gaussian, Hshoe, RegHshoe
        """"""
        super(BnnClassification, self).__init__()
        self.config = config
        self.device = device
        if prior == ""Gaussian"":
            self.net = bayesian_mlp.BayesianClassificationNet(ip_dim=config['ip_dim'], op_dim=config['op_dim'],
                                          num_nodes=config['num_nodes'], num_layers=config['num_layers'])
            self.config['use_reg_hshoe'] = None
        elif prior == ""Hshoe"":
            self.net = horseshoe_mlp.HshoeClassificationNet(ip_dim=config['ip_dim'], op_dim=config['op_dim'],
                                          num_nodes=config['num_nodes'], num_layers=config['num_layers'],
                                                       hshoe_scale=config['hshoe_scale'])
            self.config['use_reg_hshoe'] = False
        elif prior == ""RegHshoe"":
            self.net = horseshoe_mlp.HshoeClassificationNet(ip_dim=config['ip_dim'], op_dim=config['op_dim'],
                                                   num_nodes=config['num_nodes'], num_layers=config['num_layers'],
                                                   hshoe_scale=config['hshoe_scale'],
                                                   use_reg_hshoe=config['use_reg_hshoe'])
            self.config['use_reg_hshoe'] = True
        else:
            raise NotImplementedError(""'prior' must be a string. It can be one of Gaussian, Hshoe, RegHshoe"")
        if ""batch_size"" not in self.config:
            self.config[""batch_size""] = 50
        self.net = self.net.to(device)

    def get_params(self, deep=True):
        return {""prior"": self.prior, ""config"": self.config, ""device"": self.device}

    def fit(self, X=None, y=None, train_loader=None):
        """""" Fits BNN regression model.

        Args:
            X: array-like of shape (n_samples, n_features) or (n_samples, n_classes).
                Features vectors of the training data or the probability scores from the base model.
                Ignored if train_loader is not None.
            y: array-like of shape (n_samples,) or (n_samples, n_targets)
                Target values
                Ignored if train_loader is not None.
            train_loader: pytorch train_loader object.

        Returns:
            self

        """"""
        if train_loader is None:
            train = data_utils.TensorDataset(torch.Tensor(X), torch.Tensor(y.values).long())
            train_loader = data_utils.DataLoader(train, batch_size=self.config['batch_size'], shuffle=True)

        torch.manual_seed(1234)
        optimizer = torch.optim.Adam(self.net.parameters(), lr=self.config['step_size'])
        neg_elbo = torch.zeros([self.config['num_epochs'], 1])
        params_store = {}
        for epoch in range(self.config['num_epochs']):
            avg_loss = 0.0
            for batch_x, batch_y in train_loader:
                loss = self.net.neg_elbo(num_batches=len(train_loader), x=batch_x, y=batch_y) / batch_x.size(0)
                optimizer.zero_grad()
                loss.backward()
                optimizer.step()

                if hasattr(self.net, 'fixed_point_updates'):
                    # for hshoe or regularized hshoe nets
                    self.net.fixed_point_updates()

                avg_loss += loss.item()

            neg_elbo[epoch] = avg_loss / len(train_loader)

            if (epoch + 1) % 10 == 0:
                # print ((net.noise_layer.bhat/net.noise_layer.ahat).data.numpy()[0])
                print('Epoch[{}/{}], neg elbo: {:.6f}'
                      .format(epoch + 1, self.config['num_epochs'], neg_elbo[epoch].item()))
            params_store[epoch] = copy.deepcopy(self.net.state_dict()) # for small nets we can just store all.
        best_model_id = neg_elbo.argmin()  # loss_val_store.argmin() #
        self.net.load_state_dict(params_store[best_model_id.item()])

        return self

    def predict(self, X, mc_samples=100):
        """"""
        Obtain calibrated predictions for the test points.

        Args:
            X: array-like of shape (n_samples, n_features) or (n_samples, n_classes).
                Features vectors of the training data or the probability scores from the base model.
            mc_samples: Number of Monte-Carlo samples.

        Returns:
            namedtuple: A namedtupe that holds

            y_pred: ndarray of shape (n_samples,)
                Predicted labels of the test points.
            y_prob: ndarray of shape (n_samples, n_classes)
                Predicted probability scores of the classes.
            y_prob_var: ndarray of shape (n_samples,)
                Variance of the prediction on the test points.
            y_prob_samples: ndarray of shape (mc_samples, n_samples, n_classes)
                Samples from the predictive distribution.

        """"""

        X = torch.Tensor(X)
        y_prob_samples = [F.softmax(self.net(X), dim=1).detach().numpy() for _ in np.arange(mc_samples)]

        y_prob_samples_stacked = np.stack(y_prob_samples)
        prob_mean = np.mean(y_prob_samples_stacked, 0)
        prob_var = np.std(y_prob_samples_stacked, 0) ** 2

        if len(np.shape(prob_mean)) == 1:
            y_pred_labels = prob_mean > 0.5

        else:
            y_pred_labels = np.argmax(prob_mean, axis=1)

        Result = namedtuple('res', ['y_pred', 'y_prob', 'y_prob_var', 'y_prob_samples'])
        res = Result(y_pred_labels, prob_mean, prob_var, y_prob_samples)

        return res
"
homoscedastic_gaussian_process_regression.py,"from collections import namedtuple

import botorch
import gpytorch
import numpy as np
import torch
from botorch.models import SingleTaskGP
from botorch.utils.transforms import normalize
from gpytorch.constraints import GreaterThan
from scipy.stats import norm
from sklearn.preprocessing import StandardScaler

from uq360.algorithms.builtinuq import BuiltinUQ

np.random.seed(42)
torch.manual_seed(42)


class HomoscedasticGPRegression(BuiltinUQ):
    """""" A wrapper around Botorch SingleTask Gaussian Process Regression [1]_ with homoscedastic noise.

    References:
        .. [1] https://botorch.org/api/models.html#singletaskgp

    """"""

    def __init__(self,
                 kernel=gpytorch.kernels.ScaleKernel(gpytorch.kernels.RBFKernel()),
                 likelihood=None,
                 config=None):
        """"""
        Args:
            kernel: gpytorch kernel function with default set to `RBFKernel` with output scale.
            likelihood: gpytorch likelihood function with default set to `GaussianLikelihood`.
            config: dictionary containing the config parameters for the model.
        """"""

        super(HomoscedasticGPRegression).__init__()
        self.config = config
        self.kernel = kernel
        self.likelihood = likelihood
        self.model = None
        self.scaler = StandardScaler()
        self.X_bounds = None

    def get_params(self, deep=True):
        return {""kernel"": self.kernel, ""likelihood"": self.likelihood, ""config"": self.config}

    def fit(self, X, y, **kwargs):
        """"""
        Fit the GP Regression model.

        Additional arguments relevant for SingleTaskGP fitting can be passed to this function.

        Args:
            X: array-like of shape (n_samples, n_features).
                Features vectors of the training data.
            y: array-like of shape (n_samples,) or (n_samples, n_targets)
                Target values
            **kwargs: Additional arguments relevant for SingleTaskGP fitting.

        Returns:
            self

        """"""
        y = self.scaler.fit_transform(y)
        X, y = torch.tensor(X), torch.tensor(y)
        self.X_bounds = X_bounds = torch.stack([X.min() * torch.ones(X.shape[1]),
                                X.max() * torch.ones(X.shape[1])])

        X = normalize(X, X_bounds)

        model_homo = SingleTaskGP(train_X=X, train_Y=y, covar_module=self.kernel, likelihood=self.likelihood, **kwargs)
        model_homo.likelihood.noise_covar.register_constraint(""raw_noise"", GreaterThan(1e-5))
        model_homo_marginal_log_lik = gpytorch.mlls.ExactMarginalLogLikelihood(model_homo.likelihood, model_homo)
        botorch.fit.fit_gpytorch_model(model_homo_marginal_log_lik)

        model_homo_marginal_log_lik.eval()

        self.model = model_homo_marginal_log_lik
        self.inferred_observation_noise = self.scaler.inverse_transform(self.model.likelihood.noise.detach().numpy()[0].reshape(1,1)).squeeze()

        return self

    def predict(self, X, return_dists=False, return_epistemic=False, return_epistemic_dists=False):
        """"""
        Obtain predictions for the test points.

        In addition to the mean and lower/upper bounds, also returns epistemic uncertainty (return_epistemic=True)
        and full predictive distribution (return_dists=True).

        Args:
            X: array-like of shape (n_samples, n_features).
                Features vectors of the test points.
            return_dists: If True, the predictive distribution for each instance using scipy distributions is returned.
            return_epistemic: if True, the epistemic upper and lower bounds are returned.
            return_epistemic_dists: If True, the epistemic distribution for each instance using scipy distributions
                is returned.

        Returns:
            namedtuple: A namedtuple that holds

            y_mean: ndarray of shape (n_samples, [n_output_dims])
                Mean of predictive distribution of the test points.
            y_lower: ndarray of shape (n_samples, [n_output_dims])
                Lower quantile of predictive distribution of the test points.
            y_upper: ndarray of shape (n_samples, [n_output_dims])
                Upper quantile of predictive distribution of the test points.
            y_lower_epistemic: ndarray of shape (n_samples, [n_output_dims])
                Lower quantile of epistemic component of the predictive distribution of the test points.
                Only returned when `return_epistemic` is True.
            y_upper_epistemic: ndarray of shape (n_samples, [n_output_dims])
                Upper quantile of epistemic component of the predictive distribution of the test points.
                Only returned when `return_epistemic` is True.
            dists: list of predictive distribution as `scipy.stats` objects with length n_samples.
                Only returned when `return_dists` is True.
        """"""
        X = torch.tensor(X)

        X_test_norm = normalize(X, self.X_bounds)

        self.model.eval()
        with torch.no_grad():
            posterior = self.model.model.posterior(X_test_norm)
            y_mean = posterior.mean
            #y_epi_std = torch.sqrt(posterior.variance)
            y_lower_epistemic, y_upper_epistemic = posterior.mvn.confidence_region()

            predictive_posterior = self.model.model.posterior(X_test_norm, observation_noise=True)
            #y_std = torch.sqrt(predictive_posterior.variance)
            y_lower_total, y_upper_total = predictive_posterior.mvn.confidence_region()

        y_mean, y_lower, y_upper, y_lower_epistemic, y_upper_epistemic = self.scaler.inverse_transform(y_mean.numpy()).squeeze(), \
               self.scaler.inverse_transform(y_lower_total.numpy()).squeeze(),\
               self.scaler.inverse_transform(y_upper_total.numpy()).squeeze(),\
               self.scaler.inverse_transform(y_lower_epistemic.numpy()).squeeze(),\
               self.scaler.inverse_transform(y_upper_epistemic.numpy()).squeeze()

        y_epi_std = (y_upper_epistemic - y_lower_epistemic) / 4.0
        y_std = (y_upper_total - y_lower_total) / 4.0

        Result = namedtuple('res', ['y_mean', 'y_lower', 'y_upper'])
        res = Result(y_mean, y_lower, y_upper)

        if return_epistemic:
            Result = namedtuple('res', Result._fields + ('y_lower_epistemic', 'y_upper_epistemic',))
            res = Result(*res, y_lower_epistemic=y_lower_epistemic, y_upper_epistemic=y_upper_epistemic)

        if return_dists:
            dists = [norm(loc=y_mean[i], scale=y_std[i]) for i in range(y_mean.shape[0])]
            Result = namedtuple('res', Result._fields + ('y_dists',))
            res = Result(*res, y_dists=dists)

        if return_epistemic_dists:
            epi_dists = [norm(loc=y_mean[i], scale=y_epi_std[i]) for i in range(y_mean.shape[0])]
            Result = namedtuple('res', Result._fields + ('y_epistemic_dists',))
            res = Result(*res, y_epistemic_dists=epi_dists)

        return res

"
__init__.py,from .homoscedastic_gaussian_process_regression import HomoscedasticGPRegression
quantile_regression.py,"from collections import namedtuple

from sklearn.ensemble import GradientBoostingRegressor

from uq360.algorithms.builtinuq import BuiltinUQ


class QuantileRegression(BuiltinUQ):
    """"""Quantile Regression uses quantile loss and learns two separate models for the upper and lower quantile
    to obtain the prediction intervals.
    """"""

    def __init__(self, model_type=""gbr"", config=None):
        """"""
        Args:
            model_type: The base model used for predicting a quantile. Currently supported values are [gbr].
                gbr is sklearn GradientBoostingRegressor.
            config: dictionary containing the config parameters for the model.
        """"""

        super(QuantileRegression).__init__()
        if config is not None:
            self.config = config
        else:
            self.config = {}
        if ""alpha"" not in self.config:
            self.config[""alpha""] = 0.95
        if model_type == ""gbr"":
            self.model_type = model_type
            self.model_mean = GradientBoostingRegressor(
                loss='ls',
                n_estimators=self.config[""n_estimators""],
                max_depth=self.config[""max_depth""],
                learning_rate=self.config[""learning_rate""],
                min_samples_leaf=self.config[""min_samples_leaf""],
                min_samples_split=self.config[""min_samples_split""]
            )
            self.model_upper = GradientBoostingRegressor(
                loss='quantile',
                alpha=self.config[""alpha""],
                n_estimators=self.config[""n_estimators""],
                max_depth=self.config[""max_depth""],
                learning_rate=self.config[""learning_rate""],
                min_samples_leaf=self.config[""min_samples_leaf""],
                min_samples_split=self.config[""min_samples_split""]
            )
            self.model_lower = GradientBoostingRegressor(
                loss='quantile',
                alpha=1.0 - self.config[""alpha""],
                n_estimators=self.config[""n_estimators""],
                max_depth=self.config[""max_depth""],
                learning_rate=self.config[""learning_rate""],
                min_samples_leaf=self.config[""min_samples_leaf""],
                min_samples_split=self.config[""min_samples_split""])

        else:
            raise NotImplementedError

    def get_params(self, deep=True):
        return {""model_type"": self.model_type, ""config"": self.config}

    def fit(self, X, y):
        """""" Fit the Quantile Regression model.

        Args:
            X: array-like of shape (n_samples, n_features).
                Features vectors of the training data.
            y: array-like of shape (n_samples,) or (n_samples, n_targets)
                Target values

        Returns:
            self

        """"""

        self.model_mean.fit(X, y)
        self.model_lower.fit(X, y)
        self.model_upper.fit(X, y)

        return self

    def predict(self, X):
        """"""
        Obtain predictions for the test points.

        In addition to the mean and lower/upper bounds, also returns epistemic uncertainty (return_epistemic=True)
        and full predictive distribution (return_dists=True).

        Args:
            X: array-like of shape (n_samples, n_features).
                Features vectors of the test points.

        Returns:
            namedtuple: A namedtupe that holds

            y_mean: ndarray of shape (n_samples, [n_output_dims])
                Mean of predictive distribution of the test points.
            y_lower: ndarray of shape (n_samples, [n_output_dims])
                Lower quantile of predictive distribution of the test points.
            y_upper: ndarray of shape (n_samples, [n_output_dims])
                Upper quantile of predictive distribution of the test points.
        """"""

        y_mean = self.model_mean.predict(X)
        y_lower = self.model_lower.predict(X)
        y_upper = self.model_upper.predict(X)

        Result = namedtuple('res', ['y_mean', 'y_lower', 'y_upper'])
        res = Result(y_mean, y_lower, y_upper)

        return res
"
__init__.py,"from .quantile_regression import QuantileRegression
"
__init__.py,"from .infinitesimal_jackknife import InfinitesimalJackknife
"
infinitesimal_jackknife.py,"from collections import namedtuple

import numpy as np

from uq360.algorithms.posthocuq import PostHocUQ


class InfinitesimalJackknife(PostHocUQ):
    """"""
    Performs a first order Taylor series expansion around MLE / MAP fit.
    Requires the model being probed to be twice differentiable.
    """"""
    def __init__(self, params, gradients, hessian, config):
        """""" Initialize IJ.
        Args:
            params: MLE / MAP fit around which uncertainty is sought. d*1
            gradients: Per data point gradients, estimated at the MLE / MAP fit. d*n
            hessian: Hessian evaluated at the MLE / MAP fit. d*d
        """"""

        super(InfinitesimalJackknife).__init__()
        self.params_one = params
        self.gradients = gradients
        self.hessian = hessian
        self.d, self.n = gradients.shape
        self.dParams_dWeights = -np.linalg.solve(self.hessian, self.gradients)
        self.approx_dParams_dWeights = -np.linalg.solve(np.diag(np.diag(self.hessian)), self.gradients)
        self.w_one = np.ones([self.n])
        self.config = config

    def get_params(self, deep=True):
        return {""params"": self.params, ""config"": self.config, ""gradients"": self.gradients,
                ""hessian"": self.hessian}

    def _process_pretrained_model(self, *argv, **kwargs):
        pass

    def get_parameter_uncertainty(self):
        if (self.config['resampling_strategy'] == ""jackknife"") or (self.config['resampling_strategy'] == ""jackknife+""):
            w_query = np.ones_like(self.w_one)
            resampled_params = np.zeros([self.n, self.d])
            for i in np.arange(self.n):
                w_query[i] = 0
                resampled_params[i] = self.ij(w_query)
                w_query[i] = 1
            return np.cov(resampled_params), resampled_params
        elif self.config['resampling_strategy'] == ""bootstrap"":
            pass
        else:
            raise NotImplementedError(""Only jackknife, jackknife+, and bootstrap resampling strategies are supported"")

    def predict(self, X, model):
        """"""
        Args:
            X: array-like of shape (n_samples, n_features).
                Features vectors of the test points.
            model: model object, must implement a set_parameters function

        Returns:
            namedtuple: A namedtupe that holds

            y_mean: ndarray of shape (n_samples, [n_output_dims])
                Mean of predictive distribution of the test points.
            y_lower: ndarray of shape (n_samples, [n_output_dims])
                Lower quantile of predictive distribution of the test points.
            y_upper: ndarray of shape (n_samples, [n_output_dims])
                Upper quantile of predictive distribution of the test points.

        """"""
        n, _ = X.shape
        y_all = model.predict(X)
        _, d_out = y_all.shape
        params_cov, params = self.get_parameter_uncertainty()
        if d_out > 1:
            print(""Quantiles are computed independently for each dimension. May not be accurate."")
        y = np.zeros([params.shape[0], n, d_out])
        for i in np.arange(params.shape[0]):
            model.set_parameters(params[i])
            y[i] = model.predict(X)
        y_lower = np.quantile(y, q=0.5 * self.config['alpha'], axis=0)
        y_upper = np.quantile(y, q=(1. - 0.5 * self.config['alpha']), axis=0)
        y_mean = y.mean(axis=0)

        Result = namedtuple('res', ['y_mean', 'y_lower', 'y_upper'])
        res = Result(y_mean, y_lower, y_upper)

        return res

    def ij(self, w_query):
        """"""
        Args:
            w_query: A n*1 vector to query parameters at.
        Return:
            new parameters at w_query
        """"""
        assert w_query.shape[0] == self.n
        return self.params_one + self.dParams_dWeights @ (w_query-self.w_one).T

    def approx_ij(self, w_query):
        """"""
        Args:
            w_query: A n*1 vector to query parameters at.
        Return:
            new parameters at w_query
        """"""
        assert w_query.shape[0] == self.n
        return self.params_one + self.approx_dParams_dWeights @ (w_query-self.w_one).T"
blackbox_metamodel_classification.py,"import inspect
from collections import namedtuple

import numpy as np
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.exceptions import NotFittedError
from uq360.algorithms.posthocuq import PostHocUQ


class BlackboxMetamodelClassification(PostHocUQ):
    """""" Extracts confidence scores from black-box classification models using a meta-model [4]_ .

    References:
        .. [4] Chen, Tongfei, et al. ""Confidence scoring using whitebox meta-models with linear classifier probes.""
         The 22nd International Conference on Artificial Intelligence and Statistics. PMLR, 2019.
    """"""

    def _create_named_model(self, mdltype, config):
        """""" Instantiates a model by name passed in 'mdltype'.

        Args:
            mdltype: string with name (must be supported)
            config: dict with args passed in the instantiation call
        Returns:
             mdl instance
        """"""
        assert (isinstance(mdltype, str))
        if mdltype == 'lr':
            mdl = LogisticRegression(**config)
        elif mdltype == 'gbm':
            mdl = GradientBoostingClassifier(**config)
        else:
            raise NotImplementedError(""ERROR: Requested model type unknown: \""%s\"""" % mdltype)
        return mdl

    def _get_model_instance(self, model, config):
        """""" Returns an instance of a model based on (a) a desired name or (b) passed in class, or
        (c) passed in instance.

        :param model: string, class, or instance. Class and instance must have certain methods callable.
        :param config: dict with args passed in during the instantiation
        :return: model instance
        """"""
        assert (model is not None and config is not None)
        if isinstance(model, str):  # 'model' is a name, create it
            mdl = self._create_named_model(model, config)
        elif inspect.isclass(model):  # 'model' is a class, instantiate it
            mdl = model(**config)
        else:  # 'model' is an instance, register it
            mdl = model
        if not all([hasattr(mdl, key) and callable(getattr(mdl, key)) for key in self.callable_keys]):
            raise ValueError(""ERROR: Passed model/method failed the interface test. Methods required: %s"" %
                             ','.join(self.callable_keys))
        return mdl

    def __init__(self, base_model=None, meta_model=None, base_config=None, meta_config=None, random_seed=42):
        """"""

        :param base_model: Base model. Can be:
                            (1) None (default mdl will be set up),
                            (2) Named model (e.g., logistic regression 'lr' or gradient boosting machine 'gbm'),
                            (3) Base model class declaration (e.g., sklearn.linear_model.LogisticRegression). Will instantiate.
                            (4) Model instance (instantiated outside). Will be re-used. Must have certain callable methods.
                            Note: user-supplied classes and models must have certain callable methods ('predict', 'fit')
                            and be capable of raising NotFittedError.
        :param meta_model: Meta model. Same values possible as with 'base_model'
        :param base_config: None or a params dict to be passed to 'base_model' at instantiation
        :param meta_config: None or a params dict to be passed to 'meta_model' at instantiation
        :param random_seed: seed used in the various pipeline steps
        """"""
        super(BlackboxMetamodelClassification).__init__()
        self.random_seed = random_seed
        self.callable_keys = ['predict', 'fit']  # required methods - must be present in models passed in
        self.base_model_default = 'gbm'
        self.meta_model_default = 'lr'
        self.base_config_default = {'n_estimators': 300, 'max_depth': 10,
                                    'learning_rate': 0.001, 'min_samples_leaf': 10, 'min_samples_split': 10,
                                    'random_state': self.random_seed}
        self.meta_config_default = {'penalty': 'l1', 'C': 1, 'solver': 'liblinear', 'random_state': self.random_seed}
        self.base_config = base_config if base_config is not None else self.base_config_default
        self.meta_config = meta_config if meta_config is not None else self.meta_config_default
        self.base_model = None
        self.meta_model = None
        self.base_model = self._get_model_instance(base_model if base_model is not None else self.base_model_default,
                                                   self.base_config)
        self.meta_model = self._get_model_instance(meta_model if meta_model is not None else self.meta_model_default,
                                                   self.meta_config)

    def get_params(self, deep=True):
        return {""base_model"": self.base_model, ""meta_model"": self.meta_model, ""base_config"": self.base_config,
                ""meta_config"": self.meta_config, ""random_seed"": self.random_seed}

    def _process_pretrained_model(self, X, y_hat_proba):
        """"""
        Given the original input features and the base output probabilities, generate input features
        to train a meta model. Current implementation copies all input features and appends.

        :param X: numpy [nsamples, dim]
        :param y_hat_proba: [nsamples, nclasses]
        :return: array with new features [nsamples, newdim]
        """"""
        assert (len(y_hat_proba.shape) == 2)
        assert (X.shape[0] == y_hat_proba.shape[0])
        # sort the probs sample by sample
        faux1 = np.sort(y_hat_proba, axis=-1)
        # add delta between top and second candidate
        faux2 = np.expand_dims(faux1[:, -1] - faux1[:, -2], axis=-1)
        return np.hstack([X, faux1, faux2])

    def fit(self, X, y, meta_fraction=0.2, randomize_samples=True, base_is_prefitted=False,
            meta_train_data=(None, None)):
        """"""
        Fit base and meta models.

        :param X: input to the base model,
                array-like of shape (n_samples, n_features).
                Features vectors of the training data.
        :param y: ground truth for the base model,
                array-like of shape (n_samples,)
        :param meta_fraction: float in [0,1] - a fractional size of the partition carved out to train the meta model
                                (complement will be used to train the base model)
        :param randomize_samples: use shuffling when creating partitions
        :param base_is_prefitted: Setting True will skip fitting the base model (useful for base models that have been
                        instantiated outside/by the user and are already fitted.
        :param meta_train_data: User supplied data to train the meta model. Note that this option should only be used
                        with 'base_is_prefitted'==True. Pass a tuple meta_train_data=(X_meta, y_meta) to activate.
                        Note that (X,y,meta_fraction, randomize_samples) will be ignored in this mode.
        :return: self
        """"""
        X = np.asarray(X)
        y = np.asarray(y)
        assert (len(meta_train_data) == 2)
        if meta_train_data[0] is None:
            X_base, X_meta, y_base, y_meta = train_test_split(X, y, shuffle=randomize_samples, test_size=meta_fraction,
                                                              random_state=self.random_seed)
        else:
            if not base_is_prefitted:
                raise ValueError(""ERROR: fit(): base model must be pre-fitted to use the 'meta_train_data' option"")
            X_base = y_base = None
            X_meta = meta_train_data[0]
            y_meta = meta_train_data[1]
        # fit the base model
        if not base_is_prefitted:
            self.base_model.fit(X_base, y_base)
        # get input for the meta model from the base
        try:
            y_hat_meta_proba = self.base_model.predict_proba(X_meta)
            # determine correct-incorrect outcome - these are targets for the meta model trainer
            
            # y_hat_meta_targets = np.asarray((y_meta == np.argmax(y_hat_meta_proba, axis=-1)), dtype=np.int) -- Fix for python 3.8.11 update (in 2.9.0.8)
            y_hat_meta_targets = np.asarray((y_meta == np.argmax(y_hat_meta_proba, axis=-1)), dtype=int)
        
        except NotFittedError as e:
            raise RuntimeError(""ERROR: fit(): The base model appears not pre-fitted (%s)"" % repr(e))
        # get input features for meta training
        X_meta_in = self._process_pretrained_model(X_meta, y_hat_meta_proba)
        # train meta model to predict 'correct' vs. 'incorrect' of the base
        self.meta_model.fit(X_meta_in, y_hat_meta_targets)
        return self

    def predict(self, X):
        """"""
        Generate a base prediction along with uncertainty/confidence for data X.

        :param X: array-like of shape (n_samples, n_features).
                Features vectors of the test points.
        :return: namedtuple: A namedtuple that holds

            y_pred: ndarray of shape (n_samples,)
                Predicted labels of the test points.
            y_score: ndarray of shape (n_samples,)
                Confidence score the test points.

        """"""
        y_hat_proba = self.base_model.predict_proba(X)
        y_hat = np.argmax(y_hat_proba, axis=-1)
        X_meta_in = self._process_pretrained_model(X, y_hat_proba)
        z_hat = self.meta_model.predict_proba(X_meta_in)
        index_of_class_1 = np.where(self.meta_model.classes_ == 1)[0][0]  # class 1 corresponds to probab of positive/correct outcome
        Result = namedtuple('res', ['y_pred', 'y_score'])
        res = Result(y_hat, z_hat[:, index_of_class_1])

        return res
"
__init__.py,"from .blackbox_metamodel_regression import BlackboxMetamodelRegression
from .blackbox_metamodel_classification import BlackboxMetamodelClassification
"
blackbox_metamodel_regression.py,"import inspect
from collections import namedtuple

import numpy as np
from sklearn.ensemble import GradientBoostingRegressor
from sklearn.model_selection import train_test_split
from sklearn.exceptions import NotFittedError
from uq360.algorithms.posthocuq import PostHocUQ


class BlackboxMetamodelRegression(PostHocUQ):
    """""" Extracts confidence scores from black-box regression models using a meta-model [2]_ .

    References:
        .. [2] Chen, Tongfei, et al. Confidence scoring using whitebox meta-models with linear classifier probes.
         The 22nd International Conference on Artificial Intelligence and Statistics. PMLR, 2019.

    """"""

    def _create_named_model(self, mdltype, config):
        """"""
        Instantiates a model by name passed in 'mdltype'

        :param mdltype: string with name (must be supprted)
        :param config: dict with args passed in the instantiation call
        :return: mdl instance
        """"""
        assert (isinstance(mdltype, str))
        if mdltype == 'gbr':
            mdl = GradientBoostingRegressor(**config)
        else:
            raise NotImplementedError(""ERROR: Requested model type unknown: \""%s\"""" % mdltype)
        return mdl

    def _get_model_instance(self, model, config):
        """"""
        Returns an instance of a model based on (a) a desired name or (b) passed in class, or
        (c) passed in instance

        :param model: string, class, or instance. Class and instance must have certain methods callable.
        :param config: dict with args passed in during the instantiation
        :return: model instance
        """"""
        assert (model is not None and config is not None)
        if isinstance(model, str):  # 'model' is a name, create it
            mdl = self._create_named_model(model, config)
        elif inspect.isclass(model):  # 'model' is a class, instantiate it
            mdl = model(**config)
        else:  # 'model' is an instance, register it
            mdl = model
        if not all([hasattr(mdl, key) and callable(getattr(mdl, key)) for key in self.callable_keys]):
            raise ValueError(""ERROR: Passed model/method failed the interface test. Methods required: %s"" %
                             ','.join(self.callable_keys))
        return mdl

    def __init__(self, base_model=None, meta_model=None, base_config=None, meta_config=None, random_seed=42):
        """"""

        :param base_model: Base model. Can be:
                            (1) None (default mdl will be set up),
                            (2) Named model (e.g., 'gbr'),
                            (3) Base model class declaration (e.g., sklearn.linear_model.LinearRegressor). Will instantiate.
                            (4) Model instance (instantiated outside). Will be re-used. Must have required callable methods.
                            Note: user-supplied classes and models must have certain callable methods ('predict', 'fit')
                            and be capable of raising NotFittedError.
        :param meta_model: Meta model. Same values possible as with 'base_model'
        :param base_config: None or a params dict to be passed to 'base_model' at instantiation
        :param meta_config: None or a params dict to be passed to 'meta_model' at instantiation
        :param random_seed: seed used in the various pipeline steps
        """"""
        super(BlackboxMetamodelRegression).__init__()
        self.random_seed = random_seed
        self.callable_keys = ['predict', 'fit']  # required methods - must be present in models passed in
        self.base_model_default = 'gbr'
        self.meta_model_default = 'gbr'
        self.base_config_default = {'loss': 'ls', 'n_estimators': 300, 'max_depth': 10, 'learning_rate': 0.001,
                                    'min_samples_leaf': 10, 'min_samples_split': 10, 'random_state': self.random_seed}
        self.meta_config_default = {'loss': 'quantile', 'alpha': 0.95, 'n_estimators': 300, 'max_depth': 10,
                                    'learning_rate': 0.001, 'min_samples_leaf': 10, 'min_samples_split': 10,
                                    'random_state': self.random_seed}
        self.base_config = base_config if base_config is not None else self.base_config_default
        self.meta_config = meta_config if meta_config is not None else self.meta_config_default
        self.base_model = None
        self.meta_model = None
        self.base_model = self._get_model_instance(base_model if base_model is not None else self.base_model_default,
                                                   self.base_config)
        self.meta_model = self._get_model_instance(meta_model if meta_model is not None else self.meta_model_default,
                                                   self.meta_config)

    def get_params(self, deep=True):
        return {""base_model"": self.base_model, ""meta_model"": self.meta_model, ""base_config"": self.base_config,
                ""meta_config"": self.meta_config, ""random_seed"": self.random_seed}

    def fit(self, X, y, meta_fraction=0.2, randomize_samples=True, base_is_prefitted=False,
            meta_train_data=(None, None)):
        """"""
        Fit base and meta models.

        :param X: input to the base model
        :param y: ground truth for the base model
        :param meta_fraction: float in [0,1] - a fractional size of the partition carved out to train the meta model
                                (complement will be used to train the base model)
        :param randomize_samples: use shuffling when creating partitions
        :param base_is_prefitted: Setting True will skip fitting the base model (useful for base models that have been
                        instantiated outside/by the user and are already fitted.
        :param meta_train_data: User supplied data to train the meta model. Note that this option should only be used
                        with 'base_is_prefitted'==True. Pass a tuple meta_train_data=(X_meta, y_meta) to activate.
                        Note that (X,y,meta_fraction, randomize_samples) will be ignored in this mode.
        :return: self
        """"""
        X = np.asarray(X)
        y = np.asarray(y)
        assert(len(meta_train_data)==2)
        if meta_train_data[0] is None:
            X_base, X_meta, y_base, y_meta = train_test_split(X, y, shuffle=randomize_samples, test_size=meta_fraction,
                                                          random_state=self.random_seed)
        else:
            if not base_is_prefitted:
                raise ValueError(""ERROR: fit(): base model must be pre-fitted to use the 'meta_train_data' option"")
            X_base = y_base = None
            X_meta = meta_train_data[0]
            y_meta = meta_train_data[1]
        # fit the base model
        if not base_is_prefitted:
            self.base_model.fit(X_base, y_base)
        # get input for the meta model from the base
        try:
            y_hat_meta = self.base_model.predict(X_meta)
        except NotFittedError as e:
            raise RuntimeError(""ERROR: fit(): The base model appears not pre-fitted (%s)"" % repr(e))
        # used base input and output as meta input
        X_meta_in = self._process_pretrained_model(X_meta, y_hat_meta)
        # train meta model to predict abs diff
        self.meta_model.fit(X_meta_in, np.abs(y_hat_meta - y_meta))
        return self

    def _process_pretrained_model(self, X, y_hat):
        """"""
        Given the original input features and the base output probabilities, generate input features
        to train a meta model. Current implementation copies all input features and appends.

        :param X: numpy [nsamples, dim]
        :param y_hat: [nsamples,]
        :return: array with new features [nsamples, newdim]
        """"""
        y_hat_meta_prime = np.expand_dims(y_hat, -1) if len(y_hat.shape) < 2 else y_hat
        X_meta_in = np.hstack([X, y_hat_meta_prime])
        return X_meta_in

    def predict(self, X):
        """"""
        Generate prediction and uncertainty bounds for data X.

        :param X: input features
        :return: namedtuple: A namedtuple that holds

            y_mean: ndarray of shape (n_samples, [n_output_dims])
                Mean of predictive distribution of the test points.
            y_lower: ndarray of shape (n_samples, [n_output_dims])
                Lower quantile of predictive distribution of the test points.
            y_upper: ndarray of shape (n_samples, [n_output_dims])
                Upper quantile of predictive distribution of the test points.

        """"""
        y_hat = self.base_model.predict(X)
        y_hat_prime = np.expand_dims(y_hat, -1) if len(y_hat.shape) < 2 else y_hat
        X_meta_in = np.hstack([X, y_hat_prime])
        z_hat = self.meta_model.predict(X_meta_in)

        Result = namedtuple('res', ['y_mean', 'y_lower', 'y_upper'])
        res = Result(y_hat, y_hat - z_hat, y_hat + z_hat)

        return res
"
__init__.py,from .heteroscedastic_regression import HeteroscedasticRegression
heteroscedastic_regression.py,"from collections import namedtuple

import numpy as np
import torch
from scipy.stats import norm
from torch.utils.data import DataLoader
from torch.utils.data import TensorDataset
from uq360.algorithms.builtinuq import BuiltinUQ
from uq360.models.heteroscedastic_mlp import GaussianNoiseMLPNet as _MLPNet

np.random.seed(42)
torch.manual_seed(42)

class HeteroscedasticRegression(BuiltinUQ):
    """""" Wrapper for heteroscedastic regression. We learn to predict targets given features, 
         assuming that the targets are noisy and that the amount of noise varies between data points. 
         https://en.wikipedia.org/wiki/Heteroscedasticity
    """"""

    def __init__(self, model_type=None, model=None, config=None, device=None, verbose=True):
        """"""
        Args:
            model_type: The base model architecture. Currently supported values are [mlp].
                mlp modeltype learns a multi-layer perceptron with a heteroscedastic Gaussian likelihood. Both the
                mean and variance of the Gaussian are functions of the data point ->git  N(y_n | mlp_mu(x_n), mlp_var(x_n))
            model: (optional) The prediction model. Currently support pytorch models that returns mean and log variance.
            config: dictionary containing the config parameters for the model.
            device: device used for pytorch models ignored otherwise.
            verbose: if True, print statements with the progress are enabled.
        """"""

        super(HeteroscedasticRegression).__init__()
        self.config = config
        self.device = device
        self.verbose = verbose
        if model_type == ""mlp"":
            self.model_type = model_type
            self.model = _MLPNet(
                num_features=self.config[""num_features""],
                num_outputs=self.config[""num_outputs""],
                num_hidden=self.config[""num_hidden""],
            )

        elif model_type == ""custom"":
            self.model_type = model_type
            self.model = model

        else:
            raise NotImplementedError

    def get_params(self, deep=True):
        return {""model_type"": self.model_type, ""config"": self.config, ""model"": self.model,
                ""device"": self.device, ""verbose"": self.verbose}

    def _loss(self, y_true, y_pred_mu, y_pred_log_var):
        return torch.mean(0.5 * torch.exp(-y_pred_log_var) * torch.abs(y_true - y_pred_mu) ** 2 +
                          0.5 * y_pred_log_var)

    def fit(self, X, y):
        """""" Fit the Heteroscedastic Regression model.

        Args:
            X: array-like of shape (n_samples, n_features).
                Features vectors of the training data.
            y: array-like of shape (n_samples,) or (n_samples, n_targets)
                Target values

        Returns:
            self

        """"""
        X = torch.from_numpy(X).float().to(self.device)
        y = torch.from_numpy(y).float().to(self.device)

        dataset_loader = DataLoader(
            TensorDataset(X,y),
            batch_size=self.config[""batch_size""]
        )
        optimizer = torch.optim.Adam(self.model.parameters(), lr=self.config[""lr""])

        for epoch in range(self.config[""num_epochs""]):
            avg_loss = 0.0
            for batch_x, batch_y in dataset_loader:
                self.model.train()
                batch_y_pred_mu, batch_y_pred_log_var = self.model(batch_x)
                loss = self.model.loss(batch_y, batch_y_pred_mu, batch_y_pred_log_var)
                optimizer.zero_grad()
                loss.backward()
                optimizer.step()

                avg_loss += loss.item()/len(dataset_loader)

            if self.verbose:
                print(""Epoch: {}, loss = {}"".format(epoch, avg_loss))

        return self

    def predict(self, X, return_dists=False):
        """"""
        Obtain predictions for the test points.

        In addition to the mean and lower/upper bounds, also returns epistemic uncertainty (return_epistemic=True)
        and full predictive distribution (return_dists=True).

        Args:
            X: array-like of shape (n_samples, n_features).
                Features vectors of the test points.
            return_dists: If True, the predictive distribution for each instance using scipy distributions is returned.

        Returns:
            namedtuple: A namedtupe that holds

            y_mean: ndarray of shape (n_samples, [n_output_dims])
                Mean of predictive distribution of the test points.
            y_lower: ndarray of shape (n_samples, [n_output_dims])
                Lower quantile of predictive distribution of the test points.
            y_upper: ndarray of shape (n_samples, [n_output_dims])
                Upper quantile of predictive distribution of the test points.
            dists: list of predictive distribution as `scipy.stats` objects with length n_samples.
                Only returned when `return_dists` is True.
        """"""

        self.model.eval()

        X = torch.from_numpy(X).float().to(self.device)
        dataset_loader = DataLoader(
            X,
            batch_size=self.config[""batch_size""]
        )

        y_mean_list = []
        y_log_var_list = []
        for batch_x in dataset_loader:
            batch_y_pred_mu, batch_y_pred_log_var = self.model(batch_x)
            y_mean_list.append(batch_y_pred_mu.data.cpu().numpy())
            y_log_var_list.append(batch_y_pred_log_var.data.cpu().numpy())

        y_mean = np.concatenate(y_mean_list)
        y_log_var = np.concatenate(y_log_var_list)
        y_std = np.sqrt(np.exp(y_log_var))
        y_lower = y_mean - 2.0*y_std
        y_upper = y_mean + 2.0*y_std

        Result = namedtuple('res', ['y_mean', 'y_lower', 'y_upper'])
        res = Result(y_mean, y_lower, y_upper)

        if return_dists:
            dists = [norm(loc=y_mean[i], scale=y_std[i]) for i in range(y_mean.shape[0])]
            Result = namedtuple('res', Result._fields + ('y_dists',))
            res = Result(*res, y_dists=dists)

        return res
"
__init__.py,"from .meps_dataset import MEPSDataset
"
meps_dataset.py,"# Adapted from https://github.com/Trusted-AI/AIX360/blob/master/aix360/datasets/meps_dataset.py
# Utilization target is kept as a continuous target.
import os

import pandas as pd


def default_preprocessing(df):
    """"""
    1.Create a new column, RACE that is 'White' if RACEV2X = 1 and HISPANX = 2 i.e. non Hispanic White
      and 'non-White' otherwise
    2. Restrict to Panel 19
    3. RENAME all columns that are PANEL/ROUND SPECIFIC
    4. Drop rows based on certain values of individual features that correspond to missing/unknown - generally < -1
    5. Compute UTILIZATION.
    """"""
    def race(row):
        if ((row['HISPANX'] == 2) and (row['RACEV2X'] == 1)):  #non-Hispanic Whites are marked as WHITE; all others as NON-WHITE
            return 'White'
        return 'Non-White'

    df['RACEV2X'] = df.apply(lambda row: race(row), axis=1)
    df = df.rename(columns = {'RACEV2X' : 'RACE'})

    df = df[df['PANEL'] == 19]

    # RENAME COLUMNS
    df = df.rename(columns = {'FTSTU53X' : 'FTSTU', 'ACTDTY53' : 'ACTDTY', 'HONRDC53' : 'HONRDC', 'RTHLTH53' : 'RTHLTH',
                              'MNHLTH53' : 'MNHLTH', 'CHBRON53' : 'CHBRON', 'JTPAIN53' : 'JTPAIN', 'PREGNT53' : 'PREGNT',
                              'WLKLIM53' : 'WLKLIM', 'ACTLIM53' : 'ACTLIM', 'SOCLIM53' : 'SOCLIM', 'COGLIM53' : 'COGLIM',
                              'EMPST53' : 'EMPST', 'REGION53' : 'REGION', 'MARRY53X' : 'MARRY', 'AGE53X' : 'AGE',
                              'POVCAT15' : 'POVCAT', 'INSCOV15' : 'INSCOV'})

    df = df[df['REGION'] >= 0] # remove values -1
    df = df[df['AGE'] >= 0] # remove values -1

    df = df[df['MARRY'] >= 0] # remove values -1, -7, -8, -9

    df = df[df['ASTHDX'] >= 0] # remove values -1, -7, -8, -9

    df = df[(df[['FTSTU','ACTDTY','HONRDC','RTHLTH','MNHLTH','HIBPDX','CHDDX','ANGIDX','EDUCYR','HIDEG',
                             'MIDX','OHRTDX','STRKDX','EMPHDX','CHBRON','CHOLDX','CANCERDX','DIABDX',
                             'JTPAIN','ARTHDX','ARTHTYPE','ASTHDX','ADHDADDX','PREGNT','WLKLIM',
                             'ACTLIM','SOCLIM','COGLIM','DFHEAR42','DFSEE42','ADSMOK42',
                             'PHQ242','EMPST','POVCAT','INSCOV']] >= -1).all(1)]  #for all other categorical features, remove values < -1

    def utilization(row):
        return row['OBTOTV15'] + row['OPTOTV15'] + row['ERTOT15'] + row['IPNGTD15'] + row['HHTOTD15']

    df['TOTEXP15'] = df.apply(lambda row: utilization(row), axis=1)

    df = df.rename(columns = {'TOTEXP15' : 'UTILIZATION'})

    df = df[['REGION','AGE','SEX','RACE','MARRY',
                                 'FTSTU','ACTDTY','HONRDC','RTHLTH','MNHLTH','HIBPDX','CHDDX','ANGIDX',
                                 'MIDX','OHRTDX','STRKDX','EMPHDX','CHBRON','CHOLDX','CANCERDX','DIABDX',
                                 'JTPAIN','ARTHDX','ARTHTYPE','ASTHDX','ADHDADDX','PREGNT','WLKLIM',
                                 'ACTLIM','SOCLIM','COGLIM','DFHEAR42','DFSEE42','ADSMOK42','PCS42',
                                 'MCS42','K6SUM42','PHQ242','EMPST','POVCAT','INSCOV','UTILIZATION','PERWT15F']]

    return df


class MEPSDataset():
    """"""
    The Medical Expenditure Panel Survey (MEPS) [#]_ data consists of large scale surveys of families and individuals,
    medical providers, and employers, and collects data on health services used, costs & frequency of services,
    demographics, health status and conditions, etc., of the respondents.
    This specific dataset contains MEPS survey data for calendar year 2015 obtained in rounds 3, 4, and 5 of Panel 19,
    and rounds 1, 2, and 3 of Panel 20.
    See :file:`uq360/datasets/data/meps_data/README.md` for more details on the dataset and instructions on downloading/processing the data.
    References:
        .. [#] `Medical Expenditure Panel Survey data <https://meps.ahrq.gov/mepsweb/>`_
    """"""

    def __init__(self, custom_preprocessing=default_preprocessing, dirpath=None):
        self._dirpath = dirpath
        if not self._dirpath:
            self._dirpath = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'data', 'meps_data')

        self._filepath = os.path.join(self._dirpath, 'h181.csv')
        try:
            df = pd.read_csv(self._filepath, sep=',', na_values=[])
        except IOError as err:
            print(""IOError: {}"".format(err))
            print(""To use this class, please place the heloc_dataset.csv:"")
            print(""file, as-is, in the folder:"")
            print(""\n\t{}\n"".format(os.path.abspath(os.path.join(
               os.path.abspath(__file__), 'data', 'meps_data'))))
            import sys
            sys.exit(1)

        if custom_preprocessing:
            self._data = custom_preprocessing(df)

    def data(self):
        return self._data"
logistic_regression.py,"import autograd
import autograd.numpy as np
import numpy.random as npr
import scipy.optimize

sigmoid = lambda x: 0.5 * (np.tanh(x / 2.) + 1)
get_num_train = lambda inputs: inputs.shape[0]
logistic_predictions = lambda params, inputs: sigmoid(np.dot(inputs, params))


class LogisticRegression:
    def __init__(self):
        self.params = None

    def set_parameters(self, params):
        self.params = params

    def predict(self, X):
        if self.params is not None:
            # Outputs probability of a label being true according to logistic model
            return np.atleast_2d(sigmoid(np.dot(X, self.params))).T
        else:
            raise RuntimeError(""Params need to be fit before predictions can be made."")

    def loss(self, params, weights, inputs, targets):
        # Training loss is the negative log-likelihood of the training labels.
        preds = logistic_predictions(params, inputs)
        label_probabilities = preds * targets + (1 - preds) * (1 - targets)
        return -np.sum(weights * np.log(label_probabilities + 1e-16))

    def fit(self, weights, init_params, inputs, targets, verbose=True):
        training_loss_fun = lambda params: self.loss(params, weights, inputs, targets)
        # Define a function that returns gradients of training loss using Autograd.
        training_gradient_fun = autograd.grad(training_loss_fun, 0)
        # optimize params
        if verbose:
            print(""Initial loss:"", self.loss(init_params, weights, inputs, targets))
        # opt_params = sgd(training_gradient_fun, params, hyper=1, num_iters=5000, step_size=0.1)
        res = scipy.optimize.minimize(fun=training_loss_fun,
                                      jac=training_gradient_fun,
                                      x0=init_params,
                                      tol=1e-10,
                                      options={'disp': verbose})
        opt_params = res.x
        if verbose:
            print(""Trained loss:"", self.loss(opt_params, weights, inputs, targets))
        self.params = opt_params
        return opt_params

    def get_test_acc(self, params, test_targets, test_inputs):
        preds = np.round(self.predict(test_inputs).T).astype(np.int)
        err = np.abs(test_targets - preds).sum()
        return 1 - err/ test_targets.shape[1]

    #### Required for IJ computation ###
    def compute_hessian(self, params_one, weights_one, inputs, targets):
        return autograd.hessian(self.loss, argnum=0)(params_one, weights_one, inputs, targets)

    def compute_jacobian(self, params_one, weights_one, inputs, targets):
        return autograd.jacobian(autograd.jacobian(self.loss, argnum=0), argnum=1)\
                                (params_one, weights_one, inputs, targets).squeeze()
    ###################################################

    @staticmethod
    def synthetic_lr_data(N=10000, D=10):
        x = 1. * npr.randn(N, D)
        x_test = 1. * npr.randn(int(0.3 * N), D)
        w = npr.randn(D, 1)
        y = sigmoid((x @ w)).ravel()
        y = npr.binomial(n=1, p=y) # corrupt labels
        y_test = sigmoid(x_test @ w).ravel()
        # y_test = np.round(y_test)
        y_test = npr.binomial(n=1, p=y_test)
        return x, np.atleast_2d(y), x_test, np.atleast_2d(y_test)
"
hidden_markov_model.py,"import autograd
import autograd.numpy as np
import scipy.optimize
from autograd import grad
from autograd.scipy.special import logsumexp
from sklearn.cluster import KMeans


class HMM:
    """"""
    A Hidden Markov Model with Gaussian observations with
    unknown means and known precisions.
    """"""
    def __init__(self, X, config_dict=None):
        self.N, self.T, self.D = X.shape
        self.K = config_dict['K']  # number of HMM states
        self.I = np.eye(self.K)
        self.Precision = np.zeros([self.D, self.D, self.K])
        self.X = X
        if config_dict['precision'] is None:
            for k in np.arange(self.K):
                self.Precision[:, :, k] = np.eye(self.D)
        else:
                self.Precision = config_dict['precision']
        self.dParams_dWeights = None
        self.alphaT = None # Store the final beliefs.
        self.beta1 = None # store the first timestep beliefs from the beta recursion.
        self.forward_trellis = {}  # stores \alpha
        self.backward_trellis = {}  # stores \beta

    def initialize_params(self, seed=1234):
        np.random.seed(seed)
        param_dict = {}
        A = np.random.randn(self.K, self.K)
        # use k-means to initialize the mean parameters
        X = self.X.reshape([-1, self.D])
        kmeans = KMeans(n_clusters=self.K, random_state=seed,
                        n_init=15).fit(X)
        labels = kmeans.labels_
        _, counts = np.unique(labels, return_counts=True)
        pi = counts
        phi = kmeans.cluster_centers_

        param_dict['A'] = np.exp(A)
        param_dict['pi0'] = pi
        param_dict['phi'] = phi
        return self.pack_params(param_dict)

    def unpack_params(self, params):
        param_dict = dict()
        K = self.K
        # For unpacking simplex parameters: have packed them as
        # log(pi[:-1]) - log(pi[-1]).
        unnorm_A = np.exp(np.append(params[:K**2-K].reshape(K, K-1),
                                    np.zeros((K, 1)),
                                    axis=1)
                          )
        Z = np.sum(unnorm_A[:, :-1], axis=1)
        unnorm_A /= Z[:, np.newaxis]
        norm_A = unnorm_A / unnorm_A.sum(axis=1, keepdims=True)
        param_dict['A'] = norm_A

        unnorm_pi = np.exp(np.append(params[K**2-K:K**2-1], 0.0))
        Z = np.sum(unnorm_pi[:-1])
        unnorm_pi /= Z
        param_dict['pi0'] = unnorm_pi / unnorm_pi.sum()
        param_dict['phi'] = params[K**2-K+K-1:].reshape(self.D, K)
        return param_dict

    def weighted_alpha_recursion(self, xseq, pi, phi, Sigma, A, wseq, store_belief=False):
        """"""
        Computes the weighted marginal probability of the sequence xseq given parameters;
        weights wseq turn on or off the emissions p(x_t | z_t) (weighting scheme B)
        :param xseq: T * D
        :param pi: K * 1
        :param phi: D * K
        :param wseq: T * 1
        :param A:
        :return:
        """"""
        ll = self.log_obs_lik(xseq[:, :, np.newaxis], phi[np.newaxis, :, :], Sigma)
        alpha = np.log(pi.ravel()) + wseq[0] * ll[0]
        if wseq[0] == 0:
            self.forward_trellis[0] = alpha[:, np.newaxis]
        for t in np.arange(1, self.T):
            alpha = logsumexp(alpha[:, np.newaxis] + np.log(A), axis=0) + wseq[t] * ll[t]
            if wseq[t] == 0:
                # store the trellis, would be used to compute the posterior z_t | x_1...x_t-1, x_t+1, ...x_T
                self.forward_trellis[t] = alpha[:, np.newaxis]
        if store_belief:
            # store the final belief
            self.alphaT = alpha
        return logsumexp(alpha)

    def weighted_beta_recursion(self, xseq, pi, phi, Sigma, A, wseq, store_belief=False):
            """"""
            Runs beta recursion;
            weights wseq turn on or off the emissions p(x_t | z_t) (weighting scheme B)
            :param xseq: T * D
            :param pi: K * 1
            :param phi: D * K
            :param wseq: T * 1
            :param A:
            :return:
            """"""
            ll = self.log_obs_lik(xseq[:, :, np.newaxis], phi[np.newaxis, :, :], Sigma)
            beta = np.zeros_like(pi.ravel())  # log(\beta) of all ones.
            max_t = ll.shape[0]
            if wseq[max_t - 1] == 0:
                # store the trellis, would be used to compute the posterior z_t | x_1...x_t-1, x_t+1, ...x_T
                self.backward_trellis[max_t - 1] = beta[:, np.newaxis]
            for i in np.arange(1, max_t):
                t = max_t - i - 1
                beta = logsumexp((beta + wseq[t + 1] * ll[t + 1])[np.newaxis, :] + np.log(A), axis=1)
                if wseq[t] == 0:
                    # store the trellis, would be used to compute the posterior z_t | x_1...x_t-1, x_t+1, ...x_T
                    self.backward_trellis[t] = beta[:, np.newaxis]
            # account for the init prob
            beta = (beta + wseq[0] * ll[0]) + np.log(pi.ravel())
            if store_belief:
                # store the final belief
                self.beta1 = beta
            return logsumexp(beta)

    def weighted_loss(self, params, weights):
        """"""
        For LOOCV / IF computation within a single sequence. Uses weighted alpha recursion
        :param params:
        :param weights:
        :return:
        """"""
        param_dict = self.unpack_params(params)
        logp = self.get_prior_contrib(param_dict)
        logp = logp + self.weighted_alpha_recursion(self.X[0], param_dict['pi0'],
                                                               param_dict['phi'],
                                                               self.Precision,
                                                               param_dict['A'],
                                                               weights)
        return -logp

    def loss_at_missing_timesteps(self, weights, params):
        """"""
        :param weights: zeroed out weights indicate missing values
        :param params: packed parameters
        :return:
        """"""
        # empty forward and backward trellis
        self.clear_trellis()
        param_dict = self.unpack_params(params)
        # populate forward and backward trellis
        lpx = self.weighted_alpha_recursion(self.X[0], param_dict['pi0'],
                                                  param_dict['phi'],
                                                  self.Precision,
                                                  param_dict['A'],
                                                  weights,
                                                  store_belief=True )
        lpx_alt = self.weighted_beta_recursion(self.X[0], param_dict['pi0'],
                                                 param_dict['phi'],
                                                 self.Precision,
                                                 param_dict['A'],
                                                 weights,
                                                 store_belief=True)
        assert np.allclose(lpx, lpx_alt) # sanity check
        test_ll = []
        # compute loo likelihood
        ll = self.log_obs_lik(self.X[0][:, :, np.newaxis], param_dict['phi'], self.Precision)
        # compute posterior p(z_t | x_1,...t-1, t+1,...T) \forall missing t
        tsteps = []
        for t in self.forward_trellis.keys():
            lpz_given_x = self.forward_trellis[t] + self.backward_trellis[t] - lpx
            test_ll.append(logsumexp(ll[t] + lpz_given_x.ravel()))
            tsteps.append(t)
        # empty forward and backward trellis
        self.clear_trellis()
        return -np.array(test_ll)

    def fit(self, weights, init_params=None, num_random_restarts=1, verbose=False, maxiter=None):
        if maxiter:
            options_dict = {'disp': verbose, 'gtol': 1e-10, 'maxiter': maxiter}
        else:
            options_dict = {'disp': verbose, 'gtol': 1e-10}

        # Define a function that returns gradients of training loss using Autograd.
        training_loss_fun = lambda params: self.weighted_loss(params, weights)
        training_gradient_fun = grad(training_loss_fun, 0)
        if init_params is None:
            init_params = self.initialize_params()
        if verbose:
            print(""Initial loss: "", training_loss_fun(init_params))
        res = scipy.optimize.minimize(fun=training_loss_fun,
                                      jac=training_gradient_fun,
                                      x0=init_params,
                                      tol=1e-10,
                                      options=options_dict)
        if verbose:
            print('grad norm =', np.linalg.norm(res.jac))
        return res.x

    def clear_trellis(self):
        self.forward_trellis = {}
        self.backward_trellis = {}

    #### Required for IJ computation ###
    def compute_hessian(self, params_one, weights_one):
        return autograd.hessian(self.weighted_loss, argnum=0)(params_one, weights_one)

    def compute_jacobian(self, params_one, weights_one):
        return autograd.jacobian(autograd.jacobian(self.weighted_loss, argnum=0), argnum=1)\
                                (params_one, weights_one).squeeze()
    ###################################################

    @staticmethod
    def log_obs_lik(x, phi, Sigma):
        """"""
        :param x: T*D*1
        :param phi: 1*D*K
        :param Sigma: D*D*K --- precision matrices per state
        :return: ll
        """"""
        centered_x = x - phi
        ll = -0.5 * np.einsum('tdk, tdk, ddk -> tk', centered_x, centered_x, Sigma )
        return ll

    @staticmethod
    def pack_params(params_dict):
        param_list = [(np.log(params_dict['A'][:, :-1]) -
                       np.log(params_dict['A'][:, -1])[:, np.newaxis]).ravel(),
                       np.log(params_dict['pi0'][:-1]) - np.log(params_dict['pi0'][-1]),
                       params_dict['phi'].ravel()]
        return np.concatenate(param_list)

    @staticmethod
    def get_prior_contrib(param_dict):
        logp = 0.0
        # Prior
        logp += -0.5 * (np.linalg.norm(param_dict['phi'], axis=0) ** 2).sum()
        logp += (1.1 - 1) * np.log(param_dict['A']).sum()
        logp += (1.1 - 1) * np.log(param_dict['pi0']).sum()
        return logp

    @staticmethod
    def get_indices_in_held_out_fold(T, pct_to_drop, contiguous=False):
        """"""
        :param T: length of the sequence
        :param pct_to_drop: % of T in the held out fold
        :param contiguous: if True generate a block of indices to drop else generate indices by iid sampling
        :return: o (the set of indices in the fold)
        """"""
        if contiguous:
            l = np.floor(pct_to_drop / 100. * T)
            anchor = np.random.choice(np.arange(l + 1, T))
            o = np.arange(anchor - l, anchor).astype(int)
        else:
            # i.i.d LWCV
            o = np.random.choice(T - 2, size=np.int(pct_to_drop / 100. * T), replace=False) + 1
        return o

    @staticmethod
    def synthetic_hmm_data(K, T, D, sigma0=None, seed=1234, varainces_of_mean=1.0,
                        diagonal_upweight=False):
        """"""
        :param K: Number of HMM states
        :param T: length of the sequence
        """"""
        N = 1 # For structured IJ we will remove data / time steps from a single sequence
        np.random.seed(seed)
        if sigma0 is None:
            sigma0 = np.eye(D)

        A = np.random.dirichlet(alpha=np.ones(K), size=K)
        if diagonal_upweight:
            A = A + 3 * np.eye(K)  # add 3 to the diagonal and renormalize to encourage self transitions
            A = A / A.sum(axis=1)

        pi0 = np.random.dirichlet(alpha=np.ones(K))
        mus = np.random.normal(size=(K, D), scale=np.sqrt(varainces_of_mean))
        zs = np.empty((N, T), dtype=np.int)
        X = np.empty((N, T, D))

        for n in range(N):
            zs[n, 0] = int(np.random.choice(np.arange(K), p=pi0))
            X[n, 0] = np.random.multivariate_normal(mean=mus[zs[n, 0]], cov=sigma0)
            for t in range(1, T):
                zs[n, t] = int(np.random.choice(np.arange(K), p=A[zs[n, t - 1], :]))
                X[n, t] = np.random.multivariate_normal(mean=mus[zs[n, t]], cov=sigma0)

        return {'X': X, 'state_assignments': zs, 'A': A, 'initial_state_assignment': pi0,  'means': mus}
"
misc.py,"import abc
import sys

# Ensure compatibility with Python 2/3
if sys.version_info >= (3, 4):
    ABC = abc.ABC
else:
    ABC = abc.ABCMeta(str('ABC'), (), {})

from copy import deepcopy

import numpy as np
import numpy.random as npr


def make_batches(n_data, batch_size):
    return [slice(i, min(i+batch_size, n_data)) for i in range(0, n_data, batch_size)]


def generate_regression_data(seed, data_count=500):
    """"""
    Generate data from a noisy sine wave.
    :param seed: random number seed
    :param data_count: number of data points.
    :return:
    """"""
    np.random.seed(seed)
    noise_var = 0.1

    x = np.linspace(-4, 4, data_count)
    y = 1*np.sin(x) + np.sqrt(noise_var)*npr.randn(data_count)

    train_count = int (0.2 * data_count)
    idx = npr.permutation(range(data_count))
    x_train = x[idx[:train_count], np.newaxis ]
    x_test = x[ idx[train_count:], np.newaxis ]
    y_train = y[ idx[:train_count] ]
    y_test = y[ idx[train_count:] ]

    mu = np.mean(x_train, 0)
    std = np.std(x_train, 0)
    x_train = (x_train - mu) / std
    x_test = (x_test - mu) / std
    mu = np.mean(y_train, 0)
    std = np.std(y_train, 0)
    y_train = (y_train - mu) / std
    train_stats = dict()
    train_stats['mu'] = mu
    train_stats['sigma'] = std

    return x_train, y_train, x_test, y_test, train_stats


def form_D_for_auucc(yhat, zhatl, zhatu):
    # a handy routine to format data as needed by the UCC fit() method
    D = np.zeros([yhat.shape[0], 3])
    D[:, 0] = yhat.squeeze()
    D[:, 1] = zhatl.squeeze()
    D[:, 2] = zhatu.squeeze()
    return D


def fitted_ucc_w_nullref(y_true, y_pred_mean, y_pred_lower, y_pred_upper):
    """"""
    Instantiates an UCC object for the target predictor plus a 'null' (constant band) reference
    :param y_pred_lower:
    :param y_pred_mean:
    :param y_pred_upper:
    :param y_true:
    :return: ucc object fitted for two systems: target  + null reference
    """"""
    # form matrix for ucc:
    X_for_ucc = form_D_for_auucc(y_pred_mean.squeeze(),
                                 y_pred_mean.squeeze() - y_pred_lower.squeeze(),
                                 y_pred_upper.squeeze() - y_pred_mean.squeeze())
    # form matrix for a 'null' system (constant band)
    X_null = deepcopy(X_for_ucc)
    X_null[:,1:] = np.std(y_pred_mean)  # can be set to any other constant (no effect on AUUCC)
    # create an instance of ucc and fit data
    from uq360.metrics.uncertainty_characteristics_curve import UncertaintyCharacteristicsCurve as ucc
    u = ucc()
    u.fit([X_for_ucc, X_null], y_true.squeeze())
    return u


def make_sklearn_compatible_scorer(task_type, metric, greater_is_better=True, **kwargs):
    """"""

    Args:
        task_type: (str) regression or classification.
        metric: (str): choice of metric can be one of these - [aurrrc, ece, auroc, nll, brier, accuracy] for
            classification and [""rmse"", ""nll"", ""auucc_gain"", ""picp"", ""mpiw"", ""r2""] for regression.
        greater_is_better: is False the scores are negated before returning.
        **kwargs: additional arguments specific to some metrics.

    Returns:
        sklearn compatible scorer function.

    """"""

    from uq360.metrics.classification_metrics import compute_classification_metrics
    from uq360.metrics.regression_metrics import compute_regression_metrics

    def sklearn_compatible_score(model, X, y_true):
        """"""

        Args:
            model: The model being scored. Currently uq360 and sklearn models are supported.
            X: Input features.
            y_true: ground truth values for the target.

        Returns:
            Computed score of the model.

        """"""

        from uq360.algorithms.builtinuq import BuiltinUQ
        from uq360.algorithms.posthocuq import PostHocUQ
        if isinstance(model, BuiltinUQ) or isinstance(model, PostHocUQ):
            # uq360 models
            if task_type == ""classification"":
                score = compute_classification_metrics(
                    y_true=y_true,
                    y_prob=model.predict(X).y_prob,
                    option=metric,
                    **kwargs
                )[metric]
            elif task_type == ""regression"":
                y_mean, y_lower, y_upper = model.predict(X)
                score = compute_regression_metrics(
                    y_true=y_true,
                    y_mean=y_mean,
                    y_lower=y_lower,
                    y_upper=y_upper,
                    option=metric,
                    **kwargs
                )[metric]
            else:
                raise NotImplementedError

        else:
            # sklearn models
            if task_type == ""classification"":
                score = compute_classification_metrics(
                    y_true=y_true,
                    y_prob=model.predict_proba(X),
                    option=metric,
                    **kwargs
                )[metric]
            else:
                if metric in [""rmse"", ""r2""]:
                    score = compute_regression_metrics(
                        y_true=y_true,
                        y_mean=model.predict(X),
                        y_lower=None,
                        y_upper=None,
                        option=metric,
                        **kwargs
                    )[metric]
                else:
                    raise NotImplementedError(""{} is not supported for sklearn regression models"".format(metric))

        if not greater_is_better:
            score = -score
        return score
    return sklearn_compatible_score


class DummySklearnEstimator(ABC):
    def __init__(self, num_classes, base_model_prediction_fn):
        self.base_model_prediction_fn = base_model_prediction_fn
        self.classes_ = [i for i in range(num_classes)]

    def fit(self):
        pass

    def predict_proba(self, X):
        return self.base_model_prediction_fn(X)
"
optimizers.py,"from builtins import range

import autograd.numpy as np


def adam(grad, x, callback=None, num_iters=100, step_size=0.001, b1=0.9, b2=0.999, eps=10**-8, polyak=False):
    """"""Adapted from autograd.misc.optimizers""""""
    m = np.zeros(len(x))
    v = np.zeros(len(x))
    for i in range(num_iters):
        g = grad(x, i)
        if callback: callback(x, i, g, polyak)
        m = (1 - b1) * g      + b1 * m  # First  moment estimate.
        v = (1 - b2) * (g**2) + b2 * v  # Second moment estimate.
        mhat = m / (1 - b1**(i + 1))    # Bias correction.
        vhat = v / (1 - b2**(i + 1))
        x = x - step_size*mhat/(np.sqrt(vhat) + eps)
    return x"
generate_1D_regression_data.py,"import matplotlib.pyplot as plt
import numpy as np
import numpy.random as npr
import torch as torch


def make_data_gap(seed, data_count=100):
    import GPy
    npr.seed(0)
    x = np.hstack([np.linspace(-5, -2, int(data_count/2)), np.linspace(2, 5, int(data_count/2))])
    x = x[:, np.newaxis]
    k = GPy.kern.RBF(input_dim=1, variance=1., lengthscale=1.)
    K = k.K(x)
    L = np.linalg.cholesky(K + 1e-5 * np.eye(data_count))

    # draw a noise free random function from a GP
    eps = np.random.randn(data_count)
    f = L @ eps


    # use a homoskedastic Gaussian noise model N(f(x)_i, \sigma^2). \sigma^2 = 0.1
    eps_noise =  np.sqrt(0.1) * np.random.randn(data_count)
    y = f + eps_noise
    y = y[:, np.newaxis]

    plt.plot(x, f, 'ko', ms=2)
    plt.plot(x, y, 'ro')
    plt.title(""GP generated Data"")
    plt.pause(1)
    return torch.FloatTensor(x), torch.FloatTensor(y), torch.FloatTensor(x), torch.FloatTensor(y)


def make_data_sine(seed, data_count=450):
    # fix the random seed
    np.random.seed(seed)
    noise_var = 0.1

    X = np.linspace(-4, 4, data_count)
    y = 1*np.sin(X) + np.sqrt(noise_var)*npr.randn(data_count)

    train_count = int (0.2 * data_count)
    idx = npr.permutation(range(data_count))
    X_train = X[idx[:train_count], np.newaxis ]
    X_test = X[ idx[train_count:], np.newaxis ]
    y_train = y[ idx[:train_count] ]
    y_test = y[ idx[train_count:] ]

    mu = np.mean(X_train, 0)
    std = np.std(X_train, 0)
    X_train = (X_train - mu) / std
    X_test = (X_test - mu) / std
    mu = np.mean(y_train, 0)
    std = np.std(y_train, 0)
    # mu = 0
    # std = 1
    y_train = (y_train - mu) / std
    y_test = (y_test -mu) / std
    train_stats = dict()
    train_stats['mu'] = torch.FloatTensor([mu])
    train_stats['sigma'] = torch.FloatTensor([std])
    return torch.FloatTensor(X_train), torch.FloatTensor(y_train), torch.FloatTensor(X_test), torch.FloatTensor(y_test),\
           train_stats"
dataTransformer.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
#System imports
import os
import sys
import json
import datetime,time,timeit
import itertools


import numpy as np
import pandas as pd
import math
from sklearn.preprocessing import MinMaxScaler,StandardScaler
from sklearn.preprocessing import PowerTransformer
import logging
class dataTransformer():	
		
	def __init__(self):
		self.log = logging.getLogger('eion')
		
	def startTransformer(self,df,features,target,transType):
		scaler ='None'
		if target in features:
			features.remove(target)
		
		transFeatures=features
		transDfColumns=[]
		dataframe=df[transFeatures]
		#targetArray=np.array(df[target])
		#targetArray.shape = (len(targetArray), 1)
		self.log.info(""Data Normalization has started"")
		if transType.lower() =='standardscaler':
			scaler = StandardScaler().fit(dataframe)
			transDf = scaler.transform(dataframe)

		elif transType.lower() =='minmax':
			scaler=MinMaxScaler().fit(dataframe)
			transDf = scaler.transform(dataframe)
		elif transType.lower() =='lognormal':
			print(dataframe)
			scaler = PowerTransformer(method='yeo-johnson', standardize=False).fit(dataframe)
			transDf = scaler.transform(dataframe)
		else:
			self.log.info(""Need to implement"")
		#features.append(target)

		#scaledDf = pd.DataFrame(np.hstack((transDf, targetArray)),columns=features)
		return transDf,features,scaler"
preprocess.py,"import pandas as pd

tab = '    '
VALID_AGGREGATION_METHODS = ['mean','sum']
VALID_GRANULARITY_UNITS = ['second','minute','hour','day','week','month','year']
VALID_INTERPOLATE_KWARGS = {'linear':{},'spline':{'order':5},'timebased':{}}
VALID_INTERPOLATE_METHODS = list( VALID_INTERPOLATE_KWARGS.keys())

def get_one_true_option(d, default_value=None):
	if isinstance(d, dict):
		for k,v in d.items():
			if (isinstance(v, str) and v.lower() == 'true') or (isinstance(v, bool) and v == True):
				return k
	return default_value

def get_boolean(value):
    if (isinstance(value, str) and value.lower() == 'true') or (isinstance(value, bool) and value == True):
        return True
    else:
        return False
        
def get_source_delta( data: pd.DataFrame):
    MAX_SAMPLE_TRY = 20
    if len( data) <= 1:
        return None
    time_delta = data.index[-1] - data.index[-2]
    count = {}
    for i in range(len(data)):
        if i == MAX_SAMPLE_TRY or i == data.index[-1]:
            break
        delta = data.index[i+1] - data.index[i]
        if delta not in count.keys():
            count[delta] = 1
        else:
            count[delta] += 1
    if count:
        return max(count, key=count.get)
    else:
        return None

        
class timeSeries():

    def __init__( self, config, datetime, log=None):
        self.datetime = datetime
        self.validate_config(config)
        self.log = log
       
    def validate_config( self, config):

        if not self.datetime or self.datetime.lower() == 'na':
            raise ValueError('date time feature is not provided')
        self.config = {}
        method = get_one_true_option(config.get('interpolation',None))
        self.config['interpolate'] = {}
        self.config['interpolate']['enabled'] = method in VALID_INTERPOLATE_METHODS
        self.config['interpolate']['method'] = method
        self.config['rolling'] = {}
        self.config['rolling']['enabled'] = get_boolean( config.get('rollingWindow',False))
        self.config['rolling']['size'] = int( config.get('rollingWindowSize',1))
        if self.config['rolling']['size'] < 1:
            raise ValueError('Rolling window size should be greater than 0.')
        self.config['aggregation'] = {}
        aggregation = config.get('aggregation',{})
        agg_method = get_one_true_option(aggregation['type'])
        self.config['aggregation'] = {}
        self.config['aggregation']['enabled'] = agg_method in VALID_AGGREGATION_METHODS
        self.config['aggregation']['method'] = agg_method
        granularity = aggregation.get('granularity',{})
        granularity_unit = get_one_true_option( granularity.get('unit',None))
        if granularity_unit in VALID_GRANULARITY_UNITS:
            granularity_mapping = {'second':'S','minute':'Min','hour':'H','day':'D','week':'W','month':'M','year':'Y'}
            size = int(granularity.get('size',10))
            granularity_unit = granularity_mapping.get(granularity_unit,granularity_unit)
            self.config['aggregation']['granularity'] = {}
            self.config['aggregation']['granularity']['unit'] = granularity_unit
            self.config['aggregation']['granularity']['size'] = size

    def log_info(self, msg, type='info'):
        if self.log:
            if type == 'error':
                self.log.error( msg)
            else:
                self.log.info( msg)
        else:
            print( msg)
            
    def is_down_sampling(self, data, size, granularity_unit):
        down_sampling = False
        if granularity_unit in ['M', 'Y']:
            return True
        else:
            target_delta = pd.Timedelta(size , granularity_unit)
            source_delta = get_source_delta(data)
            if not source_delta:
                raise ValueError('Could not find the data frame time frequency')
            return source_delta < target_delta 
    
    def run( self, data):
        if self.datetime not in data.columns:
            raise ValueError(f""Date time feature '{self.datetime}' is not present in data"")
        try:
            # data[self.datetime] = pd.to_datetime( data[self.datetime])
            ##For bug 13513 - If the datetime needs UTC timestamp process, except part will handle.
            try:
                #for non utc timestamp
                data[self.datetime] = pd.to_datetime( data[self.datetime])
            except:
                #for utc timestamp
                data[self.datetime] = pd.to_datetime( data[self.datetime],utc=True)
            data.set_index( self.datetime, inplace=True)
        except:
            raise ValueError(f""can not convert '{self.datetime}' to dateTime"")
        if self.config.get('interpolate',{}).get('enabled',False):
            method = self.config['interpolate']['method']
            self.log_info(f""Applying Interpolation using {method}"")
            methods_mapping = {'timebased': 'time'}
            self.config['interpolate']['mapped_method'] = methods_mapping.get(method, method)
            data.interpolate(method=self.config['interpolate']['mapped_method'], inplace=True, **VALID_INTERPOLATE_KWARGS[method])
        if self.config.get('rolling',{}).get('enabled',False):
            if self.config['rolling']['size'] > len( data):
                raise ValueError('Rolling window size is greater than dataset size')
            self.log_info(f""Applying rolling window( moving avg) with size {self.config['rolling']['size']}"")
            data = data.rolling( self.config['rolling']['size']).mean()
            data = data.iloc[self.config['rolling']['size'] - 1:]
        aggregation = self.config.get('aggregation',{})
        if aggregation.get('enabled',False):
            method = aggregation.get('method','mean')
            self.rule = str(aggregation['granularity']['size']) + aggregation['granularity']['unit']
            if self.is_down_sampling(data, aggregation['granularity']['size'], aggregation['granularity']['unit']):
                self.log_info(f""Applying down sampling( {self.rule})"")
                if method == 'mean':
                    data = data.resample( self.rule).mean()
                elif method == 'sum':
                    data = data.resample( self.rule).sum()
            else:
                self.log_info(f""Applying up sampling using forward fill method( {self.rule})"")
                data = data.resample( self.rule).ffill()
        data.reset_index( inplace=True, names=self.datetime)
        return data
        
    def get_code(self, indent=0):
        tab = '    '
        code = ''
        code += f""""""
        
def preprocess( data):
    try:
        #for non utc timestamp
        data['{self.datetime}'] = pd.to_datetime( data['{self.datetime}'])
    except:
        data['{self.datetime}'] = pd.to_datetime( data['{self.datetime}'],utc=True)
    data.set_index( '{self.datetime}', inplace=True)
""""""
        if self.config.get('interpolate',{}).get('enabled',False):
            code += tab + f""data.interpolate(method='{self.config['interpolate']['mapped_method']}', inplace=True, **{VALID_INTERPOLATE_KWARGS[self.config['interpolate']['method']]})\n""
        if self.config.get('rolling',{}).get('enabled',False):
            code += tab + f""data = data.rolling( {self.config['rolling']['size']}).mean().iloc[{self.config['rolling']['size'] - 1}:]\n""
        if self.config.get('aggregation',{}).get('enabled',False):
            code += tab + f""data = data.resample( '{self.rule}').{self.config.get('aggregation',{}).get('method','mean')}()\n""
        code += tab + f""data.reset_index( inplace=True, names='{self.datetime}')\n""
        code += tab + ""return data\n""
        return code

"
textDataProfiler.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import numpy as np
import os
import sys
import string
import spacy
#import en_core_web_sm
from spacy.lang.en.stop_words import STOP_WORDS
from spacy.lang.en import English
try:
	from sklearn.feature_extraction.text import ENGLISH_STOP_WORDS
except:
	from sklearn.feature_extraction.stop_words import ENGLISH_STOP_WORDS
from sklearn.feature_extraction.text import CountVectorizer,TfidfVectorizer
from sklearn.base import TransformerMixin
from nltk.stem import WordNetLemmatizer
import re
from collections import defaultdict
from nltk.corpus import wordnet as wn
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import LabelBinarizer
from nltk.tokenize import word_tokenize
from nltk import pos_tag
from nltk.corpus import stopwords

class textDataProfiler():
	def __init__(self):
		self.data=None
		#self.nlp=en_core_web_sm.load()
		self.punctuations = string.punctuation
		self.stopwords = list(STOP_WORDS)
	
	def startTextProfiler(self,df,target):
		try:
			dataColumns = list(df.columns)
			print(' \n No of rows and columns in dataFrame',df.shape)
			print('\n features in dataFrame',dataColumns)
			dataFDtypes=self.dataFramecolType(df)
			print('\n feature types in dataFrame',dataFDtypes)
			trainX=df['text']
			trainY=df[target]
			return trainX,trainY
		except Exception as inst:
			print('startTextProfiler code execution failed !....',inst)
			exc_type, exc_obj, exc_tb = sys.exc_info()
			fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
			print(exc_type, fname, exc_tb.tb_lineno)
			
	def dataFramecolType(self,dataFrame):
		dataFDtypes=[]
		try:
			dataColumns=list(dataFrame.columns)
			for i in dataColumns:
				dataType=dataFrame[i].dtypes
				dataFDtypes.append(tuple([i,str(dataType)]))
			return dataFDtypes
		except Exception as e:
			print(""error in dataFramecolyType"",e)
			return dataFDtypes
					 
	def textTokenizer(self,text):
		try:
			parser = English()
			tokens = parser(text)
			tokens = [ word.lemma_.lower().strip() if word.lemma_ != ""-PRON-"" else word.lower_ for word in tokens ]
			tokens = [ word for word in tokens if word not in self.stopwords and word not in self.punctuations ]
			return tokens
		except Exception as inst:
			print('textDataProfiler code execution failed !....',inst)
			exc_type, exc_obj, exc_tb = sys.exc_info()
			fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
			print(exc_type, fname, exc_tb.tb_lineno)
			return {}
	
	def cleanText(self,text):
		try:
			text=str(text).strip().lower()
			for punctuation in string.punctuation:
				text = text.replace(punctuation, '')
			return text
		except Exception as inst:
			print('cleanText code execution failed !....',inst)
			exc_type, exc_obj, exc_tb = sys.exc_info()
			fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
			print(exc_type, fname, exc_tb.tb_lineno)
			
	def textTokenization(self,text):
		try:
			tokenizedText=word_tokenize(text)
			return tokenizedText
		except Exception as inst:
			print('textDataProfiler code execution failed !....',inst)
			exc_type, exc_obj, exc_tb = sys.exc_info()
			fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
			print(exc_type, fname, exc_tb.tb_lineno)
			return {}
		
	def textLemmitizer(self,text):
		try:
			tag_map = defaultdict(lambda : wn.NOUN)
			tag_map['J'] = wn.ADJ
			tag_map['V'] = wn.VERB
			tag_map['R'] = wn.ADV
			Final_words = []
			word_Lemmatized = WordNetLemmatizer()
			for word, tag in pos_tag(text):
				if word not in stopwords.words('english') and word.isalpha():
					word_Final = word_Lemmatized.lemmatize(word,tag_map[tag[0]])
					Final_words.append(word_Final)
			return str(Final_words)
		except Exception as inst:
			print('textLemmitizer code execution failed !....',inst)
			exc_type, exc_obj, exc_tb = sys.exc_info()
			fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
			print(exc_type, fname, exc_tb.tb_lineno)
			return {}
			
class TextCleaner(TransformerMixin):
	
	def clean_text(self,text):
		try:
			text=str(text).strip().lower()
			text = text.replace(""isn't"", ""is not"")
			text = text.replace(""aren't"", ""are not"")
			text = text.replace(""ain't"", ""am not"")
			text = text.replace(""won't"", ""will not"")
			text = text.replace(""didn't"", ""did not"")
			text = text.replace(""shan't"", ""shall not"")
			text = text.replace(""haven't"", ""have not"")
			text = text.replace(""hadn't"", ""had not"")
			text = text.replace(""hasn't"", ""has not"")
			text = text.replace(""don't"", ""do not"")
			text = text.replace(""wasn't"", ""was not"")
			text = text.replace(""weren't"", ""were not"")
			text = text.replace(""doesn't"", ""does not"")
			text = text.replace(""'s"", "" is"")
			text = text.replace(""'re"", "" are"")
			text = text.replace(""'m"", "" am"")
			text = text.replace(""'d"", "" would"")
			text = text.replace(""'ll"", "" will"")
			text = re.sub(r'^https?:\/\/.*[\r\n]*', ' ', text, flags=re.MULTILINE)
			text = re.sub(r'[\w\.-]+@[\w\.-]+', ' ', text, flags=re.MULTILINE)
			for punctuation in string.punctuation:
				text = text.replace(punctuation,' ')
			text = re.sub(r'[^A-Za-z0-9\s]',r' ',text)
			text = re.sub(r'\n',r' ',text)
			text = re.sub(r'[0-9]',r' ',text)
			wordnet_lemmatizer = WordNetLemmatizer()
			text = "" "".join([wordnet_lemmatizer.lemmatize(w, pos='v') for w in text.split()])
			return text
		except Exception as inst:
			print('TextCleaner clean_text code execution failed !....',inst)
			exc_type, exc_obj, exc_tb = sys.exc_info()
			fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
			print(exc_type, fname, exc_tb.tb_lineno)
	
	def text_cleaner(self,text):
		text = self.clean_text(text)
		stop_words = set(stopwords.words('english')) 
		text_tokens = word_tokenize(text)
		out=' '.join(str(j) for j in text_tokens if j not in stop_words and (len(j)!=1))
		return(out)
		
	def transform(self, X, **transform_params):
        # Cleaning Text
		return [self.clean_text(text) for text in X]

	def fit(self, X, y=None, **fit_params):
		return self

	def get_params(self, deep=True):
		return {}"
imageAug.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import random
from matplotlib import pyplot as plt
import cv2
import albumentations as A
import os
import pandas as pd
from pathlib import Path


class ImageAugmentation():

    def __init__(self, dataLocation, csvFile):
        self.AugmentationOptions = {""Flip"": {""operation"": A.HorizontalFlip, ""suffix"":""_flip""},
            ""Rotate"": {""operation"": A.Rotate, ""suffix"":""_rotate""},
            ""Shift"": {""operation"": A.RGBShift, ""suffix"":""_shift""},
            ""Crop"": {""operation"": [A.CenterCrop, A.RandomSizedBBoxSafeCrop], ""suffix"":""_crop""},
            ""Contrast"": {""operation"": A.RandomContrast, ""suffix"":""_cont""},
            ""Brightness"": {""operation"": A.RandomBrightness, ""suffix"":""_bright""},
            ""Blur"": {""operation"": A.GaussianBlur, ""suffix"":""_blur""}
        }
        self.dataLocation = dataLocation
        self.csvFile = csvFile
        
    def __applyAugmentationClass(self, image, augmentation,limit):
        if augmentation in list(self.AugmentationOptions.keys()):
            if augmentation == ""Crop"":
                height, width, _ = image.shape
                crop_percentage = random.uniform(0.6, 0.9)
                transform = self.AugmentationOptions[augmentation][""operation""][0](height=int(height*crop_percentage), width=int(width*crop_percentage) )
            elif augmentation == ""Blur"":
                transform = self.AugmentationOptions[augmentation][""operation""](blur_limit = limit)			
            elif augmentation in [""Contrast"",""Brightness""]:
                transform = self.AugmentationOptions[augmentation][""operation""](limit = limit)
            else:				
                transform = self.AugmentationOptions[augmentation][""operation""]()
            return transform(image=image)
    
    def __applyAugmentation(self, image, augmentation,limit,bboxes=None, category_ids=None, seed=7):
        transformOptions = []
        if bboxes:
            bbox_params = A.BboxParams(format='pascal_voc', label_fields=['category_ids'])
        else:
            bbox_params = None
        if augmentation in list(self.AugmentationOptions.keys()):
            if augmentation == ""Crop"":
                height, width, _ = image.shape
                crop_percentage = random.uniform(0.6, 0.9)		
                transformOptions.append(self.AugmentationOptions[augmentation][""operation""][1](height=int(height*crop_percentage), width=int(width*crop_percentage) ))
            elif augmentation == ""Blur"":
                transformOptions.append(self.AugmentationOptions[augmentation][""operation""](blur_limit = limit))
            elif augmentation in [""Contrast"",""Brightness""]:
                transformOptions.append(self.AugmentationOptions[augmentation][""operation""](limit = limit))
            else:
                transformOptions.append(self.AugmentationOptions[augmentation][""operation""]())
            transform = A.Compose(
                transformOptions,
                bbox_params=bbox_params,
            )
            random.seed(seed)
            return transform(image=image, bboxes=bboxes, category_ids=category_ids)
        else:
            return None
    def getBBox(self, df, imageLoc, category_name_to_id):
            
        subDf = df[df['loc']==imageLoc]
        boxes = []
        category = []
        for index, row in subDf.iterrows():
            boxes.append( [row['xmin'],row['ymin'],row['xmax'],row['ymax']])
            category.append(category_name_to_id[row['Label']])
        return boxes, category

    def __objAug(self, imageLoc, df, classes_names, category_id_to_name, category_name_to_id,limit,numberofImages,op):
        for x in range(numberofImages):
            bbox, category_ids = self.getBBox(df, imageLoc, category_name_to_id)
            image = cv2.imread(imageLoc)
            image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
            transformed = self.__applyAugmentation(image, op,limit,bbox, category_ids)
            transformed['image'] = cv2.cvtColor(transformed['image'], cv2.COLOR_RGB2BGR)
            count = 1
            row = df[df['loc']==imageLoc].iloc[0]
            filename = (Path(imageLoc).stem +'_'+str(x)+ self.AugmentationOptions[op][""suffix""] + Path(imageLoc).suffix)
            newImage = str(Path(imageLoc).parent/filename)
            for index,bbox in enumerate(transformed['bboxes']):
                data = {'File':filename, 'xmin':bbox[0],'ymin':bbox[1],'xmax':bbox[2],'ymax':bbox[3],'Label':category_id_to_name[transformed['category_ids'][index]],'id':count,'height':row['height'],'width':row['width'], 'angle':0.0, 'loc': newImage, 'AugmentedImage': True}
                count += 1
                df=df.append(data, ignore_index=True)
    
            cv2.imwrite(newImage, transformed['image'])
        return df

        
    def __objectDetection(self, images, df, optionDf, classes_names, suffix='',augConf={}):

        category_id_to_name = {v+1:k for v,k in enumerate(classes_names)}
        category_name_to_id = {k:v+1 for v,k in enumerate(classes_names)}
        for i, imageLoc in enumerate(images):            
            for key in optionDf.columns:
                if optionDf.iloc[i][key]:
                    if key in augConf:
                        limit = eval(augConf[key].get('limit','0.2'))
                        numberofImages = int(augConf[key].get('noOfImages',1))
                    else:
                        limit = 0.2
                        numberofImages = 1
                    
                    df = self.__objAug(imageLoc, df, classes_names, category_id_to_name,category_name_to_id,limit,numberofImages,op=key)
        return df
        
    def __augClassificationImage(self, imageLoc, df,limit,imageindex,op):
        data = {}
        image = cv2.imread(imageLoc)
        image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
        transformed = self.__applyAugmentationClass(image, op,limit)
        transformed['image'] = cv2.cvtColor(transformed['image'], cv2.COLOR_RGB2BGR)
        location = Path(imageLoc).parent
        filename = (Path(imageLoc).stem +'_'+'str(imageindex)'+ self.AugmentationOptions[op][""suffix""] + Path(imageLoc).suffix)
        cv2.imwrite(str(location/'AION'/'AugumentedImages'/filename), transformed['image'])
        data['File'] = filename
        data['Label'] = df[df['File']==Path(imageLoc).name][""Label""].iloc[0]
        data['AugmentedImage'] = True
        data['loc'] = str(location/filename)
        return data

    def __classification(self, images, df, optionDf,augConf,csv_file=None, outputDir=None):
        for i, imageLoc in enumerate(images):            
            for key in optionDf.columns:
                if optionDf.iloc[i][key]:
                    if key in augConf:
                        limit = eval(augConf[key].get('limit','0.2'))
                        numberofImages = int(augConf[key].get('noOfImages',1))
                    else:
                        limit = 0.2
                        numberofImages = 1
                    for x in range(numberofImages):	
                        rows = self.__augClassificationImage(imageLoc, df,limit,x,op=key)
                        df=df.append(rows, ignore_index=True)
        return df

    def removeAugmentedImages(self, df):
        removeDf = df[df['AugmentedImage'] == True]['loc'].unique().tolist()
        #df[df['imageAugmentationOriginalImage'] != True][loocationField].apply(lambda x: Path(x).unlink())
        for file in removeDf:
            if file:
                Path(file).unlink()

    def augment(self, modelType=""imageclassification"",params=None,csvSavePath = None,augConf={}):
        if isinstance(params, dict) and any(params.values()):
            df = pd.read_csv(self.csvFile)
            if not self.dataLocation.endswith('/'):
                images = self.dataLocation+'/'
            else:
                images = self.dataLocation
            if modelType == ""imageclassification"":
                images = images + df['File']
            else:
                images = images + df['File']
                df['loc'] = images
            images = set(images.tolist())
            option = {}
            for key in list(self.AugmentationOptions.keys()):
                option[key] = params.get(key, False)
            optionDf = pd.DataFrame(columns=list(option.keys()))
            for i in range(len(images)):
                optionDf = optionDf.append(option, ignore_index=True)
            if modelType == ""imageclassification"":
                df = self.__classification(images, df, optionDf,augConf)
            else:
                classes_names = sorted(df['Label'].unique().tolist())
                df = self.__objectDetection(images, df, optionDf, classes_names,'',augConf)
            df.to_csv(self.csvFile, index=False)
        return self.csvFile"
__init__.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''"
textProfiler.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
#System imports
import logging
from distutils.util import strtobool
import pandas as pd
from text import TextProcessing


def get_one_true_option(d, default_value):
	if isinstance(d, dict):
		for k,v in d.items():
			if (isinstance(v, str) and v.lower() == 'true') or (isinstance(v, bool) and v == True):
				return k
	return default_value


class textProfiler():
		
	def __init__(self):
		self.log = logging.getLogger('eion')

	def textCleaning(self, textCorpus):
		textProcessor = TextProcessing.TextProcessing()
		textCorpus = textProcessor.transform(textCorpus)
		return(textCorpus)
		
	def textProfiler(self, textCorpus, conf_json, pipeList, max_features):
		cleaning_kwargs = {}
		textCleaning = conf_json.get('textCleaning')
		self.log.info(""Text Preprocessing config: "",textCleaning)
		cleaning_kwargs['fRemoveNoise'] = strtobool(textCleaning.get('removeNoise', 'True'))
		cleaning_kwargs['fNormalize'] = strtobool(textCleaning.get('normalize', 'True'))
		cleaning_kwargs['fReplaceAcronym'] = strtobool(textCleaning.get('replaceAcronym', 'False'))
		cleaning_kwargs['fCorrectSpelling'] = strtobool(textCleaning.get('correctSpelling', 'False'))
		cleaning_kwargs['fRemoveStopwords'] = strtobool(textCleaning.get('removeStopwords', 'True'))
		cleaning_kwargs['fRemovePunctuation'] = strtobool(textCleaning.get('removePunctuation', 'True'))
		cleaning_kwargs['fRemoveNumericTokens'] = strtobool(textCleaning.get('removeNumericTokens', 'True'))
		cleaning_kwargs['normalizationMethod'] = get_one_true_option(textCleaning.get('normalizeMethod'),
																	 'lemmatization').capitalize()
		
		removeNoiseConfig = textCleaning.get('removeNoiseConfig')
		if type(removeNoiseConfig) is dict:
			cleaning_kwargs['removeNoise_fHtmlDecode'] = strtobool(removeNoiseConfig.get('decodeHTML', 'True'))
			cleaning_kwargs['removeNoise_fRemoveHyperLinks'] = strtobool(removeNoiseConfig.get('removeHyperLinks', 'True'))
			cleaning_kwargs['removeNoise_fRemoveMentions'] = strtobool(removeNoiseConfig.get('removeMentions', 'True'))
			cleaning_kwargs['removeNoise_fRemoveHashtags'] = strtobool(removeNoiseConfig.get('removeHashtags', 'True'))
			cleaning_kwargs['removeNoise_RemoveOrReplaceEmoji'] = 'remove' if strtobool(removeNoiseConfig.get('removeEmoji', 'True')) else 'replace'
			cleaning_kwargs['removeNoise_fUnicodeToAscii'] = strtobool(removeNoiseConfig.get('unicodeToAscii', 'True'))
			cleaning_kwargs['removeNoise_fRemoveNonAscii'] = strtobool(removeNoiseConfig.get('removeNonAscii', 'True'))

		acronymConfig = textCleaning.get('acronymConfig')
		if type(acronymConfig) is dict:
			cleaning_kwargs['acronymDict'] = acronymConfig.get('acronymDict', None)
		
		stopWordsConfig = textCleaning.get('stopWordsConfig')
		if type(stopWordsConfig) is dict:
			cleaning_kwargs['stopwordsList'] = stopWordsConfig.get('stopwordsList', [])
			cleaning_kwargs['extend_or_replace_stopwordslist'] = 'extend' if strtobool(stopWordsConfig.get('extend', 'True')) else 'replace'
		removeNumericConfig = textCleaning.get('removeNumericConfig')
		if type(removeNumericConfig) is dict:
			cleaning_kwargs['removeNumeric_fIncludeSpecialCharacters'] = strtobool(removeNumericConfig.get('removeNumeric_IncludeSpecialCharacters', 'True'))

		removePunctuationConfig = textCleaning.get('removePunctuationConfig')
		if type(removePunctuationConfig) is dict:
			cleaning_kwargs['fRemovePuncWithinTokens'] = strtobool(removePunctuationConfig.get('removePuncWithinTokens', 'False'))
		
		cleaning_kwargs['fExpandContractions'] = strtobool(textCleaning.get('expandContractions', 'False'))
		if cleaning_kwargs['fExpandContractions']:
			cleaning_kwargs['expandContractions_googleNewsWordVectorPath'] = GOOGLE_NEWS_WORD_VECTORS_PATH

		libConfig = textCleaning.get('libConfig')
		if type(libConfig) is dict:
			cleaning_kwargs['tokenizationLib'] = get_one_true_option(libConfig.get('tokenizationLib'), 'nltk')
			cleaning_kwargs['lemmatizationLib'] = get_one_true_option(libConfig.get('lemmatizationLib'), 'nltk')
			cleaning_kwargs['stopwordsRemovalLib'] = get_one_true_option(libConfig.get('stopwordsRemovalLib'), 'nltk')

		textProcessor = TextProcessing.TextProcessing(**cleaning_kwargs)
		textCorpus = textProcessor.transform(textCorpus)
		pipeList.append((""TextProcessing"",textProcessor))

		textFeatureExtraction = conf_json.get('textFeatureExtraction')
		if strtobool(textFeatureExtraction.get('pos_tags', 'False')):
			pos_tags_lib = get_one_true_option(textFeatureExtraction.get('pos_tags_lib'), 'nltk')
			posTagger = TextProcessing.PosTagging( pos_tags_lib)
			textCorpus = posTagger.transform(textCorpus)
			pipeList.append((""posTagger"",posTagger))
		ngram_min = 1
		ngram_max = 1
		if strtobool(textFeatureExtraction.get('n_grams', 'False')):
			n_grams_config = textFeatureExtraction.get(""n_grams_config"")
			ngram_min = int(n_grams_config.get('min_n', 1))
			ngram_max = int(n_grams_config.get('max_n', 1))
			if (ngram_min < 1) or ngram_min > ngram_max:
				ngram_min = 1
				ngram_max = 1
				invalidNgramWarning = 'WARNING : invalid ngram config.\nUsing the default values min_n={}, max_n={}'.format(ngram_min, ngram_max)
				self.log.info(invalidNgramWarning)
		ngram_range_tuple = (ngram_min, ngram_max)
		textConversionMethod = conf_json.get('textConversionMethod')
		conversion_method = get_one_true_option(textConversionMethod, None)
		if conversion_method.lower() == ""countvectors"":
			X, vectorizer = TextProcessing.ExtractFeatureCountVectors(textCorpus, ngram_range=ngram_range_tuple, max_features=max_features)
			pipeList.append((""vectorizer"",vectorizer))
			df1 = pd.DataFrame(X.toarray(), columns=vectorizer.get_feature_names())
			df1 = df1.add_suffix('_vect')
			self.log.info('----------> Conversion Method: CountVectors')
		elif conversion_method.lower() in [""word2vec"",""fasttext"",""glove""]:
			embedding_method = conversion_method
			wordEmbeddingVecotrizer = TextProcessing.wordEmbedding(embedding_method)
			wordEmbeddingVecotrizer.checkAndDownloadPretrainedModel()
			X = wordEmbeddingVecotrizer.transform(textCorpus)
			df1 = pd.DataFrame(X)
			df1 = df1.add_suffix('_vect')
			pipeList.append((""vectorizer"",wordEmbeddingVecotrizer))
			self.log.info('----------> Conversion Method: '+str(conversion_method))
		elif conversion_method.lower() == ""sentencetransformer"":
			from sentence_transformers import SentenceTransformer
			model = SentenceTransformer('sentence-transformers/msmarco-distilroberta-base-v2')
			X = model.encode(textCorpus)
			df1 = pd.DataFrame(X)
			df1 = df1.add_suffix('_vect')
			pipeList.append((""vectorizer"",model))
			self.log.info('----------> Conversion Method: SentenceTransformer')
		elif conversion_method.lower() == 'tf_idf':
			X, vectorizer = TextProcessing.ExtractFeatureTfIdfVectors(textCorpus,ngram_range=ngram_range_tuple, max_features=max_features)
			pipeList.append((""vectorizer"",vectorizer))
			df1 = pd.DataFrame(X.toarray(), columns=vectorizer.get_feature_names())
			df1 = df1.add_suffix('_vect')
			self.log.info('----------> Conversion Method: TF_IDF')
		else:
			df1 = pd.DataFrame()
			df1['tokenize'] = textCorpus
			self.log.info('----------> Conversion Method: NA')            
		return df1, pipeList,conversion_method
"
generate_tfrecord.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import os
import glob
import pandas as pd
import io
import xml.etree.ElementTree as ET
import argparse

os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'    # Suppress TensorFlow logging (1)
import tensorflow as tf
from PIL import Image
from object_detection.utils import dataset_util, label_map_util
from collections import namedtuple
from pathlib import Path


def class_text_to_int(row_label, label_map_dict):
    return label_map_dict[row_label]


def split(df, group):
    data = namedtuple('data', ['File', 'object'])
    gb = df.groupby(group)
    return [data(File, gb.get_group(x)) for File, x in zip(gb.groups.keys(), gb.groups)]


def create_tf_example(group, path, label_map_dict):
    with tf.io.gfile.GFile(os.path.join(path, '{}'.format(group.File)), 'rb') as fid:
        encoded_jpg = fid.read()
    encoded_jpg_io = io.BytesIO(encoded_jpg)
    image = Image.open(encoded_jpg_io)
    width, height = image.size

    File = group.File.encode('utf8')
    image_format = b'jpg'
    xmins = []
    xmaxs = []
    ymins = []
    ymaxs = []
    classes_text = []
    classes = []

    for index, row in group.object.iterrows():
        xmin_n = min(row['xmin'], row['xmax'])
        xmax_n = max(row['xmin'], row['xmax'])
        ymin_n = min(row['ymin'], row['ymax'])
        ymax_n = max(row['ymin'], row['ymax'])

        xmin_new = min(xmin_n, width)
        xmax_new = min(xmax_n, width)
        ymin_new = min(ymin_n, height)
        ymax_new = min(ymax_n, height)

        xmn = xmin_new / width
        xmins.append(xmn)

        xmx = xmax_new / width
        xmaxs.append(xmx)

        ymn = ymin_new / height
        ymins.append(ymn)

        ymx = ymax_new / height
        ymaxs.append(ymx)
        classes_text.append(row['Label'].encode('utf8'))
        classes.append(class_text_to_int(row['Label'], label_map_dict))

    tf_example = tf.train.Example(features=tf.train.Features(feature={
        'image/height': dataset_util.int64_feature(height),
        'image/width': dataset_util.int64_feature(width),
        'image/filename': dataset_util.bytes_feature(File),
        'image/source_id': dataset_util.bytes_feature(File),
        'image/encoded': dataset_util.bytes_feature(encoded_jpg),
        'image/format': dataset_util.bytes_feature(image_format),
        'image/object/bbox/xmin': dataset_util.float_list_feature(xmins),
        'image/object/bbox/xmax': dataset_util.float_list_feature(xmaxs),
        'image/object/bbox/ymin': dataset_util.float_list_feature(ymins),
        'image/object/bbox/ymax': dataset_util.float_list_feature(ymaxs),
        'image/object/class/text': dataset_util.bytes_list_feature(classes_text),
        'image/object/class/label': dataset_util.int64_list_feature(classes),
    }))
    return tf_example

def labelFile(classes_names, label_map_path):
    pbtxt_content = """"

    for i, class_name in enumerate(classes_names):
        pbtxt_content = (
                pbtxt_content
                + ""item {{\n    id: {0}\n    name: '{1}'\n}}\n\n"".format(i + 1, class_name)
        )
    pbtxt_content = pbtxt_content.strip()
    with open(label_map_path, ""w"") as f:
        f.write(pbtxt_content)

def createLabelFile(train_df, save_path):
    labelmap_path = str(Path(save_path)/ 'label_map.pbtxt')
    classes_names = sorted(train_df['Label'].unique().tolist())
    labelFile(classes_names, labelmap_path)
    return labelmap_path, len(classes_names)
    

def generate_TF_record(image_dir, output_dir, train_df, test_df, labelmap_path):
    
    outputPath = str(Path(output_dir)/ 'train.tfrecord')
    writer = tf.io.TFRecordWriter( outputPath)
    grouped = split(train_df, 'File')
    label_map = label_map_util.load_labelmap(labelmap_path )
    label_map_dict = label_map_util.get_label_map_dict(label_map)
    for group in grouped:
        tf_example = create_tf_example(group, image_dir, label_map_dict)
        writer.write(tf_example.SerializeToString())
    writer.close()
    if len(test_df):
        outputPath = str(Path(output_dir)/ 'test.tfrecord')
        writer = tf.io.TFRecordWriter( outputPath)
        grouped = split(test_df, 'File')
        for group in grouped:
            tf_example = create_tf_example(group, image_dir, label_map_dict)
            writer.write(tf_example.SerializeToString())
        writer.close()
            

"
dataProfiler.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import io
import json
import logging
import pandas as pd
import sys
import numpy as np
from pathlib import Path
from word2number import w2n
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import OrdinalEncoder
from sklearn.preprocessing import OneHotEncoder
from sklearn.impute import SimpleImputer, KNNImputer
from sklearn.pipeline import Pipeline, FeatureUnion
from sklearn.preprocessing import FunctionTransformer
from sklearn.preprocessing import MinMaxScaler,StandardScaler
from sklearn.preprocessing import PowerTransformer
from sklearn.compose import ColumnTransformer
from sklearn.base import TransformerMixin
from sklearn.ensemble import IsolationForest
from category_encoders import TargetEncoder
try:
    import transformations.data_profiler_functions as cs
except:
    import data_profiler_functions as cs

if 'AION' in sys.modules:
    try:
        from appbe.app_config import DEBUG_ENABLED
    except:
        DEBUG_ENABLED = False
else:
    DEBUG_ENABLED = False
log_suffix = f'[{Path(__file__).stem}] '


class profiler():

    def __init__(self, xtrain, ytrain=None, target=None, encode_target = False, config={}, keep_unprocessed=[],data_path=None,log=None):
        if not isinstance(xtrain, pd.DataFrame):
            raise ValueError(f'{log_suffix}supported data type is pandas.DataFrame but provide data is of {type(xtrain)} type')
        if xtrain.empty:
            raise ValueError(f'{log_suffix}Data frame is empty')
        if target and target in xtrain.columns:
            self.target = xtrain[target]
            xtrain.drop(target, axis=1, inplace=True)
            self.target_name = target
        elif ytrain:
            self.target = ytrain
            self.target_name = 'target'
        else:
            self.target = pd.Series()
            self.target_name = None
        self.data_path = data_path
        self.encode_target = encode_target
        self.label_encoder = None
        self.data = xtrain
        self.keep_unprocessed = keep_unprocessed
        self.colm_type = {}
        for colm, infer_type in zip(self.data.columns, self.data.dtypes):
            self.colm_type[colm] = infer_type
        self.numeric_feature = []
        self.cat_feature = []
        self.text_feature = []
        self.wordToNumericFeatures = []
        self.added_features = []
        self.pipeline = []
        self.dropped_features = {}
        self.train_features_type={}
        self.__update_type()
        self.config = config
        self.featureDict = config.get('featureDict', [])
        self.output_columns = []
        self.feature_expender = []
        self.text_to_num = {}
        self.force_numeric_conv = []
        if log:
            self.log = log
        else:
            self.log = logging.getLogger('eion')
        self.type_conversion = {}
        self.log_input_feat_info()

    def log_input_feat_info(self):
        if self.featureDict:
            feature_df = pd.DataFrame(self.featureDict)
            log_text = '\nPreprocessing options:'
            log_text += '\n\t'+str(feature_df.head( len(self.featureDict))).replace('\n','\n\t')  
            self.log.info(log_text)

    def log_dataframe(self, msg=None):                    
        buffer = io.StringIO()                    
        self.data.info(buf=buffer)                    
        if msg:                    
            log_text = f'Data frame after {msg}:'                    
        else:                    
            log_text = 'Data frame:'                    
        log_text += '\n\t'+str(self.data.head(2)).replace('\n','\n\t')                    
        log_text += ('\n\t' + buffer.getvalue().replace('\n','\n\t'))                    
        self.log.info(log_text)

    def transform(self):
        if self.is_target_available():
            if self.target_name:
                self.log.info(f""Target feature name: '{self.target_name}'"")
            self.log.info(f""Target feature size: {len(self.target)}"")
        else:
            self.log.info(f""Target feature not present"")
        self.log_dataframe()
        print(self.data.info())
        try:
            self.process()
        except Exception as e:            
            self.log.error(e, exc_info=True)
            raise
        pipe = FeatureUnion(self.pipeline)
        try:
            if self.text_feature:
                from text.textProfiler import set_pretrained_model
                set_pretrained_model(pipe)
            conversion_method = self.get_conversion_method()
            process_data = pipe.fit_transform(self.data, y=self.target)
            # save for testing
            if DEBUG_ENABLED:
                if not isinstance(process_data, np.ndarray):
                    process_data = process_data.toarray()        
                df = pd.DataFrame(process_data)
                df.to_csv('debug_preprocessed.csv', index=False)
            if self.text_feature and conversion_method == 'latentsemanticanalysis':
                n_size = self.get_tf_idf_output_size( pipe)
                dimensions = self.get_tf_idf_dimensions()
                if n_size < dimensions or n_size > dimensions:
                    dimensions = n_size
                from sklearn.decomposition import TruncatedSVD
                reducer = TruncatedSVD( n_components = dimensions)
                reduced_data = reducer.fit_transform( process_data[:,-n_size:])
                text_process_idx = [t[0] for t in pipe.transformer_list].index('text_process')
                pipe.transformer_list[text_process_idx][1].steps.append(('feature_reducer',reducer))
                if not isinstance(process_data, np.ndarray):
                    process_data = process_data.toarray()
                process_data = np.concatenate((process_data[:,:-n_size], reduced_data), axis=1)
                last_step = self.feature_expender.pop()
                self.feature_expender.append({'feature_reducer':list(last_step.values())[0]})
                    
        except EOFError as e:
            if ""Compressed file ended before the end-of-stream marker was reached"" in str(e):
                raise EOFError('Pretrained model is not downloaded properly')

        self.update_output_features_names(pipe)
        if not isinstance(process_data, np.ndarray):
            process_data = process_data.toarray()        
        df = pd.DataFrame(process_data, index=self.data.index, columns=self.output_columns)
        
        if self.is_target_available() and self.target_name:
            df[self.target_name] = self.target
        if self.keep_unprocessed:
            df[self.keep_unprocessed] = self.data[self.keep_unprocessed]
        self.log_numerical_fill()
        self.log_categorical_fill()
        self.log_normalization()
        return df, pipe, self.label_encoder
    
    def log_type_conversion(self):
        if self.log:
            self.log.info('-----------  Inspecting Features -----------')
            self.log.info('-----------  Type Conversion -----------')
            count = 0
            for k, v in self.type_conversion.items():
                if v[0] != v[1]:
                    self.log.info(f'-------> {k} -> from {v[0]} to {v[1]} : {v[2]}')
            self.log.info('Status:- |... Feature inspection done')
    
    def check_config(self):
        removeDuplicate = self.config.get('removeDuplicate', False)
        self.config['removeDuplicate'] = cs.get_boolean(removeDuplicate)
        self.config['misValueRatio'] = float(self.config.get('misValueRatio', cs.default_config['misValueRatio']))
        self.config['numericFeatureRatio'] = float(self.config.get('numericFeatureRatio', cs.default_config['numericFeatureRatio']))
        self.config['categoryMaxLabel'] = int(self.config.get('categoryMaxLabel', cs.default_config['categoryMaxLabel']))
        featureDict = self.config.get('featureDict', [])
        if isinstance(featureDict, dict):
            self.config['featureDict'] = []
        if isinstance(featureDict, str):
            self.config['featureDict'] = []
                
    def process(self):
        #remove duplicate not required at the time of prediction
        self.check_config()
        self.remove_constant_feature()
        self.remove_empty_feature(self.config['misValueRatio'])
        self.remove_index_features()
        self.dropna()
        if self.config['removeDuplicate']:
            self.drop_duplicate()
        #self.check_categorical_features()
        #self.string_to_numeric()
        self.process_target()
        self.train_features_type = {k:v for k,v in zip(self.data.columns, self.data.dtypes)}
        self.parse_process_step_config()
        self.process_drop_fillna()
        self.log_type_conversion()
        self.update_num_fill_dict()
        if DEBUG_ENABLED:
            print(self.num_fill_method_dict)
        self.update_cat_fill_dict()
        self.create_pipeline()
        self.text_pipeline(self.config)
        self.apply_outlier()
        if DEBUG_ENABLED:
            self.log.info(self.process_method)
            self.log.info(self.pipeline)
    
    def is_target_available(self):
        return (isinstance(self.target, pd.Series) and not self.target.empty) or len(self.target)
    
    def process_target(self, operation='encode', arg=None):
        if self.is_target_available():
            # drop null values
            self.__update_index( self.target.notna(), 'target')
            if self.encode_target:
                self.label_encoder = LabelEncoder()
                self.target = self.label_encoder.fit_transform(self.target)
                return self.label_encoder
        return None
        
    def is_target_column(self, column):
        return column == self.target_name
    
    def fill_default_steps(self):

        num_fill_method = cs.get_one_true_option(self.config.get('numericalFillMethod',{}))
        normalization_method = cs.get_one_true_option(self.config.get('normalization',{}),'none')
        for colm in self.numeric_feature:
            if num_fill_method:
                self.fill_missing_value_method(colm, num_fill_method.lower())
            if normalization_method:
                self.fill_normalizer_method(colm, normalization_method.lower())
        
        cat_fill_method = cs.get_one_true_option(self.config.get('categoricalFillMethod',{}))
        cat_encode_method = cs.get_one_true_option(self.config.get('categoryEncoding',{}))
        for colm in self.cat_feature:
            if cat_fill_method:
                self.fill_missing_value_method(colm, cat_fill_method.lower())
            if cat_encode_method:
                self.fill_encoder_value_method(colm, cat_encode_method.lower(), default=True)
    
    def parse_process_step_config(self):
        self.process_method = {}
        user_provided_data_type = {}
        for feat_conf in self.featureDict:
            colm = feat_conf.get('feature', '')
            if not self.is_target_column(colm):
                if colm in self.data.columns:
                    user_provided_data_type[colm] = feat_conf['type']
        if user_provided_data_type:
            self.update_user_provided_type(user_provided_data_type)
                    
        self.fill_default_steps()
        for feat_conf in self.featureDict:
            colm = feat_conf.get('feature', '')
            if not self.is_target_column(colm):
                if colm in self.data.columns:
                    if feat_conf.get('fillMethod', None):
                        self.fill_missing_value_method(colm, feat_conf['fillMethod'].lower())
                    if feat_conf.get('categoryEncoding', None):
                        self.fill_encoder_value_method(colm, feat_conf['categoryEncoding'].lower())
                    if feat_conf.get('normalization', None):
                        self.fill_normalizer_method(colm, feat_conf['normalization'].lower())
                    if feat_conf.get('outlier', None):
                        self.fill_outlier_method(colm, feat_conf['outlier'].lower())
                    if feat_conf.get('outlierOperation', None):
                        self.fill_outlier_process(colm, feat_conf['outlierOperation'].lower())
        
    
    def get_tf_idf_dimensions(self):
        dim = cs.get_one_true_option(self.config.get('embeddingSize',{}).get('TF_IDF',{}), 'default')
        return {'default': 300, '50d':50, '100d':100, '200d':200, '300d':300}[dim]

    def get_tf_idf_output_size(self, pipe):
        start_index = {}
        for feat_expender in self.feature_expender:
            if feat_expender:
                step_name = list(feat_expender.keys())[0]
                index = list(feat_expender.values())[0]
                for transformer_step in pipe.transformer_list:
                    if transformer_step[1].steps[-1][0] in step_name:
                        start_index[index] = {transformer_step[1].steps[-1][0]: transformer_step[1].steps[-1][1].get_feature_names_out()}    
        if start_index:
            for key,value in start_index.items():
                for k,v in value.items():
                    if k == 'vectorizer':
                        return len(v)
        return 0

    def update_output_features_names(self, pipe):
        columns = self.output_columns
        start_index = {}
        index_shifter = 0
        for feat_expender in self.feature_expender:
            if feat_expender:
                step_name = list(feat_expender.keys())[0]
                for key,value in start_index.items():
                    for k,v in value.items():
                        index_shifter += len(v)
                index = list(feat_expender.values())[0]
                for transformer_step in pipe.transformer_list:
                    if transformer_step[1].steps[-1][0] in step_name:
                        start_index[index + index_shifter] = {transformer_step[1].steps[-1][0]: transformer_step[1].steps[-1][1].get_feature_names_out()}
        #print(start_index)
        if start_index:
            for key,value in start_index.items():
                for k,v in value.items():
                    if k == 'vectorizer':
                        v = [f'{x}_vect' for x in v]    
                    self.output_columns[key:key] = v
                    self.added_features = [*self.added_features, *v]
                    
                    
    def text_pipeline(self, conf_json):

        if self.text_feature:
            from text.textProfiler import textProfiler
            from text.textProfiler import textCombine
            pipeList = []
            text_pipe = Pipeline([ 
                ('selector', ColumnTransformer([
                        (""selector"", ""passthrough"", self.text_feature)
                        ], remainder=""drop"")),
                (""text_fillNa"",SimpleImputer(strategy='constant', fill_value='')),
                (""merge_text_feature"", textCombine())])
            obj = textProfiler()
            pipeList = obj.cleaner(conf_json, pipeList, self.data_path)
            pipeList = obj.embedding(conf_json, pipeList)
            last_step = ""merge_text_feature""
            for pipe_elem in pipeList:
                text_pipe.steps.append((pipe_elem[0], pipe_elem[1]))
                last_step = pipe_elem[0]
            text_transformer = ('text_process', text_pipe)
            self.pipeline.append(text_transformer)
            self.feature_expender.append({last_step:len(self.output_columns)})
            
    def create_pipeline(self):
        num_pipe = {}
        for k,v in self.num_fill_method_dict.items():
            for k1,v1 in v.items():
                if k1 and k1 != 'none':
                    num_pipe[f'{k}_{k1}'] = Pipeline([
                        ('selector', ColumnTransformer([
                                (""selector"", ""passthrough"", v1)
                                ], remainder=""drop"")),
                        (k, self.get_num_imputer(k)),
                        (k1, self.get_num_scaler(k1))
                    ])
                else:
                    num_pipe[f'{k}_{k1}'] = Pipeline([
                        ('selector', ColumnTransformer([
                                (""selector"", ""passthrough"", v1)
                                ], remainder=""drop"")),
                        (k, self.get_num_imputer(k))
                    ])
                self.output_columns.extend(v1)
        cat_pipe = {}
        for k,v in self.cat_fill_method_dict.items():
            for k1,v1 in v.items():
                cat_pipe[f'{k}_{k1}'] = Pipeline([
                    ('selector', ColumnTransformer([
                            (""selector"", ""passthrough"", v1)
                            ], remainder=""drop"")),
                    (k, self.get_cat_imputer(k)),
                    (k1, self.get_cat_encoder(k1))
                ])                   
                if k1 not in ['onehotencoding']:
                    self.output_columns.extend(v1)
                else:
                    self.feature_expender.append({k1:len(self.output_columns)})
        for key, pipe in num_pipe.items():            
            self.pipeline.append((key, pipe))
        for key, pipe in cat_pipe.items():            
            self.pipeline.append((key, pipe))
    
    ""Drop: feature during training but replace with zero during prediction ""
    def process_drop_fillna(self):
        drop_column = []
        if 'numFill' in self.process_method.keys():
            for col, method in self.process_method['numFill'].items():
                if method == 'drop':
                    self.process_method['numFill'][col] = 'zero'
                    drop_column.append(col)
        if 'catFill' in self.process_method.keys():
            for col, method in self.process_method['catFill'].items():
                if method == 'drop':
                    self.process_method['catFill'][col] = 'zero'
                    drop_column.append(col)
        if drop_column:
            self.data.dropna(subset=drop_column, inplace=True)

    def update_num_fill_dict(self):
        self.num_fill_method_dict = {}
        if 'numFill' in self.process_method.keys():
            for f in cs.supported_method['fillNa']['numeric']:
                self.num_fill_method_dict[f] = {}
                for en in cs.supported_method['normalization']:
                    self.num_fill_method_dict[f][en] = []
                    for col in self.numeric_feature:
                        numFillDict = self.process_method.get('numFill',{})
                        normalizationDict = self.process_method.get('normalization',{})
                        if f == numFillDict.get(col, '') and en == normalizationDict.get(col,''):
                            self.num_fill_method_dict[f][en].append(col)
                    if not self.num_fill_method_dict[f][en] :
                        del self.num_fill_method_dict[f][en]
                if not self.num_fill_method_dict[f]:
                    del self.num_fill_method_dict[f]

    def update_cat_fill_dict(self):
        self.cat_fill_method_dict = {}
        if 'catFill' in self.process_method.keys():
            for f in cs.supported_method['fillNa']['categorical']:
                self.cat_fill_method_dict[f] = {}
                for en in cs.supported_method['categoryEncoding']:
                    self.cat_fill_method_dict[f][en] = []
                    for col in self.cat_feature:
                        catFillDict = self.process_method.get('catFill',{})
                        catEncoderDict = self.process_method.get('catEncoder',{})
                        if f == catFillDict.get(col, '') and en == catEncoderDict.get(col,''):
                            self.cat_fill_method_dict[f][en].append(col)
                    if not self.cat_fill_method_dict[f][en] :
                        del self.cat_fill_method_dict[f][en]
                if not self.cat_fill_method_dict[f]:
                    del self.cat_fill_method_dict[f]


    def __update_type(self):
        self.numeric_feature = list( set(self.data.select_dtypes(include='number').columns.tolist()) - set(self.keep_unprocessed))
        self.cat_feature = list( set(self.data.select_dtypes(include='category').columns.tolist()) - set(self.keep_unprocessed))
        self.text_feature = list( set(self.data.select_dtypes(include='object').columns.tolist()) - set(self.keep_unprocessed))
        self.datetime_feature = list( set(self.data.select_dtypes(include='datetime').columns.tolist()) - set(self.keep_unprocessed))

    def update_user_provided_type(self, data_types):
        allowed_types = ['numerical','categorical', 'text']
        skipped_types = ['date','index']
        type_mapping = {'numerical': np.dtype('float'), 'float': np.dtype('float'),'categorical': 'category', 'text':np.dtype('object'),'date':'datetime64[ns]','index': np.dtype('int64'),}
        mapped_type = {k:type_mapping[v] for k,v in data_types.items() if v in allowed_types}
        skipped_features = [k for k,v in data_types.items() if v in skipped_types]
        if skipped_features:
            self.keep_unprocessed.extend( skipped_features)
            self.keep_unprocessed = list(set(self.keep_unprocessed))
        self.update_type(mapped_type, 'user provided data type')
        
    def get_type(self, as_list=False):
        if as_list:
            return [self.colm_type.values()]
        else:
            return self.colm_type
    
    def update_type(self, data_types={}, reason=''):
        invalid_features = [x for x in data_types.keys() if x not in self.data.columns]
        if invalid_features:
            valid_feat = list(set(data_types.keys()) - set(invalid_features))
            valid_feat_type = {k:v for k,v in data_types if k in valid_feat}
        else:
            valid_feat_type = data_types
        for k,v in valid_feat_type.items():
            if v != self.colm_type[k].name:
                try:
                    self.data.astype({k:v})
                    self.colm_type.update({k:self.data[k].dtype})
                    self.type_conversion[k] = (self.colm_type[k] , v, 'Done', reason)
                except:
                    self.type_conversion[k] = (self.colm_type[k] , v, 'Fail', reason)
                    if v == np.dtype('float64') and self.colm_type[k].name == 'object':
                        if self.check_numeric( k):
                            self.data[ k] = pd.to_numeric(self.data[ k], errors='coerce')
                            self.type_conversion[k] = (self.colm_type[k] , v, 'Done', reason)
                            self.force_numeric_conv.append( k)
                        else:
                            raise ValueError(f""Can not convert '{k}' feature to 'numeric' as numeric values are less than {self.config['numericFeatureRatio'] * 100}%"")
        self.data = self.data.astype(valid_feat_type)
        self.__update_type()
        
    def check_numeric(self, feature):
        col_values = self.data[feature].copy()
        col_values = pd.to_numeric(col_values, errors='coerce')
        if col_values.count() >= (self.config['numericFeatureRatio'] * len(col_values)):
            return True
        return False

    def string_to_numeric(self):
        def to_number(x):
            try:
                return w2n.word_to_num(x)
            except:
                return np.nan
        for col in self.text_feature:
            col_values = self.data[col].copy()
            col_values = pd.to_numeric(col_values, errors='coerce')
            if col_values.count() >= (self.config['numericFeatureRatio'] * len(col_values)):
                self.text_to_num[col] = 'float64'
                self.wordToNumericFeatures.append(col)
        if self.text_to_num:
            columns = list(self.text_to_num.keys())
            self.data[columns] = self.data[columns].apply(lambda x: to_number(x), axis=1, result_type='broadcast')
            self.update_type(self.text_to_num)
        self.log.info('-----------  Inspecting Features -----------')
        for col in self.text_feature:
            self.log.info(f'-------> Feature : {col}')
            if col in self.text_to_num:
                self.log.info('----------> Numeric Status :Yes')
                self.log.info('----------> Data Type Converting to numeric :Yes')
            else:
                self.log.info('----------> Numeric Status :No')
        self.log.info(f'\nStatus:- |... Feature inspection done for numeric data: {len(self.text_to_num)} feature(s) converted to numeric')
        self.log.info(f'\nStatus:- |... Feature word to numeric treatment done: {self.text_to_num}')
        self.log.info('-----------   Inspecting Features End -----------')
            
    def check_categorical_features(self):
        num_data = self.data.select_dtypes(include='number')
        num_data_unique = num_data.nunique()
        num_to_cat_col = {}
        for i, value in enumerate(num_data_unique):
            if value < self.config['categoryMaxLabel']:
                num_to_cat_col[num_data_unique.index[i]] = 'category'
        if num_to_cat_col:
            self.update_type(num_to_cat_col, 'numerical to categorical')
        str_to_cat_col = {}
        str_data = self.data.select_dtypes(include='object')
        str_data_unique = str_data.nunique()
        for i, value in enumerate(str_data_unique):
            if value < self.config['categoryMaxLabel']:
                str_to_cat_col[str_data_unique.index[i]] = 'category'
        for colm in str_data.columns:
            if self.data[colm].str.len().max() < cs.default_config['str_to_cat_len_max']:
                str_to_cat_col[colm] = 'category'
        if str_to_cat_col:
            self.update_type(str_to_cat_col, 'text to categorical')        
        
    def drop_features(self, features=[], reason='unspecified'):
        if isinstance(features, str):
            features = [features]
        feat_to_remove = [x for x in features if x in self.data.columns]
        if feat_to_remove:
            self.data.drop(feat_to_remove, axis=1, inplace=True)
            for feat in feat_to_remove:
                self.dropped_features[feat] = reason        
            self.log_drop_feature(feat_to_remove, reason)
            self.__update_type()
    
    def __update_index(self, indices, reason=''):
        if isinstance(indices, (bool, pd.core.series.Series)) and len(indices) == len(self.data):
            if not indices.all():
                self.data = self.data[indices]
                if self.is_target_available():
                    self.target = self.target[indices]
                self.log_update_index((indices == False).sum(), reason)
    
    def dropna(self):
        self.data.dropna(how='all',inplace=True)
        if self.is_target_available():
            self.target = self.target[self.data.index]

    def drop_duplicate(self):
        index = self.data.duplicated(keep='first')
        self.__update_index( ~index, reason='duplicate')

    def log_drop_feature(self, columns, reason):
        self.log.info(f'---------- Dropping {reason} features ----------')
        self.log.info(f'\nStatus:- |... {reason} feature treatment done: {len(columns)} {reason} feature(s) found')
        self.log.info(f'-------> Drop Features: {columns}')
        self.log.info(f'Data Frame Shape After Dropping (Rows,Columns): {self.data.shape}')
    
    def log_update_index(self,count, reason):
        if count:
            if reason == 'target':
                self.log.info('-------> Null Target Rows Drop:')
                self.log.info(f'------->     Dropped rows count: {count}')
            elif reason == 'duplicate':
                self.log.info('-------> Duplicate Rows Drop:')
                self.log.info(f'------->     Dropped rows count: {count}')
            elif reason == 'outlier':
                self.log.info(f'------->     Dropped rows count: {count}')
                self.log.info('Status:- |... Outlier treatment done')
            self.log.info(f'------->     Data Frame Shape After Dropping samples(Rows,Columns): {self.data.shape}')
    
    def log_normalization(self):
        if self.process_method.get('normalization', None):
            self.log.info(f'\nStatus:- !... Normalization treatment done')
            for method in cs.supported_method['normalization']:
                cols = []
                for col, m in self.process_method['normalization'].items():
                    if m == method:
                        cols.append(col)
                if cols and method != 'none':
                    self.log.info(f'Running {method} on features: {cols}')

    def log_numerical_fill(self):
        if self.process_method.get('numFill', None):
            self.log.info(f'\nStatus:- !... Fillna for numeric feature done')
            for method in cs.supported_method['fillNa']['numeric']:
                cols = []
                for col, m in self.process_method['numFill'].items():
                    if m == method:
                        cols.append(col)
                if cols:
                    self.log.info(f'-------> Running {method} on features: {cols}')

    def log_categorical_fill(self):
        if self.process_method.get('catFill', None):
            self.log.info(f'\nStatus:- !... FillNa for categorical feature done')
            for method in cs.supported_method['fillNa']['categorical']:
                cols = []
                for col, m in self.process_method['catFill'].items():
                    if m == method:
                        cols.append(col)
                if cols:
                    self.log.info(f'-------> Running {method} on features: {cols}')
    
    
    def remove_constant_feature(self):
        unique_values = self.data.nunique()
        constant_features = []
        for i, value in enumerate(unique_values):
            if value == 1:
                constant_features.append(unique_values.index[i])
        if constant_features:
            self.drop_features(constant_features, ""constant"")
        
    def remove_empty_feature(self, misval_ratio=1.0):
        missing_ratio = self.data.isnull().sum() / len(self.data)
        missing_ratio = {k:v for k,v in zip(self.data.columns, missing_ratio)}
        empty_features = [k for k,v in missing_ratio.items() if v > misval_ratio]
        if empty_features:
            self.drop_features(empty_features, ""empty"")

    def remove_index_features(self):
        index_feature = []
        
        for feat in self.numeric_feature:
            if self.data[feat].nunique() == len(self.data):
               #if (self.data[feat].sum()- sum(self.data.index) == (self.data.iloc[0][feat]-self.data.index[0])*len(self.data)):
                # index feature can be time based 
                count = (self.data[feat] - self.data[feat].shift() == 1).sum()
                if len(self.data) - count == 1:
                    index_feature.append(feat)
        self.drop_features(index_feature, ""index"")

    def fill_missing_value_method(self, colm, method):
        if colm in self.numeric_feature:
            if method in cs.supported_method['fillNa']['numeric']:
                if 'numFill' not in self.process_method.keys():
                    self.process_method['numFill'] = {}
                if method == 'na' and self.process_method['numFill'].get(colm, None):
                    pass # don't overwrite
                else:
                    self.process_method['numFill'][colm] = method
        if colm in self.cat_feature:
            if method in cs.supported_method['fillNa']['categorical']:
                if 'catFill' not in self.process_method.keys():
                    self.process_method['catFill'] = {}
                if method == 'na' and self.process_method['catFill'].get(colm, None):
                    pass
                else:
                    self.process_method['catFill'][colm] = method
    
    def check_encoding_method(self, method, colm,default=False):
        if not self.is_target_available() and (method.lower() == list(cs.target_encoding_method_change.keys())[0]):
            method = cs.target_encoding_method_change[method.lower()]
            if default:
                self.log.info(f""Applying Label encoding instead of Target encoding on feature '{colm}' as target feature is not present"")
        return method
    
    def fill_encoder_value_method(self,colm, method, default=False):
        if colm in self.cat_feature:
            if method.lower() in cs.supported_method['categoryEncoding']:
                if 'catEncoder' not in self.process_method.keys():
                    self.process_method['catEncoder'] = {}
                if method == 'na' and self.process_method['catEncoder'].get(colm, None):
                    pass
                else:
                    self.process_method['catEncoder'][colm] = self.check_encoding_method(method, colm,default)
            else:
                self.log.info(f""-------> categorical encoding method '{method}' is not supported. supported methods are {cs.supported_method['categoryEncoding']}"")

    def fill_normalizer_method(self,colm, method):
        if colm in self.numeric_feature:
            if method in cs.supported_method['normalization']:
                if 'normalization' not in self.process_method.keys():
                    self.process_method['normalization'] = {}
                if (method == 'na' or method == 'none')  and self.process_method['normalization'].get(colm, None):
                    pass
                else:
                    self.process_method['normalization'][colm] = method
            else:
                self.log.info(f""-------> Normalization method '{method}' is not supported. supported methods are {cs.supported_method['normalization']}"")

    def apply_outlier(self):
        inlier_indice = np.array([True] * len(self.data))
        if self.process_method.get('outlier', None):
            self.log.info('-------> Feature wise outlier detection:')
            for k,v in self.process_method['outlier'].items():
                if k in self.numeric_feature:
                    if v == 'iqr':
                        index = cs.findiqrOutlier(self.data[k])
                    elif v == 'zscore':
                        index = cs.findzscoreOutlier(self.data[k])
                    elif v == 'disable':
                        index = None
                    if k in self.process_method['outlierOperation'].keys():
                        if self.process_method['outlierOperation'][k] == 'dropdata':
                            inlier_indice = np.logical_and(inlier_indice, index)
                        elif self.process_method['outlierOperation'][k] == 'average':
                            mean = self.data[k].mean()
                            index = ~index
                            self.data.loc[index,[k]] = mean
                            self.log.info(f'------->     {k}: Replaced by Mean {mean}: total replacement {index.sum()}')
                        elif self.process_method['outlierOperation'][k] == 'nochange' and v != 'disable':
                            self.log.info(f'------->     Total outliers in ""{k}"": {(~index).sum()}')
        if self.config.get('outlierDetection',None):
            if self.config['outlierDetection'].get('IsolationForest','False') == 'True':
                if self.numeric_feature:
                    index = cs.findiforestOutlier(self.data[self.numeric_feature])
                    inlier_indice = np.logical_and(inlier_indice, index)
                    self.log.info(f'-------> Numeric feature based Outlier detection(IsolationForest):')
        if inlier_indice.sum() != len(self.data):
            self.__update_index(inlier_indice, 'outlier')

    def fill_outlier_method(self,colm, method):
        if colm in self.numeric_feature:
            if method in cs.supported_method['outlier_column_wise']:
                if 'outlier' not in self.process_method.keys():
                    self.process_method['outlier'] = {}
                if method not in ['Disable', 'na']:
                    self.process_method['outlier'][colm] = method
            else:
                self.log.info(f""-------> outlier detection method '{method}' is not supported for column wise. supported methods are {cs.supported_method['outlier_column_wise']}"")

    def fill_outlier_process(self,colm, method):
        if colm in self.numeric_feature:
            if method in cs.supported_method['outlierOperation']:
                if 'outlierOperation' not in self.process_method.keys():
                    self.process_method['outlierOperation'] = {}
                self.process_method['outlierOperation'][colm] = method
            else:
                self.log.info(f""-------> outlier process method '{method}' is not supported for column wise. supported methods are {cs.supported_method['outlierOperation']}"")
        
    def get_cat_imputer(self,method):
        if method == 'mode':
            return SimpleImputer(strategy='most_frequent')
        elif method == 'zero':
            return SimpleImputer(strategy='constant', fill_value=0)
            
    def get_cat_encoder(self,method):
        if method == 'labelencoding':
            return OrdinalEncoder()
        elif method == 'onehotencoding':
            return OneHotEncoder(sparse=False,handle_unknown=""ignore"")
        elif method == 'targetencoding':
            if not self.is_target_available():
                raise ValueError('Can not apply Target Encoding when target feature is not present')
            return TargetEncoder()

    def get_num_imputer(self,method):
        if method == 'mode':
            return SimpleImputer(strategy='most_frequent')
        elif method == 'mean':
            return SimpleImputer(strategy='mean')
        elif method == 'median':
            return SimpleImputer(strategy='median')
        elif method == 'knnimputer':
            return KNNImputer()
        elif method == 'zero':
            return SimpleImputer(strategy='constant', fill_value=0)
            
    def get_num_scaler(self,method):
        if method == 'minmax':
            return MinMaxScaler()
        elif method == 'standardscaler':
            return StandardScaler()
        elif method == 'lognormal':
            return PowerTransformer(method='yeo-johnson', standardize=False)

    def recommenderStartProfiler(self,modelFeatures):
        return cs.recommenderStartProfiler(self,modelFeatures)
        
    def folderPreprocessing(self,folderlocation,folderdetails,deployLocation):
        return cs.folderPreprocessing(self,folderlocation,folderdetails,deployLocation)

    def textSimilarityStartProfiler(self, doc_col_1, doc_col_2):
        return cs.textSimilarityStartProfiler(self, doc_col_1, doc_col_2)

    def get_conversion_method(self):
        return cs.get_one_true_option(self.config.get('textConversionMethod','')).lower()
    
def set_features(features,profiler=None):
    return cs.set_features(features,profiler)


"
data_profiler_functions.py,"import os
import sys
import numpy as np
import scipy
import pandas as pd
from pathlib import Path

default_config = {
    'misValueRatio': '1.0',
    'numericFeatureRatio': '1.0',
    'categoryMaxLabel': '20',
    'str_to_cat_len_max': 10
}

target_encoding_method_change = {'targetencoding': 'labelencoding'}

supported_method = {
    'fillNa':
        {
            'categorical' : ['mode','zero','na'],
            'numeric' : ['median','mean','knnimputer','zero','drop','na'],
        },
    'categoryEncoding': ['labelencoding','targetencoding','onehotencoding','na','none'],
    'normalization': ['standardscaler','minmax','lognormal', 'na','none'],
    'outlier_column_wise': ['iqr','zscore', 'disable', 'na'],
    'outlierOperation': ['dropdata', 'average', 'nochange']
    }
    
def findiqrOutlier(df):
    Q1 = df.quantile(0.25)
    Q3 = df.quantile(0.75)
    IQR = Q3 - Q1
    index = ~((df < (Q1 - 1.5 * IQR)) |(df > (Q3 + 1.5 * IQR)))
    return index
    
def findzscoreOutlier(df):
    z = np.abs(scipy.stats.zscore(df))
    index = (z < 3)
    return index
    
def findiforestOutlier(df):
    from sklearn.ensemble import IsolationForest
    isolation_forest = IsolationForest(n_estimators=100)
    isolation_forest.fit(df)
    y_pred_train = isolation_forest.predict(df)
    return y_pred_train == 1

def get_one_true_option(d, default_value=None):
	if isinstance(d, dict):
		for k,v in d.items():
			if (isinstance(v, str) and v.lower() == 'true') or (isinstance(v, bool) and v == True):
				return k
	return default_value

def get_boolean(value):
    if (isinstance(value, str) and value.lower() == 'true') or (isinstance(value, bool) and value == True):
        return True
    else:
        return False
        
def recommenderStartProfiler(self,modelFeatures):
    try:
        self.log.info('----------> FillNA:0')
        self.data = self.data.fillna(value=0)
        self.log.info('Status:-        !... Missing value treatment done')
        self.log.info('----------> Remove Empty Row')
        self.data = self.data.dropna(axis=0,how='all')
        self.log.info('Status:-        !... Empty feature treatment done')                      
        userId,itemId,rating = modelFeatures.split(',')
        self.data[itemId] = self.data[itemId].astype(np.int32)
        self.data[userId] = self.data[userId].astype(np.int32)
        self.data[rating] = self.data[rating].astype(np.float32)
        return self.data
    except Exception as inst:
        self.log.info(""Error: dataProfiler failed ""+str(inst))
        return(self.data)

def folderPreprocessing(self,folderlocation,folderdetails,deployLocation):
    try:
        dataset_directory = Path(folderlocation)
        dataset_csv_file = dataset_directory/folderdetails['label_csv_file_name']
        tfrecord_directory = Path(deployLocation)/'Video_TFRecord'
        from savp import PreprocessSAVP
        import csv
        csvfile = open(dataset_csv_file, newline='')
        csv_reader = csv.DictReader(csvfile)
        PreprocessSAVP(dataset_directory,csv_reader,tfrecord_directory)
        dataColumns = list(self.data.columns)
        VideoProcessing = True
        return dataColumns,VideoProcessing,tfrecord_directory
    except Exception as inst:
        self.log.info(""Error: dataProfiler failed ""+str(inst))

def textSimilarityStartProfiler(self, doc_col_1, doc_col_2):
    import os
    try:
        features = [doc_col_1, doc_col_2]
        pipe = None
        dataColumns = list(self.data.columns)
        self.numofCols = self.data.shape[1]
        self.numOfRows = self.data.shape[0]
        from transformations.textProfiler import textProfiler            
        
        self.log.info('-------> Execute Fill NA With Empty String')
        self.data = self.data.fillna(value="" "")
        self.log.info('Status:- |... Missing value treatment done')
        self.data[doc_col_1] = textProfiler().textCleaning(self.data[doc_col_1])
        self.data[doc_col_2] = textProfiler().textCleaning(self.data[doc_col_2])
        self.log.info('-------> Concatenate: ' + doc_col_1 + ' ' + doc_col_2)
        self.data['text'] = self.data[[doc_col_1, doc_col_2]].apply(lambda row: ' '.join(row.values.astype(str)), axis=1)
        from tensorflow.keras.preprocessing.text import Tokenizer
        pipe = Tokenizer()
        pipe.fit_on_texts(self.data['text'].values)
        self.log.info('-------> Tokenizer: Fit on  Concatenate Field')
        self.log.info('Status:- |... Tokenizer the text')
        self.data[doc_col_1] = self.data[doc_col_1].astype(str)
        self.data[doc_col_1] = self.data[doc_col_1].astype(str)
        return (self.data, pipe, self.target_name, features)
    except Exception as inst:
        self.log.info(""StartProfiler failed "" + str(inst))
        exc_type, exc_obj, exc_tb = sys.exc_info()
        fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)[1]
        self.log.info(str(exc_type) + ' ' + str(fname) + ' ' + str(exc_tb.tb_lineno))

def set_features(features,profiler=None):
    if profiler:
        features = [x for x in features if x not in profiler.added_features]
        return features + profiler.text_feature
    return features"
dataReader.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import numpy as np
import pandas as pd
import sys
import os
import warnings
import logging
from pathlib import Path
import random
from sklearn.model_selection import train_test_split
import operator
import re
import pdfplumber

class dataReader():
	
	def __init__(self):
		self.dataDf =None
		self.log = logging.getLogger('eion')

	
	def readCsv(self,dataPath,featureList,targetColumn):
		data=pd.read_csv(dataPath)
		dataDf=data[featureList]
		predictDf=data[targetColumn]
		return dataDf,predictDf
		
	def rowsfilter(self,filters,dataframe):
		self.log.info('\n-------> No of rows before filtering: '+str(dataframe.shape[0])) #task-13479
		filterexpression=''
		firstexpressiondone = False
		for x in filters:
			if firstexpressiondone:
				filterexpression += ' '
				if x['combineOperator'].lower() == 'and':
					filterexpression += '&'
				elif x['combineOperator'].lower() == 'or':	
					filterexpression += '|'
				filterexpression += ' '
			firstexpressiondone = True
			filterexpression += x['feature']
			filterexpression += ' '
			if x['condition'].lower() == 'equals':
				filterexpression += '=='
			elif x['condition'].lower() == 'notequals':
				filterexpression += '!='
			elif x['condition'].lower() == 'lessthan':	
				filterexpression += '<'
			elif x['condition'].lower() == 'lessthanequalto':
				filterexpression += '<='
			elif x['condition'].lower() == 'greaterthan':	
				filterexpression += '>'
			elif x['condition'].lower() == 'greaterthanequalto':
				filterexpression += '>='
			filterexpression += ' '
			if dataframe[x['feature']].dtype in ['int16', 'int32', 'int64', 'float16', 'float32', 'float64']:
				filterexpression += x['value']
			else:
				filterexpression += '\''+x['value']+'\''
		dataframe = dataframe.query(filterexpression)
		self.log.info('-------> Row filter: '+str(filterexpression)) #task-13479
		self.log.info('-------> No of rows after filtering: '+str(dataframe.shape[0]))
		return dataframe,filterexpression
        
	def grouping(self,grouper,dataframe):
		grouperbyjson= {}
		groupbyfeatures = grouper['groupby']
		dataframe = dataframe.reset_index()
		features = dataframe.columns.tolist()
		aggjson = {}
		for feature, featureType in zip(features,dataframe.dtypes):
			if feature == groupbyfeatures or feature == 'index':
				continue
			if dataframe[feature].empty == True:
				continue
			if dataframe[feature].isnull().all() == True:
				continue
			if featureType in ['int16', 'int32', 'int64', 'float16', 'float32', 'float64']:
				temp = {}
				temp[feature+'_size'] = 'size'
				temp[feature+'_sum'] = 'sum'
				temp[feature+'_max'] = 'max'
				temp[feature+'_min'] = 'min'
				temp[feature+'_mean'] = 'mean'
				aggjson[feature] = temp
			else:
				temp = {}
				temp[feature+'_size'] = 'size'
				temp[feature+'_unique'] = 'nunique'
				aggjson[feature] = temp
		groupbystring = 'groupby([\''+groupbyfeatures+'\']).agg('+str(aggjson)+')'	
		grouperbyjson['groupbystring'] = groupbystring
		dataframe = dataframe.groupby([groupbyfeatures]).agg(aggjson)
		dataframe.columns = dataframe.columns.droplevel(0)	
		dataframe = dataframe.reset_index()
		'''
		if operation.lower() == 'size':
			dataframe = dataframe.groupby([pd.Grouper(freq=frequency),groupbyfeatures]).size()
		elif operation.lower() == 'mean':
			dataframe = dataframe.groupby([pd.Grouper(freq=frequency),groupbyfeatures]).mean()
		elif operation.lower() == 'max':
			dataframe = dataframe.groupby([pd.Grouper(freq=frequency),groupbyfeatures]).max()
		elif operation.lower() == 'min':
			dataframe = dataframe.groupby([pd.Grouper(freq=frequency),groupbyfeatures]).min()
			
		dataframe = dataframe.rename(""groupby_value"")
		dataframe = dataframe.to_frame()
		dataframe = dataframe.reset_index()
		'''
		return dataframe,grouperbyjson


	def timeGrouping(self,timegrouper,dataframe):
		grouperbyjson= {}
		dateTime = timegrouper['dateTime']
		frequency = timegrouper['freq']
		groupbyfeatures = timegrouper['groupby']
		grouperbyjson['datetime'] = dateTime
		if dataframe[dateTime].dtypes in ['int16', 'int32', 'int64', 'float16', 'float32', 'float64']:
			dtlenth = dataframe[dateTime].iloc[0]
			dtlenth = np.int64(dtlenth)
			dtlenth = len(str(dtlenth))
			if dtlenth == 13:
				dataframe['date'] = pd.to_datetime(dataframe[dateTime],unit='ms')
				grouperbyjson['unit'] = 'ms'
			elif dtlenth == 10:
				dataframe['date'] = pd.to_datetime(dataframe[dateTime],unit='s')
				grouperbyjson['unit'] = 's'
			else:
				dataframe['date'] = pd.to_datetime(dataframe[dateTime])
				grouperbyjson['unit'] = ''
		else:
			dataframe['date'] = pd.to_datetime(dataframe[dateTime])
			grouperbyjson['unit'] = ''
		dataframe = dataframe.reset_index()
		dataframe.set_index('date',inplace=True)
		features = dataframe.columns.tolist()
		aggjson = {}
		for feature, featureType in zip(features,dataframe.dtypes):
			if feature == groupbyfeatures or feature == dateTime or feature == 'index':
				continue
			if dataframe[feature].empty == True:
				continue
			if dataframe[feature].isnull().all() == True:
				continue
			if featureType in ['int16', 'int32', 'int64', 'float16', 'float32', 'float64']:
				temp = {'size','sum','max','min','mean'}
				aggjson[feature] = temp
			else:
				temp = {'size','nunique'}
				aggjson[feature] = temp
		
		if groupbyfeatures == '':
			groupbystring = 'groupby([pd.Grouper(freq=\''+frequency+'\')]).agg('+str(aggjson)+')'	
		else:    
			groupbystring = 'groupby([pd.Grouper(freq=\''+frequency+'\'),\''+groupbyfeatures+'\']).agg('+str(aggjson)+')'
		
		grouperbyjson['groupbystring'] = groupbystring
		print(grouperbyjson)
		if groupbyfeatures == '':
			dataframe = dataframe.groupby([pd.Grouper(freq=frequency)]).agg(aggjson)	
		else:        
			dataframe = dataframe.groupby([pd.Grouper(freq=frequency),groupbyfeatures]).agg(aggjson)	        
		
		dataframe.columns = ['_'.join(col) for col in dataframe.columns]
		dataframe = dataframe.reset_index()
		self.log.info(dataframe.head(10))        
		'''
		if operation.lower() == 'size':
			dataframe = dataframe.groupby([pd.Grouper(freq=frequency),groupbyfeatures]).size()
		elif operation.lower() == 'mean':
			dataframe = dataframe.groupby([pd.Grouper(freq=frequency),groupbyfeatures]).mean()
		elif operation.lower() == 'max':
			dataframe = dataframe.groupby([pd.Grouper(freq=frequency),groupbyfeatures]).max()
		elif operation.lower() == 'min':
			dataframe = dataframe.groupby([pd.Grouper(freq=frequency),groupbyfeatures]).min()
			
		dataframe = dataframe.rename(""groupby_value"")
		dataframe = dataframe.to_frame()
		dataframe = dataframe.reset_index()
		'''
		return dataframe,grouperbyjson
	
		
	def readDf(self,dataF,featureList,targetColumn):
		dataDf = dataF[featureList]
		predictDf =dataF[targetColumn]
		return dataDf,predictDf
	
	def csvTodf(self,dataPath,delimiter,textqualifier):
		'''
		if os.path.splitext(dataPath)[1] == "".tsv"":
			dataFrame=pd.read_csv(dataPath,encoding='latin1',sep='\t')
		else:
			dataFrame=pd.read_csv(dataPath,encoding='latin1')
		'''
		if os.path.splitext(dataPath)[1] == "".py"":
			f = open(dataPath, ""r"")
			pythoncode = f.read()
			f.close()
			ldict = {}
			exec(pythoncode, globals(), ldict)
			dataFrame = ldict['dfpy']
		else:
			dataFrame=pd.read_csv(dataPath,encoding='utf-8',sep=delimiter,quotechar=textqualifier, skipinitialspace = True,na_values=['-','?'],encoding_errors= 'replace')
			dataFrame.rename(columns=lambda x: x.strip(), inplace=True)			
		return dataFrame
	
	def read_file(self, fileName):
		fileName = Path(fileName)
		if fileName.suffix == '.pdf':
			pdf = pdfplumber.open(fileName)
			text = ''
			for index, page in enumerate(pdf.pages):
				if index:
					text += ' '
				text += page.extract_text()
		else:
			with open(fileName, ""r"",encoding=""utf-8"") as f:
				text = f.read()
		return text
	
	def documentsTodf(self,folderlocation,labelFilePath):
		dataDf = pd.DataFrame()
		error_message = """"
		dataset_csv_file = os.path.join(folderlocation,labelFilePath)
		labels = pd.read_csv(dataset_csv_file)
		dataDict = {}
		keys = [""File"",""Label""]
		for key in keys:
			dataDict[key] = []
		for i in range(len(labels)):
			filename = os.path.join(folderlocation,labels.loc[i,""File""])
			dataDict[""File""].append(self.read_file(filename))
			dataDict[""Label""].append(labels.loc[i,""Label""])
		dataDf = pd.DataFrame.from_dict(dataDict)
		error_message = """"
		return dataDf, error_message
	
	def removeFeatures(self,df,datetimeFeature,indexFeature,modelFeatures,targetFeature):
		self.log.info(""\n---------- Prepare Features ----------"")
		if(str(datetimeFeature).lower() != 'na'):
			datetimeFeature = datetimeFeature.split("","")
			datetimeFeature = list(map(str.strip, datetimeFeature))
			for dtfeature in datetimeFeature:
				if dtfeature in df.columns:
					self.log.info(""-------> Remove Date Time Feature: ""+dtfeature)
					df = df.drop(columns=dtfeature)	
		if(str(indexFeature).lower() != 'na'):
			indexFeature = indexFeature.split("","")
			indexFeature = list(map(str.strip, indexFeature))
			for ifeature in indexFeature:
				if ifeature in df.columns:
					self.log.info(""-------> Remove Index Feature: ""+ifeature)
					df = df.drop(columns=ifeature)
		if(str(modelFeatures).lower() != 'na'):
			self.log.info(""-------> Model Features: ""+str(modelFeatures))
			modelFeatures = modelFeatures.split("","")
			modelFeatures = list(map(str.strip, modelFeatures))
			if(targetFeature != '' and str(targetFeature).lower() != 'na'):
				targetFeature = targetFeature.split("","")
				targetFeature = list(map(str.strip, targetFeature))
				for ifeature in targetFeature:
					if ifeature not in modelFeatures:
						modelFeatures.append(ifeature)
			if(str(indexFeature).lower() != 'na'):
				for ifeature in indexFeature:
					if ifeature in modelFeatures:
						modelFeatures.remove(ifeature)
			if(str(datetimeFeature).lower() != 'na'):
				for dtfeature in datetimeFeature:
					if dtfeature in modelFeatures:
						modelFeatures.remove(dtfeature)
			df = df[modelFeatures]
		self.log.info(""---------- Prepare Features End ----------"")
		return(df)

	def splitImageDataset(self, df, ratio, modelType):
		if modelType.lower() == ""objectdetection"":
			images = df['File'].unique().tolist()
			trainImages = random.sample(images, int(len(images) * ratio))
			mask = [0] * len(df)
			for i in range(len(df)):
				mask[i] = df.iloc[i]['File'] in trainImages
			trainDf = df.iloc[mask]
			testDf = df.iloc[[not elem for elem in mask]]
			return trainDf, testDf
		else:
			return train_test_split(df, test_size=(1 - ratio))
	def createTFRecord(self, train_image_dir, output_dir, csv_file, testPercentage, AugEnabled,keepAugImages,operations, modelType,augConf={}):
		from transformations import generate_tfrecord
		from transformations.imageAug import ImageAugmentation
		if isinstance(csv_file, pd.DataFrame):
			df = csv_file
		else:
			df = pd.read_csv(os.path.join(train_image_dir,csv_file))
		labelmap_path, num_classes = generate_tfrecord.createLabelFile(df, output_dir)
		train_df, test_df = self.splitImageDataset(df, testPercentage/100.0, modelType)
		if AugEnabled:
			augFile = os.path.join(output_dir,""tempTrainDf.csv"")
			train_df.to_csv(augFile)
			ia = ImageAugmentation(train_image_dir, augFile)
			augFile = ia.augment(modelType, operations,None,augConf)
			train_df = pd.read_csv(augFile)
		generate_tfrecord.generate_TF_record(train_image_dir, output_dir, train_df, test_df, labelmap_path)
		if AugEnabled and not keepAugImages:
			ia.removeAugmentedImages(train_df)
		return train_df, num_classes
	
"
pretrainedModels.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import sys
from pathlib import Path
import urllib.request
import tarfile
import json
import subprocess
import os
from os.path import expanduser
import platform


class ODpretrainedModels():

    def __init__(self, location=None):
        if location:
            if isinstance(location, Path):
                self.pretrained_models_location = location.as_posix()
            else:
                self.pretrained_models_location = location
        else:
            p = subprocess.run([sys.executable, ""-m"", ""pip"",""show"",""AION""],capture_output=True, text=True)
            if p.returncode == 0:
                Output = p.stdout.split('\n')
                for x in Output:
                    y = x.split(':',1)
                    if(y[0]=='Location'):
                        self.pretrained_models_location = y[1].strip()+""/AION/pretrained_models/object_detection""
                        break
        if Path(self.pretrained_models_location).is_dir():   
            self.config_file_location = self.pretrained_models_location+'/supported_models.json'
            with open(self.config_file_location) as json_data:
                self.supportedModels = json.load(json_data)
        
        home = expanduser(""~"")
        if platform.system() == 'Windows':
            self.modelsPath = os.path.join(home,'AppData','Local','HCLT','AION','PreTrainedModels','ObjectDetection')
        else:
            self.modelsPath = os.path.join(home,'HCLT','AION','PreTrainedModels','ObjectDetection')
            
        if os.path.isdir(self.modelsPath) == False:
            os.makedirs(self.modelsPath)
    
    def __save_config(self):
        with open(self.config_file_location, 'w') as json_file:
            json.dump(self.supportedModels, json_file)
        
        
    def __download(self, modelName):
        try:
            url = self.supportedModels[modelName][""url""]
            file = self.supportedModels[modelName][""file""]
            local_file_path = Path(self.modelsPath)/(file+"".tar.gz"")
            urllib.request.urlretrieve(url, local_file_path)
        except:
            raise ValueError(""{} model download error, check your internet connection"".format(modelName))
        return local_file_path
        
        
    def __extract(self, modelName, file_location, extract_dir):
        try:
            tarFile = tarfile.open(file_location)
            tarFile.extractall(extract_dir)
            tarFile.close()
            Path.unlink(file_location)
            return True
        except:
            return False


    def download(self, modelName):
        if modelName in list(self.supportedModels.keys()):
            p = Path(self.modelsPath).glob('**/*')
            modelsDownloaded = [x.name for x in p if x.is_dir()]
            if self.supportedModels[modelName]['file'] not in modelsDownloaded:
                file = self.__download(modelName)
                self.supportedModels[modelName][""downloaded""] = True
                if self.__extract(modelName, file, self.modelsPath):
                    self.supportedModels[modelName][""extracted""] = True
                    self.__save_config()
                else:
                    self.__save_config()
                    raise ValueError(""{} model downloaded but extraction failed,please try again"".format(modelName))
        else:
            raise ValueError(""{} is not supported for object detection"".format(modelName))
        return self.supportedModels[modelName]

    def get_info(self,modeltype):
        models_info = {}
        p = Path(self.pretrained_models_location)
        downloaded_models = [x.name for x in p.iterdir() if x.is_dir()]
        for model in list(self.supportedModels.keys()):
            if (self.supportedModels[model]['type'] == modeltype) or (modeltype == ''):
                models_info[model] = self.supportedModels[model]['extracted']
        return models_info

    def is_model_exist(self, model_name):
        models = self.get_info('')
        status = ""NOT_SUPPORTED""
        if model_name in models:
            if self.supportedModels[model_name]['extracted']:
                status = ""READY""
            else:
                status = ""NOT_READY""
        return status

    def clear_config(self, model_name):
        self.supportedModels[model_name]['extracted'] = False
        self.supportedModels[model_name]['downloaded'] = False
        self.__save_config()
        "
summarize.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import os 
import sys
import logging
import json
import joblib
from pathlib import Path
import platform
from datetime import datetime as dt
import time        
from pathlib import Path
import argparse
from operator import itemgetter
import re
import fitz
from io import StringIO
from nltk.tokenize import sent_tokenize  
import pandas as pd
from scipy import spatial

import urllib.request
import zipfile
import shutil

requirements = """"""
scipy
pandas
pathlib
""""""

def pdf2txtInternal(pdffile):
    keyword = ['Discussion','4. Discussion','DISCUSSION','Results','RESULTS','Introduction','introduction','methods',
               'method','result','results','limitation','Conclusions','conclusion','Conclusions','Acknowledgements',
               'Acknowledgement','ACKNOWLEDGMENT','ACKNOWLEDGMENTS','References','REFERENCES'] 
    print(pdffile)
    filename1 = Path(pdffile)
    csvInpClassFileName = filename1.stem
    csvOutpClassFileName = ""ClassResult"" + filename1.stem +"".csv""
    styles = {}
    font_counts = {}
    granularity=False
    doc = fitz.open(pdffile)
    for i in range(1,len(doc)+1):
        page = doc[i-1]
        blocks = page.get_text(""dict"")[""blocks""]
        for b in blocks: # iterate through the text blocks
            if b['type'] == 0: # block contains text
                for l in b[""lines""]: # iterate through the text lines
                    for s in l[""spans""]: # iterate through the text spans
                        if granularity:
                            identifier = ""{0}_{1}_{2}_{3}"".format(s['size'], s['flags'], s['font'], s['color'])
                            styles[identifier] = {'size': s['size'], 'flags': s['flags'], 'font': s['font'],
                            'color': s['color']}
                        else:
                            identifier = ""{0}"".format(s['size'])
                            styles[identifier] = {'size': s['size'], 'font': s['font']}

                        font_counts[identifier] = font_counts.get(identifier, 0) + 1 # count the fonts usage

    font_counts = sorted(font_counts.items(), key=itemgetter(1), reverse=True)
    doc.close()          
    if len(font_counts) < 1:
        raise ValueError(""Zero discriminating fonts found!"")

    p_style = styles[font_counts[0][0]] # get style for most used font by count (paragraph)
    p_size = p_style['size']
    results = [] # list of tuples that store the information as (text, font size, font name)
    total_data =[]
    para_data =[]
    search_data =[]
    only_text =[]
    v={}
    pdf = fitz.open(pdffile) # filePath is a string that contains the path to the pdf
    for page in pdf:
        dict = page.get_text(""dict"")
        blocks = dict[""blocks""]
        for block in blocks:
            if ""lines"" in block.keys():
                spans = block['lines']
                for span in spans:
                    data = span['spans']
                    for lines in data:
                        if lines['size']>=p_size:
                            total_data.append([[lines['text']], [lines['size'], lines['font']]])
                            search_data.append([[lines['text']], [str(int(lines['size']))]])
                            para_data.append([lines['text']])        #, [lines['size']]])

                        for keywords in keyword:
                            if keywords == lines['text']: # only store font information of a specific keyword
                                results.append([[lines['text']], [lines['size'], lines['font']]])
                                only_text.append([lines['text']])
    pdf.close()
    headers=['']
    intros =['Abstract','abstract']
    header = ['']
    headers_info =[]
    for line in total_data:
        if results[-1][1] == line[1]:
            headers_info.append(line)
            headers.extend(line[0])
    if str(results[-1][0]).isupper():
        headers =([item for item in headers if re.findall(r""(?<![^\s,])[A-Z]+(?![^\s,])"", item)])
        headers.insert(0,'')
        m1 = [x for x in headers if x=='Abstract']
        if len(m1)!=0:
            headers.pop(0)
        else:
            headers = headers
    elif str(results[-1][0][0][0]).isdigit():
        headers = ([item for item in headers if re.findall(r""([0-9])"" , item)])
        headers.insert(0,'')
    else:
        m1 = [x for x in headers if x=='Abstract']
        if len(m1)!=0:
            headers.pop(0)
        else:
            headers = headers
    header_size=(headers_info[0][1][0])

    paragraph =[]
    check =[]
    str1 =' '
    for data in (para_data):
        paragraph.extend(data)
    str2 = str1.join(paragraph)
    repl = [['- ', '-'], [' +', ' '], [' \.', '.']]
    for i in repl:
        str2 = re.sub(i[0], i[1], str2)
        
    for al in search_data:
        rec=(''.join(str(x) for x in al[1]))
        if float(rec) >=(p_size) or float(rec)>= header_size:
            check.extend(al[0])
    str3 = str1.join(check)
    str3 = str1.join(check)
    repl = [['- ', '-'], [' +', ' '], [' \.', '.']]
    for i in repl:
        str3 = re.sub(i[0], i[1], str3)

    dataTosend=[]
    data = []
    for cols in range(2,len(headers)+1):
        start = headers[cols-2]    #.replace(' ','')  #'SUBJECTS AND METHODS'
        end = headers[cols-1]
        if start in ['Acknowledgements', 'Acknowledgement', 'ACKNOWLEDGMENT','ACKNOWLEDGMENTS', 'References', 'REFERENCES']:
            break
        if start=='':  #.replace(' ','')
            res=(str2[str2.find(start)+len(start):str2.rfind(end)])
            data.append(['Abstract', res])
            tmp='Abstract' + ':'+ '    ' + res
            dataTosend.append(tmp)
        else:
            res=(str2[str2.rfind(start)+len(start):str2.rfind(end)])
            data.append([start, res])
            tmp=start + ':'+ '    ' + res
            dataTosend.append(tmp)                

    tokens = []  # sent tokenization and csv file creation updated 
    for idx in range(len(data)):
        head = data[idx][0]
        para = data[idx][1]
        exp = sent_tokenize(para)
        for val in exp: 
            tokens.append([head, val])

    sent_data = []
    for head, sent in tokens:
        break_sent = r'\. [A-Z]|\.[A-Z]' # break senteance if 2 or more in a same column.
        match = re.findall(break_sent, sent)
        
        if len(match) >= 1:
            for i in range (len(match)):
                idx, _ = re.search(break_sent, sent).span()
                sent_data.append( sent[:int(idx)+1].strip())
                sent = sent[int(idx)+1:].strip()
                
        if (re.search('^[a-z]|^[,;]', sent)): # add incomplete sentence
            if sent_data != []:
                last_val = sent_data.pop()
                new_val = last_val[1] +' '+ sent
                sent_data.append( new_val)
        else:
            sent_data.append( sent)
    return sent_data
        
def get_true_option(d, default_value=None):
    if isinstance(d, dict):
        for k,v in d.items():
            if (isinstance(v, str) and v.lower() == 'true') or (isinstance(v, bool) and v == True):
                return k
    return default_value

def extract_data(location):
    files = [x for x in Path(location).iterdir() if x.suffix == '.pdf']
    if not files:
        raise ValueError(f'no pdf file found in directory {location}')
    sentences = []
    for file in files:
        data=pdf2txtInternal(file)
        sentences.append(data)
    return [item for sublist in sentences for item in sublist]
    
def keyWordGeneration( keywords,deploy_loc, pretrained_loc):
    keywords = keywords.split()  
    noOfKeyword = len(keywords)
    embeddings = {}
    word = ''
    print(pretrained_loc)
    with open(pretrained_loc, 'r', encoding=""utf8"") as f:
        header = f.readline()
        header = header.split(' ')
        vocab_size = int(header[0])
        embed_size = int(header[1])
        for i in range(vocab_size):
            data = f.readline().strip().split(' ')
            word = data[0]
            embeddings[word] = [float(x) for x in data[1:]]
    readData=pd.DataFrame([],columns=['Keyword'])
    for i in range(noOfKeyword):
        neighbours = (sorted(embeddings.keys(), key=lambda word: spatial.distance.euclidean(embeddings[word], embeddings[keywords[i]])) )[1:6]         
        readData = readData.append({'Keyword': keywords[i]}, ignore_index=True)            
        for j in range(len(neighbours)):
            readData = readData.append({'Keyword': neighbours[j]}, ignore_index=True)               
    readData.to_csv( Path(deploy_loc)/""keywordDataBase.csv"",encoding='utf-8',index=False)
    return set( readData['Keyword'])

def dataClassifyWithKw(sentences, keywords):
    df = pd.DataFrame(sentences, columns=['File'])
    pattern = '|'.join(keywords)
    df['Label'] = df.File.str.contains(pattern)
    return df
                    
def to_dataframe(data_loc, keywords, pretrained_type, embedding_size=300, deploy_loc=None, train=True):
    pretrained_loc = checkAndDownloadPretrainedModel(pretrained_type, embedding_size)
    sentences = extract_data(data_loc)
    if train:
        keywords = keyWordGeneration( keywords,deploy_loc, pretrained_loc)
    df = dataClassifyWithKw(sentences, keywords)
    return df

def get_pretrained_model_path():
    from AION.appfe.appbe.dataPath import DATA_DIR
    modelsPath = Path(DATA_DIR)/'PreTrainedModels'/'TextProcessing'
    if not modelsPath.exists():
        modelsPath.mkdir(parents=True, exist_ok=True)
    return modelsPath
    
def checkAndDownloadPretrainedModel(preTrainedModel, embedding_size=300):
    
    models = {'glove':{50:'glove.6B.50d.w2vformat.txt',100:'glove.6B.100d.w2vformat.txt',200:'glove.6B.200d.w2vformat.txt',300:'glove.6B.300d.w2vformat.txt'}, 'fasttext':{300:'wiki-news-300d-1M.vec'}}
    supported_models = [x for y in models.values() for x in y.values()]
    embedding_sizes = {x:y.keys() for x,y in models.items()}
    if embedding_size not in embedding_sizes[preTrainedModel]:
        raise ValueError(f""Embedding size '{embedding_size}' not supported for {preTrainedModel}"")
    selected_model = models[preTrainedModel.lower()][embedding_size]
    modelsPath = get_pretrained_model_path()
    p = Path(modelsPath).glob('**/*')
    modelsDownloaded = [x.name for x in p if x.name in supported_models]
    local_file_path = None
    if selected_model not in modelsDownloaded:
        if preTrainedModel.lower() == ""glove"":
            try:
                location = Path(modelsPath)
                local_file_path =  location/f""glove.6B.{embedding_size}d.w2vformat.txt""
                file_test, header_test = urllib.request.urlretrieve(f'https://aion-pretrained-models.s3.ap-south-1.amazonaws.com/text/glove.6B.{embedding_size}d.w2vformat.txt', local_file_path)
            except Exception as e:
                raise ValueError(""Error: unable to download glove pretrained model, please try again or download it manually and placed it at {}. "".format(location)+str(e))

        elif preTrainedModel.lower() == ""fasttext"":
            try:
                location = Path(modelsPath)
                local_file_path =  location/""wiki-news-300d-1M.vec.zip""
                url = 'https://aion-pretrained-models.s3.ap-south-1.amazonaws.com/text/wiki-news-300d-1M.vec.zip'
                file_test, header_test = urllib.request.urlretrieve(url, local_file_path)
                with zipfile.ZipFile(local_file_path) as zip_ref:
                    zip_ref.extractall(location)
                Path(local_file_path).unlink()
            except Exception as e:
                raise ValueError(""Error: unable to download fastText pretrained model, please try again or download it manually and placed it at {}. "".format(location)+str(e))
    return Path(modelsPath)/selected_model

def get_true_option(d, default_value=None):
    if isinstance(d, dict):
        for k,v in d.items():
            if (isinstance(v, str) and v.lower() == 'true') or (isinstance(v, bool) and v == True):
                return k
    return default_value

def get_params(profiler):
    pretrained_model = get_true_option(profiler.get('textConversionMethod', {}), 'Glove')
    embedding_size = get_true_option(profiler['embeddingSize'][pretrained_model], 50)
    pretrained_model = pretrained_model.lower()
    if pretrained_model == 'fasttext':
        embedding_size = 300
    elif pretrained_model == 'glove':
        sizes = {'default':300, '50d':50, '100d':100,'200d':200, '300d':300}
        embedding_size = sizes[embedding_size]
    keywords = profiler['KeyWords']
    return ""delhi dialysis"", pretrained_model, embedding_size

def deploy(deploy_path, pretrained_model, embedding_size, output_columns,model_file, bert_length):
    from AION.mlac.ml.core.imports import importModule
    def create_predict(pretrained_model, embedding_size):
        importer = importModule()
        common_importes = [
            {'module': 'sys', 'mod_from': None, 'mod_as': None},
            {'module': 'json', 'mod_from': None, 'mod_as': None},
            {'module': 'Path', 'mod_from': 'pathlib', 'mod_as': None},
            {'module': 'pandas', 'mod_from': None, 'mod_as': 'pd'}   
        ]
        for mod in common_importes:
            importer.addModule(mod['module'], mod_from=mod['mod_from'], mod_as=mod['mod_as'])
        local_importes = [
            {'module': 'selector', 'mod_from': 'script.selector', 'mod_as': None},
            {'module': 'inputprofiler', 'mod_from': 'script.inputprofiler', 'mod_as': None},
            {'module': 'trained_model', 'mod_from': 'script.trained_model', 'mod_as': None},
            {'module': 'summarize', 'mod_from': None, 'mod_as': None}
        ]
        for mod in local_importes:
            importer.addLocalModule(mod['module'], mod_from=mod['mod_from'], mod_as=mod['mod_as'])

        text = f""""""
def predict(data):
    try:
        dataLocation = Path(data)
        if not dataLocation.is_dir():
            raise ValueError('Input should be a valid directory')
        keywords_file = Path(__file__).parent/'keywordDataBase.csv'
        if not keywords_file.exists():
            raise ValueError('keywordDataBase.csv is missing in trained model output')
        keywords_df = pd.read_csv(keywords_file)
        if 'Keyword' not in keywords_df.columns:
            raise ValueError('keywordDataBase.csv file in output folder is corrupt')
        pretrained_type = '{pretrained_model.lower()}'
        embedding_sz = {embedding_size}
        keywords = keywords_df['Keyword'].tolist()
        df = summarize.to_dataframe(dataLocation, keywords, pretrained_type, embedding_sz, train=False)
        df0 = df.copy()
        profilerobj = inputprofiler()
        df = profilerobj.apply_profiler(df)
        selectobj = selector()
        df = selectobj.apply_selector(df)
        modelobj = trained_model()
        output = modelobj.predict(df,df0)
        outputjson = {{""status"":""SUCCESS"",""data"":output}}
        print(""predictions:"",outputjson)
    except KeyError as e:
        output = {{""status"":""FAIL"",""message"":str(e).strip('""')}}
        print(""predictions:"",json.dumps(output))
        return (json.dumps(output))
    except Exception as e:
        output = {{""status"":""FAIL"",""message"":str(e).strip('""')}}
        print(""predictions:"",json.dumps(output))
        return (json.dumps(output))
        
if __name__ == ""__main__"":
	output = predict(sys.argv[1])
        """"""
        code = importer.getCode()
        code += text
        return code

    def create_profiler(output_columns):
        importer = importModule()
        common_importes = [
        {'module': 'scipy', 'mod_from': None, 'mod_as': None},
        {'module': 'joblib', 'mod_from': None, 'mod_as': None},
        {'module': 'Path', 'mod_from': 'pathlib', 'mod_as': None},
        {'module': 'pandas', 'mod_from': None, 'mod_as': 'pd'},
        {'module': 'numpy', 'mod_from': None, 'mod_as': 'np'}   
        ]
        for mod in common_importes:
            importer.addModule(mod['module'], mod_from=mod['mod_from'], mod_as=mod['mod_as'])

        text = f""""""
class inputprofiler(object):

	def __init__(self):
		self.model = None
		preprocess_path = Path(__file__).parent.parent/'model'/'preprocess_pipe.pkl'
		if preprocess_path.exists():
			self.model = joblib.load(preprocess_path)
		else:
			raise ValueError('Preprocess model not found')

	def apply_profiler(self,df):
		df = df.replace(r'^\s*$', np.NaN, regex=True)
		if self.model:
			df = self.model.transform(df)			
			if isinstance(df, scipy.sparse.spmatrix):
				df = pd.DataFrame(df.toarray(), columns={output_columns})
			else:
				df = pd.DataFrame(df, columns={output_columns})
		return(df)
        """"""
        code = importer.getCode()
        code += text
        return code

    def create_selector(output_columns):
        importer = importModule()
        common_importes = [
        {'module': 'pandas', 'mod_from': None, 'mod_as': 'pd'}   
        ]
        for mod in common_importes:
            importer.addModule(mod['module'], mod_from=mod['mod_from'], mod_as=mod['mod_as'])

        text = f""""""
class selector(object):
    def apply_selector(self,df):
        df = df[{output_columns}]
        return(df)
        """"""    
        code = importer.getCode()
        code += text
        return code

    def create_train(model_file, bert_length):
        importer = importModule()
        common_importes = [
        {'module': 'os', 'mod_from': None, 'mod_as': None},
        {'module': 'joblib', 'mod_from': None, 'mod_as': None},
        {'module': 'pandas', 'mod_from': None, 'mod_as': 'pd'},
        {'module': 'numpy', 'mod_from': None, 'mod_as': 'np'},
        {'module': 'Path', 'mod_from': 'pathlib', 'mod_as': None},
        {'module': 'Summarizer', 'mod_from': 'summarizer', 'mod_as': None }   
        ]
        for mod in common_importes:
            importer.addModule(mod['module'], mod_from=mod['mod_from'], mod_as=mod['mod_as'])

        text = f""""""
class trained_model(object):
   def __init__(self):
       self.model = joblib.load(os.path.join(os.path.dirname(__file__),'..','model','{model_file}'))
       
   def predict(self, X, df_org):
       X = X.astype(np.float32)
       df_org['predicted'] = pd.DataFrame(self.model.predict(X))
       textToSum="""" 
       for i in df_org.index:
           if (df_org['predicted'][i] or df_org['Label'][i]) :
               textToSum=textToSum + "" "" + df_org[""File""][i]
       bert_model = Summarizer()
       bert_summary=bert_model(textToSum, min_length={bert_length})
       return bert_summary
""""""    
        code = importer.getCode()
        code += text
        return code
    deploy_path = Path(deploy_path)
    aion_prediction = deploy_path/'aion_predict.py'
    profiler_file = deploy_path/'script'/'inputprofiler.py'
    selector_file = deploy_path/'script'/'selector.py'
    trainer_file = deploy_path/'script'/'trained_model.py'
    
    with open(aion_prediction, 'w') as f:
        f.write(create_predict(pretrained_model, embedding_size))

    with open(profiler_file, 'w') as f:
        f.write(create_profiler(output_columns))

    with open(selector_file, 'w') as f:
        f.write(create_selector(output_columns))

    with open(trainer_file, 'w') as f:
        f.write(create_train(model_file, bert_length))
    
    cwf = Path(__file__)
    shutil.copy(cwf, deploy_path/cwf.name)

# require dataLocation for reading files
# require deployLocation for saving keywords
# require pretrained model location
# require pretrained model type
# require keywwords
if __name__ == '__main__':
    dataLocation = r'C:\Harish\aion\task\task\summarization\reference\pdfs'
    deployLocation = r'C:\Users\vashistah\AppData\Local\HCLT\AION\uses'
    pretrained_loc = r""C:\Users\vashistah\AppData\Local\HCLT\AION\PreTrainedModels\TextProcessing""
    pretrained_type = 'glove'
    keywords = 'delhi dialysis'

    data = to_dataframe(dataLocation, keywords, pretrained_type,300, deployLocation, train=True)
    print(data)
    data.to_csv(Path(deployLocation)/'output.csv', index=False)"
item_rating.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import pandas as pd
import numpy as np
import os
import datetime, time, timeit
from sklearn.model_selection import KFold
from sklearn.metrics import confusion_matrix 
from sklearn.metrics import accuracy_score 
from sklearn.metrics import classification_report 
import pickle
import logging

class recommendersystem():
	def __init__(self,features,svd_params):
		self.features = features
		self.svd_input = svd_params
		self.log = logging.getLogger('eion')
		print (""recommendersystem starts \n"")
		
	#To extract dict key,values
	def extract_params(self,dict):
		self.dict=dict
		for k,v in self.dict.items():
			return k,v
			

		
	def recommender_model(self,df,outputfile):
		from sklearn.metrics.pairwise import cosine_similarity
		from utils.file_ops import save_csv
		USER_ITEM_MATRIX = 'user_item_matrix'
		ITEM_SIMILARITY_MATRIX = 'item_similarity_matrix'
		selectedColumns = self.features.split(',')
		data = pd.DataFrame()
		for i in range(0,len(selectedColumns)):
			data[selectedColumns[i]] = df[selectedColumns[i]]
		dataset = data
		self.log.info('-------> Top(5) Rows')
		self.log.info(data.head(5))
		start = time.time()
		self.log.info('\n----------- Recommender System Training Starts -----------')
		#--------------- Task 11190:recommender system changes Start ---Usnish------------------#
		# selectedColumns = ['userId', 'movieId', 'rating']
		df_eda = df.groupby(selectedColumns[1]).agg(mean_rating=(selectedColumns[2], 'mean'),number_of_ratings=(selectedColumns[2], 'count')).reset_index()

		self.log.info('-------> Top 10 most rated Items:')
		self.log.info(df_eda.sort_values(by='number_of_ratings', ascending=False).head(10))

		matrix = data.pivot_table(index=selectedColumns[1], columns=selectedColumns[0], values=selectedColumns[2])
		relative_file = os.path.join(outputfile, 'data', USER_ITEM_MATRIX + '.csv')
		matrix.to_csv(relative_file)
		item_similarity_cosine = cosine_similarity(matrix.fillna(0))
		item_similarity_cosine = pd.DataFrame(item_similarity_cosine,columns=pd.Series([i + 1 for i in range(item_similarity_cosine.shape[0])],name='ItemId'),index=pd.Series([i + 1 for i in range(item_similarity_cosine.shape[0])],name='ItemId'))
		self.log.info('---------> Item-Item Similarity matrix created:')
		self.log.info(item_similarity_cosine.head(5))

		relative_file = os.path.join(outputfile, 'data', ITEM_SIMILARITY_MATRIX + '.csv')
		save_csv(item_similarity_cosine,relative_file)


		# --------------- recommender system changes End ---Usnish------------------#



		executionTime=time.time() - start
		self.log.info(""------->Execution Time: ""+str(executionTime))
		self.log.info('----------- Recommender System Training End -----------\n')

		return ""filename"",matrix,""NA"","""","""""
__init__.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''"
text_similarity.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import numpy as np
import pickle
import pandas as pd
import sys
import time
import os
from os.path import expanduser
import platform
from sklearn.preprocessing import binarize
import logging
import tensorflow as tf
from sklearn.model_selection import train_test_split
from tensorflow.keras import preprocessing
from sklearn.metrics import roc_auc_score
from sklearn.metrics import accuracy_score
from tensorflow.keras.preprocessing.sequence import pad_sequences
from tensorflow.keras.layers import Input, Embedding, LSTM, Lambda
import tensorflow.keras.backend as K
from tensorflow.keras.models import Model
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.layers import Concatenate
from tensorflow.keras.layers import Input, Dense, Flatten, GlobalMaxPool2D, GlobalAvgPool2D, Concatenate, Multiply, Dropout, Subtract, Add, Conv2D
from sklearn.metrics.pairwise import cosine_similarity, cosine_distances

import tensorflow.keras.backend as K
from tensorflow.keras.models import Model, Sequential
from tensorflow.keras import layers, utils, callbacks, optimizers, regularizers

## Keras subclassing based siamese network
class siameseNetwork(Model):
    def __init__(self, activation,inputShape, num_iterations):
        self.activation=activation
        self.log = logging.getLogger('eion')
        super(siameseNetwork, self).__init__()        
        i1 = layers.Input(shape=inputShape)
        i2 = layers.Input(shape=inputShape)
        featureExtractor = self.build_feature_extractor(inputShape, num_iterations)
        f1 = featureExtractor(i1)
        f2 = featureExtractor(i2)
        #distance vect
        distance = layers.Concatenate()([f1, f2])
        cosine_loss = tf.keras.losses.CosineSimilarity(axis=1)
        c_loss=cosine_loss(f1, f2)  
        similarity = tf.keras.layers.Dot(axes=1,normalize=True)([f1,f2])
        outputs = layers.Dense(1, activation=""sigmoid"")(distance)
        self.model = Model(inputs=[i1, i2], outputs=outputs)
    ##Build dense sequential layers 
    def build_feature_extractor(self, inputShape, num_iterations):        
        layers_config = [layers.Input(inputShape)]
        for i, n_units in enumerate(num_iterations):
            layers_config.append(layers.Dense(n_units))
            layers_config.append(layers.Dropout(0.2))
            layers_config.append(layers.BatchNormalization())
            layers_config.append(layers.Activation(self.activation))        
        model = Sequential(layers_config, name='feature_extractor')

        return model  
        
    def call(self, x):
        return self.model(x)
        
def euclidean_distance(vectors):
    (f1, f2) = vectors
    sumSquared = K.sum(K.square(f1 - f2), axis=1, keepdims=True)
    return K.sqrt(K.maximum(sumSquared, K.epsilon()))

def cosine_similarity(vectors):
    (f1, f2) = vectors
    f1 = K.l2_normalize(f1, axis=-1)
    f2 = K.l2_normalize(f2, axis=-1)
    return K.mean(f1 * f2, axis=-1, keepdims=True)
    


def cos_dist_output_shape(shapes):
    shape1, shape2 = shapes
    return (shape1[0],1)
    

class eion_similarity_siamese:
    def __init__(self):
        self.log = logging.getLogger('eion')    
        
    def siamese_model(self,df,col1,col2,targetColumn,conf,pipe,deployLocation,iterName,iterVersion,testPercentage,predicted_data_file):
        try:
            self.log.info('-------> Read Embedded File')
            home = expanduser(""~"")
            if platform.system() == 'Windows':
                modelsPath = os.path.join(home,'AppData','Local','HCLT','AION','PreTrainedModels','TextSimilarity')            
            else:  
                modelsPath = os.path.join(home,'HCLT','AION','PreTrainedModels','TextSimilarity')            
            if os.path.isdir(modelsPath) == False:
                os.makedirs(modelsPath)    
            embedding_file_path = os.path.join(modelsPath,'glove.6B.100d.txt')            
            if not os.path.exists(embedding_file_path):
                from pathlib import Path
                import urllib.request
                import zipfile
                location = modelsPath
                local_file_path =  os.path.join(location,""glove.6B.zip"")
                file_test, header_test = urllib.request.urlretrieve('http://nlp.stanford.edu/data/wordvecs/glove.6B.zip', local_file_path)
                with zipfile.ZipFile(local_file_path, 'r') as zip_ref:
                    zip_ref.extractall(location)
                os.unlink(os.path.join(location,""glove.6B.zip""))
                if os.path.isfile(os.path.join(location,""glove.6B.50d.txt"")):
                    os.unlink(os.path.join(location,""glove.6B.50d.txt""))
                if os.path.isfile(os.path.join(location,""glove.6B.300d.txt"")):
                    os.unlink(os.path.join(location,""glove.6B.300d.txt""))
                if os.path.isfile(os.path.join(location,""glove.6B.200d.txt"")):
                    os.unlink(os.path.join(location,""glove.6B.200d.txt""))
            X = df[[col1,col2]]
            Y = df[targetColumn]
            testPercentage = testPercentage
            self.log.info('\n-------------- Test Train Split ----------------')
            if testPercentage == 0:
                xtrain=X
                ytrain=Y
                xtest=X
                ytest=Y
            else:
                testSize=testPercentage/100
                self.log.info('-------> Split Type: Random Split')
                self.log.info('-------> Train Percentage: '+str(testSize))
                X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=testSize)
            self.log.info('-------> Train Data Shape: '+str(X_train.shape)+' ---------->')
            self.log.info('-------> Test Data Shape: '+str(X_test.shape)+' ---------->')
            self.log.info('-------------- Test Train Split End ----------------\n') 
            self.log.info('\n-------------- Train  Validate Split ----------------')
            X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=0.20, random_state=42)
            self.log.info('-------> Train Data Shape: '+str(X_train.shape)+' ---------->')
            self.log.info('-------> Validate Data Shape: '+str(X_val.shape)+' ---------->')
            self.log.info('-------------- Train  Validate Split End----------------\n')
            self.log.info('Status:- |... Train / test split done: '+str(100-testPercentage)+'% train,'+str(testPercentage)+'% test') 
            train_sentence1 = pipe.texts_to_sequences(X_train[col1].values)
            train_sentence2 = pipe.texts_to_sequences(X_train[col2].values)
            val_sentence1 = pipe.texts_to_sequences(X_val[col1].values)
            val_sentence2 = pipe.texts_to_sequences(X_val[col2].values)
            len_vec = [len(sent_vec) for sent_vec in train_sentence1]
            max_len = np.max(len_vec)
            len_vec = [len(sent_vec) for sent_vec in train_sentence2]
            if (max_len < np.max(len_vec)):
                max_len = np.max(len_vec)
            train_sentence1 = pad_sequences(train_sentence1, maxlen=max_len, padding='post')
            train_sentence2 = pad_sequences(train_sentence2, maxlen=max_len, padding='post')
            val_sentence1 = pad_sequences(val_sentence1, maxlen=max_len, padding='post')
            val_sentence2 = pad_sequences(val_sentence2, maxlen=max_len, padding='post')
            y_train = y_train.values
            y_val = y_val.values
            activation = str(conf['activation'])
            model = siameseNetwork(activation,inputShape=train_sentence1.shape[1], num_iterations=[10])
            model.compile(
                loss=""binary_crossentropy"", 
                optimizer=optimizers.Adam(learning_rate=0.0001),
                metrics=[""accuracy""])
            es = callbacks.EarlyStopping(monitor='val_loss', patience=5, verbose=1, restore_best_weights=True)
            rlp = callbacks.ReduceLROnPlateau(
                monitor='val_loss', factor=0.1, patience=2, min_lr=1e-10, mode='min', verbose=1
            )
            x_valid=X_val
            y_valid=y_val            
            n_epoch = int(conf['num_epochs'])
            batch_size = int(conf['batch_size'])            
            similarityIndex = conf['similarityIndex']
            model.fit([train_sentence1,train_sentence2],y_train.reshape(-1,1), epochs = n_epoch,batch_size=batch_size,
                validation_data=([val_sentence1, val_sentence2],y_val.reshape(-1,1)),callbacks=[es, rlp])
            scores = model.evaluate([val_sentence1, val_sentence2], y_val.reshape(-1,1), verbose=0)
            self.log.info('-------> Model Score Matrix: Accuracy')
            self.log.info('-------> Model Score (Validate Data) : '+str(scores[1]))
            self.log.info('Status:- |... Algorithm applied: SIAMESE')
            test_sentence1 = pipe.texts_to_sequences(X_test[col1].values)
            test_sentence2 = pipe.texts_to_sequences(X_test[col2].values)
            test_sentence1 = pad_sequences(test_sentence1, maxlen=max_len, padding='post')
            test_sentence2 = pad_sequences(test_sentence2, maxlen=max_len, padding='post')
            prediction = model.predict([test_sentence1, test_sentence2 ])
            n_epoch = conf['num_epochs']
            batch_size = conf['batch_size']
            activation = conf['activation']
            similarityIndex = conf['similarityIndex']
            self.log.info('-------> similarityIndex : '+str(similarityIndex))
            prediction = np.where(prediction > similarityIndex,1,0)
            rocauc_sco = roc_auc_score(y_test,prediction)
            acc_sco = accuracy_score(y_test, prediction)
            predict_df = pd.DataFrame()
            predict_df['actual'] = y_test
            predict_df['predict'] = prediction
            predict_df.to_csv(predicted_data_file)
            self.log.info('-------> Model Score Matrix: Accuracy')
            self.log.info('-------> Model Score (Validate Data) : '+str(scores[1]))
            self.log.info('Status:- |... Algorithm applied: SIAMESE')
            test_sentence1 = pipe.texts_to_sequences(X_test[col1].values)
            test_sentence2 = pipe.texts_to_sequences(X_test[col2].values)
            test_sentence1 = pad_sequences(test_sentence1, maxlen=max_len, padding='post')
            test_sentence2 = pad_sequences(test_sentence2, maxlen=max_len, padding='post')
            prediction = model.predict([test_sentence1, test_sentence2 ])
            prediction = np.where(prediction > similarityIndex,1,0)
            rocauc_sco = roc_auc_score(y_test,prediction)
            acc_sco = accuracy_score(y_test, prediction)
            predict_df = pd.DataFrame()
            predict_df['actual'] = y_test
            predict_df['predict'] = prediction
            predict_df.to_csv(predicted_data_file)
            self.log.info(""predict_df: \n""+str(predict_df))            
            sco = acc_sco
            self.log.info('-------> Test Data Accuracy Score : '+str(acc_sco))
            self.log.info('Status:- |... Testing Score: '+str(acc_sco))
            self.log.info('-------> Test Data ROC AUC Score : '+str(rocauc_sco))
            matrix = '""Accuracy"":'+str(acc_sco)+',""ROC AUC"":'+str(rocauc_sco)
            
            prediction = model.predict([train_sentence1, train_sentence2])
            prediction = np.where(prediction > similarityIndex,1,0)
            train_rocauc_sco = roc_auc_score(y_train,prediction)
            train_acc_sco = accuracy_score(y_train, prediction)
            self.log.info('-------> Train Data Accuracy Score : '+str(train_acc_sco))
            self.log.info('-------> Train Data ROC AUC Score : '+str(train_rocauc_sco))
            trainmatrix = '""Accuracy"":'+str(train_acc_sco)+',""ROC AUC"":'+str(train_rocauc_sco)
            model_tried = '{""Model"":""SIAMESE"",""Score"":'+str(sco)+'}'
            saved_model = 'textsimilarity_'+iterName+'_'+iterVersion
            # filename = os.path.join(deployLocation,'model','textsimilarity_'+iterName+'_'+iterVersion+'.sav')
            # filename = os.path.join(deployLocation,'model','textsimilarity_'+iterName+'_'+iterVersion+'.h5')
            ## Because we are using subclassing layer api, please use dir (as below) to store deep learn model instead of .h5 model.
            filename = os.path.join(deployLocation,'model','textsimilarity_'+iterName+'_'+iterVersion)
            model.save(filename)
            # model.save_weights(filename)
            model_name = 'SIAMESE MODEL'
            
            return(model_name,scores[1],matrix,trainmatrix,model_tried,saved_model,filename,max_len,similarityIndex)
        except Exception as inst:
            self.log.info(""SIAMESE failed "" + str(inst))
            exc_type, exc_obj, exc_tb = sys.exc_info()
            fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)[1]
            self.log.info(str(exc_type) + ' ' + str(fname) + ' ' + str(exc_tb.tb_lineno))			"
performance.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import json
from pathlib import Path

def get_metrics(request):
    output = {}
    output_path = Path(request.session['deploypath'])/""etc""/""output.json""
    if not output_path.exists():
        raise ValueError('output json path does not exist, something unexpected happen')
    with open(output_path) as file:
        config = json.load(file)
    output['problem_type'] = config.get('data',{}).get('ModelType')
    output['best_model'] = config.get('data',{}).get('BestModel')
    output['hyper_params'] = config.get('data',{}).get('params')
    output['best_score'] = str(round(float(config.get('data',{}).get('BestScore')), 2))
    output['scoring_method'] = config.get('data',{}).get('ScoreType')
    if output['problem_type'] == 'classification':
        output['mcc_score'] = str(round(float(config.get('data',{}).get('matrix',{}).get('MCC_SCORE', 0.0)), 2))
    else:
        output['mcc_score'] = 'NA'
    return output
"
brier_score.py,"import json
import os

def get_brier_score(request):
    try:
        displaypath = os.path.join(request.session['deploypath'], ""etc"", ""output.json"")
        with open(displaypath) as file:
            config = json.load(file)
        problem_type = config[""data""][""ModelType""]
        brier_score = config[""data""][""matrix""][""BRIER_SCORE""]
        print(problem_type,brier_score)
    except Exception as e:
        #print(str(e))
        raise ValueError(str(e))
    return problem_type, brier_score
                          "
__init__.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
"
fairness_metrics.py,"
import pandas as pd
import numpy as np
from appbe.eda import ux_eda
from sklearn.preprocessing import LabelEncoder
import json
import matplotlib.pyplot as plt
import os
import mpld3
import subprocess
import os
import sys
import re
import json
import pandas as pd

from appbe.eda import ux_eda
from aif360.datasets import StandardDataset
from aif360.metrics import ClassificationMetric
from aif360.datasets import BinaryLabelDataset

def get_metrics(request):
    dataFile = os.path.join(request.session['deploypath'], ""data"", ""preprocesseddata.csv.gz"")
    predictionScriptPath = os.path.join(request.session['deploypath'], 'aion_predict.py')
    displaypath = os.path.join(request.session['deploypath'], ""etc"", ""display.json"")
    f = open(displaypath, ""r"")
    configSettings = f.read()
    f.close()
    configSettings = json.loads(configSettings)
    Target_feature = configSettings['targetFeature']

    outputStr = subprocess.check_output([sys.executable, predictionScriptPath, dataFile])
    outputStr = outputStr.decode('utf-8')
    outputStr = re.search(r'predictions:(.*)', str(outputStr), re.IGNORECASE).group(1)
    outputStr = outputStr.strip()
    predict_dict = json.loads(outputStr)
   
    df = pd.read_csv(dataFile)
    df_p = pd.DataFrame.from_dict(predict_dict['data'])
    
    d3_url = request.GET.get('d3_url')
    mpld3_url = request.GET.get('mpld3_url')
    df_temp = request.GET.get('feature')
    global metricvalue
    metricvalue = request.GET.get('metricvalue')
    
    Protected_feature = df_temp

    df_p = df_p.drop(columns=[Target_feature, 'remarks', 'probability'])
    df_p.rename(columns={'prediction': Target_feature}, inplace=True)

    
    eda_obj = ux_eda(dataFile, optimize=1)                  
    features,dateFeature,seqFeature,constantFeature,textFeature,targetFeature,numericCatFeatures,numericFeature,catfeatures = eda_obj.getFeatures()

    features_to_Encode = features

    categorical_names = {}
    encoders = {}

    for feature in features_to_Encode:
        le = LabelEncoder()
        le.fit(df[feature])            
        df[feature] = le.transform(df[feature])
        le.fit(df_p[feature])            
        df_p[feature] = le.transform(df_p[feature])             
        categorical_names[feature] = le.classes_
        encoders[feature] = le       
        
    new_list = [item for item in categorical_names[Protected_feature] if not(pd.isnull(item)) == True]
    claas_size = len(new_list)

    if claas_size > 10:
        return 'HeavyFeature'

    metrics = fair_metrics(categorical_names, Protected_feature,Target_feature, claas_size, df, df_p)
    figure = plot_fair_metrics(metrics)
    html_graph = mpld3.fig_to_html(figure,d3_url=d3_url,mpld3_url=mpld3_url) 
    return html_graph

def fair_metrics(categorical_names, Protected_feature,Target_feature, claas_size, df, df_p):
    cols = [metricvalue]
    obj_fairness = [[0]]  
    fair_metrics = pd.DataFrame(data=obj_fairness, index=['objective'], columns=cols)
    for indx in range(claas_size):
        priv_group = categorical_names[Protected_feature][indx]
        privileged_class = np.where(categorical_names[Protected_feature] == priv_group)[0]
        data_orig = StandardDataset(df, 
                                        label_name=Target_feature, 
                                        favorable_classes=[1], 
                                        protected_attribute_names=[Protected_feature], 
                                        privileged_classes=[privileged_class])
        attr = data_orig.protected_attribute_names[0]
        idx = data_orig.protected_attribute_names.index(attr)
        privileged_groups =  [{attr:data_orig.privileged_protected_attributes[idx][0]}] 

        unprivileged_size = data_orig.unprivileged_protected_attributes[0].size
        unprivileged_groups = []
        for idx2 in range(unprivileged_size):   
            unprivileged_groups.extend([{attr:data_orig.unprivileged_protected_attributes[idx][idx2]}])
        
        bld = BinaryLabelDataset(df=df, label_names=[Target_feature], protected_attribute_names=[Protected_feature])
        bld_p = BinaryLabelDataset(df=df_p, label_names=[Target_feature], protected_attribute_names=[Protected_feature])

        ClsMet = ClassificationMetric(bld, bld_p,unprivileged_groups=unprivileged_groups, privileged_groups=privileged_groups)

        if metricvalue == ""Theil Index"":
            row = pd.DataFrame([[ClsMet.theil_index()]],
                        columns  = cols ,
                        index = [priv_group])
        elif metricvalue == ""Equal Opportunity Difference"":
            row = pd.DataFrame([[ClsMet.equal_opportunity_difference()]],
                        columns  = cols ,
                        index = [priv_group])
        elif metricvalue == ""Disparate Impact"":
            row = pd.DataFrame([[ClsMet.disparate_impact()]],
                        columns  = cols ,
                        index = [priv_group])
        elif metricvalue == ""Statistical Parity Difference"":
            row = pd.DataFrame([[ClsMet.statistical_parity_difference()]],
                        columns  = cols ,
                        index = [priv_group])                       

        #fair_metrics = fair_metrics.append(row)
        fair_metrics = pd.concat([fair_metrics,row])

    return fair_metrics

def plot_fair_metrics(fair_metrics):
    import matplotlib.patches as patches
    plt.style.use('default')
    
    import seaborn as sns    
    fig, ax = plt.subplots(figsize=(10,4), ncols=1, nrows=1)

    plt.subplots_adjust(
        left    =  0.125, 
        bottom  =  0.1, 
        right   =  0.9, 
        top     =  0.9, 
        wspace  =  .5, 
        hspace  =  1.1
    )

    y_title_margin = 1.2

    plt.suptitle(""Fairness metrics"", y = 1.09, fontsize=20)
    sns.set(style=""dark"")

    cols = fair_metrics.columns.values
    obj = fair_metrics.loc['objective']
    if metricvalue == ""Theil Index"":
        size_rect = [0.5]
        rect = [-0.1]
        bottom = [-0.1]
        top = [2]
        bound = [[-0.1,0.1]]
    
    elif metricvalue == ""Equal Opportunity Difference"":
        size_rect = [0.2]
        rect = [-0.1]
        bottom = [-1]
        top = [1]
        bound = [[-0.1,0.1]]
    elif metricvalue == ""Disparate Impact"":
        size_rect = [0.4]
        rect = [0.8]
        bottom = [0]
        top = [2]
        bound = [[-0.1,0.1]]
    elif metricvalue == ""Statistical Parity Difference"":
        size_rect = [0.2]
        rect = [-0.1]
        bottom = [-1]
        top = [1]
        bound = [[-0.1,0.1]]

    for attr in fair_metrics.index[1:len(fair_metrics)].values:
        check = [bound[i][0] < fair_metrics.loc[attr][i] < bound[i][1] for i in range(0,1)]
    
    for i in range(0,1):
        plt.subplot(1, 1, i+1)        
        xx = fair_metrics.index[1:len(fair_metrics)].values.tolist()
        yy = fair_metrics.iloc[1:len(fair_metrics)][cols[i]].values.tolist()
      
        palette = sns.color_palette('husl', len(xx))  
        ax = sns.pointplot(x=fair_metrics.index[1:len(fair_metrics)], y=yy, palette=palette, hue=xx)
        
        index = 0
        for p in zip(ax.get_xticks(), yy):
            if (p[1] > 2.0):
                _color = palette.as_hex()[index]   
                _val = 'Outlier(' + str(round(p[1],3)) + ')'
                ax.text(p[0]-0.5, 0.02, _val, color=_color)
            else:
                ax.text(p[0], p[1]+0.05, round(p[1],3), color='k') 
            index = index + 1
            
        plt.ylim(bottom[i], top[i])
        plt.setp(ax.patches, linewidth=0)              
        ax.get_xaxis().set_visible(False)
                
        ax.legend(loc='right', bbox_to_anchor=(1, 0.8), ncol=1)        
        ax.add_patch(patches.Rectangle((-5,rect[i]), 10, size_rect[i], alpha=0.3, facecolor=""green"", linewidth=1, linestyle='solid'))
        # plt.axhline(obj[i], color='black', alpha=0.3)              
        
        plt.title(cols[i], fontname=""Times New Roman"", size=20,fontweight=""bold"")
        ax.set_ylabel('')    
        ax.set_xlabel('')    
            
    return fig"
sensitivity_analysis.py,"import base64
import io
import json
import os
import urllib

import joblib
import numpy as np
import pandas as pd
from SALib.analyze import sobol


class sensitivityAnalysis():
    def __init__(self, model, problemType, data, target, featureName):
        self.model = model
        self.probemType = problemType
        self.data = data
        self.target = target
        self.featureName = featureName
        self.paramvales = []
        self.X = []
        self.Y = []
        self.problem = {}

    def preprocess(self):

        self.X = self.data[self.featureName].values
        self.Y = self.data[self.target].values


        bounds = [[np.min(self.X[:, i]), np.max(self.X[:, i])] for i in range(self.X.shape[1])]

        self.problem = {
            'num_vars': self.X.shape[1],
            'names': self.featureName,
            'bounds': bounds
        }

    def generate_samples(self,size):
        from SALib.sample import sobol
        self.param_values = sobol.sample(self.problem, size)

    def calSiClass(self, satype,isML,isDL):
        try:

            D = self.problem['num_vars']
            S = np.zeros(self.X.shape[1])

            for class_label in np.unique(self.Y):
                if isML:
                    y_pred_poba = self.model.predict_proba(self.param_values)[:, class_label]
                if isDL:
                    y_pred_poba = self.model.predict(self.param_values)[:,class_label]


                if not y_pred_poba.size % (2 * D + 2) == 0:
                    lim = y_pred_poba.size - y_pred_poba.size % (2 * D + 2)
                    y_pred_poba = y_pred_poba[:lim]
                Si = sobol.analyze(self.problem, y_pred_poba)
                if satype.lower() == 'first':
                    S += Si['S1']
                else:
                    S += Si['ST']
            S /= len(np.unique(self.Y))
            return S
        except Exception as e:
            print('Error in calculating Si for Classification: ', str(e))
            raise ValueError(str(e))


    def calSiReg(self, satype,isML,isDL):
        try:

            D = self.problem['num_vars']

            Y = np.array([self.model.predict(X_sample.reshape(1, -1)) for X_sample in self.param_values])

            Y = Y.reshape(-1)

            if not Y.size % (2 * D + 2) == 0:
                lim = Y.size - Y.size % (2 * D + 2)
                Y = Y[:lim]
            Si = sobol.analyze(self.problem, Y)
            if satype.lower() == 'first':
                S = Si['S1']
            else:
                S = Si['ST']
            return S
        except Exception as e:
            print('Error in calculating Si for Regression: ', str(e))
            raise ValueError(str(e))


    def plotSi(self, S, saType):
        try:
            import matplotlib.pyplot as plt
            if saType.lower() == 'first':
                title, label = 'Sensitivity Analysis', 'First order'
            else:
                title, label = 'Sensitivity Analysis', 'Total order'
            x = np.arange(len(self.problem['names']))
            width = 0.35
            fig, ax = plt.subplots()
            ax.bar(x - width / 2, S, width, label=label)
            ax.set_xticks(x)
            ax.set_xlabel('Features')
            ax.set_ylabel('Sensitivity Indices')
            ax.set_title(title)
            ax.set_xticklabels(self.problem['names'], rotation=45, ha=""right"")
            ax.legend()

            plt.tight_layout()
            image = io.BytesIO()
            plt.savefig(image, format='png')
            image.seek(0)
            string = base64.b64encode(image.read())
            SAimage = 'data:image/png;base64,' + urllib.parse.quote(string)
        except Exception as e:
            print(e)
            SAimage = ''
        return SAimage

def checkModelType(modelName):
    isML= False
    isDL = False

    if modelName in [""Neural Network"", ""Convolutional Neural Network (1D)"", ""Recurrent Neural Network"",""Recurrent Neural Network (GRU)"",
                     ""Recurrent Neural Network (LSTM)"", ""Neural Architecture Search"", ""Deep Q Network"", ""Dueling Deep Q Network""]:
        isDL = True
    elif modelName in [""Linear Regression"",""Lasso"",""Ridge"",""Logistic Regression"", ""Naive Bayes"", ""Decision Tree"", ""Random Forest"", ""Support Vector Machine"", ""K Nearest Neighbors"", ""Gradient Boosting"",
                       ""Extreme Gradient Boosting (XGBoost)"", ""Light Gradient Boosting (LightGBM)"", ""Categorical Boosting (CatBoost)"",""Bagging (Ensemble)""]:
        isML = True

    return isML,isDL



def startSA(request):

    try:
        displaypath = os.path.join(request.session['deploypath'], ""etc"", ""display.json"")
        if not os.path.exists(displaypath):
            raise Exception('Config file not found.')
        with open(displaypath) as file:
            config = json.load(file)

        probelmType = config['problemType']

        if probelmType.lower() not in ['classification','regression']:
            raise Exception(f""Probolem Type: {probelmType} not supported"")

        isML,isDL = checkModelType(config['modelname'])
        sample_size = 1024
        if isML:
            model = joblib.load(os.path.join(request.session['deploypath'], 'model', config['saved_model']))
            sample_size = 2048
        if isDL:
            from tensorflow.keras.models import load_model
            model = load_model(os.path.join(request.session['deploypath'], 'model', config['saved_model']))
            sample_size = 512

        target = config['targetFeature']
        featureName = config['modelFeatures']
        dataPath = os.path.join(request.session['deploypath'], 'data', 'postprocesseddata.csv.gz')
        if not os.path.exists(dataPath):
            raise Exception('Data file not found.')

        from utils.file_ops import read_df_compressed
        read_status,dataFrame = read_df_compressed(dataPath)

        obj = sensitivityAnalysis(model, probelmType, dataFrame, target, featureName)
        obj.preprocess()
        obj.generate_samples(sample_size)
        submitType = str(request.GET.get('satype'))
        saType = 'first' if submitType == 'first' else 'total'
        if probelmType.lower() == 'classification':
            SA_values = obj.calSiClass(saType,isML,isDL)
        else:
            SA_values = obj.calSiReg(saType,isML,isDL)
        if SA_values.size and saType:

            graph = obj.plotSi(SA_values, saType)
            if graph:
                outputJson = {'Status': ""Success"", ""graph"": graph}
            else:
                outputJson = {'Status': ""Error"", ""graph"": '','reason':'Error in Plotting Graph'}
        else:
            outputJson = {'Status': ""Error"", ""graph"": '','reason':'Error in calculating Si values'}
        output_json = json.dumps(outputJson)
        return output_json
    except Exception as e:
        print(str(e))
        raise ValueError(str(e))
"
trustedai_uq.py,"import numpy as np
import joblib
import pandas as pd
from appbe.eda import ux_eda
from sklearn.preprocessing import MinMaxScaler, LabelEncoder

# from pathlib import Path
import configparser
import json
import matplotlib.pyplot as plt
import numpy as np
import os
def trustedai_uq(request):
    try:
        displaypath = os.path.join(request.session['deploypath'], ""etc"", ""display.json"")
        f = open(displaypath, ""r"")
        configSettings = f.read()
        f.close()
        configSettings = json.loads(configSettings)
        
        TargetFeature = configSettings['targetFeature']
        problemType = configSettings['problemType']
        raw_data_loc = configSettings['preprocessedData']
        dataLocation = configSettings['postprocessedData'] 
        selectedfeatures = request.GET.get('values')

        if problemType.lower() == ""classification"":
            model = (os.path.join(request.session['deploypath'], 'model', configSettings['saved_model']))
            df = pd.read_csv(dataLocation)
            trainfea = df.columns.tolist()
            
            feature = json.loads(selectedfeatures)
            # feature = "","".join(featurs)
            # features = ['PetalLengthCm','PetalWidthCm']
            targ = TargetFeature
            tar =[targ]
            from bin.aion_uncertainties import aion_uq
            outputStr = aion_uq(model,dataLocation,feature,tar)
            return outputStr
     
        if problemType.lower() == ""regression"":
            model = (os.path.join(request.session['deploypath'], 'model', configSettings['saved_model']))
            df = pd.read_csv(dataLocation)
            trainfea = df.columns.tolist()
            feature = json.loads(selectedfeatures)
            # feature = "","".join(featurs)
            # features = ['PetalLengthCm','PetalWidthCm']
            targ = TargetFeature
            tar =[targ]
            from bin.aion_uncertainties import aion_uq
            outputStr = aion_uq(model,dataLocation,feature,tar)
            print(outputStr)
            return outputStr
    except Exception as e:
        print('error',e)
        return e"
pipeline_config.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''

import json
import logging
import os
import shutil
import time
import importlib
from sys import platform
from pathlib import Path
from distutils.util import strtobool
import config_manager.pipeline_config_reader as cs
# Base class for EION configuration Manager which read the needed f params from eion.json, initialize the parameterlist, read the respective params, store in variables and return back to caller function or external modules.
	  
class AionConfigManager:

	def getDebiasingDetail(self):
		return cs.getDebiasingDetail(self)

# eion configuration Constractor        
	def __init__(self):
		self.log = logging.getLogger('eion')
		self.data = ''
		self.problemType = ''
		self.basic = []
		self.advance=[]
		self.summarize = False

	#To get the inliner labels for eion anomaly detection
	def get_text_feature(self):
		self.text_features = []
		feat_dict = self.advance['profiler']['featureDict']
		for feat in feat_dict:
			if feat.get('type') == 'text':
				if feat.get('feature'):
					self.text_features.append(feat['feature'])
		return self.text_features
		
	def validate_config(self):
		status = True
		error_id = ''
		msg = ''		
		conversion_method = self.__get_true_option(self.advance.get('profiler',{}).get('textConversionMethod',{}))
		is_text_feature = self.get_text_feature()
		if is_text_feature and conversion_method.lower() == 'fasttext':
			status = importlib.util.find_spec('fasttext')
			if not status:
				error_id = 'fasttext'
				msg = 'fastText is not installed. Please install fastText'
		return status,error_id, msg
		
	def getTextlocation(self):
		text_data = self.basic[""dataLocation""]
		return text_data

	def getTextSummarize(self):
		algo = self.basic['algorithms']['textSummarization']
		for key in algo:
			if algo[key] == 'True':
				algoname = key
		method = self.advance['textSummarization']['summaryLength']
		for key in method:
			if method[key] == 'True':
				methodname = key

		return algoname,methodname
	def getAssociationRuleFeatures(self):
		if 'invoiceNoFeature' in self.basic['algorithms']['recommenderSystem']['associationRulesConfig']:
			invoiceNoFeature = self.basic['algorithms']['recommenderSystem']['associationRulesConfig']['invoiceNoFeature']
		else:
			invoiceNoFeature =''
		if 'itemFeature' in self.basic['algorithms']['recommenderSystem']['associationRulesConfig']:
			itemFeature = self.basic['algorithms']['recommenderSystem']['associationRulesConfig']['itemFeature']
		else:
			itemFeature =''
		return invoiceNoFeature,itemFeature

	def getFirstDocumentFeature(self):
		return cs.getFirstDocumentFeature(self)
		
	def getSecondDocumentFeature(self):
		return cs.getSecondDocumentFeature(self)

	def getEionTextSimilarityConfig(self):
		return self.advance['textSimilarityConfig']


	def getEionTextSummarizationConfig(self):
		return self.basic['dataLocation'],self.basic['deployLocation'] ,self.basic['textSummarization']['KeyWords'],self.basic['textSummarization']['pathForKeywordFile']

	def getEionInliers(self):
		return cs.getEionInliers(self)
		
#To get the selected models for eion anomaly detection
	def getEionanomalyModels(self):
		self.anomalyModels = self.mlmodels
		return (self.anomalyModels) 

# To get parameter list of configuration module from json, this will be passed as dict{}      
	def getEionProfilerConfigurarion(self):
		return cs.getEionProfilerConfigurarion(self)
	
	def getAIONTestTrainPercentage(self):
		return cs.getAIONTestTrainPercentage(self)

	def getModelEvaluationConfig(self):
		try:
			return request.POST.get('mydata',{})
		except Exception as e:
			return({})        

	def getAIONDataBalancingMethod(self):
		return cs.getAIONDataBalancingMethod(self)

	def updateFeatureSelection(self, selectorConfig,codeConfigure,vectorizer=False):
		if vectorizer:
			selectorConfig['selectionMethod']['featureSelection'] = 'True'
			selectorConfig['featureSelection']['allFeatures'] = 'True'
			selectorConfig['featureSelection']['statisticalBased'] = 'False'
			selectorConfig['featureSelection']['modelBased'] = 'False'
			codeConfigure.update_config(""feature_selector"", ['allFeatures'])
				
# To get parameter list of selector module params        
	def getEionSelectorConfiguration(self):
		return cs.getEionSelectorConfiguration(self)

	def createDeploymentFolders(self,deployFolder,iterName,iterVersion):
		usecase = '{}{}{}'.format(iterName, '_' if iterVersion != '' else '', iterVersion)
		folders = ['data','log','model','script','etc']
		skip_delete = ['log']
		deployLocation = Path(deployFolder)/iterName/iterVersion
		deployLocation.mkdir(parents=True, exist_ok=True)
		
		# delete previous failed/trained use case outputs except log folder  
		# as logging is already enabled for current usecase
		for x in deployLocation.iterdir():
			if x.is_file():		# bug 13315 delete existing files
				x.unlink()
			elif x.is_dir():
				if x.stem not in skip_delete:
					shutil.rmtree( x)
		for folder in folders:
			(deployLocation/folder).mkdir( parents=True, exist_ok=True)
		(deployLocation/'log'/'img').mkdir( parents=True, exist_ok=True)
		data_location = deployLocation/'data'
		paths = {
		'usecase': str(deployLocation.parent),
		'deploy': str(deployLocation),
		'data': str(deployLocation/'data'),
		'image': str(deployLocation/'log'/'img'),
		}
		files = {
			'original': str(data_location/'preprocesseddata.csv.gz'),
			'profiled': str(data_location/'postprocesseddata.csv.gz'),
			'reduction': str(data_location/'reductiondata.csv'),
			'trained': str(data_location/'trainingdata.csv'),
			'predicted': str(data_location/'predicteddata.csv.gz'),
			'logs': str(deployLocation/'log'/'model_training_logs.log'),
			'output': str(deployLocation/'etc'/'output.json'),
		}
		return( paths['usecase'],paths['deploy'],paths['data'],paths['image'],files['original'],files['profiled'],files['trained'],files['predicted'],files['logs'],files['output'],files['reduction'])
		
# To get parameter list of learner module params        
	def getEionLearnerConfiguration(self):
		try:
			if(self.advance['mllearner_config']):
				mllearner_config = self.advance['mllearner_config']
				if 'categoryBalancingMethod' not in mllearner_config:
					mllearner_config['categoryBalancingMethod'] = 'oversample'
				if 'testPercentage' not in mllearner_config:
					mllearner_config['testPercentage'] = 20
				if 'missingTargetCategory' not in mllearner_config:
					mllearner_config['missingTargetCategory'] = ''
				mllearner_config['modelParams']['classifierModelParams']['Deep Q Network'] = self.advance['rllearner_config']['modelParams']['classifierModelParams']['Deep Q Network']
				mllearner_config['modelParams']['classifierModelParams']['Neural Architecture Search'] = self.advance['dllearner_config']['modelParams']['classifierModelParams']['Neural Architecture Search']
				mllearner_config['modelParams']['classifierModelParams']['Dueling Deep Q Network'] = self.advance['rllearner_config']['modelParams']['classifierModelParams']['Dueling Deep Q Network']
				mllearner_config['modelParams']['regressorModelParams']['Deep Q Network'] = self.advance['rllearner_config']['modelParams']['regressorModelParams']['Deep Q Network']
				mllearner_config['modelParams']['regressorModelParams']['Dueling Deep Q Network'] = self.advance['rllearner_config']['modelParams']['regressorModelParams']['Dueling Deep Q Network']	
				mllearner_config['modelParams']['regressorModelParams']['Neural Architecture Search'] = self.advance['dllearner_config']['modelParams']['regressorModelParams']['Neural Architecture Search']				
				
				return mllearner_config
			else:
				return('NA')
		except KeyError:
			return('NA')
		except Exception as inst:
			self.log.info( '\n-----> getEionLearnerConfiguration failed!!!.'+str(inst))
			return('NA')
			
	def getEionDeepLearnerConfiguration(self):
		return cs.getEionDeepLearnerConfiguration(self)

	def gettimegrouper(self):
		return cs.gettimegrouper(self)
	
	def getgrouper(self):
		return cs.getgrouper(self)
			
	def getfilter(self):
		return cs.getfilter(self)

	def getNumberofForecasts(self):
		return cs.getNumberofForecasts(self)
			
	##To get multivariate feature based anomaly detection status
	def getMVFeaturebasedAD(self):
		return cs.getMVFeaturebasedAD(self)
			
	def getModulesDetails(self):
		problem_type = self.problemType
		visualizationstatus = self.getEionVisualizationStatus()
		profiler_status = self.getEionProfilerStatus()
		selector_status = self.getEionSelectorStatus()
		learner_status = self.mllearner
		deeplearner_status = self.dllearner
		targetFeature = self.getTargetFeatures()
		deploy_status = self.getEionDeploymentStatus()
		VideoProcessing = False 
		similarityIdentificationStatus = False
		contextualSearchStatus = False
		anomalyDetectionStatus = False
		if problem_type.lower() == 'survivalanalysis': 
			survival_analysis_status = True
			selector_status = False
			associationRuleStatus = 'disable'
			timeseriesStatus = 'disable'
			learner_status = False
			deeplearner_status = False
		else:
			survival_analysis_status = False
		
		if problem_type.lower() == 'textsimilarity':
			selector_status = False
			learner_status = False
			deeplearner_status = False
			timeseriesStatus = 'disable'
			associationRuleStatus = 'disable'
			inputDriftStatus = 'disable'
			textSimilarityStatus = True
		else:
			textSimilarityStatus = False
			
		if problem_type.lower() == 'inputdrift':
			inputDriftStatus = True
			profiler_status = False
			selector_status = False
			learner_status = False
			deeplearner_status = False
			timeseriesStatus = 'disable'
			associationRuleStatus = 'disable'
			deploy_status = False
			visualizationstatus = False
		else:
			inputDriftStatus = False
		
		if problem_type.lower() == 'outputdrift':
			outputDriftStatus = True
			profiler_status = False
			selector_status = False
			learner_status = False
			deeplearner_status = False
			timeseriesStatus = 'disable'
			associationRuleStatus = 'disable'
			deploy_status = False
			visualizationstatus = False
		else:
			outputDriftStatus = False
		
		if problem_type.lower() == 'recommendersystem':
			recommenderStatus = True
			#profiler_status = 'disable'
			selector_status = False
			learner_status = False
			deeplearner_status = False
			timeseriesStatus = 'disable'
			associationRuleStatus = 'disable'
			#Task 11190
			visualizationstatus = False
		else:
			recommenderStatus = False				
		'''
		if profiler_status.lower() == 'enable':
			profiler_status = True
		else:
			profiler_status = False
		
		if selector_status.lower() == 'enable':
			selector_status = True
		else:
			selector_status = False
				
		if visualizationstatus.lower() == 'enable':
			visualizationstatus = True
		else:
			visualizationstatus = False	
		'''
		
		if learner_status:
			if(problem_type == 'NA'):
				learner_status = True
			elif(problem_type.lower() in ['classification','regression','clustering','anomalydetection', 'topicmodelling', 'objectdetection', 'timeseriesanomalydetection']): #task 11997
				learner_status = True
			else:
				learner_status = False	
		if problem_type.lower() == 	'anomalydetection' or problem_type.lower() == 'timeseriesanomalydetection': #task 11997
			anomalyDetectionStatus = True   
		                
		if deeplearner_status:
			if(problem_type.lower() == 'na'):
				deeplearner_status = True
			elif(problem_type.lower() in ['classification','regression']):
				deeplearner_status = True
			else:
				deeplearner_status = False
				
			if(targetFeature == ''):
				deeplearner_status = False
		
		
		if problem_type.lower() == 'timeseriesforecasting': #task 11997
			timeseriesStatus = True
			profiler_status = True  #task 12627
			selector_status = False
			learner_status = False
			deeplearner_status = False
			associationRuleStatus = 'disable'
		else:
			timeseriesStatus = False
		
		if problem_type.lower() == 'videoforecasting':
			forecastingStatus = True
			timeseriesStatus = False
			profiler_status = True
			selector_status = False
			learner_status = False
			deeplearner_status = False
			associationRuleStatus = 'disable'
		else:
			forecastingStatus = False
				
		if problem_type.lower() == 'imageclassification':
			imageClassificationStatus = True
			timeseriesStatus = False
			profiler_status = False
			selector_status = False
			learner_status = False
			deeplearner_status = False
			associationRuleStatus = 'disable'
		else:
			imageClassificationStatus = False
				
		if problem_type.lower() == 'associationrules':
			associationRuleStatus = True		
			timeseriesStatus = False
			profiler_status = False
			selector_status = False
			learner_status = False
			deeplearner_status = False
			visualizationstatus = False
		else:
			associationRuleStatus = False

		if problem_type.lower() == 'statetransition':
			stateTransitionStatus = True
			objectDetectionStatus = False
			imageClassificationStatus = False
			timeseriesStatus = False
			profiler_status = False
			selector_status = False
			learner_status = False
			deeplearner_status = False
			associationRuleStatus = False
			visualizationstatus = False
		else:
			stateTransitionStatus = False

		if problem_type.lower() == 'objectdetection':
			objectDetectionStatus = True
			imageClassificationStatus = False
			timeseriesStatus = False
			profiler_status = False
			selector_status = False
			learner_status = False
			deeplearner_status = False
			associationRuleStatus = False
			visualizationstatus = False
		else:
			objectDetectionStatus = False
		if problem_type.lower() == 'similarityidentification':
			similarityIdentificationStatus = True
			objectDetectionStatus = False
			imageClassificationStatus = False
			timeseriesStatus = False
			selector_status = False
			learner_status = False
			deeplearner_status = False
			associationRuleStatus = False
			visualizationstatus = False
			self.updateEmbeddingForDocSimilarity()
		else:
			similarityIdentificationStatus = False

		if problem_type.lower() == 'contextualsearch':
			contextualSearchStatus = True
			objectDetectionStatus = False
			imageClassificationStatus = False
			timeseriesStatus = False
			selector_status = False
			learner_status = False
			deeplearner_status = False
			associationRuleStatus = False
			visualizationstatus = False
			self.updateEmbeddingForContextualsearch()
		else:
			contextualSearchStatus = False


		if problem_type.lower() == 'textsummarization':
			textSummarization = True
			profiler_status = False
			selector_status = False            
		else:
			textSummarization = False
		'''
		if deploy_status.lower() == 'enable':
			deploy_status = True
		else:
			deploy_status = False
		'''
		#print(inputDriftStatus)
		return problem_type,targetFeature,profiler_status,selector_status,learner_status,deeplearner_status,timeseriesStatus,textSummarization,survival_analysis_status,textSimilarityStatus,inputDriftStatus,outputDriftStatus,recommenderStatus,visualizationstatus,deploy_status,associationRuleStatus,imageClassificationStatus,forecastingStatus,objectDetectionStatus,stateTransitionStatus,similarityIdentificationStatus,contextualSearchStatus,anomalyDetectionStatus

	def __get_true_option(self, d, default_value=None):
		if isinstance(d, dict):
			for k,v in d.items():
				if (isinstance(v, str) and v.lower() == 'true') or (isinstance(v, bool) and v == True):
					return k
		return default_value
	
	def updateEmbeddingForDocSimilarity(self):
		method = self.__get_true_option(self.basic['algorithms']['similarityIdentification'])
		textConversionMethods = self.advance['profiler']['textConversionMethod']
		print(""------------""+method+'---------------')
		for key in textConversionMethods:
			if key == method:
				self.advance['profiler']['textConversionMethod'][key] = ""True""
			else:
				self.advance['profiler']['textConversionMethod'][key] = ""False""
		if method.lower() == 'bm25':
			self.advance['profiler']['textConversionMethod']['bm25'] = ""True""

	def updateEmbeddingForContextualsearch(self):
		method = self.__get_true_option(self.basic['algorithms']['contextualSearch'])
		textConversionMethods = self.advance['profiler']['textConversionMethod']
		print(""------------""+method+'---------------')
		for key in textConversionMethods:
			if key == method:
				self.advance['profiler']['textConversionMethod'][key] = ""True""
			else:
				self.advance['profiler']['textConversionMethod'][key] = ""False""
		if method.lower() == 'bm25':
			self.advance['profiler']['textConversionMethod']['bm25'] = ""True""

	def get_conversion_method(self):
		return self.__get_true_option( self.advance['profiler']['textConversionMethod'])
		
	def getAlgoName(self, problem_type=None):
		if problem_type == None:
			problem_type = self.__get_true_option(self.basic['algorithms'])
		return self.__get_true_option(self.basic['algorithms'][problem_type])
		
	def getScoringCreteria(self):
		return self.scoringCreteria
	
	def getVectorDBCosSearchStatus(self,problemType):
		if self.basic['preprocessing'][problemType]['VectorDB'] == 'True':
			return True
		else:
			return False

	def getVectorDBFeatureDelimitInDoc(self):
		return ' ~&~ '		
		
	def getEionDeployerConfiguration(self):
		return cs.getEionDeployerConfiguration(self)

	def getEionAssociationRuleConfiguration(self):
		return cs.getEionAssociationRuleConfiguration(self)

	def getEionAssociationRuleModelParams(self):
		try:
			associationConfg = self.advance['associationrule']
			if 'modelParams' in associationConfg:
				modelParams = associationConfg['modelParams']
				if(str(type(modelParams)) != ""<class 'dict'>""):
					modelParams = []
				elif(len(modelParams) == 0):
					modelParams = []
			if(len(modelParams) == 0):
				if 'modelparamsfile' in associationConfg:	
					ml_algorithm_filename = associationConfg['modelparamsfile']
				if(ml_algorithm_filename ==  ''):
					ml_algorithm_filename = os.path.dirname(os.path.abspath(__file__))+'/AssciationRules_Defaults.json'
				modelParams = json.loads(open(ml_algorithm_filename).read())
			modelList = []
			modelList = list(modelParams.keys())
			return(modelParams,modelList)	
		except KeyError:
			modelParams = []		
			modelList=[]
			return(modelParams,modelList)
			
	def getEionImageAugmentationConfiguration(self):
		try:
			enable = self.advance['ImageAugmentation'].get('Enable', ""False"")
			keepAugImages = self.advance['ImageAugmentation'].get('KeepAugmentedImages', ""False"")
			if enable == ""True"":
				operations = {}
				operations.update(self.advance['ImageAugmentation'].get('Noise', {}))
				operations.update(self.advance['ImageAugmentation'].get('Transformation', {}))
				if keepAugImages == 'True':
					keepAugImages = True
				if keepAugImages == 'False':
					keepAugImages = False
				return True,keepAugImages,{key: True if value.lower() == ""true"" else False for key, value in operations.items()},self.advance['ImageAugmentation'].get('configuration',{})
			else:
				return False,False, {},{}
		except KeyError:
			return False,False, {},{}
	def getAIONRemoteTraining(self):
		try:
			if(self.advance['remoteTraining']):
				self.advance['remoteTraining']['Enable'] = strtobool(self.advance['remoteTraining'].get('Enable', 'False'))
				return self.advance['remoteTraining']
			else:
				remoteTraining = {}
				remoteTraining['Enable'] = False
				remoteTraining['server'] = None
				remoteTraining['ssh'] = None
				return(remoteTraining)
		except KeyError:
			remoteTraining = {}
			remoteTraining['Enable'] = False
			remoteTraining['server'] = None
			remoteTraining['ssh'] = None
			return(remoteTraining)
			
	def getEionObjectDetectionConfiguration(self):
		return cs.getEionObjectDetectionConfiguration(self)

	def getEionTimeSeriesConfiguration(self):
		return cs.getEionTimeSeriesConfiguration(self)

	def getAIONAnomalyDetectionConfiguration(self):
		return cs.getAIONAnomalyDetectionConfiguration(self)
	
	def getAIONTSAnomalyDetectionConfiguration(self):
		return cs.getAIONTSAnomalyDetectionConfiguration(self)

	def getEionVisualizationStatus(self):
		return(True)	

	def getEionVisualizationConfiguration(self):
		return cs.getEionVisualizationConfiguration(self)
		
	def getEionRecommenderConfiguration(self):
		return cs.getEionRecommenderConfiguration(self)
			
	def getAionNASConfiguration(self):
		return cs.getAionNASConfiguration(self)
			
	def getEionProblemType(self):
		try:
			analysis_type = self.basic['analysisType']
			self.problemType = ''
			for key in analysis_type.keys():
				if analysis_type[key] == 'True':
					self.problemType = key
					break
			if self.problemType:
				return self.problemType
			else:
				return('NA')
		except KeyError:
			return('NA')
	def getEionProfilerStatus(self):
		return cs.getEionProfilerStatus(self)

	def getEionSelectorStatus(self):
		return cs.getEionSelectorStatus(self)
	
	def getEionDeploymentStatus(self):
		return cs.getEionDeploymentStatus(self)

	def getEionTimeSeriesModelParams(self):
		try:
			selectedMLModel = self.mlmodels
			tsconfig = self.advance['timeSeriesForecasting'] #task 11997
			if 'modelParams' in tsconfig:
				modelParams = tsconfig['modelParams']
				if(str(type(modelParams)) != ""<class 'dict'>""):
					modelParams = []
				elif(len(modelParams) == 0):
					modelParams = []
			if(len(modelParams) == 0):
				if 'modelparamsfile' in tsconfig:	
					ml_algorithm_filename = tsconfig['modelparamsfile']
				if(ml_algorithm_filename ==  ''):
					ml_algorithm_filename = os.path.dirname(os.path.abspath(__file__))+'/TS_Defaults.json'
				modelParams = json.loads(open(ml_algorithm_filename).read())
				
			#Modified  getting modelParams as small letters
			modelParams = {k.lower(): v for k, v in modelParams.items()}
			#print(""\n modelParams: type \n"",modelParams,type(modelParams))
			
			if selectedMLModel != '':				
				#if selectedMLModel.lower() != 'var':
				if ('var' not in selectedMLModel.lower()):
					modelList = selectedMLModel.split("","")
					modelList = list(map(str.strip, modelList))
					#Modified  getting modelList as small letters
					modelList = [strMP.lower() for strMP in modelList]
					for mod in modelList:						
						if mod not in modelParams:
							self.log.info(""'""+mod+""' Not Available for Particular Problem Type"")
							modelList.remove(mod)
				else:
					modelList = selectedMLModel.split("","")
					#Modified
					modelList = [strMP.lower() for strMP in modelList]
					modelList = list(map(str.strip, modelList))
			else:
				#Modified
				modelParams = [strMP.lower() for strMP in modelParams]
				modelList = list(modelParams.keys())
			return(modelParams,modelList)	
		except KeyError:
			modelParams = []		
			modelList=[]
			return(modelParams,modelList)
	#NAS status
	def getNASStatus(self):
		return cs.getNASStatus(self)
		
	def getEionImageLearnerModelParams(self):
		try:
			selectedDLModel = self.dlmodels
			learnerconfig = self.advance['image_config']
			modelList = selectedDLModel.split("","")
			return(learnerconfig,modelList)
		except KeyError:
			learnerconfig = []		
			modelList=[]
			return(learnerconfig,modelList)
	
	def getAionObjectDetectionModelParams(self):    
		try:
			selectedDLModel = self.dlmodels
			modelList = selectedDLModel.split("","")
			return(modelList)
		except KeyError:
			modelList=[]
			return(modelList)
	
	def getEionVideoLearnerModelParams(self):
		try:
			selectedDLModel = self.basic['selected_DL_Models']
			learnerconfig = self.advance['video_config']
			modelList = selectedDLModel.split("","")
			return(learnerconfig,modelList)
		except KeyError:
			learnerconfig = []		
			modelList=[]
			return(learnerconfig,modelList)
			
	def getEionDeepLearnerModelParams(self,modelType):
		try:
			numberofModels = 0
			dl_algorithm_filename = ''
			if(modelType == 'classification'):
				requiredalgo = 'classifierModelParams'
			elif(modelType == 'regression'):
				requiredalgo = 'regressorModelParams'
				selectedmodels = 'regression'
			elif(modelType == 'TextClassification'):
				requiredalgo = 'classifierModelParams'
			elif(modelType == 'clustering'):
				requiredalgo = 'clusteringModelParams'
			learnerconfig = self.advance['dllearner_config']
			selectedDLModel = self.dlmodels
			modelParams = []		
			modelList=[]			
			if 'modelParams' in learnerconfig:
				modelParams = learnerconfig['modelParams']
				if(str(type(modelParams)) != ""<class 'dict'>""):
					modelParams = []
				elif(len(modelParams) == 0):
					modelParams = []
			if(len(modelParams) == 0):
				if 'modelparamsfile' in learnerconfig:
					if(learnerconfig['modelparamsfile'] != """"):
						dl_algorithm_filename = learnerconfig['modelparamsfile']
				if(dl_algorithm_filename ==  ''):
					dl_algorithm_filename = os.path.dirname(os.path.abspath(__file__))+'/DL_Defaults.json'
				modelParams = json.loads(open(dl_algorithm_filename).read())
			if 	requiredalgo in modelParams:
				modelParams = modelParams[requiredalgo]
			
			if selectedDLModel != '':
				modelList = selectedDLModel.split("","")
				modelList = list(map(str.strip, modelList))
				for mod in modelList:
					if mod not in modelParams:
						self.log.info(""'""+mod+""' Not Available for Particular Problem Type"")
						modelList.remove(mod)
			else:
				modelList = list(modelParams.keys())
			#modelParams = dict((k.lower(), v) for k, v in modelParams .items()) 
			#modelList = selectedMLModel.split("","")
			if(len(modelList) == 0):
				modelList = list(modelParams.keys())
			return(modelParams,modelList)	
		except KeyError:
			modelParams = []		
			modelList=[]
			return(modelParams,modelList)
			
	def getEionLearnerModelParams(self,modelType):
		try:
			numberofModels = 0
			ml_algorithm_filename = ''
			if(modelType == 'classification'):
				requiredalgo = 'classifierModelParams'
			elif(modelType == 'regression'):
				requiredalgo = 'regressorModelParams'
			elif(modelType == 'TextClassification'):
				requiredalgo = 'classifierModelParams'
			elif(modelType == 'clustering'):
				requiredalgo = 'clusteringModelParams'
			elif(modelType == 'topicmodelling'):
				requiredalgo = 'topicModellingParams'
			learnerconfig = self.advance['mllearner_config']
			selectedMLModel = self.mlmodels
			modelParams = []		
			modelList=[]			
			if 'modelParams' in learnerconfig:
				modelParams = learnerconfig['modelParams']
				if(str(type(modelParams)) != ""<class 'dict'>""):
					modelParams = []
				elif(len(modelParams) == 0):
					modelParams = []
			if(len(modelParams) == 0):
				if 'modelparamsfile' in learnerconfig:
					if(learnerconfig['modelparamsfile'] != """"):
						ml_algorithm_filename = learnerconfig['modelparamsfile']
				if(ml_algorithm_filename ==  ''):
					ml_algorithm_filename = os.path.dirname(os.path.abspath(__file__))+'/ML_Defaults.json'
				modelParams = json.loads(open(ml_algorithm_filename).read())
			if 	requiredalgo in modelParams:
				modelParams = modelParams[requiredalgo]
			#modelParams = dict((k.lower(), v) for k, v in modelParams .items()) 
			#print(modelParams)
				#modelList = list(modelParams.keys())
			#print(""SelectedModels"")
			#self.log.info(selectedmodels)
			#if selectedmodels in selectedMLModel:
			if selectedMLModel != '':
				modelList = selectedMLModel.split("","")
				modelList = list(map(str.strip, modelList))
				for mod in modelList:
					if mod not in modelParams:
						self.log.info(""'""+mod+""' Not Available for Particular Problem Type"")
						modelList.remove(mod)
			else:
				modelList = list(modelParams.keys())
			#modelList = selectedMLModel.split("","")
			if(len(modelList) ==0):
				modelList = list(modelParams.keys())
			return(modelParams,modelList)	
		except KeyError:
			modelParams = []		
			modelList=[]
			return(modelParams,modelList)	
			
	def getTargetFeatures(self):
		return cs.getTargetFeatures(self)

	def getModelFeatures(self):
		try:
			if(self.basic['trainingFeatures']):
				modFeatures = self.basic['trainingFeatures']
				modFeatures = modFeatures.split("","")
				modFeatures = list(map(str.strip, modFeatures))
				modFeatures = "","".join([modf for modf in modFeatures])
				return(modFeatures)
			else:
				return('NA')
		except KeyError:
			return('NA')
	
	def getFolderSettings(self):
		return cs.getFolderSettings(self)
			
	def getAIONLocationSettings(self):
		self.iter_name = self.basic['modelName']
		self.iteration_version = self.basic['modelVersion']    
		if(self.basic['dataLocation']):
			dataLocation = self.basic['dataLocation']
		else:
			dataLocation = 'NA'
		if(self.basic['deployLocation']):
			deployLocation = self.basic['deployLocation']
		else:
			deployLocation = 'NA'
		try:
			if 'fileSettings' in self.basic:
				csv_setting = self.basic['fileSettings']
				if 'delimiters' in csv_setting:
					delimiter = csv_setting['delimiters']
					if delimiter.lower() == 'tab' or delimiter.lower() == '\t':
						delimiter = '\t'
					elif delimiter.lower() == 'semicolon' or delimiter.lower() == ';':
						delimiter = ';'
					elif delimiter.lower() == 'comma' or delimiter.lower() == ',':
						delimiter = ','
					elif delimiter.lower() == 'space' or delimiter.lower() == ' ':
						delimiter = ' '
					elif delimiter.lower() == 'other':
						if 'other' in csv_setting:
							delimiter = csv_setting['other']
						else:
							delimiter = ','
					elif delimiter == '':
						delimiter = ','
				else:
					delimiter = ','
				if 'textqualifier' in csv_setting:
					textqualifier = csv_setting['textqualifier'] 
				else:
					textqualifier = '""'
			else:
				delimiter = ','
				textqualifier = '""'
		except KeyError:
				delimiter = ','
				textqualifier = '""'
		return(self.iter_name,self.iteration_version,dataLocation,deployLocation,delimiter,textqualifier)

	def getFeatures(self):
		try:
			if(self.basic['dateTimeFeature']):
				dtFeatures = self.basic['dateTimeFeature']
				dtFeatures = dtFeatures.split("","")
				dtFeatures = list(map(str.strip, dtFeatures))
				dtFeatures = "","".join([dtf for dtf in dtFeatures])
			else:
				dtFeatures = 'NA'
		except KeyError:
			dtFeatures = 'NA'            

		try:
			if(self.basic['indexFeature']):
				iFeatures = self.basic['indexFeature']
				iFeatures = iFeatures.split("","")
				iFeatures = list(map(str.strip, iFeatures))
				iFeatures = "","".join([dif for dif in iFeatures])
			else:
				iFeatures = 'NA'
		except KeyError:
			iFeatures = 'NA'
			
		try:
			if(self.basic['trainingFeatures']):
				modFeatures = self.basic['trainingFeatures']
				modFeatures = modFeatures.split("","")
				modFeatures = list(map(str.strip, modFeatures))
				modFeatures = "","".join([modf for modf in modFeatures])
			else:
				modFeatures = 'NA'
		except KeyError:
			modFeatures = 'NA'
		return(dtFeatures,iFeatures,modFeatures) 			

	def setModels(self):
		return cs.setModels(self)
			
	def readConfigurationFile(self,path):
		return cs.readConfigurationFile(self, path)
	
	def getFilterExpression(self):
		return cs.getFilterExpression(self)
	
	def getSurvivalEventColumn(self):
		return cs.getSurvivalEventColumn(self)
	
	def getSurvivalDurationColumn(self):
		return cs.getSurvivalDurationColumn(self)"
pipeline_config_reader.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import json

def getDebiasingDetail(self):
    try:
        if(self.advance['profiler']['deBiasing']):
            dlconfig  = self.advance['profiler']['deBiasing']
            return dlconfig
        else:
            return('NA')
    except KeyError:
        return('NA')

def getFirstDocumentFeature(self):
    if 'firstDocFeature' in self.basic:
        firstDocFeature = self.basic['algorithms']['recommenderSystem']['textSimilarityConfig']['baseFeature']
    else:
        firstDocFeature = ''
    return(firstDocFeature)
    
def getSecondDocumentFeature(self):
    if 'secondDocFeature' in self.basic:
        secondDocFeature = self.basic['algorithms']['recommenderSystem']['textSimilarityConfig']['comparisonFeature']
    else:
        secondDocFeature = ''
    return(secondDocFeature)

def getEionInliers(self):
    if 'inlierLabels' in self.basic:
        self.inlierLabels = self.basic['inlierLabels']
    else:
        self.inlierLabels = 'NA'
    return (self.inlierLabels)	
    
def getEionProfilerConfigurarion(self):
    try:
        if(self.advance['profiler']):
            return self.advance['profiler']
        else:
            return('NA')
    except KeyError:
        return('NA')

def getAIONTestTrainPercentage(self):
    try:
        return (int(self.advance.get('testPercentage',20)))
    except KeyError:
            return(20)

def getAIONDataBalancingMethod(self):
    try:
        if(self.advance['categoryBalancingMethod']):
            return self.advance['categoryBalancingMethod']
        else:
            return(""oversample"")
    except KeyError:
            return(""oversample"")

def getEionSelectorConfiguration(self):
    try:
        if(self.advance['selector']):
            return self.advance['selector']
        else:
            return('NA')
    except KeyError:
        return('NA')
    
def getEionDeepLearnerConfiguration(self):
    try:
        if(self.advance['dllearner_config']):
            dlconfig  = self.advance['dllearner_config']
            if 'categoryBalancingMethod' not in dlconfig:
                dlconfig['categoryBalancingMethod'] = ''
            if 'testPercentage' not in dlconfig:      #Unnati
                dlconfig['testPercentage'] = 20       #Unnati   
            return dlconfig
        else:
            return('NA')
    except KeyError:
        return('NA')    

def gettimegrouper(self):
    try:
        if(self.basic['timegrouper']):
            return self.basic['timegrouper']
        else:
            return 'NA'
    except:
        return 'NA'

def getgrouper(self):
    try:
        if(self.basic['group']):
            return self.basic['group']
        else:
            return 'NA'
    except:
        return 'NA'
        
def getfilter(self):
    try:
        if(self.basic['filter']):
            return self.basic['filter']
        else:
            return 'NA'
    except:
        return 'NA'

def getNumberofForecasts(self):
    try:
        if(self.basic['noofforecasts']):
            return int(self.basic['noofforecasts'])
        else:
            return (-1)
    except:
        return (-1)
        
##To get multivariate feature based anomaly detection status
def getMVFeaturebasedAD(self):
    try:
        dict_ae=self.basic['analysisApproach']['timeSeriesAnomalyDetection']['AutoEncoder'] #task 11997	 
        if(dict_ae):
            return (dict_ae)
        else:
            return (-1)
    except:
        return (-1)
        
def getEionDeployerConfiguration(self):
    try:
        if(self.advance['deployer']):
            return self.advance['deployer']
        else:
            return('NA')
    except KeyError:
        return('NA')
      
def getEionAssociationRuleConfiguration(self):
    try:
        if(self.advance['associationrule']):
            return self.advance['associationrule']
        else:
            return('NA')
    except KeyError:
        return('NA')

def getEionObjectDetectionConfiguration(self):
    try:
        if(self.advance['objectDetection']):
            return self.advance['objectDetection']
        else:
            return('NA')
    except KeyError:
        return('NA')

def getEionTimeSeriesConfiguration(self):
    try:
        if(self.advance['timeSeriesForecasting']): #task 11997
            return self.advance['timeSeriesForecasting'] 
        else:
            return('NA')
    except KeyError:
        return('NA')

def getAIONAnomalyDetectionConfiguration(self):
    try:
        if(self.advance['anomalyDetection']):
            return self.advance['anomalyDetection']
        else:
            return('NA')
    except KeyError:
        return('NA')
    
def getAIONTSAnomalyDetectionConfiguration(self): #task 11997
    try:
        if(self.advance['timeSeriesAnomalyDetection']): 
            return self.advance['timeSeriesAnomalyDetection']
        else:
            return('NA')
    except KeyError:
        return('NA')
        
def getEionVisualizationConfiguration(self):
    try:
        if(self.advance['visualization_settings']):
            return(self.advance['visualization_settings'])			
        else:
            return('NA')
    except KeyError:
        return('NA')	
    
def getEionRecommenderConfiguration(self):
    try:
        if(self.advance['recommenderparam']):
            return self.advance['recommenderparam']
        else:
            return('NA')
    except KeyError:
        return('NA')
        
def getAionNASConfiguration(self):
    try:
        if(self.advance['neuralarchsearch']):
            return self.advance['neuralarchsearch']
        else:
            return('NA')
    except KeyError:
        return('NA')
        
def getEionProfilerStatus(self):
    try:
        if(self.basic['output']['profilerStage']):
            return(self.basic['output']['profilerStage'])
        else:
            return('false')
    except KeyError:
        return('false')

def getEionSelectorStatus(self):
    try:
        if(self.basic['output']['selectorStage']):
            return(self.basic['output']['selectorStage'])
        else:
            return('disable')
    except KeyError:
        return('disable')

def getEionDeploymentStatus(self):
    try:
        if(self.basic['output']['deploymentStage']):
            return(self.basic['output']['deploymentStage'])
        else:
            return(False)
    except KeyError:
        return(False)

def __get_true_option(d, default_value=None):
	if isinstance(d, dict):
		for k,v in d.items():
			if (isinstance(v, str) and v.lower() == 'true') or (isinstance(v, bool) and v == True):
				return k
	return default_value
        
def getNASStatus(self):
    try:
        if(self.dlmodels):
            return(self.dlmodels)
        else:
            return('NA')
    except KeyError:
        return('NA')

def getTargetFeatures(self):
    try:
        if(self.basic['targetFeature']):
            return(self.basic['targetFeature'])
        else:
            return('')
    except KeyError:
        return('')

def getFolderSettings(self):
    try:
        if(self.basic['folderSettings']):
            return(self.basic['folderSettings'])
        else:
            return('NA')
    except KeyError:
        return('NA')
        
def getFilterExpression(self):
    try:
        if(self.basic['filterExpression']):
            return (self.basic['filterExpression'])
        else:
            return None
    except KeyError:
        return None

def setModels(self):
    try:
        analysis_type = self.basic['analysisType']
        #print(analysis_type)
        self.problemType = ''
        for key in analysis_type.keys():
            if analysis_type[key] == 'True':
                self.problemType = key
                break
        if self.problemType == 'summarization':
            self.problemType = 'classification'
            self.summarize = True
        if  self.problemType not in ['inputDrift','outputDrift']:
            conf_algorithm = self.basic['algorithms'][self.problemType]
        else:
            conf_algorithm = {}
        self.mlmodels=''
        self.dlmodels=''
        self.scoringCreteria = 'NA'            
        if self.problemType in ['classification','regression','survivalAnalysis','timeSeriesForecasting']: #task 11997
            scorCre = self.basic['scoringCriteria'][self.problemType]            
            for key in scorCre.keys():
                if scorCre[key] == 'True': 
                    self.scoringCreteria = key
                    break        
        if self.problemType.lower() == 'timeseriesforecasting': #task 11997
            self.mllearner=False #task 11997 removed initialising self.ml models as timeSeriesForecasting
            
        if self.scoringCreteria == 'Mean Squared Error':
            self.scoringCreteria = 'MSE'            
        if self.scoringCreteria == 'Root Mean Squared Error':
            self.scoringCreteria = 'RMSE'            
        if self.scoringCreteria == 'Mean Absolute Error':
            self.scoringCreteria = 'MAE'
        if self.scoringCreteria == 'R-Squared':
            self.scoringCreteria = 'R2'
        if self.problemType in ['similarityIdentification','contextualSearch']:
            self.scoringCreteria = __get_true_option(self.basic['scoringCriteria'][self.problemType], ""Cosine Similarity"")
        if self.problemType in ['classification','regression']:
            for key in conf_algorithm.keys():			
                if conf_algorithm[key] == 'True':
                    if key not in ['Recurrent Neural Network','Convolutional Neural Network (1D)','Neural Network','Recurrent Neural Network (GRU)','Recurrent Neural Network (LSTM)','GoogleModelSearch_DNN']:                    
                        if self.mlmodels != '':				                    
                            self.mlmodels += ','								            
                        self.mlmodels += key
                    else:
                        if self.dlmodels != '':				                    
                            self.dlmodels += ','								            
                        self.dlmodels += key                        
        elif self.problemType in ['videoForecasting','imageClassification','objectDetection']:
            for key in conf_algorithm.keys():			
                if conf_algorithm[key] == 'True':
                    if self.dlmodels != '':				                    
                        self.dlmodels += ','								            
                    self.dlmodels += key
        elif self.problemType == 'recommenderSystem':
            problem_model = ''
            for key in conf_algorithm.keys():
                if key not in ['itemRatingConfig','textSimilarityConfig']:                
                    if conf_algorithm[key] == 'True':
                        problem_model = key                
                        break
            if problem_model == 'ItemRating':
                self.mlmodels = 'SVD'
            elif problem_model == 'AssociationRules-Apriori':
                self.mlmodels = 'Apriori'
                self.problemType = 'AssociationRules'                    
            elif problem_model == 'TextSimilarity-Siamese':
                self.mlmodels = 'Siamese'
                self.problemType = 'TextSimilarity'        
        else:
            for key in conf_algorithm.keys():			
                if conf_algorithm[key] == 'True':
                    if self.mlmodels != '':				                    
                        self.mlmodels += ','								            
                    self.mlmodels += key
        self.mllearner = False			
        self.dllearner = False
        if self.mlmodels != '':
            self.mllearner = True
            if self.advance['mllearner_config']['Stacking (Ensemble)'] == 'True':
                self.mlmodels += ','								            
                self.mlmodels += 'Stacking (Ensemble)'
            if self.advance['mllearner_config']['Voting (Ensemble)'] == 'True':
                self.mlmodels += ','								            
                self.mlmodels += 'Voting (Ensemble)'
        if self.dlmodels != '':
            self.dllearner = True  
        return('done')		             
    except KeyError:
        return('NA')
        
def readConfigurationFile(self, path):
    if isinstance( path, dict):
        self.data = path
    else:
        with open(path, 'r') as data_file:
            self.data = json.load(data_file)         #loading json object as python dictionary	
    self.basic = self.data['basic']
    self.advance = self.data['advance']
    problemType = self.setModels()
    
    if 'output' in self.basic:
        if(self.basic['output']['profilerStage']):
            if(str(type(self.basic['output']['profilerStage'])) != ""<class 'str'>""):
                msg = ""JSON Validation Fail: Profiling Should be String and value should be either enable or disable""					
                self.log.info(msg) 		
                return False,msg
            if((self.basic['output']['profilerStage'].lower() == 'true') & ('profiler' not in self.advance)):
                msg = ""JSON Validation Fail: Profiler Configuration Not Found in Advance JSON""					
                self.log.info(msg) 		
                return False,msg
            if(str(type(self.advance['profiler'])) != ""<class 'dict'>""):
                msg = ""JSON Validation Fail: Error: Profiler Configuration Syntax""					
                self.log.info(msg) 		
                return False,msg	
            if((self.basic['output']['profilerStage'].lower() != 'true') & (self.basic['output']['profilerStage'].lower() != 'false')):
                msg = ""JSON Validation Fail: Profiling is Not defined Correctly, it should be either enable or disable""
                self.log.info(msg)
                return False,msg
            
        if(self.basic['output']['selectorStage']):
            if(str(type(self.basic['output']['selectorStage'])) != ""<class 'str'>""):
                msg = ""JSON Validation Fail: Selection Should be String and value should be either enable or disable""					
                self.log.info(msg) 		
                return False,msg
        
            if((self.basic['output']['selectorStage'].lower() == 'true') & ('selector' not in self.advance)):
                msg = ""JSON Validation Fail: Selector Configuration Not Found""					
                self.log.info(msg) 		
                return False,msg					
    
            if((self.basic['output']['selectorStage'].lower() != 'true') & (self.basic['output']['selectorStage'].lower() != 'false')):
                msg = ""JSON Validation Fail:: Selection is Not defined Correctly, it should be either enable or disable""
                self.log.info(msg)
                return False,msg
            
        if(str(type(self.advance['selector'])) != ""<class 'dict'>""):
            msg = ""JSON Validation Fail: Error: Syntax of Selector""					
            self.log.info(msg) 		
            return False,msg
            
    if 'dataLocation' not in self.basic:
        msg = ""JSON Validation Fail: Data Location Not Defined""
        self.log.info(msg)
        return False,msg
    
    if 'deployLocation' not in self.basic:
        msg = ""JSON Validation Fail: Deploy Location Not Defined""
        self.log.info(msg)
        return False,msg				
    
    if 'deployment' in self.basic:
        if(str(type(self.basic['deployment'])) != ""<class 'str'>""):
            msg = ""JSON Validation Fail: deployment Should be String and value should be either enable or disable""					
            self.log.info(msg) 		
            return False,msg
        if(self.basic['deployment'] == 'enable'):
            if 'deployer' in self.advance:
                if(str(type(self.advance['deployer'])) != ""<class 'dict'>""):
                    msg = ""JSON Validation Fail: deployer configuration should be nexted json object""					
                    self.log.info(msg) 		
                    return False,msg
            else:
                msg = ""JSON Validation Fail: deployer configuration is missing""					
                self.log.info(msg) 		
                return False,msg
    return True,'Good'            

def getSurvivalEventColumn(self):
    try:
        if(self.advance['survival_config']):
            survival_config = self.advance['survival_config']
            if 'input' in survival_config:
                inp = survival_config['input']
                if not isinstance(inp, dict):
                    return None
                elif 'event_col' in inp:
                    e = inp['event_col']
                    if not isinstance(e, str):
                        return None
                    return (e)
                else:
                    return None
            else:
                return None
        else:
            return None
    except KeyError:
        return None

def getSurvivalDurationColumn(self):
    try:
        if(self.advance['survival_config']):
            survival_config = self.advance['survival_config']
            if 'input' in survival_config:
                inp = survival_config['input']
                if not isinstance(inp, dict):
                    return None
                elif 'duration_col' in inp:
                    t = inp['duration_col']
                    if not isinstance(t, str):
                        return None
                    return (t)
                else:
                    return None
            else:
                return None
        else:
            return None
    except KeyError:
        return None
"
__init__.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''"
online_pipeline_config.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''

import json
import logging
import os
import shutil
import time
from sys import platform
from distutils.util import strtobool
# Base class for EION configuration Manager which read the needed f params from eion.json, initialize the parameterlist, read the respective params, store in variables and return back to caller function or external modules.
      
class OTAionConfigManager:
                
# eion configuration Constractor        
	def __init__(self):
		self.log = logging.getLogger('eion')
		self.data = ''
		self.problemType = ''
		self.basic = []
		self.advance=[]

# To get parameter list of configuration module from json, this will be passed as dict{}      
	def getEionProfilerConfigurarion(self):
		try:
			if(self.advance['profiler']):
				return self.advance['profiler']
			else:
				return('NA')
		except KeyError:
			return('NA')
    
	def getAIONTestTrainPercentage(self):
		try:
			if(self.advance['testPercentage']):
				return int(self.advance['testPercentage'])
			else:
				return(80)
		except KeyError:
				return(80)
	
	def getAIONDataBalancingMethod(self):
		try:
			if(self.advance['categoryBalancingMethod']):
				return self.advance['categoryBalancingMethod']
			else:
				return(""oversample"")
		except KeyError:
				return(""oversample"")
				
# To get parameter list of selector module params        
	def getEionSelectorConfiguration(self):
		try:
			if(self.advance['selector']):
				return self.advance['selector']
			else:
				return('NA')
		except KeyError:
			return('NA')

	def createDeploymentFolders(self,deployFolder,iterName,iterVersion):
		usecaseFolderLocation = os.path.join(deployFolder,iterName)
		os.makedirs(usecaseFolderLocation,exist_ok = True)
		deployLocation = os.path.join(usecaseFolderLocation,str(iterVersion))
		try:
			os.makedirs(deployLocation)
		except OSError as e:
			shutil.rmtree(deployLocation)
			time.sleep(2)
			os.makedirs(deployLocation)
		dataFolderLocation = os.path.join(deployLocation,'data')
		try:
			os.makedirs(dataFolderLocation)
		except OSError as e:
			print(""\nDeployment Data Folder Already Exists"")
		logFolderLocation = os.path.join(deployLocation,'log')
		try:
			os.makedirs(logFolderLocation)
		except OSError as e:
			print(""\nLog Folder Already Exists"")			
		etcFolderLocation = os.path.join(deployLocation,'etc')
		try:
			os.makedirs(etcFolderLocation)
		except OSError as e:
			print(""\ETC Folder Already Exists"")
		prodFolderLocation = os.path.join(deployLocation,'production')
		os.makedirs(prodFolderLocation)	
		profilerFolderLocation = os.path.join(prodFolderLocation, 'profiler')
		os.makedirs(profilerFolderLocation)
		modelFolderLocation = os.path.join(prodFolderLocation, 'model')
		os.makedirs(modelFolderLocation)			 
		original_data_file = os.path.join(dataFolderLocation,'preprocesseddata.csv')
		profiled_data_file = os.path.join(dataFolderLocation,'postprocesseddata.csv')
		trained_data_file = os.path.join(dataFolderLocation,'trainingdata.csv')
		predicted_data_file = os.path.join(dataFolderLocation,'predicteddata.csv')
		logFileName=os.path.join(logFolderLocation,'model_training_logs.log')
		outputjsonFile=os.path.join(deployLocation,'etc','output.json')        
		return(deployLocation,dataFolderLocation,original_data_file,profiled_data_file,trained_data_file,predicted_data_file,logFileName,outputjsonFile)   
        
# To get parameter list of learner module params        
	def getEionLearnerConfiguration(self):
		try:
			if(self.advance['onlinelearner_config']):
				mllearner_config = self.advance['mllearner_config']
				if 'categoryBalancingMethod' not in mllearner_config:
					mllearner_config['categoryBalancingMethod'] = 'oversample'
				if 'testPercentage' not in mllearner_config:
					mllearner_config['testPercentage'] = 20
				if 'missingTargetCategory' not in mllearner_config:
					mllearner_config['missingTargetCategory'] = ''		
				return mllearner_config
			else:
				return('NA')
		except KeyError:
			return('NA')
		except Exception as inst:
			self.log.info( '\n-----> getEionLearnerConfiguration failed!!!.'+str(inst))
			return('NA')
			
 
	def gettimegrouper(self):
		try:
			if(self.basic['timegrouper']):
				return self.basic['timegrouper']
			else:
				return 'NA'
		except:
			return 'NA'
	
	def getgrouper(self):
		try:
			if(self.basic['group']):
				return self.basic['group']
			else:
				return 'NA'
		except:
			return 'NA'
            
	def getfilter(self):
		try:
			if(self.basic['filter']):
				return self.basic['filter']
			else:
				return 'NA'
		except:
			return 'NA'


	def getModulesDetails(self):
		problem_type = self.problemType
		visualizationstatus = self.getEionVisualizationStatus()
		profiler_status = self.getEionProfilerStatus()
		selector_status = self.getEionSelectorStatus()
		learner_status = self.mllearner
		targetFeature = self.getTargetFeatures()
		deploy_status = self.getEionDeploymentStatus()
			

		if learner_status:
			if(problem_type == 'NA'):
				learner_status = True
			elif(problem_type.lower() in ['classification','regression']):
				learner_status = True
			else:
				learner_status = False	
		
		
		return problem_type,targetFeature,profiler_status,selector_status,learner_status,visualizationstatus,deploy_status

	def __get_true_option(self, d, default_value=None):
		if isinstance(d, dict):
			for k,v in d.items():
				if (isinstance(v, str) and v.lower() == 'true') or (isinstance(v, bool) and v == True):
					return k
		return default_value
	

	def getAlgoName(self, problem_type=None):
		if problem_type == None:
			problem_type = self.__get_true_option(self.basic['algorithms'])
		return self.__get_true_option(self.basic['algorithms'][problem_type])
		
	def getScoringCreteria(self):
		return (self.scoringCreteria)
		
		
	def getEionDeployerConfiguration(self):
		try:
			if(self.advance['deployer']):
				return self.advance['deployer']
			else:
				return('NA')
		except KeyError:
			return('NA')


	def getAIONRemoteTraining(self):
		try:
			if(self.advance['remoteTraining']):
				self.advance['remoteTraining']['Enable'] = strtobool(self.advance['remoteTraining'].get('Enable', 'False'))
				return self.advance['remoteTraining']
			else:
				remoteTraining = {}
				remoteTraining['Enable'] = False
				remoteTraining['server'] = None
				remoteTraining['ssh'] = None
				return(remoteTraining)
		except KeyError:
			remoteTraining = {}
			remoteTraining['Enable'] = False
			remoteTraining['server'] = None
			remoteTraining['ssh'] = None
			return(remoteTraining)
            

	def getEionVisualizationStatus(self):
		return(True)	
				

	def getEionVisualizationConfiguration(self):
		try:
			if(self.advance['visualization_settings']):
				return(self.advance['visualization_settings'])			
			else:
				return('NA')
		except KeyError:
			return('NA')	
		
	def getEionBatchLearningStatus(self):
		try:
			if(self.basic['output']['batchLearning']):
				return(self.basic['output']['batchLearning'])
			else:
				return('disable')
		except KeyError:
			return('disable')
			
	def getEionProblemType(self):
		try:
			analysis_type = self.basic['analysisType']
			self.problemType = ''
			for key in analysis_type.keys():
				if analysis_type[key] == 'True':
					self.problemType = key
					break
			if self.problemType:
				return self.problemType
			else:
				return('NA')
		except KeyError:
			return('NA')
	def getEionProfilerStatus(self):
		try:
			if(self.basic['output']['profilerStage']):
				return(self.basic['output']['profilerStage'])
			else:
				return('false')
		except KeyError:
			return('false')
        
				
#To get eion selector module status (enable/disable/none)     
	def getEionSelectorStatus(self):
		try:
			if(self.basic['output']['selectorStage']):
				return(self.basic['output']['selectorStage'])
			else:
				return('disable')
		except KeyError:
			return('disable')
    
	def getEionDeploymentStatus(self):
		try:
			if(self.basic['output']['deploymentStage']):
				return(self.basic['output']['deploymentStage'])
			else:
				return(False)
		except KeyError:
			return(False)
                



			
	def getEionLearnerModelParams(self,modelType):
		try:
			numberofModels = 0
			ml_algorithm_filename = ''
			if(modelType == 'classification'):
				requiredalgo = 'classifierModelParams'
			elif(modelType == 'regression'):
				requiredalgo = 'regressorModelParams'
			learnerconfig = self.advance['onlinelearner_config']
			selectedMLModel = self.mlmodels
			modelParams = []		
			modelList=[]			
			if 'modelParams' in learnerconfig:
				modelParams = learnerconfig['modelParams']
				if(str(type(modelParams)) != ""<class 'dict'>""):
					modelParams = []
				elif(len(modelParams) == 0):
					modelParams = []
			if(len(modelParams) == 0):
				if 'modelparamsfile' in learnerconfig:
					if(learnerconfig['modelparamsfile'] != """"):
						ml_algorithm_filename = learnerconfig['modelparamsfile']
				if(ml_algorithm_filename ==  ''):
					ml_algorithm_filename = os.path.dirname(os.path.abspath(__file__))+'/ML_Defaults.json'
				modelParams = json.loads(open(ml_algorithm_filename).read())
			if 	requiredalgo in modelParams:
				modelParams = modelParams[requiredalgo]
			if selectedMLModel != '':
				modelList = selectedMLModel.split("","")
				modelList = list(map(str.strip, modelList))
				for mod in modelList:
					if mod not in modelParams:
						self.log.info(""'""+mod+""' Not Available for Particular Problem Type"")
						modelList.remove(mod)
			else:
				modelList = list(modelParams.keys())
			#modelList = selectedMLModel.split("","")
			if(len(modelList) ==0):
				modelList = list(modelParams.keys())
			return(modelParams,modelList)	
		except KeyError:
			modelParams = []		
			modelList=[]
			return(modelParams,modelList)	
			
	def getTargetFeatures(self):
		try:
			if(self.basic['targetFeature']):
				return(self.basic['targetFeature'])
			else:
				return('')
		except KeyError:
			return('')

	def getModelFeatures(self):
		try:
			if(self.basic['trainingFeatures']):
				modFeatures = self.basic['trainingFeatures']
				modFeatures = modFeatures.split("","")
				modFeatures = list(map(str.strip, modFeatures))
				modFeatures = "","".join([modf for modf in modFeatures])
				return(modFeatures)
			else:
				return('NA')
		except KeyError:
			return('NA')
	
	def getFolderSettings(self):
		try:
			if(self.basic['folderSettings']):
				return(self.basic['folderSettings'])
			else:
				return('NA')
		except KeyError:
			return('NA')
			
	def getAIONLocationSettings(self):
		self.iter_name = self.basic['modelName']
		self.iteration_version = self.basic['modelVersion']    
		if(self.basic['dataLocation']):
			dataLocation = self.basic['dataLocation']
		else:
			dataLocation = 'NA'
		if(self.basic['deployLocation']):
			deployLocation = self.basic['deployLocation']
		else:
			deployLocation = 'NA'
		try:
			if 'csv_settings' in self.basic:
				csv_setting = self.basic['csv_settings']
				if 'delimiters' in csv_setting:
					delimiter = csv_setting['delimiters']
					if delimiter.lower() == 'tab':
						delimiter = '\t'
					elif delimiter.lower() == 'semicolon':
						delimiter = ';'
					elif delimiter.lower() == 'comma':
						delimiter = ','
					elif delimiter.lower() == 'space':
						delimiter = ' '
					elif delimiter.lower() == 'other':
						if 'other' in csv_setting:
							delimiter = csv_setting['other']
						else:
							delimiter = ','
					else:
						delimiter = ','
				else:
					delimiter = ','
				if 'textqualifier' in csv_setting:
					textqualifier = csv_setting['textqualifier'] 
				else:
					textqualifier = '""'
			else:
				delimiter = ','
				textqualifier = '""'
		except KeyError:
				delimiter = ','
				textqualifier = '""'
		return(self.iter_name,self.iteration_version,dataLocation,deployLocation,delimiter,textqualifier)

	def getFeatures(self):
		try:
			if(self.basic['dateTimeFeature']):
				dtFeatures = self.basic['dateTimeFeature']
				dtFeatures = dtFeatures.split("","")
				dtFeatures = list(map(str.strip, dtFeatures))
				dtFeatures = "","".join([dtf for dtf in dtFeatures])
			else:
				dtFeatures = 'NA'
		except KeyError:
			dtFeatures = 'NA'            

		try:
			if(self.basic['indexFeature']):
				iFeatures = self.basic['indexFeature']
				iFeatures = iFeatures.split("","")
				iFeatures = list(map(str.strip, iFeatures))
				iFeatures = "","".join([dif for dif in iFeatures])
			else:
				iFeatures = 'NA'
		except KeyError:
			iFeatures = 'NA'
            
		try:
			if(self.basic['trainingFeatures']):
				modFeatures = self.basic['trainingFeatures']
				modFeatures = modFeatures.split("","")
				modFeatures = list(map(str.strip, modFeatures))
				modFeatures = "","".join([modf for modf in modFeatures])
			else:
				modFeatures = 'NA'
		except KeyError:
			modFeatures = 'NA'
		return(dtFeatures,iFeatures,modFeatures) 			

	def setModels(self):
		try:
			analysis_type = self.basic['analysisType']
			#print(analysis_type)
			self.problemType = ''
			for key in analysis_type.keys():
				if analysis_type[key] == 'True':
					self.problemType = key
					break
			if  self.problemType not in ['inputDrift','outputDrift']:
				conf_algorithm = self.basic['algorithms'][self.problemType]
			else:
				conf_algorithm = {}
			self.mlmodels=''
			self.dlmodels=''
			self.scoringCreteria = 'NA'            
			if self.problemType in ['classification','regression']:
				scorCre = self.basic['scoringCriteria'][self.problemType]            
				for key in scorCre.keys():
					if scorCre[key] == 'True': 
						self.scoringCreteria = key
						break        
			#print(self.problemType)
			#print(self.scoringCreteria)
			if self.scoringCreteria == 'Mean Squared Error':
				self.scoringCreteria = 'MSE'            
			if self.scoringCreteria == 'Root Mean Squared Error':
				self.scoringCreteria = 'RMSE'            
			if self.scoringCreteria == 'Mean Absolute Error':
				self.scoringCreteria = 'MAE'
			if self.scoringCreteria == 'R-Squared':
				self.scoringCreteria = 'R2'
			if self.problemType in ['classification','regression']:
				for key in conf_algorithm.keys():			
					if conf_algorithm[key] == 'True':                   
						if self.mlmodels != '':				                    
							self.mlmodels += ','								            
						self.mlmodels += key                           
			else:
				for key in conf_algorithm.keys():			
					if conf_algorithm[key] == 'True':
						if self.mlmodels != '':				                    
							self.mlmodels += ','								            
						self.mlmodels += key
			self.mllearner = False			
			if self.mlmodels != '':
				self.mllearner = True
			return('done')		             
		except KeyError:
			return('NA')
            
	def readConfigurationFile(self,path):
		with open(path, 'rb') as data_file:
			try:
				self.data = json.load(data_file)         #loading json object as python dictionary	
				#print(self.data)
				self.basic = self.data['basic']
				self.advance = self.data['advance']
				problemType = self.setModels()
				
                
				if(self.basic['output']['profilerStage']):
					if(str(type(self.basic['output']['profilerStage'])) != ""<class 'str'>""):
						msg = ""JSON Validation Fail: Profiling Should be String and value should be either enable or disable""					
						self.log.info(msg) 		
						return False,msg
					if((self.basic['output']['profilerStage'].lower() == 'true') & ('profiler' not in self.advance)):
						msg = ""JSON Validation Fail: Profiler Configuration Not Found in Advance JSON""					
						self.log.info(msg) 		
						return False,msg
					if(str(type(self.advance['profiler'])) != ""<class 'dict'>""):
						msg = ""JSON Validation Fail: Error: Profiler Configuration Syntax""					
						self.log.info(msg) 		
						return False,msg	
					if((self.basic['output']['profilerStage'].lower() != 'true') & (self.basic['output']['profilerStage'].lower() != 'false')):
						msg = ""JSON Validation Fail: Profiling is Not defined Correctly, it should be either enable or disable""
						self.log.info(msg)
						return False,msg
						
				if(self.basic['output']['selectorStage']):
				
					if(str(type(self.basic['output']['selectorStage'])) != ""<class 'str'>""):
						msg = ""JSON Validation Fail: Selection Should be String and value should be either enable or disable""					
						self.log.info(msg) 		
						return False,msg
					
					if((self.basic['output']['selectorStage'].lower() == 'true') & ('selector' not in self.advance)):
						msg = ""JSON Validation Fail: Selector Configuration Not Found""					
						self.log.info(msg) 		
						return False,msg					
				
					if((self.basic['output']['selectorStage'].lower() != 'true') & (self.basic['output']['selectorStage'].lower() != 'false')):
						msg = ""JSON Validation Fail:: Selection is Not defined Correctly, it should be either enable or disable""
						self.log.info(msg)
						return False,msg
						
					if(str(type(self.advance['selector'])) != ""<class 'dict'>""):
						msg = ""JSON Validation Fail: Error: Syntax of Selector""					
						self.log.info(msg) 		
						return False,msg
						
					
				if 'dataLocation' not in self.basic:
					msg = ""JSON Validation Fail: Data Location Not Defined""
					self.log.info(msg)
					return False,msg
				
				if 'deployLocation' not in self.basic:
					msg = ""JSON Validation Fail: Deploy Location Not Defined""
					self.log.info(msg)
					return False,msg				
				
				if 'deployment' in self.basic:
					if(str(type(self.basic['deployment'])) != ""<class 'str'>""):
						msg = ""JSON Validation Fail: deployment Should be String and value should be either enable or disable""					
						self.log.info(msg) 		
						return False,msg
					if(self.basic['deployment'] == 'enable'):
						if 'deployer' in self.advance:
							if(str(type(self.advance['deployer'])) != ""<class 'dict'>""):
								msg = ""JSON Validation Fail: deployer configuration should be nexted json object""					
								self.log.info(msg) 		
								return False,msg
						else:
							msg = ""JSON Validation Fail: deployer configuration is missing""					
							self.log.info(msg) 		
							return False,msg
						
				
			except ValueError as e:
				print(""Error""+str(e))
				return False,e
		return True,'Good'            
	

	



"
config_gen.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import json
from pathlib import Path
from distutils.util import strtobool

class code_configure():

    def __init__(self):
        self.code_config = {}
        self.unsupported_algo = []
        self.supported_model = {""classification"":{""Logistic Regression"": ""LogisticRegression"", ""Naive Bayes"": ""GaussianNB"", ""Decision Tree"": ""DecisionTreeClassifier"", ""Random Forest"": ""RandomForestClassifier"", ""Support Vector Machine"": ""SVC"", ""K Nearest Neighbors"": ""KNeighborsClassifier"", ""Gradient Boosting"": ""GradientBoostingClassifier"", ""Extreme Gradient Boosting (XGBoost)"":""XGBClassifier"", ""Light Gradient Boosting (LightGBM)"": ""LGBMClassifier"",""Categorical Boosting (CatBoost)"": ""CatBoostClassifier""},
        ""regression"":{""Linear Regression"": ""LinearRegression"", ""Lasso"": ""Lasso"", ""Ridge"": ""Ridge"", ""Decision Tree"": ""DecisionTreeRegressor"", ""Random Forest"": ""RandomForestRegressor"", ""Extreme Gradient Boosting (XGBoost)"": ""XGBRegressor"", ""Light Gradient Boosting (LightGBM)"": ""LGBMRegressor"",""Categorical Boosting (CatBoost)"": ""CatBoostRegressor""},""timeSeriesForecasting"":{""MLP"": ""MLP"",""LSTM"":""LSTM""}} #task 11997

    def __get_true_option(self, d, default_value=None):
        if isinstance(d, dict):
            for k,v in d.items():
                if (isinstance(v, str) and v.lower() == 'true') or (isinstance(v, bool) and v == True):
                    return k
        return default_value

    def __get_true_options(self, d):
        options = []
        if isinstance(d, dict):
            for k,v in d.items():
                if (isinstance(v, str) and v.lower() == 'true') or (isinstance(v, bool) and v == True):
                    options.append(k)
        return options

    def __get_scoring_criteria(self, criteria):
        mapping = {'Mean Squared Error':'MSE', 'Root Mean Squared Error':'RMSE','Mean Absolute Error':'MAE','R-Squared':'R2'}
        if criteria in mapping.keys():
            return mapping[criteria]
        return criteria

    def __get_feature_selector(self, selector_config):
        feature_selector = []
        if self.__get_true_option(selector_config['selectionMethod']) == 'featureSelection':
            feature_selector = self.__get_true_options(selector_config['featureSelection'])
        return feature_selector
        
    def __get_feature_reducer(self, selector_config):
        feature_reducer = """"
        if self.__get_true_option(selector_config['selectionMethod']) == 'featureEngineering':
            feature_reducer = self.__get_true_option(selector_config['featureEngineering'],'pca').lower()
        return feature_reducer

    def __getOptimizationParam(self, param_config):
        param_dict = {}
        param_dict['iterations'] = int(param_config['iterations'])
        param_dict['trainTestCVSplit'] = int(param_config['trainTestCVSplit'])
        param_dict['geneticparams'] = param_config['geneticparams']
        return param_dict

    def add_model(self, model_name, config):
        if not self.unsupported_algo:
            self.code_config[""algorithms""][model_name] = config.copy()
    
    def update_config(self, key, value):
        self.code_config[key] = value
        
    def save_config(self, file_path):
        if Path(file_path).is_dir():
            file_path = Path(file_path)/'etc/code_config.json'
        with open(file_path, ""w"") as f:
            if not self.unsupported_algo:
                json.dump(self.code_config, f, indent=4)
            else:
                if 'ensemble' in self.unsupported_algo:
                    json.dump({""Status"":""Failure"",""msg"":""Ensemble is not supported"",""error"":""Ensemble is not supported""}, f) # keep error key
                elif 'text_features' in self.unsupported_algo:
                    json.dump({""Status"":""Failure"",""msg"":""Text feature processing is not supported"",""error"":""Text feature processing is not supported""}, f) # keep error key
                else:
                    json.dump({""Status"":""Failure"",""msg"":f""Unsupported model {self.unsupported_algo}"",""error"":f""Unsupported model {self.unsupported_algo}""}, f) # keep error key

    def __is_algo_supported(self, config):
        problem_type = self.__get_true_option(config['basic']['analysisType'])
        if problem_type not in self.supported_model.keys():
            self.unsupported_algo = [problem_type]
            return False
        algos = config['basic']['algorithms'][problem_type]
        algos = self.__get_true_options(algos)
        self.unsupported_algo = [x for x in algos if x not in self.supported_model[problem_type].keys()]
        if self.unsupported_algo:
            return False
        return True
        
    def create_config(self, config):
        if isinstance(config, str):
            with open(config,'r') as f:
                config = json.load(f)
        problem_type = self.__get_true_option(config['basic']['analysisType'])
        self.code_config[""problem_type""] = problem_type.lower()
        if not self.__is_algo_supported(config):
            return
        if 'ensemble' in config['advance']['mllearner_config']:
            if config['advance']['mllearner_config']['ensemble'] == 'enable':
                self.unsupported_algo = ['ensemble']
                return
        self.code_config[""modelName""] = config['basic']['modelName']
        self.code_config[""modelVersion""] = config['basic']['modelVersion']
        if config['basic']['folderSettings']['fileType'].lower() == 'url':
            self.code_config[""dataLocation""] = config['basic']['folderSettings']['labelDataFile']
        else:			
            self.code_config[""dataLocation""] = config['basic']['dataLocation']
        self.code_config[""target_feature""] = config['basic']['targetFeature']
        trainingfeatures = config['basic']['trainingFeatures'].split(',')		
        datetimeFeature = list(map(str.strip, config['basic']['dateTimeFeature'].split(',')))
        for dtfeature in datetimeFeature:
            if  dtfeature in trainingfeatures:
                trainingfeatures.remove(dtfeature)
        indexFeature = list(map(str.strip, config['basic']['indexFeature'].split(',')))
        for dtfeature in indexFeature:
            if  dtfeature in trainingfeatures:
                trainingfeatures.remove(dtfeature)    			
        self.code_config[""selected_features""] = trainingfeatures
        self.code_config[""dateTimeFeature""] = datetimeFeature
        self.code_config[""profiler""] = config['advance']['profiler']
        self.code_config[""feature_selector""]= self.__get_feature_selector(config['advance']['selector'])
        self.code_config[""feature_reducer""]= self.__get_feature_reducer(config['advance']['selector'])
        self.code_config[""corr_threshold""]= float(config['advance']['selector']['statisticalConfig'].get('correlationThresholdTarget',0.85))
        self.code_config[""var_threshold""]= float(config['advance']['selector']['statisticalConfig'].get('varianceThreshold',0.01))
        self.code_config[""pValueThreshold""]= float(config['advance']['selector']['statisticalConfig'].get('pValueThresholdTarget',0.04))
        self.code_config[""n_components""]= int(config['advance']['selector']['featureEngineering']['numberofComponents'])
        self.code_config[""balancingMethod""] = config['advance']['categoryBalancingMethod']
        self.code_config[""test_ratio""] = int(config['advance']['testPercentage'])/100
        #self.code_config[""scoring_criteria""] = ""accuracy""
        if self.code_config[""problem_type""] in ['classification','regression']:
            self.code_config[""algorithms""] = {}
        else:
            algo = self.__get_true_option(config['basic']['algorithms'][problem_type])
            self.code_config[""algorithms""] = {algo: config['advance'][problem_type]['modelParams'][algo]} #task 11997
            self.code_config[""scoring_criteria""] = self.__get_scoring_criteria(self.__get_true_option(config['basic'][""scoringCriteria""][problem_type]))
            if problem_type.lower() == 'timeseriesforecasting': #task 11997
                self.code_config[""lag_order""] = self.code_config[""algorithms""][algo][""lag_order""]
                self.code_config[""noofforecasts""] = config[""basic""][""noofforecasts""]
                self.code_config[""target_feature""] = config['basic']['targetFeature'].split(',')
        self.code_config[""optimization""] = config['advance']['mllearner_config']['optimizationMethod']
        self.code_config[""optimization_param""] = self.__getOptimizationParam(config['advance']['mllearner_config']['optimizationHyperParameter'])


if __name__ == '__main__':
    codeConfigure = code_configure()
    codeConfigure.create_config(""C:\\Users\\vashistah\\AppData\\Local\\HCLT\\AION\\config\\AION_1668151242.json"")
    codeConfigure.save_config(r""C:\Users\vashistah\AppData\Local\HCLT\AION\target\AION_57_ts_1"")"
check_config.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import json


def get_true_option(d, default_value=None):
	if isinstance(d, dict):
		for k, v in d.items():
			if (isinstance(v, str) and v.lower() == 'true') or (isinstance(v, bool) and v == True):
				return k
	return default_value


def get_true_options(d):
	options = []
	if isinstance(d, dict):
		for k, v in d.items():
			if (isinstance(v, str) and v.lower() == 'true') or (isinstance(v, bool) and v == True):
				options.append(k)
	return options

def check_datetime(config):
	dateTime = config['basic']['dateTimeFeature']
	if dateTime == '' or dateTime.lower()=='na':
		return False
	return True

def check_dtype(d):
	flag= 1
	for item in d:
		if item[""type""].lower() != ""text"" and item[""type""].lower() != ""index"":
			flag = 0
			break
	return flag

def check_text(d): #task 12627
	flag= 0
	for item in d:
		if item[""type""].lower() == ""text"":
			flag = 1
			break
	return flag

def check_labelencoding(ftr_dict_list, target_ftr):
	for ftr_dict in ftr_dict_list:
		if ftr_dict['feature']!=target_ftr and ftr_dict['type'].lower()=='categorical' and ftr_dict['categoryEncoding'].lower()!='labelencoding':
			return False
	return True

class timeseries():

	def __init__(self,config):
		self.config=config
		#task 11997
		if self.config['basic']['analysisType']['timeSeriesForecasting'].lower()=='true':
			self.problemType = 'timeSeriesForecasting'
		elif self.config['basic']['analysisType']['timeSeriesAnomalyDetection'].lower()=='true':
			self.problemType = 'timeSeriesAnomalyDetection'

	def validate_basic_config(self,status='pass',msg=None):
		#task 12627
		date_time_status = check_datetime(self.config)
		text_status = check_text(self.config['advance']['profiler']['featureDict'])
		if not date_time_status and text_status:
			msg = 'For time series problem,\\n* One feature should be in datetime format\\n* Text feature not supported '
			return 'error', msg
		elif not date_time_status:
			msg = 'For time series problem, one feature should be in datetime format'
			return 'error', msg
		elif text_status:
			msg = 'For time series problem, text feature not supported '
			return 'error', msg
		selected_algos = get_true_options(self.config['basic']['algorithms'][self.problemType]) #task 11997
		if isinstance(self.config['basic']['targetFeature'],str):
			targetFeature = list(self.config['basic']['targetFeature'].split(','))
		if self.problemType=='timeSeriesForecasting': #task 11997
			if len(targetFeature) > 1:
				if 'ARIMA' in selected_algos:
					status = 'error'
					msg = ""ARIMA is not supported for multilabel (target) feature""
					return status, msg
				if ""FBPROPHET"" in selected_algos:
					status = 'error'
					msg = ""FBPROPHET is not supported for multiLabel (target) feature""
					return status, msg
				if 'MLP' in selected_algos:
					status = 'error'
					msg = ""MLP is not supported for multiLabel (target) feature""
					return status, msg
			if len(targetFeature) == 1 and 'VAR' in selected_algos:
				status = 'error'
				msg = ""VAR is not supported for singleLabel (target) feature""
				return status, msg
		elif self.problemType=='timeSeriesAnomalyDetection':
			anomChecker = anomaly(self.config)
			status, msg = anomChecker.validate_basic_config()
		return status, msg


class anomaly():
 
	def __init__(self,config):
		self.config = config
		if self.config['basic']['analysisType']['anomalyDetection']=='':
			self.problemType = 'anomalyDetection'
		elif self.config['basic']['analysisType']['timeSeriesAnomalyDetection']: #task 11997
			self.problemType = 'timeSeriesAnomalyDetection'

	def validate_basic_config(self,status='pass',msg=None):
		#task 12627
		date_time_status = check_datetime(self.config)
		targetFeature = self.config['basic']['targetFeature']
		if self.problemType=='anomalyDetection' and date_time_status:
			status = 'error'
			msg = 'Date feature detected. For anomaly detection on time series change problem type to Time Series Anomaly Detection or drop Date feature'
			return status, msg
		if targetFeature.lower()!= 'na' and targetFeature!= """" and self.config['basic']['inlierLabels'] == '':
			status = 'error'
			msg = 'Please provide inlier label in case of supervised anomaly detection'
		return status, msg

class survival():

	def __init__(self,config):
		self.config = config
		self.problemType= 'survivalAnalysis'

	def validate_basic_config(self):
		dateTimeStatus = check_datetime(self.config)
		labelencoding_status = check_labelencoding(self.config['advance']['profiler']['featureDict'], self.config['basic']['targetFeature'])
		if not dateTimeStatus and not labelencoding_status:
			msg = 'For survival analysis problem,\\n* One feature should be in datetime format\\n* Encoding of categorical features should be of label encoding '
			return 'error', msg  
		elif not dateTimeStatus:
			msg = 'One feature should be in datetime format for survival analysis problem. Please select it from model feature'
			return 'error', msg
		elif not labelencoding_status:
			msg = 'Categorical features are expected to be label encoded for survival analysis problem. Please select it from feature encoding'
			return 'error', msg
		else:
			return 'pass', "" ""

class associationrule():

	def __init__(self,config):
		self.config=config

	def validate_basic_config(self,status='pass', msg=None):
		if self.config['basic']['algorithms']['recommenderSystem']['associationRulesConfig']['invoiceNoFeature'].lower() == '' or self.config['basic']['algorithms']['recommenderSystem']['associationRulesConfig']['invoiceNoFeature'].lower() == 'na' or self.config['basic']['algorithms']['recommenderSystem']['associationRulesConfig']['itemFeature'].lower() == '' or self.config['basic']['algorithms']['recommenderSystem']['associationRulesConfig']['itemFeature'].lower() == 'na':
			return ""error"",""Make sure to configure invoice feature and item feature""
		elif self.config['basic']['algorithms']['recommenderSystem']['associationRulesConfig']['invoiceNoFeature'] == self.config['basic']['algorithms']['recommenderSystem']['associationRulesConfig']['itemFeature']:
			return ""error"",""Make sure to invoice feature and item feature is configure correctly""    
		else:
			return ""pass"", "" ""   
		
class documentsimilarity():

	def __init__(self,config):
		self.config=config


	def validate_basic_config(self,status='pass', msg=None):
		flag = check_dtype(self.config['advance']['profiler']['featureDict'])
		if flag == 1:
			return ""pass"", "" ""
		else:
			msg=""Make sure to change the feature type from Catgeory to Text and drop numerical features for document Similarity""
			return ""error"", msg



def config_validate(path):
	with open(path, 'rb') as data_file:    
		config = json.load(data_file)
	data_file.close()
	try:
		problem_type = get_true_option(config['basic']['analysisType'])
		status = 'pass'
		msg = ''
		if 'timeseries' in problem_type.lower(): #task 11997
			obj = timeseries(config)
		elif problem_type.lower() == 'survivalanalysis':
			obj = survival(config)
		elif problem_type.lower() == 'anomalydetection':
			obj = anomaly(config)
		elif problem_type.lower() in ['similarityidentification','contextualsearch']:
			obj = documentsimilarity(config)
		elif problem_type.lower() == 'recommendersystem':
			if config['basic']['algorithms']['recommenderSystem']['AssociationRules-Apriori'].lower() == 'true':
				obj = associationrule(config)  
			else:
				return 'pass',"""" 
		else:
			return 'pass',""""
		status,msg= obj.validate_basic_config()
		return(status,msg)
	except Exception as e:
		print(e)



def start_check(config):
 return config_validate(config)



"
TextProcessing.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import pandas as pd
import logging
import numpy as np
import sys
from pathlib import Path
import nltk
from nltk.tokenize import sent_tokenize
from nltk import pos_tag
from nltk import ngrams
from nltk.corpus import wordnet
from nltk import RegexpParser
from textblob import TextBlob
import spacy
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.base import BaseEstimator, TransformerMixin
import urllib.request
import zipfile
import os
from os.path import expanduser
import platform

from text import TextCleaning as text_cleaner
from text.Embedding import extractFeatureUsingPreTrainedModel

logEnabled = False
spacy_nlp = None
        
def ExtractFeatureCountVectors(ngram_range=(1, 1),
                               max_df=1.0,
                               min_df=1,
                               max_features=None,
                               binary=False):
    vectorizer = CountVectorizer(ngram_range = ngram_range, max_df = max_df, \
                                 min_df = min_df, max_features = max_features, binary = binary)
    return vectorizer            

def ExtractFeatureTfIdfVectors(ngram_range=(1, 1), 
                               max_df=1.0, 
                               min_df=1, 
                               max_features=None,
                               binary=False,
                               norm='l2',
                               use_idf=True,
                               smooth_idf=True,
                               sublinear_tf=False):
    vectorizer = TfidfVectorizer(ngram_range = ngram_range, max_df = max_df, \
                                 min_df = min_df, max_features = max_features, \
                                 binary = binary, norm = norm, use_idf = use_idf, \
                                 smooth_idf = smooth_idf, sublinear_tf = sublinear_tf)
    return vectorizer            

def GetPOSTags( inputText, getPOSTags_Lib='nltk'):
    global spacy_nlp
    tokens_postag_list = []
    
    if (inputText == """"):
        __Log(""debug"", ""{} function: Input text is not provided"".format(sys._getframe().f_code.co_name))
    else:
        if getPOSTags_Lib == 'spacy':
            if spacy_nlp == None:
                spacy_nlp = spacy.load('en_core_web_sm')                        
            doc = spacy_nlp(inputText)
            for token in doc:
                tokens_postag_list.append((token.text, token.tag_))
        elif getPOSTags_Lib == 'textblob':
            doc = TextBlob(inputText)
            tokens_postag_list = doc.tags
        else:
            tokensList = WordTokenize(inputText)
            tokens_postag_list = pos_tag(tokensList)
            
    return tokens_postag_list
        
def GetNGrams( inputText, ngramRange=(1,1)):
    ngramslist = []
    for n in range(ngramRange[0],ngramRange[1]+1):
        nwordgrams = ngrams(inputText.split(), n)
        ngramslist.extend([' '.join(grams) for grams in nwordgrams])
    return ngramslist      
        
def NamedEntityRecognition( inputText):
    global spacy_nlp
    neResultList = []
    if (inputText == """"):
        __Log(""debug"", ""{} function: Input text is not provided"".format(sys._getframe().f_code.co_name))
    else:
        if spacy_nlp == None:
            spacy_nlp = spacy.load('en_core_web_sm') 
        doc = spacy_nlp(inputText)
        neResultList = [(X.text, X.label_) for X in doc.ents]
        
    return neResultList
        
def KeywordsExtraction( inputText, ratio=0.2, words = None, scores=False, pos_filter=('NN', 'JJ'), lemmatize=False):
    keywordsList = []
    if (inputText == """"):
        __Log(""debug"", ""{} function: Input text is not provided"".format(sys._getframe().f_code.co_name))
    else:
        keywordsList = keywords(inputText, ratio = ratio, words = words, split=True, scores=scores, 
                            pos_filter=pos_filter, lemmatize=lemmatize)
    return keywordsList

def __get_nodes(parent): 
    nounList = []
    verbList = []
    for node in parent:
        if type(node) is nltk.Tree:
            if node.label() == ""NP"":
                subList = []
                for item in node.leaves():
                    subList.append(item[0])
                nounList.append(("" "".join(subList)))
            elif node.label() == ""VP"":
                subList = []
                for item in node.leaves():
                    subList.append(item[0])
                verbList.append(("" "".join(subList)))
                #verbList.append(node.leaves()[0][0])
            __get_nodes(node)
    result = {'NP': nounList, 'VP': verbList}
    return result

def ShallowParsing( inputText, lib='spacy'):
    tags = GetPOSTags(inputText, getPOSTags_Lib=lib)
    
    chunk_regex = r""""""
        NBAR:
            {<DT>?<NN.*|JJ.*>*<NN.*>+}  # Nouns and Adjectives, terminated with Nouns
        VBAR:
            {<RB.?>*<VB.?>*<TO>?<JJ>*<VB.?>+<VB>?} # Verbs and Verb Phrases
            
        NP:
            {<NBAR>}
            {<NBAR><IN><NBAR>}  # Above, connected with in/of/etc...
        VP: 
            {<VBAR>}
            {<VBAR><IN><VBAR>}  # Above, connected with in/of/etc...
    """"""
    rp = RegexpParser(chunk_regex)
    t = rp.parse(tags)
    return __get_nodes(t)

def SyntacticAndEntityParsing(inputCorpus, 
                              featuresList=['POSTags','NGrams','NamedEntityRecognition','KeywordsExtraction','ShallowParsing'],
                              posTagsLib='nltk', 
                              ngramRange=(1,1), 
                              ke_ratio=0.2, 
                              ke_words = None, 
                              ke_scores=False, 
                              ke_pos_filter=('NN', 'JJ'), 
                              ke_lemmatize=False):
    columnsList = ['Input']
    columnsList.extend(featuresList)
    df = pd.DataFrame(columns=columnsList)
    df['Input'] = inputCorpus
    for feature in featuresList:
        if feature == 'POSTags':
            df[feature] = inputCorpus.apply(lambda x: GetPOSTags(x, posTagsLib))
        if feature == 'NGrams':
            df[feature] = inputCorpus.apply(lambda x: GetNGrams(x, ngramRange))
        if feature == 'NamedEntityRecognition':
            df[feature] = inputCorpus.apply(lambda x: NamedEntityRecognition(x))
        if feature == 'KeywordsExtraction':
            df[feature] = inputCorpus.apply(lambda x: KeywordsExtraction(x, 
                                              ratio=ke_ratio, words=ke_words,
                                              scores=ke_scores, pos_filter=ke_pos_filter,
                                              lemmatize=ke_lemmatize))
        if feature == 'ShallowParsing':
            df[feature] = inputCorpus.apply(lambda x: ShallowParsing(x, lib=posTagsLib))
    return df
    
def __Log( logType=""info"", text=None):
        if logType.lower() == ""exception"":
            logging.exception( text)
        elif logEnabled:
            if logType.lower() == ""info"":
                logging.info( text)
            elif logType.lower() == ""debug"":
                logging.debug( text)

def SentenceTokenize( inputText):
    return text_cleaner.WordTokenize(inputText)

def WordTokenize( inputText, tokenizationLib = 'nltk'):
    return text_cleaner.WordTokenize(inputText, tokenizationLib)

def Lemmatize( inputTokensList, lemmatizationLib = 'nltk'):
    return text_cleaner.Lemmatize(inputTokensList, lemmatizationLib)

def Stemmize( inputTokensList):
    return text_cleaner.Stemmize(inputTokensList)
    
def ToLowercase( inputText):
    resultText = """"
    if inputText is not None and inputText != """":
        resultText = inputText.lower()
    return resultText

def ToUppercase( inputText):
    resultText = """"
    if inputText is not None and inputText != '':   
        resultText = inputText.upper()
    return resultText
    
def RemoveNoise(
                inputText, 
                removeNoise_fHtmlDecode = True, 
                removeNoise_fRemoveHyperLinks = True,
                removeNoise_fRemoveMentions = True, 
                removeNoise_fRemoveHashtags = True, 
                removeNoise_RemoveOrReplaceEmoji = 'remove',
                removeNoise_fUnicodeToAscii = True,
                removeNoise_fRemoveNonAscii = True):
    return text_cleaner.RemoveNoise(inputText, removeNoise_fHtmlDecode, removeNoise_fRemoveHyperLinks, removeNoise_fRemoveMentions,
    removeNoise_fRemoveHashtags, removeNoise_RemoveOrReplaceEmoji, removeNoise_fUnicodeToAscii, removeNoise_fRemoveNonAscii)
    
def RemoveStopwords( inputTokensList, stopwordsRemovalLib='nltk', stopwordsList = None, extend_or_replace='extend'):
    return text_cleaner.RemoveStopwords(inputTokensList, stopwordsRemovalLib, stopwordsList, extend_or_replace)
    
def RemoveNumericTokens( inputText, removeNumeric_fIncludeSpecialCharacters=True):
    return text_cleaner.RemoveNumericTokens(inputText, removeNumeric_fIncludeSpecialCharacters)
    
def RemovePunctuation( inputText, fRemovePuncWithinTokens=False):
    return text_cleaner.RemovePunctuation(inputText, fRemovePuncWithinTokens)
    
def CorrectSpelling( inputTokensList):
    return text_cleaner.CorrectSpelling(inputTokensList)
    
def ReplaceAcronym( inputTokensList, acrDict=None):
    return text_cleaner.ReplaceAcronym(inputTokensList, acrDict)
    
def ExpandContractions( inputText, expandContractions_googleNewsWordVectorPath=None):
    return text_cleaner.ExpandContractions(inputText, expandContractions_googleNewsWordVectorPath)
        
def get_pretrained_model_path():
    try:
        from appbe.dataPath import DATA_DIR
        modelsPath = Path(DATA_DIR)/'PreTrainedModels'/'TextProcessing'
    except:
        modelsPath = Path('aion')/'PreTrainedModels'/'TextProcessing'
    if not modelsPath.exists():
        modelsPath.mkdir(parents=True, exist_ok=True)
    return modelsPath
    
def checkAndDownloadPretrainedModel(preTrainedModel, embedding_size=300):
    
    models = {'glove':{50:'glove.6B.50d.w2vformat.txt',100:'glove.6B.100d.w2vformat.txt',200:'glove.6B.200d.w2vformat.txt',300:'glove.6B.300d.w2vformat.txt'}, 'fasttext':{300:'wiki-news-300d-1M.vec'}}
    supported_models = [x for y in models.values() for x in y.values()]
    embedding_sizes = {x:y.keys() for x,y in models.items()}
    preTrainedModel = preTrainedModel.lower()
    if preTrainedModel not in models.keys():
        raise ValueError(f'model not supported: {preTrainedModel}')
    if embedding_size not in embedding_sizes[preTrainedModel]:
        raise ValueError(f""Embedding size '{embedding_size}' not supported for {preTrainedModel}"")
    selected_model = models[preTrainedModel][embedding_size]
    modelsPath = get_pretrained_model_path()
    p = modelsPath.glob('**/*')
    modelsDownloaded = [x.name for x in p if x.name in supported_models]
    if selected_model not in modelsDownloaded:
        if preTrainedModel == ""glove"":
            try:
                local_file_path =  modelsPath/f""glove.6B.{embedding_size}d.w2vformat.txt""
                file_test, header_test = urllib.request.urlretrieve(f'https://aion-pretrained-models.s3.ap-south-1.amazonaws.com/text/glove.6B.{embedding_size}d.w2vformat.txt', local_file_path)
            except Exception as e:
                raise ValueError(""Error: unable to download glove pretrained model, please try again or download it manually and placed it at {}. "".format(modelsPath)+str(e))

        elif preTrainedModel == ""fasttext"":
            try:
                local_file_path =  modelsPath/""wiki-news-300d-1M.vec.zip""
                url = 'https://aion-pretrained-models.s3.ap-south-1.amazonaws.com/text/wiki-news-300d-1M.vec.zip'
                file_test, header_test = urllib.request.urlretrieve(url, local_file_path)
                with zipfile.ZipFile(local_file_path) as zip_ref:
                    zip_ref.extractall(modelsPath)
                Path(local_file_path).unlink()
            except Exception as e:
                raise ValueError(""Error: unable to download fastText pretrained model, please try again or download it manually and placed it at {}. "".format(location)+str(e))
    return modelsPath/selected_model
    
def load_pretrained(path):
    embeddings = {}
    word = ''
    with open(path, 'r', encoding=""utf8"") as f:
        header = f.readline()
        header = header.split(' ')
        vocab_size = int(header[0])
        embed_size = int(header[1])
        for i in range(vocab_size):
            data = f.readline().strip().split(' ')
            word = data[0]
            embeddings[word] = [float(x) for x in data[1:]]
    return embeddings

class TextProcessing(BaseEstimator, TransformerMixin):
    
    def __init__(self,
            functionSequence = ['RemoveNoise','ExpandContractions','Normalize','ReplaceAcronym',
                'CorrectSpelling','RemoveStopwords','RemovePunctuation','RemoveNumericTokens'],
            fRemoveNoise = True,
            fExpandContractions = False,
            fNormalize = True,
            fReplaceAcronym = False,
            fCorrectSpelling = False,
            fRemoveStopwords = True,
            fRemovePunctuation = True,
            fRemoveNumericTokens = True,
            removeNoise_fHtmlDecode = True, 
            removeNoise_fRemoveHyperLinks = True,
            removeNoise_fRemoveMentions = True, 
            removeNoise_fRemoveHashtags = True,
            removeNoise_RemoveOrReplaceEmoji = 'remove',
            removeNoise_fUnicodeToAscii = True,
            removeNoise_fRemoveNonAscii = True,
            tokenizationLib='nltk',
            normalizationMethod = 'Lemmatization',
            lemmatizationLib = 'nltk',
            acronymDict = None,
            stopwordsRemovalLib = 'nltk',
            stopwordsList = None,
            extend_or_replace_stopwordslist = 'extend',
            removeNumeric_fIncludeSpecialCharacters = True,
            fRemovePuncWithinTokens = False,
            data_path = None
):
        global logEnabled
        #logEnabled = EnableLogging
        self.functionSequence = functionSequence
        self.fRemoveNoise = fRemoveNoise
        self.fExpandContractions = fExpandContractions
        self.fNormalize = fNormalize
        self.fReplaceAcronym = fReplaceAcronym
        self.fCorrectSpelling = fCorrectSpelling
        self.fRemoveStopwords = fRemoveStopwords
        self.fRemovePunctuation = fRemovePunctuation
        self.fRemoveNumericTokens = fRemoveNumericTokens
        self.removeNoise_fHtmlDecode = removeNoise_fHtmlDecode
        self.removeNoise_fRemoveHyperLinks = removeNoise_fRemoveHyperLinks
        self.removeNoise_fRemoveMentions = removeNoise_fRemoveMentions 
        self.removeNoise_fRemoveHashtags = removeNoise_fRemoveHashtags
        self.removeNoise_RemoveOrReplaceEmoji = removeNoise_RemoveOrReplaceEmoji
        self.removeNoise_fUnicodeToAscii = removeNoise_fUnicodeToAscii
        self.removeNoise_fRemoveNonAscii = removeNoise_fRemoveNonAscii
        self.tokenizationLib = tokenizationLib
        self.normalizationMethod = normalizationMethod
        self.lemmatizationLib = lemmatizationLib
        self.acronymDict = acronymDict
        self.stopwordsRemovalLib = stopwordsRemovalLib
        self.stopwordsList = stopwordsList
        self.extend_or_replace_stopwordslist = extend_or_replace_stopwordslist
        self.removeNumeric_fIncludeSpecialCharacters = removeNumeric_fIncludeSpecialCharacters
        self.fRemovePuncWithinTokens = fRemovePuncWithinTokens
        self.data_path = data_path
        self.fit_and_transformed_ = False

    def fit(self, x, y=None):
        return self
    
    def transform(self, x):
        x = map(lambda inputText: text_cleaner.cleanText(inputText, functionSequence = self.functionSequence, fRemoveNoise = self.fRemoveNoise, fExpandContractions = self.fExpandContractions, fNormalize = self.fNormalize, fReplaceAcronym = self.fReplaceAcronym, fCorrectSpelling = self.fCorrectSpelling, fRemoveStopwords = self.fRemoveStopwords, fRemovePunctuation = self.fRemovePunctuation, fRemoveNumericTokens = self.fRemoveNumericTokens, removeNoise_fHtmlDecode = self.removeNoise_fHtmlDecode, removeNoise_fRemoveHyperLinks = self.removeNoise_fRemoveHyperLinks, removeNoise_fRemoveMentions = self.removeNoise_fRemoveMentions , removeNoise_fRemoveHashtags = self.removeNoise_fRemoveHashtags, removeNoise_RemoveOrReplaceEmoji = self.removeNoise_RemoveOrReplaceEmoji, removeNoise_fUnicodeToAscii = self.removeNoise_fUnicodeToAscii, removeNoise_fRemoveNonAscii = self.removeNoise_fRemoveNonAscii, tokenizationLib = self.tokenizationLib, normalizationMethod = self.normalizationMethod, lemmatizationLib = self.lemmatizationLib, acronymDict = self.acronymDict, stopwordsRemovalLib = self.stopwordsRemovalLib, stopwordsList = self.stopwordsList, extend_or_replace_stopwordslist = self.extend_or_replace_stopwordslist, removeNumeric_fIncludeSpecialCharacters = self.removeNumeric_fIncludeSpecialCharacters, fRemovePuncWithinTokens = self.fRemovePuncWithinTokens), x)
        x = pd.Series(list(x))
        if hasattr(self, 'fit_and_transformed_') and not self.fit_and_transformed_:
            self.fit_and_transformed_ = True
            if self.data_path and Path(self.data_path).exists():
                x.to_csv(Path(self.data_path)/'text_cleaned.csv', index=False)
        return x

    def get_feature_names_out(self):
        return ['tokenize']

class wordEmbedding(BaseEstimator, TransformerMixin):

    def __init__(self, preTrainedModel, embeddingSize=300,external_model=None,external_model_type='binary'):
        self.number_of_features = 0
        self.embeddingSize = embeddingSize
        self.preTrainedModel = preTrainedModel.lower()
        self.external_model=external_model
        self.external_model_type = external_model_type
        if self.preTrainedModel == ""glove"":
            self.preTrainedModelpath = f'glove.6B.{self.embeddingSize}d.w2vformat.txt'
            self.binary = False
        elif self.preTrainedModel == ""fasttext"":
            self.preTrainedModelpath = 'wiki-news-300d-1M.vec'
            self.binary = False
        else:
            raise ValueError(f'Model ({self.preTrainedModel}) not supported')
        
    def fit(self, x, y=None):
        return self
        
    def transform(self, x):
        if ((isinstance(self.external_model, pd.DataFrame) and not self.external_model.empty) or (not isinstance(self.external_model, pd.DataFrame) and self.external_model)):
            if self.preTrainedModel == ""fasttext"" and self.external_model_type == 'binary':
                print('Transforming using external binary')
                extracted = np.vstack([self.external_model.get_sentence_vector( sentense) for sentense in x])
            else:
                print('Transforming using external vector')
                extracted = extractFeatureUsingPreTrainedModel(x, pretrainedModelPath=None, loaded_model=self.external_model, embed_size=300)
        else:
            print('Transforming using Vector')
            models_path = checkAndDownloadPretrainedModel(self.preTrainedModel, self.embeddingSize)
            extracted = extractFeatureUsingPreTrainedModel(x, models_path)

        self.number_of_features = extracted.shape[1]
        return extracted
        
    def get_feature_names_out(self):
        return [str(x) for x in range(self.number_of_features)]

    def get_feature_names(self):
        return self.get_feature_names_out()

def getProcessedPOSTaggedData(pos_tagged_data):
    def get_wordnet_post(tag):
        if tag.startswith('V'):
            return wordnet.VERB
        elif tag.startswith('J'):
            return wordnet.ADJ
        elif tag.startswith('R'):
            return wordnet.ADV
        else:
            return wordnet.NOUN

    def process_pos_tagged_data(text):
        processed_text = [f""{t[0]}_{get_wordnet_post(t[1])}"" for t in text]
        processed_text = "" "".join(processed_text)
        return processed_text

    processed_pos_tagged_data = pos_tagged_data.apply(process_pos_tagged_data)
    return processed_pos_tagged_data
        
        
class PosTagging(BaseEstimator, TransformerMixin):

    def __init__(self, posTagsLib, data_path):
        self.posTagsLib = posTagsLib
        self.fit_and_transformed_ = False
        self.data_path = data_path
        
    def fit(self, x, y=None):
        return self
    
    def transform(self, x):
        parsing_output = SyntacticAndEntityParsing(x, featuresList=['POSTags'], posTagsLib=self.posTagsLib)
        output = getProcessedPOSTaggedData(parsing_output['POSTags'])
        if not self.fit_and_transformed_:
            self.fit_and_transformed_ = True
            if self.data_path and Path(self.data_path).exists():
                output.to_csv(Path(self.data_path)/'pos_tagged.csv', index=False)
        return output
"
__init__.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import os
import sys
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__))))
#from .eda import ExploreTextData "
textProfiler.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import os
import logging
from distutils.util import strtobool
import numpy as np
import pandas as pd
from text import TextProcessing
from sklearn.preprocessing import FunctionTransformer
from sklearn.base import BaseEstimator, TransformerMixin
from pathlib import Path

external_model = None
external_model_type = None

def get_one_true_option(d, default_value):
	if isinstance(d, dict):
		for k,v in d.items():
			if (isinstance(v, str) and v.lower() == 'true') or (isinstance(v, bool) and v == True):
				return k
	return default_value


class textProfiler():
		
	def __init__(self):
		self.log = logging.getLogger('eion')
		self.embedder = None
		self.bert_embedder_size = 0
		
	def textCleaning(self, textCorpus):
		textProcessor = TextProcessing.TextProcessing()
		textCorpus = textProcessor.transform(textCorpus)
		return(textCorpus)
	
	def sentense_encode(self, item):
		return self.model.encode(item,show_progress_bar=False)
		
	def get_embedding_size(self, model, config):
		if model in config.keys():
			config = config[model]
		else:
			config = {}
		model = model.lower()
		if model == 'glove':
			size_map = {'default': 100, '50d': 50, '100d':100, '200d': 200, '300d':300}
			size_enabled = get_one_true_option(config, 'default')
			return size_map[size_enabled]
		elif model == 'fasttext':
			size_map = {'default': 300}
			size_enabled = get_one_true_option(config, 'default')
			return size_map[size_enabled]
		elif model == 'latentsemanticanalysis':
			size_map = {'default': 100, '50d': 50, '100d':100, '200d': 200, '300d':300,'500d':500,'700d':700,'1000d':1000}
			size_enabled = get_one_true_option(config, 'default')
			return size_map[size_enabled]			
		elif model in ['tf_idf', 'countvectors']:
			return int(config.get('maxFeatures', 2000))
		else:   # for word2vec
			return 300
			
		
	def cleaner(self, conf_json, pipeList, data_path=None):
		cleaning_kwargs = {}
		textCleaning = conf_json.get('textCleaning')
		self.log.info(""Text Preprocessing config: "",textCleaning)
		cleaning_kwargs['fRemoveNoise'] = strtobool(textCleaning.get('removeNoise', 'True'))
		cleaning_kwargs['fNormalize'] = strtobool(textCleaning.get('normalize', 'True'))
		cleaning_kwargs['fReplaceAcronym'] = strtobool(textCleaning.get('replaceAcronym', 'False'))
		cleaning_kwargs['fCorrectSpelling'] = strtobool(textCleaning.get('correctSpelling', 'False'))
		cleaning_kwargs['fRemoveStopwords'] = strtobool(textCleaning.get('removeStopwords', 'True'))
		cleaning_kwargs['fRemovePunctuation'] = strtobool(textCleaning.get('removePunctuation', 'True'))
		cleaning_kwargs['fRemoveNumericTokens'] = strtobool(textCleaning.get('removeNumericTokens', 'True'))
		cleaning_kwargs['normalizationMethod'] = get_one_true_option(textCleaning.get('normalizeMethod'),
																	 'lemmatization').capitalize()
		
		removeNoiseConfig = textCleaning.get('removeNoiseConfig')
		if type(removeNoiseConfig) is dict:
			cleaning_kwargs['removeNoise_fHtmlDecode'] = strtobool(removeNoiseConfig.get('decodeHTML', 'True'))
			cleaning_kwargs['removeNoise_fRemoveHyperLinks'] = strtobool(removeNoiseConfig.get('removeHyperLinks', 'True'))
			cleaning_kwargs['removeNoise_fRemoveMentions'] = strtobool(removeNoiseConfig.get('removeMentions', 'True'))
			cleaning_kwargs['removeNoise_fRemoveHashtags'] = strtobool(removeNoiseConfig.get('removeHashtags', 'True'))
			cleaning_kwargs['removeNoise_RemoveOrReplaceEmoji'] = 'remove' if strtobool(removeNoiseConfig.get('removeEmoji', 'True')) else 'replace'
			cleaning_kwargs['removeNoise_fUnicodeToAscii'] = strtobool(removeNoiseConfig.get('unicodeToAscii', 'True'))
			cleaning_kwargs['removeNoise_fRemoveNonAscii'] = strtobool(removeNoiseConfig.get('removeNonAscii', 'True'))

		acronymConfig = textCleaning.get('acronymConfig')
		if type(acronymConfig) is dict:
			cleaning_kwargs['acronymDict'] = acronymConfig.get('acronymDict', None)
		
		stopWordsConfig = textCleaning.get('stopWordsConfig')
		if type(stopWordsConfig) is dict:
			cleaning_kwargs['stopwordsList'] = stopWordsConfig.get('stopwordsList', '[]')
			if isinstance(cleaning_kwargs['stopwordsList'], str):
				if cleaning_kwargs['stopwordsList'] != '[]':
					cleaning_kwargs['stopwordsList'] = cleaning_kwargs['stopwordsList'][1:-1].split(',')
				else:
					cleaning_kwargs['stopwordsList'] = []
			cleaning_kwargs['extend_or_replace_stopwordslist'] = 'replace' if strtobool(stopWordsConfig.get('replace', 'True')) else 'extend'
		removeNumericConfig = textCleaning.get('removeNumericConfig')
		if type(removeNumericConfig) is dict:
			cleaning_kwargs['removeNumeric_fIncludeSpecialCharacters'] = strtobool(removeNumericConfig.get('removeNumeric_IncludeSpecialCharacters', 'True'))

		removePunctuationConfig = textCleaning.get('removePunctuationConfig')
		if type(removePunctuationConfig) is dict:
			cleaning_kwargs['fRemovePuncWithinTokens'] = strtobool(removePunctuationConfig.get('removePuncWithinTokens', 'False'))
		
		cleaning_kwargs['fExpandContractions'] = strtobool(textCleaning.get('expandContractions', 'False'))

		libConfig = textCleaning.get('libConfig')
		if type(libConfig) is dict:
			cleaning_kwargs['tokenizationLib'] = get_one_true_option(libConfig.get('tokenizationLib'), 'nltk')
			cleaning_kwargs['lemmatizationLib'] = get_one_true_option(libConfig.get('lemmatizationLib'), 'nltk')
			cleaning_kwargs['stopwordsRemovalLib'] = get_one_true_option(libConfig.get('stopwordsRemovalLib'), 'nltk')
		if data_path:
			cleaning_kwargs['data_path'] = data_path
		textProcessor = TextProcessing.TextProcessing(**cleaning_kwargs)
		pipeList.append((""TextProcessing"",textProcessor))

		textFeatureExtraction = conf_json.get('textFeatureExtraction')
		if strtobool(textFeatureExtraction.get('pos_tags', 'False')):
			pos_tags_lib = get_one_true_option(textFeatureExtraction.get('pos_tags_lib'), 'nltk')
			posTagger = TextProcessing.PosTagging( pos_tags_lib, data_path)
			pipeList.append((""posTagger"",posTagger))
		return pipeList

	def embedding(self, conf_json, pipeList):
		ngram_min = 1
		ngram_max = 1
		textFeatureExtraction = conf_json.get('textFeatureExtraction')
		if strtobool(textFeatureExtraction.get('n_grams', 'False')):
			n_grams_config = textFeatureExtraction.get(""n_grams_config"")
			ngram_min = int(n_grams_config.get('min_n', 1))
			ngram_max = int(n_grams_config.get('max_n', 1))
			if (ngram_min < 1) or ngram_min > ngram_max:
				ngram_min = 1
				ngram_max = 1
				invalidNgramWarning = 'WARNING : invalid ngram config.\nUsing the default values min_n={}, max_n={}'.format(ngram_min, ngram_max)
				self.log.info(invalidNgramWarning)
		ngram_range_tuple = (ngram_min, ngram_max)
		textConversionMethod = conf_json.get('textConversionMethod')
		conversion_method = get_one_true_option(textConversionMethod, None)
		embedding_size_config = conf_json.get('embeddingSize', {})
		embedding_size = self.get_embedding_size(conversion_method, embedding_size_config)
		if conversion_method.lower() == ""countvectors"":
			vectorizer = TextProcessing.ExtractFeatureCountVectors( ngram_range=ngram_range_tuple,max_features=embedding_size)
			pipeList.append((""vectorizer"",vectorizer))
			self.log.info('----------> Conversion Method: CountVectors')
		elif conversion_method.lower() in [""fasttext"",""glove""]:
			embedding_method = conversion_method
			wordEmbeddingVecotrizer = TextProcessing.wordEmbedding(embedding_method, embedding_size)
			pipeList.append((""vectorizer"",wordEmbeddingVecotrizer))
			self.log.info('----------> Conversion Method: '+str(conversion_method))
		elif conversion_method.lower() == ""openai"":
			from text.openai_embedding import embedding as openai_embedder
			vectorizer = openai_embedder()
			pipeList.append((""vectorizer"",vectorizer))
			self.log.info('----------> Conversion Method: '+str(conversion_method))            
		elif conversion_method.lower() == ""sentencetransformer_distilroberta"":
			from sentence_transformers import SentenceTransformer
			embedding_pretrained = {'model':'sentence-transformers/msmarco-distilroberta-base-v2','size': 768}
			self.bert_embedder_size = embedding_pretrained['size']
			self.model = SentenceTransformer(embedding_pretrained['model'])
			self.embedder = FunctionTransformer(self.sentense_encode, feature_names_out = self.sentence_transformer_output)
			pipeList.append((""vectorizer"",self.embedder))
			self.log.info('----------> Conversion Method: SentenceTransformer using msmarco_distilroberta')
		
		elif conversion_method.lower() == ""sentencetransformer_minilm"":
			from sentence_transformers import SentenceTransformer
			embedding_pretrained = {'model':'sentence-transformers/all-MiniLM-L6-v2','size': 384}
			self.bert_embedder_size = embedding_pretrained['size']
			self.model = SentenceTransformer(embedding_pretrained['model'])
			self.embedder = FunctionTransformer(self.sentense_encode, feature_names_out = self.sentence_transformer_output)
			pipeList.append((""vectorizer"",self.embedder))
			self.log.info('----------> Conversion Method: SentenceTransformer using MiniLM-L6-v2')
			
		elif conversion_method.lower() == ""sentencetransformer_mpnet"":
			from sentence_transformers import SentenceTransformer
			embedding_pretrained = {'model':'sentence-transformers/all-mpnet-base-v2','size': 768}
			self.bert_embedder_size = embedding_pretrained['size']
			self.model = SentenceTransformer(embedding_pretrained['model'])
			self.embedder = FunctionTransformer(self.sentense_encode, feature_names_out = self.sentence_transformer_output)
			pipeList.append((""vectorizer"",self.embedder))
			self.log.info('----------> Conversion Method: SentenceTransformer using mpnet-base-v2')
			
		elif conversion_method.lower() == 'latentsemanticanalysis':
			vectorizer = TextProcessing.ExtractFeatureTfIdfVectors(ngram_range=ngram_range_tuple)
			pipeList.append((""vectorizer"",vectorizer))
			self.log.info('----------> Conversion Method: latentsemanticanalysis')
		elif conversion_method.lower() == 'tf_idf':
			vectorizer = TextProcessing.ExtractFeatureTfIdfVectors(ngram_range=ngram_range_tuple,max_features=embedding_size)
			pipeList.append((""vectorizer"",vectorizer))
			self.log.info('----------> Conversion Method: TF_IDF')
		else:
			df1 = pd.DataFrame()
			#df1['tokenize'] = textCorpus
			self.log.info('----------> Conversion Method: '+str(conversion_method))            
		return pipeList

	def sentence_transformer_output(self, transformer, names=None):
		return [str(x) for x in range(self.bert_embedder_size)]
		

class textCombine(TransformerMixin):
	def __init__(self):
		pass
	def fit(self, X, y=None):
		return self
	def transform(self, X):
		if X.shape[1] > 1:
			return np.array(["" "".join(i) for i in X])
		else:
			if isinstance(X, np.ndarray):
				return np.ndarray.flatten(X)
			else:    
				return X

def get_pretrained_model_path():
	try:
		from appbe.dataPath import DATA_DIR
		modelsPath = Path(DATA_DIR)/'PreTrainedModels'/'TextProcessing'
	except:
		modelsPath = Path('aion')/'PreTrainedModels'/'TextProcessing'
	
	if not modelsPath.exists():
		modelsPath.mkdir(parents=True, exist_ok=True)
	return modelsPath
	
def set_pretrained_model(pipe):
	from text.Embedding import load_pretrained
	import importlib.util
	global external_model
	global external_model_type
	params = pipe.get_params()
	model_name = params.get('text_process__vectorizer__preTrainedModel', None)
	if model_name and model_name.lower() in ['fasttext','glove'] and not external_model:
		if model_name == 'fasttext' and importlib.util.find_spec('fasttext'):
			import fasttext
			import fasttext.util
			cwd = os.getcwd()
			os.chdir(get_pretrained_model_path())
			fasttext.util.download_model('en', if_exists='ignore')
			external_model = fasttext.load_model('cc.en.300.bin')
			os.chdir(cwd)
			external_model_type = 'binary'
			print('loaded fasttext binary')
		else:
			model_path = TextProcessing.checkAndDownloadPretrainedModel(model_name)
			embed_size, external_model = load_pretrained(model_path)
			external_model_type = 'vector'
			print(f'loaded {model_name} vector')
		pipe.set_params(text_process__vectorizer__external_model = external_model)
		pipe.set_params(text_process__vectorizer__external_model_type = external_model_type)

def reset_pretrained_model(pipe, clear_mem=True):
	global external_model
	global external_model_type
	params = pipe.get_params()
	is_external_model = params.get('text_process__vectorizer__external_model', None)
	if (isinstance(is_external_model, pd.DataFrame) and not is_external_model.empty) or is_external_model:
		pipe.set_params(text_process__vectorizer__external_model = None)
		pipe.set_params(text_process__vectorizer__external_model_type = None)
		if clear_mem:
			external_model = None

def release_pretrained_model():
	global external_model
	global external_model_type
	external_model = None
	external_model_type = None
	"
Embedding.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import numpy as np
import pandas as pd
from nltk.tokenize import word_tokenize

# Private function
def unitvec(vec):
    return vec / np.linalg.norm(vec)
    
def __word_average(vectors, sent, vector_size,key_to_index):
    """"""
    Compute average word vector for a single doc/sentence.
    """"""
    try:
        mean = []
        for word in sent:
            index = key_to_index.get( word, None)
            if index != None:
                mean.append( vectors[index] )
        if len(mean):
            return unitvec(np.array(mean).mean(axis=0))
        return np.zeros(vector_size)
    except:
        raise

# Private function
def __word_average_list(vectors, docs, embed_size,key_to_index):
    """"""
    Compute average word vector for multiple docs, where docs had been tokenized.
    """"""
    try:
        return np.vstack([__word_average(vectors, sent, embed_size,key_to_index) for sent in docs])
    except:
        raise

def load_pretrained(path):
    df = pd.read_csv(path, index_col=0,sep=' ',quotechar = ' ' , header=None, skiprows=1,encoding_errors= 'replace')
    return len(df.columns), df
    
def get_model( df:pd.DataFrame):
    index_to_key = {k:v for k,v in enumerate(df.index)}
    key_to_index = {v:k for k,v in enumerate(df.index)}
    df = df.to_numpy()
    return df, index_to_key, key_to_index
        
def extractFeatureUsingPreTrainedModel(inputCorpus, pretrainedModelPath=None, loaded_model=False,key_to_index={}, embed_size=300):
    """"""
    Extract feature vector from input Corpus using pretrained Vector model(word2vec,fasttext, glove(converted to word2vec format)
    """"""
    try:
        if inputCorpus is None:           
            return None
        else:
            if not pretrainedModelPath and ((isinstance(loaded_model, pd.DataFrame) and loaded_model.empty) or (not isinstance(loaded_model, pd.DataFrame) and not loaded_model)):
                inputCorpusWordVectors = None
            else:
                if (isinstance(loaded_model, pd.DataFrame) and not loaded_model.empty) or loaded_model:
                    pretrainedModel = loaded_model
                else:
                    embed_size, pretrainedModel = load_pretrained(pretrainedModelPath)
                pretrainedModel, index_to_key,key_to_index = get_model( pretrainedModel)
                if len(pretrainedModel):
                    input_docs_tokens_list = [word_tokenize(inputDoc) for inputDoc in inputCorpus]
                    inputCorpusWordVectors = __word_average_list(pretrainedModel, input_docs_tokens_list,embed_size,key_to_index)
                else:
                    inputCorpusWordVectors = None
            return inputCorpusWordVectors
    except:
        raise  
"
openai_embedding.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''

import openai
import tiktoken
import numpy as np
import pandas as pd
from pathlib import Path
from openai.embeddings_utils import get_embedding
from sklearn.base import BaseEstimator, TransformerMixin

class embedding(BaseEstimator, TransformerMixin):

    def __init__(self, embedding_engine='Text-Embedding', embedding_ctx_size=8191, encoding_method='cl100k_base'):
        self.embedding_engine = embedding_engine
        self.embedding_ctx_size = embedding_ctx_size
        self.encoding_method = encoding_method
        self.number_of_features = 1536
        
    def fit(self,X,y=None):
        return self

    def transform(self, X):
        setup_openai()
        
        X = map(lambda text: self.len_safe_get_embedding( text), X)
        return list(X)

    def split_large_text(self, large_text):
        encoding = tiktoken.get_encoding( self.encoding_method)
        tokenized_text = encoding.encode(large_text)

        chunks = []
        current_chunk = []
        current_length = 0

        for token in tokenized_text:
            current_chunk.append(token)
            current_length += 1

            if current_length >= self.embedding_ctx_size:
                chunks.append(encoding.decode(current_chunk).rstrip(' .,;'))
                current_chunk = []
                current_length = 0

        if current_chunk:
            chunks.append(encoding.decode(current_chunk).rstrip(' .,;'))
     
        return chunks
            
    def len_safe_get_embedding(self, text):
        chunk_embeddings = []
        chunk_lens = []
        for chunk in self.split_large_text(text):
            chunk_embeddings.append( get_embedding(chunk, engine=self.embedding_engine))
            chunk_lens.append(len(chunk))

        chunk_embeddings = np.average(chunk_embeddings, axis=0, weights=None)
        chunk_embeddings = chunk_embeddings / np.linalg.norm(chunk_embeddings)  # normalizes length to 1
        chunk_embeddings = chunk_embeddings.tolist()
        return chunk_embeddings

    def get_feature_names_out(self):
        return [str(x) for x in range(self.number_of_features)]

    def get_feature_names(self):
        return self.get_feature_names_out()

""""""
Open AI initialization has to be done separately as follows:
    1. During training read the parameters from user 
        a. from config 
        b. SQLite database
        c. From Json file
""""""
class setup_openai():

    def __init__( self, config=None):
        param_keys = ['api_type','api_key','api_base','api_version']
        if isinstance(config, dict):
            valid_params = {x:y for x,y in config.items() if x in param_keys}
            self._update_params(valid_params)    
        elif self._is_sqlite():
            self._update_params( self._get_cred_from_sqlite())
        elif ((Path(__file__).parent.parent/'etc')/'openai.json').exists():
            with open(((Path(__file__).parent.parent/'etc')/'openai.json'), 'r') as f:
                import json
                params = json.load(f)
                valid_params = {x:y for x,y in params.items() if x in param_keys}
                self._update_params(valid_params)
        else:
            raise ValueError('Open AI credentials are not provided.')

    def _is_sqlite(self):
        try:
            from AION.appbe.sqliteUtility import sqlite_db
            from AION.appbe.dataPath import DATA_DIR
            db_dir = Path(DATA_DIR)/'sqlite'
            db_file = 'config.db'
            if (db_dir/db_file).exists():
                sqlite_obj = sqlite_db(db_dir,db_file)
                if sqlite_obj.table_exists('openai'):
                    return True
            return False            
        except:
            return False

    def _get_cred_from_sqlite(self):
        from AION.appbe.sqliteUtility import sqlite_db
        from AION.appbe.dataPath import DATA_DIR
        db_dir = Path(DATA_DIR)/'sqlite'
        db_file = 'config.db'
        sqlite_obj = sqlite_db(db_dir,db_file)
        data = sqlite_obj.read_data('openai')[0]
        param_keys = ['api_type','api_key','api_base','api_version']
        return dict((x,y) for x,y in zip(param_keys,data))

    def _update_params(self, valid_params):
        for key, value in valid_params.items():
            if key == 'api_type':
                openai.api_type = value
            elif key == 'api_key':
                openai.api_key = value
            elif key == 'api_base':
                openai.api_base = value
            elif key == 'api_version':
                openai.api_version = value
"
eda.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import sys
import logging
from collections import Counter

import spacy
import numpy as np
import pandas as pd
import nltk
from nltk.corpus import stopwords
from nltk import pos_tag
from nltk.tokenize import word_tokenize
from nltk.stem.wordnet import WordNetLemmatizer
from textblob import TextBlob
from sklearn.feature_extraction.text import CountVectorizer
'''
nltk.download(""punkt"")
nltk.download(""wordnet"")
'''
stopWords = stopwords.words(""english"")

class ExploreTextData:


    def __init__(self, logEnabled=False):
        self.logEnabled = logEnabled
       
    def __Log(self, logType=""info"", text=None):
            if logType.lower() == ""exception"":
                logging.exception( text)
            elif self.logEnabled:
                if logType.lower() == ""info"":
                    logging.info( text)
                elif logType.lower() == ""debug"":
                    logging.debug( text)

    def Describe(self, inputCorpus):
        """""" Generate descriptive statistics for length of documents.
            Parameters
            ----------
            
            inputCorpus: sequence of input documents where each document consists of paragraphs or sentences
            Returns
            -------
            dict
                Summary statistics of the Series or Dataframe provided.
        """"""
        try:
            self.__Log(""info"", ""Start of {} function"".format(sys._getframe().f_code.co_name))
            stat = {}
            word_count = self.DocumentWordCount(inputCorpus)
            stat['count'] = float(len(word_count))
            stat['mean'] = float(word_count.mean())
            stat['std'] = float(word_count.std())
            stat['max'] = float(word_count.max())
            stat['min'] = float(word_count.min())
            return pd.DataFrame.from_dict(stat, orient='index')
        except:
            self.__Log(""exception"", sys.exc_info())
            raise
    
    def DocumentLength(self, inputCorpus):
        """""" Calculate the length of each document in corpus
            Parameters
            ----------
            
            inputCorpus: sequence of input documents where each document consists of paragraphs or sentences
            Returns
            -------
            pandas.Series of {int}
                series of length of documents
        """"""
        try:
            self.__Log(""info"", ""Start of {} function"".format(sys._getframe().f_code.co_name))
            return inputCorpus.str.len()
        except:
            self.__Log(""exception"", sys.exc_info())
            raise
        
    def DocumentWordCount(self, inputCorpus):
        """""" Calculate the number of words in each document in corpus
            Parameters
            ----------
            inputCorpus: sequence of input documents where each document consists of paragraphs or sentences
            Returns
            -------
            pandas.Series of {int}
                series of number of words in documents
        """"""
        try:
            self.__Log(""info"", ""Start of {} function"".format(sys._getframe().f_code.co_name))
            return inputCorpus.str.split().map(lambda x: len(x))
        except:
            self.__Log(""exception"", sys.exc_info())
            raise
        
    def AverageWordLength(self, inputCorpus):
        """""" Calculate the average length of words in each document in corpus
            Parameters
            ----------
            inputCorpus: sequence of input documents where each document consists of paragraphs or sentences
            Returns
            -------
            pandas.Series of {double}
                series of average length of words in documents
        """"""
        try:
            self.__Log(""info"", ""Start of {} function"".format(sys._getframe().f_code.co_name))
            return inputCorpus.str.split()\
                .apply(lambda x: [len(i) for i in x])\
                .map(lambda x: np.mean(x))
        except:
            self.__Log(""exception"", sys.exc_info())
            raise
        
    def StopWordsCount(self, inputCorpus):
        """""" Calculate the number of stopwords in each document in corpus
            Parameters
            ----------
            inputCorpus: sequence of input documents where each document consists of paragraphs or sentences
            Returns
            -------
            pandas.Series of {int}
                series of count of stopwords in documents
        """"""
        try:
            self.__Log(""info"", ""Start of {} function"".format(sys._getframe().f_code.co_name))
            stopWordsCount = []
            inputCorpus = list(inputCorpus)
            for doc in inputCorpus:
                count = 0
                for word in doc.split():
                    if word in stopWords:
                        count += 1
                stopWordsCount.append(count)
            return pd.Series(stopWordsCount)
        except:
            self.__Log(""exception"", sys.exc_info())
            raise
        
    def MostCommonWords(self, inputCorpus, num_of_words=40):
        """""" get the most common words in corpus
            Parameters
            ----------
            inputCorpus: sequence of input documents where each document consists of paragraphs or sentences
            Returns
            -------
            Pandas.DataFrame{string, int}
                Dataframe with columns ""most_common_words"" and ""freq""
        """"""
        try:
            self.__Log(""info"", ""Start of {} function"".format(sys._getframe().f_code.co_name))
            new = inputCorpus.str.split()
            new = new.values.tolist()
            corpus = [word for i in new for word in i if word not in stopWords]
            counter = Counter(corpus)
            most = counter.most_common()
        
            x, y = [], []
            for word, count in most[: num_of_words + 1]:
                x.append(word)
                y.append(count)
            return pd.DataFrame([x, y],index=['most_common_words', 'freq']).T
        except:
            self.__Log(""exception"", sys.exc_info())
            raise
        
    def NullCount(self, inputCorpus):
        """""" Calculate the number of null entries in corpus
            Parameters
            ----------
            inputCorpus: sequence of input documents where each document consists of paragraphs or sentences
            Returns
            -------
            int
                count of null entries in corpus
        """"""
        try:
            self.__Log(""info"", ""Start of {} function"".format(sys._getframe().f_code.co_name))
            return pd.Series(inputCorpus.isnull().sum())
        except:
            self.__Log(""exception"", sys.exc_info())
            raise
        
    def TopNgram(self, inputCorpus, ngram, num_of_words=10):
        """""" Get the top words from the ngrams
            Parameters
            ----------
            inputCorpus: sequence of input documents where each document consists of paragraphs or sentences
            ngram: int
                ngram required
            num_of_words:int, optional
                numbers of words to be returned
            Returns
            -------
            Pandas.DataFrame{string, int}
                Dataframe with columns ""ngram_words"" and ""freq""
        """"""
        try:
            self.__Log(""info"", ""Start of {} function"".format(sys._getframe().f_code.co_name))
            words = []
            for doc in inputCorpus:
                word = [w for w in word_tokenize(doc) if (w not in stopWords)]
                words.append("" "".join(word))
            vec = CountVectorizer(ngram_range=(ngram, ngram)).fit(words)
            bag_of_words = vec.transform(inputCorpus)
            sum_words = bag_of_words.sum(axis=0)
            words_freq = [(word, sum_words[0, idx]) for word, idx in vec.vocabulary_.items()]
            words_freq = sorted(words_freq, key=lambda x: x[1], reverse=True)[:num_of_words]
            words = []
            frequency = []
            for word, freq in words_freq:
                words.append(word)
                frequency.append(freq)
            return pd.DataFrame([words, frequency],index=['ngram_words', 'freq']).T
        except:
            self.__Log(""exception"", sys.exc_info())
            raise
        
    def Polarity(self, inputCorpus):
        """""" Get the polarity of the text
            Parameters
            ----------
            inputCorpus: sequence of input documents where each document consists of paragraphs or sentences
    
            Returns
            -------
            pandas.Series {double}
                series of calculated polarity of the documents
        """"""
        try:
            self.__Log(""info"", ""Start of {} function"".format(sys._getframe().f_code.co_name))
            return inputCorpus.apply(lambda x: TextBlob(x).sentiment.polarity)
        except:
            self.__Log(""exception"", sys.exc_info())
            raise
        
    def ReadabilityScore(self, inputCorpus):
        """""" Get the Readability Score of the text
            Parameters
            ----------
            inputCorpus: sequence of input documents where each document consists of paragraphs or sentences
    
            Returns
            -------
            pandas.Series {double}
                series of calculated Readability Score of the documents
        """"""
        import textstat
        try:
            self.__Log(""info"", ""Start of {} function"".format(sys._getframe().f_code.co_name))
    
            if isinstance(inputCorpus, pd.Series):
                return pd.Series([textstat.flesch_reading_ease(text) for text in inputCorpus])
            else:
                return [textstat.flesch_reading_ease(inputCorpus)]
        except:
            self.__Log(""exception"", sys.exc_info())
            raise
    
    def TagEntityCount(self, inputCorpus):
        """""" Calculate the frequency of each entity present in documents
            Parameters
            ----------
            inputCorpus: sequence of input documents where each document consists of paragraphs or sentences
    
            Returns
            -------
            Pandas.DataFrame{string, int}
                Dataframe with columns ""entity"" and ""freq""
        """"""
        def ner(text):
            doc = nlp(text)
            return [X.label_ for X in doc.ents]
    
        try:
            self.__Log(""info"", ""Start of {} function"".format(sys._getframe().f_code.co_name))
            nlp = spacy.load(""en_core_web_sm"")
        
            ent = inputCorpus.apply(lambda x: ner(x))
            ent = [x for sub in ent for x in sub]
        
            counter = Counter(ent)
            count = counter.most_common()
            x, y = map(list, zip(*count))
            return pd.DataFrame([x, y],index=['entity', 'freq']).T
        except:
            self.__Log(""exception"", sys.exc_info())
            raise
        
    def MostCommonTokenPerEntity(self, inputCorpus, entity=""GPE""):
        """""" Get the frequency of most common words corresponding to the specified entity in documents
            Parameters
            ----------
            inputCorpus: sequence of input documents where each document consists of paragraphs or sentences
    
            entity: string, optional
                name of the entity corresponding to which words are counted
            Returns
            -------
            Pandas.DataFrame{string, int}
                Dataframe with columns ""token"" and ""freq""
        """"""
        
        def ner(text, ent):
            doc = nlp(text)
            return [X.text for X in doc.ents if X.label_ == ent]
    
        try:
            self.__Log(""info"", ""Start of {} function"".format(sys._getframe().f_code.co_name))
            nlp = spacy.load(""en_core_web_sm"")
            gpe = inputCorpus.apply(lambda x: ner(x, entity.upper()))
            gpe = [i for x in gpe for i in x]
            counter = Counter(gpe)
        
            x, y = map(list, zip(*counter.most_common(10)))
            return pd.DataFrame([x, y],index=['token', 'freq']).T
        except:
            self.__Log(""exception"", sys.exc_info())
            raise
        
    def MostCommonPosTag(self, inputCorpus):
        """""" Get the frequency of most common POS tag present in documents
            Parameters
            ----------
            inputCorpus: sequence of input documents where each document consists of paragraphs or sentences
    
            Returns
            -------
            Pandas.DataFrame{string, int}
                Dataframe with columns ""postag"" and ""freq""
        """"""
        def pos(text):
            pos = pos_tag(word_tokenize(text))
            pos = list(map(list, zip(*pos)))[1]
            return pos
    
        try:
            self.__Log(""info"", ""Start of {} function"".format(sys._getframe().f_code.co_name))
            tags = inputCorpus.apply(lambda x: pos(x))
            tags = [x for l in tags for x in l]
            counter = Counter(tags)
        
            x, y = list(map(list, zip(*counter.most_common(7))))
            return pd.DataFrame([x, y],index=['postag', 'freq']).T
        except:
            self.__Log(""exception"", sys.exc_info())
            raise
    
    def MostCommonWordsInPOSTag(self, inputCorpus, tag=""NN""):
        """""" Get the frequency of most common words related to specified POS tag present in documents
            Parameters
            ----------
            inputCorpus: sequence of input documents where each document consists of paragraphs or sentences
    
            tag: string, optional
                POS tag corresponding to which words frequency will be calculated
            Returns
            -------
            Pandas.DataFrame{string, int}
                Dataframe with columns ""words"" and ""freq""
        """"""
        def get_POSTag(text, tag):
            adj = []
            pos = pos_tag(word_tokenize(text))
            for word, tg in pos:
                if tg == tag:
                    adj.append(word)
            return adj
    
        try:
            self.__Log(""info"", ""Start of {} function"".format(sys._getframe().f_code.co_name))
            words = inputCorpus.apply(lambda x: get_POSTag(x, tag.upper()))
            words = [x for l in words for x in l]
            counter = Counter(words)
            x = []
            y = []
            if len(counter):
                x, y = list(map(list, zip(*counter.most_common(7))))
            return pd.DataFrame([x, y],index=['words', 'freq']).T
        except:
            self.__Log(""exception"", sys.exc_info())
            raise
        
    def __preprocessData(self, inputCorpus):
        """""" Prepare the data for topic modelling
        """"""
        try:
            self.__Log(""info"", ""Start of {} function"".format(sys._getframe().f_code.co_name))
            corpus = []
            lem = WordNetLemmatizer()
            for doc in inputCorpus:
                words = [w for w in word_tokenize(doc) if (w not in stopWords)]
                words = [lem.lemmatize(w) for w in words if len(w) > 2]
                corpus.append(words)
            return corpus
        except:
            self.__Log(""exception"", sys.exc_info())
            raise"
TextCleaning.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''

import re
import string
import sys
import demoji
#demoji.download_codes()
import nltk
import spacy
from nltk.corpus import stopwords
from bs4 import BeautifulSoup
from text_unidecode import unidecode
from textblob import TextBlob
from spellchecker import SpellChecker
from nltk import pos_tag
from nltk.tokenize import word_tokenize 
from nltk.corpus import wordnet
from nltk.stem.wordnet import WordNetLemmatizer
from nltk.stem.porter import PorterStemmer
from spacy.lang.en import English
from collections import defaultdict
import contractions


spacy_nlp = None

def WordTokenize( inputText, tokenizationLib = 'nltk'):
    tokenList = []
    if inputText is not None and inputText != """":
        tokenizationLib = tokenizationLib.lower()
        if tokenizationLib == 'nltk':
            tokenList = word_tokenize(inputText)
        elif tokenizationLib == 'textblob':
            tbObj = TextBlob(inputText)
            tokenList = tbObj.words
        elif tokenizationLib == 'spacy':
            nlp = English()
            nlpDoc = nlp(inputText)
            for token in nlpDoc:
                tokenList.append(token.text)
        elif tokenizationLib == 'keras':
            from tensorflow.keras.preprocessing.text import text_to_word_sequence
            tokenList = text_to_word_sequence(inputText)
        else:
            tokenList = word_tokenize(inputText)
        
    return tokenList
        
def SentenceTokenize( inputText):
    sentenceList = []
    if inputText is not None and inputText != """":
        sentenceList = sent_tokenize(inputText)
    return sentenceList

def Lemmatize(inputTokensList, lemmatizationLib = 'nltk'):
    global spacy_nlp
    lemmatized_list= []
    lemmatizationLib = lemmatizationLib.lower()
    if (inputTokensList is not None) and (len(inputTokensList)!=0):
        if (lemmatizationLib == 'textblob'):
            inputText = "" "".join(inputTokensList)
            sent = TextBlob(inputText)
            tag_dict = {""J"": 'a', 
                        ""N"": 'n', 
                        ""V"": 'v', 
                        ""R"": 'r'}
            words_and_tags = [(w, tag_dict.get(pos[0], 'n')) for w, pos in sent.tags] 
            lemmatized_list = [wd.lemmatize(tag) for wd, tag in words_and_tags]
        if (lemmatizationLib == 'spacy'):
            inputText = "" "".join(inputTokensList)
            if spacy_nlp == None:
                spacy_nlp = spacy.load('en_core_web_sm')
            doc = spacy_nlp(inputText)
            
            for token in doc:
                if token.text != token.lemma_:
                    if token.lemma_ != ""-PRON-"":
                        lemmatized_list.append(token.lemma_)
                    else:
                        lemmatized_list.append(token.text)
                else:
                    lemmatized_list.append(token.text)
        else:
            tag_map = defaultdict(lambda : wordnet.NOUN)
            tag_map['J'] = wordnet.ADJ
            tag_map['V'] = wordnet.VERB
            tag_map['R'] = wordnet.ADV
        
            wnLemmatizer = WordNetLemmatizer()
            token_tags = pos_tag(inputTokensList)
            lemmatized_list = [wnLemmatizer.lemmatize(token, tag_map[tag[0]]) for token, tag in token_tags]

    return lemmatized_list
    
def Stemmize(inputTokensList):
    stemmedTokensList= []
    
    if (inputTokensList is not None) and (len(inputTokensList)!=0):
        porterStemmer  = PorterStemmer()
        stemmedTokensList = [porterStemmer.stem(token) for token in inputTokensList]
    
    return stemmedTokensList
        
def ToLowercase(inputText):
    resultText = """"
    if inputText is not None and inputText != """":
        resultText = inputText.lower()
    
    return resultText

def ToUppercase(inputText):
    resultText = """"
    if inputText is not None and inputText != '':   
        resultText = inputText.upper()
    
    return resultText
            
def RemoveNoise(inputText, 
                removeNoise_fHtmlDecode = True, 
                removeNoise_fRemoveHyperLinks = True,
                removeNoise_fRemoveMentions = True, 
                removeNoise_fRemoveHashtags = True, 
                removeNoise_RemoveOrReplaceEmoji = 'remove',
                removeNoise_fUnicodeToAscii = True,
                removeNoise_fRemoveNonAscii = True):
    if inputText is not None and inputText != """": 
        if removeNoise_fHtmlDecode == True:
            inputText = BeautifulSoup(inputText, ""html.parser"").text
        if removeNoise_fRemoveHyperLinks == True:
            inputText = re.sub(r'https?:\/\/\S*', '', inputText, flags=re.MULTILINE)            
        if removeNoise_fRemoveMentions == True:
            inputText = re.sub('[@]+\S+','', inputText)
        if removeNoise_fRemoveHashtags == True:
            inputText = re.sub('[#]+\S+','', inputText)
        if removeNoise_RemoveOrReplaceEmoji == 'remove':
            inputText = demoji.replace(inputText, """")
        elif removeNoise_RemoveOrReplaceEmoji == 'replace':
            inputText = demoji.replace_with_desc(inputText, "" "")
        if removeNoise_fUnicodeToAscii == True:
            inputText = unidecode(inputText)
        if removeNoise_fRemoveNonAscii == True:
            inputText= re.sub(r'[^\x00-\x7F]+',' ', inputText)
        
        inputText = re.sub(r'\s+', ' ', inputText)
        inputText = inputText.strip()
    
    return inputText

def RemoveStopwords(inputTokensList, stopwordsRemovalLib='nltk', stopwordsList = None, extend_or_replace='extend'):
    resultTokensList = []
    if (inputTokensList is not None) and (len(inputTokensList)!=0):
        stopwordsRemovalLib= stopwordsRemovalLib.lower()
      
        if stopwordsRemovalLib == 'spacy':
            nlp = English()
            stopwordRemovalList = nlp.Defaults.stop_words
        else:
            stopwordRemovalList = set(stopwords.words('english'))
            
        if extend_or_replace == 'replace':
            if stopwordsList is not None:
                stopwordRemovalList = set(stopwordsList)
        else:
            if stopwordsList:
                stopwordRemovalList = stopwordRemovalList.union(set(stopwordsList))
            
        resultTokensList = [word for word in inputTokensList if word not in stopwordRemovalList] 
    
    return resultTokensList           
        
def RemoveNumericTokens(inputText, removeNumeric_fIncludeSpecialCharacters=True):
    resultText = """"
    if inputText is not None and inputText != """": 
        if removeNumeric_fIncludeSpecialCharacters == True:
            #Remove tokens having numbers and punctuations                    
            resultText = re.sub(r'\b\d+[^a-zA-Z]*\d*\b',' ', inputText)
        else:
            #Remove only numeric tokens
            resultText = re.sub(r'\b\d+\b','', inputText)
            
        # convert consecutive whitespaces to single space in the results
        resultText = re.sub(r'\s+', ' ', resultText)
    
    return resultText
    
def RemovePunctuation(inputText, fRemovePuncWithinTokens=False):
    resultText = """"
    if inputText is not None and len(inputText) != 0:
        if fRemovePuncWithinTokens == True:
            resultText = inputText.translate(str.maketrans("""","""", string.punctuation))
        else:
            punctuationList = list(string.punctuation)
            tokensList = WordTokenize(inputText)                
            resultTokensList = [word for word in tokensList if word not in punctuationList]               
            resultText = "" "".join(resultTokensList)            
        
        resultText = re.sub(r'\s+', ' ', resultText)
    return resultText
        
        
def CorrectSpelling(inputTokensList):
    correctedTokensList = []
    
    if (inputTokensList is not None) and (len(inputTokensList)!=0):                    
        spell = SpellChecker()
        for word in inputTokensList:
            word = word.lower()
            if word not in spell:
                word = spell.correction(word)
            if word:
                correctedTokensList.append(word)       
    return correctedTokensList
        
def ReplaceAcronym(inputTokensList, acrDict=None):
    resultTokensList = []
    
    if (inputTokensList is not None) and (len(inputTokensList)!=0): 
        if ((acrDict is not None) and (len(acrDict) != 0)):
            acrDictLowercase = dict((key.lower(), value.lower()) for key, value in acrDict.items())
            resultTokensList = [acrDictLowercase.get(token.lower(), token.lower()) for token in inputTokensList]
        else:
            resultTokensList = inputTokensList
        
    return resultTokensList            
        
def ExpandContractions(inputText):
        resultText = """"
        if inputText != '':
            resultText = contractions.fix(inputText)
        return resultText        

def cleanText( inputText,
               functionSequence = ['RemoveNoise','ExpandContractions','Normalize','ReplaceAcronym',
                           'CorrectSpelling','RemoveStopwords','RemovePunctuation','RemoveNumericTokens'],
               fRemoveNoise = True,
               fExpandContractions = False,
               fNormalize = True,
               fReplaceAcronym = False,
               fCorrectSpelling = False,
               fRemoveStopwords = True,
               fRemovePunctuation = True,
               fRemoveNumericTokens = True,
               removeNoise_fHtmlDecode = True, 
               removeNoise_fRemoveHyperLinks = True,
               removeNoise_fRemoveMentions = True, 
               removeNoise_fRemoveHashtags = True,
               removeNoise_RemoveOrReplaceEmoji = 'remove',
               removeNoise_fUnicodeToAscii = True,
               removeNoise_fRemoveNonAscii = True,
               tokenizationLib='nltk',
               normalizationMethod = 'Lemmatization',
               lemmatizationLib = 'nltk',
               acronymDict = None,
               stopwordsRemovalLib = 'nltk',
               stopwordsList = None,
               extend_or_replace_stopwordslist = 'extend',
               removeNumeric_fIncludeSpecialCharacters = True,
               fRemovePuncWithinTokens = False
               ):
    if inputText is not None and inputText != """":   
        for function in functionSequence:
            if function == 'RemoveNoise':
                if (fRemoveNoise == True):
                    inputText = RemoveNoise(inputText, 
                                                 removeNoise_fHtmlDecode, 
                                                 removeNoise_fRemoveHyperLinks,
                                                 removeNoise_fRemoveMentions, 
                                                 removeNoise_fRemoveHashtags, 
                                                 removeNoise_RemoveOrReplaceEmoji, 
                                                 removeNoise_fUnicodeToAscii, 
                                                 removeNoise_fRemoveNonAscii)
            if function == 'ExpandContractions':
                if (fExpandContractions == True):
                    inputText = ExpandContractions(inputText)
            if function == 'Normalize':                        
                if (fNormalize == True):
                    inputTokens = WordTokenize(inputText, tokenizationLib)   
                    if (normalizationMethod == 'Stemming'):
                        inputTokens = Stemmize(inputTokens)
                    else:                        
                        inputTokens = Lemmatize(inputTokens, lemmatizationLib)
                    inputText = "" "".join(inputTokens)
            if function == 'ReplaceAcronym':   
                if fReplaceAcronym == True and (acronymDict is not None) and acronymDict != 'None':
                    inputText = ToLowercase(inputText)
                    inputTokens = WordTokenize(inputText, tokenizationLib) 
                    inputTokens= ReplaceAcronym(inputTokens, acronymDict)
                    inputText = "" "".join(inputTokens)
            if function == 'CorrectSpelling':
                if (fCorrectSpelling == True):
                    try:
                        inputTokens = WordTokenize(inputText, tokenizationLib)                    
                        inputTokens = CorrectSpelling(inputTokens)
                        inputText = "" "".join(inputTokens)
                    except Exception as e:
                        print(e)
                        pass
            if function == 'RemoveStopwords':
                if (fRemoveStopwords == True):
                    inputText = ToLowercase(inputText)
                    inputTokens = WordTokenize(inputText, tokenizationLib)
                    inputTokens = RemoveStopwords(inputTokens, stopwordsRemovalLib, stopwordsList, extend_or_replace_stopwordslist)
                    inputText = "" "".join(inputTokens)
            if function == 'RemovePunctuation':
                if (fRemovePunctuation == True):
                    inputText = RemovePunctuation(inputText, fRemovePuncWithinTokens)
            if function == 'RemoveNumericTokens':    
                if (fRemoveNumericTokens == True):
                    inputText = RemoveNumericTokens(inputText, removeNumeric_fIncludeSpecialCharacters)
            inputText = ToLowercase(inputText)

    return inputText
        
"
timeseries.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import json

#Python sklearn & std libraries
import numpy as np
import pandas as pd
from time_series.ts_arima_eion import eion_arima
from time_series.aion_fbprophet import aion_fbprophet
from time_series.timeseriesDLUnivariate import timeseriesDLUnivariate
from time_series.timeseriesDLMultivariate import timeseriesDLMultivariate
from time_series.tsDLMultiVrtInUniVrtOut import tsDLMultiVrtInUniVrtOut
from  statsmodels.tsa.vector_ar.vecm import coint_johansen
from statsmodels.tsa.vector_ar.var_model import VAR
from math import *
from sklearn.metrics import mean_squared_error
from sklearn.metrics import mean_absolute_error
from math import sqrt
import logging
import os
import sys
import time
import pickle
from statsmodels.tsa.arima_model import ARIMA
from sklearn.metrics import mean_squared_error
from statsmodels.tsa.stattools import adfuller
import pmdarima as pm
from statsmodels.tsa.stattools import grangercausalitytests
from statsmodels.stats.stattools import durbin_watson
from time_series.ts_modelvalidation import timeseriesModelTests
from sklearn.utils import check_array
from time_series.tsStationarySeasonalityTest import tsStationarySeasonalityTest

class timeseries():
    def __init__(self,tsConfig,modelconfig,modelList,data,targetFeature,dateTimeFeature,modelName,trainPercentage,usecasename,version,deployLocation,scoreParam):
        self.tsConfig = tsConfig
        self.modelconfig = modelconfig
        self.modelList = modelList
        self.data = data
        self.data1=data
        self.pred_freq = ''
        self.additional_regressors=''
        self.trainPercentage = trainPercentage
        self.targetFeature = targetFeature
        self.dateTimeFeature = dateTimeFeature
        self.modelName=modelName
        self.usecasename=usecasename
        self.model_fit=None
        self.selectedColumns = ''
        self.version=version        
        self.deployLocation=deployLocation                
        self.dictDiffCount={}
        self.log = logging.getLogger('eion')
        self.scoreParam=str(scoreParam)
        try:
            ##For bug:12280
            self.data.dropna(how='all',axis=1,inplace=True)            
        except Exception as e:
            self.data.fillna(0)
            self.log.info(""data empty feature process error info:, check any text column contain empty records. if yes, please remove the column and upload the data for time series forecasting. \n""+str(e))
    
    def var_prediction(self,no_of_prediction):
        tdata = self.data.drop([self.dateTimeFeature], axis=1)
        tdata.index = self.data[self.dateTimeFeature]
        lag_order = self.model_fit.k_ar
        predictions = self.model_fit.forecast(tdata.values[-lag_order:],steps=no_of_prediction)
        predictions = predictions.round(2)
        col = self.targetFeature.split("","")
        pred = pd.DataFrame(index=range(0,len(predictions)),columns=col)
        for j in range(0,len(col)):
            for i in range(0, len(predictions)):
                pred.iloc[i][j] = predictions[i][j]
        predictions = pred
        pred=self.invertTransformation(tdata,self.targetFeature,predictions,self.dictDiffCount)        
        return pred
    def save_dl_model(self,smodel,scaler_model):
        try:
            saved_model =  self.usecasename+'_'+self.version
            filename = os.path.join(self.deployLocation,'model',saved_model)
            smodel.save(filename)
            if scaler_model != 'NA' and scaler_model != '':
                scaler_filename = os.path.join(self.deployLocation,'model',saved_model+'_scaler.pkl')
                with open(scaler_filename, 'wb') as f:
                    pickle.dump(scaler_model,f)
                f.close()
            else:
                scaler_filename = 'NA'
            return filename,saved_model,scaler_filename
        except Exception as e:
            print(e)
            
    def save_model(self,smodel):
        try:
            saved_model =    self.usecasename+'_'+self.version+'.sav'
            filename = os.path.join(self.deployLocation,'model',saved_model)
            with open(filename, 'wb') as f:
                pickle.dump(smodel,f)
            f.close()
            return filename,saved_model        
        except Exception as e:
            print(e)
        
    def mean_absolute_percentage_error(self,y_true, y_pred): 
        try:
            y_true, y_pred=np.array(y_true), np.array(y_pred)
            mape=np.mean(np.abs((y_true - y_pred) / y_true+sys.float_info.epsilon)) * 100
            return mape
            
        except Exception as inst:
            self.log.info('------------- mean_absolute_percentage_error ---------------')
            exc_type, exc_obj, exc_tb = sys.exc_info()
            fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
            self.log.info(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))
    ## Fbprophet model
    def getfbprophetmodel(self,predicted_data_file,dataFolderLocation,tFeature):
        try:
            modelName='fbprophet'
            modelconfig = self.modelconfig['fbprophet']
            self.targetFeature=tFeature[0]
            X_Train = pd.DataFrame(self.data[self.targetFeature])
            try:
                # self.data[self.dateTimeFeature] = pd.to_datetime(self.data[self.dateTimeFeature],errors='coerce')
                ##For bug 13513 - If the datetime needs UTC timestamp process, except part will handle.
                try:
                    #for non utc timestamp
                    self.data[self.dateTimeFeature] = pd.to_datetime(self.data[self.dateTimeFeature],errors='coerce')
                except:
                    #for utc timestamp
                    self.data[self.dateTimeFeature] = pd.to_datetime(self.data[self.dateTimeFeature],errors='coerce',utc=True)
                self.data = self.data.dropna()
            except:
                pass
            aion_prophet_obj = aion_fbprophet(modelconfig,self.trainPercentage,self.data,self.targetFeature,self.dateTimeFeature)
            self.log.info('Status:- |... TimeSeries Algorithm applied: FBPROPHET')
            self.model_fit,mae,rmse_prophet,mse,mape,r2,pred_freq,additional_regressors,prophet_df_new = aion_prophet_obj.aion_probhet(X_Train,self.dateTimeFeature,predicted_data_file,dataFolderLocation)
            ## Added for additional scoring params
            if (self.scoreParam.lower() == ""r2""):
                scoringparam_v=r2
                self.log.info(""fbprophet User selected scoring parameter is r2. r2 value: ""+str(r2))
            elif (self.scoreParam.lower() == ""rmse""):
                scoringparam_v=rmse_prophet
                self.log.info(""fbprophet User selected scoring parameter is RMSE. RMSE value: ""+str(rmse_prophet))
            elif (self.scoreParam.lower() == ""mse""):
                scoringparam_v=mse
                self.log.info(""fbprophet User selected scoring parameter is MSE. MSE value: ""+str(mse))
            elif (self.scoreParam.lower() == ""mae""):
                scoringparam_v=mae
                self.log.info(""fbprophet User selected scoring parameter is MAE. MAE value: ""+str(mae))
            else:
                scoringparam_v=rmse_prophet
            self.log.info('Status:-  |... Score '+self.scoreParam.capitalize()+': '+str(round(scoringparam_v,2))) #task 11997 displaying user selected scoring parameter in status logs
            error_matrix = '""RMSE"":""'+str(round(rmse_prophet,2))+'"",""MAPE"":""'+str(round(mape,2))+'"",""R2"":""'+str(round(r2,2))+'"",""MAE"":""'+str(round(mae,2))+'"",""MSE"":""'+str(round(mse,2))+'""'
            self.log.info(""fbprophet all scoring parameter results: ""+str(error_matrix))
            scoredetails = '{""Model"":""FBProphet "",""Score"":'+str(scoringparam_v)+',""Scoring Param"": ""'+str(self.scoreParam.lower())+'""}'
            self.selectedColumns = self.targetFeature+','+self.dateTimeFeature
            self.selectedColumns = self.selectedColumns.split("","")
            self.pred_freq = pred_freq
            self.additional_regressors=additional_regressors
            self.log.info('------------- End FBPROPHET Model -------------\n')
            return('Success',modelName.upper(),self.scoreParam.lower(),scoringparam_v,self.model_fit,self.selectedColumns,error_matrix,scoredetails,self.dictDiffCount,self.pred_freq,self.additional_regressors,prophet_df_new)
        except Exception as e:
            self.log.info(""FBProphet operation failed. error: ""+str(e))
            return('Error',modelName.upper(),self.scoreParam.lower(),0,None,self.selectedColumns,'','{}',self.dictDiffCount,self.pred_freq,self.additional_regressors,pd.DataFrame())			
    ## Arima model
    def get_arima_values(self):
        try:
            tFeature = self.targetFeature.split(',')
            if(len(tFeature) == 1):
                model_name = 'arima'
            else:
                self.log.info(""Note: ARIMA model is going to perform only on first feature of  provided target features due to  data not met the  VAR model constraints"")
                self.targetFeature=tFeature[0]
            sesonalityChecks=True
            stationaryChecks=False
            #start checking sessonality using ch test  and ocsb
            self.log.info(self.data.head(5))
            res = pm.arima.nsdiffs(self.data[self.targetFeature], m=355, max_D=5, test=""ch"")  # 365 since daily
            self.log.info('-------> Seasonality  checks: %f' % res)
            if res >=4:
                self.log.info(""-----------> Data is following Seasonality "")
                self.log.info('Status:- |... Seasonality  Check Done. Data is following Seasonality ')
                sesonalityChecks=True
            else:
                self.log.info(""-----------> Data is not following Seasonality "")
                self.log.info('Status:- |... Seasonality Check Done. Data is not following Seasonality')
                sesonalityChecks=False
                            
            #       end  checking sessonality using ch test  and ocsb
            # start checking stationary  data for time Series
            series=self.data[self.targetFeature]
            adf_test = pm.arima.ADFTest(alpha=0.05)
                            
            resultSt = adfuller(self.data[self.targetFeature])
            self.log.info('ADF Statistic: %f' % resultSt[0])
            self.log.info('p-value: %f' % resultSt[1])
            if resultSt[1]<= 0.05:
                stationaryChecks=True
                self.log.info(""the data does not have a unit root and is stationary."")
                self.log.info('Status:- |... Stationary Check Done. Data is stationary')
            else:
                stationaryChecks=False
                self.log.info(""the data has a unit root and is non-stationary."")
                self.log.info('Status:- |... Stationary Check Done. Data is non-stationary')
                            
            # End of stationary checks 
            self.log.info('\n------------- Start Arima Model -------------')
            self.log.info('-------> Top 5 Rows: ')
            self.log.info(self.data.head(5))
            eion_arima_obj = eion_arima(self.modelconfig['arima'],self.trainPercentage,sesonalityChecks,stationaryChecks)
            return 'Success',eion_arima_obj
        except Exception as e:
            self.log.info('<!------------- Get ARIMA Values ---------------> '+str(inst))
            exc_type, exc_obj, exc_tb = sys.exc_info()
            fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
            self.log.info(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))           
            return 'Error',None
        
    def getEncDecLSTMMultVrtInUniVrtOut(self):
        try:
            self.log.info('Status:- |... TimeSeries Algorithm applied: Encoder Decoder LSTM')
            modelName='encoder_decoder_lstm_mvi_uvo'            
            modelconfig = self.modelconfig['encoder_decoder_lstm_mvi_uvo']
            df = self.data
            targetFeature = list(self.targetFeature.split("",""))
            
            try:
                # df[self.dateTimeFeature] = pd.to_datetime(df[self.dateTimeFeature],errors='coerce')
                ##For bug 13513 - If the datetime needs UTC timestamp process, except part will handle.
                try:
                    #for non utc timestamp
                    df[self.dateTimeFeature] = pd.to_datetime(df[self.dateTimeFeature],errors='coerce')
                except:
                    #for utc timestamp
                    df[self.dateTimeFeature] = pd.to_datetime(df[self.dateTimeFeature],errors='coerce',utc=True)
                df = df.dropna()
            except:
                pass
            df = df.groupby(self.dateTimeFeature).mean()    
            df = df.reset_index()
            tdata = df.drop([self.dateTimeFeature], axis=1)
            tdata.index = df[self.dateTimeFeature]
            #tdata = tdata[tdata.columns[tdata.columns.isin(targetFeature)]]
            #selectedColumns = self.targetFeature+','+self.dateTimeFeature
            #selectedColumns = selectedColumns.split("","")
            selectedColumns = tdata.columns
            df_predicted=None
            
            aion_dlts_obj = tsDLMultiVrtInUniVrtOut(modelconfig,self.trainPercentage,targetFeature,self.dateTimeFeature)
            status,mse,rmse,r2,mae,model,df_predicted,lag_order,scaler = aion_dlts_obj.lstm_encdec_mvin_uvout(tdata)
            if status.lower() == 'success':
                ## Added for additional scoring params
                if (self.scoreParam.lower() == ""r2""):
                    scoringparam_v=r2
                    self.log.info('Status:-  |... Score R2(Avg) '+str(r2))
                elif (self.scoreParam.lower() == ""rmse""):
                    scoringparam_v=rmse
                    self.log.info(""Status:-  |... Score RMSE(Avg) ""+str(rmse))
                elif (self.scoreParam.lower() == ""mse""):
                    scoringparam_v=mse
                    self.log.info(""Status:-  |... Score MSE(Avg) ""+str(mse))
                elif (self.scoreParam.lower() == ""mae""):
                    scoringparam_v=mae
                    self.log.info(""Status:-  |... Score MAE(Avg) : ""+str(mae))
                else:
                    scoringparam_v=rmse
                error_matrix = '""RMSE"":""'+str(round(rmse,2))+'"",""MSE"":""'+str(round(mse,2))+'""'
                error_matrix=error_matrix+',""R2"":""'+str(round(r2,2))+'"",""MAE"":""'+str(round(mae,2))+'""'
                self.log.info(""LSTM Multivariant Input Univariate Output all scoring param results: ""+str(error_matrix))
                self.log.info('Status:-  |... Score '+self.scoreParam.capitalize()+': '+str(round(scoringparam_v,2))) #task 11997 displaying user selected scoring parameter in status logs
                scoredetails = '{""Model"":""LSTM Multivariant"",""Score"":'+str(scoringparam_v)+',""Scoring Param"": ""'+str(self.scoreParam.lower())+'""}'
            else:
                return 'Error',modelName.upper(),self.scoreParam.lower(),'NA',None,selectedColumns,'','{}',pd.DataFrame(),lag_order,None 				
        except Exception as e:
            self.log.info(""getEncDecLSTMMultVrtInUniVrtOut method error. Error msg: ""+str(e))
            return 'Error',modelName.upper(),self.scoreParam.lower(),'NA',None,selectedColumns,'','{}',pd.DataFrame(),lag_order,None
        return 'Success',modelName.upper(),self.scoreParam.lower(),scoringparam_v,model,selectedColumns,error_matrix,scoredetails,df_predicted,lag_order,scaler

    def getLSTMMultivariate(self):
        try:
            self.log.info('Status:- |... TimeSeries Algorithm applied: LSTM')
            modelName='lstm'            
            modelconfig = self.modelconfig['lstm']
            df = self.data
            targetFeature = list(self.targetFeature.split("",""))
            try:
                # df[self.dateTimeFeature] = pd.to_datetime(df[self.dateTimeFeature],errors='coerce')
                ##For bug 13513 - If the datetime needs UTC timestamp process, except part will handle.
                try:
                    #for non utc timestamp
                    df[self.dateTimeFeature] = pd.to_datetime(df[self.dateTimeFeature],errors='coerce')
                except:
                    #for utc timestamp
                    df[self.dateTimeFeature] = pd.to_datetime(df[self.dateTimeFeature],errors='coerce',utc=True)
                df = df.dropna()
            except:
                pass
            df = df.groupby(self.dateTimeFeature).mean()    
            df = df.reset_index()
            tdata = df.drop([self.dateTimeFeature], axis=1)
            tdata.index = df[self.dateTimeFeature]
            tdata = tdata[tdata.columns[tdata.columns.isin(targetFeature)]]
            selectedColumns = self.targetFeature+','+self.dateTimeFeature
            selectedColumns = selectedColumns.split("","")
            df_predicted=None
            
            aion_dlts_obj = timeseriesDLMultivariate(modelconfig,self.trainPercentage,targetFeature,self.dateTimeFeature)
            status,mse,rmse,r2,mae,model,df_predicted,lag_order,scaler = aion_dlts_obj.lstm_multivariate(tdata)
            if status.lower() == 'success':
                ## Added for additional scoring params
                if (self.scoreParam.lower() == ""r2""):
                    scoringparam_v=r2
                    self.log.info('Status:-  |... Score R2(Avg) '+str(r2))
                elif (self.scoreParam.lower() == ""rmse""):
                    scoringparam_v=rmse
                    self.log.info(""Status:-  |... Score RMSE(Avg) ""+str(rmse))
                elif (self.scoreParam.lower() == ""mse""):
                    scoringparam_v=mse
                    self.log.info(""Status:-  |... Score MSE(Avg) ""+str(mse))
                elif (self.scoreParam.lower() == ""mae""):
                    scoringparam_v=mae
                    self.log.info(""Status:-  |... Score MAE(Avg) : ""+str(mae))
                else:
                    scoringparam_v=rmse
                error_matrix = '""RMSE"":""'+str(round(rmse,2))+'"",""MSE"":""'+str(round(mse,2))+'""'
                error_matrix=error_matrix+',""R2"":""'+str(round(r2,2))+'"",""MAE"":""'+str(round(mae,2))+'""'
                self.log.info(""LSTM Multivariant all scoring param results: ""+str(error_matrix))
                self.log.info('Status:-  |... Score '+self.scoreParam.capitalize()+': '+str(round(scoringparam_v,2))) #task 11997 displaying user selected scoring parameter in status logs
                scoredetails = '{""Model"":""LSTM Multivariant"",""Score"":'+str(scoringparam_v)+',""Scoring Param"": ""'+str(self.scoreParam.lower())+'""}'
            else:
                return 'Error',modelName.upper(),self.scoreParam.lower(),'NA',None,selectedColumns,'','{}',pd.DataFrame(),lag_order,None 				
        except Exception as e:
            self.log.info(""getLSTMMultivariate method error. Error msg: ""+str(e))
            return 'Error',modelName.upper(),self.scoreParam.lower(),'NA',None,selectedColumns,'','{}',pd.DataFrame(),lag_order,None
        return 'Success',modelName.upper(),self.scoreParam.lower(),scoringparam_v,model,selectedColumns,error_matrix,scoredetails,df_predicted,lag_order,scaler
        
    def getUniVarientLSTMModel(self):
        try:
            self.log.info('Status:- |... TimeSeries Algorithm applied: LSTM')
            modelName='lstm'
            lstmconfig = self.modelconfig['lstm']
            df = self.data
            try:
                # df[self.dateTimeFeature] = pd.to_datetime(df[self.dateTimeFeature],errors='coerce')
                ##For bug 13513 - If the datetime needs UTC timestamp process, except part will handle.
                try:
                    #for non utc timestamp
                    df[self.dateTimeFeature] = pd.to_datetime(df[self.dateTimeFeature],errors='coerce')
                except:
                    #for utc timestamp
                    df[self.dateTimeFeature] = pd.to_datetime(df[self.dateTimeFeature],errors='coerce',utc=True)
                df = df.dropna()
            except:
                pass
            tdata = df.drop([self.dateTimeFeature], axis=1)
            tdata.index = df[self.dateTimeFeature]
            tdata = pd.DataFrame(tdata[self.targetFeature])
            selectedColumns = self.targetFeature+','+self.dateTimeFeature
            selectedColumns = selectedColumns.split("","")
            aion_dlts_obj = timeseriesDLUnivariate(lstmconfig,self.trainPercentage,self.targetFeature,self.dateTimeFeature,modelName)
            status,lstm_mse,lstm_rmse,r2,mae,lstm_model,df_predicted_lstm,lag_order,scaler = aion_dlts_obj.ts_lstm(tdata)
            if status.lower() == 'success':
                ## Added for additional scoring params
                if (self.scoreParam.lower() == ""r2""):
                    scoringparam_v=r2
                    self.log.info(""LSTM Univariant User selected scoring parameter is r2. r2 value: ""+str(r2))
                elif (self.scoreParam.lower() == ""rmse""):
                    scoringparam_v=lstm_rmse
                    self.log.info(""LSTM Univariant User selected scoring parameter is RMSE. Rmse value: ""+str(lstm_rmse))
                elif (self.scoreParam.lower() == ""mse""):
                    scoringparam_v=lstm_mse
                    self.log.info(""LSTM Univariant User selected scoring parameter is MSE. Mse value: ""+str(lstm_mse))
                elif (self.scoreParam.lower() == ""mae""):
                    scoringparam_v=mae
                    self.log.info(""LSTM Univariant User selected scoring parameter is MAE. Mae value: ""+str(mae))
                else:
                    scoringparam_v=lstm_rmse
                error_matrix = '""RMSE"":""'+str(round(lstm_rmse,2))+'"",""MSE"":""'+str(round(lstm_mse,2))+'""'
                error_matrix=error_matrix+',""R2"":""'+str(round(r2,2))+'"",""MAE"":""'+str(round(mae,2))+'""'
                self.log.info(""LSTM Univariant, all scoring param results: ""+str(error_matrix))
                self.log.info('Status:-  |... Score '+self.scoreParam.capitalize()+': '+str(round(scoringparam_v,2))) #task 11997 displaying user selected scoring parameter in status logs
                scoredetails = '{""Model"":""LSTM Univariant"",""Score"":'+str(scoringparam_v)+',""Scoring Param"": ""'+str(self.scoreParam.lower())+'""}'    
                return 'Success',modelName.upper(),self.scoreParam.lower(),scoringparam_v,lstm_model,selectedColumns,error_matrix,scoredetails,df_predicted_lstm,lag_order,scaler
            else:
                return 'Error',modelName.upper(),self.scoreParam.lower(),0,None,selectedColumns,'','{}',pd.DataFrame(),0,None	
        except Exception as inst:
            self.log.info('<!------------- LSTM Error ---------------> '+str(inst))
            exc_type, exc_obj, exc_tb = sys.exc_info()
            fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
            self.log.info(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))
            return 'Error',modelName.upper(),self.scoreParam.lower(),0,None,selectedColumns,'','{}',pd.DataFrame(),0,None	
    def getUniVarientMLPModel(self):
        try:
            self.log.info('Status:- |... TimeSeries Algorithm applied: MLP')        
            modelName='mlp'
            lstmconfig = self.modelconfig['mlp']
            df = self.data
            try:
                # df[self.dateTimeFeature] = pd.to_datetime(df[self.dateTimeFeature],errors='coerce')
                ##For bug 13513 - If the datetime needs UTC timestamp process, except part will handle.
                try:
                    #for non utc timestamp
                    df[self.dateTimeFeature] = pd.to_datetime(df[self.dateTimeFeature],errors='coerce')
                except:
                    #for utc timestamp
                    df[self.dateTimeFeature] = pd.to_datetime(df[self.dateTimeFeature],errors='coerce',utc=True)
                df = df.dropna()
            except:
                pass
            tdata = df.drop([self.dateTimeFeature], axis=1)
            tdata.index = df[self.dateTimeFeature]
            tdata = pd.DataFrame(tdata[self.targetFeature])
            selectedColumns = self.targetFeature+','+self.dateTimeFeature
            selectedColumns = selectedColumns.split("","")
            aion_dlts_obj = timeseriesDLUnivariate(lstmconfig,self.trainPercentage,self.targetFeature,self.dateTimeFeature,modelName)
            mlp_mse,mlp_rmse,r2,mae,mlp_model,df_predicted_mlp,look_back,scaler = aion_dlts_obj.mlpDL(tdata)
            ## Added for additional scoring params
            if (self.scoreParam.lower() == ""r2""):
                scoringparam_v=r2
                self.log.info(""MLP Univariant User selected scoring parameter is R2. R2 value: ""+str(r2))
            elif (self.scoreParam.lower() == ""rmse""):
                scoringparam_v=mlp_rmse
                self.log.info(""MLP Univariant User selected scoring parameter is RMSE. Rmse value: ""+str(mlp_rmse))
            elif (self.scoreParam.lower() == ""mse""):
                scoringparam_v=mlp_mse
                self.log.info(""MLP Univariant User selected scoring parameter is MSE. Mse value: ""+str(mlp_mse))
            elif (self.scoreParam.lower() == ""mae""):
                scoringparam_v=mae
                self.log.info(""MLP Univariant User selected scoring parameter is MAE. Mae value: ""+str(mae))
            else:
                scoringparam_v=mlp_rmse
            error_matrix = '""RMSE"":""'+str(round(mlp_rmse,2))+'"",""MSE"":""'+str(round(mlp_mse,2))+'""'
            error_matrix=error_matrix+',""R2"":""'+str(round(r2,2))+'"",""MAE"":""'+str(round(mae,2))+'""'
            self.log.info(""MLP Univariant, all scoring param results: ""+str(error_matrix))
            self.log.info('Status:-  |... Score '+self.scoreParam.capitalize()+': '+str(round(scoringparam_v,2))) #task 11997 displaying user selected scoring parameter in status logs
            scoredetails = '{""Model"":""MLP"",""Score"":'+str(scoringparam_v)+',""Scoring Param"": ""'+str(self.scoreParam.lower())+'""}'    
            return 'Success',modelName.upper(),self.scoreParam.lower(),scoringparam_v,mlp_model,selectedColumns,error_matrix,scoredetails,df_predicted_mlp,look_back,scaler
        except Exception as inst:
            import traceback
            self.log.info(""MLP Error in timeseries module: \n""+str(traceback.print_exc()))
            self.log.info('<!------------- MLP Error ---------------> ')
            exc_type, exc_obj, exc_tb = sys.exc_info()
            fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
            self.log.info(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))
            return 'Error',modelName.upper(),self.scoreParam.lower(),0,None,selectedColumns,'','{}',pd.DataFrame(),0,None            
    def getARIMAmodel(self,predicted_data_file):
        try:
            modelName='arima'
            
            status,eion_arima_obj = self.get_arima_values()            
            self.log.info('Status:- |... TimeSeries Algorithm applied: ARIMA')
            selected_feature_list = self.data[self.targetFeature].values
            selected_feature_list = selected_feature_list.astype('int32')
            self.log.info('-------> Target Feature First 5 Rows: ')
            self.log.info(self.data[self.targetFeature].head(5))
            X_Train = pd.DataFrame(self.data[self.targetFeature])
            try:
                # self.data[self.dateTimeFeature] = pd.to_datetime(self.data[self.dateTimeFeature],errors='coerce')
                ##For bug 13513 - If the datetime needs UTC timestamp process, except part will handle.
                try:
                    #for non utc timestamp
                    self.data[self.dateTimeFeature] = pd.to_datetime(self.data[self.dateTimeFeature],errors='coerce')
                except:
                    #for utc timestamp
                    self.data[self.dateTimeFeature] = pd.to_datetime(self.data[self.dateTimeFeature],errors='coerce',utc=True)
                self.data = self.data.dropna()
            except:
                pass
            if status.lower() == 'success':				
                self.model_fit,mae,rmse_arima,mse,r2,aic_score,mape,valid,pred = eion_arima_obj.eion_arima(X_Train)
                ## Added for additional scoring params
                if (self.scoreParam.lower() == ""r2""):
                    scoringparam_v=r2
                    self.log.info(""ARIMA Univariant User selected scoring parameter is r2. r2 value: ""+str(r2))
                elif (self.scoreParam.lower() == ""rmse""):
                    scoringparam_v=rmse_arima
                    self.log.info(""ARIMA Univariant User selected scoring parameter is RMSE. RMSE value: ""+str(rmse_arima))
                elif (self.scoreParam.lower() == ""mse""):
                    scoringparam_v=mse
                    self.log.info(""ARIMA Univariant User selected scoring parameter is MSE. MSE value: ""+str(mse))
                elif (self.scoreParam.lower() == ""mae""):
                    scoringparam_v=mae
                    self.log.info(""ARIMA Univariant User selected scoring parameter is MAE. RMSE value: ""+str(rmse_arima))
                else:
                    scoringparam_v=rmse_arima
                error_matrix = '""RMSE"":""'+str(round(rmse_arima,2))+'"",""MSE"":""'+str(round(mse,2))+'""'
                error_matrix=error_matrix+',""R2"":""'+str(round(r2,2))+'"",""MAE"":""'+str(round(mae,2))+'""'
                self.log.info('Status:-  |... Score '+self.scoreParam.capitalize()+': '+str(round(scoringparam_v,2))) #task 11997 displaying user selected scoring parameter in status logs
                self.log.info(""ARIMA  all scoring param results: ""+str(error_matrix))
                scoredetails = '{""Model"":""ARIMA"",""Score"":'+str(scoringparam_v)+',""Scoring Param"": ""'+str(self.scoreParam.lower())+'""}'  
            
                df_pred = pd.DataFrame()
                df_pred[self.targetFeature+'_actual'] = valid[self.targetFeature]
                df_pred[self.targetFeature+'_pred'] = pred
                self.log.info('Status:-  |... Score '+self.scoreParam.capitalize()+': '+str(round(scoringparam_v,2))) #task 11997 displaying user selected scoring parameter in status logs
                self.log.info(""ARIMA AIC Score: ""+str(round(aic_score,2)))
                selectedColumns = self.targetFeature+','+self.dateTimeFeature
                selectedColumns = selectedColumns.split("","")
                self.log.info('------------- End ARIMA Model -------------\n')
                return('Success',modelName.upper(),self.scoreParam.lower(),scoringparam_v,self.model_fit,selectedColumns,error_matrix,scoredetails,self.dictDiffCount,self.pred_freq,self.additional_regressors,rmse_arima,df_pred)
            else:
                return 'Error',modelName.upper(),self.scoreParam.lower(),0,None,selectedColumns,'','{}',self.dictDiffCount,self.pred_freq,self.additional_regressors,0,pd.DataFrame()	
        except Exception as inst:
            self.log.info('<!------------- Arima Error ---------------> ')
            exc_type, exc_obj, exc_tb = sys.exc_info()
            fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
            self.log.info(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))
            return 'Error',modelName.upper(),self.scoreParam.lower(),0,None,selectedColumns,'','{}',self.dictDiffCount,self.pred_freq,self.additional_regressors,0,pd.DataFrame()			
    ## VAR model fn    
    def getVARmodel(self):
        from sklearn.metrics import r2_score
        modelName=""var""
        if modelName.lower()=='var':
            try:
                self.log.info('-------> Top 5 Rows: ')
                self.log.info(self.data.head(5))
                    
                if(self.targetFeature != ''):
                    self.selectedColumns = self.targetFeature
                    self.selectedColumns = self.selectedColumns+','+self.dateTimeFeature
                    self.selectedColumns = self.selectedColumns.split("","")
                    self.data = self.data[self.selectedColumns]
                try:
                    # self.data[self.dateTimeFeature] = pd.to_datetime(self.data[self.dateTimeFeature],errors='coerce')
                    ##For bug 13513 - If the datetime needs UTC timestamp process, except part will handle.
                    try:
                        #for non utc timestamp
                        self.data[self.dateTimeFeature] = pd.to_datetime(self.data[self.dateTimeFeature],errors='coerce')
                    except:
                        #for utc timestamp
                        self.data[self.dateTimeFeature] = pd.to_datetime(self.data[self.dateTimeFeature],errors='coerce',utc=True)
                    self.data = self.data.dropna()
                except:
                    pass
                self.data = self.data.groupby(self.dateTimeFeature).mean() 
                self.data = self.data.reset_index()                
                tdata = self.data.drop([self.dateTimeFeature], axis=1)
                tdata.index = self.data[self.dateTimeFeature]
                cols = tdata.columns
                        
                self.log.info('------------- Start VAR Model -------------')
                size = int(len(tdata) * (self.trainPercentage/100))
                train = tdata.iloc[0:(int(size))]
                valid = tdata.iloc[(int(size)):(int(len(tdata))-1)]
                start = time.time()
                model = VAR(endog=train)
                self.log.info('Status:- |... TimeSeries Algorithm applied: VAR')
                self.log.info(""\n-------------Selecting max lag order -----------"")
                modelFitted = model.fit()
                lag_order = modelFitted.k_ar
                self.log.info('------->lag_order: '+str(lag_order))
                executionTime=time.time() - start
                self.log.info('-------> Time: '+str(executionTime)+'\n')
                prediction = modelFitted.forecast(train.values[-lag_order:], steps=len(valid))
                pred = pd.DataFrame(index=range(0,len(prediction)),columns=tdata.columns)
                        
                for j in range(0,(len(tdata.columns))):
                    for i in range(0, len(prediction)):
                        pred.iloc[i][j] = prediction[i][j]
                        
                self.log.info(""\n--------------- Modal Validation Start ---------------"")
                df_pred = pd.DataFrame()    
                #check rmse
                error_matrix = '""FeaturesMatrix"":['
                valid = valid.reset_index()
                var_rmse = 0
                mse_dict={}
                rmse_dict={}
                mae_dict={}
                r2_dict={}
                
                for i in tdata.columns:
                    if(error_matrix != '""FeaturesMatrix"":['):
                        error_matrix = error_matrix+','
                    df_pred[i+'_actual'] = valid[i]
                    df_pred[i+'_pred'] = pred[i]
                    rmse_var = sqrt(mean_squared_error(valid[i],pred[i]))
                    mse = mean_squared_error(valid[i],pred[i])
                    mae = mean_absolute_error(valid[i],pred[i])
                    mape=self.mean_absolute_percentage_error(valid[i],pred[i])
                    r2 = r2_score(valid[i],pred[i])
                    mse_dict[i]=mse
                    rmse_dict[i]=rmse_var
                    r2_dict[i]=r2
                    mae_dict[i]=mae
                    var_rmse += round(rmse_var,2)
                    error_matrix += '{""Features"":""'+i+'"",""MSE"":""'+str(round(mse,2))+'"",""MAPE"":""'+str(round(mape,2))+'"",""RMSE"":""'+str(round(rmse_var,2))+'"",""MAE"":""'+str(round(mae,2))+'""}'
                    self.log.info (""------->Feature: ""+str(i))
                    self.log.info (""---------->MAE: ""+str(mae))
                    self.log.info (""---------->MSE: ""+str(mse))
                    self.log.info (""---------->RMSE :""+str(rmse_var))
                    self.log.info(""------------->MAPE :""+str(mape))
                    self.log.info(""------------->R2 :""+str(r2))
                var_rmse = var_rmse/len(tdata.columns)
                self.log.info(""--------------- Modal Validation End ---------------\n"")
                pred=self.invertTransformation(train,self.targetFeature,pred,self.dictDiffCount)
                self.log.info(""-------> Predictions on Test Data"")
                self.log.info(pred.head(4))
                model = VAR(endog=tdata)
                self.model_fit = model.fit() 
                aic_score = self.model_fit.aic
                lag_order = self.model_fit.k_ar
                self.log.info('------->AIC Score: '+str(aic_score))
                error_matrix += ']'
                
                scoredetails = '{""Model"":""VAR"",""Score"":'+str(aic_score)+'}'
                self.log.info('Status:-  |... Score AIC: '+str(round(aic_score,2)))
                tsModelTestObj=timeseriesModelTests(self.data1,self.targetFeature,self.dateTimeFeature,0)
                lenTargetFeature=len(self.targetFeature)
                r2=list(r2_dict.values())[-1]
                rmse=list(rmse_dict.values())[-1]
                mse=list(mse_dict.values())[-1]
                mae=list(mae_dict.values())[-1]
                ## Added for additional scoring params
                if (self.scoreParam.lower() == ""r2""):                   
                    scoringparam_v=r2
                    self.log.info(""VAR Univariant User selected scoring parameter is r2. r2 value: ""+str(r2))
                    self.log.info('Status:-  |... Score R2(Avg): '+str(round(r2,2)))
                elif (self.scoreParam.lower() == ""rmse""):                   
                    scoringparam_v=rmse
                    self.log.info(""VAR Univariant User selected scoring parameter is RMSE. RMSE value: ""+str(rmse))
                    self.log.info('Status:-  |... Score RMSE(Avg): '+str(round(rmse,2)))
                elif (self.scoreParam.lower() == ""mse""):                    
                    scoringparam_v=mse
                    self.log.info(""VAR Univariant User selected scoring parameter is MSE. MSE value: ""+str(mse))
                    self.log.info('Status:-  |... Score MSE(Avg): '+str(round(mse,2)))
                elif (self.scoreParam.lower() == ""mae""):                    
                    scoringparam_v=mae
                    self.log.info(""VAR Univariant User selected scoring parameter is MAE. MAE value: ""+str(mae))
                    self.log.info('Status:-  |... Score MAE(Avg): '+str(round(mae,2)))                    
                else:
                    scoringparam_v=rmse
                    self.log.info('Status:-  |... Score RMSE(Avg): '+str(round(rmse,2)))
                error_matrix = '""RMSE"":""'+str(round(rmse,2))+'"",""MSE"":""'+str(round(mse,2))+'""'
                error_matrix=error_matrix+',""R2"":""'+str(round(r2,2))+'"",""MAE"":""'+str(round(mae,2))+'""'
                self.log.info(""VAR, all scoring param results: ""+str(error_matrix))
                scoredetails = '{""Model"":""VAR"",""Score"":'+str(round(scoringparam_v,2))+',""Scoring Param"": ""'+str(self.scoreParam)+'""}'    
                self.log.info('------------- Start VAR Model End-------------\n')
            
                #countDependantFeature=0
                out = durbin_watson(tdata)
                for col, val in zip(tdata.columns, out):
                    self.log.info(col +':'+str(round(val, 2)))
                    if val>0.0 and val <1.5:
                        self.log.info(""There is a positive correlation"")
                    elif val>=1.5 and val <=2.5:
                        self.log.info(""Relationship is Normal "")
                    else :
                        self.log.info(""There is a negative  correlation"")
                

                return('Success',modelName.upper(),self.scoreParam.lower(),round(scoringparam_v,2),self.model_fit,self.selectedColumns,error_matrix,scoredetails,df_pred,self.dictDiffCount,self.pred_freq,self.additional_regressors,lag_order)
            except Exception as inst:
                self.log.info('<!------------- Var model Error ---------------> ')
                exc_type, exc_obj, exc_tb = sys.exc_info()
                fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
                self.log.info(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))
                return 'Error',modelName.upper(),self.scoreParam.lower(),0,None,self.selectedColumns,'','{}',pd.DataFrame(),self.dictDiffCount,self.pred_freq,self.additional_regressors,0
    ## Get best time series algorithm among selected algs
        
    def getbestmodel(self,rmse_prophet,rmse_arima,rmse_lstm,rmse_mlp,rmse_var):
        best_model=''
        ## For R2 score
        if (self.scoreParam.lower() == 'r2'):
            modelScore = []
            modelScore.append(rmse_prophet)     
            modelScore.append(rmse_arima)
            modelScore.append(rmse_lstm)        
            modelScore.append(rmse_mlp)     
            modelScore.append(rmse_var)
            if (max(modelScore) == rmse_arima):
                best_model='arima'
                self.log.info('Status:- |... TimeSeries  Best Algorithm: ARIMA')
                return best_model
            elif (max(modelScore) == rmse_prophet):
                best_model='fbprophet'
                self.log.info('Status:- |... TimeSeries Best Algorithm: FBPROPHET')            
                return best_model
            elif (max(modelScore) == rmse_lstm):
                best_model='lstm'
                self.log.info('Status:- |... TimeSeries Best Algorithm: LSTM')            
                return best_model
            elif (max(modelScore) == rmse_mlp):
                best_model='mlp'
                self.log.info('Status:- |... TimeSeries Best Algorithm: MLP')            
                return best_model
            elif (max(modelScore) == rmse_var):
                best_model='var'
                self.log.info('Status:- |... TimeSeries Best Algorithm: VAR')            
                return best_model
            else:
                #'Both arima and fbprophet rmse are equal, so both models are performing equal.
                ## So, selecting arima as best one.
                best_model='arima'
                return best_model
            
        else:
            modelScore = []
            modelScore.append(rmse_prophet)     
            modelScore.append(rmse_arima)
            modelScore.append(rmse_lstm)        
            modelScore.append(rmse_mlp)     
            modelScore.append(rmse_var)     
            if (min(modelScore) == rmse_arima and rmse_arima != 0xFFFF):
                best_model='arima'
                self.log.info('Status:- |... TimeSeries  Best Algorithm: ARIMA')
                return best_model
            elif (min(modelScore) == rmse_prophet and rmse_prophet != 0xFFFF):
                best_model='fbprophet'
                self.log.info('Status:- |... TimeSeries Best Algorithm: FBPROPHET')            
                return best_model
            elif (min(modelScore) == rmse_lstm and rmse_lstm != 0xFFFF):
                best_model='lstm'
                self.log.info('Status:- |... TimeSeries Best Algorithm: LSTM')            
                return best_model
            elif (min(modelScore) == rmse_mlp and rmse_mlp != 0xFFFF):
                best_model='mlp'
                self.log.info('Status:- |... TimeSeries Best Algorithm: MLP')            
                return best_model
            elif (min(modelScore) == rmse_var and rmse_var != 0xFFFF):
                best_model='var'
                self.log.info('Status:- |... TimeSeries Best Algorithm: VAR')            
                return best_model
            else:
                #'Both arima and fbprophet rmse are equal, so both models are performing equal.
                ## So, selecting arima as best one.
                best_model='arima'
                return best_model



    
    ## Selecting best model algorithm
    def bestmodelProcess(self,modelNames,nfeatures,trained_data_file,tFeature,predicted_data_file,dataFolderLocation):
        try:
            best_model=''
            lag_order = 1
            predict_var=None
            predict_arima=None
            predict_lstm=None
            predict_mlp=None
            predict_fbprophet=None
            modelNames  = modelNames
            modelNames=[x.lower() for x in modelNames]
            inputFeature_len=nfeatures
            status = 'Success'
            if 'fbprophet' in modelNames:
                status,modelName_prophet,fbprophet,rmse_prophet,fp_model_fit,selectedColumns_prophet,error_matrix_prophet,scoredetails_prophet,dictDiffCount_prophet,pred_freq_prophet,additional_regressors_prophet,predict_fbprophet = self.getfbprophetmodel(predicted_data_file,dataFolderLocation,tFeature)
                if status.lower() == 'error':
                    self.log.info('------------->  FBPROPHET RMSE Score: Error')			
                    if (self.scoreParam.lower() == 'r2'):
                        rmse_prophet = -0xFFFF
                    else:
                        rmse_prophet = 0xFFFF 				
                else:
                    self.log.info(""-------------> FBPROPHET RMSE Score:\t""+str(round(rmse_prophet,2)))
            else:
                if (self.scoreParam.lower() == 'r2'):
                    rmse_prophet = -0xFFFF
                else:
                    rmse_prophet = 0xFFFF                
            if 'arima' in modelNames:
                status,modelName,aic,rmse_arima,ar_model_fit,selectedColumns,error_matrix,scoredetails,dictDiffCount,pred_freq,additional_regressors,rmse_arima_act,predict_arima = self.getARIMAmodel(predicted_data_file)    
                if status.lower() == 'error':
                    self.log.info('------------->  ARIMA RMSE Score: Error')			
                    if (self.scoreParam.lower() == 'r2'):
                        rmse_arima = -0xFFFF
                    else:
                        rmse_arima = 0xFFFF 				
                else:
                    self.log.info('------------->  ARIMA RMSE Score:\t'+str(round(rmse_arima,2)))				
            else:
                if (self.scoreParam.lower() == 'r2'):
                    rmse_arima = -0xFFFF  ## -65535
                else:
                    rmse_arima = 0xFFFF
            if  'lstm' in modelNames:       
                if inputFeature_len == 1:
                    status,modelName_lstm,score_type,rmse_lstm,lstm_model_fit,lstm_selectedColumns,error_matrix_lstm,scoredetails_lstm,predict_lstm,lag_order,lstm_scaler = self.getUniVarientLSTMModel()
                else:
                    status,modelName_lstm,score_type,rmse_lstm,lstm_model_fit,lstm_selectedColumns,error_matrix_lstm,scoredetails_lstm,predict_lstm,lag_order,lstm_scaler = self.getLSTMMultivariate()                 
                if status.lower() == 'error':
                    self.log.info('------------->  LSTM RMSE Score: Error')							
                    if (self.scoreParam.lower() == 'r2'):
                        rmse_lstm = -0xFFFF
                    else:
                        rmse_lstm = 0xFFFF                         					
                else:
                    self.log.info('------------->  LSTM RMSE Score:\t'+str(round(rmse_lstm,2)))
				
            else:
                if (self.scoreParam.lower() == 'r2'):
                    rmse_lstm = -0xFFFF
                else:
                    rmse_lstm = 0xFFFF
            if  'mlp' in modelNames:            
                status,modelName_mlp,score_type,rmse_mlp,mlp_model_fit,mlp_selectedColumns,error_matrix_mlp,scoredetails_mlp,predict_mlp,lag_order,mlp_scaler = self.getUniVarientMLPModel()
                if status.lower() == 'error':
                    self.log.info('------------->  MLP Score: Error')							
                    if (self.scoreParam.lower() == 'r2'):
                        rmse_mlp = -0xFFFF
                    else:
                        rmse_mlp = 0xFFFF
                else:						
                    self.log.info('------------->  MLP RMSE Score:\t'+str(round(rmse_mlp,2)))

            else:
                if (self.scoreParam.lower() == 'r2'):
                    rmse_mlp = -0xFFFF
                else:
                    rmse_mlp = 0xFFFF
            if 'var' in modelNames:
                status,modelName_var,score_var_type,rmse_var,var_model,var_selectedColumns,error_matrix_var,scoredetails_var,predict_var,dictDiffCount,pred_freq,additional_regressors,lag_order = self.getVARmodel()
                if status.lower() == 'error':
                    self.log.info('------------->  VAR Score: Error')							
                    if (self.scoreParam.lower() == 'r2'):
                        rmse_var = -0xFFFF
                    else:
                        rmse_var = 0xFFFF
            else:
                if (self.scoreParam.lower() == 'r2'):
                    rmse_var = -0xFFFF
                else:
                    rmse_var = 0xFFFF
            best_model = self.getbestmodel(rmse_prophet,rmse_arima,rmse_lstm,rmse_mlp,rmse_var)
            if (best_model.lower() == 'arima'):
                self.log.info('Best model is ARIMA based on metric '+str(self.scoreParam.lower()))
                predict_arima.to_csv(predicted_data_file)                
                filename,saved_model = self.save_model(ar_model_fit)
                return best_model,modelName,aic,rmse_arima,ar_model_fit,selectedColumns,error_matrix,scoredetails,dictDiffCount,pred_freq,additional_regressors,filename,saved_model,lag_order,'NA'
            elif (best_model.lower() == 'fbprophet'):
                self.log.info('Best model is fbprophet based on metric '+str(self.scoreParam.lower()))
                predict_fbprophet.to_csv(predicted_data_file)
                filename,saved_model = self.save_model(fp_model_fit)                
                return best_model,modelName_prophet,fbprophet,rmse_prophet,fp_model_fit,selectedColumns_prophet,error_matrix_prophet,scoredetails_prophet,dictDiffCount_prophet,pred_freq_prophet,additional_regressors_prophet,filename,saved_model,lag_order,'NA'
            elif (best_model.lower() == 'var'):
                self.log.info('Best model is VAR based on metric '+str(self.scoreParam.lower()))
                self.data.to_csv(trained_data_file)
                predict_var.to_csv(predicted_data_file)
                filename,saved_model = self.save_model(var_model)
                return best_model,modelName_var,score_var_type,rmse_var,var_model,var_selectedColumns,error_matrix_var,scoredetails_var,dictDiffCount,pred_freq,additional_regressors,filename,saved_model,lag_order,'NA'
            elif (best_model.lower() == 'lstm'):
                self.log.info('Best model is LSTM based on metric '+str(self.scoreParam.lower()))
                predict_lstm.to_csv(predicted_data_file)
                filename,saved_model,scaler_model = self.save_dl_model(lstm_model_fit,lstm_scaler)
                return best_model,modelName_lstm,score_type,rmse_lstm,lstm_model_fit,lstm_selectedColumns,error_matrix_lstm,scoredetails_lstm,self.dictDiffCount,self.pred_freq,self.additional_regressors,filename,saved_model,lag_order,scaler_model
            elif (best_model.lower() == 'mlp'):
                self.log.info('Best model is MLP based on metric '+str(self.scoreParam.lower()))
                predict_mlp.to_csv(predicted_data_file)
                filename,saved_model,scaler_model = self.save_dl_model(mlp_model_fit,mlp_scaler)
                return best_model,modelName_mlp,score_type,rmse_mlp,mlp_model_fit,mlp_selectedColumns,error_matrix_mlp,scoredetails_mlp,self.dictDiffCount,self.pred_freq,self.additional_regressors,filename,saved_model,lag_order,scaler_model                
            else:
                pass
        except Exception as e:
            self.log.info('Issue in running multi time series algorithm selection process..Please check the config params')
            self.log.info('error: '+str(e))
            
    #Method to determine seasonality and stationrity in the input data features. (Task:12622,12623)
    def seasonality_stationarity_test(self):
        ##The below part is to test stationarity and sessonality in the given time series data based on statsmodels lib.
        #self.data,self.targetFeature,self.dateTimeFeature
        self.log.info(""<-------------- Time series stationarity and seasonality test Started...---------------->\n"")
        ts_sstest=tsStationarySeasonalityTest(self.data,self.deployLocation)
        ## Time series Stationary check
        ## Currently stationarity check method set as Augmented dickey fuller, but kpss method also implemented.
        stationary_method='adfuller'
        if (isinstance(self.targetFeature,list)):
            target=self.targetFeature
            pass
        elif (isinstance(self.targetFeature,str)):
            target=list(self.targetFeature.split(','))
        stats_model,n_lags,p_value,stationary_result,stationary_combined_res=ts_sstest.stationary_check(target,self.dateTimeFeature,stationary_method)
        ## Time series Seasonality check
        ##Seasonal model default set as additive
        seasonal_model=""additive""
        df,decompose_result_mult,seasonality_result,seasonality_combined_res=ts_sstest.seasonal_check(target,self.dateTimeFeature,seasonal_model)
        self.log.info(""<-------------- Time series stationarity and seasonality test completed.---------------->\n"")
        return stationary_result,seasonality_result
    #Main timeseries function.
    def timeseries_learning(self,trained_data_file,predicted_data_file,dataFolderLocation):
        dataFolderLocation=dataFolderLocation
        lag_order = 1
        # ##The below part is to test stationarity and sessonality in the given time series data based on statsmodels lib.
        stationary_result,seasonality_result=self.seasonality_stationarity_test()
        
        try :
            tFeature = self.targetFeature.split(',')
            lentFeature=len(tFeature)
            try:
                if lentFeature > 1:
                    if any('timeseriesforecasting' in x.lower() for x in self.modelName): #task 11997
                        self.modelName.remove('timeseriesforecasting')
                    if 'arima' in self.modelName:
                        self.log.info('Status:- |... TimeSeries algorithm ARIMA not supported for multiple features')
                        self.modelName.remove('arima')                        
                    if  'fbprophet' in self.modelName:
                        self.log.info('Status:- |... TimeSeries algorithm FBPROPHET not supported for multiple features')                   
                        self.modelName.remove('fbprophet')                    
                    if  'mlp' in self.modelName:
                        self.log.info('Status:- |... TimeSeries algorithm MLP not supported for multiple features')                   
                        self.modelName.remove('mlp')                    
                    if  len(self.modelName) == 0:
                        self.log.info('--------> Default Set to VAR')                    
                        self.modelName.append('var')                        

                if lentFeature == 1:
                    if any('timeseriesforecasting' in x.lower() for x in self.modelName): #task 11997
                        self.modelName.remove('timeseriesforecasting')
                    if 'var' in self.modelName:
                        self.log.info('Status:- |... TimeSeries algorithm VAR not supported for single feature')
                        self.modelName.remove('var')                        
                    if  len(self.modelName) == 0:
                        self.log.info('--------> Default Set to ARIMA,FBProphet')                    
                        self.modelName.append('arima')

                
            except Exception as e:
                self.log.info('input model name error: '+ str(e))
                self.log.info(""error in user selected model, may be wrong configuration, please check."")

            if (len(self.modelName) > 1):
                try:
                    self.log.info('User selected models: '+str(self.modelName))
                    best_model,modelName,score_type,score,model_fit,selectedColumns,error_matrix,scoredetails,dictDiffCount,pred_freq,additional_regressors,filename,saved_model,lag_order,scaler_transformation = self.bestmodelProcess(self.modelName,lentFeature,trained_data_file,tFeature,predicted_data_file,dataFolderLocation)
                    return best_model,modelName,score_type,score,model_fit,selectedColumns,error_matrix,scoredetails,dictDiffCount,pred_freq,additional_regressors,filename,saved_model,lag_order,scaler_transformation
                except Exception as e:
                    self.log.info('multi model timeseries processing error '+str(e))
            else:
                self.modelName = self.modelName[0]
                ## Normal arima ,var or fbprophet model call (user selects only one model at a time)
                if self.modelName.lower() == 'fbprophet':
                    try:
                        model_name='fbprophet'
                        status,modelName,fbprophet,rmse_prophet,fp_model_fit,selectedColumns,error_matrix,scoredetails,dictDiffCount,pred_freq,additional_regressors,predict_output = self.getfbprophetmodel(predicted_data_file,dataFolderLocation,tFeature)
                        if status.lower() == 'success':	
                            predict_output.to_csv(predicted_data_file)
                            filename,saved_model = self.save_model(fp_model_fit)
                            return 'self.modelName',modelName,fbprophet,rmse_prophet,fp_model_fit,selectedColumns,error_matrix,scoredetails,dictDiffCount,pred_freq,additional_regressors,filename,saved_model,lag_order,'NA'
                        else:
                            raise Exception('Exception during model training')							
                    except Exception as e:
                        self.log.info('fbprophet error....')
                        self.log.info(e)
                elif  self.modelName.lower() == 'encoder_decoder_lstm_mvi_uvo':
                        try:
                            status,modelName_lstm,score_type,rmse_lstm,lstm_model_fit,lstm_selectedColumns,error_matrix_lstm,scoredetails_lstm,predict_lstm,lag_order,lstm_scaler = self.getEncDecLSTMMultVrtInUniVrtOut()                 
                            if status.lower() == 'success':								
                                predict_lstm.to_csv(predicted_data_file)
                                filename,saved_model,scaler_model = self.save_dl_model(lstm_model_fit,lstm_scaler)
                                return self.modelName,modelName_lstm,score_type,rmse_lstm,lstm_model_fit,lstm_selectedColumns,error_matrix_lstm,scoredetails_lstm,self.dictDiffCount,self.pred_freq,self.additional_regressors,filename,saved_model,lag_order,scaler_model
                            else:
                                raise Exception('Exception during model training')                                 							
                        except Exception as inst:
                            self.log.info('<!------------- LSTM Error ---------------> ')
                            exc_type, exc_obj, exc_tb = sys.exc_info()
                            fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
                            self.log.info(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))
                elif  self.modelName.lower() == 'lstm':
                        try:
                            if lentFeature == 1:
                                status,modelName_lstm,score_type,rmse_lstm,lstm_model_fit,lstm_selectedColumns,error_matrix_lstm,scoredetails_lstm,predict_lstm,lag_order,lstm_scaler = self.getUniVarientLSTMModel()
                            else:
                                status,modelName_lstm,score_type,rmse_lstm,lstm_model_fit,lstm_selectedColumns,error_matrix_lstm,scoredetails_lstm,predict_lstm,lag_order,lstm_scaler = self.getLSTMMultivariate()                 
                            if status.lower() == 'success':								
                                predict_lstm.to_csv(predicted_data_file)
                                filename,saved_model,scaler_model = self.save_dl_model(lstm_model_fit,lstm_scaler)
                                return self.modelName,modelName_lstm,score_type,rmse_lstm,lstm_model_fit,lstm_selectedColumns,error_matrix_lstm,scoredetails_lstm,self.dictDiffCount,self.pred_freq,self.additional_regressors,filename,saved_model,lag_order,scaler_model
                            else:
                                raise Exception('Exception during model training')                                 							
                        except Exception as inst:
                            self.log.info('<!------------- LSTM Error ---------------> ')
                            exc_type, exc_obj, exc_tb = sys.exc_info()
                            fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
                            self.log.info(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))
                elif  self.modelName.lower() == 'mlp':
                        try:
                            status,modelName_mlp,score_type,rmse_mlp,mlp_model_fit,mlp_selectedColumns,error_matrix_mlp,scoredetails_mlp,predict_mlp,lag_order,mlp_scaler = self.getUniVarientMLPModel()
                            if status.lower() == 'success':
                                predict_mlp.to_csv(predicted_data_file)
                                filename,saved_model,scaler_model = self.save_dl_model(mlp_model_fit,mlp_scaler)
                                return self.modelName,modelName_mlp,score_type,rmse_mlp,mlp_model_fit,mlp_selectedColumns,error_matrix_mlp,scoredetails_mlp,self.dictDiffCount,self.pred_freq,self.additional_regressors,filename,saved_model,lag_order,scaler_model
                            else:
                                raise Exception('Exception during model training')
                        except Exception as inst:
                            self.log.info('<!------------- MLP Error ---------------> ')
                            exc_type, exc_obj, exc_tb = sys.exc_info()
                            fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
                            self.log.info(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))
                else:
                    #task 12627 time series profiler removed
                    if lentFeature>1:
                        self.modelName='var'
                        self.data.to_csv(trained_data_file)
                    else:
                        self.modelName='arima'
                    if self.modelName.lower()=='var':
                        tsModelTestObj=timeseriesModelTests(self.data,self.targetFeature,self.dateTimeFeature,0)
                        self.data,self.dictDiffCount=tsModelTestObj.StatinaryChecks(self.dictDiffCount)
                        #self.log.info('Status:- |... Stationary Check Done.')
                        gtestResults,countVariables=tsModelTestObj.grangersCausationMatrix(self.data,tFeature)
                        if countVariables >=  (lentFeature*lentFeature)-(lentFeature) or ((lentFeature*lentFeature)-(lentFeature))/2  :
                            coIntegrationVectors=tsModelTestObj.coIntegrationTest(self.data)
                            if coIntegrationVectors<=lentFeature:
                                self.log.info(""There are  statistically significant relationship in data "")
                                self.log.info('Status:- |... Statistically Check Done. Statistically significant relations')
                            else:
                                self.log.info(""There are  no statistically significant relationship in data"")
                                self.log.info('Status:- |... Statistically Check Done. No statistically significant relations')
                        else:
                            self.modelName='arima'
                    if self.modelName.lower()=='var':
                        try:
                            self.log.info('ARIMA, FBProphet cannot apply, Input data contains more than one feature, only VAR algorithm can apply, applying VAR by AION \n')
                            status,modelName,aic,aic_score,model_fit,selectedColumns,error_matrix,scoredetails,predict_var,dictDiffCount,pred_freq,additional_regressors,lag_order = self.getVARmodel()
                            if status.lower() == 'success':
                                filename,saved_model = self.save_model(model_fit)
                                predict_var.to_csv(predicted_data_file)
                                return self.modelName,modelName,aic,aic_score,model_fit,selectedColumns,error_matrix,scoredetails,dictDiffCount,pred_freq,additional_regressors,filename,saved_model,lag_order,'NA'
                            else:
                                raise Exception('Exception during VAR model training')
                        except Exception as inst:
                            self.log.info('<!------------- Var model Error ---------------> ')
                            exc_type, exc_obj, exc_tb = sys.exc_info()
                            fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
                            self.log.info(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))
                        
                    if  self.modelName.lower() == 'arima':
                        try:
                            status,modelName,aic,scoringparam_v,model_fit,selectedColumns,error_matrix,scoredetails,dictDiffCount,pred_freq,additional_regressors,rmse_arima_act,predict_output = self.getARIMAmodel(predicted_data_file)
                            if status.lower() == 'success':
                                predict_output.to_csv(predicted_data_file)
                                filename,saved_model = self.save_model(model_fit)
                                lag_order=0
                                return self.modelName,modelName,aic,scoringparam_v,model_fit,selectedColumns,error_matrix,scoredetails,dictDiffCount,pred_freq,additional_regressors,filename,saved_model,lag_order,'NA'
                            else:
                                raise Exception('Exception during model training')							
                        except Exception as inst:
                            self.log.info('<!------------- Arima Error ---------------> '+str(inst))
                            exc_type, exc_obj, exc_tb = sys.exc_info()
                            fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
                            self.log.info(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))

                        
        except Exception as inst:
                    self.log.info('<!------------- TimeSeries Learning Error ---------------> '+str(inst))
                    exc_type, exc_obj, exc_tb = sys.exc_info()
                    fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
                    self.log.info(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))

    def invertTransformation(self,Xtrain,targetFeature, preddf,dictDiffCount):
   
        try:
            dfforecast = preddf.copy()
            self.log.info(dfforecast.head(5))
            columns =targetFeature.split("","")
            self.log.info(columns)
            self.log.info(dictDiffCount)
            for col in columns:        
                if col in dictDiffCount:
                    if dictDiffCount[col]==2:
                        dfforecast[col] = (Xtrain[col].iloc[-1]-Xtrain[col].iloc[-2]) + dfforecast[col].cumsum()
                    dfforecast[col] = Xtrain[col].iloc[-1] + dfforecast[col].cumsum()
            # Roll back 1st Diff
            return dfforecast
        except Exception as inst:
            self.log.info('<!------------- invertTransformation Error ---------------> '+str(inst))
            exc_type, exc_obj, exc_tb = sys.exc_info()
            fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
            self.log.info(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))"
ts_arima_eion.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
# For timeseries pyramid pdaarima module
from pmdarima.arima import auto_arima
import pmdarima as pm
import json

#Python sklearn & std libraries
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.feature_selection import VarianceThreshold
from sklearn.metrics import mean_absolute_error
from sklearn.metrics import mean_squared_error
#from sklearn.metrics import mean_absolute_percentage_error
from sklearn.linear_model import LinearRegression
from math import sqrt
import warnings
# For serialization.
#from sklearn.externals import joblib
import pickle 
import os,sys
# For ploting (mathlab)
import matplotlib.pyplot as plt
#Import eion config manager module
import logging
from sklearn import metrics
from sklearn.metrics import accuracy_score
import time
import os
import sys

# Eion arima module
class eion_arima ():

    #Constructor
	def __init__(self,configfile,testpercentage,sesonalityChecks,stationaryChecks):      # eaobj - eion arima class object
		try:
			tsarima_params = configfile
			self.testpercentage = testpercentage
			self.start_p= int(tsarima_params['start_p'])
			self.start_q= int(tsarima_params['start_q'])
			self.max_p= int(tsarima_params['max_p'])
			self.max_q= int(tsarima_params['max_q'])
			
			self.max_d= int(tsarima_params['max_d'])
			self.max_order= int(tsarima_params['max_order'])
			self.start_Q= int(tsarima_params['start_Q'])
			self.max_P= int(tsarima_params['max_P'])
			self.max_D= int(tsarima_params['max_D'])
			self.max_Q= int(tsarima_params['max_Q'])
			
			self.m= int(tsarima_params['m'])
			self.start_P= int(tsarima_params['start_P'])
			self.seasonal= tsarima_params['seasonal']
			#self.seasonal= sesonalityChecks
			self.stationary=stationaryChecks
			#print(""self.seasonal: \n"",self.seasonal)
			#print(""self.stationary: \n"",self.stationary)			
				
			if self.seasonal and not self.seasonal.isspace():
				if (self.seasonal.lower() == 'true'):
					self.seasonal=True
				elif (self.seasonal.lower() == 'false'):
					self.seasonal=False
				else:
					self.seasonal=True
			else:
				self.seasonal=True
			
			
			self.d= int(tsarima_params['d'])
			self.D= int(tsarima_params['D'])
			#self.trace= tsarima_params['trace']
			self.error_action= tsarima_params['error_action']
			self.suppress_warnings= tsarima_params['suppress_warnings']
			self.stepwise= tsarima_params['stepwise']
			#self.random= tsarima_params['random']
			self.log = logging.getLogger('eion')
		except Exception as inst:
			self.log.info('<!------------- Arima INIT Error ---------------> ')
			exc_type, exc_obj, exc_tb = sys.exc_info()
			fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
			self.log.info(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))
	def mean_absolute_percentage_error(self,y_true, y_pred): 
		try:
			y_true, y_pred=np.array(y_true), np.array(y_pred)
			return np.mean(np.abs((y_true - y_pred) / y_true+sys.float_info.epsilon)) * 100
			
		except Exception as inst:
			self.log.info('<------------- mean_absolute_percentage_error ---------------> ')
			exc_type, exc_obj, exc_tb = sys.exc_info()
			fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
			self.log.info(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))
		
	def eion_arima(self,train_data):
		try:
			start = time.time()
			auto_arima_stepwise_fit = pm.auto_arima(train_data, start_p=self.start_p, start_q=self.start_q,max_p=self.max_p, max_q=self.max_q,max_d=self.max_d,max_P=self.max_P,max_D=self.max_D,max_Q=self.max_Q,max_order=self.max_order, m=self.m,start_P=self.start_P,start_Q=self.start_Q, seasonal=self.seasonal,stationary=self.stationary,d=self.d, D=self.D,error_action=self.error_action,suppress_warnings=self.suppress_warnings,stepwise=self.stepwise)
			#auto_arima_stepwise_fit = pm.auto_arima(train_data, start_p=self.start_p, start_q=self.start_q,max_p=self.max_p, max_q=self.max_q,max_d=self.max_d,max_P=self.max_P,max_D=self.max_D,max_Q=self.max_Q,max_order=self.max_order, m=self.m,start_P=self.start_P,start_Q=self.start_Q, seasonal=True,stationary=True,d=self.d, D=self.D,error_action=self.error_action,suppress_warnings=self.suppress_warnings,random_state=20,stepwise=True)
			aic_score = auto_arima_stepwise_fit.aic()
			self.log.info('------->AIC Score: '+str(aic_score))
			self.log.info('\n--------- Fit Summary --------------')
			self.log.info (auto_arima_stepwise_fit.summary()) 
			self.log.info('--------- Fit Summary End--------------\n')
			self.log.info(""\n--------------- Modal Validation Start ---------------"")
			size = int(len(train_data) * (100 - self.testpercentage)/100)
			
			train = train_data.loc[0:size]
			
			valid = train_data.loc[size:len(train_data)]
			# valid_perc=((100-self.testpercentage)/100)
			# valid_perc=round(valid_perc, 1)
			# print(""valid_perc: \n"", valid_perc)
			
			self.log.info(""------->Train Data Shape: ""+str(train.shape))
			self.log.info(""------->Valid Data Shape""+str(valid.shape))
			start1=len(train)
			end1=len(train_data)			
			modelfit = auto_arima_stepwise_fit.fit(train)
			a_prediction = auto_arima_stepwise_fit.predict(valid.shape[0])
			#a_prediction = auto_arima_stepwise_fit.predict(n_periods=len(valid))
			#a_prediction = auto_arima_stepwise_fit.predict(start=start1,end=end1)
			#print(""a_prediction: \n"",a_prediction)
			#self.log.info(a_prediction)
			mae = metrics.mean_absolute_error(valid, a_prediction)
			self.log.info (""------->MAE: ""+str(mae))
			mape = self.mean_absolute_percentage_error(valid, a_prediction)
			
			#mape=np.mean(np.abs((valid - a_prediction) / valid)) * 100
			
			self.log.info (""------->MAPE :""+str(mape))
			#RMSE
			rmse = sqrt(mean_squared_error(valid,a_prediction))
			mse = mean_squared_error(valid,a_prediction)
			self.log.info (""------->RMSE :""+str(rmse))
			self.log.info (""------->MSE :""+str(mse))
			from sklearn.metrics import r2_score
			r2 = r2_score(valid,a_prediction)
			########### End ####################
		
			# now we have the model
			auto_arima_stepwise_fit.fit(train_data)
			self.log.info(""------------- Validate Model End----------------\n"")
			executionTime=time.time() - start
			self.log.info('-------> Time: '+str(executionTime)+'\n')
			return auto_arima_stepwise_fit,mae,rmse,mse,r2,aic_score,mape,valid,a_prediction
		except Exception as inst:
			self.log.info('<!------------- Arima Execute Error ---------------> '+str(inst))
			exc_type, exc_obj, exc_tb = sys.exc_info()
			fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
			self.log.info(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))
		

	"
timeseriesDLMultivariate.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import pandas as pd
import os
import numpy as np
import numpy
import pandas
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
from tensorflow.keras.layers import LSTM
from sklearn.preprocessing import MinMaxScaler
import logging
import tensorflow as tf
from tensorflow.keras.layers import Dropout
import math
import tensorflow as tf
import keras_tuner
#from keras_tuner.engine.hyperparameters import HyperParameters
from keras_tuner.tuners import RandomSearch,BayesianOptimization ,Hyperband
from sklearn.model_selection import train_test_split
from tensorflow.keras.preprocessing.sequence import TimeseriesGenerator
import warnings
warnings.simplefilter(""ignore"", UserWarning)


class timeseriesDLMultivariate:
    def __init__(self,configfile,testpercentage,targetFeature,dateTimeFeature):
        self.look_back=None
        
        # self.df=df
        
        self.epochs=None
        self.batch_size=None
        self.hidden_layers=None
        self.optimizer=None
        self.activation_fn=""relu""
        self.loss_fn=None
        self.first_layer=None
        self.dropout=None
        self.model_name=None
        self.dl_params = configfile
        # self.data=data
        self.targetFeature=targetFeature
        self.dateTimeFeature=dateTimeFeature
        self.testpercentage = float(testpercentage)            
        self.log = logging.getLogger('eion')
        ##Added for ts hpt (TFSTask:7033)
        self.tuner_algorithm=""""        
        self.num_features=0
        
    ##Get deep learning model hyperparameter from advanced config
    def getdlparams(self):
        val=self.dl_params
        self.log.info('-------> The given mlp/lstm timeseries algorithm parameters:>>') 
        self.log.info(""    ""+str(val))
        for k,v in val.items():
            try:
                if (k == ""tuner_algorithm""):
                    self.tuner_algorithm=str(v)
                elif (k == ""activation""):
                    self.activation_fn=str(v)
                elif (k == ""optimizer""):
                    self.optimizer=str(v)
                elif (k == ""loss""):
                    self.loss_fn=str(v)
                elif (k == ""first_layer""):
                    if not isinstance(k,list):
                        self.first_layer=str(v).split(',')
                    else:
                        self.first_layer=k
                elif (k == ""lag_order""):
                    if isinstance(k,list):
                        k = ''.join(v)
                        k=int(float(str(v)))
                    else:                        
                        self.look_back=int(float(str(v)))
                elif (k == ""hidden_layers""):
                    self.hidden_layers=int(v)
                elif (k == ""dropout""):                    
                    if not isinstance(k,list):
                        self.dropout=str(v).split(',')
                    else:
                        self.dropout=k
                elif (k == ""batch_size""):
                    self.batch_size=int(v)
                elif (k == ""epochs""):
                    self.epochs=int(v)
                elif (k == ""model_name""):
                    self.model_name=str(v)
                
            except Exception as e:                
                self.log.info('Exception occured in deeep learn param reading, setting up default params.')
                self.activation_fn=""relu""
                self.optimizer=""adam""
                self.loss_fn=""mean_squared_error""
                self.first_layer=[8,512]
                self.hidden_layers=1
                self.look_back=int(2)
                self.dropout=[0.1,0.5]
                self.batch_size=2
                self.epochs=50
                self.model_name=""lstmmodel.h5""
                continue
                
    # Reshape the data to the required input shape of the LSTM model
    def create_dataset(self,X, y, n_steps):
        Xs, ys = [], []
        for i in range(len(X) - n_steps):
            v = X.iloc[i:(i + n_steps)].values
            Xs.append(v)
            ys.append(y.iloc[i + n_steps])
        return np.array(Xs), np.array(ys)           

        
    ## Added function for hyperparam tuning (TFSTask:7033)
    def build_model(self,hp):
        n_features = len(self.targetFeature)
        try:
            loss=self.loss_fn
            optimizer=self.optimizer
            # self.getdlparams()
            try:
                if optimizer.lower() == ""adam"":
                    optimizer=tensorflow.keras.optimizers.Adam
                elif(optimizer.lower() == ""adadelta""):
                    optimizer=tensorflow.keras.optimizers.experimental.Adadelta
                elif(optimizer.lower() == ""nadam""):
                    optimizer=tensorflow.keras.optimizers.experimental.Nadam
                elif(optimizer.lower() == ""adagrad""):
                    optimizer=tensorflow.keras.optimizers.experimental.Adagrad
                elif(optimizer.lower() == ""adamax""):
                    optimizer=tensorflow.keras.optimizers.experimental.Adamax
                elif(optimizer.lower() == ""rmsprop""):
                    optimizer=tensorflow.keras.optimizers.experimental.RMSprop
                elif(optimizer.lower() == ""sgd""):
                    optimizer=tensorflow.keras.optimizers.experimental.SGD
                else:
                    optimizer=tensorflow.keras.optimizers.Adam 
            except:
                optimizer=tf.keras.optimizers.Adam
                pass            
            # look_back_min=int(self.look_back[0])
            # look_back_max=int(self.look_back[1])
            first_layer_min=round(int(self.first_layer[0]))
            first_layer_max=round(int(self.first_layer[1]))
            dropout_min=float(self.dropout[0])
            dropout_max=float(self.dropout[1])    
            model=tf.keras.Sequential()            
            try:
                model.add(LSTM(units=hp.Int('units',min_value=first_layer_min,max_value=first_layer_max,step=16),input_shape=(self.look_back,self.num_features)))
            except Exception as e:
                import traceback
                self.log.info(""lstm build traceback: \n""+str(traceback.print_exc()))
                return model
            model.add(Dropout(hp.Float('Dropout_rate',min_value=dropout_min,max_value=dropout_max,step=0.1)))
            model.add(Dense(units=n_features))
            model.compile(optimizer=optimizer(hp.Choice('learning_rate',values=[1e-1,1e-2,1e-3,1e-4])),loss=loss,metrics=[self.loss_fn])
        except Exception as e:            
            self.log.info("",Hyperparam tuning build_model err msg: \n""+ str(e))
        return model
    ##Multivariate lstm prediction function (lstm model, train, prediction, metrics)
    def lstm_multivariate(self,df):        
        try:            
            self.getdlparams()
            n_features = len(self.targetFeature)
            self.num_features=n_features            
            try:
                if (type(self.targetFeature) is list):
                    pass
                else:
                    self.targetFeature = list(self.targetFeature.split("",""))
            except:
                pass
            
            df_new = df[df.columns[df.columns.isin(self.targetFeature)]]            
            scaler=MinMaxScaler()            
            df_transformed=scaler.fit_transform(df_new)
            ## For hyperparam tuning below part is added.only for getting best model and best hyperparameters
            train_size = int(len(df) * 0.80)            
            train_data, test_data = train_test_split(df, test_size=0.2, shuffle=False)
            self.hpt_train=train_data
            time_steps=self.look_back ## Just for initialization before hyperparameter tuning.
            tuner_alg=self.tuner_algorithm
            #The below create_dataset only for getting best model and best hyperparameters
            X_train, y_train = self.create_dataset(train_data, train_data, time_steps)
            X_test, y_test = self.create_dataset(test_data, test_data, time_steps)
            self.log.info(""Hyperparameter tuning algorithm is given by user (AION->Advanced configuration -> timeSeriesForecasting->LSTM): \n""+str(tuner_alg))
            try:
                ## Remove untitled_project dir in AION root folder created by previous tuner search run
                import shutil
                shutil.rmtree(r"".\untitled_project"")
            except:
                pass
            try:                
                if (tuner_alg.lower()==""randomsearch""):
                    tuner=RandomSearch(self.build_model,keras_tuner.Objective(""val_loss"", direction=""min""),max_trials=5,executions_per_trial=3)
                elif (tuner_alg.lower()==""bayesianoptimization""):
                    tuner=BayesianOptimization(self.build_model,keras_tuner.Objective(""val_loss"", direction=""min""),max_trials=5,executions_per_trial=3)
                elif (tuner_alg.lower()==""hyperband""):
                    tuner=Hyperband(self.build_model,keras_tuner.Objective(""val_loss"", direction=""min""),max_epochs=50,factor=3)
                else:
                    self.log.info(""The given alg is not implemented. Using default hyperparam tuning algorithm: RandomSearch.\n"")
                    tuner=RandomSearch(self.build_model,keras_tuner.Objective(""val_loss"", direction=""min""),max_trials=5,executions_per_trial=3)
                from keras.callbacks import EarlyStopping
                stop_early = EarlyStopping(monitor='val_loss', patience=5)
            except Exception as e:                
                self.log.info(""The given alg have some issue, Using default hyperparam tuning algorithm: RandomSearch.\n"")
                tuner=RandomSearch(self.build_model,keras_tuner.Objective(""val_loss"", direction=""min""),max_trials=5,executions_per_trial=3)
                self.log.info(""tuner errmsg:\n""+str(e))
            #hpt search for best params
            try:
                tuner.search(X_train, y_train,validation_data=(X_test, y_test),callbacks=[stop_early])
            except:
                tuner.search(x=X_train,y=y_train,validation_split=0.2,callbacks=[stop_early])
            # best_model = tuner.get_best_models(num_models=1)[0]
            # self.log.info(""best_model.summary(): \n""+str(best_model.summary()))
            best_hps=tuner.get_best_hyperparameters(num_trials=1)[0]
            self.log.info(""TS Multivariate LSTM best hyperparameter values:\n""+str(best_hps.values))
            self.log.info(""Activation fn:\n""+str(self.activation_fn))            
            # time_steps_best=best_hps.get('time_steps')
            n_input=self.look_back
            best_hmodel=tuner.hypermodel.build(best_hps)
            optimizer=self.optimizer
            self.first_layer=best_hps.get('units')
            self.dropout=best_hps.get('Dropout_rate')
            learning_rate=float(best_hps.get('learning_rate'))
            try:
                ##TFSTask:7033, Added below try block for time series hyperparam tuning, here, for any optimizer, best learning_rate is provided from best_hps.
                try:
                    if optimizer.lower() == ""adam"":
                        optimizer=tensorflow.keras.optimizers.Adam(learning_rate=learning_rate)
                    elif(optimizer.lower() == ""adadelta""):
                        optimizer=tensorflow.keras.optimizers.experimental.Adadelta(learning_rate=learning_rate)
                    elif(optimizer.lower() == ""nadam""):
                        optimizer=tensorflow.keras.optimizers.experimental.Nadam(learning_rate=learning_rate)
                    elif(optimizer.lower() == ""adagrad""):
                        optimizer=tensorflow.keras.optimizers.experimental.Adagrad(learning_rate=learning_rate)
                    elif(optimizer.lower() == ""adamax""):
                        optimizer=tensorflow.keras.optimizers.experimental.Adamax(learning_rate=learning_rate)
                    elif(optimizer.lower() == ""rmsprop""):
                        optimizer=tensorflow.keras.optimizers.experimental.RMSprop(learning_rate=learning_rate)
                    elif(optimizer.lower() == ""sgd""):
                        optimizer=tensorflow.keras.optimizers.experimental.SGD(learning_rate=learning_rate)
                    else:
                        optimizer=tensorflow.keras.optimizers.Adam(learning_rate=learning_rate) 
                except:
                    optimizer=tf.keras.optimizers.Adam(learning_rate=learning_rate)
                    pass
                ##From best hyperparameter values, now creating multivariate time series model using time generator.
                t_lb=1
                test_size=t_lb+1
                train,test = train_test_split(df_transformed,test_size=0.2,shuffle=False)     
                generatorTrain=TimeseriesGenerator(df_transformed,df_transformed,length=n_input,batch_size=self.batch_size)
                # generatorTest=TimeseriesGenerator(test,test,length=n_input,batch_size=self.batch_size)
                batch_0=generatorTrain[0]
                x,y=batch_0
                epochs=int(self.epochs)
                ##Multivariate LSTM model
                try:
                    from tensorflow.keras.layers import Dropout
                    model=Sequential()
                    model.add(LSTM(self.first_layer,activation=self.activation_fn,input_shape=(n_input,n_features)))
                    model.add(Dropout(self.dropout))
                    model.add(Dense(n_features))
                    model.compile(optimizer=self.optimizer,loss=self.loss_fn)
                    #model.fit(generatorTrain,epochs=epochs,batch_size=self.batch_size,shuffle=False)
                    model.fit_generator(generatorTrain, epochs=epochs,shuffle=False, verbose=0)
                    # lstm_mv_testScore_mse = model.evaluate(x, y, verbose=0)
                except Exception as e:
                    self.log.info(""multivariate model build error: error msg:: \n""+str(e))
                    return 'Error',0,0,0,0,None,pd.DataFrame(),0,None
                #predictions = model.predict_generator(generatorTest)
            except Exception as e:
                self.log.info(""multivariate model build error: error msg:: \n""+str(e))
                return 'Error',0,0,0,0,None,pd.DataFrame(),0,None    
            try:
                predictions=[]
                future_pred_len=n_input
                #To get values for prediction,taking look_back steps of rows
                first_batch=test[-future_pred_len:]
                c_batch = first_batch.reshape((1,future_pred_len,n_features))
                current_pred=None
                for i in range(len(test)):
                    #get pred for firstbatch
                    current_pred=model.predict_generator(c_batch)[0]
                    predictions.append(current_pred)
                    #remove first val
                    c_batch_rmv_first=c_batch[:,1:,:]
                    #update
                    c_batch=np.append(c_batch_rmv_first,[[current_pred]],axis=1)
                prediction_actual=scaler.inverse_transform(predictions)
                test_data_actual=scaler.inverse_transform(test)
                mse=None
                rmse=None
                ## Creating dataframe for actual,predictions
                try:
                    pred_cols=list()
                    for i in range(len(self.targetFeature)):
                        pred_cols.append(self.targetFeature[i]+'_pred')
                        
                    predictions = pd.DataFrame(prediction_actual, columns=pred_cols)
                    actual = pd.DataFrame(test_data_actual, columns=self.targetFeature)
                    actual.columns = [str(col) + '_actual' for col in df.columns]
                    df_predicted=pd.concat([actual,predictions],axis=1)
                    self.log.info(""LSTM Multivariate prediction dataframe: \n""+str(df_predicted))
                    from math import sqrt
                    from sklearn.metrics import mean_squared_error
                    from sklearn.metrics import r2_score
                    from sklearn.metrics import mean_absolute_error             
                    target=self.targetFeature
                    mse_dict={}
                    rmse_dict={}
                    mae_dict={}
                    r2_dict={}
                    lstm_var = 0
                    for name in target:
                        index = df.columns.get_loc(name)
                        mse = mean_squared_error(test_data_actual[:,index],prediction_actual[:,index])
                        mse_dict[name]=mse
                        rmse=sqrt(mse)
                        rmse_dict[name]=rmse
                        lstm_var = lstm_var+rmse
                        self.log.info(""Name of the target feature: ""+str(name))
                        self.log.info(""RMSE of the target feature: ""+str(rmse))
                        r2 = r2_score(test_data_actual[:,index],prediction_actual[:,index])
                        r2_dict[name]=r2
                        mae = mean_absolute_error(test_data_actual[:,index],prediction_actual[:,index])
                        mae_dict[name]=mae
                    ## For VAR comparison, send last target mse and rmse from above dict    
                    lstm_var = lstm_var/len(target)
                    select_msekey=list(mse_dict.keys())[-1]
                    l_mse=list(mse_dict.values())[-1]
                    select_rmsekey=list(rmse_dict.keys())[-1]
                    l_rmse=list(rmse_dict.values())[-1]
                    select_r2key=list(r2_dict.keys())[-1]
                    l_r2=list(r2_dict.values())[-1]
                    select_maekey=list(mae_dict.keys())[-1]
                    l_mae=list(mae_dict.values())[-1]
                    self.log.info(""Selected target feature of LSTM for best model selection: ""+str(select_rmsekey))
                    self.log.info(""lstm rmse: ""+str(l_rmse))
                    self.log.info(""lstm mse: ""+str(l_mse))
                    self.log.info(""lstm r2: ""+str(l_r2))
                    self.log.info(""lstm mae: ""+str(l_mae))
                except Exception as e:
                    import traceback
                    print("" traceback error:\n"",traceback.print_exc())
                    self.log.info(""prediction error traceback: \n""+str(traceback.print_exc()))
            except Exception as e:
                self.log.info(""dataframe creation error. err.msg: ""+str(e))
                return 'Error',0,0,0,0,None,pd.DataFrame(),0,None
            return 'Success',round(l_mse,2),round(l_rmse,2),round(l_r2,2),round(l_mae,2),model,df_predicted,n_input,scaler
            # import os
            #predicted_file_name='lstm_prediction_df.csv'
            #predicted_file_path=os.path.join(self.dataFolderLocation,predicted_file_name)
            #df_predicted.to_csv(predicted_file_path)
            ##save model
            #model_path = os.path.join(self.dataFolderLocation,self.model_name)
            #self.log.info(""mlp model saved at: ""+str(model_path))
            #model.save(model_path)
        except Exception as e:
            ## Just use below traceback print to get detailed error information.
            # import traceback
            # print("" traceback error 7:\n"",traceback.print_exc())
            ## Enable traceback for debugging
            self.log.info(""dataframe creation error. err.msg: ""+str(e))
            return 'Error',0,0,0,0,None,pd.DataFrame(),0,None			
 


"
tsDLMultiVrtInUniVrtOut.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import os
import sys
import pandas as pd
import numpy as np
import numpy
import pandas
import math
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Input, Dense, TimeDistributed, LSTM, Dropout, RepeatVector
from sklearn.preprocessing import MinMaxScaler
import logging
import tensorflow as tf
import keras_tuner
#from keras_tuner.engine.hyperparameters import HyperParameters
from keras_tuner.tuners import RandomSearch,BayesianOptimization ,Hyperband
from sklearn.model_selection import train_test_split
from tensorflow.keras.preprocessing.sequence import TimeseriesGenerator
import warnings
warnings.simplefilter(""ignore"", UserWarning)
from sklearn.metrics import mean_absolute_percentage_error


class tsDLMultiVrtInUniVrtOut:
    def __init__(self,configfile,testpercentage,targetFeature,dateTimeFeature):
        self.look_back=None
        self.look_forward=None
        
        # self.df=df
        
        self.epochs=None
        self.batch_size=None
        self.hidden_layers=None
        self.optimizer=None
        self.activation_fn=""relu""
        self.loss_fn=None
        self.first_layer=None
        self.dropout=None
        self.model_name=None
        self.dl_params = configfile
        # self.data=data
        self.targetFeature=targetFeature
        self.dateTimeFeature=dateTimeFeature
        self.testpercentage = float(testpercentage)            
        self.log = logging.getLogger('eion')
        ##Added for ts hpt (TFSTask:7033)
        self.tuner_algorithm=""""        
        self.num_features=0
        
    ##Get deep learning model hyperparameter from advanced config
    def getdlparams(self):
        val=self.dl_params
        self.log.info('-------> The given mlp/lstm timeseries algorithm parameters:>>') 
        self.log.info(""    ""+str(val))
        for k,v in val.items():
            try:
                if (k == ""tuner_algorithm""):
                    self.tuner_algorithm=str(v)
                elif (k == ""activation""):
                    if not isinstance(k,list):
                        self.activation_fn=str(v).split(',')
                    else:
                        self.activation_fn=k
                elif (k == ""optimizer""):
                    self.optimizer=str(v)
                elif (k == ""loss""):
                    self.loss_fn=str(v)
                elif (k == ""first_layer""):
                    if not isinstance(k,list):
                        self.first_layer=str(v).split(',')
                    else:
                        self.first_layer=k
                elif (k == ""lag_order""):
                    if isinstance(k,list):
                        k = ''.join(v)
                        k=int(float(str(v)))
                    else:                        
                        self.look_back=int(float(str(v)))
                elif (k == ""forward_order""):
                    if isinstance(k,list):
                        k = ''.join(v)
                        k=int(float(str(v)))
                    else:                        
                        self.look_forward=int(float(str(v)))
                elif (k == ""hidden_layers""):
                    self.hidden_layers=int(v)
                elif (k == ""dropout""):                    
                    if not isinstance(k,list):
                        self.dropout=str(v).split(',')
                    else:
                        self.dropout=k
                elif (k == ""batch_size""):
                    self.batch_size=int(v)
                elif (k == ""epochs""):
                    self.epochs=int(v)
                elif (k == ""model_name""):
                    self.model_name=str(v)
                
            except Exception as e:                
                self.log.info('Exception occured in deeep learn param reading, setting up default params.')
                self.activation_fn=""relu""
                self.optimizer=""adam""
                self.loss_fn=""mean_squared_error""
                self.first_layer=[8,512]
                self.hidden_layers=1
                self.look_back=int(2)
                self.dropout=[0.0,0.1,0.01]
                self.batch_size=2
                self.epochs=50
                self.model_name=""lstmmodel.h5""
                continue
                
    # Reshape the data to the required input shape of the LSTM model
    def create_dataset(self,series, n_past, n_future, targetcolindx):
        X, y = list(), list()
        for window_start in range(len(series)):
            past_end = window_start + n_past
            future_end = past_end + n_future
            if future_end > len(series):
                break
            # slicing the past and future parts of the window
            past, future = series[window_start:past_end, :], series[past_end:future_end, targetcolindx]
            X.append(past)
            y.append(future)
        return np.array(X), np.array(y)
        #return X, y             

        
    ## Added function for hyperparam tuning (TFSTask:7033)
    def build_model(self,hp):
        n_features = self.num_features
        try:
            loss=self.loss_fn
            optimizer=self.optimizer
            # self.getdlparams()
            try:
                if optimizer.lower() == ""adam"":
                    optimizer=tensorflow.keras.optimizers.Adam
                elif(optimizer.lower() == ""adadelta""):
                    optimizer=tensorflow.keras.optimizers.experimental.Adadelta
                elif(optimizer.lower() == ""nadam""):
                    optimizer=tensorflow.keras.optimizers.experimental.Nadam
                elif(optimizer.lower() == ""adagrad""):
                    optimizer=tensorflow.keras.optimizers.experimental.Adagrad
                elif(optimizer.lower() == ""adamax""):
                    optimizer=tensorflow.keras.optimizers.experimental.Adamax
                elif(optimizer.lower() == ""rmsprop""):
                    optimizer=tensorflow.keras.optimizers.experimental.RMSprop
                elif(optimizer.lower() == ""sgd""):
                    optimizer=tensorflow.keras.optimizers.experimental.SGD
                else:
                    optimizer=tensorflow.keras.optimizers.Adam 
            except:
                optimizer=tf.keras.optimizers.Adam
                pass            
            # look_back_min=int(self.look_back[0])
            # look_back_max=int(self.look_back[1])
            first_layer_min=round(int(self.first_layer[0]))
            first_layer_max=round(int(self.first_layer[1]))
            dropout_min=float(self.dropout[0])
            dropout_max=float(self.dropout[1])
            dropout_step=float(self.dropout[2])   
            
            #import pdb; pdb.set_trace()
            n_past= self.look_back
            n_future = self.look_back
            encoder_l = {}
            encoder_outputs = {}
            encoder_states = {}
            decoder_l = {}
            decoder_outputs = {}
            encoder_inputs = Input(shape=(n_past, n_features))

            try:
                if(self.hidden_layers > 0):
                    encoder_l[0] = LSTM(units=hp.Int('enc_input_unit',min_value=first_layer_min,max_value=first_layer_max,step=32), activation = hp.Choice(f'enc_input_activation', values = self.activation_fn), return_sequences = True, return_state=True)
                else:
                    encoder_l[0] = LSTM(units=hp.Int('enc_input_unit',min_value=first_layer_min,max_value=first_layer_max,step=32), activation = hp.Choice(f'enc_input_activation', values = self.activation_fn), return_state=True)
            except Exception as e:
                import traceback
                self.log.info(""lstm build traceback: \n""+str(traceback.print_exc()))
                model=tf.keras.Sequential()
                return model
            
            encoder_outputs[0] = encoder_l[0](encoder_inputs)
            encoder_states[0] = encoder_outputs[0][1:]
            
            if(self.hidden_layers > 0):
                for indx in range(self.hidden_layers):
                    lindx = indx + 1
                    if lindx == self.hidden_layers:
                        encoder_l[lindx] = LSTM(units=hp.Int(f'enc_lstm_units_{lindx}',min_value=first_layer_min,max_value=first_layer_max,step=32), dropout=hp.Float(f'enc_lstm_dropout_{lindx}',min_value=dropout_min,max_value=dropout_max,step=dropout_step), activation = hp.Choice(f'enc_lstm_activation_{lindx}', values = self.activation_fn), return_state=True)
                    else:
                        encoder_l[lindx] = LSTM(units=hp.Int(f'enc_lstm_units_{lindx}',min_value=first_layer_min,max_value=first_layer_max,step=32), dropout=hp.Float(f'enc_lstm_dropout_{lindx}',min_value=dropout_min,max_value=dropout_max,step=dropout_step), activation = hp.Choice(f'enc_lstm_activation_{lindx}', values = self.activation_fn), return_sequences = True, return_state=True)
                    encoder_outputs[lindx] = encoder_l[lindx](encoder_outputs[indx][0])
                    encoder_states[lindx] = encoder_outputs[lindx][1:]
                decoder_inputs = RepeatVector(n_future)(encoder_outputs[self.hidden_layers][0])
            else:
                decoder_inputs = RepeatVector(n_future)(encoder_outputs[0][0])
            #

            if(self.hidden_layers > 0):
                decoder_l[0] = LSTM(encoder_states[0][0].get_shape()[1], activation = hp.Choice(f'dec_input_activation', values = self.activation_fn), return_sequences=True)(decoder_inputs,initial_state = encoder_states[0])
            else:
                decoder_l[0] = LSTM(encoder_states[0][0].get_shape()[1], activation = hp.Choice(f'dec_input_activation', values = self.activation_fn), return_sequences=True)(decoder_inputs,initial_state = encoder_states[0])
            if(self.hidden_layers > 0):
                for indx in range(self.hidden_layers):
                    lindx = indx + 1
                    decoder_l[lindx] = LSTM(encoder_states[lindx][0].get_shape()[1], activation = hp.Choice(f'dec_lstm_activation_{lindx}', values = self.activation_fn), return_sequences=True)(decoder_l[indx],initial_state = encoder_states[lindx])
                decoder_outputs[0] = TimeDistributed(tf.keras.layers.Dense(decoder_l[self.hidden_layers][0].get_shape()[1], activation = hp.Choice(f'dec_output_activation_1', values = self.activation_fn)))(decoder_l[self.hidden_layers])
                decoder_outputs[1] = TimeDistributed(tf.keras.layers.Dense(1))(decoder_outputs[0])


            else:
                # decoder_outputs[0] = TimeDistributed(tf.keras.layers.Dense(decoder_l[0][0].get_shape()[1]))(decoder_l[0])
                # decoder_outputs[1] = LSTM(200, return_sequences=True)(decoder_outputs[0])
                # decoder_outputs[2] = tf.keras.layers.Flatten()(decoder_outputs[1])
                # decoder_outputs[3] = tf.keras.layers.Dense(1)(decoder_outputs[2])

                decoder_outputs[0] = TimeDistributed(tf.keras.layers.Dense(decoder_l[0][0].get_shape()[1], activation = hp.Choice(f'dec_output_activation_1', values = self.activation_fn)))(decoder_l[0])
                decoder_outputs[1] = TimeDistributed(tf.keras.layers.Dense(1))(decoder_outputs[0])
            
                                
            #
            model = tf.keras.models.Model(encoder_inputs,decoder_outputs[1])
            self.log.info(model.summary())
            model.compile(optimizer=optimizer(hp.Choice('learning_rate',values=[1e-1,1e-2,1e-3,1e-4])),loss=loss,metrics=[self.loss_fn])


        except Exception as e:
            import traceback            
            self.log.info("",Hyperparam tuning build_model err msg: \n""+ str(e))
            self.log.info(""Hyperparam tuning build_model err traceback: \n""+str(traceback.print_exc()))
        return model
    ##LSTM ecncoder decoder with multivariate input and univarite output prediction function (lstm model, train, prediction, metrics)
    def lstm_encdec_mvin_uvout(self,df):        
        try:  
            loss=self.loss_fn
            self.getdlparams()
            n_features = len(df.columns)
            self.num_features=n_features
            n_past= self.look_back
            n_future = self.look_back
            
                       
            try:
                if (type(self.targetFeature) is list):
                    pass
                else:
                    self.targetFeature = list(self.targetFeature.split("",""))
            except:
                pass
            
            targetColIndx = []
            for target in self.targetFeature:
                targetColIndx.append(df.columns.get_loc(target))

            #if user doesnt applies any transformation, this will get applied
            scaler=MinMaxScaler()            
            df_trnsf=scaler.fit_transform(df)
            train_data, test_data = train_test_split(df_trnsf, test_size=0.2, shuffle=False)
            tuner_alg=self.tuner_algorithm
            #The below create_dataset only for getting best model and best hyperparameters
            X_train, y_train = self.create_dataset(train_data, n_past, n_future, targetColIndx)
            X_test, y_test = self.create_dataset(test_data, n_past, n_future, targetColIndx)
            # X_train = X_train.reshape((X_train.shape[0], X_train.shape[1],n_features))
            # y_train = y_train.reshape((y_train.shape[0], y_train.shape[1], 1))
            self.log.info(""Hyperparameter tuning algorithm is given by user (AION->Advanced configuration -> timeSeriesForecasting->LSTM): \n""+str(tuner_alg))
            try:
                ## Remove untitled_project dir in AION root folder created by previous tuner search run
                import shutil
                shutil.rmtree(r"".\untitled_project"")
            except:
                pass
            try:                
                if (tuner_alg.lower()==""randomsearch""):
                    tuner=RandomSearch(self.build_model,keras_tuner.Objective(""val_loss"", direction=""min""),max_trials=1,executions_per_trial=3)
                elif (tuner_alg.lower()==""bayesianoptimization""):
                    tuner=BayesianOptimization(self.build_model,keras_tuner.Objective(""val_loss"", direction=""min""),max_trials=5,executions_per_trial=3)
                elif (tuner_alg.lower()==""hyperband""):
                    tuner=Hyperband(self.build_model,keras_tuner.Objective(""val_loss"", direction=""min""),max_epochs=50,factor=3)
                else:
                    self.log.info(""The given alg is not implemented. Using default hyperparam tuning algorithm: RandomSearch.\n"")
                    tuner=RandomSearch(self.build_model,keras_tuner.Objective(""val_loss"", direction=""min""),max_trials=5,executions_per_trial=3)
                from keras.callbacks import EarlyStopping
                stop_early = EarlyStopping(monitor='val_loss', patience=5)
            except Exception as e:                
                import traceback
                self.log.info(""The given alg have some issue, Using default hyperparam tuning algorithm: RandomSearch.\n""+str(e))
                tuner=RandomSearch(self.build_model,keras_tuner.Objective(""val_loss"", direction=""min""),max_trials=1,executions_per_trial=3)
                self.log.info(""Started Exception default Random Search"")
            #hpt search for best params
            
            try:
                self.log.info(""First try: Tuner search started"")
                tuner.search(X_train, y_train,validation_data=(X_test, y_test), callbacks=[stop_early])
                self.log.info(""First try: Tuner search ends"")
            except Exception as e:
                self.log.info(""Second try: Tuner search starts.\n""+str(e))
                tuner.search(x=X_train,y=y_train,validation_split=0.2, callbacks=[stop_early])
                self.log.info(""Second try: Tuner search ends"")
            
            # best_model = tuner.get_best_models(num_models=1)[0]
            #self.log.info(""best_model.summary(): \n""+str(best_model.summary()))
            best_hps=tuner.get_best_hyperparameters(num_trials=1)[0]
            self.log.info(""TS Multivariate LSTM best hyperparameter values:\n""+str(best_hps.values))
            self.log.info(""Activation fn:\n""+str(self.activation_fn))
            n_input=self.look_back           
            best_hmodel=tuner.hypermodel.build(best_hps)
            optimizer=self.optimizer
            learning_rate=float(best_hps.get('learning_rate'))
            try:
                ##TFSTask:7033, Added below try block for time series hyperparam tuning, here, for any optimizer, best learning_rate is provided from best_hps.
                try:
                    if optimizer.lower() == ""adam"":
                        optimizer=tensorflow.keras.optimizers.Adam(learning_rate=learning_rate)
                    elif(optimizer.lower() == ""adadelta""):
                        optimizer=tensorflow.keras.optimizers.experimental.Adadelta(learning_rate=learning_rate)
                    elif(optimizer.lower() == ""nadam""):
                        optimizer=tensorflow.keras.optimizers.experimental.Nadam(learning_rate=learning_rate)
                    elif(optimizer.lower() == ""adagrad""):
                        optimizer=tensorflow.keras.optimizers.experimental.Adagrad(learning_rate=learning_rate)
                    elif(optimizer.lower() == ""adamax""):
                        optimizer=tensorflow.keras.optimizers.experimental.Adamax(learning_rate=learning_rate)
                    elif(optimizer.lower() == ""rmsprop""):
                        optimizer=tensorflow.keras.optimizers.experimental.RMSprop(learning_rate=learning_rate)
                    elif(optimizer.lower() == ""sgd""):
                        optimizer=tensorflow.keras.optimizers.experimental.SGD(learning_rate=learning_rate)
                    else:
                        optimizer=tensorflow.keras.optimizers.Adam(learning_rate=learning_rate) 
                except:
                    optimizer=tf.keras.optimizers.Adam(learning_rate=learning_rate)
                    pass
                ##From best hyperparameter values, now creating multivariate time series model using time generator.
   
                generatorTrain=TimeseriesGenerator(X_train, y_train, length=n_past, batch_size=self.batch_size)
                # generatorTest=TimeseriesGenerator(test,test,length=n_input,batch_size=self.batch_size)
                batch_0=generatorTrain[0]
                x,y=batch_0
                epochs=int(self.epochs)
                ##Multivariate LSTM model
                try:

                    encoder_l = {}
                    encoder_outputs = {}
                    encoder_states = {}
                    decoder_l = {}
                    decoder_outputs = {}
                    enc_lstm_dropout = {}

                    enc_input_unit = best_hps.get('enc_input_unit')
                    enc_input_activation = best_hps.get('enc_input_activation')
                    dec_input_activation = best_hps.get('dec_input_activation')
                    dec_output_activation_1 = best_hps.get('dec_output_activation_1')

                    enc_lstm_units = {}
                    enc_lstm_activation = {}
                    dec_lstm_activation = {}
                    for indx in range(self.hidden_layers):
                        lindx = indx + 1
                        enc_lstm_units[lindx] = best_hps.get('enc_lstm_units_'+str(lindx))
                        enc_lstm_activation[lindx] = best_hps.get('enc_lstm_activation_'+str(lindx))
                        dec_lstm_activation[lindx] = best_hps.get('dec_lstm_activation_'+str(lindx))
                        enc_lstm_dropout[lindx] = best_hps.get('enc_lstm_dropout_'+str(lindx))

                    encoder_inputs = Input(shape=(n_past, n_features))
                    if(self.hidden_layers > 0):
                        encoder_l[0] = LSTM(enc_input_unit, activation = enc_input_activation, return_sequences = True, return_state=True)
                    else:
                        encoder_l[0] = LSTM(enc_input_unit, activation = enc_input_activation, return_state=True)

                    encoder_outputs[0] = encoder_l[0](encoder_inputs)
                    encoder_states[0] = encoder_outputs[0][1:]

                    if(self.hidden_layers > 0):
                        for indx in range(self.hidden_layers):
                            lindx = indx + 1
                            if lindx == self.hidden_layers:
                                    encoder_l[lindx] = LSTM(enc_lstm_units[lindx], dropout = enc_lstm_dropout[lindx], activation = enc_lstm_activation[lindx], return_state=True)
                            else:
                                    encoder_l[lindx] = LSTM(enc_lstm_units[lindx], dropout = enc_lstm_dropout[lindx], activation = enc_lstm_activation[lindx], return_sequences = True, return_state=True)
                            encoder_outputs[lindx] = encoder_l[lindx](encoder_outputs[indx][0])
                            encoder_states[lindx] = encoder_outputs[lindx][1:]
                        decoder_inputs = RepeatVector(n_future)(encoder_outputs[self.hidden_layers][0])
                    else:
                        decoder_inputs = RepeatVector(n_future)(encoder_outputs[0][0])
                    #
                    
                    if(self.hidden_layers > 0):
                        decoder_l[0] = LSTM(encoder_states[0][0].get_shape()[1], activation = dec_input_activation, return_sequences=True)(decoder_inputs,initial_state = encoder_states[0])
                    else:
                        decoder_l[0] = LSTM(encoder_states[0][0].get_shape()[1], activation = dec_input_activation, return_sequences=True)(decoder_inputs,initial_state = encoder_states[0])
                    if(self.hidden_layers > 0):
                        for indx in range(self.hidden_layers):
                            lindx = indx + 1
                            decoder_l[lindx] = LSTM(encoder_states[lindx][0].get_shape()[1], activation = dec_lstm_activation[lindx], return_sequences=True)(decoder_l[indx],initial_state = encoder_states[lindx])

                        decoder_outputs[0] = TimeDistributed(tf.keras.layers.Dense(decoder_l[self.hidden_layers][0].get_shape()[1], activation = dec_output_activation_1))(decoder_l[self.hidden_layers])
                        decoder_outputs[1] = TimeDistributed(tf.keras.layers.Dense(1))(decoder_outputs[0])
                    else:
                        decoder_outputs[0] = TimeDistributed(tf.keras.layers.Dense(decoder_l[0][0].get_shape()[1], activation = dec_output_activation_1))(decoder_l[0])
                        decoder_outputs[1] = TimeDistributed(tf.keras.layers.Dense(1))(decoder_outputs[0])
                                      
                    #
                    model = tf.keras.models.Model(encoder_inputs,decoder_outputs[1])
                    self.log.info(model.summary())
                    self.log.info(""loss=""+self.loss_fn)
                    model.compile(optimizer=optimizer,loss=self.loss_fn,metrics=[self.loss_fn])
                    
                    #model.fit_generator(generatorTrain, epochs=epochs,shuffle=False, verbose=0) 
                    model.fit(X_train, y_train, batch_size=self.batch_size, epochs=epochs,shuffle=False, verbose=2) 
                except Exception as e:
                    import traceback
                    self.log.info(""multivariate model build error: error msg:: \n""+str(e))
                    return 'Error',0,0,0,0,None,pd.DataFrame(),0,None
                #predictions = model.predict_generator(generatorTest)
            except Exception as e:
                import traceback
                self.log.info(""optimizer and timesereis generator build error: error msg:: \n""+str(e))
                self.log.info(""optimizer and timesereis generator build error traceback: \n""+str(traceback.print_exc()))
                return 'Error',0,0,0,0,None,pd.DataFrame(),0,None    
            try:
                predictions=[]
                X_test, y_test = self.create_dataset(test_data, n_past, n_future, targetColIndx)
                predictions = model.predict(X_test)
                self.log.info(predictions)
                #convert the x test(includes target) to 2d as inverse transform accepts only 2d values
                xtestlen = len(X_test)
                xtest_2d = X_test.ravel().reshape(xtestlen * n_past, n_features)
                #inverse tranform of actual value
                xtest_2d = scaler.inverse_transform(xtest_2d)
                actual = xtest_2d[:, targetColIndx]
                #inverse tranform of predicted value
                prediction_1d = predictions.ravel()
                prediction_1d = prediction_1d.reshape(len(prediction_1d),1)
                self.log.info(prediction_1d)
                xtest_2d[:, targetColIndx] = prediction_1d
                xtest_2d = scaler.inverse_transform(xtest_2d)
                predictions = xtest_2d[:, targetColIndx]
               
                mse=None
                rmse=None
                ## Creating dataframe for actual,predictions
                try:
                    pred_cols=list()
                    actual_cols=list()
                    for i in range(len(self.targetFeature)):
                        pred_cols.append(self.targetFeature[i]+'_pred')
                        actual_cols.append(self.targetFeature[i]+'_actual')
                        
                    predictions = pd.DataFrame(predictions.ravel(), columns=pred_cols)
                    actual = pd.DataFrame(actual.ravel(), columns=actual_cols)
                    df_predicted=pd.concat([actual,predictions],axis=1)
                    self.log.info(""LSTM Multivariate prediction dataframe: \n""+str(df_predicted))
                    from math import sqrt
                    from sklearn.metrics import mean_squared_error
                    from sklearn.metrics import r2_score
                    from sklearn.metrics import mean_absolute_error             
                    target=self.targetFeature
                    mse_dict={}
                    rmse_dict={}
                    mae_dict={}
                    mape_dict={}
                    r2_dict={}
                    lstm_var = 0
                    self.log.info(actual.shape)
                    self.log.info(actual)
                    self.log.info(predictions.shape)
                    self.log.info(predictions)
                    mse = mean_squared_error(actual,predictions)
                    mse_dict[self.targetFeature[0]]=mse
                    rmse=sqrt(mse)
                    rmse_dict[self.targetFeature[0]]=rmse
                    lstm_var = lstm_var+rmse
                    self.log.info(""Name of the target feature: ""+str(self.targetFeature))
                    self.log.info(""RMSE of the target feature: ""+str(rmse))
                    r2 = r2_score(actual,predictions)
                    r2_dict[self.targetFeature[0]]=r2
                    mae = mean_absolute_error(actual,predictions)
                    mae_dict[self.targetFeature[0]]=mae
                    mape = mean_absolute_percentage_error(actual,predictions)
                    mape_dict[self.targetFeature[0]]=mape
                    ## For VAR comparison, send last target mse and rmse from above dict    
                    lstm_var = lstm_var/len(target)
                    select_msekey=list(mse_dict.keys())[-1]
                    l_mse=list(mse_dict.values())[-1]
                    select_rmsekey=list(rmse_dict.keys())[-1]
                    l_rmse=list(rmse_dict.values())[-1]
                    select_r2key=list(r2_dict.keys())[-1]
                    l_r2=list(r2_dict.values())[-1]
                    select_maekey=list(mae_dict.keys())[-1]
                    l_mae=list(mae_dict.values())[-1]
                    l_mape=list(mape_dict.values())[-1]
                    self.log.info(""Selected target feature of LSTM for best model selection: ""+str(select_rmsekey))
                    self.log.info(""lstm rmse: ""+str(l_rmse))
                    self.log.info(""lstm mse: ""+str(l_mse))
                    self.log.info(""lstm r2: ""+str(l_r2))
                    self.log.info(""lstm mae: ""+str(l_mae))
                    self.log.info(""lstm mape: ""+str(l_mape))
                except Exception as e:
                    import traceback
                    self.log.info(""prediction error traceback: \n""+str(traceback.print_exc()))
            except Exception as e:
                import traceback
                self.log.info(""dataframe creation error. err.msg: ""+str(e))
                self.log.info(""dataframe creation error traceback: \n""+str(traceback.print_exc()))
                return 'Error',0,0,0,0,None,pd.DataFrame(),0,None
            return 'Success',round(l_mse,2),round(l_rmse,2),round(l_r2,2),round(l_mae,2),model,df_predicted,n_input,scaler
            # import os
            #predicted_file_name='lstm_prediction_df.csv'
            #predicted_file_path=os.path.join(self.dataFolderLocation,predicted_file_name)
            #df_predicted.to_csv(predicted_file_path)
            ##save model
            #model_path = os.path.join(self.dataFolderLocation,self.model_name)
            #self.log.info(""mlp model saved at: ""+str(model_path))
            #model.save(model_path)
        except Exception as e:
            import traceback
            ## Just use below traceback print to get detailed error information.
            # import traceback
            # print("" traceback error 7:\n"",traceback.print_exc())
            ## Enable traceback for debugging
            self.log.info(""dataframe creation error. err.msg: ""+str(e))
            self.log.info(""Final exception traceback: \n""+str(traceback.print_exc()))
            return 'Error',0,0,0,0,None,pd.DataFrame(),0,None			
 


"
ts_modelvalidation.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import json

#Python sklearn & std libraries
import numpy as np
import pandas as pd
from time_series.ts_arima_eion import eion_arima
from  statsmodels.tsa.vector_ar.vecm import coint_johansen
from statsmodels.tsa.vector_ar.var_model import VAR
from math import *
from sklearn.metrics import mean_squared_error
from sklearn.metrics import mean_absolute_error
from math import sqrt
import logging
import os
import sys
import time
from statsmodels.tsa.arima_model import ARIMA
from sklearn.metrics import mean_squared_error
from pandas import read_csv
from statsmodels.tsa.stattools import adfuller
import pmdarima as pm
from statsmodels.tsa.stattools import grangercausalitytests
from statsmodels.stats.stattools import durbin_watson
from sklearn.utils import check_array


class timeseriesModelTests():
	def __init__(self,data,targetFeature,datetimeFeature,count):
		#self.tsConfig = tsConfig
		#self.modelconfig = modelconfig
		#self.modelList = modelList
		self.data = data
		self.targetFeature = targetFeature
		self.dateTimeFeature = datetimeFeature
		self.count=count
		self.log = logging.getLogger('eion')
	def StatinaryChecks(self,dictDiffCount):
		self.log.info(""\n---------------Start  Stationary Checks-----------"")
		tFeature = self.targetFeature.split(',')
		tFeature.append(self.dateTimeFeature)
		self.data=self.data[tFeature]
		tFeature.remove(self.dateTimeFeature)
		lengthtFeature=len(tFeature)
		diffCount=0
		try :
			for features in (tFeature):
				XSt = self.data[features]
				XSt=XSt.values
				resultSt = adfuller(XSt,autolag='AIC')
				stationaryFlag = False
				#print(resultSt)
				self.log.info('-------> Features: '+str(features))
				self.log.info('----------> ADF Statistic: '+str(resultSt[0]))
				self.log.info('----------> p-value: %f' % resultSt[1])
				if resultSt[1]<= 0.05:
					self.log.info(""-------------> Converted As Stationary Data"")
					stationaryFlag = True
				else:
					self.log.info(""-------------> Stationary Conversion Required"")
					stationaryFlag = False
					
				self.log.info('----------> Critical Values')
				for key, value in resultSt[4].items():
					self.log.info('----------> '+str(key)+': '+str(value))
				
				if stationaryFlag == False:
					self.data[features]=self.data[features].diff()
					self.data=self.data.dropna()
					dictDiffCount[features]=1
					XStt = self.data[features]
					XStt=XStt.values	
					resultStt = adfuller(XStt)
					if resultStt[1] > 0.05:
						self.data[features]=self.data[features].diff()
						self.data=self.data.dropna()
						dictDiffCount[features]=2
						XSttt = self.data[features]
						XSttt=XSttt.values	
						resultSttt = adfuller(XSttt)
						if resultSttt[1]<= 0.05:
							stationaryFlag = True
					else:
						stationaryFlag = True				
				self.log.info(""------------->""+str(dictDiffCount))
				
				
				if stationaryFlag == True:
					self.log.info(""----------> Equals to Stationary Data"")
				else:
					self.log.info(""----------> Not Equal To Stationary Data"")
					
			self.log.info(""-------> Stationary data diff()"")
			self.log.info(dictDiffCount)
			self.log.info(""---------------Start  Stationary Checks Ends-----------\n"")
			return self.data,dictDiffCount
						
		
		except Exception as inst:
				self.log.info('<!------------- Time Series Stationary Error ---------------> ')
				exc_type, exc_obj, exc_tb = sys.exc_info()
				fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
				self.log.info(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))

	def varTimeseriesModelTests(self,data):
		try :
			tFeature = self.targetFeature.split(',')
			self.log.info(""\n--------- Start Granger Causality Test Results ------------"")
			gtest=grangercausalitytests(data[tFeature], maxlag=15, addconst=True, verbose=True)	
			self.log.info(""-------> GrangerCausalitytest Results ""+str(gtest.values()))
			self.log.info(""--------- End Granger Causality Test Results ------------\n"")
			return gtest
		except Exception as inst:
				self.log.info('<!------------- Time Series Granger Causality testTest Error ---------------> ')
				exc_type, exc_obj, exc_tb = sys.exc_info()
				fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
				self.log.info(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))

	def grangersCausationMatrix(self,data, variables, test='ssr_chi2test', verbose=False):    
	
		try :
			countVariables=0
			self.log.info(len(variables))
			self.log.info(""\n--------------Start GrangersCausationMatrix---------------"")
			df = pd.DataFrame(np.zeros((len(variables), len(variables))), columns=variables, index=variables)
			for c in df.columns:
				for r in df.index:
					test_result = grangercausalitytests(data[[r, c]], maxlag=12, verbose=False)
					p_values = [round(test_result[i+1][0][test][1],4) for i in range(12)]
					if verbose: print(f'Y = {r}, X = {c}, P Values = {p_values}')
					min_p_value = np.min(p_values)
					df.loc[r, c] = min_p_value
			df.columns = [var + '_x' for var in variables]
			df.index = [var + '_y' for var in variables]
			self.log.info(df)
			for i in range(len(variables)):
				for j in range(len(variables)):
					if i!=j and df.iloc[i][j]<0.05 and df.iloc[i][j]<0.05:
						countVariables=countVariables+1
			self.log.info(""--------------End GrangersCausationMatrix---------------\n"")
			return df,countVariables
		except Exception as inst:
			self.log.info('<!------------- Time Series grangersCausationMatrix Test Error ---------------> ')
			exc_type, exc_obj, exc_tb = sys.exc_info()
			fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
			self.log.info(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))
			return df,countVariables
		
	def coIntegrationTest(self,data):
		try :
			tdata = data.drop([self.dateTimeFeature], axis=1)
			tdata.index = data[self.dateTimeFeature]
			cols = tdata.columns
			self.log.info(""\n-------------- Start of the Co Integration test ---------------"")
			lenTargetFeature=len(self.targetFeature)
			countIntegrationFeature=0

			N, l = tdata.shape
			jres = coint_johansen(tdata, 0, 1)
			trstat = jres.lr1                       
			tsignf = jres.cvt                      
			
			for i in range(l):
				if trstat[i] > tsignf[i, 1]:      
					r = i + 1
			jres.r = r
			jres.evecr = jres.evec[:, :r]
					
			jres.r = r
			countIntegrationFeature=jres.r
			jres.evecr = jres.evec[:, :r]
			
			self.log.info('------->coint_johansen trace statistics: '+str(trstat))
			self.log.info('------->coint_johansen critical values:')
			self.log.info(tsignf)
			self.log.info(""------->There are ""+str(countIntegrationFeature)+"" Co-Integration vectors"")
			self.log.info(""-------------- End of the Co Integration test ---------------\n"")
				
			return countIntegrationFeature
		except Exception as inst:
			self.log.info('<!------------- Time Series Co-Integration  Test Error ---------------> ')
			exc_type, exc_obj, exc_tb = sys.exc_info()
			fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
			self.log.info(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))
		
		

	
		
		
	
		
			
			"
__init__.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''"
tsStationarySeasonalityTest.py,"import pandas as pd
import numpy as np
from statsmodels.tsa.stattools import adfuller
from statsmodels.tsa.stattools import kpss
from statsmodels.tsa.seasonal import seasonal_decompose
import logging
import os
import warnings
warnings.filterwarnings('ignore')

## Main class to find out seassonality and stationary in timeseries data.
class tsStationarySeasonalityTest:
    def __init__(self,df,deployLocation):
        self.df=df
        self.deployLocation=deployLocation
        self.log = logging.getLogger('eion')
        
    
    ## to get the timeseries data stationary information
    def stationary_model(self,df,target_features,stationary_check_method):
        self.log.info(""<------ Time Series stationary test started.....------------->\n"")
        self.log.info(""<------ Feature used:------------->\t""+str(target_features))
        stationary_status=None
        if (stationary_check_method.lower()=='adfuller'):            
            stats_model=adfuller(df[target_features])
            # p_val=adf_result[1]
            statistic, p_value, n_lags, num_bservations,critical_values,info_criterion_best=stats_model[0],stats_model[1],stats_model[2],stats_model[3],stats_model[4],stats_model[5]
            ##Uncomment below logs when required.
            self.log.info(""Adfuller test (time series stationary test) p_value: \t""+str(p_value))
            # self.log.info(""Adfuller test (time series stationary test) statistics: \t""+str(statistic))
            # self.log.info(""Adfuller test (time series stationary test) number of lags (time steps): \t""+str(n_lags))
            # self.log.info(""Adfuller test (time series stationary test) Critical values: \n"")
            ##To display critical values
            # for key, value in stats_model[4].items():
                # self.log.info("" \t""+str(key)+""\t""+str(value))

            if (p_value>0.05):
                stationary_status=""feature is non-stationary""
                self.log.info('Status:- |... '+str(target_features)+' is non stationary')
            elif(p_value<0.05):
                stationary_status=""feature is stationary""
                self.log.info('Status:- |... '+str(target_features)+' is stationary')
                
        ##kpss is opposite to ADF in considering null hypothesis. In KPSS, if null hypothesis,then it is stationary as oppose to ADF.
        elif (stationary_check_method.lower()=='kpss'):
            from statsmodels.tsa.stattools import kpss
            stats_model = kpss(df[target_features])
            statistic, p_value, n_lags, critical_values=stats_model[0],stats_model[1],stats_model[2],stats_model[3]
            self.log.info(""kpss test (time series stationary test) p_value: \t""+str(p_value))
            self.log.info(""kpss test (time series stationary test) statistics: \t""+str(statistic))
            self.log.info(""kpss test (time series stationary test) number of lags (time steps): \t""+str(n_lags))
            self.log.info(""kpss test (time series stationary test) Critical values: \n"")
            
            for key, value in stats_model[3].items():
                self.log.info("" \t""+str(key)+""\t""+str(value))
            ##In kpss, the stationary condition is opposite to Adafuller.
            if (p_value>0.05):
                self.log.info('Status:- |... '+str(target_features)+' is stationary')				
            else:
                self.log.info('Status:- |... '+str(target_features)+' is non stationary')
                
        return stats_model,n_lags,p_value,stationary_status
    
    ## Get stationary details
    def stationary_check(self,target_features,time_col,method):
        df=self.df        
        try:
            df[time_col]=pd.to_datetime(df[time_col])
        except Exception as e:
            self.log.info(""issue in datetime conversion...\n""+str(e))
        df=df.set_index(time_col)        
        try:
            stationary_check_method=method
        except:
            stationary_check_method='adfuller'
        if (len(target_features) == 1):
            try:
                if isinstance(target_features,list):
                    target_features=''.join(target_features)        
                elif isinstance(target_features,int):
                    target_features=str(target_features)
                elif isinstance(target_features,str):
                    pass
            except Exception as e:
                self.log.info(""stationary check target feature error: \t""+str(e))
            stationary_result={}
            stats_model,n_lags,p_value,stationary_status=self.stationary_model(df,target_features,stationary_check_method)
            stationary_result[target_features]=stationary_status
        elif(len(target_features) > 1):
            stationary_result={}
            for col in df.columns:
                # self.log.info(""Multivariate feature for Stationary check:\t""+str(col))
                stats_model,n_lags,p_value,stationary_status=self.stationary_model(df,col,stationary_check_method)
                stationary_result[col]=stationary_status
        else:
            self.log.info(""TS Stationarity Test: Error in target feature, pls check.\n."")
            
        # self.log.info(""Feature based stationarity_result:\n""+str(stationary_result))
        # ## Stationary component for whole dataset
        stationary_combined_res=dict()
        # stats_model,n_lags,p_value,stationary_status=self.stationary_all_features(time_col,'adfuller')
        c_dict=[k for k,v in stationary_result.items() if 'non-stationary' in v]
        if (len(c_dict)>=1):
            stationary_combined_res['dataframe_stationarity']='Non-Stationary'
            self.log.info('Status:- |... Data is non stationarity')			
        else:
            stationary_combined_res['dataframe_stationarity']='Stationary'
        # self.log.info(""Stationarity information for whole dataset:\n""+str(stationary_combined_res))            
        self.log.info(""Time series Stationarity test completed.\n"")
        
        return stats_model,n_lags,p_value,stationary_result,stationary_combined_res

    #Get seasonality by using seasonal_decompose lib.
    def seasonality_model(self,target_features,df):
        self.log.info(""<------ Time Series Seasonality  test started.....------------->\n"")
        self.log.info(""<------ Feature used:------------->\n""+str(target_features))
        seasonality_status=None
        try:
            try:
                stats_model = kpss(df[target_features])
                statistic, p_value, n_lags, critical_values=stats_model[0],stats_model[1],stats_model[2],stats_model[3]
            except:
                n_lags=1
                pass
            try:
                df_target=self.df[target_features]
                decompose_result_mult = seasonal_decompose(df_target,model='additive', extrapolate_trend='freq', period=n_lags)
            except Exception as e:
                self.log.info(""Logging seasonality_model decompose_result_mult: \t""+str(e))
                ##If additive model (type of seasonal component) failed, use multiplicative
                decompose_result_mult = seasonal_decompose(df_target,model='multiplicative', extrapolate_trend='freq', period=1)
            trend = decompose_result_mult.trend
            observed=decompose_result_mult.observed
            seasonal = decompose_result_mult.seasonal
            residual = decompose_result_mult.resid
            try:
                if isinstance(df_target, pd.Series):
                    auto_correlation = df_target.autocorr(lag=n_lags)
                    # self.log.info(""seasonality test: auto_correlation value:\n""+str(auto_correlation))
                elif isinstance(df_target, pd.DataFrame):
                    df_target = df_target.squeeze()
                    auto_correlation = df_target.autocorr(lag=n_lags)
                    # self.log.info(""seasonality test: auto_correlation value:\n""+str(auto_correlation))
            except:
                pass
            self.log.info(""<------------------ Time series Seasonality test result:------------------>"")
            if (seasonal.sum()==0):
                seasonality_status=""feature don't have seasonality (non seasonality).""
                self.log.info('Status:- |... '+str(target_features)+' does not have seasonality')				
                self.log.info(""<-----  The model feature: ""+str(target_features)+"" does not have significant seasonality.----->\n"")
            else:
                seasonality_status=""feature has seasonality.""
                self.log.info('Status:- |... '+str(target_features)+' have seasonality')

            ##Please use the below plot for GUI show (seasonality components)
            # decompose_result_mult.plot()
            df['observed'] = decompose_result_mult.observed
            df['residual'] = decompose_result_mult.resid
            df['seasonal'] = decompose_result_mult.seasonal
            df['trend'] = decompose_result_mult.trend
            df_name='timeseries_seasonality_check_'+f""{target_features}""+'.csv'
            dir_n = os.path.join(self.deployLocation,'data','seasonality')
            if not os.path.exists(dir_n):
                os.makedirs(dir_n)
            model_path=os.path.join(dir_n,df_name)            
            self.log.info(""Seasonality information saved as dataframe at:\t ""+str(model_path))
            ## Seasonal component for whole dataset            
            df.to_csv(model_path)            
        except Exception as e:
            self.log.info(""Seasonality function exception: \t""+str(e))
        return df,decompose_result_mult,seasonality_status
        
    ##Main function to check seasonlity in data
    def seasonal_check(self,target_features,time_col,seasonal_model):
        df=self.df
        # self.log.info(""seasonal check started... \n"")
        try:
            df[time_col]=pd.to_datetime(df[time_col])
        except Exception as e:
            self.log.info(""Issue in datetime conversion...\n""+str(e))            
        df=df.set_index(time_col)
        
        if (len(target_features)==1):
            try:
                if isinstance(target_features,list):
                    target_features=''.join(target_features)        
                elif isinstance(target_features,int):
                    target_features=str(target_features)
                elif isinstance(target_features,str):
                    pass
            except Exception as e:
                self.log.info(""stationary check target feature error: \t""+str(e))
            ## Seasonal component for individual feature based.
            seasonality_result=dict()
            df,decompose_result_mult,seasonality_status = self.seasonality_model(target_features,df)
            seasonality_result[target_features]=seasonality_status
        elif(len(target_features) > 1):
            seasonality_result=dict()
            self.log.info(""TS seasonality Test: The problem type is time series Multivariate."")
            for col in df.columns:
                df,decompose_result_mult,seasonality_status = self.seasonality_model(col,df)
                seasonality_result[col]=seasonality_status
        else:
            self.log.info(""TS seasonality Test: Error in target feature, pls check.\n."")
        
        # self.log.info(""Feature based seasonality_result:\n""+str(seasonality_result))   
        # ## Seasonal component for whole dataset
        seasonality_combined_res=dict()
        c_dict=[k for k,v in seasonality_result.items() if 'non seasonality' in v]
        if (len(c_dict)>=1):
            seasonality_combined_res['dataframe_seasonality']='No Seasonal elements'
        else:
            seasonality_combined_res['dataframe_seasonality']='contains seasonal elements.'
        # self.log.info(""Seasonality information for whole dataset:\n""+str(seasonality_combined_res))
            
        
        self.log.info(""Time series Seasonality test completed.\n"")
        
        return df,decompose_result_mult,seasonality_result,seasonality_combined_res
            
        
        
                    
#Main fn for standalone test purpose
if __name__=='__main__':
    print(""Inside seasonality-stationary test main function..."")
    print(""Below code used for standalone test purpose."")
    # df=pd.read_csv(r""C:\AION_Works\Data\order_forecast_ts.csv"")
    # print(""df info: \n"",df.info())
    # df=df.drop('index',axis=1)
    # time_col=""DateTime""
    # target='order1'
    # stationary_method='adfuller'
    # seasonal_model=""additive""   ## two models are available: 1.multiplicative, 2.additive
    # if (isinstance(target,list)):
        # pass
    # elif (isinstance(target,str)):
        # target=list(target.split(','))
    # cls_ins=aion_ts_stationary_seassonality_test(df)
    # stats_model,n_lags,p_value=cls_ins.stationary_check(target,time_col,stationary_method)
    # df,decompose_result_mult=cls_ins.seasonal_check(target,time_col,seasonal_model)
    # print("" Time series stationary and seasonality check completed."")"
timeseriesDLUnivariate.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import pandas as pd
# import os
import tensorflow as tf
import numpy as np
from sklearn.preprocessing import MinMaxScaler
from sklearn.model_selection import train_test_split
import math
from sklearn.metrics import mean_squared_error
from tensorflow.keras.layers import Dense
from tensorflow.keras.layers import Dropout
from tensorflow.keras import Sequential
from tensorflow.keras.layers import LSTM
import logging
# import kerastuner
import keras_tuner
#from keras_tuner.engine.hyperparameters import HyperParameters
from keras_tuner.tuners import RandomSearch,BayesianOptimization ,Hyperband

import warnings
warnings.simplefilter(""ignore"", UserWarning)

# from keras.models import load_model

# from tensorflow.keras.optimizers import SGD
# from tensorflow.keras.utils import load_model
from tensorflow.keras.models import load_model


class timeseriesDLUnivariate:
    def __init__(self,configfile,testpercentage,targetFeature,dateTimeFeature,modelName):
        self.look_back=None
        #Preprocessed dataframe
        # self.df=df
        self.savedmodelname=None
        self.deploy_location=None
        self.epochs=None
        self.batch_size=None
        self.hidden_layers=None
        self.optimizer=None
        self.activation_fn=None
        self.loss_fn=None
        self.first_layer=None
        self.dropout=None
        self.model_name=None
        self.hpt_train=None
        ##Below is model type (MLP or lstm)
        self.model_type=modelName
        #self.dataFolderLocation=str(dataFolderLocation)
        ##Added for ts hpt
        self.tuner_algorithm=""""
        
        self.dl_params = configfile
        # self.data=data
        self.targetFeature=targetFeature
        self.dateTimeFeature=dateTimeFeature
        self.testpercentage = testpercentage           
        self.log = logging.getLogger('eion')
        
    #To extract dict key,values
    def extract_params(self,dict):
        self.dict=dict
        for k,v in self.dict.items():
            return k,v
        
    ##Get deep learning model hyperparameter from advanced config
    def getdlparams(self):
        val=self.dl_params
        self.log.info('-------> The given mlp/lstm timeseries algorithm parameters:>>') 
        self.log.info(""    ""+str(val))
        for k,v in val.items():
            try:
                if (k == ""tuner_algorithm""):
                    self.tuner_algorithm=str(v)
                elif (k == ""activation""):
                    self.activation_fn=str(v)
                elif (k == ""optimizer""):
                    self.optimizer=str(v)
                elif (k == ""loss""):
                    self.loss_fn=str(v)
                elif (k == ""first_layer""):
                    if not isinstance(k,list):
                        self.first_layer=str(v).split(',')
                    else:
                        self.first_layer=k
                elif (k == ""lag_order""):
                    if isinstance(k,list):
                        k = ''.join(v)
                        k=int(float(str(v)))
                    else:                        
                        self.look_back=int(float(str(v)))
                elif (k == ""hidden_layers""):
                    self.hidden_layers=int(v)
                elif (k == ""dropout""):                    
                    if not isinstance(k,list):
                        self.dropout=str(v).split(',')
                    else:
                        self.dropout=k
                elif (k == ""batch_size""):
                    self.batch_size=int(v)
                elif (k == ""epochs""):
                    self.epochs=int(v)
                elif (k == ""model_name""):
                    self.model_name=str(v)
                
            except Exception as e:                
                self.log.info('Exception occured in deeep learn param reading, setting up default params.')
                self.activation_fn=""relu""
                self.optimizer=""adam""
                self.loss_fn=""mean_squared_error""
                self.first_layer=[8,512]
                self.hidden_layers=1
                self.look_back=int(2)
                self.dropout=[0.1,0.5]
                self.batch_size=2
                self.epochs=50
                self.model_name=""lstmmodel.h5""
                continue
    
    ## Just use this if user need to create dataframe from input data.
    def createdf(self,df):
        target=""""
        # splitting reframed to X and Y considering the first column to be out target featureX=reframed.drop(['var1(t)'],axis=1)
        X=df.drop([target],axis=1)
        Y=df[target]
        X_values=X.values
        Y_values=Y.values
        n_predict=len(Y_values)
        train_X,train_Y = X_values[:(X_values.shape[0]-n_predict),:],Y_values[:(X_values.shape[0]-n_predict)]
        test_X,test_Y = X_values[(X_values.shape[0]-n_predict):,:],Y_values[(X_values.shape[0]-n_predict):]
        
        #reshaping train and test to feed to LSTM
        train_X = train_X.reshape((train_X.shape[0], 1, train_X.shape[1]))
        test_X = test_X.reshape((test_X.shape[0], 1, test_X.shape[1]))
        
        return train_X,train_Y,test_X,test_Y
        
    # convert an array of values into a dataset matrix
    def numpydf(self,dataset, look_back):
        dataX, dataY = [], []
        for i in range(len(dataset)-look_back-1):
            a = dataset[i:(i+look_back), 0]
            dataX.append(a)
            dataY.append(dataset[i + look_back, 0])

        # x,y=numpy.array(dataX), numpy.array(dataY)
        return np.array(dataX), np.array(dataY)
    
    def model_save(self,model):
        import os.path
        savedmodelname=self.model_name
        path = os.path.join(self.deploy_location,savedmodelname)        
        model.save(path)
        return (savedmodelname)
    
    ## MLP model buid
    def mlpDL(self,df):
        self.log.info(""MLP timeseries learning starts....."")        
        try:
            self.getdlparams()
            # look_back = self.look_back
            dataset = df.values
            dataset = dataset.astype('float32')
            ##The below Kwiatkowski-Phillips-Schmidt-Shin (kpss) statsmodel lib used for stationary check as well getting number of lags. 
            ##number of lag calculated just for reference ,not used now.
            #Dont delete this, just use in future.
            from statsmodels.tsa.stattools import kpss
            statistic, p_value, n_lags, critical_values = kpss(df[self.targetFeature])
            self.log.info(""Based on kpss statsmodel, lag order (time steps to calculate next prediction) is: \t""+str(n_lags))
            scaler = MinMaxScaler(feature_range=(0, 1))
            dataset = scaler.fit_transform(dataset)
            # split into train and test sets
            train_size = int(len(dataset) * 0.80)
            test_size = len(dataset) - train_size
            train, test = dataset[0:train_size,:], dataset[train_size:len(dataset),:]
            self.hpt_train=train
            tuner_alg=self.tuner_algorithm
            try:
                ## Remove untitled_project dir in AION root folder created by previous tuner search run
                import shutil
                shutil.rmtree(r"".\untitled_project"")
            except:
                pass
            if (tuner_alg.lower()==""randomsearch""):
                tuner=RandomSearch(self.build_model,keras_tuner.Objective(""val_loss"", direction=""min""),max_trials=5,executions_per_trial=3)
            elif (tuner_alg.lower()==""bayesianoptimization""):
                tuner=BayesianOptimization(self.build_model,keras_tuner.Objective(""val_loss"", direction=""min""),max_trials=5,executions_per_trial=3)
            elif (tuner_alg.lower()==""hyperband""):
                tuner=Hyperband(self.build_model,keras_tuner.Objective(""val_loss"", direction=""min""),max_epochs=50,factor=3)
            # tuner.search(X[...,np.new_axis],y,epochs=2,validation_data=(y[...,np.newaxis]))
            stop_early = tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=5)
            try:
                tuner.search(x=train,y=train,validation_data=(test,test),callbacks=[stop_early])
            except:
                tuner.search(x=train,y=train,validation_split=0.2,callbacks=[stop_early])
            # best_model=tuner.get_best_models(num_models=1)[0]
            best_hps=tuner.get_best_hyperparameters(num_trials=1)[0]
            best_first_layer=best_hps.get('units')
            best_dropout=best_hps.get('Dropout_rate')
            best_learning_rate=float(best_hps.get('learning_rate'))
            self.log.info(""best hyperparameter values for mlp: \n""+str(best_hps.values))
            look_back = 1 ## Because univariate problemtype
            trainX, trainY = self.numpydf(train, look_back)
            testX, testY = self.numpydf(test, look_back)
            best_hmodel=tuner.hypermodel.build(best_hps)
            ##Added for mlp issue,because tuner build also need to compile.
            try:
                best_hmodel.compile(loss=self.loss_fn, optimizer=self.optimizer)
            except:
                pass                                                          
            model_fit =  best_hmodel.fit(trainX, trainY, epochs=self.epochs, batch_size=self.batch_size, verbose=2)
            val_acc_per_epoch = model_fit.history['loss']
            best_epoch = val_acc_per_epoch.index(min(val_acc_per_epoch)) + 1
            self.log.info(""MLP best epochs value:\n""+str(best_epoch))            
            trainScore = best_hmodel.evaluate(trainX, trainY, verbose=0)
            testScore = best_hmodel.evaluate(testX, testY, verbose=0)
            #Scoring values for the model
            mse_eval=testScore
            try:
                #If mse_eval is list of values
                min_v=min(mse_eval)
            except:
                #If mse_eval is single value
                min_v=mse_eval                
            rmse_eval = math.sqrt(min_v)
            # generate predictions for training
            trainPredict = best_hmodel.predict(trainX)
            #print(testX)           
            testPredict = best_hmodel.predict(testX)
            #print(testPredict)
            # invert predictions, because we used mimanmax scaler
            trainY = scaler.inverse_transform([trainY])        
            trainPredict = scaler.inverse_transform(trainPredict)
            ## For test data
            testY = scaler.inverse_transform([testY])
            testPredict = scaler.inverse_transform(testPredict)
            ## Creating dataframe for actual,predictions
            predictions = pd.DataFrame(testPredict, columns=[self.targetFeature+'_pred'])
            actual = pd.DataFrame(testY.T, columns=[self.targetFeature+'_actual'])
            df_predicted=pd.concat([actual,predictions],axis=1)
            #print(df_predicted)
            from math import sqrt
            from sklearn.metrics import mean_squared_error
            try:
                mse_mlp = mean_squared_error(testY.T,testPredict)
                rmse_mlp=sqrt(mse_mlp)
                self.log.info('mse_mlp: '+str(mse_mlp))
                self.log.info('rmse_mlp: '+str(rmse_mlp))
                from sklearn.metrics import r2_score
                from sklearn.metrics import mean_absolute_error
                r2 = r2_score(testY.T,testPredict)
                mae = mean_absolute_error(testY.T,testPredict)
                self.log.info('r2_mlp: '+str(r2))
                self.log.info('mae_mlp: '+str(mae))
            except Exception as e:
                import traceback
                self.log.info(""MLP dataframe creation error traceback: \n""+str(traceback.print_exc()))
                self.log.info(e)
            # df_predicted.to_csv('mlp_prediction.csv')

        except Exception as e:            
            self.log.info(""MLP timeseries model traceback error msg e: ""+str(e))
        self.log.info(""MLP training successfully completed.\n"")
        return mse_mlp,rmse_mlp,r2,mae,best_hmodel,df_predicted,look_back,scaler
    
    ## Added function for hyperparam tuning (TFSTask:7033)
    def build_model(self,hp):
        try:
            loss=self.loss_fn
            optimizer=self.optimizer
            try:
                if optimizer.lower() == ""adam"":
                    optimizer=tf.keras.optimizers.Adam
                elif(optimizer.lower() == ""adadelta""):
                    optimizer=tf.keras.optimizers.experimental.Adadelta
                elif(optimizer.lower() == ""nadam""):
                    optimizer=tf.keras.optimizers.experimental.Nadam
                elif(optimizer.lower() == ""adagrad""):
                    optimizer=tf.keras.optimizers.experimental.Adagrad
                elif(optimizer.lower() == ""adamax""):
                    optimizer=tf.keras.optimizers.experimental.Adamax
                elif(optimizer.lower() == ""rmsprop""):
                    optimizer=tf.keras.optimizers.experimental.RMSprop
                elif(optimizer.lower() == ""sgd""):
                    optimizer=tf.keras.optimizers.experimental.SGD
                else:
                    optimizer=tf.keras.optimizers.Adam 
            except:
                optimizer=tf.keras.optimizers.Adam
                pass
            first_layer_min=round(int(self.first_layer[0]))
            first_layer_max=round(int(self.first_layer[1]))
            dropout_min=float(self.dropout[0])
            dropout_max=float(self.dropout[1])
            model=tf.keras.Sequential()
            if (self.model_type.lower() == 'lstm'):
                model.add(LSTM(units=hp.Int('units',min_value=first_layer_min,max_value=first_layer_max,step=16),input_shape=(self.look_back,self.hpt_train.shape[1]),
                                  activation=hp.Choice('dense_activation',values=['relu'])))
            elif (self.model_type.lower() == 'mlp'):
                # model.add(Dense(units=hp.Int('units',min_value=first_layer_min,max_value=first_layer_max,step=16),input_dim=(hp.Int('time_steps',min_value=look_back_min,max_value=look_back_max,step=1)),
                                  # activation='relu'))
                ##input_dim is 1 because mlp is for univariate.
                model.add(Dense(units=hp.Int('units',min_value=first_layer_min,max_value=first_layer_max,step=16),input_dim=(1),activation='relu'))
            model.add(Dropout(hp.Float('Dropout_rate',min_value=dropout_min,max_value=dropout_max,step=0.1)))
            model.add(Dense(units=1))
            model.compile(optimizer=optimizer(hp.Choice('learning_rate',values=[1e-1,1e-2,1e-3,1e-4])),loss=loss,metrics=[loss])
        except Exception as e:
            import traceback
            self.log.info(""lstm errorbuild_model traceback: \n""+str(traceback.print_exc()))
        return model
    
    ##LSTM timeseries function call
    def ts_lstm(self,df):
        self.log.info(""lstm network model learning starts.....\n"")
        try:
            self.getdlparams()
            dataset = df.values
            dataset = dataset.astype('float32')
            ##The below Kwiatkowski-Phillips-Schmidt-Shin (kpss) statsmodel lib used for stationary check as well getting number of lags. 
            ##number of lag calculated just for reference ,not used now.
            #Dont delete this, just use in future.
            from statsmodels.tsa.stattools import kpss
            statistic, p_value, n_lags, critical_values = kpss(df[self.targetFeature])
            self.log.info(""Based on kpss statsmodel, lag order (time steps to calculate next prediction) is: \t""+str(n_lags))
            # normalize the dataset
            scaler = MinMaxScaler(feature_range=(0, 1))
            dataset = scaler.fit_transform(dataset)
            # split into train and test sets
            train_size = int(len(dataset) * 0.80)
            test_size = len(dataset) - train_size
            train, test = dataset[0:train_size,:], dataset[train_size:len(dataset),:]
            self.hpt_train=train
            tuner_alg=self.tuner_algorithm
            try:
                ## Remove untitled_project dir in AION root folder created by previous tuner search run
                import shutil
                shutil.rmtree(r"".\untitled_project"")
            except:
                pass
            if (tuner_alg.lower()==""randomsearch""):
                tuner=RandomSearch(self.build_model,keras_tuner.Objective(""val_loss"", direction=""min""),max_trials=5,executions_per_trial=3)
            elif (tuner_alg.lower()==""bayesianoptimization""):
                tuner=BayesianOptimization(self.build_model,keras_tuner.Objective(""val_loss"", direction=""min""),max_trials=5,executions_per_trial=3)
            elif (tuner_alg.lower()==""hyperband""):
                tuner=Hyperband(self.build_model,keras_tuner.Objective(""val_loss"", direction=""min""),max_epochs=50,factor=3)
            # tuner.search(X[...,np.new_axis],y,epochs=2,validation_data=(y[...,np.newaxis]))
            from keras.callbacks import EarlyStopping
            stop_early = EarlyStopping(monitor='val_loss', patience=5)
            ##Need both x and y with same dimention.
            tuner.search(x=train,y=train,validation_split=0.2,callbacks=[stop_early])
            # tuner.search(x=train,y=test,validation_data=(test,test),callbacks=[stop_early])
            best_hps=tuner.get_best_hyperparameters(num_trials=1)[0]
            best_time_steps=self.look_back
            self.log.info(""best lag order or lookback (time_steps) for LSTM: \n""+str(best_time_steps))
            self.log.info(""best hyperparameter values for LSTM: \n""+str(best_hps.values))
            look_back = best_time_steps
            trainX, trainY = self.numpydf(train, look_back)
            testX, testY = self.numpydf(test, look_back)
            # reshape input to be [samples, time steps, features]
            trainX = np.reshape(trainX, (trainX.shape[0], trainX.shape[1], 1))
            testX = np.reshape(testX, (testX.shape[0], testX.shape[1], 1))
            #create and fit the LSTM network            
            best_hmodel=tuner.hypermodel.build(best_hps)              
            try:
                best_hmodel.compile(loss=self.loss_fn, optimizer=self.optimizer)
            except:
                pass
            model_fit =  best_hmodel.fit(trainX, trainY, validation_split=0.2, epochs=self.epochs, batch_size=self.batch_size, verbose=2)
            val_acc_per_epoch = model_fit.history['loss']
            best_epoch = val_acc_per_epoch.index(min(val_acc_per_epoch)) + 1
            self.log.info(""best epochs value:\n""+str(best_epoch))
            # best_hmodel=tuner.hypermodel.build(best_hps)
            # best_hmodel.fit(x=trainX,y=trainY,validation_split=0.2,epochs=best_epoch)
            ##Using model_evaluate,calculate mse
            # mse_eval = model.evaluate(testX, testY, verbose=0)
            mse_eval = best_hmodel.evaluate(testX, testY, verbose=0)
            try:
                #If mse_eval is list of values
                min_v=min(mse_eval)
            except:
                #If mse_eval is single value
                min_v=mse_eval
            rmse_eval=math.sqrt(min_v)        
            # self.log.info('LSTM mse:'+str(mse_eval))
            # self.log.info('LSTM rmse:'+str(rmse_eval))
            # lstm time series predictions
            trainPredict = best_hmodel.predict(trainX)
            testPredict = best_hmodel.predict(testX)
            # invert predictions, because we used mim=nmax scaler
            trainY = scaler.inverse_transform([trainY])        
            trainPredict = scaler.inverse_transform(trainPredict)
            testY = scaler.inverse_transform([testY])
            testPredict = scaler.inverse_transform(testPredict)
            ## Creating dataframe for actual,predictions
            predictions = pd.DataFrame(testPredict, columns=[self.targetFeature+'_pred'])
            actual = pd.DataFrame(testY.T, columns=[self.targetFeature+'_actual'])
            df_predicted=pd.concat([actual,predictions],axis=1)
            from math import sqrt
            from sklearn.metrics import mean_squared_error
            try:
                mse_lstm=None
                mse_lstm = mean_squared_error(testY.T,testPredict)
                rmse_lstm=sqrt(mse_lstm)                
                self.log.info(""mse_lstm: ""+str(mse_lstm))
                self.log.info(""rmse_lstm: ""+str(rmse_lstm))
                from sklearn.metrics import r2_score
                from sklearn.metrics import mean_absolute_error
                r2 = r2_score(testY.T,testPredict)
                mae = mean_absolute_error(testY.T,testPredict)
                self.log.info('r2_lstm: '+str(r2))
                self.log.info('mae_lstm: '+str(mae))
            except Exception as e:                
                self.log.info(""lstm error loss fns""+str(e))
                return 'Error',0,0,0,0,None,pd.DataFrame(),0,None
        except Exception as e:
            import traceback
            self.log.info(""lstm training error traceback: \n""+str(traceback.print_exc()))
            return 'Error',0,0,0,0,None,pd.DataFrame(),0,None
        return 'Success',mse_lstm,rmse_lstm,r2,mae,best_hmodel,df_predicted,look_back,scaler
    
        

if __name__ == '__main__':
    print('Inside timeseriesDLUnivariate main....\n')
#   tsdl_obj = timeseriesDLUnivariate()
    
    ## for testing purpose
    '''
    df1= pd.read_csv(r""C:\aiontest\testPrograms\Data\energydemand.csv"",encoding='utf-8', engine='python')
    dateTimeFeature = ""utcTimeStamp""
    targetFeature=""temperature""   
    try:
        df1[dateTimeFeature] = pd.to_datetime(df1[dateTimeFeature])  #, format = '%d/%m/%Y %H.%M')
    except:
        pass
    tdata = df1.drop([dateTimeFeature], axis=1)
    tdata.index = df1[dateTimeFeature]
    tdata = pd.DataFrame(tdata[targetFeature])
    cols = tdata.columns   
    mse,rmse,model = tsdl_obj.mlpDL(tdata)
    lmse,lrmse,lstmmodel = tsdl_obj.ts_lstm(tdata)
    print(""mlp mse: \n"",mse)
    print(""mlp rmse: \n"",rmse)
    print(""lstm mse: \n"",lmse)
    print(""lstm rmse: \n"",lrmse)
    savedmodelname=tsdl_obj.model_save(lstmmodel)
    '''

"
aion_fbprophet.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
# For timeseries pyramid pdaarima module
import json

#Python sklearn & std libraries
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.feature_selection import VarianceThreshold
from sklearn.metrics import mean_squared_error, r2_score, mean_absolute_error
#from sklearn.metrics import mean_absolute_percentage_error
from sklearn.linear_model import LinearRegression
from math import sqrt
import warnings
# For serialization.
#from sklearn.externals import joblib
import pickle 
import os,sys
# For ploting (mathlab)
import matplotlib.pyplot as plt
import plotly
#Import eion config manager module
import logging
from sklearn import metrics
from sklearn.metrics import accuracy_score
import time
import random
import statsmodels.api as sm
# prophet by Facebook
# time series analysis
#from statsmodels.tsa.seasonal import seasonal_decompose
#from statsmodels.graphics.tsaplots import plot_acf, plot_pacf
from prophet.plot import plot_plotly,plot_components_plotly
#import seaborn as sns
from sklearn.model_selection import ParameterGrid
import holidays
#from prophet.diagnostics import performance_metrics
#from prophet.diagnostics import cross_validation
from sklearn.metrics import mean_squared_error, r2_score, mean_absolute_error
import logging,sys
from scipy.special import inv_boxcox
from prophet.diagnostics import cross_validation

#from sklearn.metrics import mean_absolute_percentage_error

warnings.filterwarnings(""ignore"")
# Aion Prophet module
class aion_fbprophet ():
    #Constructor
    def __init__(self,configfile,testpercentage,data,targetFeature,dateTimeFeature):
        try:
            self.tsprophet_params = configfile
            self.data=data
            self.targetFeature=targetFeature
            self.dateTimeFeature=dateTimeFeature
            self.testpercentage = testpercentage            
            self.log = logging.getLogger('eion')
        except Exception as inst:
            self.log.info('<!------------- Prophet INIT Error ---------------> ')
            exc_type, exc_obj, exc_tb = sys.exc_info()
            fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
            self.log.info(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))
    
    #Find datetime column
    def get_datetime_col(self,data):
        df=data
        dt_col=[]
        categorical_features=[]
        discrete_features=[]
        # Here, I am checking each column type, whether it is object type or float or int. Then I am trying to convert the
        # Object type to datetime format using python pd.to_datetime() function. If the column converts , it is datetime format, else it is some other format (categorical or discrete)
        for col in df.columns:
            if (df[col].dtype == 'object' or df[col].dtype == 'datetime64[ns]' ):
                try:
                    df[col] = pd.to_datetime(df[col])
                    dt_col.append(col)
                except ValueError:
                    categorical_features.append(col)
                    pass
            elif (df[col].dtype == 'float64' or 'int64' or 'int' or 'float64' or 'float'): #('int' or 'float' or 'int64' or 'float64')):
                #print(""discrete features found..\n"")
                discrete_features.append(col)
            else:
                pass
        #Uncomment to know the datetime, categorical and continuous cols            
        # print (""Date time colms: dt_col: \n"",dt_col)
        # print(""categorical features: \n"",categorical_features)
        # print(""continuous features: \n"",discrete_features)
        return dt_col
    
    def get_predict_frequency(self,df,datetime_col_name):
        #dt_col=pd.to_datetime(df[datetime_col_name], format='%m/%d/%Y %H:%M:%S')
        dt_col=pd.to_datetime(df[datetime_col_name])
        #df['tvalue'] = df[datetime_col_name]
        df['time_diff'] = (df[datetime_col_name]-df[datetime_col_name].shift()).fillna(pd.Timedelta('0'))
        mean_diff_dt=df['time_diff'].mean()
        time_diff_secs=mean_diff_dt.total_seconds()
        time_sec_2_hr=((time_diff_secs/60)/60)
        pred_freq=""""
        time_sec_2_hr=round(time_sec_2_hr)
		#For abbreviation ,refer https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#timeseries-offset-aliases
        if (time_sec_2_hr < 1):
            pred_freq=""min""
        else:
            if (time_sec_2_hr >= 24):
                if (time_sec_2_hr > 168):
                    if(time_sec_2_hr > 696 or time_sec_2_hr < 744): # based on 29 days, to 31 days 
                        if(time_sec_2_hr > 8760):
                            pred_freq=""Y""
                        else:
                            pred_freq=""M""
                    else:
                        pred_freq=""W""
                else:
                    pred_freq=""D""
                
            else:
                pred_freq=""H""
                
            pass
        return pred_freq
		
    #To extract dict key,values
    def extract_params(self,dict):
        self.dict=dict
        for k,v in self.dict.items():
            return k,v
        
    def mean_absolute_percentage_error(self,y_true, y_pred):
        if (y_true.isin([0]).sum() > 0):
            y_true=y_true.mask(y_true==0).fillna(y_true.mean())
            
        try:
            y_true, y_pred=np.array(y_true), np.array(y_pred)
            #return np.mean(np.abs((y_true - y_pred) / y_true+sys.float_info.epsilon)) * 100
            return np.mean(np.abs((y_true - y_pred) / y_true)) * 100		
        except Exception as inst:
            self.log.info('<------------- mean_absolute_percentage_error ---------------> ')
            exc_type, exc_obj, exc_tb = sys.exc_info()
            fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
            self.log.info(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))
            
    def regressor_list(self,regressorstr):
        lst = regressorstr.split ("","")
        reg_list=[]
        for i in lst:
            reg_list.append(i)
            #print(reg_list)
            
        return reg_list
    
    
    
    # def get_regressors(self,reg):
    #     print(""get extra inputs for prophet...\n"")
        
        
    
    def aion_probhet(self,train_data,datetime_col_name,predicted_data_file,dataFolderLocation):
        from prophet import Prophet
		#Getting prophet params
        #key,val = self.extract_params(self.tsprophet_params)
        val=self.tsprophet_params
        self.log.info('-------> The given prophet algorithm parameters:>>') 
        self.log.info(""    ""+str(val))
        changepoint_prior_scale=[]
        changepoint_range=[]
        mcmc_samples=[]
        interval_width=[]
        holidays_prior_scale=[]
        n_changepoints=[]
        uncertainty_samples=[]
        seasonality_prior_scale=[]
        
        seasonality_mode=""""
        yearly_seasonality=None
        weekly_seasonality=None
        daily_seasonality=None
        additional_regressors=""""
        holiday_country_name=""""
        holiday_years=[]
        no_of_periods=0
        pred_frequncy=""""
		
        for k,v in val.items():
            try:
                if (k == ""seasonality_mode""):
                    seasonality_mode=v
                elif (k == ""changepoint_prior_scale""):
                    changepoint_prior_scale=[float(i) for i in v.split(',')]
                elif (k == ""changepoint_range""):
                    changepoint_range=[float(i) for i in v.split(',')]
                elif (k == ""yearly_seasonality""):
                    if v.lower() == 'true':
                        yearly_seasonality=True
                    elif v.lower() == 'false':
                        yearly_seasonality=False
                    elif v.lower() == 'auto':
                        yearly_seasonality=v
                    else:
                        yearly_seasonality=True
                elif (k == ""weekly_seasonality""):
                    if v.lower() == 'true':
                        weekly_seasonality=True
                    elif v.lower() == 'false':
                        weekly_seasonality=False
                    elif v.lower() == 'auto':
                        weekly_seasonality=v
                    else:
                        weekly_seasonality=False
                    #weekly_seasonality=v
                elif (k == ""daily_seasonality""):
                    if v.lower() == 'true':
                        daily_seasonality=True
                    elif v.lower() == 'false':
                        daily_seasonality=False
                    elif v.lower() == 'auto':
                        daily_seasonality=v
                    else:
                        daily_seasonality=False
                elif (k == ""mcmc_samples""):
                    mcmc_samples=[float(i) for i in v.split(',')]
                elif (k == ""interval_width""):
                    interval_width=[float(i) for i in v.split(',')]
                elif (k == ""holidays_prior_scale""):
                    #holidays_prior_scale=float(v)
                    holidays_prior_scale=[float(i) for i in v.split(',')]
                elif (k == ""n_changepoints""):
                    n_changepoints=[int(i) for i in v.split(',')]
                elif (k == ""uncertainty_samples""):
                    uncertainty_samples=[float(i) for i in v.split(',')]
                elif (k == ""seasonality_prior_scale""):
                    seasonality_prior_scale=[float(i) for i in v.split(',')]
                elif (k == ""additional_regressors""):
                    additional_regressors=str(v)
                elif (k == ""holiday_country_name""):
                    holiday_country_name=v
                elif (k == ""holiday_years""):
                    holiday_years=[int(i) for i in v.split(',')]
                elif (k == ""no_of_periods""):
                    no_of_periods=int(v)
                elif (k == ""pred_frequncy""):
                    pred_frequncy=v
                else:
                    self.log.info(""Invalid string."")
            except Exception:
                continue
            
        try:
            start = time.time()
            datetime_col_name=str(datetime_col_name)
            target_col=str(self.targetFeature)
            #extra_regressors=additional_regressors
            reg_list=self.regressor_list(additional_regressors)
            get_dtcol=""""
            get_dtcol=self.get_datetime_col(self.data)[0]
            #get predict frequency for user data
            pred_freq= str(self.get_predict_frequency(self.data,datetime_col_name))
            if (pred_frequncy):
                pred_frequncy=pred_frequncy
            else:
                #If user not defined predict_freq in aion config or GUI, our algorithm will find automatically by get_predict_frequency() method
                pred_frequncy=pred_freq
                self.log.info(""Auto Predict frequency period (Hour-H/Day-D/Week-W/Month-M/Year-Y): \n""+str(pred_frequncy))   
			
            #For proper datetime format check.
            self.data[self.dateTimeFeature] = pd.to_datetime(self.data[self.dateTimeFeature])
            filterd_df = self.data.filter([get_dtcol,target_col])            
            holiday = pd.DataFrame([])
            holiday_specified=holidays.CountryHoliday(holiday_country_name,years=holiday_years)
            for date, name in sorted(holiday_specified.items()):
                holiday = holiday.append(pd.DataFrame({'ds': date, 'holiday': ""Holidays""}, index=[0]), ignore_index=True)
            
            holiday['ds'] = pd.to_datetime(holiday['ds'], format='%Y-%m-%d %H:%M:%S', errors='ignore')
            filterd_df=filterd_df.rename(columns={self.dateTimeFeature:'ds',target_col:'y'})
            #Set seasonality model            
            try:
                if not seasonality_mode:
                    self.log.info('empty input for seasonality_mode parameter in aion configuration file.Please check. Setting default mode: additive. \n') 
                    seasonality_mode=[]
                    seasonality_mode=['additive']
                    multiplicative_s=""multiplicative""
                    additive_s=""additive""
                else:
                    seasonality_mode = seasonality_mode.split(',')
                    len_seasonality_mode=len(seasonality_mode)
            except ValueError as e:
                self.log.info(e) 
            params_grid = {'seasonality_mode':(seasonality_mode),
                'changepoint_prior_scale':changepoint_prior_scale,
                'changepoint_range': changepoint_range,
                'yearly_seasonality': [yearly_seasonality],
                'weekly_seasonality': [weekly_seasonality],
                'daily_seasonality': [daily_seasonality],
                'mcmc_samples': mcmc_samples,
                'interval_width': interval_width,
              'holidays_prior_scale':holidays_prior_scale,
              'n_changepoints' : n_changepoints,
              'uncertainty_samples': uncertainty_samples,
              'seasonality_prior_scale': seasonality_prior_scale}
            grid = ParameterGrid(params_grid)
            p_cnt = 0
            for p in grid:
                p_cnt = p_cnt+1
            self.log.info(""--------------- Total Possible prophet iterations: --------------- \n"")
            self.log.info(p_cnt)
            self.log.info(""\n--------------- Modal Validation Start ---------------"")
            size = int(len(filterd_df) * (100 - self.testpercentage)/100)
            train = filterd_df.loc[0:size]
            valid = filterd_df.loc[size:len(filterd_df)]
            self.log.info(""------->Train Data Shape: ""+str(train.shape))
            self.log.info(""------->Valid Data Shape""+str(valid.shape))
            X_train = train
            X_test = valid
            len_test=len(X_test)
            #For add_regressor,copy the add_regressor columns to use.
            if (additional_regressors):
                df1=pd.DataFrame()
                df1[additional_regressors]=self.data[additional_regressors]
            
            model_parameters_mape = pd.DataFrame(columns = ['MAPE','Parameters'])
            model_parameters_rmse = pd.DataFrame(columns = ['rmse','Parameters'])
            model_parameters_mse = pd.DataFrame(columns = ['mse','Parameters'])
            model_parameters_mae = pd.DataFrame(columns = ['MAE','Parameters'])
            model_parameters_r2 = pd.DataFrame(columns = ['r2','Parameters'])
            for P in grid:
                pred_forecast = pd.DataFrame()
                random.seed(0)
                train_model =Prophet(changepoint_prior_scale = P['changepoint_prior_scale'],
                                     seasonality_mode=P['seasonality_mode'],
                                     changepoint_range=P['changepoint_range'],
                                     holidays_prior_scale = P['holidays_prior_scale'],
                                     n_changepoints = P['n_changepoints'],
                                     mcmc_samples=P['mcmc_samples'],
                                     interval_width=P['interval_width'],
                                     uncertainty_samples=P['uncertainty_samples'],
                                     seasonality_prior_scale= P['seasonality_prior_scale'],
                                     holidays=holiday,
                                     weekly_seasonality=P['weekly_seasonality'],
                                     daily_seasonality = P['daily_seasonality'],
                                     yearly_seasonality = P['yearly_seasonality']                       
                                     
                                     )
                
                train_forecast=pd.DataFrame()
                try:
                    train_model.fit(X_train)  
                    train_forecast = train_model.make_future_dataframe(periods=len_test, freq=pred_frequncy,include_history = False)
                    train_forecast = train_model.predict(train_forecast)
                except ValueError as e:
                    self.log.info(e)
                    self.log.info (""------->Check mcmc_samples value in aion confiuration, either 0 (default) or defined value,e.g.mcmc_samples:'300' to be set.If no idea on value, set to default.\n"")
                pred_forecast=train_forecast[['ds','yhat']]
                Actual=X_test
                len_act=len(Actual['y'])
                len_pred=len(pred_forecast['yhat'])
                MAPE = self.mean_absolute_percentage_error(Actual['y'],abs(pred_forecast['yhat']))
                model_parameters_mape = model_parameters_mape.append({'MAPE':MAPE,'Parameters':p},ignore_index=True)
                #MAE
                MAE = mean_absolute_error(Actual['y'],abs(pred_forecast['yhat']))
                rmse = sqrt(mean_squared_error(Actual['y'],abs(pred_forecast['yhat'])))
                mse = mean_squared_error(Actual['y'],abs(pred_forecast['yhat']))
                r2 = r2_score(Actual['y'],abs(pred_forecast['yhat']))
                # self.log.info (""------->Prophet RMSE :""+str(rmse))
                # self.log.info (""------->Prophet MSE :""+str(mse))
                # self.log.info (""------->Prophet MAE :""+str(MAE))
                # self.log.info (""------->Prophet R2 :""+str(r2))
                model_parameters_mape = model_parameters_mape.append({'MAPE':MAPE,'Parameters':p},ignore_index=True)
                model_parameters_rmse = model_parameters_rmse.append({'rmse':rmse,'Parameters':p},ignore_index=True)
                model_parameters_mse = model_parameters_mse.append({'mse':mse,'Parameters':p},ignore_index=True)
                model_parameters_mae = model_parameters_mae.append({'MAE':MAE,'Parameters':p},ignore_index=True)
                model_parameters_r2 = model_parameters_r2.append({'r2':r2,'Parameters':p},ignore_index=True)
                #end of for loop
            
            parameters_mape = model_parameters_mape.sort_values(by=['MAPE'])
            parameters_mape = parameters_mape.reset_index(drop=True)
            best_params_mape=parameters_mape['Parameters'][0]
            # print(""Best Parameters on which the model has the least MAPE is: \n"",best_params_mape)
            best_mape_score=parameters_mape['MAPE'].iloc[0]
            #self.log.info('------->Mean absolute percent error log: \n ')
            #self.log.info('------->best_mape_score: \n '+str(best_mape_score))
            parameters_rmse = model_parameters_rmse.sort_values(by=['rmse'])
            parameters_rmse = parameters_rmse.reset_index(drop=True)
            best_params_rmse=parameters_rmse['Parameters'][0]
            best_rmse_score=parameters_rmse['rmse'].iloc[0]
            #self.log.info('------->Root Man Squared Error log (Prophet timeseries): \n ')
            #self.log.info('------->best_rmse_score ((Prophet timeseries)): \n '+str(best_rmse_score))
            #mse
            parameters_mse = model_parameters_mse.sort_values(by=['mse'])
            parameters_mse = parameters_mse.reset_index(drop=True)
            best_params_mse = parameters_mse['Parameters'][0]
            best_mse_score=parameters_mse['mse'].iloc[0]
            #MAE
            parameters_mae = model_parameters_mae.sort_values(by=['MAE'])
            parameters_mae = parameters_mae.reset_index(drop=True)
            best_params_mae = parameters_mae['Parameters'][0]
            best_mae_score=parameters_mae['MAE'].iloc[0]
            # R2 score            
            parameters_r2 = model_parameters_r2.sort_values(by=['r2'])
            parameters_r2 = parameters_r2.reset_index(drop=False)
            best_params_r2 = parameters_r2['Parameters'][0]
            best_r2_score=parameters_r2['r2'].iloc[0]
            #Final best prophet mse,rmse,mape scores
            # self.log.info (""------->Prophet RMSE :""+str(best_rmse_score))
            # self.log.info (""------->Prophet MSE :""+str(best_mse_score))
            # self.log.info (""------->Prophet MAE :""+str(best_mae_score))
            # self.log.info (""------->Prophet R2 :""+str(best_r2_score))
            
            #Extracting best model parameters
            
            for k,v in best_params_mape.items():
                try:
                    if (k == ""changepoint_prior_scale""):
                        changepoint_prior_scale=float(v)
                    elif (k == ""changepoint_range""):
                        changepoint_range=float(v)
                    elif (k == ""daily_seasonality""):
                        daily_seasonality=v
                    elif (k == ""holidays_prior_scale""):
                        holidays_prior_scale=float(v)
                    elif (k == ""interval_width""):
                        interval_width=float(v)
                    elif (k == ""mcmc_samples""):
                        mcmc_samples=float(v)
                    elif (k == ""n_changepoints""):
                        n_changepoints=int(v)
                    elif (k == ""seasonality_mode""):
                        seasonality_mode=str(v)
                    elif (k == ""seasonality_prior_scale""):
                        seasonality_prior_scale=int(v)
                    elif (k == ""uncertainty_samples""):
                        uncertainty_samples=float(v)
                    elif (k == ""weekly_seasonality""):
                        weekly_seasonality=v
                    elif (k == ""yearly_seasonality""):
                        yearly_seasonality=v
                    else:
                        pass
                except Exception as e:
                    self.log.info(""\n prophet time series config param parsing error""+str(e))
                    #continue
            self.log.info(""\n Best prophet model accuracy parameters.\n "")
            
            #Prophet model based on mape best params.
            best_prophet_model = Prophet(holidays=holiday,
                      changepoint_prior_scale= changepoint_prior_scale,
                      holidays_prior_scale = holidays_prior_scale,
                      n_changepoints = n_changepoints,
                      seasonality_mode = seasonality_mode,
                      weekly_seasonality= weekly_seasonality,
                      daily_seasonality = daily_seasonality,
                      yearly_seasonality = yearly_seasonality,
                      interval_width=interval_width,
                      mcmc_samples=mcmc_samples,
                      changepoint_range=changepoint_range)
            
            # If holiday not set using prophet model,we can add as below.
            # best_prophet_model.add_country_holidays(country_name=holiday_country_name)
            
            #prophet add_regressor ,adding additional influencer (regressor) features, but it different from multivariant model.            
            if (additional_regressors):
                filterd_df[additional_regressors] = df1[additional_regressors]
                filterd_df.reset_index(drop=True)
                for v in reg_list:
                    best_prophet_model=best_prophet_model.add_regressor(v)
                    #best_prophet_model.fit(X_train)                    
            else:
                pass
                
            #Model prophet fit, it should be done before make_future_dataframe
            best_prophet_model.fit(filterd_df)
            future = best_prophet_model.make_future_dataframe(periods=no_of_periods, freq=pred_frequncy,include_history = False)
            if (additional_regressors):                
                future[additional_regressors] = filterd_df[additional_regressors]
                future.reset_index(drop=True)
                future=future.dropna()
            else:
                pass
            #Final prediction
            forecast = best_prophet_model.predict(future)
            # forecast_df=forecast[['ds', 'yhat', 'yhat_lower', 'yhat_upper']]
            # #Save forecast as csv file
            # forecast_df.to_csv(r""prophet_realtime_user_steps.csv"",index = False, header=True)                        
            #Plot the predition and save in file
            forecast_plot = best_prophet_model.plot(forecast)
            imagefilename = os.path.join(dataFolderLocation,'log','img','prophet_fig.png')
            forecast_plot.savefig(imagefilename)
            
            #The below part is used to compare prophet predicted with actual value
            #For train data
            #Prophet model with train and test data,  based on mape best params.
            best_prophet_model_new = Prophet(holidays=holiday,
                      changepoint_prior_scale= changepoint_prior_scale,
                      holidays_prior_scale = holidays_prior_scale,
                      n_changepoints = n_changepoints,
                      seasonality_mode = seasonality_mode,
                      weekly_seasonality= weekly_seasonality,
                      daily_seasonality = daily_seasonality,
                      yearly_seasonality = yearly_seasonality,
                      interval_width=interval_width,
                      mcmc_samples=mcmc_samples,
                      changepoint_range=changepoint_range)
			
            fp_forecast=pd.DataFrame()
            try:
                best_prophet_model_new.fit(X_train)  
                fp_forecast = best_prophet_model_new.make_future_dataframe(periods=len_test, freq=pred_frequncy,include_history = False)
                fp_forecast = best_prophet_model_new.predict(fp_forecast)
            except ValueError as e:
                self.log.info(e)
                self.log.info (""------->Check mcmc_samples value in aion confiuration, either 0 (default) or defined value,e.g.mcmc_samples:'300' to be set.If no idea on value, set to default.\n"")
				
            pred_forecast=fp_forecast[['ds','yhat']]           
            pred_forecast['ds']=Actual['ds'].to_numpy()
            Actual.ds = pd.to_datetime(Actual.ds)
            pred_forecast.ds = pd.to_datetime(pred_forecast.ds)
            MAE = mean_absolute_error(Actual['y'],abs(pred_forecast['yhat']))
            rmse = sqrt(mean_squared_error(Actual['y'],abs(pred_forecast['yhat'])))
            mse = mean_squared_error(Actual['y'],abs(pred_forecast['yhat']))
            r2 = r2_score(Actual['y'],abs(pred_forecast['yhat']))
            MAPE = self.mean_absolute_percentage_error(Actual['y'],abs(pred_forecast['yhat']))
            #Final best prophet mse,rmse,mape scores
            self.log.info (""------->Prophet RMSE : ""+str(rmse))
            self.log.info (""------->Prophet MSE : ""+str(mse))
            self.log.info (""------->Prophet MAE : ""+str(MAE))
            self.log.info (""------->Prophet R2 : ""+str(r2))
            self.log.info(""------->Prophet MAPE: ""+str(MAPE))
            #self.log.info(MAPE)
            #self.log.info('------->best_mape_score: \n '+str(best_mape_score))
            prophet_df = pd.merge(Actual,pred_forecast, on=['ds'], how='left')
            cols = ['ds','y','yhat']
            prophet_df_new = prophet_df[cols]            
            prophet_df_new.dropna(inplace=True)
            actualfeature = target_col+'_actual'
            predictfeature = target_col+'_pred'
            prophet_df_new=prophet_df_new.rename(columns={'ds': 'datetime', 'y': actualfeature,'yhat': predictfeature})
            #prophet_df_new.to_csv(predicted_data_file)
            
            #cv_results = cross_validation( model = best_prophet_model, initial = pd.to_timedelta(no_of_periods,unit=pred_frequncy), horizon = pd.to_timedelta(no_of_periods,unit=pred_frequncy)) 
            #forecast_df=forecast[['ds', 'yhat', 'yhat_lower', 'yhat_upper']]
            #Save forecast as csv file
            #forecast_df.to_csv(r""prophet_realtime_Output.csv"",index = False, header=True)            
            # self.log.info('------->Prophet time series forecast (last 7 prediction for user view): \n ')
            # self.log.info(forecast[['ds', 'yhat', 'yhat_lower', 'yhat_upper']].tail(7))
            plot_prd=plot_plotly(best_prophet_model, forecast)
            imagefilename = os.path.join(dataFolderLocation,'log','img','1_ppm_plot')
            plotly.offline.plot(plot_prd, filename=imagefilename,auto_open = False)
            plot_prd_components=plot_components_plotly(best_prophet_model, forecast)
            imagefilename = os.path.join(dataFolderLocation,'log','img','2_ppm_plot')
            plotly.offline.plot(plot_prd_components, filename=imagefilename,auto_open = False)
            executionTime=(time.time() - start)
            self.log.info('-------> Time: '+str(executionTime))
            return best_prophet_model,best_mae_score,best_rmse_score,best_mse_score,best_mape_score,best_r2_score,pred_frequncy,additional_regressors,prophet_df_new
        
        except Exception as inst:
            #print(""********** aion_fbprophet exception ************* \n"")
            self.log.info('<!------------- Prophet Execute Error ---------------> '+str(inst))
            exc_type, exc_obj, exc_tb = sys.exc_info()
            fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
            self.log.info(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))
            "
generic_feature_statistics_generator_test.py,"# Copyright 2017 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the ""License"");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an ""AS IS"" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
from facets_overview.generic_feature_statistics_generator import GenericFeatureStatisticsGenerator
import numpy as np
import pandas as pd
from tensorflow.python.platform import googletest


class GenericFeatureStatisticsGeneratorTest(googletest.TestCase):

  def setUp(self):
    self.gfsg = GenericFeatureStatisticsGenerator()

  def testProtoFromDataFrames(self):
    data = [[1, 'hi'], [2, 'hello'], [3, 'hi']]
    df = pd.DataFrame(data, columns=['testFeatureInt', 'testFeatureString'])
    dataframes = [{'table': df, 'name': 'testDataset'}]
    p = self.gfsg.ProtoFromDataFrames(dataframes)

    self.assertEqual(1, len(p.datasets))
    test_data = p.datasets[0]
    self.assertEqual('testDataset', test_data.name)
    self.assertEqual(3, test_data.num_examples)
    self.assertEqual(2, len(test_data.features))

    if test_data.features[0].name == 'testFeatureInt':
      numfeat = test_data.features[0]
      stringfeat = test_data.features[1]
    else:
      numfeat = test_data.features[1]
      stringfeat = test_data.features[0]

    self.assertEqual('testFeatureInt', numfeat.name)
    self.assertEqual(self.gfsg.fs_proto.INT, numfeat.type)
    self.assertEqual(1, numfeat.num_stats.min)
    self.assertEqual(3, numfeat.num_stats.max)
    self.assertEqual('testFeatureString', stringfeat.name)
    self.assertEqual(self.gfsg.fs_proto.STRING, stringfeat.type)
    self.assertEqual(2, stringfeat.string_stats.unique)

  def testNdarrayToEntry(self):
    arr = np.array([1.0, 2.0, None, float('nan'), 3.0], dtype=float)

    entry = self.gfsg.NdarrayToEntry(arr)
    self.assertEqual(2, entry['missing'])

    arr = np.array(['a', 'b', float('nan'), 'c'], dtype=str)
    entry = self.gfsg.NdarrayToEntry(arr)
    self.assertEqual(1, entry['missing'])

  def testNdarrayToEntryTimeTypes(self):
    arr = np.array(
        [np.datetime64('2005-02-25'),
         np.datetime64('2006-02-25')],
        dtype=np.datetime64)
    entry = self.gfsg.NdarrayToEntry(arr)
    self.assertEqual([1109289600000000000, 1140825600000000000], entry['vals'])

    arr = np.array(
        [np.datetime64('2009-01-01') - np.datetime64('2008-01-01')],
        dtype=np.timedelta64)
    entry = self.gfsg.NdarrayToEntry(arr)
    self.assertEqual([31622400000000000], entry['vals'])

  def testDTypeToType(self):
    self.assertEqual(self.gfsg.fs_proto.INT,
                     self.gfsg.DtypeToType(np.dtype(np.int32)))
    # Boolean and time types treated as int
    self.assertEqual(self.gfsg.fs_proto.INT,
                     self.gfsg.DtypeToType(np.dtype(np.bool)))
    self.assertEqual(self.gfsg.fs_proto.INT,
                     self.gfsg.DtypeToType(np.dtype(np.datetime64)))
    self.assertEqual(self.gfsg.fs_proto.INT,
                     self.gfsg.DtypeToType(np.dtype(np.timedelta64)))
    self.assertEqual(self.gfsg.fs_proto.FLOAT,
                     self.gfsg.DtypeToType(np.dtype(np.float32)))
    self.assertEqual(self.gfsg.fs_proto.STRING,
                     self.gfsg.DtypeToType(np.dtype(np.str)))
    # Unsupported types treated as string for now
    self.assertEqual(self.gfsg.fs_proto.STRING,
                     self.gfsg.DtypeToType(np.dtype(np.void)))

  def testGetDatasetsProtoFromEntriesLists(self):
    entries = {}
    entries['testFeature'] = {
        'vals': [1, 2, 3],
        'counts': [1, 1, 1],
        'missing': 0,
        'type': self.gfsg.fs_proto.INT
    }
    datasets = [{'entries': entries, 'size': 3, 'name': 'testDataset'}]
    p = self.gfsg.GetDatasetsProto(datasets)

    self.assertEqual(1, len(p.datasets))
    test_data = p.datasets[0]
    self.assertEqual('testDataset', test_data.name)
    self.assertEqual(3, test_data.num_examples)
    self.assertEqual(1, len(test_data.features))
    numfeat = test_data.features[0]
    self.assertEqual('testFeature', numfeat.name)
    self.assertEqual(self.gfsg.fs_proto.INT, numfeat.type)
    self.assertEqual(1, numfeat.num_stats.min)
    self.assertEqual(3, numfeat.num_stats.max)
    hist = numfeat.num_stats.common_stats.num_values_histogram
    buckets = hist.buckets
    self.assertEqual(self.gfsg.histogram_proto.QUANTILES, hist.type)
    self.assertEqual(10, len(buckets))
    self.assertEqual(1, buckets[0].low_value)
    self.assertEqual(1, buckets[0].high_value)
    self.assertEqual(.3, buckets[0].sample_count)
    self.assertEqual(1, buckets[9].low_value)
    self.assertEqual(1, buckets[9].high_value)
    self.assertEqual(.3, buckets[9].sample_count)

  def testGetDatasetsProtoSequenceExampleHistogram(self):
    entries = {}
    entries['testFeature'] = {
        'vals': [1, 2, 2, 3],
        'counts': [1, 2, 1],
        'feat_lens': [1, 2, 1],
        'missing': 0,
        'type': self.gfsg.fs_proto.INT
    }
    datasets = [{'entries': entries, 'size': 3, 'name': 'testDataset'}]
    p = self.gfsg.GetDatasetsProto(datasets)
    hist = p.datasets[0].features[
        0].num_stats.common_stats.feature_list_length_histogram
    buckets = hist.buckets
    self.assertEqual(self.gfsg.histogram_proto.QUANTILES, hist.type)
    self.assertEqual(10, len(buckets))
    self.assertEqual(1, buckets[0].low_value)
    self.assertEqual(1, buckets[0].high_value)
    self.assertEqual(.3, buckets[0].sample_count)
    self.assertEqual(1.8, buckets[9].low_value)
    self.assertEqual(2, buckets[9].high_value)
    self.assertEqual(.3, buckets[9].sample_count)

  def testGetDatasetsProtoWithWhitelist(self):
    entries = {}
    entries['testFeature'] = {
        'vals': [1, 2, 3],
        'counts': [1, 1, 1],
        'missing': 0,
        'type': self.gfsg.fs_proto.INT
    }
    entries['ignoreFeature'] = {
        'vals': [5, 6],
        'counts': [1, 1],
        'missing': 1,
        'type': self.gfsg.fs_proto.INT
    }
    datasets = [{'entries': entries, 'size': 3, 'name': 'testDataset'}]
    p = self.gfsg.GetDatasetsProto(datasets, features=['testFeature'])

    self.assertEqual(1, len(p.datasets))
    test_data = p.datasets[0]
    self.assertEqual('testDataset', test_data.name)
    self.assertEqual(3, test_data.num_examples)
    self.assertEqual(1, len(test_data.features))
    numfeat = test_data.features[0]
    self.assertEqual('testFeature', numfeat.name)
    self.assertEqual(1, numfeat.num_stats.min)

  def testGetDatasetsProtoWithMaxHistigramLevelsCount(self):
    # Selected entries' lengths make it easy to compute average length
    data = [['hi'], ['good'], ['hi'], ['hi'], ['a'], ['a']]
    df = pd.DataFrame(data, columns=['testFeatureString'])
    dataframes = [{'table': df, 'name': 'testDataset'}]
    # Getting proto from ProtoFromDataFrames instead of GetDatasetsProto
    # directly to avoid any hand written values ex: size of dataset.
    p = self.gfsg.ProtoFromDataFrames(dataframes,
                                      histogram_categorical_levels_count=2)

    self.assertEqual(1, len(p.datasets))
    test_data = p.datasets[0]
    self.assertEqual('testDataset', test_data.name)
    self.assertEqual(6, test_data.num_examples)
    self.assertEqual(1, len(test_data.features))
    numfeat = test_data.features[0]
    self.assertEqual('testFeatureString', numfeat.name)

    top_values = numfeat.string_stats.top_values
    self.assertEqual(3, top_values[0].frequency)
    self.assertEqual('hi', top_values[0].value)

    self.assertEqual(3, numfeat.string_stats.unique)
    self.assertEqual(2, numfeat.string_stats.avg_length)

    rank_hist = numfeat.string_stats.rank_histogram
    buckets = rank_hist.buckets
    self.assertEqual(2, len(buckets))
    self.assertEqual('hi', buckets[0].label)
    self.assertEqual(3, buckets[0].sample_count)
    self.assertEqual('a', buckets[1].label)
    self.assertEqual(2, buckets[1].sample_count)

if __name__ == '__main__':
  googletest.main()
"
generic_feature_statistics_generator.py,"# Copyright 2017 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the ""License"");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an ""AS IS"" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
""""""Code for generating the feature_statistics proto from generic data.

The proto is used as input for the Overview visualization.
""""""

from facets_overview.base_generic_feature_statistics_generator import BaseGenericFeatureStatisticsGenerator
import facets_overview.feature_statistics_pb2 as fs


class GenericFeatureStatisticsGenerator(BaseGenericFeatureStatisticsGenerator):
  """"""Generator of stats proto from generic data.""""""

  def __init__(self):
    BaseGenericFeatureStatisticsGenerator.__init__(
        self, fs.FeatureNameStatistics, fs.DatasetFeatureStatisticsList,
        fs.Histogram)
"
__init__.py,"# Copyright 2017 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the ""License"");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an ""AS IS"" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"
feature_statistics_generator_test.py,"# Copyright 2017 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the ""License"");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an ""AS IS"" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
from facets_overview.feature_statistics_generator import FeatureStatisticsGenerator
import numpy as np
import tensorflow as tf
from tensorflow.python.platform import googletest


class FeatureStatisticsGeneratorTest(googletest.TestCase):

  def setUp(self):
    self.fs = FeatureStatisticsGenerator()

  def testParseExampleInt(self):
    # Tests parsing examples of integers
    examples = []
    for i in range(50):
      example = tf.train.Example()
      example.features.feature['num'].int64_list.value.append(i)
      examples.append(example)

    entries = {}
    for i, example in enumerate(examples):
      self.fs._ParseExample(example.features.feature, [], entries, i)

    self.assertEqual(1, len(entries))
    self.assertIn('num', entries)
    info = entries['num']
    self.assertEqual(0, info['missing'])
    self.assertEqual(self.fs.fs_proto.INT, info['type'])
    for i in range(len(examples)):
      self.assertEqual(1, info['counts'][i])
      self.assertEqual(i, info['vals'][i])

  def testParseExampleMissingValueList(self):
    # Tests parsing examples of integers
    examples = []
    example = tf.train.Example()
    # pylint: disable=pointless-statement
    example.features.feature['str']
    # pylint: enable=pointless-statement
    examples.append(example)
    example = tf.train.Example()
    example.features.feature['str'].bytes_list.value.append(b'test')
    examples.append(example)

    entries = {}
    for i, example in enumerate(examples):
      self.fs._ParseExample(example.features.feature, [], entries, i)

    self.assertEqual(1, len(entries))
    self.assertIn('str', entries)
    info = entries['str']
    self.assertEqual(1, info['missing'])
    self.assertEqual(self.fs.fs_proto.STRING, info['type'])
    self.assertEqual(0, info['counts'][0])
    self.assertEqual(1, info['counts'][1])

  def _check_sequence_example_entries(self,
                                      entries,
                                      n_examples,
                                      n_features,
                                      feat_len=None):
    self.assertIn('num', entries)
    info = entries['num']
    self.assertEqual(0, info['missing'])
    self.assertEqual(self.fs.fs_proto.INT, info['type'])
    for i in range(n_examples):
      self.assertEqual(n_features, info['counts'][i])
      if feat_len is not None:
        self.assertEqual(feat_len, info['feat_lens'][i])
    for i in range(n_examples * n_features):
      self.assertEqual(i, info['vals'][i])
    if feat_len is None:
      self.assertEqual(0, len(info['feat_lens']))

  def testParseExampleSequenceContext(self):
    # Tests parsing examples of integers in context field
    examples = []
    for i in range(50):
      example = tf.train.SequenceExample()
      example.context.feature['num'].int64_list.value.append(i)
      examples.append(example)

    entries = {}
    for i, example in enumerate(examples):
      self.fs._ParseExample(example.context.feature,
                            example.feature_lists.feature_list, entries, i)
    self._check_sequence_example_entries(entries, 50, 1)
    self.assertEqual(1, len(entries))

  def testParseExampleSequenceFeatureList(self):
    examples = []
    for i in range(50):
      example = tf.train.SequenceExample()
      feat = example.feature_lists.feature_list['num'].feature.add()
      feat.int64_list.value.append(i)
      examples.append(example)

    entries = {}
    for i, example in enumerate(examples):
      self.fs._ParseExample(example.context.feature,
                            example.feature_lists.feature_list, entries, i)
    self._check_sequence_example_entries(entries, 50, 1, 1)

  def testParseExampleSequenceFeatureListMultipleEntriesInner(self):
    examples = []
    for i in range(2):
      example = tf.train.SequenceExample()
      feat = example.feature_lists.feature_list['num'].feature.add()
      for j in range(25):
        feat.int64_list.value.append(i * 25 + j)
      examples.append(example)

    entries = {}
    for i, example in enumerate(examples):
      self.fs._ParseExample(example.context.feature,
                            example.feature_lists.feature_list, entries, i)

    self._check_sequence_example_entries(entries, 2, 25, 1)

  def testParseExampleSequenceFeatureListMultipleEntriesOuter(self):
    # Tests parsing examples of integers in context field
    examples = []
    for i in range(2):
      example = tf.train.SequenceExample()
      for j in range(25):
        feat = example.feature_lists.feature_list['num'].feature.add()
        feat.int64_list.value.append(i * 25 + j)
      examples.append(example)

    entries = {}
    for i, example in enumerate(examples):
      self.fs._ParseExample(example.context.feature,
                            example.feature_lists.feature_list, entries, i)
    self._check_sequence_example_entries(entries, 2, 25, 25)

  def testVaryingCountsAndMissing(self):
    # Tests parsing examples of when some examples have missing features
    examples = []
    for i in range(5):
      example = tf.train.Example()
      example.features.feature['other'].int64_list.value.append(0)
      for _ in range(i):
        example.features.feature['num'].int64_list.value.append(i)
      examples.append(example)
    example = tf.train.Example()
    example.features.feature['other'].int64_list.value.append(0)
    examples.append(example)

    entries = {}
    for i, example in enumerate(examples):
      self.fs._ParseExample(example.features.feature, [], entries, i)

    info = entries['num']
    self.assertEqual(2, info['missing'])
    self.assertEqual(4, len(info['counts']))
    for i in range(4):
      self.assertEqual(i + 1, info['counts'][i])
    self.assertEqual(10, len(info['vals']))

  def testParseExampleStringsAndFloats(self):
    # Tests parsing examples of string and float features
    examples = []
    for i in range(50):
      example = tf.train.Example()
      example.features.feature['str'].bytes_list.value.append(b'hi')
      example.features.feature['float'].float_list.value.append(i)
      examples.append(example)

    entries = {}
    for i, example in enumerate(examples):
      self.fs._ParseExample(example.features.feature, [], entries, i)

    self.assertEqual(2, len(entries))
    self.assertEqual(self.fs.fs_proto.FLOAT, entries['float']['type'])
    self.assertEqual(self.fs.fs_proto.STRING, entries['str']['type'])
    for i in range(len(examples)):
      self.assertEqual(1, entries['str']['counts'][i])
      self.assertEqual(1, entries['float']['counts'][i])
      self.assertEqual(i, entries['float']['vals'][i])
      self.assertEqual('hi', entries['str']['vals'][i].decode(
          'UTF-8', 'strict'))

  def testParseExamplesTypeMismatch(self):
    examples = []
    example = tf.train.Example()
    example.features.feature['feat'].int64_list.value.append(0)
    examples.append(example)
    example = tf.train.Example()
    example.features.feature['feat'].bytes_list.value.append(b'str')
    examples.append(example)

    entries = {}
    self.fs._ParseExample(examples[0].features.feature, [], entries, 0)

    with self.assertRaises(TypeError):
      self.fs._ParseExample(examples[1].features.feature, [], entries, 1)

  def testGetDatasetsProtoFromEntriesLists(self):
    entries = {}
    entries['testFeature'] = {
        'vals': [1, 2, 3],
        'counts': [1, 1, 1],
        'missing': 0,
        'type': self.fs.fs_proto.INT
    }
    datasets = [{'entries': entries, 'size': 3, 'name': 'testDataset'}]
    p = self.fs.GetDatasetsProto(datasets)

    self.assertEqual(1, len(p.datasets))
    test_data = p.datasets[0]
    self.assertEqual('testDataset', test_data.name)
    self.assertEqual(3, test_data.num_examples)
    self.assertEqual(1, len(test_data.features))
    numfeat = test_data.features[0]
    self.assertEqual('testFeature', numfeat.name)
    self.assertEqual(self.fs.fs_proto.INT, numfeat.type)
    self.assertEqual(1, numfeat.num_stats.min)
    self.assertEqual(3, numfeat.num_stats.max)

  def testGetProtoNums(self):
    # Tests converting int examples into the feature stats proto
    examples = []
    for i in range(50):
      example = tf.train.Example()
      example.features.feature['num'].int64_list.value.append(i)
      examples.append(example)
    example = tf.train.Example()
    example.features.feature['other'].int64_list.value.append(0)
    examples.append(example)

    entries = {}
    for i, example in enumerate(examples):
      self.fs._ParseExample(example.features.feature, [], entries, i)

    datasets = [{'entries': entries, 'size': len(examples), 'name': 'test'}]
    p = self.fs.GetDatasetsProto(datasets)

    self.assertEqual(1, len(p.datasets))
    test_data = p.datasets[0]
    self.assertEqual('test', test_data.name)
    self.assertEqual(51, test_data.num_examples)

    numfeat = test_data.features[0] if (
        test_data.features[0].name == 'num') else test_data.features[1]
    self.assertEqual('num', numfeat.name)
    self.assertEqual(self.fs.fs_proto.INT, numfeat.type)
    self.assertEqual(0, numfeat.num_stats.min)
    self.assertEqual(49, numfeat.num_stats.max)
    self.assertEqual(24.5, numfeat.num_stats.mean)
    self.assertEqual(24.5, numfeat.num_stats.median)
    self.assertEqual(1, numfeat.num_stats.num_zeros)
    self.assertAlmostEqual(14.430869689, numfeat.num_stats.std_dev, 4)
    self.assertEqual(1, numfeat.num_stats.common_stats.num_missing)
    self.assertEqual(50, numfeat.num_stats.common_stats.num_non_missing)
    self.assertEqual(1, numfeat.num_stats.common_stats.min_num_values)
    self.assertEqual(1, numfeat.num_stats.common_stats.max_num_values)
    self.assertAlmostEqual(1, numfeat.num_stats.common_stats.avg_num_values, 4)
    hist = numfeat.num_stats.common_stats.num_values_histogram
    buckets = hist.buckets
    self.assertEqual(self.fs.histogram_proto.QUANTILES, hist.type)
    self.assertEqual(10, len(buckets))
    self.assertEqual(1, buckets[0].low_value)
    self.assertEqual(1, buckets[0].high_value)
    self.assertEqual(5, buckets[0].sample_count)
    self.assertEqual(1, buckets[9].low_value)
    self.assertEqual(1, buckets[9].high_value)
    self.assertEqual(5, buckets[9].sample_count)

    self.assertEqual(2, len(numfeat.num_stats.histograms))
    buckets = numfeat.num_stats.histograms[0].buckets
    self.assertEqual(self.fs.histogram_proto.STANDARD,
                     numfeat.num_stats.histograms[0].type)
    self.assertEqual(10, len(buckets))
    self.assertEqual(0, buckets[0].low_value)
    self.assertEqual(4.9, buckets[0].high_value)
    self.assertEqual(5, buckets[0].sample_count)
    self.assertAlmostEqual(44.1, buckets[9].low_value)
    self.assertEqual(49, buckets[9].high_value)
    self.assertEqual(5, buckets[9].sample_count)

    buckets = numfeat.num_stats.histograms[1].buckets
    self.assertEqual(self.fs.histogram_proto.QUANTILES,
                     numfeat.num_stats.histograms[1].type)
    self.assertEqual(10, len(buckets))
    self.assertEqual(0, buckets[0].low_value)
    self.assertEqual(4.9, buckets[0].high_value)
    self.assertEqual(5, buckets[0].sample_count)
    self.assertAlmostEqual(44.1, buckets[9].low_value)
    self.assertEqual(49, buckets[9].high_value)
    self.assertEqual(5, buckets[9].sample_count)

  def testQuantiles(self):
    examples = []
    for i in range(50):
      example = tf.train.Example()
      example.features.feature['num'].int64_list.value.append(i)
      examples.append(example)
    for i in range(50):
      example = tf.train.Example()
      example.features.feature['num'].int64_list.value.append(100)
      examples.append(example)

    entries = {}
    for i, example in enumerate(examples):
      self.fs._ParseExample(example.features.feature, [], entries, i)

    datasets = [{'entries': entries, 'size': len(examples), 'name': 'test'}]
    p = self.fs.GetDatasetsProto(datasets)

    numfeat = p.datasets[0].features[0]
    self.assertEqual(2, len(numfeat.num_stats.histograms))
    self.assertEqual(self.fs.histogram_proto.QUANTILES,
                     numfeat.num_stats.histograms[1].type)
    buckets = numfeat.num_stats.histograms[1].buckets
    self.assertEqual(10, len(buckets))
    self.assertEqual(0, buckets[0].low_value)
    self.assertEqual(9.9, buckets[0].high_value)
    self.assertEqual(10, buckets[0].sample_count)
    self.assertEqual(100, buckets[9].low_value)
    self.assertEqual(100, buckets[9].high_value)
    self.assertEqual(10, buckets[9].sample_count)

  def testInfinityAndNan(self):
    examples = []
    for i in range(50):
      example = tf.train.Example()
      example.features.feature['num'].float_list.value.append(i)
      examples.append(example)
    example = tf.train.Example()
    example.features.feature['num'].float_list.value.append(float('inf'))
    examples.append(example)
    example = tf.train.Example()
    example.features.feature['num'].float_list.value.append(float('-inf'))
    examples.append(example)
    example = tf.train.Example()
    example.features.feature['num'].float_list.value.append(float('nan'))
    examples.append(example)

    entries = {}
    for i, example in enumerate(examples):
      self.fs._ParseExample(example.features.feature, [], entries, i)

    datasets = [{'entries': entries, 'size': len(examples), 'name': 'test'}]
    p = self.fs.GetDatasetsProto(datasets)

    numfeat = p.datasets[0].features[0]

    self.assertEqual('num', numfeat.name)
    self.assertEqual(self.fs.fs_proto.FLOAT, numfeat.type)
    self.assertTrue(np.isnan(numfeat.num_stats.min))
    self.assertTrue(np.isnan(numfeat.num_stats.max))
    self.assertTrue(np.isnan(numfeat.num_stats.mean))
    self.assertTrue(np.isnan(numfeat.num_stats.median))
    self.assertEqual(1, numfeat.num_stats.num_zeros)
    self.assertTrue(np.isnan(numfeat.num_stats.std_dev))
    self.assertEqual(53, numfeat.num_stats.common_stats.num_non_missing)
    hist = buckets = numfeat.num_stats.histograms[0]
    buckets = hist.buckets
    self.assertEqual(self.fs.histogram_proto.STANDARD, hist.type)
    self.assertEqual(1, hist.num_nan)
    self.assertEqual(10, len(buckets))
    self.assertEqual(float('-inf'), buckets[0].low_value)
    self.assertEqual(4.9, buckets[0].high_value)
    self.assertEqual(6, buckets[0].sample_count)
    self.assertEqual(44.1, buckets[9].low_value)
    self.assertEqual(float('inf'), buckets[9].high_value)
    self.assertEqual(6, buckets[9].sample_count)

  def testInfinitysOnly(self):
    examples = []
    example = tf.train.Example()
    example.features.feature['num'].float_list.value.append(float('inf'))
    examples.append(example)
    example = tf.train.Example()
    example.features.feature['num'].float_list.value.append(float('-inf'))
    examples.append(example)

    entries = {}
    for i, example in enumerate(examples):
      self.fs._ParseExample(example.features.feature, [], entries, i)

    datasets = [{'entries': entries, 'size': len(examples), 'name': 'test'}]
    p = self.fs.GetDatasetsProto(datasets)

    numfeat = p.datasets[0].features[0]
    hist = buckets = numfeat.num_stats.histograms[0]
    buckets = hist.buckets
    self.assertEqual(self.fs.histogram_proto.STANDARD, hist.type)
    self.assertEqual(10, len(buckets))
    self.assertEqual(float('-inf'), buckets[0].low_value)
    self.assertEqual(0.1, buckets[0].high_value)
    self.assertEqual(1, buckets[0].sample_count)
    self.assertEqual(0.9, buckets[9].low_value)
    self.assertEqual(float('inf'), buckets[9].high_value)
    self.assertEqual(1, buckets[9].sample_count)

  def testGetProtoStrings(self):
    # Tests converting string examples into the feature stats proto
    examples = []
    for i in range(2):
      example = tf.train.Example()
      example.features.feature['str'].bytes_list.value.append(b'hello')
      examples.append(example)
    for i in range(3):
      example = tf.train.Example()
      example.features.feature['str'].bytes_list.value.append(b'hi')
      examples.append(example)
    example = tf.train.Example()
    example.features.feature['str'].bytes_list.value.append(b'hey')
    examples.append(example)

    entries = {}
    for i, example in enumerate(examples):
      self.fs._ParseExample(example.features.feature, [], entries, i)

    datasets = [{'entries': entries, 'size': len(examples), 'name': 'test'}]
    p = self.fs.GetDatasetsProto(datasets)

    self.assertEqual(1, len(p.datasets))
    test_data = p.datasets[0]
    self.assertEqual('test', test_data.name)
    self.assertEqual(6, test_data.num_examples)

    strfeat = test_data.features[0]
    self.assertEqual('str', strfeat.name)
    self.assertEqual(self.fs.fs_proto.STRING, strfeat.type)
    self.assertEqual(3, strfeat.string_stats.unique)
    self.assertAlmostEqual(19 / 6.0, strfeat.string_stats.avg_length, 4)
    self.assertEqual(0, strfeat.string_stats.common_stats.num_missing)
    self.assertEqual(6, strfeat.string_stats.common_stats.num_non_missing)
    self.assertEqual(1, strfeat.string_stats.common_stats.min_num_values)
    self.assertEqual(1, strfeat.string_stats.common_stats.max_num_values)
    self.assertEqual(1, strfeat.string_stats.common_stats.avg_num_values)
    hist = strfeat.string_stats.common_stats.num_values_histogram
    buckets = hist.buckets
    self.assertEqual(self.fs.histogram_proto.QUANTILES, hist.type)
    self.assertEqual(10, len(buckets))
    self.assertEqual(1, buckets[0].low_value)
    self.assertEqual(1, buckets[0].high_value)
    self.assertEqual(.6, buckets[0].sample_count)
    self.assertEqual(1, buckets[9].low_value)
    self.assertEqual(1, buckets[9].high_value)
    self.assertEqual(.6, buckets[9].sample_count)

    self.assertEqual(2, len(strfeat.string_stats.top_values))
    self.assertEqual(3, strfeat.string_stats.top_values[0].frequency)
    self.assertEqual('hi', strfeat.string_stats.top_values[0].value)
    self.assertEqual(2, strfeat.string_stats.top_values[1].frequency)
    self.assertEqual('hello', strfeat.string_stats.top_values[1].value)

    buckets = strfeat.string_stats.rank_histogram.buckets
    self.assertEqual(3, len(buckets))
    self.assertEqual(0, buckets[0].low_rank)
    self.assertEqual(0, buckets[0].high_rank)
    self.assertEqual(3, buckets[0].sample_count)
    self.assertEqual('hi', buckets[0].label)
    self.assertEqual(2, buckets[2].low_rank)
    self.assertEqual(2, buckets[2].high_rank)
    self.assertEqual(1, buckets[2].sample_count)
    self.assertEqual('hey', buckets[2].label)

  def testGetProtoMultipleDatasets(self):
    # Tests converting multiple datsets into the feature stats proto
    # including ensuring feature order is consistent in the protos.
    examples1 = []
    for i in range(2):
      example = tf.train.Example()
      example.features.feature['str'].bytes_list.value.append(b'one')
      example.features.feature['num'].int64_list.value.append(0)
      examples1.append(example)
    examples2 = []
    example = tf.train.Example()
    example.features.feature['num'].int64_list.value.append(1)
    example.features.feature['str'].bytes_list.value.append(b'two')
    examples2.append(example)

    entries1 = {}
    for i, example1 in enumerate(examples1):
      self.fs._ParseExample(example1.features.feature, [], entries1, i)
    entries2 = {}
    for i, example2 in enumerate(examples2):
      self.fs._ParseExample(example2.features.feature, [], entries2, i)

    datasets = [{
        'entries': entries1,
        'size': len(examples1),
        'name': 'test1'
    }, {
        'entries': entries2,
        'size': len(examples2),
        'name': 'test2'
    }]
    p = self.fs.GetDatasetsProto(datasets)

    self.assertEqual(2, len(p.datasets))
    test_data_1 = p.datasets[0]
    self.assertEqual('test1', test_data_1.name)
    self.assertEqual(2, test_data_1.num_examples)
    num_feat_index = 0 if test_data_1.features[0].name == 'num' else 1
    self.assertEqual(0, test_data_1.features[num_feat_index].num_stats.max)
    test_data_2 = p.datasets[1]
    self.assertEqual('test2', test_data_2.name)
    self.assertEqual(1, test_data_2.num_examples)
    self.assertEqual(1, test_data_2.features[num_feat_index].num_stats.max)

  def testGetEntriesNoFiles(self):
    features, num_examples = self.fs._GetEntries(['test'], 10,
                                                 lambda unused_path: [])
    self.assertEqual(0, num_examples)
    self.assertEqual({}, features)

  @staticmethod
  def get_example_iter():

    def ex_iter(unused_filename):
      examples = []
      for i in range(50):
        example = tf.train.Example()
        example.features.feature['num'].int64_list.value.append(i)
        examples.append(example.SerializeToString())
      return examples

    return ex_iter

  def testGetEntries_one(self):
    features, num_examples = self.fs._GetEntries(['test'], 1,
                                                 self.get_example_iter())
    self.assertEqual(1, num_examples)
    self.assertTrue('num' in features)

  def testGetEntries_oneFile(self):
    unused_features, num_examples = self.fs._GetEntries(['test'], 1000,
                                                        self.get_example_iter())
    self.assertEqual(50, num_examples)

  def testGetEntries_twoFiles(self):
    unused_features, num_examples = self.fs._GetEntries(['test0', 'test1'],
                                                        1000,
                                                        self.get_example_iter())
    self.assertEqual(100, num_examples)

  def testGetEntries_stopInSecondFile(self):
    unused_features, num_examples = self.fs._GetEntries([
        'test@0', 'test@1', 'test@2', 'test@3', 'test@4', 'test@5', 'test@6',
        'test@7', 'test@8', 'test@9'
    ], 75, self.get_example_iter())
    self.assertEqual(75, num_examples)


if __name__ == '__main__':
  googletest.main()
"
feature_statistics_generator.py,"# Copyright 2017 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the ""License"");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an ""AS IS"" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
""""""Class for generating the feature_statistics proto.

The proto is used as input for the Overview visualization.
""""""

from facets_overview.base_feature_statistics_generator import BaseFeatureStatisticsGenerator
import facets_overview.feature_statistics_pb2 as fs


class FeatureStatisticsGenerator(BaseFeatureStatisticsGenerator):
  """"""Generator of stats proto from TF data.""""""

  def __init__(self):
    BaseFeatureStatisticsGenerator.__init__(self, fs.FeatureNameStatistics,
                                            fs.DatasetFeatureStatisticsList,
                                            fs.Histogram)
"
base_generic_feature_statistics_generator.py,"# Copyright 2017 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the ""License"");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an ""AS IS"" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
""""""Base class for generating the feature_statistics proto from generic data.

The proto is used as input for the Overview visualization.
""""""

import numpy as np
import pandas as pd
import sys


class BaseGenericFeatureStatisticsGenerator(object):
  """"""Base class for generator of stats proto from generic data.""""""

  def __init__(self, fs_proto, datasets_proto, histogram_proto):
    self.fs_proto = fs_proto
    self.datasets_proto = datasets_proto
    self.histogram_proto = histogram_proto

  def ProtoFromDataFrames(self, dataframes,
                          histogram_categorical_levels_count=None):
    """"""Creates a feature statistics proto from a set of pandas dataframes.

    Args:
      dataframes: A list of dicts describing tables for each dataset for the
          proto. Each entry contains a 'table' field of the dataframe of the
            data
          and a 'name' field to identify the dataset in the proto.
      histogram_categorical_levels_count: int, controls the maximum number of
          levels to display in histograms for categorical features.
          Useful to prevent codes/IDs features from bloating the stats object.
          Defaults to None.
    Returns:
      The feature statistics proto for the provided tables.
    """"""
    datasets = []
    for dataframe in dataframes:
      table = dataframe['table']
      table_entries = {}
      for col in table:
        table_entries[col] = self.NdarrayToEntry(table[col])
      datasets.append({
          'entries': table_entries,
          'size': len(table),
          'name': dataframe['name']
      })
    return self.GetDatasetsProto(
      datasets,
      histogram_categorical_levels_count=histogram_categorical_levels_count)

  def DtypeToType(self, dtype):
    """"""Converts a Numpy dtype to the FeatureNameStatistics.Type proto enum.""""""
    if dtype.char in np.typecodes['AllFloat']:
      return self.fs_proto.FLOAT
    elif (dtype.char in np.typecodes['AllInteger'] or dtype == bool or
          np.issubdtype(dtype, np.datetime64) or
          np.issubdtype(dtype, np.timedelta64)):
      return self.fs_proto.INT
    else:
      return self.fs_proto.STRING

  def DtypeToNumberConverter(self, dtype):
    """"""Converts a Numpy dtype to a converter method if applicable.

      The converter method takes in a numpy array of objects of the provided
      dtype
      and returns a numpy array of the numbers backing that object for
      statistical
      analysis. Returns None if no converter is necessary.

    Args:
      dtype: The numpy dtype to make a converter for.

    Returns:
      The converter method or None.
    """"""
    if np.issubdtype(dtype, np.datetime64):

      def DatetimesToNumbers(dt_list):
        return np.array([pd.Timestamp(dt).value for dt in dt_list])

      return DatetimesToNumbers
    elif np.issubdtype(dtype, np.timedelta64):

      def TimedetlasToNumbers(td_list):
        return np.array([pd.Timedelta(td).value for td in td_list])

      return TimedetlasToNumbers
    else:
      return None

  def NdarrayToEntry(self, x):
    """"""Converts an ndarray to the Entry format.""""""
    row_counts = []
    for row in x:
      try:
        rc = np.count_nonzero(~np.isnan(row))
        if rc != 0:
          row_counts.append(rc)
      except TypeError:
        try:
          row_counts.append(row.size)
        except AttributeError:
          row_counts.append(1)

    data_type = self.DtypeToType(x.dtype)
    converter = self.DtypeToNumberConverter(x.dtype)
    flattened = x.ravel()
    orig_size = len(flattened)

    # Remove all None and nan values and count how many were removed.
    flattened = flattened[flattened != np.array(None)]
    if converter:
      flattened = converter(flattened)
    if data_type == self.fs_proto.STRING:
      flattened_temp = []
      for x in flattened:
        try:
          if str(x) != 'nan':
            flattened_temp.append(x)
        except UnicodeEncodeError:
          if x.encode('utf-8') != 'nan':
            flattened_temp.append(x)
      flattened = flattened_temp
    else:
      flattened = flattened[~np.isnan(flattened)].tolist()
    missing = orig_size - len(flattened)
    return {
        'vals': flattened,
        'counts': row_counts,
        'missing': missing,
        'type': data_type
    }

  def GetDatasetsProto(self, datasets, features=None,
                       histogram_categorical_levels_count=None):
    """"""Generates the feature stats proto from dictionaries of feature values.

    Args:
      datasets: An array of dictionaries, one per dataset, each one containing:
          - 'entries': The dictionary of features in the dataset from the parsed
            examples.
          - 'size': The number of examples parsed for the dataset.
          - 'name': The name of the dataset.
      features: A list of strings that is a whitelist of feature names to create
          feature statistics for. If set to None then all features in the
            dataset
          are analyzed. Defaults to None.
      histogram_categorical_levels_count: int, controls the maximum number of
          levels to display in histograms for categorical features.
          Useful to prevent codes/IDs features from bloating the stats object.
          Defaults to None.

    Returns:
      The feature statistics proto for the provided datasets.
    """"""
    features_seen = set()
    whitelist_features = set(features) if features else None
    all_datasets = self.datasets_proto()

    # TODO(jwexler): Add ability to generate weighted feature stats
    # if there is a specified weight feature in the dataset.

    # Initialize each dataset
    for dataset in datasets:
      all_datasets.datasets.add(
          name=dataset['name'], num_examples=dataset['size'])
    # This outer loop ensures that for each feature seen in any of the provided
    # datasets, we check the feature once against all datasets.
    for outer_dataset in datasets:
      for key, value in outer_dataset['entries'].items():
        
        # If we have a feature whitelist and this feature is not in the
        # whitelist then do not process it.
        # If we have processed this feature already, no need to do it again.
        if ((whitelist_features and key not in whitelist_features) or
            key in features_seen):
          continue
        features_seen.add(key)
        # Default to type int if no type is found, so that the fact that all
        # values are missing from this feature can be displayed.
        feature_type = value['type'] if 'type' in value else self.fs_proto.INT
        # Process the found feature for each dataset.
        for j, dataset in enumerate(datasets):
          feat = all_datasets.datasets[j].features.add(
              type=feature_type, name=key.encode('utf-8'))
          value = dataset['entries'].get(key)
          has_data = value is not None and (value['vals'].size != 0
                                            if isinstance(
                                                value['vals'], np.ndarray) else
                                            value['vals'])
          commonstats = None
          # For numeric features, calculate numeric statistics.
          if feat.type in (self.fs_proto.INT, self.fs_proto.FLOAT):
            featstats = feat.num_stats
            commonstats = featstats.common_stats
            if has_data:
              nums = value['vals']
              
              featstats.std_dev = np.std(nums).item()
              
              featstats.mean = np.mean(nums).item()
              
              featstats.min = np.min(nums).item()

              featstats.max = np.max(nums).item()

              featstats.median = np.median(nums).item()

              featstats.num_zeros = len(nums) - np.count_nonzero(nums)

              nums = np.array(nums)
              num_nan = len(nums[np.isnan(nums)])
              num_posinf = len(nums[np.isposinf(nums)])
              num_neginf = len(nums[np.isneginf(nums)])

              # Remove all non-finite (including NaN) values from the numeric
              # values in order to calculate histogram buckets/counts. The
              # inf values will be added back to the first and last buckets.
              nums = nums[np.isfinite(nums)]
              counts, buckets = np.histogram(nums)
              hist = featstats.histograms.add()
              hist.type = self.histogram_proto.STANDARD
              hist.num_nan = num_nan             
              for bucket_count in range(len(counts)):
                bucket = hist.buckets.add(
                    low_value=buckets[bucket_count],
                    high_value=buckets[bucket_count + 1],
                    sample_count=counts[bucket_count].item())
                # Add any negative or positive infinities to the first and last
                # buckets in the histogram.
                if bucket_count == 0 and num_neginf > 0:
                  bucket.low_value = float('-inf')
                  bucket.sample_count += num_neginf
                elif bucket_count == len(counts) - 1 and num_posinf > 0:
                  bucket.high_value = float('inf')
                  bucket.sample_count += num_posinf
              if not hist.buckets:
                if num_neginf:
                  hist.buckets.add(
                      low_value=float('-inf'),
                      high_value=float('-inf'),
                      sample_count=num_neginf)
                if num_posinf:
                  hist.buckets.add(
                      low_value=float('inf'),
                      high_value=float('inf'),
                      sample_count=num_posinf)                    
              self._PopulateQuantilesHistogram(featstats.histograms.add(),nums.tolist())
          elif feat.type == self.fs_proto.STRING:
            featstats = feat.string_stats
            commonstats = featstats.common_stats
            if has_data:
              strs = []
              for item in value['vals']:
                strs.append(item if hasattr(item, '__len__') else
                  item.encode('utf-8') if hasattr(item, 'encode') else str(
                      item))

              featstats.avg_length = np.mean(np.vectorize(len)(strs))
              vals, counts = np.unique(strs, return_counts=True)
              featstats.unique = len(vals)
              sorted_vals = sorted(zip(counts, vals), reverse=True)
              sorted_vals = sorted_vals[:histogram_categorical_levels_count]
              for val_index, val in enumerate(sorted_vals):
                try:
                  if (sys.version_info.major < 3 or
                      isinstance(val[1], (bytes, bytearray))):
                    printable_val = val[1].decode('UTF-8', 'strict')
                  else:
                    printable_val = val[1]
                except (UnicodeDecodeError, UnicodeEncodeError):
                  printable_val = '__BYTES_VALUE__'
                bucket = featstats.rank_histogram.buckets.add(
                    low_rank=val_index,
                    high_rank=val_index,
                    sample_count=(val[0].item()),
                    label=printable_val)
                if val_index < 2:
                  featstats.top_values.add(
                      value=bucket.label, frequency=bucket.sample_count)
          # Add the common stats regardless of the feature type.
          if has_data:
            commonstats.num_missing = value['missing']
            commonstats.num_non_missing = (all_datasets.datasets[j].num_examples
                                           - featstats.common_stats.num_missing)
            commonstats.min_num_values = int(np.min(value['counts']).astype(int))
            commonstats.max_num_values = int(np.max(value['counts']).astype(int))
            commonstats.avg_num_values = np.mean(value['counts'])
            if 'feat_lens' in value and value['feat_lens']:
              self._PopulateQuantilesHistogram(
                  commonstats.feature_list_length_histogram, value['feat_lens'])
            self._PopulateQuantilesHistogram(commonstats.num_values_histogram,
                                             value['counts'])
          else:
            commonstats.num_non_missing = 0
            commonstats.num_missing = all_datasets.datasets[j].num_examples

    return all_datasets

  def _PopulateQuantilesHistogram(self, hist, nums):
    """"""Fills in the histogram with quantile information from the provided array.

    Args:
      hist: A Histogram proto message to fill in.
      nums: A list of numbers to create a quantiles histogram from.
    """"""
    if not nums:
      return
    num_quantile_buckets = 10
    quantiles_to_get = [
        x * 100 / num_quantile_buckets for x in range(num_quantile_buckets + 1)
    ]
    try:
        quantiles = np.percentile(nums, quantiles_to_get)
    except:
        quantiles = [0.0]
    hist.type = self.histogram_proto.QUANTILES
    quantiles_sample_count = float(len(nums)) / num_quantile_buckets
    for low, high in zip(quantiles, quantiles[1:]):
      hist.buckets.add(
          low_value=low, high_value=high, sample_count=quantiles_sample_count)
"
base_feature_statistics_generator.py,"# Copyright 2017 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the ""License"");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an ""AS IS"" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
""""""Base class for generating the feature_statistics proto from TensorFlow data.

The proto is used as input for the Overview visualization.
""""""

from functools import partial
from facets_overview.base_generic_feature_statistics_generator import BaseGenericFeatureStatisticsGenerator
import tensorflow as tf


# The feature name used to track sequence length when analyzing
# tf.SequenceExamples.
SEQUENCE_LENGTH_FEATURE_NAME = 'sequence length (derived feature)'


class BaseFeatureStatisticsGenerator(BaseGenericFeatureStatisticsGenerator):
  """"""Base class for generator of stats proto from TF data.""""""

  def __init__(self, fs_proto, datasets_proto, histogram_proto):
    BaseGenericFeatureStatisticsGenerator.__init__(
        self, fs_proto, datasets_proto, histogram_proto)

  def ProtoFromTfRecordFiles(self,
                             files,
                             max_entries=10000,
                             features=None,
                             is_sequence=False,
                             iterator_options=None,
                             histogram_categorical_levels_count=None):
    """"""Creates a feature statistics proto from a set of TFRecord files.

    Args:
      files: A list of dicts describing files for each dataset for the proto.
        Each
          entry contains a 'path' field with the path to the TFRecord file on
            disk
          and a 'name' field to identify the dataset in the proto.
      max_entries: The maximum number of examples to load from each dataset
          in order to create the proto. Defaults to 10000.
      features: A list of strings that is a whitelist of feature names to create
          feature statistics for. If set to None then all features in the
            dataset
          are analyzed. Defaults to None.
      is_sequence: True if the input data from 'tables' are tf.SequenceExamples,
          False if tf.Examples. Defaults to false.
      iterator_options: Options to pass to the iterator that reads the examples.
          Defaults to None.
      histogram_categorical_levels_count: int, controls the maximum number of
          levels to display in histograms for categorical features.
          Useful to prevent codes/IDs features from bloating the stats object.
          Defaults to None.

    Returns:
      The feature statistics proto for the provided files.
    """"""
    datasets = []
    for entry in files:
      entries, size = self._GetTfRecordEntries(entry['path'], max_entries,
                                               is_sequence, iterator_options)
      datasets.append({'entries': entries, 'size': size, 'name': entry['name']})
    return self.GetDatasetsProto(
      datasets,
      features,
      histogram_categorical_levels_count)

  def _ParseExample(self, example_features, example_feature_lists, entries,
                    index):
    """"""Parses data from an example, populating a dictionary of feature values.

    Args:
      example_features: A map of strings to tf.Features from the example.
      example_feature_lists: A map of strings to tf.FeatureLists from the
        example.
      entries: A dictionary of all features parsed thus far and arrays of their
          values. This is mutated by the function.
      index: The index of the example to parse from a list of examples.
    Raises:
      TypeError: Raises an exception when a feature has inconsistent types
      across
          examples.
    """"""
    features_seen = set()

    for feature_list, is_feature in zip(
        [example_features, example_feature_lists], [True, False]):
      sequence_length = None
      for feature_name in feature_list:
        # If this feature has not been seen in previous examples, then
        # initialize its entry into the entries dictionary.
        if feature_name not in entries:
          entries[feature_name] = {
              'vals': [],
              'counts': [],
              'feat_lens': [],
              'missing': index
          }

        feature_entry = entries[feature_name]
        feature = feature_list[feature_name]

        value_type = None
        value_list = []
        if is_feature:
          # If parsing a tf.Feature, extract the type and values simply.
          if feature.HasField('float_list'):
            value_list = feature.float_list.value
            value_type = self.fs_proto.FLOAT
          elif feature.HasField('bytes_list'):
            value_list = feature.bytes_list.value
            value_type = self.fs_proto.STRING
          elif feature.HasField('int64_list'):
            value_list = feature.int64_list.value
            value_type = self.fs_proto.INT
        else:
          # If parsing a tf.FeatureList, get the type and values by iterating
          # over all Features in the FeatureList.
          sequence_length = len(feature.feature)
          if sequence_length != 0 and feature.feature[0].HasField('float_list'):
            for feat in feature.feature:
              for value in feat.float_list.value:
                value_list.append(value)
            value_type = self.fs_proto.FLOAT
          elif sequence_length != 0 and feature.feature[0].HasField(
              'bytes_list'):
            for feat in feature.feature:
              for value in feat.bytes_list.value:
                value_list.append(value)
            value_type = self.fs_proto.STRING
          elif sequence_length != 0 and feature.feature[0].HasField(
              'int64_list'):
            for feat in feature.feature:
              for value in feat.int64_list.value:
                value_list.append(value)
            value_type = self.fs_proto.INT
        if value_type is not None:
          if 'type' not in feature_entry:
            feature_entry['type'] = value_type
          elif feature_entry['type'] != value_type:
            raise TypeError('type mismatch for feature ' + feature_name)
        feature_entry['counts'].append(len(value_list))
        feature_entry['vals'].extend(value_list)
        if sequence_length is not None:
          feature_entry['feat_lens'].append(sequence_length)
        if value_list:
          features_seen.add(feature_name)

    # For all previously-seen features not found in this example, update the
    # feature's missing value.
    for f in entries:
      fv = entries[f]
      if f not in features_seen:
        fv['missing'] += 1

  def _GetEntries(self,
                  paths,
                  max_entries,
                  iterator_from_file,
                  is_sequence=False):
    """"""Extracts examples into a dictionary of feature values.

    Args:
      paths: A list of the paths to the files to parse.
      max_entries: The maximum number of examples to load.
      iterator_from_file: A method that takes a file path string and returns an
          iterator to the examples in that file.
      is_sequence: True if the input data from 'iterator_from_file' are
           tf.SequenceExamples, False if tf.Examples. Defaults to false.

    Returns:
      A tuple with two elements:
          - A dictionary of all features parsed thus far and arrays of their
            values.
          - The number of examples parsed.
    """"""
    entries = {}
    index = 0
    for filepath in paths:
      reader = iterator_from_file(filepath)
      for record in reader:
        if is_sequence:
          sequence_example = tf.train.SequenceExample.FromString(record)
          self._ParseExample(sequence_example.context.feature,
                             sequence_example.feature_lists.feature_list,
                             entries, index)
        else:
          self._ParseExample(
              tf.train.Example.FromString(record).features.feature, [], entries,
              index)
        index += 1
        if index == max_entries:
          return entries, index
    return entries, index

  def _GetTfRecordEntries(self, path, max_entries, is_sequence,
                          iterator_options):
    """"""Extracts TFRecord examples into a dictionary of feature values.

    Args:
      path: The path to the TFRecord file(s).
      max_entries: The maximum number of examples to load.
      is_sequence: True if the input data from 'path' are tf.SequenceExamples,
           False if tf.Examples. Defaults to false.
      iterator_options: Options to pass to the iterator that reads the examples.
          Defaults to None.

    Returns:
      A tuple with two elements:
          - A dictionary of all features parsed thus far and arrays of their
            values.
          - The number of examples parsed.
    """"""
    return self._GetEntries([path], max_entries,
                            partial(
                                tf.compat.v1.io.tf_record_iterator,
                                options=iterator_options), is_sequence)
"
feature_statistics_pb2.py,"# Copyright 2017 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the ""License"");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an ""AS IS"" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
# Generated by the protocol buffer compiler.  DO NOT EDIT!
# source: feature_statistics.proto

import sys
_b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1'))
from google.protobuf import descriptor as _descriptor
from google.protobuf import message as _message
from google.protobuf import reflection as _reflection
from google.protobuf import symbol_database as _symbol_database
from google.protobuf import descriptor_pb2
# @@protoc_insertion_point(imports)

_sym_db = _symbol_database.Default()




DESCRIPTOR = _descriptor.FileDescriptor(
  name='feature_statistics.proto',
  package='featureStatistics',
  syntax='proto3',
  serialized_pb=_b('\n\x18\x66\x65\x61ture_statistics.proto\x12\x11\x66\x65\x61tureStatistics\""]\n\x1c\x44\x61tasetFeatureStatisticsList\x12=\n\x08\x64\x61tasets\x18\x01 \x03(\x0b\x32+.featureStatistics.DatasetFeatureStatistics\""\x99\x01\n\x18\x44\x61tasetFeatureStatistics\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x14\n\x0cnum_examples\x18\x02 \x01(\x04\x12\x1d\n\x15weighted_num_examples\x18\x04 \x01(\x01\x12:\n\x08\x66\x65\x61tures\x18\x03 \x03(\x0b\x32(.featureStatistics.FeatureNameStatistics\""\x8b\x03\n\x15\x46\x65\x61tureNameStatistics\x12\x0c\n\x04name\x18\x01 \x01(\t\x12;\n\x04type\x18\x02 \x01(\x0e\x32-.featureStatistics.FeatureNameStatistics.Type\x12\x39\n\tnum_stats\x18\x03 \x01(\x0b\x32$.featureStatistics.NumericStatisticsH\x00\x12;\n\x0cstring_stats\x18\x04 \x01(\x0b\x32#.featureStatistics.StringStatisticsH\x00\x12\x39\n\x0b\x62ytes_stats\x18\x05 \x01(\x0b\x32\"".featureStatistics.BytesStatisticsH\x00\x12\x38\n\x0c\x63ustom_stats\x18\x06 \x03(\x0b\x32\"".featureStatistics.CustomStatistic\""1\n\x04Type\x12\x07\n\x03INT\x10\x00\x12\t\n\x05\x46LOAT\x10\x01\x12\n\n\x06STRING\x10\x02\x12\t\n\x05\x42YTES\x10\x03\x42\x07\n\x05stats\""x\n\x18WeightedCommonStatistics\x12\x17\n\x0fnum_non_missing\x18\x01 \x01(\x01\x12\x13\n\x0bnum_missing\x18\x02 \x01(\x01\x12\x16\n\x0e\x61vg_num_values\x18\x03 \x01(\x01\x12\x16\n\x0etot_num_values\x18\x04 \x01(\x01\""w\n\x0f\x43ustomStatistic\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\r\n\x03num\x18\x02 \x01(\x01H\x00\x12\r\n\x03str\x18\x03 \x01(\tH\x00\x12\x31\n\thistogram\x18\x04 \x01(\x0b\x32\x1c.featureStatistics.HistogramH\x00\x42\x05\n\x03val\""\xaa\x02\n\x11NumericStatistics\x12\x39\n\x0c\x63ommon_stats\x18\x01 \x01(\x0b\x32#.featureStatistics.CommonStatistics\x12\x0c\n\x04mean\x18\x02 \x01(\x01\x12\x0f\n\x07std_dev\x18\x03 \x01(\x01\x12\x11\n\tnum_zeros\x18\x04 \x01(\x04\x12\x0b\n\x03min\x18\x05 \x01(\x01\x12\x0e\n\x06median\x18\x06 \x01(\x01\x12\x0b\n\x03max\x18\x07 \x01(\x01\x12\x30\n\nhistograms\x18\x08 \x03(\x0b\x32\x1c.featureStatistics.Histogram\x12L\n\x16weighted_numeric_stats\x18\t \x01(\x0b\x32,.featureStatistics.WeightedNumericStatistics\""\x8c\x03\n\x10StringStatistics\x12\x39\n\x0c\x63ommon_stats\x18\x01 \x01(\x0b\x32#.featureStatistics.CommonStatistics\x12\x0e\n\x06unique\x18\x02 \x01(\x04\x12\x44\n\ntop_values\x18\x03 \x03(\x0b\x32\x30.featureStatistics.StringStatistics.FreqAndValue\x12\x12\n\navg_length\x18\x04 \x01(\x02\x12\x38\n\x0erank_histogram\x18\x05 \x01(\x0b\x32 .featureStatistics.RankHistogram\x12J\n\x15weighted_string_stats\x18\x06 \x01(\x0b\x32+.featureStatistics.WeightedStringStatistics\x1aM\n\x0c\x46reqAndValue\x12\x1b\n\x0f\x64\x65precated_freq\x18\x01 \x01(\x04\x42\x02\x18\x01\x12\r\n\x05value\x18\x02 \x01(\t\x12\x11\n\tfrequency\x18\x03 \x01(\x01\""|\n\x19WeightedNumericStatistics\x12\x0c\n\x04mean\x18\x01 \x01(\x01\x12\x0f\n\x07std_dev\x18\x02 \x01(\x01\x12\x0e\n\x06median\x18\x03 \x01(\x01\x12\x30\n\nhistograms\x18\x04 \x03(\x0b\x32\x1c.featureStatistics.Histogram\""\x9a\x01\n\x18WeightedStringStatistics\x12\x44\n\ntop_values\x18\x01 \x03(\x0b\x32\x30.featureStatistics.StringStatistics.FreqAndValue\x12\x38\n\x0erank_histogram\x18\x02 \x01(\x0b\x32 .featureStatistics.RankHistogram\""\xa1\x01\n\x0f\x42ytesStatistics\x12\x39\n\x0c\x63ommon_stats\x18\x01 \x01(\x0b\x32#.featureStatistics.CommonStatistics\x12\x0e\n\x06unique\x18\x02 \x01(\x04\x12\x15\n\ravg_num_bytes\x18\x03 \x01(\x02\x12\x15\n\rmin_num_bytes\x18\x04 \x01(\x02\x12\x15\n\rmax_num_bytes\x18\x05 \x01(\x02\""\xed\x02\n\x10\x43ommonStatistics\x12\x17\n\x0fnum_non_missing\x18\x01 \x01(\x04\x12\x13\n\x0bnum_missing\x18\x02 \x01(\x04\x12\x16\n\x0emin_num_values\x18\x03 \x01(\x04\x12\x16\n\x0emax_num_values\x18\x04 \x01(\x04\x12\x16\n\x0e\x61vg_num_values\x18\x05 \x01(\x02\x12\x16\n\x0etot_num_values\x18\x08 \x01(\x04\x12:\n\x14num_values_histogram\x18\x06 \x01(\x0b\x32\x1c.featureStatistics.Histogram\x12J\n\x15weighted_common_stats\x18\x07 \x01(\x0b\x32+.featureStatistics.WeightedCommonStatistics\x12\x43\n\x1d\x66\x65\x61ture_list_length_histogram\x18\t \x01(\x0b\x32\x1c.featureStatistics.Histogram\""\xc4\x02\n\tHistogram\x12\x0f\n\x07num_nan\x18\x01 \x01(\x04\x12\x15\n\rnum_undefined\x18\x02 \x01(\x04\x12\x34\n\x07\x62uckets\x18\x03 \x03(\x0b\x32#.featureStatistics.Histogram.Bucket\x12\x38\n\x04type\x18\x04 \x01(\x0e\x32*.featureStatistics.Histogram.HistogramType\x12\x0c\n\x04name\x18\x05 \x01(\t\x1a\x63\n\x06\x42ucket\x12\x11\n\tlow_value\x18\x01 \x01(\x01\x12\x12\n\nhigh_value\x18\x02 \x01(\x01\x12\x1c\n\x10\x64\x65precated_count\x18\x03 \x01(\x04\x42\x02\x18\x01\x12\x14\n\x0csample_count\x18\x04 \x01(\x01\"",\n\rHistogramType\x12\x0c\n\x08STANDARD\x10\x00\x12\r\n\tQUANTILES\x10\x01\""\xc9\x01\n\rRankHistogram\x12\x38\n\x07\x62uckets\x18\x01 \x03(\x0b\x32\'.featureStatistics.RankHistogram.Bucket\x12\x0c\n\x04name\x18\x02 \x01(\t\x1ap\n\x06\x42ucket\x12\x10\n\x08low_rank\x18\x01 \x01(\x04\x12\x11\n\thigh_rank\x18\x02 \x01(\x04\x12\x1c\n\x10\x64\x65precated_count\x18\x03 \x01(\x04\x42\x02\x18\x01\x12\r\n\x05label\x18\x04 \x01(\t\x12\x14\n\x0csample_count\x18\x05 \x01(\x01\x62\x06proto3')
)



_FEATURENAMESTATISTICS_TYPE = _descriptor.EnumDescriptor(
  name='Type',
  full_name='featureStatistics.FeatureNameStatistics.Type',
  filename=None,
  file=DESCRIPTOR,
  values=[
    _descriptor.EnumValueDescriptor(
      name='INT', index=0, number=0,
      options=None,
      type=None),
    _descriptor.EnumValueDescriptor(
      name='FLOAT', index=1, number=1,
      options=None,
      type=None),
    _descriptor.EnumValueDescriptor(
      name='STRING', index=2, number=2,
      options=None,
      type=None),
    _descriptor.EnumValueDescriptor(
      name='BYTES', index=3, number=3,
      options=None,
      type=None),
  ],
  containing_type=None,
  options=None,
  serialized_start=636,
  serialized_end=685,
)
_sym_db.RegisterEnumDescriptor(_FEATURENAMESTATISTICS_TYPE)

_HISTOGRAM_HISTOGRAMTYPE = _descriptor.EnumDescriptor(
  name='HistogramType',
  full_name='featureStatistics.Histogram.HistogramType',
  filename=None,
  file=DESCRIPTOR,
  values=[
    _descriptor.EnumValueDescriptor(
      name='STANDARD', index=0, number=0,
      options=None,
      type=None),
    _descriptor.EnumValueDescriptor(
      name='QUANTILES', index=1, number=1,
      options=None,
      type=None),
  ],
  containing_type=None,
  options=None,
  serialized_start=2735,
  serialized_end=2779,
)
_sym_db.RegisterEnumDescriptor(_HISTOGRAM_HISTOGRAMTYPE)


_DATASETFEATURESTATISTICSLIST = _descriptor.Descriptor(
  name='DatasetFeatureStatisticsList',
  full_name='featureStatistics.DatasetFeatureStatisticsList',
  filename=None,
  file=DESCRIPTOR,
  containing_type=None,
  fields=[
    _descriptor.FieldDescriptor(
      name='datasets', full_name='featureStatistics.DatasetFeatureStatisticsList.datasets', index=0,
      number=1, type=11, cpp_type=10, label=3,
      has_default_value=False, default_value=[],
      message_type=None, enum_type=None, containing_type=None,
      is_extension=False, extension_scope=None,
      options=None),
  ],
  extensions=[
  ],
  nested_types=[],
  enum_types=[
  ],
  options=None,
  is_extendable=False,
  syntax='proto3',
  extension_ranges=[],
  oneofs=[
  ],
  serialized_start=47,
  serialized_end=140,
)


_DATASETFEATURESTATISTICS = _descriptor.Descriptor(
  name='DatasetFeatureStatistics',
  full_name='featureStatistics.DatasetFeatureStatistics',
  filename=None,
  file=DESCRIPTOR,
  containing_type=None,
  fields=[
    _descriptor.FieldDescriptor(
      name='name', full_name='featureStatistics.DatasetFeatureStatistics.name', index=0,
      number=1, type=9, cpp_type=9, label=1,
      has_default_value=False, default_value=_b("""").decode('utf-8'),
      message_type=None, enum_type=None, containing_type=None,
      is_extension=False, extension_scope=None,
      options=None),
    _descriptor.FieldDescriptor(
      name='num_examples', full_name='featureStatistics.DatasetFeatureStatistics.num_examples', index=1,
      number=2, type=4, cpp_type=4, label=1,
      has_default_value=False, default_value=0,
      message_type=None, enum_type=None, containing_type=None,
      is_extension=False, extension_scope=None,
      options=None),
    _descriptor.FieldDescriptor(
      name='weighted_num_examples', full_name='featureStatistics.DatasetFeatureStatistics.weighted_num_examples', index=2,
      number=4, type=1, cpp_type=5, label=1,
      has_default_value=False, default_value=float(0),
      message_type=None, enum_type=None, containing_type=None,
      is_extension=False, extension_scope=None,
      options=None),
    _descriptor.FieldDescriptor(
      name='features', full_name='featureStatistics.DatasetFeatureStatistics.features', index=3,
      number=3, type=11, cpp_type=10, label=3,
      has_default_value=False, default_value=[],
      message_type=None, enum_type=None, containing_type=None,
      is_extension=False, extension_scope=None,
      options=None),
  ],
  extensions=[
  ],
  nested_types=[],
  enum_types=[
  ],
  options=None,
  is_extendable=False,
  syntax='proto3',
  extension_ranges=[],
  oneofs=[
  ],
  serialized_start=143,
  serialized_end=296,
)


_FEATURENAMESTATISTICS = _descriptor.Descriptor(
  name='FeatureNameStatistics',
  full_name='featureStatistics.FeatureNameStatistics',
  filename=None,
  file=DESCRIPTOR,
  containing_type=None,
  fields=[
    _descriptor.FieldDescriptor(
      name='name', full_name='featureStatistics.FeatureNameStatistics.name', index=0,
      number=1, type=9, cpp_type=9, label=1,
      has_default_value=False, default_value=_b("""").decode('utf-8'),
      message_type=None, enum_type=None, containing_type=None,
      is_extension=False, extension_scope=None,
      options=None),
    _descriptor.FieldDescriptor(
      name='type', full_name='featureStatistics.FeatureNameStatistics.type', index=1,
      number=2, type=14, cpp_type=8, label=1,
      has_default_value=False, default_value=0,
      message_type=None, enum_type=None, containing_type=None,
      is_extension=False, extension_scope=None,
      options=None),
    _descriptor.FieldDescriptor(
      name='num_stats', full_name='featureStatistics.FeatureNameStatistics.num_stats', index=2,
      number=3, type=11, cpp_type=10, label=1,
      has_default_value=False, default_value=None,
      message_type=None, enum_type=None, containing_type=None,
      is_extension=False, extension_scope=None,
      options=None),
    _descriptor.FieldDescriptor(
      name='string_stats', full_name='featureStatistics.FeatureNameStatistics.string_stats', index=3,
      number=4, type=11, cpp_type=10, label=1,
      has_default_value=False, default_value=None,
      message_type=None, enum_type=None, containing_type=None,
      is_extension=False, extension_scope=None,
      options=None),
    _descriptor.FieldDescriptor(
      name='bytes_stats', full_name='featureStatistics.FeatureNameStatistics.bytes_stats', index=4,
      number=5, type=11, cpp_type=10, label=1,
      has_default_value=False, default_value=None,
      message_type=None, enum_type=None, containing_type=None,
      is_extension=False, extension_scope=None,
      options=None),
    _descriptor.FieldDescriptor(
      name='custom_stats', full_name='featureStatistics.FeatureNameStatistics.custom_stats', index=5,
      number=6, type=11, cpp_type=10, label=3,
      has_default_value=False, default_value=[],
      message_type=None, enum_type=None, containing_type=None,
      is_extension=False, extension_scope=None,
      options=None),
  ],
  extensions=[
  ],
  nested_types=[],
  enum_types=[
    _FEATURENAMESTATISTICS_TYPE,
  ],
  options=None,
  is_extendable=False,
  syntax='proto3',
  extension_ranges=[],
  oneofs=[
    _descriptor.OneofDescriptor(
      name='stats', full_name='featureStatistics.FeatureNameStatistics.stats',
      index=0, containing_type=None, fields=[]),
  ],
  serialized_start=299,
  serialized_end=694,
)


_WEIGHTEDCOMMONSTATISTICS = _descriptor.Descriptor(
  name='WeightedCommonStatistics',
  full_name='featureStatistics.WeightedCommonStatistics',
  filename=None,
  file=DESCRIPTOR,
  containing_type=None,
  fields=[
    _descriptor.FieldDescriptor(
      name='num_non_missing', full_name='featureStatistics.WeightedCommonStatistics.num_non_missing', index=0,
      number=1, type=1, cpp_type=5, label=1,
      has_default_value=False, default_value=float(0),
      message_type=None, enum_type=None, containing_type=None,
      is_extension=False, extension_scope=None,
      options=None),
    _descriptor.FieldDescriptor(
      name='num_missing', full_name='featureStatistics.WeightedCommonStatistics.num_missing', index=1,
      number=2, type=1, cpp_type=5, label=1,
      has_default_value=False, default_value=float(0),
      message_type=None, enum_type=None, containing_type=None,
      is_extension=False, extension_scope=None,
      options=None),
    _descriptor.FieldDescriptor(
      name='avg_num_values', full_name='featureStatistics.WeightedCommonStatistics.avg_num_values', index=2,
      number=3, type=1, cpp_type=5, label=1,
      has_default_value=False, default_value=float(0),
      message_type=None, enum_type=None, containing_type=None,
      is_extension=False, extension_scope=None,
      options=None),
    _descriptor.FieldDescriptor(
      name='tot_num_values', full_name='featureStatistics.WeightedCommonStatistics.tot_num_values', index=3,
      number=4, type=1, cpp_type=5, label=1,
      has_default_value=False, default_value=float(0),
      message_type=None, enum_type=None, containing_type=None,
      is_extension=False, extension_scope=None,
      options=None),
  ],
  extensions=[
  ],
  nested_types=[],
  enum_types=[
  ],
  options=None,
  is_extendable=False,
  syntax='proto3',
  extension_ranges=[],
  oneofs=[
  ],
  serialized_start=696,
  serialized_end=816,
)


_CUSTOMSTATISTIC = _descriptor.Descriptor(
  name='CustomStatistic',
  full_name='featureStatistics.CustomStatistic',
  filename=None,
  file=DESCRIPTOR,
  containing_type=None,
  fields=[
    _descriptor.FieldDescriptor(
      name='name', full_name='featureStatistics.CustomStatistic.name', index=0,
      number=1, type=9, cpp_type=9, label=1,
      has_default_value=False, default_value=_b("""").decode('utf-8'),
      message_type=None, enum_type=None, containing_type=None,
      is_extension=False, extension_scope=None,
      options=None),
    _descriptor.FieldDescriptor(
      name='num', full_name='featureStatistics.CustomStatistic.num', index=1,
      number=2, type=1, cpp_type=5, label=1,
      has_default_value=False, default_value=float(0),
      message_type=None, enum_type=None, containing_type=None,
      is_extension=False, extension_scope=None,
      options=None),
    _descriptor.FieldDescriptor(
      name='str', full_name='featureStatistics.CustomStatistic.str', index=2,
      number=3, type=9, cpp_type=9, label=1,
      has_default_value=False, default_value=_b("""").decode('utf-8'),
      message_type=None, enum_type=None, containing_type=None,
      is_extension=False, extension_scope=None,
      options=None),
    _descriptor.FieldDescriptor(
      name='histogram', full_name='featureStatistics.CustomStatistic.histogram', index=3,
      number=4, type=11, cpp_type=10, label=1,
      has_default_value=False, default_value=None,
      message_type=None, enum_type=None, containing_type=None,
      is_extension=False, extension_scope=None,
      options=None),
  ],
  extensions=[
  ],
  nested_types=[],
  enum_types=[
  ],
  options=None,
  is_extendable=False,
  syntax='proto3',
  extension_ranges=[],
  oneofs=[
    _descriptor.OneofDescriptor(
      name='val', full_name='featureStatistics.CustomStatistic.val',
      index=0, containing_type=None, fields=[]),
  ],
  serialized_start=818,
  serialized_end=937,
)


_NUMERICSTATISTICS = _descriptor.Descriptor(
  name='NumericStatistics',
  full_name='featureStatistics.NumericStatistics',
  filename=None,
  file=DESCRIPTOR,
  containing_type=None,
  fields=[
    _descriptor.FieldDescriptor(
      name='common_stats', full_name='featureStatistics.NumericStatistics.common_stats', index=0,
      number=1, type=11, cpp_type=10, label=1,
      has_default_value=False, default_value=None,
      message_type=None, enum_type=None, containing_type=None,
      is_extension=False, extension_scope=None,
      options=None),
    _descriptor.FieldDescriptor(
      name='mean', full_name='featureStatistics.NumericStatistics.mean', index=1,
      number=2, type=1, cpp_type=5, label=1,
      has_default_value=False, default_value=float(0),
      message_type=None, enum_type=None, containing_type=None,
      is_extension=False, extension_scope=None,
      options=None),
    _descriptor.FieldDescriptor(
      name='std_dev', full_name='featureStatistics.NumericStatistics.std_dev', index=2,
      number=3, type=1, cpp_type=5, label=1,
      has_default_value=False, default_value=float(0),
      message_type=None, enum_type=None, containing_type=None,
      is_extension=False, extension_scope=None,
      options=None),
    _descriptor.FieldDescriptor(
      name='num_zeros', full_name='featureStatistics.NumericStatistics.num_zeros', index=3,
      number=4, type=4, cpp_type=4, label=1,
      has_default_value=False, default_value=0,
      message_type=None, enum_type=None, containing_type=None,
      is_extension=False, extension_scope=None,
      options=None),
    _descriptor.FieldDescriptor(
      name='min', full_name='featureStatistics.NumericStatistics.min', index=4,
      number=5, type=1, cpp_type=5, label=1,
      has_default_value=False, default_value=float(0),
      message_type=None, enum_type=None, containing_type=None,
      is_extension=False, extension_scope=None,
      options=None),
    _descriptor.FieldDescriptor(
      name='median', full_name='featureStatistics.NumericStatistics.median', index=5,
      number=6, type=1, cpp_type=5, label=1,
      has_default_value=False, default_value=float(0),
      message_type=None, enum_type=None, containing_type=None,
      is_extension=False, extension_scope=None,
      options=None),
    _descriptor.FieldDescriptor(
      name='max', full_name='featureStatistics.NumericStatistics.max', index=6,
      number=7, type=1, cpp_type=5, label=1,
      has_default_value=False, default_value=float(0),
      message_type=None, enum_type=None, containing_type=None,
      is_extension=False, extension_scope=None,
      options=None),
    _descriptor.FieldDescriptor(
      name='histograms', full_name='featureStatistics.NumericStatistics.histograms', index=7,
      number=8, type=11, cpp_type=10, label=3,
      has_default_value=False, default_value=[],
      message_type=None, enum_type=None, containing_type=None,
      is_extension=False, extension_scope=None,
      options=None),
    _descriptor.FieldDescriptor(
      name='weighted_numeric_stats', full_name='featureStatistics.NumericStatistics.weighted_numeric_stats', index=8,
      number=9, type=11, cpp_type=10, label=1,
      has_default_value=False, default_value=None,
      message_type=None, enum_type=None, containing_type=None,
      is_extension=False, extension_scope=None,
      options=None),
  ],
  extensions=[
  ],
  nested_types=[],
  enum_types=[
  ],
  options=None,
  is_extendable=False,
  syntax='proto3',
  extension_ranges=[],
  oneofs=[
  ],
  serialized_start=940,
  serialized_end=1238,
)


_STRINGSTATISTICS_FREQANDVALUE = _descriptor.Descriptor(
  name='FreqAndValue',
  full_name='featureStatistics.StringStatistics.FreqAndValue',
  filename=None,
  file=DESCRIPTOR,
  containing_type=None,
  fields=[
    _descriptor.FieldDescriptor(
      name='deprecated_freq', full_name='featureStatistics.StringStatistics.FreqAndValue.deprecated_freq', index=0,
      number=1, type=4, cpp_type=4, label=1,
      has_default_value=False, default_value=0,
      message_type=None, enum_type=None, containing_type=None,
      is_extension=False, extension_scope=None,
      options=_descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b('\030\001'))),
    _descriptor.FieldDescriptor(
      name='value', full_name='featureStatistics.StringStatistics.FreqAndValue.value', index=1,
      number=2, type=9, cpp_type=9, label=1,
      has_default_value=False, default_value=_b("""").decode('utf-8'),
      message_type=None, enum_type=None, containing_type=None,
      is_extension=False, extension_scope=None,
      options=None),
    _descriptor.FieldDescriptor(
      name='frequency', full_name='featureStatistics.StringStatistics.FreqAndValue.frequency', index=2,
      number=3, type=1, cpp_type=5, label=1,
      has_default_value=False, default_value=float(0),
      message_type=None, enum_type=None, containing_type=None,
      is_extension=False, extension_scope=None,
      options=None),
  ],
  extensions=[
  ],
  nested_types=[],
  enum_types=[
  ],
  options=None,
  is_extendable=False,
  syntax='proto3',
  extension_ranges=[],
  oneofs=[
  ],
  serialized_start=1560,
  serialized_end=1637,
)

_STRINGSTATISTICS = _descriptor.Descriptor(
  name='StringStatistics',
  full_name='featureStatistics.StringStatistics',
  filename=None,
  file=DESCRIPTOR,
  containing_type=None,
  fields=[
    _descriptor.FieldDescriptor(
      name='common_stats', full_name='featureStatistics.StringStatistics.common_stats', index=0,
      number=1, type=11, cpp_type=10, label=1,
      has_default_value=False, default_value=None,
      message_type=None, enum_type=None, containing_type=None,
      is_extension=False, extension_scope=None,
      options=None),
    _descriptor.FieldDescriptor(
      name='unique', full_name='featureStatistics.StringStatistics.unique', index=1,
      number=2, type=4, cpp_type=4, label=1,
      has_default_value=False, default_value=0,
      message_type=None, enum_type=None, containing_type=None,
      is_extension=False, extension_scope=None,
      options=None),
    _descriptor.FieldDescriptor(
      name='top_values', full_name='featureStatistics.StringStatistics.top_values', index=2,
      number=3, type=11, cpp_type=10, label=3,
      has_default_value=False, default_value=[],
      message_type=None, enum_type=None, containing_type=None,
      is_extension=False, extension_scope=None,
      options=None),
    _descriptor.FieldDescriptor(
      name='avg_length', full_name='featureStatistics.StringStatistics.avg_length', index=3,
      number=4, type=2, cpp_type=6, label=1,
      has_default_value=False, default_value=float(0),
      message_type=None, enum_type=None, containing_type=None,
      is_extension=False, extension_scope=None,
      options=None),
    _descriptor.FieldDescriptor(
      name='rank_histogram', full_name='featureStatistics.StringStatistics.rank_histogram', index=4,
      number=5, type=11, cpp_type=10, label=1,
      has_default_value=False, default_value=None,
      message_type=None, enum_type=None, containing_type=None,
      is_extension=False, extension_scope=None,
      options=None),
    _descriptor.FieldDescriptor(
      name='weighted_string_stats', full_name='featureStatistics.StringStatistics.weighted_string_stats', index=5,
      number=6, type=11, cpp_type=10, label=1,
      has_default_value=False, default_value=None,
      message_type=None, enum_type=None, containing_type=None,
      is_extension=False, extension_scope=None,
      options=None),
  ],
  extensions=[
  ],
  nested_types=[_STRINGSTATISTICS_FREQANDVALUE, ],
  enum_types=[
  ],
  options=None,
  is_extendable=False,
  syntax='proto3',
  extension_ranges=[],
  oneofs=[
  ],
  serialized_start=1241,
  serialized_end=1637,
)


_WEIGHTEDNUMERICSTATISTICS = _descriptor.Descriptor(
  name='WeightedNumericStatistics',
  full_name='featureStatistics.WeightedNumericStatistics',
  filename=None,
  file=DESCRIPTOR,
  containing_type=None,
  fields=[
    _descriptor.FieldDescriptor(
      name='mean', full_name='featureStatistics.WeightedNumericStatistics.mean', index=0,
      number=1, type=1, cpp_type=5, label=1,
      has_default_value=False, default_value=float(0),
      message_type=None, enum_type=None, containing_type=None,
      is_extension=False, extension_scope=None,
      options=None),
    _descriptor.FieldDescriptor(
      name='std_dev', full_name='featureStatistics.WeightedNumericStatistics.std_dev', index=1,
      number=2, type=1, cpp_type=5, label=1,
      has_default_value=False, default_value=float(0),
      message_type=None, enum_type=None, containing_type=None,
      is_extension=False, extension_scope=None,
      options=None),
    _descriptor.FieldDescriptor(
      name='median', full_name='featureStatistics.WeightedNumericStatistics.median', index=2,
      number=3, type=1, cpp_type=5, label=1,
      has_default_value=False, default_value=float(0),
      message_type=None, enum_type=None, containing_type=None,
      is_extension=False, extension_scope=None,
      options=None),
    _descriptor.FieldDescriptor(
      name='histograms', full_name='featureStatistics.WeightedNumericStatistics.histograms', index=3,
      number=4, type=11, cpp_type=10, label=3,
      has_default_value=False, default_value=[],
      message_type=None, enum_type=None, containing_type=None,
      is_extension=False, extension_scope=None,
      options=None),
  ],
  extensions=[
  ],
  nested_types=[],
  enum_types=[
  ],
  options=None,
  is_extendable=False,
  syntax='proto3',
  extension_ranges=[],
  oneofs=[
  ],
  serialized_start=1639,
  serialized_end=1763,
)


_WEIGHTEDSTRINGSTATISTICS = _descriptor.Descriptor(
  name='WeightedStringStatistics',
  full_name='featureStatistics.WeightedStringStatistics',
  filename=None,
  file=DESCRIPTOR,
  containing_type=None,
  fields=[
    _descriptor.FieldDescriptor(
      name='top_values', full_name='featureStatistics.WeightedStringStatistics.top_values', index=0,
      number=1, type=11, cpp_type=10, label=3,
      has_default_value=False, default_value=[],
      message_type=None, enum_type=None, containing_type=None,
      is_extension=False, extension_scope=None,
      options=None),
    _descriptor.FieldDescriptor(
      name='rank_histogram', full_name='featureStatistics.WeightedStringStatistics.rank_histogram', index=1,
      number=2, type=11, cpp_type=10, label=1,
      has_default_value=False, default_value=None,
      message_type=None, enum_type=None, containing_type=None,
      is_extension=False, extension_scope=None,
      options=None),
  ],
  extensions=[
  ],
  nested_types=[],
  enum_types=[
  ],
  options=None,
  is_extendable=False,
  syntax='proto3',
  extension_ranges=[],
  oneofs=[
  ],
  serialized_start=1766,
  serialized_end=1920,
)


_BYTESSTATISTICS = _descriptor.Descriptor(
  name='BytesStatistics',
  full_name='featureStatistics.BytesStatistics',
  filename=None,
  file=DESCRIPTOR,
  containing_type=None,
  fields=[
    _descriptor.FieldDescriptor(
      name='common_stats', full_name='featureStatistics.BytesStatistics.common_stats', index=0,
      number=1, type=11, cpp_type=10, label=1,
      has_default_value=False, default_value=None,
      message_type=None, enum_type=None, containing_type=None,
      is_extension=False, extension_scope=None,
      options=None),
    _descriptor.FieldDescriptor(
      name='unique', full_name='featureStatistics.BytesStatistics.unique', index=1,
      number=2, type=4, cpp_type=4, label=1,
      has_default_value=False, default_value=0,
      message_type=None, enum_type=None, containing_type=None,
      is_extension=False, extension_scope=None,
      options=None),
    _descriptor.FieldDescriptor(
      name='avg_num_bytes', full_name='featureStatistics.BytesStatistics.avg_num_bytes', index=2,
      number=3, type=2, cpp_type=6, label=1,
      has_default_value=False, default_value=float(0),
      message_type=None, enum_type=None, containing_type=None,
      is_extension=False, extension_scope=None,
      options=None),
    _descriptor.FieldDescriptor(
      name='min_num_bytes', full_name='featureStatistics.BytesStatistics.min_num_bytes', index=3,
      number=4, type=2, cpp_type=6, label=1,
      has_default_value=False, default_value=float(0),
      message_type=None, enum_type=None, containing_type=None,
      is_extension=False, extension_scope=None,
      options=None),
    _descriptor.FieldDescriptor(
      name='max_num_bytes', full_name='featureStatistics.BytesStatistics.max_num_bytes', index=4,
      number=5, type=2, cpp_type=6, label=1,
      has_default_value=False, default_value=float(0),
      message_type=None, enum_type=None, containing_type=None,
      is_extension=False, extension_scope=None,
      options=None),
  ],
  extensions=[
  ],
  nested_types=[],
  enum_types=[
  ],
  options=None,
  is_extendable=False,
  syntax='proto3',
  extension_ranges=[],
  oneofs=[
  ],
  serialized_start=1923,
  serialized_end=2084,
)


_COMMONSTATISTICS = _descriptor.Descriptor(
  name='CommonStatistics',
  full_name='featureStatistics.CommonStatistics',
  filename=None,
  file=DESCRIPTOR,
  containing_type=None,
  fields=[
    _descriptor.FieldDescriptor(
      name='num_non_missing', full_name='featureStatistics.CommonStatistics.num_non_missing', index=0,
      number=1, type=4, cpp_type=4, label=1,
      has_default_value=False, default_value=0,
      message_type=None, enum_type=None, containing_type=None,
      is_extension=False, extension_scope=None,
      options=None),
    _descriptor.FieldDescriptor(
      name='num_missing', full_name='featureStatistics.CommonStatistics.num_missing', index=1,
      number=2, type=4, cpp_type=4, label=1,
      has_default_value=False, default_value=0,
      message_type=None, enum_type=None, containing_type=None,
      is_extension=False, extension_scope=None,
      options=None),
    _descriptor.FieldDescriptor(
      name='min_num_values', full_name='featureStatistics.CommonStatistics.min_num_values', index=2,
      number=3, type=4, cpp_type=4, label=1,
      has_default_value=False, default_value=0,
      message_type=None, enum_type=None, containing_type=None,
      is_extension=False, extension_scope=None,
      options=None),
    _descriptor.FieldDescriptor(
      name='max_num_values', full_name='featureStatistics.CommonStatistics.max_num_values', index=3,
      number=4, type=4, cpp_type=4, label=1,
      has_default_value=False, default_value=0,
      message_type=None, enum_type=None, containing_type=None,
      is_extension=False, extension_scope=None,
      options=None),
    _descriptor.FieldDescriptor(
      name='avg_num_values', full_name='featureStatistics.CommonStatistics.avg_num_values', index=4,
      number=5, type=2, cpp_type=6, label=1,
      has_default_value=False, default_value=float(0),
      message_type=None, enum_type=None, containing_type=None,
      is_extension=False, extension_scope=None,
      options=None),
    _descriptor.FieldDescriptor(
      name='tot_num_values', full_name='featureStatistics.CommonStatistics.tot_num_values', index=5,
      number=8, type=4, cpp_type=4, label=1,
      has_default_value=False, default_value=0,
      message_type=None, enum_type=None, containing_type=None,
      is_extension=False, extension_scope=None,
      options=None),
    _descriptor.FieldDescriptor(
      name='num_values_histogram', full_name='featureStatistics.CommonStatistics.num_values_histogram', index=6,
      number=6, type=11, cpp_type=10, label=1,
      has_default_value=False, default_value=None,
      message_type=None, enum_type=None, containing_type=None,
      is_extension=False, extension_scope=None,
      options=None),
    _descriptor.FieldDescriptor(
      name='weighted_common_stats', full_name='featureStatistics.CommonStatistics.weighted_common_stats', index=7,
      number=7, type=11, cpp_type=10, label=1,
      has_default_value=False, default_value=None,
      message_type=None, enum_type=None, containing_type=None,
      is_extension=False, extension_scope=None,
      options=None),
    _descriptor.FieldDescriptor(
      name='feature_list_length_histogram', full_name='featureStatistics.CommonStatistics.feature_list_length_histogram', index=8,
      number=9, type=11, cpp_type=10, label=1,
      has_default_value=False, default_value=None,
      message_type=None, enum_type=None, containing_type=None,
      is_extension=False, extension_scope=None,
      options=None),
  ],
  extensions=[
  ],
  nested_types=[],
  enum_types=[
  ],
  options=None,
  is_extendable=False,
  syntax='proto3',
  extension_ranges=[],
  oneofs=[
  ],
  serialized_start=2087,
  serialized_end=2452,
)


_HISTOGRAM_BUCKET = _descriptor.Descriptor(
  name='Bucket',
  full_name='featureStatistics.Histogram.Bucket',
  filename=None,
  file=DESCRIPTOR,
  containing_type=None,
  fields=[
    _descriptor.FieldDescriptor(
      name='low_value', full_name='featureStatistics.Histogram.Bucket.low_value', index=0,
      number=1, type=1, cpp_type=5, label=1,
      has_default_value=False, default_value=float(0),
      message_type=None, enum_type=None, containing_type=None,
      is_extension=False, extension_scope=None,
      options=None),
    _descriptor.FieldDescriptor(
      name='high_value', full_name='featureStatistics.Histogram.Bucket.high_value', index=1,
      number=2, type=1, cpp_type=5, label=1,
      has_default_value=False, default_value=float(0),
      message_type=None, enum_type=None, containing_type=None,
      is_extension=False, extension_scope=None,
      options=None),
    _descriptor.FieldDescriptor(
      name='deprecated_count', full_name='featureStatistics.Histogram.Bucket.deprecated_count', index=2,
      number=3, type=4, cpp_type=4, label=1,
      has_default_value=False, default_value=0,
      message_type=None, enum_type=None, containing_type=None,
      is_extension=False, extension_scope=None,
      options=_descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b('\030\001'))),
    _descriptor.FieldDescriptor(
      name='sample_count', full_name='featureStatistics.Histogram.Bucket.sample_count', index=3,
      number=4, type=1, cpp_type=5, label=1,
      has_default_value=False, default_value=float(0),
      message_type=None, enum_type=None, containing_type=None,
      is_extension=False, extension_scope=None,
      options=None),
  ],
  extensions=[
  ],
  nested_types=[],
  enum_types=[
  ],
  options=None,
  is_extendable=False,
  syntax='proto3',
  extension_ranges=[],
  oneofs=[
  ],
  serialized_start=2634,
  serialized_end=2733,
)

_HISTOGRAM = _descriptor.Descriptor(
  name='Histogram',
  full_name='featureStatistics.Histogram',
  filename=None,
  file=DESCRIPTOR,
  containing_type=None,
  fields=[
    _descriptor.FieldDescriptor(
      name='num_nan', full_name='featureStatistics.Histogram.num_nan', index=0,
      number=1, type=4, cpp_type=4, label=1,
      has_default_value=False, default_value=0,
      message_type=None, enum_type=None, containing_type=None,
      is_extension=False, extension_scope=None,
      options=None),
    _descriptor.FieldDescriptor(
      name='num_undefined', full_name='featureStatistics.Histogram.num_undefined', index=1,
      number=2, type=4, cpp_type=4, label=1,
      has_default_value=False, default_value=0,
      message_type=None, enum_type=None, containing_type=None,
      is_extension=False, extension_scope=None,
      options=None),
    _descriptor.FieldDescriptor(
      name='buckets', full_name='featureStatistics.Histogram.buckets', index=2,
      number=3, type=11, cpp_type=10, label=3,
      has_default_value=False, default_value=[],
      message_type=None, enum_type=None, containing_type=None,
      is_extension=False, extension_scope=None,
      options=None),
    _descriptor.FieldDescriptor(
      name='type', full_name='featureStatistics.Histogram.type', index=3,
      number=4, type=14, cpp_type=8, label=1,
      has_default_value=False, default_value=0,
      message_type=None, enum_type=None, containing_type=None,
      is_extension=False, extension_scope=None,
      options=None),
    _descriptor.FieldDescriptor(
      name='name', full_name='featureStatistics.Histogram.name', index=4,
      number=5, type=9, cpp_type=9, label=1,
      has_default_value=False, default_value=_b("""").decode('utf-8'),
      message_type=None, enum_type=None, containing_type=None,
      is_extension=False, extension_scope=None,
      options=None),
  ],
  extensions=[
  ],
  nested_types=[_HISTOGRAM_BUCKET, ],
  enum_types=[
    _HISTOGRAM_HISTOGRAMTYPE,
  ],
  options=None,
  is_extendable=False,
  syntax='proto3',
  extension_ranges=[],
  oneofs=[
  ],
  serialized_start=2455,
  serialized_end=2779,
)


_RANKHISTOGRAM_BUCKET = _descriptor.Descriptor(
  name='Bucket',
  full_name='featureStatistics.RankHistogram.Bucket',
  filename=None,
  file=DESCRIPTOR,
  containing_type=None,
  fields=[
    _descriptor.FieldDescriptor(
      name='low_rank', full_name='featureStatistics.RankHistogram.Bucket.low_rank', index=0,
      number=1, type=4, cpp_type=4, label=1,
      has_default_value=False, default_value=0,
      message_type=None, enum_type=None, containing_type=None,
      is_extension=False, extension_scope=None,
      options=None),
    _descriptor.FieldDescriptor(
      name='high_rank', full_name='featureStatistics.RankHistogram.Bucket.high_rank', index=1,
      number=2, type=4, cpp_type=4, label=1,
      has_default_value=False, default_value=0,
      message_type=None, enum_type=None, containing_type=None,
      is_extension=False, extension_scope=None,
      options=None),
    _descriptor.FieldDescriptor(
      name='deprecated_count', full_name='featureStatistics.RankHistogram.Bucket.deprecated_count', index=2,
      number=3, type=4, cpp_type=4, label=1,
      has_default_value=False, default_value=0,
      message_type=None, enum_type=None, containing_type=None,
      is_extension=False, extension_scope=None,
      options=_descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b('\030\001'))),
    _descriptor.FieldDescriptor(
      name='label', full_name='featureStatistics.RankHistogram.Bucket.label', index=3,
      number=4, type=9, cpp_type=9, label=1,
      has_default_value=False, default_value=_b("""").decode('utf-8'),
      message_type=None, enum_type=None, containing_type=None,
      is_extension=False, extension_scope=None,
      options=None),
    _descriptor.FieldDescriptor(
      name='sample_count', full_name='featureStatistics.RankHistogram.Bucket.sample_count', index=4,
      number=5, type=1, cpp_type=5, label=1,
      has_default_value=False, default_value=float(0),
      message_type=None, enum_type=None, containing_type=None,
      is_extension=False, extension_scope=None,
      options=None),
  ],
  extensions=[
  ],
  nested_types=[],
  enum_types=[
  ],
  options=None,
  is_extendable=False,
  syntax='proto3',
  extension_ranges=[],
  oneofs=[
  ],
  serialized_start=2871,
  serialized_end=2983,
)

_RANKHISTOGRAM = _descriptor.Descriptor(
  name='RankHistogram',
  full_name='featureStatistics.RankHistogram',
  filename=None,
  file=DESCRIPTOR,
  containing_type=None,
  fields=[
    _descriptor.FieldDescriptor(
      name='buckets', full_name='featureStatistics.RankHistogram.buckets', index=0,
      number=1, type=11, cpp_type=10, label=3,
      has_default_value=False, default_value=[],
      message_type=None, enum_type=None, containing_type=None,
      is_extension=False, extension_scope=None,
      options=None),
    _descriptor.FieldDescriptor(
      name='name', full_name='featureStatistics.RankHistogram.name', index=1,
      number=2, type=9, cpp_type=9, label=1,
      has_default_value=False, default_value=_b("""").decode('utf-8'),
      message_type=None, enum_type=None, containing_type=None,
      is_extension=False, extension_scope=None,
      options=None),
  ],
  extensions=[
  ],
  nested_types=[_RANKHISTOGRAM_BUCKET, ],
  enum_types=[
  ],
  options=None,
  is_extendable=False,
  syntax='proto3',
  extension_ranges=[],
  oneofs=[
  ],
  serialized_start=2782,
  serialized_end=2983,
)

_DATASETFEATURESTATISTICSLIST.fields_by_name['datasets'].message_type = _DATASETFEATURESTATISTICS
_DATASETFEATURESTATISTICS.fields_by_name['features'].message_type = _FEATURENAMESTATISTICS
_FEATURENAMESTATISTICS.fields_by_name['type'].enum_type = _FEATURENAMESTATISTICS_TYPE
_FEATURENAMESTATISTICS.fields_by_name['num_stats'].message_type = _NUMERICSTATISTICS
_FEATURENAMESTATISTICS.fields_by_name['string_stats'].message_type = _STRINGSTATISTICS
_FEATURENAMESTATISTICS.fields_by_name['bytes_stats'].message_type = _BYTESSTATISTICS
_FEATURENAMESTATISTICS.fields_by_name['custom_stats'].message_type = _CUSTOMSTATISTIC
_FEATURENAMESTATISTICS_TYPE.containing_type = _FEATURENAMESTATISTICS
_FEATURENAMESTATISTICS.oneofs_by_name['stats'].fields.append(
  _FEATURENAMESTATISTICS.fields_by_name['num_stats'])
_FEATURENAMESTATISTICS.fields_by_name['num_stats'].containing_oneof = _FEATURENAMESTATISTICS.oneofs_by_name['stats']
_FEATURENAMESTATISTICS.oneofs_by_name['stats'].fields.append(
  _FEATURENAMESTATISTICS.fields_by_name['string_stats'])
_FEATURENAMESTATISTICS.fields_by_name['string_stats'].containing_oneof = _FEATURENAMESTATISTICS.oneofs_by_name['stats']
_FEATURENAMESTATISTICS.oneofs_by_name['stats'].fields.append(
  _FEATURENAMESTATISTICS.fields_by_name['bytes_stats'])
_FEATURENAMESTATISTICS.fields_by_name['bytes_stats'].containing_oneof = _FEATURENAMESTATISTICS.oneofs_by_name['stats']
_CUSTOMSTATISTIC.fields_by_name['histogram'].message_type = _HISTOGRAM
_CUSTOMSTATISTIC.oneofs_by_name['val'].fields.append(
  _CUSTOMSTATISTIC.fields_by_name['num'])
_CUSTOMSTATISTIC.fields_by_name['num'].containing_oneof = _CUSTOMSTATISTIC.oneofs_by_name['val']
_CUSTOMSTATISTIC.oneofs_by_name['val'].fields.append(
  _CUSTOMSTATISTIC.fields_by_name['str'])
_CUSTOMSTATISTIC.fields_by_name['str'].containing_oneof = _CUSTOMSTATISTIC.oneofs_by_name['val']
_CUSTOMSTATISTIC.oneofs_by_name['val'].fields.append(
  _CUSTOMSTATISTIC.fields_by_name['histogram'])
_CUSTOMSTATISTIC.fields_by_name['histogram'].containing_oneof = _CUSTOMSTATISTIC.oneofs_by_name['val']
_NUMERICSTATISTICS.fields_by_name['common_stats'].message_type = _COMMONSTATISTICS
_NUMERICSTATISTICS.fields_by_name['histograms'].message_type = _HISTOGRAM
_NUMERICSTATISTICS.fields_by_name['weighted_numeric_stats'].message_type = _WEIGHTEDNUMERICSTATISTICS
_STRINGSTATISTICS_FREQANDVALUE.containing_type = _STRINGSTATISTICS
_STRINGSTATISTICS.fields_by_name['common_stats'].message_type = _COMMONSTATISTICS
_STRINGSTATISTICS.fields_by_name['top_values'].message_type = _STRINGSTATISTICS_FREQANDVALUE
_STRINGSTATISTICS.fields_by_name['rank_histogram'].message_type = _RANKHISTOGRAM
_STRINGSTATISTICS.fields_by_name['weighted_string_stats'].message_type = _WEIGHTEDSTRINGSTATISTICS
_WEIGHTEDNUMERICSTATISTICS.fields_by_name['histograms'].message_type = _HISTOGRAM
_WEIGHTEDSTRINGSTATISTICS.fields_by_name['top_values'].message_type = _STRINGSTATISTICS_FREQANDVALUE
_WEIGHTEDSTRINGSTATISTICS.fields_by_name['rank_histogram'].message_type = _RANKHISTOGRAM
_BYTESSTATISTICS.fields_by_name['common_stats'].message_type = _COMMONSTATISTICS
_COMMONSTATISTICS.fields_by_name['num_values_histogram'].message_type = _HISTOGRAM
_COMMONSTATISTICS.fields_by_name['weighted_common_stats'].message_type = _WEIGHTEDCOMMONSTATISTICS
_COMMONSTATISTICS.fields_by_name['feature_list_length_histogram'].message_type = _HISTOGRAM
_HISTOGRAM_BUCKET.containing_type = _HISTOGRAM
_HISTOGRAM.fields_by_name['buckets'].message_type = _HISTOGRAM_BUCKET
_HISTOGRAM.fields_by_name['type'].enum_type = _HISTOGRAM_HISTOGRAMTYPE
_HISTOGRAM_HISTOGRAMTYPE.containing_type = _HISTOGRAM
_RANKHISTOGRAM_BUCKET.containing_type = _RANKHISTOGRAM
_RANKHISTOGRAM.fields_by_name['buckets'].message_type = _RANKHISTOGRAM_BUCKET
DESCRIPTOR.message_types_by_name['DatasetFeatureStatisticsList'] = _DATASETFEATURESTATISTICSLIST
DESCRIPTOR.message_types_by_name['DatasetFeatureStatistics'] = _DATASETFEATURESTATISTICS
DESCRIPTOR.message_types_by_name['FeatureNameStatistics'] = _FEATURENAMESTATISTICS
DESCRIPTOR.message_types_by_name['WeightedCommonStatistics'] = _WEIGHTEDCOMMONSTATISTICS
DESCRIPTOR.message_types_by_name['CustomStatistic'] = _CUSTOMSTATISTIC
DESCRIPTOR.message_types_by_name['NumericStatistics'] = _NUMERICSTATISTICS
DESCRIPTOR.message_types_by_name['StringStatistics'] = _STRINGSTATISTICS
DESCRIPTOR.message_types_by_name['WeightedNumericStatistics'] = _WEIGHTEDNUMERICSTATISTICS
DESCRIPTOR.message_types_by_name['WeightedStringStatistics'] = _WEIGHTEDSTRINGSTATISTICS
DESCRIPTOR.message_types_by_name['BytesStatistics'] = _BYTESSTATISTICS
DESCRIPTOR.message_types_by_name['CommonStatistics'] = _COMMONSTATISTICS
DESCRIPTOR.message_types_by_name['Histogram'] = _HISTOGRAM
DESCRIPTOR.message_types_by_name['RankHistogram'] = _RANKHISTOGRAM
_sym_db.RegisterFileDescriptor(DESCRIPTOR)

DatasetFeatureStatisticsList = _reflection.GeneratedProtocolMessageType('DatasetFeatureStatisticsList', (_message.Message,), dict(
  DESCRIPTOR = _DATASETFEATURESTATISTICSLIST,
  __module__ = 'feature_statistics_pb2'
  # @@protoc_insertion_point(class_scope:featureStatistics.DatasetFeatureStatisticsList)
  ))
_sym_db.RegisterMessage(DatasetFeatureStatisticsList)

DatasetFeatureStatistics = _reflection.GeneratedProtocolMessageType('DatasetFeatureStatistics', (_message.Message,), dict(
  DESCRIPTOR = _DATASETFEATURESTATISTICS,
  __module__ = 'feature_statistics_pb2'
  # @@protoc_insertion_point(class_scope:featureStatistics.DatasetFeatureStatistics)
  ))
_sym_db.RegisterMessage(DatasetFeatureStatistics)

FeatureNameStatistics = _reflection.GeneratedProtocolMessageType('FeatureNameStatistics', (_message.Message,), dict(
  DESCRIPTOR = _FEATURENAMESTATISTICS,
  __module__ = 'feature_statistics_pb2'
  # @@protoc_insertion_point(class_scope:featureStatistics.FeatureNameStatistics)
  ))
_sym_db.RegisterMessage(FeatureNameStatistics)

WeightedCommonStatistics = _reflection.GeneratedProtocolMessageType('WeightedCommonStatistics', (_message.Message,), dict(
  DESCRIPTOR = _WEIGHTEDCOMMONSTATISTICS,
  __module__ = 'feature_statistics_pb2'
  # @@protoc_insertion_point(class_scope:featureStatistics.WeightedCommonStatistics)
  ))
_sym_db.RegisterMessage(WeightedCommonStatistics)

CustomStatistic = _reflection.GeneratedProtocolMessageType('CustomStatistic', (_message.Message,), dict(
  DESCRIPTOR = _CUSTOMSTATISTIC,
  __module__ = 'feature_statistics_pb2'
  # @@protoc_insertion_point(class_scope:featureStatistics.CustomStatistic)
  ))
_sym_db.RegisterMessage(CustomStatistic)

NumericStatistics = _reflection.GeneratedProtocolMessageType('NumericStatistics', (_message.Message,), dict(
  DESCRIPTOR = _NUMERICSTATISTICS,
  __module__ = 'feature_statistics_pb2'
  # @@protoc_insertion_point(class_scope:featureStatistics.NumericStatistics)
  ))
_sym_db.RegisterMessage(NumericStatistics)

StringStatistics = _reflection.GeneratedProtocolMessageType('StringStatistics', (_message.Message,), dict(

  FreqAndValue = _reflection.GeneratedProtocolMessageType('FreqAndValue', (_message.Message,), dict(
    DESCRIPTOR = _STRINGSTATISTICS_FREQANDVALUE,
    __module__ = 'feature_statistics_pb2'
    # @@protoc_insertion_point(class_scope:featureStatistics.StringStatistics.FreqAndValue)
    ))
  ,
  DESCRIPTOR = _STRINGSTATISTICS,
  __module__ = 'feature_statistics_pb2'
  # @@protoc_insertion_point(class_scope:featureStatistics.StringStatistics)
  ))
_sym_db.RegisterMessage(StringStatistics)
_sym_db.RegisterMessage(StringStatistics.FreqAndValue)

WeightedNumericStatistics = _reflection.GeneratedProtocolMessageType('WeightedNumericStatistics', (_message.Message,), dict(
  DESCRIPTOR = _WEIGHTEDNUMERICSTATISTICS,
  __module__ = 'feature_statistics_pb2'
  # @@protoc_insertion_point(class_scope:featureStatistics.WeightedNumericStatistics)
  ))
_sym_db.RegisterMessage(WeightedNumericStatistics)

WeightedStringStatistics = _reflection.GeneratedProtocolMessageType('WeightedStringStatistics', (_message.Message,), dict(
  DESCRIPTOR = _WEIGHTEDSTRINGSTATISTICS,
  __module__ = 'feature_statistics_pb2'
  # @@protoc_insertion_point(class_scope:featureStatistics.WeightedStringStatistics)
  ))
_sym_db.RegisterMessage(WeightedStringStatistics)

BytesStatistics = _reflection.GeneratedProtocolMessageType('BytesStatistics', (_message.Message,), dict(
  DESCRIPTOR = _BYTESSTATISTICS,
  __module__ = 'feature_statistics_pb2'
  # @@protoc_insertion_point(class_scope:featureStatistics.BytesStatistics)
  ))
_sym_db.RegisterMessage(BytesStatistics)

CommonStatistics = _reflection.GeneratedProtocolMessageType('CommonStatistics', (_message.Message,), dict(
  DESCRIPTOR = _COMMONSTATISTICS,
  __module__ = 'feature_statistics_pb2'
  # @@protoc_insertion_point(class_scope:featureStatistics.CommonStatistics)
  ))
_sym_db.RegisterMessage(CommonStatistics)

Histogram = _reflection.GeneratedProtocolMessageType('Histogram', (_message.Message,), dict(

  Bucket = _reflection.GeneratedProtocolMessageType('Bucket', (_message.Message,), dict(
    DESCRIPTOR = _HISTOGRAM_BUCKET,
    __module__ = 'feature_statistics_pb2'
    # @@protoc_insertion_point(class_scope:featureStatistics.Histogram.Bucket)
    ))
  ,
  DESCRIPTOR = _HISTOGRAM,
  __module__ = 'feature_statistics_pb2'
  # @@protoc_insertion_point(class_scope:featureStatistics.Histogram)
  ))
_sym_db.RegisterMessage(Histogram)
_sym_db.RegisterMessage(Histogram.Bucket)

RankHistogram = _reflection.GeneratedProtocolMessageType('RankHistogram', (_message.Message,), dict(

  Bucket = _reflection.GeneratedProtocolMessageType('Bucket', (_message.Message,), dict(
    DESCRIPTOR = _RANKHISTOGRAM_BUCKET,
    __module__ = 'feature_statistics_pb2'
    # @@protoc_insertion_point(class_scope:featureStatistics.RankHistogram.Bucket)
    ))
  ,
  DESCRIPTOR = _RANKHISTOGRAM,
  __module__ = 'feature_statistics_pb2'
  # @@protoc_insertion_point(class_scope:featureStatistics.RankHistogram)
  ))
_sym_db.RegisterMessage(RankHistogram)
_sym_db.RegisterMessage(RankHistogram.Bucket)


_STRINGSTATISTICS_FREQANDVALUE.fields_by_name['deprecated_freq'].has_options = True
_STRINGSTATISTICS_FREQANDVALUE.fields_by_name['deprecated_freq']._options = _descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b('\030\001'))
_HISTOGRAM_BUCKET.fields_by_name['deprecated_count'].has_options = True
_HISTOGRAM_BUCKET.fields_by_name['deprecated_count']._options = _descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b('\030\001'))
_RANKHISTOGRAM_BUCKET.fields_by_name['deprecated_count'].has_options = True
_RANKHISTOGRAM_BUCKET.fields_by_name['deprecated_count']._options = _descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b('\030\001'))
# @@protoc_insertion_point(module_scope)
"
run_modelService.py,"#from BaseHTTPServer import BaseHTTPRequestHandler,HTTPServer
from http.server import BaseHTTPRequestHandler,HTTPServer 
#from SocketServer import ThreadingMixIn
from socketserver import ThreadingMixIn 
'''
from augustus.core.ModelLoader import ModelLoader
from augustus.strict import modelLoader
'''
import pandas as pd
import os,sys
from os.path import expanduser
import platform
import numpy as np
import configparser
import threading
import subprocess
import argparse
import re
import cgi
from datetime import datetime
import json
import sys
from datetime import datetime
user_records = {}
class LocalModelData(object):
	models = {}	
  
class HTTPRequestHandler(BaseHTTPRequestHandler):
	
	def do_POST(self):
		print(""PYTHON ######## REQUEST ####### STARTED"")
		if None != re.search('/AION/', self.path):
			ctype, pdict = cgi.parse_header(self.headers.get('content-type'))
			if ctype == 'application/json':
				length = int(self.headers.get('content-length'))
				data = self.rfile.read(length)
				model = self.path.split('/')[-2]
				operation = self.path.split('/')[-1]
				data = json.loads(data)
				dataStr = json.dumps(data)
				if operation.lower() == 'predict': 
					predict_path = os.path.join(os.path.dirname(os.path.abspath(__file__)),'AION','aion_predict.py')
					outputStr = subprocess.check_output([sys.executable,predict_path,dataStr])
					outputStr = outputStr.decode('utf-8')
					outputStr = re.search(r'predictions:(.*)',str(outputStr), re.IGNORECASE).group(1)
					outputStr = outputStr.strip()
					resp = outputStr
				elif operation.lower() == 'explain':
					predict_path = os.path.join(os.path.dirname(os.path.abspath(__file__)),'AION','aion_xai.py')                
					outputStr = subprocess.check_output([sys.executable,predict_path,'local',dataStr])
					outputStr = outputStr.decode('utf-8')
					outputStr = re.search(r'aion_ai_explanation:(.*)',str(outputStr), re.IGNORECASE).group(1)
					outputStr = outputStr.strip()					
					resp = outputStr
				resp=resp+""\n""
				resp=resp.encode()
				self.send_response(200)
				self.send_header('Content-Type', 'application/json')
				self.end_headers()
				self.wfile.write(resp)
			else:
				print(""python ==> else2"")
				data = {}   
		elif None != re.search('/AION/pattern_anomaly_predict', self.path):
			ctype, pdict = cgi.parse_header(self.headers.get('content-type'))
			if ctype == 'application/json':
				length = int(self.headers.get('content-length'))           
				model = self.path.split('/')[-1]                
				data = self.rfile.read(length)

				data = json.loads(data)
				anomaly = False
				remarks = ''
				clusterid = -1                
				home = expanduser(""~"")
				if platform.system() == 'Windows':
					configfilename = os.path.join(home,'AppData','Local','HCLT','AION','target',model,'datadetails.json')
					filename = os.path.join(home,'AppData','Local','HCLT','AION','target',model,'clickstream.json')
					clusterfilename = os.path.join(home,'AppData','Local','HCLT','AION','target',model,'stateClustering.csv')
					probfilename = os.path.join(home,'AppData','Local','HCLT','AION','target',model,'stateTransitionProbability.csv')                    
				else:
					configfilename = os.path.join(home,'HCLT','AION','target',model,'datadetails.json')
					filename = os.path.join(home,'HCLT','AION','target',model,'clickstream.json')
					clusterfilename = os.path.join(home,'HCLT','AION','target',model,'stateClustering.csv')
					probfilename = os.path.join(home,'HCLT','AION','target',model,'stateTransitionProbability.csv')
                

				dfclus = pd.read_csv(clusterfilename)
				dfprod = pd.read_csv(probfilename)                
				f = open(configfilename, ""r"")
				configSettings = f.read()
				f.close()                
				configSettingsJson = json.loads(configSettings)
				activity = configSettingsJson['activity']
				sessionid = configSettingsJson['sessionid']                
				f = open(filename, ""r"")
				configSettings = f.read()
				f.close()                
				configSettingsJson = json.loads(configSettings)
				groupswitching = configSettingsJson['groupswitching']
				page_threshold = configSettingsJson['transitionprobability']
				chain_count = configSettingsJson['transitionsequence']
				chain_probability = configSettingsJson['sequencethreshold']   
				currentactivity = data[activity]
				if bool(user_records):
					sessionid = data[sessionid]
					print(sessionid,user_records['SessionID'])                    
					if sessionid != user_records['SessionID']:
						user_records['SessionID'] = sessionid
						prevactivity = ''
						user_records['probarry'] = []
						user_records['prevclusterid'] = -1
						user_records['NoOfClusterHopping'] = 0
						user_records['pageclicks'] = 1
					else:
						prevactivity = user_records['Activity']
					user_records['Activity'] = currentactivity
					pageswitch = True
					if prevactivity == currentactivity or prevactivity == '':
						probability = 0	
						pageswitch = False
						remarks = ''		
					else:
						user_records['pageclicks'] += 1
						df1 = dfprod[(dfprod['State'] == prevactivity) & (dfprod['NextState'] == currentactivity)]
						if df1.empty:
							remarks = 'Anomaly Detected - User in unusual state'	
							anomaly = True
							clusterid = -1
							probability = 0
							user_records['probarry'].append(probability)
							n=int(chain_count)
							num_list = user_records['probarry'][-n:]
							avg = sum(num_list)/len(num_list)
							for index, row in dfclus.iterrows():
								clusterlist = row[""clusterlist""]
								if currentactivity in clusterlist:
									clusterid = row[""clusterid""]
						else:
							probability = df1['Probability'].iloc[0]
							user_records['probarry'].append(probability)
							n=int(chain_count)
							num_list = user_records['probarry'][-n:]
							davg = sum(num_list)/len(num_list)
							for index, row in dfclus.iterrows():
								clusterlist = row[""clusterlist""]
								if currentactivity in clusterlist:
									clusterid = row[""clusterid""]
							remarks = ''			
							if user_records['prevclusterid'] != -1:
								if probability == 0 and user_records['prevclusterid'] != clusterid:
									user_records['NoOfClusterHopping'] = user_records['NoOfClusterHopping']+1
									if user_records['pageclicks'] == 1:
										remarks = 'Anomaly Detected - Frequent Cluster Hopping'	
										anomaly = True
									else:
										remarks = 'Cluster Hopping Detected'
									user_records['pageclicks'] = 0
									if user_records['NoOfClusterHopping'] > int(groupswitching) and anomaly == False:
										remarks = 'Anomaly Detected - Multiple Cluster Hopping' 				
										anomaly = True
								elif probability == 0:
									remarks = 'Anomaly Detected - Unusual State Transition Detected'
									anomaly = True
								elif probability <= float(page_threshold):
									remarks = 'Anomaly Detected - In-frequent State Transition Detected'		
									anomaly = True
							else:
								#print(pageswitch)
								#print(probability)
								if pageswitch == True:
									if probability == 0:
										remarks = 'Anomaly Detected - Unusual State Transition Detected'
										anomaly = True
									elif probability <= float(page_threshold):
										remarks = 'Anomaly Detected - In-frequent State Transition Detected'
										anomaly = True
								else:
									remarks = '' 
							if davg < float(chain_probability):
								if anomaly == False:
									remarks = 'Anomaly Detected - In-frequent Pattern Detected'      	
									anomaly = True
				else:
					user_records['SessionID'] = data[sessionid]
					user_records['Activity'] = data[activity]
					user_records['probability'] = 0
					user_records['probarry'] = []
					user_records['chainprobability'] = 0
					user_records['prevclusterid'] = -1
					user_records['NoOfClusterHopping'] = 0
					user_records['pageclicks'] = 1
					for index, row in dfclus.iterrows():
						clusterlist = row[""clusterlist""]
						if currentactivity in clusterlist:
							clusterid = row[""clusterid""]
				user_records['prevclusterid'] = clusterid
				self.send_response(200)
				self.send_header('Content-Type', 'application/json')
				self.end_headers()
				resp = '{""status"":""SUCCESS"",""data"":{""Anomaly"":""'+str(anomaly)+'"",""Remarks"":""'+str(remarks)+'""}}'
				resp=resp+""\n""
				resp=resp.encode()
				self.wfile.write(resp)
			else:
				self.send_response(200)
				self.send_header('Content-Type', 'application/json')
				self.end_headers()
				resp = '{""Anomaly"":""Error"",""Remarks"":""'+str(Int)+'""}'
				resp=resp+""\n""
				resp=resp.encode()
				self.wfile.write(resp)
		elif None != re.search('/AION/pattern_anomaly_settings', self.path):
			ctype, pdict = cgi.parse_header(self.headers.get('content-type'))
			if ctype == 'application/json':
				length = int(self.headers.get('content-length'))
				data = self.rfile.read(length)
				#print(data)
				#keyList = list(data.keys())
				#print(keyList[0])
				model = self.path.split('/')[-1]
				#print(model)
				data = json.loads(data)
				#dataStr = json.dumps(data)
				groupswitching = data['groupswitching']
				transitionprobability = data['transitionprobability']
				transitionsequence = data['transitionsequence']
				sequencethreshold = data['sequencethreshold']                
				home = expanduser(""~"")
				if platform.system() == 'Windows':
					filename = os.path.join(home,'AppData','Local','HCLT','AION','target',model,'clickstream.json')
				else:
					filename = os.path.join(home,'HCLT','AION','target',model,'clickstream.json')

				
				#print(filename)
				data = {}
				data['groupswitching'] = groupswitching
				data['transitionprobability'] = transitionprobability
				data['transitionsequence'] = transitionsequence
				data['sequencethreshold'] = sequencethreshold
				updatedConfig = json.dumps(data)
				with open(filename, ""w"") as fpWrite:
					fpWrite.write(updatedConfig)             
				fpWrite.close()
				self.send_response(200)
				self.send_header('Content-Type', 'application/json')
				self.end_headers()
				resp = '{""Status"":""SUCCESS""}'
				resp=resp+""\n""
				resp=resp.encode()
				self.wfile.write(resp)                      			        
			else:
				print(""python ==> else2"")
				data = {}      
		else:
			print(""python ==> else1"")
			self.send_response(403)
			self.send_header('Content-Type', 'application/json')
			self.end_headers()
			print(""PYTHON ######## REQUEST ####### ENDED"")
		return
	
	def do_GET(self):
		print(""PYTHON ######## REQUEST ####### STARTED"")
		if None != re.search('/AION/predict', self.path):
			self.send_response(200)
			self.send_header('Content-Type', 'application/json')
			self.end_headers()
			model = self.path.split('/')[-1]
			display_path = os.path.join(os.path.dirname(os.path.abspath(__file__)),'target',model,'display.json')
			displaymsg = 'Data in JSON Format'
			if(os.path.isfile(display_path)):
				with open(display_path) as file:
					config = json.load(file)
				file.close()
				features = config['modelFeatures']
				datajson={}
				for feature in features:
					datajson[feature] = 'Value'
				displaymsg = json.dumps(datajson)	
			msg=""""""
URL:{url}
RequestType: POST
Content-Type=application/json
Body: {displaymsg}
			"""""".format(url=self.path,displaymsg=displaymsg)
			self.wfile.write(msg.encode())
		else:
			self.send_response(403)
			self.send_header('Content-Type', 'application/json')
			self.end_headers()
		return
	
class ThreadedHTTPServer(ThreadingMixIn, HTTPServer):
	allow_reuse_address = True
 
	def shutdown(self):
		self.socket.close()
		HTTPServer.shutdown(self)
 
class SimpleHttpServer():
	def __init__(self, ip, port):
		self.server = ThreadedHTTPServer((ip,port), HTTPRequestHandler)
 
	def start(self):
		self.server_thread = threading.Thread(target=self.server.serve_forever)
		self.server_thread.daemon = True
		self.server_thread.start()
 
	def waitForThread(self):
		self.server_thread.join()
 
	def stop(self):
		self.server.shutdown()
		self.waitForThread()
 
if __name__=='__main__':
	parser = argparse.ArgumentParser(description='HTTP Server')
	parser.add_argument('port', type=int, help='Listening port for HTTP Server')
	parser.add_argument('ip', help='HTTP Server IP')
	args = parser.parse_args()

	server = SimpleHttpServer(args.ip, args.port)
	#delete file
	#create file
	#write just msg as ""started""
	print('HTTP Server Running...........')
	#file close
	server.start()
	server.waitForThread()
"
runService.py,"#from BaseHTTPServer import BaseHTTPRequestHandler,HTTPServer
from http.server import BaseHTTPRequestHandler,HTTPServer 
#from SocketServer import ThreadingMixIn
from socketserver import ThreadingMixIn 
'''
from augustus.core.ModelLoader import ModelLoader
from augustus.strict import modelLoader
'''
import pandas as pd
from datetime import datetime
import os,sys
from os.path import expanduser
import platform
import numpy as np
import configparser
import threading
import subprocess
import argparse
import re
import cgi
import time
from datetime import datetime
import json
import sys
from datetime import datetime
import sqlite3
from os.path import expanduser
from pathlib import Path
from io import BytesIO
DEPLOY_DATABASE_PATH = os.path.join(os.path.join(os.path.dirname(__file__)),'database')    
targetPath = Path(DEPLOY_DATABASE_PATH)
targetPath.mkdir(parents=True, exist_ok=True)
modelVersion = 'run_1'
version = 1    
class sqlite_db():

    def __init__(self, location, database_file=None):
        if not isinstance(location, Path):
            location = Path(location)
        if database_file:
            self.database_name = database_file
        else:
            self.database_name = location.stem + '.db'
        db_file = str(location/self.database_name)          
        self.conn = sqlite3.connect(db_file)
        self.cursor = self.conn.cursor()
        self.tables = []

    def table_exists(self, name):
        if name in self.tables:
            return True
        elif name:
            query = f""SELECT name FROM sqlite_master WHERE type='table' AND name='{name}';""
            listOfTables = self.cursor.execute(query).fetchall()
            if len(listOfTables) > 0 :
                self.tables.append(name)
                return True
        return False

    def read(self, table_name,condition=''):
        if condition == '':
            return pd.read_sql_query(f""SELECT * FROM {table_name}"", self.conn)
        else:
            return pd.read_sql_query(f""SELECT * FROM {table_name} WHERE {condition}"", self.conn)

    def create_table(self,name, columns, dtypes):
        query = f'CREATE TABLE IF NOT EXISTS {name} ('
        
        for column, data_type in zip(columns, dtypes):
            query += f""'{column}'   TEXT,""
        query = query[:-1]
        query += ');'
        self.conn.execute(query)
        return True
    def update(self,table_name,updates,condition):
        update_query = f'UPDATE {table_name} SET {updates} WHERE {condition}'
        self.cursor.execute(update_query)
        self.conn.commit()
        return True        
    def write(self,data, table_name):
        if not self.table_exists(table_name):
            self.create_table(table_name, data.columns, data.dtypes)
        tuple_data = list(data.itertuples(index=False, name=None))
        insert_query = f'INSERT INTO {table_name} VALUES('
        for i in range(len(data.columns)):
            insert_query += '?,'
        insert_query = insert_query[:-1] + ')'
        self.cursor.executemany(insert_query, tuple_data)
        self.conn.commit()
        return True
        
    def delete(self, name):
        pass
        
    def close(self):
        self.conn.close()

user_records = {}
class LocalModelData(object):
	models = {}	
  
class HTTPRequestHandler(BaseHTTPRequestHandler):
		
	def do_POST(self):		    
		print(""PYTHON ######## REQUEST ####### STARTED"")
		if None != re.search('/AION/', self.path):
			ctype, pdict = cgi.parse_header(self.headers.get('content-type'))
			if ctype == 'application/json':
				length = int(self.headers.get('content-length'))
				#data = cgi.parse_qs(self.rfile.read(length), keep_blank_values=1)
				data = self.rfile.read(length)
				model = self.path.split('/')[-2]
				operation = self.path.split('/')[-1]
				#data = json.loads(data)
				#dataStr = json.dumps(data)
				home = expanduser(""~"")
				dataStr = data
				sqlite_dbObj = sqlite_db(DEPLOY_DATABASE_PATH,'deploy.db')
				model_path = os.path.join(os.path.dirname(__file__),modelVersion)
				DATA_FILE_PATH =     os.path.join(os.path.dirname(__file__),'temp')
				Path(DATA_FILE_PATH).mkdir(parents=True, exist_ok=True)    
				isdir = os.path.isdir(model_path)
				if isdir:                
					if operation.lower() == 'predict':                    
						if not sqlite_dbObj.table_exists('servingDetails'):
							data = {'usecase':model,'noOfPredictCalls':0,'noOfDriftCalls':0}
							data = pd.DataFrame(data, index=[0])
							sqlite_dbObj.create_table('servingDetails',data.columns, data.dtypes)
						df2 = pd.read_json(BytesIO(dataStr), orient ='records')
						if not sqlite_dbObj.table_exists('prodData'):
							sqlite_dbObj.create_table('prodData',df2.columns, df2.dtypes)    
						sqlite_dbObj.write(df2,'prodData')                            
						data = sqlite_dbObj.read('servingDetails',""usecase = '""+model+""'"")
						if len(data) == 0:
							data = {'usecase':model,'noOfPredictCalls':1,'noOfDriftCalls':0}
							data = pd.DataFrame(data, index=[0])
							sqlite_dbObj.write(data,'servingDetails')                              
						else:
							noofPredictCalls = int(data['noOfPredictCalls'].iloc[0])+1                       
							sqlite_dbObj.update('servingDetails',""noOfPredictCalls = '""+str(noofPredictCalls)+""'"",""usecase = '""+model+""'"")
						predict_path = os.path.join(model_path,'aion_predict.py')                   
						outputStr = subprocess.check_output([sys.executable,predict_path,dataStr])
						outputStr = outputStr.decode('utf-8')
						outputStr = re.search(r'predictions:(.*)',str(outputStr), re.IGNORECASE).group(1)
						outputStr = outputStr.strip()
						resp = outputStr
					elif operation.lower() == 'monitoring':                    
						if not sqlite_dbObj.table_exists('monitoring'):
							data = {'usecase':model,'status':'No Drift','Msg':'No Input Drift Found','RecordTime':'Time','version':'1'}
							data = pd.DataFrame(data, index=[0])
							sqlite_dbObj.create_table('monitoring',data.columns, data.dtypes)                    
						trainingDataPath = os.path.join(os.path.dirname(__file__),modelVersion,'data','preprocesseddata.csv')
						data = sqlite_dbObj.read('prodData')
						filetimestamp = str(int(time.time()))
						dataFile = os.path.join(DATA_FILE_PATH, 'AION_' + filetimestamp+'.csv')
						data.to_csv(dataFile, index=False)                        		
						predict_path = os.path.join(model_path,'aion_ipdrift.py')
						inputJSON={'trainingDataLocation':trainingDataPath,'currentDataLocation':dataFile}
						outputStr = subprocess.check_output([sys.executable,predict_path,json.dumps(inputJSON)])
						outputStr = outputStr.decode('utf-8')
						outputStr = re.search(r'drift:(.*)',str(outputStr), re.IGNORECASE).group(1)
						outputStr = outputStr.strip()
						outputData =  json.loads(outputStr)      
						status = outputData['status']
						if status == 'SUCCESS':
							Msg = str(outputData['data'])
						else:
							Msg = 'Error during drift analysis'
						now = datetime.now() # current date and time     
						date_time = now.strftime(""%m/%d/%Y, %H:%M:%S"")
						data = {'usecase':model,'status':status,'Msg':Msg,'RecordTime':date_time,'version':version}                            
						data = pd.DataFrame(data, index=[0])
						sqlite_dbObj.write(data,'monitoring') 
						resp = outputStr
				resp=resp+""\n""
				resp=resp.encode()
				self.send_response(200)
				self.send_header('Content-Type', 'application/json')
				self.end_headers()
				self.wfile.write(resp)
			else:
				print(""python ==> else2"")
				data = {}   
		elif None != re.search('/AION/pattern_anomaly_predict', self.path):
			ctype, pdict = cgi.parse_header(self.headers.get('content-type'))
			if ctype == 'application/json':
				length = int(self.headers.get('content-length'))           
				model = self.path.split('/')[-1]                
				data = self.rfile.read(length)

				data = json.loads(data)
				anomaly = False
				remarks = ''
				clusterid = -1                
				home = expanduser(""~"")
				if platform.system() == 'Windows':
					configfilename = os.path.join(home,'AppData','Local','HCLT','AION','target',model,'datadetails.json')
					filename = os.path.join(home,'AppData','Local','HCLT','AION','target',model,'clickstream.json')
					clusterfilename = os.path.join(home,'AppData','Local','HCLT','AION','target',model,'stateClustering.csv')
					probfilename = os.path.join(home,'AppData','Local','HCLT','AION','target',model,'stateTransitionProbability.csv')                    
				else:
					configfilename = os.path.join(home,'HCLT','AION','target',model,'datadetails.json')
					filename = os.path.join(home,'HCLT','AION','target',model,'clickstream.json')
					clusterfilename = os.path.join(home,'HCLT','AION','target',model,'stateClustering.csv')
					probfilename = os.path.join(home,'HCLT','AION','target',model,'stateTransitionProbability.csv')
                

				dfclus = pd.read_csv(clusterfilename)
				dfprod = pd.read_csv(probfilename)                
				f = open(configfilename, ""r"")
				configSettings = f.read()
				f.close()                
				configSettingsJson = json.loads(configSettings)
				activity = configSettingsJson['activity']
				sessionid = configSettingsJson['sessionid']                
				f = open(filename, ""r"")
				configSettings = f.read()
				f.close()                
				configSettingsJson = json.loads(configSettings)
				groupswitching = configSettingsJson['groupswitching']
				page_threshold = configSettingsJson['transitionprobability']
				chain_count = configSettingsJson['transitionsequence']
				chain_probability = configSettingsJson['sequencethreshold']   
				currentactivity = data[activity]
				if bool(user_records):
					sessionid = data[sessionid]
					print(sessionid,user_records['SessionID'])                    
					if sessionid != user_records['SessionID']:
						user_records['SessionID'] = sessionid
						prevactivity = ''
						user_records['probarry'] = []
						user_records['prevclusterid'] = -1
						user_records['NoOfClusterHopping'] = 0
						user_records['pageclicks'] = 1
					else:
						prevactivity = user_records['Activity']
					user_records['Activity'] = currentactivity
					pageswitch = True
					if prevactivity == currentactivity or prevactivity == '':
						probability = 0	
						pageswitch = False
						remarks = ''		
					else:
						user_records['pageclicks'] += 1
						df1 = dfprod[(dfprod['State'] == prevactivity) & (dfprod['NextState'] == currentactivity)]
						if df1.empty:
							remarks = 'Anomaly Detected - User in unusual state'	
							anomaly = True
							clusterid = -1
							probability = 0
							user_records['probarry'].append(probability)
							n=int(chain_count)
							num_list = user_records['probarry'][-n:]
							avg = sum(num_list)/len(num_list)
							for index, row in dfclus.iterrows():
								clusterlist = row[""clusterlist""]
								if currentactivity in clusterlist:
									clusterid = row[""clusterid""]
						else:
							probability = df1['Probability'].iloc[0]
							user_records['probarry'].append(probability)
							n=int(chain_count)
							num_list = user_records['probarry'][-n:]
							davg = sum(num_list)/len(num_list)
							for index, row in dfclus.iterrows():
								clusterlist = row[""clusterlist""]
								if currentactivity in clusterlist:
									clusterid = row[""clusterid""]
							remarks = ''			
							if user_records['prevclusterid'] != -1:
								if probability == 0 and user_records['prevclusterid'] != clusterid:
									user_records['NoOfClusterHopping'] = user_records['NoOfClusterHopping']+1
									if user_records['pageclicks'] == 1:
										remarks = 'Anomaly Detected - Frequent Cluster Hopping'	
										anomaly = True
									else:
										remarks = 'Cluster Hopping Detected'
									user_records['pageclicks'] = 0
									if user_records['NoOfClusterHopping'] > int(groupswitching) and anomaly == False:
										remarks = 'Anomaly Detected - Multiple Cluster Hopping' 				
										anomaly = True
								elif probability == 0:
									remarks = 'Anomaly Detected - Unusual State Transition Detected'
									anomaly = True
								elif probability <= float(page_threshold):
									remarks = 'Anomaly Detected - In-frequent State Transition Detected'		
									anomaly = True
							else:
								#print(pageswitch)
								#print(probability)
								if pageswitch == True:
									if probability == 0:
										remarks = 'Anomaly Detected - Unusual State Transition Detected'
										anomaly = True
									elif probability <= float(page_threshold):
										remarks = 'Anomaly Detected - In-frequent State Transition Detected'
										anomaly = True
								else:
									remarks = '' 
							if davg < float(chain_probability):
								if anomaly == False:
									remarks = 'Anomaly Detected - In-frequent Pattern Detected'      	
									anomaly = True
				else:
					user_records['SessionID'] = data[sessionid]
					user_records['Activity'] = data[activity]
					user_records['probability'] = 0
					user_records['probarry'] = []
					user_records['chainprobability'] = 0
					user_records['prevclusterid'] = -1
					user_records['NoOfClusterHopping'] = 0
					user_records['pageclicks'] = 1
					for index, row in dfclus.iterrows():
						clusterlist = row[""clusterlist""]
						if currentactivity in clusterlist:
							clusterid = row[""clusterid""]
				user_records['prevclusterid'] = clusterid
				self.send_response(200)
				self.send_header('Content-Type', 'application/json')
				self.end_headers()
				resp = '{""status"":""SUCCESS"",""data"":{""Anomaly"":""'+str(anomaly)+'"",""Remarks"":""'+str(remarks)+'""}}'
				resp=resp+""\n""
				resp=resp.encode()
				self.wfile.write(resp)
			else:
				self.send_response(200)
				self.send_header('Content-Type', 'application/json')
				self.end_headers()
				resp = '{""Anomaly"":""Error"",""Remarks"":""'+str(Int)+'""}'
				resp=resp+""\n""
				resp=resp.encode()
				self.wfile.write(resp)
		elif None != re.search('/AION/pattern_anomaly_settings', self.path):
			ctype, pdict = cgi.parse_header(self.headers.get('content-type'))
			if ctype == 'application/json':
				length = int(self.headers.get('content-length'))
				data = self.rfile.read(length)
				#print(data)
				#keyList = list(data.keys())
				#print(keyList[0])
				model = self.path.split('/')[-1]
				#print(model)
				data = json.loads(data)
				#dataStr = json.dumps(data)
				groupswitching = data['groupswitching']
				transitionprobability = data['transitionprobability']
				transitionsequence = data['transitionsequence']
				sequencethreshold = data['sequencethreshold']                
				home = expanduser(""~"")
				if platform.system() == 'Windows':
					filename = os.path.join(home,'AppData','Local','HCLT','AION','target',model,'clickstream.json')
				else:
					filename = os.path.join(home,'HCLT','AION','target',model,'clickstream.json')

				
				#print(filename)
				data = {}
				data['groupswitching'] = groupswitching
				data['transitionprobability'] = transitionprobability
				data['transitionsequence'] = transitionsequence
				data['sequencethreshold'] = sequencethreshold
				updatedConfig = json.dumps(data)
				with open(filename, ""w"") as fpWrite:
					fpWrite.write(updatedConfig)             
				fpWrite.close()
				self.send_response(200)
				self.send_header('Content-Type', 'application/json')
				self.end_headers()
				resp = '{""Status"":""SUCCESS""}'
				resp=resp+""\n""
				resp=resp.encode()
				self.wfile.write(resp)                      			        
			else:
				print(""python ==> else2"")
				data = {}      
		else:
			print(""python ==> else1"")
			self.send_response(403)
			self.send_header('Content-Type', 'application/json')
			self.end_headers()
			print(""PYTHON ######## REQUEST ####### ENDED"")
		return
	
	def do_GET(self):
		print(""PYTHON ######## REQUEST ####### STARTED"")
		if None != re.search('/AION/', self.path) or None != re.search('/aion/', self.path):        
			usecase = self.path.split('/')[-2]        
			operation = self.path.split('/')[-1]                
			if operation.lower() == 'metrices':
				sqlite_dbObj = sqlite_db(DEPLOY_DATABASE_PATH,'deploy.db')            
				if sqlite_dbObj.table_exists('servingDetails'):                
					df1 = sqlite_dbObj.read('servingDetails',""usecase = '""+usecase+""'"")
				else:
					df1 = pd.DataFrame()                
				if sqlite_dbObj.table_exists('monitoring'):                    
					df2 = sqlite_dbObj.read('monitoring')                
				else:
					df2 = pd.DataFrame()                    
				if sqlite_dbObj.table_exists('modeldetails'):
					df3 = sqlite_dbObj.read('modeldetails')
				else:
					df3 = pd.DataFrame()				
				msg='<html>\n'
				msg+='<head>\n'
				msg+='<title>Model Metrices</title>\n'
				msg+='</head>\n'
				msg+=""""""<style>table, th, td { border: 1px solid black; border-collapse: collapse;}</style>""""""
				msg+='<body>\n'
				msg+='<h2>Model Metrices - Deployed Version '+str(version)+'</h2>'
				msg+='<br/>\n'
				msg+='<table style=""width:80%"">\n'                
				msg+=""""""<tr>
<th>Model</th>
<th>Version</th>
<th>ScoreType</th>
<th>Score</th>
</tr
""""""
				for idx in reversed(df3.index):
					msg += ""<tr>\n""
					msg += ""<td>""+str(df3.usecase[idx])+""</td>\n""
					msg += ""<td>""+str(df3.version[idx])+""</td>\n""
					msg += ""<td>""+str(df3.scoreType[idx])+""</td>\n""
					msg += ""<td>""+str(df3.score[idx])+""</td>\n""
					msg += ""</tr>\n""                    
				msg += '</table>\n'
				msg += '<br/>\n'
				msg += '<br/>\n'                
				msg+='<table style=""width:50%"">\n'
				msg+='<tr>\n'
				msg+='<td>No of Predictions</td>\n'
				if df1.shape[0] > 0:                
					msg+='<td>'+str(df1['noOfPredictCalls'].iloc[0])+'</td>\n'
				else:                    
					msg+='<td>0</td>\n'                
				msg+='</tr>\n'                
				msg+='<tr>\n'
				msg+='<td>No of Ground Truth</td>\n'
				msg+='<td>0</td>\n'  
				msg+='</tr>\n'
				msg += '</table>\n'                
				msg += '<br/>\n'               
				msg+='<table style=""width:100%"">\n'
				msg+=""""""<tr>
<th>UseCase</th>
<th>Version</th>
<th>Status</th>
<th>Message</th>
<th>Time</th>
</tr>
""""""                
				for idx in reversed(df2.index):
					msg += ""<tr>\n""
					msg += ""<td>""+str(df2.usecase[idx])+""</td>\n""
					msg += ""<td>""+str(df3.version[idx])+""</td>\n""
					msg += ""<td>""+str(df2.status[idx])+""</td>\n""
					msg += ""<td>""+str(df2.Msg[idx])+""</td>\n""
					msg += ""<td>""+str(df2.RecordTime[idx])+""</td>\n""
					msg += ""</tr>\n""                    
				msg += '</table>\n'
                
				msg += '</body>\n'
				msg += '</html>\n'
			self.send_response(200)        
			self.send_response(200)
			self.send_header('Content-Type', 'text/html')
			self.end_headers()
			self.wfile.write(msg.encode())
		else:
			self.send_response(403)
			self.send_header('Content-Type', 'application/json')
			self.end_headers()
		return
	
class ThreadedHTTPServer(ThreadingMixIn, HTTPServer):
	allow_reuse_address = True
 
	def shutdown(self):
		self.socket.close()
		HTTPServer.shutdown(self)

class file_status():
	
	def __init__(self,file):
		self.files_status = {}
		self.initializeFileStatus(file)
		
	def initializeFileStatus(self, file):
		self.files_status = {'path': file, 'time':file.stat().st_mtime}

	def is_file_changed(self):
		if self.files_status['path'].stat().st_mtime > self.files_status['time']:
			self.files_status['time'] = self.files_status['path'].stat().st_mtime
			return True
		return False
		
	def run(self):    
		while( True):
			time.sleep(30)
			if self.is_file_changed():
				readRun()
                
class SimpleHttpServer():
	def __init__(self, ip, port,model_file_path):
		self.server = ThreadedHTTPServer((ip,port), HTTPRequestHandler)
		self.status_checker = file_status(model_file_path)
        
	def start(self):
		self.server_thread = threading.Thread(target=self.server.serve_forever)
		self.server_thread.daemon = True
		self.server_thread.start()
		self.status_thread = threading.Thread(target=self.status_checker.run)        
		self.status_thread.start()        
 
	def waitForThread(self):
		self.server_thread.join()
 
	def stop(self):
		self.server.shutdown()
		self.waitForThread()

def readRun(boot=False):
    filename = os.path.join(os.path.join(os.path.dirname(__file__)),'run')    
    f = open (filename, ""r"")
    data = json.loads(f.read())
    global modelVersion
    global version
    modelVersion = 'run_'+str(data['version'])
    version = str(data['version'])
    sqlite_dbObj = sqlite_db(DEPLOY_DATABASE_PATH,'deploy.db')
    dataa = {'usecase':data['usecase'],'version':data['version'],'scoreType':data['scoreType'],'score':data['score']}    
    data = pd.DataFrame(dataa, index=[0])
    if not sqlite_dbObj.table_exists('modeldetails'):
        sqlite_dbObj.create_table('modeldetails',data.columns, data.dtypes)    
    rdata = sqlite_dbObj.read('modeldetails',""version = '""+dataa['version']+""'"")        
    if (rdata.shape[0]) == 0 or (not boot):    
        sqlite_dbObj.write(data,'modeldetails')
readRun(boot=True)
 
if __name__=='__main__':
	filename = os.path.join(os.path.join(os.path.dirname(__file__)),'run')    
	parser = argparse.ArgumentParser(description='HTTP Server')
	parser.add_argument('port', type=int, help='Listening port for HTTP Server')
	parser.add_argument('ip', help='HTTP Server IP')
	args = parser.parse_args()

	server = SimpleHttpServer(args.ip, args.port,Path(filename))
	#delete file
	#create file
	#write just msg as ""started""
	print('HTTP Server Running...........')
	#file close
	server.start()
	server.waitForThread()
"
__init__.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''"
model_service.py,"'''
from AION_185 import aion_prediction
from AION_185 import featureslist
from AION_185 import aion_drift
from AION_185 import aion_performance
'''
#from BaseHTTPServer import BaseHTTPRequestHandler,HTTPServer
from http.server import BaseHTTPRequestHandler,HTTPServer 
#from SocketServer import ThreadingMixIn
from socketserver import ThreadingMixIn 
'''
from augustus.core.ModelLoader import ModelLoader
from augustus.strict import modelLoader
'''
import pandas as pd
import os,sys
from os.path import expanduser
import platform
import numpy as np
import configparser
import threading
import subprocess
import argparse
import re
import cgi
from datetime import datetime
import json
import sys
from datetime import datetime
user_records = {}
class LocalModelData(object):
	models = {}	
  
class HTTPRequestHandler(BaseHTTPRequestHandler):
	
	def do_POST(self):
		print(""PYTHON ######## REQUEST ####### STARTED"")
		if None != re.search('/AION/predict', self.path):
			ctype, pdict = cgi.parse_header(self.headers.get('content-type'))
			if ctype == 'application/json':
				length = int(self.headers.get('content-length'))
				#data = cgi.parse_qs(self.rfile.read(length), keep_blank_values=1)
				data = self.rfile.read(length)
				data = json.loads(data)
				dataStr = json.dumps(data)
				outputStr = aion_prediction.predict(dataStr)
				outputStr = outputStr.strip()
				resp = outputStr
				resp=resp+""\n""
				resp=resp.encode()
				self.send_response(200)
				self.send_header('Content-Type', 'application/json')
				self.end_headers()
				self.wfile.write(resp)
			else:
				print(""python ==> else2"")
				data = {}
		elif None != re.search('/AION/features', self.path):
			ctype, pdict = cgi.parse_header(self.headers.get('content-type'))
			if ctype == 'application/json':
				length = int(self.headers.get('content-length'))
				outputStr = featureslist.getfeatures()
				outputStr = outputStr.strip()
				resp = outputStr
				resp=resp+""\n""
				resp=resp.encode()
				self.send_response(200)
				self.send_header('Content-Type', 'application/json')
				self.end_headers()
				self.wfile.write(resp)
			else:
				print(""python ==> else2"")
				data = {}                
		elif None != re.search('/AION/monitoring', self.path):
			ctype, pdict = cgi.parse_header(self.headers.get('content-type'))
			if ctype == 'application/json':
				length = int(self.headers.get('content-length'))
				data = self.rfile.read(length)
				model = self.path.split('/')[-1]
				data = json.loads(data)
				dataStr = json.dumps(data)
				outputStr = aion_drift.drift(dataStr)
				outputStr = outputStr.strip()
				resp = outputStr
				resp=resp+""\n""
				resp=resp.encode()
				self.send_response(200)
				self.send_header('Content-Type', 'application/json')
				self.end_headers()
				self.wfile.write(resp)
			else:
				print(""python ==> else2"")
				data = {}           
		elif None != re.search('/AION/performance', self.path):
			ctype, pdict = cgi.parse_header(self.headers.get('content-type'))
			if ctype == 'application/json':
				length = int(self.headers.get('content-length'))
				data = self.rfile.read(length)
				data = json.loads(data)
				dataStr = json.dumps(data)
				outputStr = aion_performance.drift(dataStr)
				outputStr = outputStr.strip()
				resp = outputStr
				resp=resp+""\n""
				resp=resp.encode()
				self.send_response(200)
				self.send_header('Content-Type', 'application/json')
				self.end_headers()
				self.wfile.write(resp)
			else:
				print(""python ==> else2"")
				data = {}
		elif None != re.search('/AION/pattern_anomaly_predict', self.path):
			ctype, pdict = cgi.parse_header(self.headers.get('content-type'))
			if ctype == 'application/json':
				length = int(self.headers.get('content-length'))           
				model = self.path.split('/')[-1]                
				data = self.rfile.read(length)

				data = json.loads(data)
				anomaly = False
				remarks = ''
				clusterid = -1                
				home = expanduser(""~"")
				if platform.system() == 'Windows':
					configfilename = os.path.join(home,'AppData','Local','HCLT','AION','target',model,'datadetails.json')
					filename = os.path.join(home,'AppData','Local','HCLT','AION','target',model,'clickstream.json')
					clusterfilename = os.path.join(home,'AppData','Local','HCLT','AION','target',model,'stateClustering.csv')
					probfilename = os.path.join(home,'AppData','Local','HCLT','AION','target',model,'stateTransitionProbability.csv')                    
				else:
					configfilename = os.path.join(home,'HCLT','AION','target',model,'datadetails.json')
					filename = os.path.join(home,'HCLT','AION','target',model,'clickstream.json')
					clusterfilename = os.path.join(home,'HCLT','AION','target',model,'stateClustering.csv')
					probfilename = os.path.join(home,'HCLT','AION','target',model,'stateTransitionProbability.csv')
                

				dfclus = pd.read_csv(clusterfilename)
				dfprod = pd.read_csv(probfilename)                
				f = open(configfilename, ""r"")
				configSettings = f.read()
				f.close()                
				configSettingsJson = json.loads(configSettings)
				activity = configSettingsJson['activity']
				sessionid = configSettingsJson['sessionid']                
				f = open(filename, ""r"")
				configSettings = f.read()
				f.close()                
				configSettingsJson = json.loads(configSettings)
				groupswitching = configSettingsJson['groupswitching']
				page_threshold = configSettingsJson['transitionprobability']
				chain_count = configSettingsJson['transitionsequence']
				chain_probability = configSettingsJson['sequencethreshold']   
				currentactivity = data[activity]
				if bool(user_records):
					sessionid = data[sessionid]
					print(sessionid,user_records['SessionID'])                    
					if sessionid != user_records['SessionID']:
						user_records['SessionID'] = sessionid
						prevactivity = ''
						user_records['probarry'] = []
						user_records['prevclusterid'] = -1
						user_records['NoOfClusterHopping'] = 0
						user_records['pageclicks'] = 1
					else:
						prevactivity = user_records['Activity']
					user_records['Activity'] = currentactivity
					pageswitch = True
					if prevactivity == currentactivity or prevactivity == '':
						probability = 0	
						pageswitch = False
						remarks = ''		
					else:
						user_records['pageclicks'] += 1
						df1 = dfprod[(dfprod['State'] == prevactivity) & (dfprod['NextState'] == currentactivity)]
						if df1.empty:
							remarks = 'Anomaly Detected - User in unusual state'	
							anomaly = True
							clusterid = -1
							probability = 0
							user_records['probarry'].append(probability)
							n=int(chain_count)
							num_list = user_records['probarry'][-n:]
							avg = sum(num_list)/len(num_list)
							for index, row in dfclus.iterrows():
								clusterlist = row[""clusterlist""]
								if currentactivity in clusterlist:
									clusterid = row[""clusterid""]
						else:
							probability = df1['Probability'].iloc[0]
							user_records['probarry'].append(probability)
							n=int(chain_count)
							num_list = user_records['probarry'][-n:]
							davg = sum(num_list)/len(num_list)
							for index, row in dfclus.iterrows():
								clusterlist = row[""clusterlist""]
								if currentactivity in clusterlist:
									clusterid = row[""clusterid""]
							remarks = ''			
							if user_records['prevclusterid'] != -1:
								if probability == 0 and user_records['prevclusterid'] != clusterid:
									user_records['NoOfClusterHopping'] = user_records['NoOfClusterHopping']+1
									if user_records['pageclicks'] == 1:
										remarks = 'Anomaly Detected - Frequent Cluster Hopping'	
										anomaly = True
									else:
										remarks = 'Cluster Hopping Detected'
									user_records['pageclicks'] = 0
									if user_records['NoOfClusterHopping'] > int(groupswitching) and anomaly == False:
										remarks = 'Anomaly Detected - Multiple Cluster Hopping' 				
										anomaly = True
								elif probability == 0:
									remarks = 'Anomaly Detected - Unusual State Transition Detected'
									anomaly = True
								elif probability <= float(page_threshold):
									remarks = 'Anomaly Detected - In-frequent State Transition Detected'		
									anomaly = True
							else:
								#print(pageswitch)
								#print(probability)
								if pageswitch == True:
									if probability == 0:
										remarks = 'Anomaly Detected - Unusual State Transition Detected'
										anomaly = True
									elif probability <= float(page_threshold):
										remarks = 'Anomaly Detected - In-frequent State Transition Detected'
										anomaly = True
								else:
									remarks = '' 
							if davg < float(chain_probability):
								if anomaly == False:
									remarks = 'Anomaly Detected - In-frequent Pattern Detected'      	
									anomaly = True
				else:
					user_records['SessionID'] = data[sessionid]
					user_records['Activity'] = data[activity]
					user_records['probability'] = 0
					user_records['probarry'] = []
					user_records['chainprobability'] = 0
					user_records['prevclusterid'] = -1
					user_records['NoOfClusterHopping'] = 0
					user_records['pageclicks'] = 1
					for index, row in dfclus.iterrows():
						clusterlist = row[""clusterlist""]
						if currentactivity in clusterlist:
							clusterid = row[""clusterid""]
				user_records['prevclusterid'] = clusterid
				self.send_response(200)
				self.send_header('Content-Type', 'application/json')
				self.end_headers()
				resp = '{""status"":""SUCCESS"",""data"":{""Anomaly"":""'+str(anomaly)+'"",""Remarks"":""'+str(remarks)+'""}}'
				resp=resp+""\n""
				resp=resp.encode()
				self.wfile.write(resp)
			else:
				self.send_response(200)
				self.send_header('Content-Type', 'application/json')
				self.end_headers()
				resp = '{""Anomaly"":""Error"",""Remarks"":""'+str(Int)+'""}'
				resp=resp+""\n""
				resp=resp.encode()
				self.wfile.write(resp)
		elif None != re.search('/AION/pattern_anomaly_settings', self.path):
			ctype, pdict = cgi.parse_header(self.headers.get('content-type'))
			if ctype == 'application/json':
				length = int(self.headers.get('content-length'))
				data = self.rfile.read(length)
				#print(data)
				#keyList = list(data.keys())
				#print(keyList[0])
				model = self.path.split('/')[-1]
				#print(model)
				data = json.loads(data)
				#dataStr = json.dumps(data)
				groupswitching = data['groupswitching']
				transitionprobability = data['transitionprobability']
				transitionsequence = data['transitionsequence']
				sequencethreshold = data['sequencethreshold']                
				home = expanduser(""~"")
				if platform.system() == 'Windows':
					filename = os.path.join(home,'AppData','Local','HCLT','AION','target',model,'clickstream.json')
				else:
					filename = os.path.join(home,'HCLT','AION','target',model,'clickstream.json')

				
				#print(filename)
				data = {}
				data['groupswitching'] = groupswitching
				data['transitionprobability'] = transitionprobability
				data['transitionsequence'] = transitionsequence
				data['sequencethreshold'] = sequencethreshold
				updatedConfig = json.dumps(data)
				with open(filename, ""w"") as fpWrite:
					fpWrite.write(updatedConfig)             
				fpWrite.close()
				self.send_response(200)
				self.send_header('Content-Type', 'application/json')
				self.end_headers()
				resp = '{""Status"":""SUCCESS""}'
				resp=resp+""\n""
				resp=resp.encode()
				self.wfile.write(resp)                      			        
			else:
				print(""python ==> else2"")
				data = {}      
		else:
			print(""python ==> else1"")
			self.send_response(403)
			self.send_header('Content-Type', 'application/json')
			self.end_headers()
			print(""PYTHON ######## REQUEST ####### ENDED"")
		return
	
	def do_GET(self):
		print(""PYTHON ######## REQUEST ####### STARTED"")
		if None != re.search('/AION/predict', self.path):
			self.send_response(200)
			self.send_header('Content-Type', 'application/json')
			self.end_headers()
			features = featureslist.getfeatures()
			displaymsg = 'Data in JSON Format'
			config = json.loads(features)
			features = config['features']
			datajson={}
			for feature in features:
				if feature['Type'].lower() != 'target':
					datajson[feature['feature']] = 'Value'
			displaymsg = json.dumps(datajson)	
			msg=""""""
URL:{url}
RequestType: POST
Content-Type=application/json
Body: {displaymsg}
			"""""".format(url=self.path,displaymsg=displaymsg)
			self.wfile.write(msg.encode())
		elif None != re.search('/AION/monitoring', self.path):
			self.send_response(200)
			self.send_header('Content-Type', 'application/json')
			self.end_headers()
			displaymsg='{""trainingDataLocation"":""Reference Data File Path"",""currentDataLocation"":""Latest Data File Path""}'
			msg=""""""
URL:{url}
RequestType: POST
Content-Type=application/json
Body: {displaymsg}"""""".format(url=self.path,displaymsg=displaymsg)
			self.wfile.write(msg.encode())
		elif None != re.search('/AION/features', self.path):
			outputStr = featureslist.getfeatures()
			outputStr = outputStr.strip()
			resp = outputStr
			resp=resp+""\n""
			resp=resp.encode()
			self.send_response(200)
			self.send_header('Content-Type', 'application/json')
			self.end_headers()
			self.wfile.write(resp)
		else:
			msg=""""""
URL for prediction: /AION/predict
URL for features List: /AION/features
URL for monitoring: /AION/monitoring
URL for performance: /AION/performance""""""
			self.send_response(200)
			self.send_header('Content-Type', 'application/json')
			self.end_headers()
			self.wfile.write(msg.encode())
		return
class ThreadedHTTPServer(ThreadingMixIn, HTTPServer):
	allow_reuse_address = True
 
	def shutdown(self):
		self.socket.close()
		HTTPServer.shutdown(self)
 
class SimpleHttpServer():
	def __init__(self, ip, port):
		self.server = ThreadedHTTPServer((ip,port), HTTPRequestHandler)
 
	def start(self):
		self.server_thread = threading.Thread(target=self.server.serve_forever)
		self.server_thread.daemon = True
		self.server_thread.start()
 
	def waitForThread(self):
		self.server_thread.join()
 
	def stop(self):
		self.server.shutdown()
		self.waitForThread()
 
if __name__=='__main__':
	parser = argparse.ArgumentParser(description='HTTP Server')
	parser.add_argument('port', type=int, help='Listening port for HTTP Server')
	parser.add_argument('ip', help='HTTP Server IP')
	args = parser.parse_args()

	server = SimpleHttpServer(args.ip, args.port)
	#delete file
	#create file
	#write just msg as ""started""
	print('HTTP Server Running...........')
	#file close
	server.start()
	server.waitForThread()
"
dl_aion_predict.py,"import sys
import os
import pickle
import json
import traceback
import warnings
warnings.filterwarnings(""ignore"")
import numpy as np
import pandas as pd
import dask.dataframe as dd
import scipy
from pandas import json_normalize
import dask.distributed
from dask_ml.wrappers import ParallelPostFit

class incBatchPredictor():

	def __init__(self):
		self.home = os.path.dirname(os.path.abspath(__file__))
		self.configPath = os.path.join(self.home, 'etc', 'config.json')
		self.configDict = {}
		self.incProfilerPath = ''
		self.incSelectorPath = ''
		self.modelPath = ''
		self.incProfiler = None
		self.incSelector = None
		self.model = None
		self.targetFeature = None
		self.trainingFeatures = None
		self.modelName = ''
		self.problemType = ''
		self.algorithm = ''
		self.dataLocation = """"
		self.nworkers = None
		self.npartitions = None
		self.threadsPerWorker = None

	def get_nworkers(self):
		return self.nworkers
	def get_npartitions(self):
		return self.npartitions
	def get_threadsPerWorker(self):
		return self.threadsPerWorker

	def readData(self,data):
		try:
			if os.path.splitext(data)[1] in ["".tsv"","".csv"","".data""]:
				df = dd.read_csv(data, # sep=r'\s*,\s*',
            		assume_missing=True,
            		parse_dates=True, infer_datetime_format=True,
            		sample=1000000,
            		# dtype={'caliper': 'object',
            		#         'timestamp': 'object'},
            		# dtype='object',
            		na_values=['-','?']
            		)
				df = df.repartition(self.npartitions)
			else:
				if os.path.splitext(data)[1] == "".json"":
					with open(data,'r',encoding='utf-8') as f:
						jsonData = json.load(f)
				else:
					jsonData = json.loads(data)
					for key in jsonData:
						if type(jsonData[key]) == str:
							try:
								x = eval(jsonData[key])
								if type(x) == int:
									jsonData[key] = int(jsonData[key])
									print(""check inside ==int"")
								if type(x) == float:
									jsonData[key] = float(jsonData[key])
							except:
								pass
				
				df = json_normalize(jsonData)
				df = df.replace(r'^\s*$', np.NaN, regex=True)
				df = dd.from_pandas(df, npartitions=self.npartitions)
		except KeyError as e:
			output = {""status"":""FAIL"",""message"":str(e).strip('""')}
			print(json.dumps(output))
		except Exception as e:
			output = {""status"":""FAIL"",""message"":str(e).strip('""')}
			print(json.dumps(output))
		return df
	
	def readConfig(self):
		with open(self.configPath, 'r', encoding= 'utf8') as f:
			self.configDict = json.load(f)
		self.targetFeature = self.configDict['targetFeature']
		self.trainingFeatures = self.configDict['trainingFeatures']
		self.modelName = self.configDict[""modelName""]
		self.modelVersion = self.configDict[""modelVersion""]
		self.dataLocation = self.configDict[""dataLocation""]
		self.deployLocation = self.configDict[""deployLocation""]
		self.incProfilerPath = self.configDict[""profilerLocation""]
		self.incSelectorPath = self.configDict[""selectorLocation""]
		self.problemType = self.configDict['analysisType']
		self.algorithm = self.configDict[""algorithm""]
		self.modelPath = self.configDict[""modelLocation""]
		self.scoringCriteria = self.configDict['scoringCriteria']
		self.nworkers = int(self.configDict[""n_workers""])
		self.npartitions = int(self.configDict[""npartitions""])
		self.threadsPerWorker = int(self.configDict[""threads_per_worker""])

	def pickleLoad(self, file):
		if os.path.exists(file):
			with open(file, 'rb') as f:
				model = pickle.load(f)		
			return model
		else:
			return None

	def loadSavedModels(self):
		self.incProfiler = self.pickleLoad(os.path.join(self.home, 'model',self.incProfilerPath))
		if self.incSelectorPath != '':
			self.incSelector = self.pickleLoad(os.path.join(self.home, 'model',self.incSelectorPath))
		self.model = self.pickleLoad(os.path.join(self.home, 'model',self.modelPath))
		
	def dataFramePreProcess(self, df):
		df = df.replace(r'^\s*$', np.NaN, regex=True)
		df = df.replace('-', np.nan)
		df = df.replace('?', np.nan)
		return df				

	def profiler(self, df):
		X = self.dataFramePreProcess(df)
		if 'self.targetFeature' in X:
			X = X.drop(self.targetFeature, axis=1)
		X = self.incProfiler.transform(X)
		if self.incSelectorPath != '':
			X = self.incSelector.transform(X.to_dask_array(lengths=True))
			# X = dd.from_dask_array(X)
		return X

	def trainedModel(self,X):
		ParallelPostFit(estimator=self.model)
		# preds = self.model.predict(X)
		if self.algorithm==""Distributed Light Gradient Boosting (LightGBM)"":
			X = X.to_dask_array(lengths=True)
		preds = self.model.predict(X).compute()
		return preds

	def apply_output_format(self,df,modeloutput):
		label_maping = None
		if self.problemType.lower() == 'regression':
			if not isinstance(modeloutput, np.ndarray):
				modeloutput = modeloutput.to_numpy()
			dask_arr = dd.from_array(modeloutput)
			dask_arr.name = 'prediction'
			df = df.merge(dask_arr.to_frame())
			df['rounded_prediction'] = df['prediction'].round(2)
		
		elif self.problemType.lower() == 'classification':
			print(""type: "", type(modeloutput))
			if not isinstance(modeloutput, np.ndarray):
				modeloutput = modeloutput.to_numpy()
			dask_arr = dd.from_array(modeloutput)
			dask_arr.name = ""prediction""
			df = df.merge(dask_arr.to_frame())			
			with open(self.deployLocation + ""/etc/"" + ""label_mapping.json"") as jsonfile:
				label_maping = json.load(jsonfile)
			df[""prediction""] = df[""prediction""].astype(int)
			df[""prediction""] = df[""prediction""].astype(str)
			df[""prediction_label""] = df[""prediction""].map(label_maping)	
			if 	df[""prediction_label""].dtype == None:
				df[""prediction_label""] = df[""prediction""]

		outputjson = df.compute().to_json(orient='records')
		outputjson = {""status"":""SUCCESS"",""data"":json.loads(outputjson)}
		return(json.dumps(outputjson))
		
	def predict(self,data):
		try:
			self.readConfig()
			df = self.readData(data)
			dfOrg = df.copy()
			
			if len(self.configDict)!=0:
				self.loadSavedModels()
				df = self.profiler(df)
				modeloutput = self.trainedModel(df)
				# dfOrg = dfOrg[self.allFtrs]
				output = self.apply_output_format(dfOrg, modeloutput)
			else:
				pass
		except Exception as e:
			print(traceback.format_exc())
			output = {""status"":""FAIL"",""message"":str(e).strip('""')}    
		return output

if __name__ == ""__main__"":
	
	incBPobj = incBatchPredictor()
	incBPobj.readConfig()
	nWorkers = incBPobj.get_nworkers()
	threads_per_worker = incBPobj.get_threadsPerWorker()
	cluster = dask.distributed.LocalCluster(n_workers=nWorkers, 
    threads_per_worker=threads_per_worker)
	client = dask.distributed.Client(cluster)
	output = incBPobj.predict(sys.argv[1])
	print(""predictions:"",output)
	client.close()
	cluster.close()"
heBinary.py,"# -*- coding: utf-8 -*-
""""""
Created on Sat Sep 10 23:57:56 2022

@author: jayaramakrishnans
""""""

import numpy as np
import pandas as pd
from secrets import token_bytes
from ppxgboost import PaillierAPI as paillier       
from ppxgboost import BoosterParser as boostparser 
from ppxgboost import PPBooster as ppbooster       
from ppxgboost.PPBooster import MetaData           
from ppxgboost.PPKey import PPBoostKey             
# from ope.pyope.ope import OPE
from pyope.ope import OPE                     
import joblib
import logging
import os
from flask import Flask,request,jsonify,render_template
# import pickle
from flask import Flask, request, jsonify
import json
import jsonpickle

app = Flask(__name__)

class server_ppxgboost:
    def __init__(self):
        # self.problemtype=problemtype
        self.confdata=None
        print(""Inside server_ppxgboost_1\n"")
        
    ## Loading config file
    def configload(self):
        print(""Inside server_ppxgboost_1,configload\n"")
        cwd = os.path.abspath(os.path.dirname(__file__))
        file_name='config.json'
        try:
            config_file=os.path.normpath(os.path.join(cwd,'config',file_name))
        except Exception as e:
            print(""config path error. Error Msg:  \n"",e)
        with open(config_file, 'r') as file:
            data = json.load(file)
                
        model_name=str(data[""model_name""])
        # version=str(data[""version""])
        
        return model_name
    ## Load server xgboost model from ../model dir.
    def model_load( self,path):
        print(""Inside server_ppxgboost_1,model_load\n"")
        cwd = os.path.abspath(os.path.dirname(__file__))
        file_name=path
        try:
            model_location=os.path.normpath(os.path.join(cwd,'model',file_name))
        except Exception as e:
            print(""Model path error. Error Msg:  \n"",e)
        # print(path)
        loaded_model = joblib.load(model_location)
        return loaded_model
    
    ## Generate Encrypted prediction fn
    def ppxgboostpredict_server(self,model,ppBoostKey,clientdata,min_max):
            xgboost_model = model  
            meta_min_max = MetaData(min_max)
            p_trees, feature_set, min_max = boostparser.model_to_trees(xgboost_model, min_max)
            
            enc_trees = ppbooster.enc_xgboost_model(ppBoostKey, p_trees, MetaData(min_max))
            
            enc_client_data=clientdata
            # enc_predictions = ppbooster.predict_binary(enc_trees, X_test) # should rename the function
            enc_predictions = ppbooster.predict_binary(p_trees, enc_client_data)
                
            return enc_predictions
        
    ## XGBoost wrapper for native model (native model to scikit learn xgboost model)
    def xgboostwrappertonative(self,wrappermodel):
        print(""Inside server_ppxgboost_7,xgboostwrappertonative= \n"",wrappermodel)
        nativemodel = wrappermodel.get_booster()
        return nativemodel
        
    def training_dataset_parser(self,train_data: pd.DataFrame):
        """"""
        :param train_data: dataframe training data
        :return: minimum of the training dataset, and maximum of the training dataset.
        """"""
        return {'min': np.min(pd.DataFrame.min(train_data)), 'max': np.max(pd.DataFrame.max(train_data))}
        

    
## Homomorphic secure  main server
cls_obj=server_ppxgboost()

@app.route('/homomorphicprediction_server_api',methods=['GET','POST'])    
def main_server():
            data = request.get_json(force=True)
            response_data = json.dumps(data)
            
            json_in= json.loads(response_data)
            values = json_in['values']
            features=json_in['features']
            ppBoostKey=jsonpickle.decode(json_in['key'])            
            encrypted_clientdata=pd.DataFrame(values,columns =features)
            ## Create encrypted predition from model
            model=None
            min_max = {'min': 0, 'max': 1000}
            model_name = cls_obj.configload()
            
            # model_name=usecase_name
            model_location=model_name
            model_xgboost = cls_obj.model_load(model_location)
            try:
                ## For sklearn based xgboost model to native model
                model = cls_obj.xgboostwrappertonative(model_xgboost)
            except:
                ## For native xgboost,we dont need to get booster.
                model= model_xgboost
                
            ## FFor logging
            cwd = os.path.abspath(os.path.dirname(__file__))
            # model_name=model_name
            file_name = model_name.rsplit('.', 1)
            file_name=file_name[0]
            file_name=file_name+"".log""
            try:
                hm_log=os.path.normpath(os.path.join(cwd,'logs',file_name))
                os.makedirs(os.path.dirname(hm_log), exist_ok=True)
            except Exception as e:
                print(""Log path error. Error Msg:  \n"",e)
            logging.basicConfig(filename=hm_log,format='%(asctime)s %(message)s', filemode='w',level=logging.DEBUG)
            log = logging.getLogger('AION')
            log.info('Server binary class encryption service started...')
            print(""Encrypted client data is ....\n"")
            log.info(""Encrypted client data is (received by server): \n""+str(encrypted_clientdata))
            enc_predictions = cls_obj.ppxgboostpredict_server(model,ppBoostKey,encrypted_clientdata,min_max)
            log.info(""server side encrypted prediction: \n""+str(enc_predictions))
            ## Serialize the ppboost encrypted prediction by jsonpickle, normal pikle lib not working.
            enc_predictions_json = jsonpickle.encode(enc_predictions)            
            # enc_predictions_json = enc_predictions.to_json()
            return enc_predictions_json
        
if __name__ == '__main__':
    #app.run(debug=True)
    app.run(host=""localhost"", port=9000, debug=True)"
heRegression.py,"# -*- coding: utf-8 -*-
""""""
Created on Sat Sep 10 23:57:56 2022

""""""

import numpy as np
import pandas as pd
from secrets import token_bytes
from ppxgboost import PaillierAPI as paillier       
from ppxgboost import BoosterParser as boostparser 
from ppxgboost import PPBooster as ppbooster       
from ppxgboost.PPBooster import MetaData           
from ppxgboost.PPKey import PPBoostKey             
# from ope.pyope.ope import OPE
from pyope.ope import OPE                      
import joblib
import logging
import os
from flask import Flask,request,jsonify,render_template
# import pickle
from flask import Flask, request, jsonify
import json
import jsonpickle
import os.path
import time
import subprocess
import sys
from os.path import expanduser
import ntpath
import shutil
import platform
from pathlib import Path

home = expanduser(""~"")
if platform.system() == 'Windows':
    LOG_FILE_PATH = os.path.join(home,'AppData','Local','HCLT','AION','logs')
else:
    LOG_FILE_PATH = os.path.join(home,'HCLT','AION','logs')
    
app = Flask(__name__)

class server_ppxgboost:
    def __init__(self):
        # self.problemtype=problemtype
        self.confdata=None
        
    ## Loading config file
    def configload(self):
        cwd = os.path.abspath(os.path.dirname(__file__))
        file_name='config.json'
        try:
            config_file=os.path.normpath(os.path.join(cwd,'config',file_name))
        except Exception as e:
            print(""config path error. Error Msg:  \n"",e)
        with open(config_file, 'r') as file:
            data = json.load(file)
                
        model_name=str(data[""model_name""])
        # version=str(data[""version""])
        
        return model_name
    ## Load server xgboost model from ../model dir.
    def model_load( self,path):
        cwd = os.path.abspath(os.path.dirname(__file__))
        file_name=path
        try:
            model_location=os.path.normpath(os.path.join(cwd,'model',file_name))
        except Exception as e:
            print(""Model path error. Error Msg:  \n"",e)
        # print(path)
        loaded_model = joblib.load(model_location)
        return loaded_model
    
    ## Generate Encrypted prediction fn
    def ppxgboostpredict_server(self,model,ppBoostKey,clientdata,min_max):            
            xgboost_model = model  
            meta_min_max = MetaData(min_max)
            p_trees, feature_set, min_max = boostparser.model_to_trees(xgboost_model, min_max)
            enc_trees = ppbooster.enc_xgboost_model(ppBoostKey, p_trees, MetaData(min_max))
            enc_client_data=clientdata
            # enc_predictions = ppbooster.predict_binary(enc_trees, X_test) # should rename the function
            enc_predictions = ppbooster.predict_binary(p_trees, enc_client_data)
                
            return enc_predictions
        
    ## XGBoost wrapper for native model (native model to scikit learn xgboost model)
    def xgboostwrappertonative(self,wrappermodel):
        nativemodel = wrappermodel.get_booster()
        return nativemodel
        
    def training_dataset_parser(self,train_data: pd.DataFrame):
        """"""
        :param train_data: dataframe training data
        :return: minimum of the training dataset, and maximum of the training dataset.
        """"""
        return {'min': np.min(pd.DataFrame.min(train_data)), 'max': np.max(pd.DataFrame.max(train_data))}
        

    
## Homomorphic secure  main server
cls_obj=server_ppxgboost()

@app.route('/homomorphicprediction_server_api',methods=['GET','POST'])    
def main_server():
            
            data = request.get_json(force=True)
            response_data = json.dumps(data)
            
            json_in= json.loads(response_data)
            values = json_in['values']
            features=json_in['features']
            ppBoostKey=jsonpickle.decode(json_in['key'])            
            encrypted_clientdata=pd.DataFrame(values,columns =features)
            ## Create encrypted predition from model
            model=None
            min_max = {'min': 0, 'max': 1000}
            model_name = cls_obj.configload()
            
            # model_name=usecase_name
            model_location=model_name
            model_xgboost = cls_obj.model_load(model_location)
            try:
                ## For sklearn based xgboost model to native model
                model = cls_obj.xgboostwrappertonative(model_xgboost)
            except:
                ## For native xgboost,we dont need to get booster.
                model= model_xgboost
                
            ## FFor logging
            cwd = os.path.abspath(os.path.dirname(__file__))
            # model_name=model_name
            file_name = model_name.rsplit('.', 1)
            file_name=file_name[0]
            file_name=file_name+"".log""
            try:
                hm_log=os.path.normpath(os.path.join(cwd,'logs',file_name))
                os.makedirs(os.path.dirname(hm_log), exist_ok=True)
            except Exception as e:
                print(""Log path error. Error Msg:  \n"",e)
            logging.basicConfig(filename=hm_log,format='%(asctime)s %(message)s', filemode='w',level=logging.DEBUG)
            log = logging.getLogger('AION')
            log.info('Server regression encryption service started...')
            print(""Encrypted client data is ....\n"")
            log.info(""Encrypted client data is (received by server): \n""+str(encrypted_clientdata))
            print(""Client side encrypted data: \n"",encrypted_clientdata)
            enc_predictions = cls_obj.ppxgboostpredict_server(model,ppBoostKey,encrypted_clientdata,min_max)
            log.info(""server side encrypted prediction: \n""+str(enc_predictions))
            ## Serialize the ppboost encrypted prediction by jsonpickle, normal pikle lib not working.
            enc_predictions_json = jsonpickle.encode(enc_predictions)            
            # enc_predictions_json = enc_predictions.to_json()
            return enc_predictions_json
        
if __name__ == '__main__':
    #app.run(debug=True)
    app.run(host=""localhost"", port=9000, debug=True)"
heMulticlass.py,"# -*- coding: utf-8 -*-
""""""
Created on Sat Sep 10 23:57:56 2022

""""""

import numpy as np
import sqlite3  
import sys
import pandas as pd
from secrets import token_bytes
from ppxgboost import PaillierAPI as paillier       
from ppxgboost import BoosterParser as boostparser 
from ppxgboost import PPBooster as ppbooster       
from ppxgboost.PPBooster import MetaData           
from ppxgboost.PPKey import PPBoostKey             
# from ope.pyope.ope import OPE 
from pyope.ope import OPE                     
import joblib
import logging
import os
from flask import Flask,request,jsonify,render_template
# import pickle
from flask import Flask, request, jsonify
import json
import jsonpickle
import time
from pathlib import Path
app = Flask(__name__)

class server_ppxgboost:
    def __init__(self):
        # self.problemtype=problemtype
        print(""Inside server_ppxgboost_1,init\n"")
        self.confdata=None
        
    ## Loading config file
    def configload(self):
        cwd = os.path.abspath(os.path.dirname(__file__))
        file_name='secure_config.json'
        try:
            config_file=os.path.normpath(os.path.join(cwd,'etc',file_name))
        except Exception as e:
            print(""config path error. Error Msg:  \n"",e)
        with open(config_file, 'r') as file:
            data = json.load(file)
                
        model_name=str(data[""model_name""])
        # version=str(data[""version""])
        
        return model_name
    
    ## Load server xgboost model from ../model dir.
    def model_load( self,path):
        cwd = os.path.abspath(os.path.dirname(__file__))
        file_name=path
        try:
            model_location=os.path.normpath(os.path.join(cwd,'model',file_name))
        except Exception as e:
            print(""Model path error. Error Msg:  \n"",e)
        # print(path)
        loaded_model = joblib.load(model_location)
        return loaded_model

    def create_connection(self,db_file):
        conn = None
        try:
            conn = sqlite3.connect(db_file)
            conn.execute('''CREATE TABLE IF NOT EXISTS modelinfo (key BLOB NOT NULL,encrypttree BLOB NOT NULL)''')
        except Exception as e:
            print(e)
        return conn
    def count_encrypt_model(self,conn):
        try:
            sql = ""select count(*) from modelinfo""
            cur = conn.cursor()
            cur.execute(sql)
            cur_result = cur.fetchone()
            return cur_result[0]
        except Exception as e:
            print(e)        
    def create_encryptmodel(self,conn,modeldetails):
            sql = ''' INSERT INTO modelinfo(key,encrypttree) VALUES(?,?) '''
            cur = conn.cursor()
            cur.execute(sql, modeldetails)
            conn.commit()

            return cur.lastrowid
    def search_encryptmodel(self,conn,key):
        try:
            sql = ""SELECT encrypttree FROM modelinfo where key='""+key+""'""
            cursor = conn.execute(sql)
            for row in cursor:
                return row[0]
            return '' 
        except Exception as e:
            print(e)
            
    def ppxgboostpredict_server(self,model,ppBoostKey,clientdata,min_max,noofclasses):
        try:
            db_file = Path(__file__).parent/'logs'/'encryptedModels'
            conn = self.create_connection(db_file)
            enc_trees = self.search_encryptmodel(conn,jsonpickle.encode(ppBoostKey))
            if enc_trees != '':
                enc_trees = jsonpickle.decode(enc_trees)
            else: 
                if self.count_encrypt_model(conn) >= 5:
                    outputjson = {""status"":""ERROR"",""msg"":""Maximum Number of Encrypted""}
                    return json.dumps(outputjson)
                xgboost_model = model            
                meta_min_max = MetaData(min_max)
                p_trees, feature_set, min_max = boostparser.model_to_trees(xgboost_model, min_max)
                enc_trees = ppbooster.enc_xgboost_model(ppBoostKey, p_trees, MetaData(min_max))
                modelinfo = (jsonpickle.encode(ppBoostKey),jsonpickle.encode(enc_trees))
                self.create_encryptmodel(conn,modelinfo)
            
            enc_client_data=clientdata
            # try:
                # num_classes = model.n_classes_
            # except:
                # num_classes = noofclasses
            num_classes = noofclasses
            if num_classes == 0:    
                nc_predictions = ppbooster.predict_binary(p_trees, enc_client_data)
            else:
                enc_predictions = ppbooster.predict_multiclass(enc_trees, num_classes, enc_client_data)
            
            enc_predictions_json = jsonpickle.encode(enc_predictions)
            outputjson = {""status"":""SUCCESS"",""data"":enc_predictions_json}
            return json.dumps(outputjson)
        except Exception as e:
            outputjson = {""status"":""ERROR"",""msg"":str(e)}
            return json.dumps(outputjson)    
    ## XGBoost wrapper for native model (native model to scikit learn xgboost model)
    def xgboostwrappertonative(self,wrappermodel):
        nativemodel = wrappermodel.get_booster()
        try:
            noOfClasses = wrappermodel.n_classes_
        except Exception as e:
            print(e)
            noOfClasses = 0
        return nativemodel,noOfClasses
        
    def training_dataset_parser(self,train_data: pd.DataFrame):
        """"""
        :param train_data: dataframe training data
        :return: minimum of the training dataset, and maximum of the training dataset.
        """"""
        return {'min': np.min(pd.DataFrame.min(train_data)), 'max': np.max(pd.DataFrame.max(train_data))}
        

    
## Homomorphic secure  main server
cls_obj=server_ppxgboost()

def spredict(data):   
    try:
        json_in= json.loads(data)
        values = json_in['values']
        features=json_in['features']
        ppBoostKey=jsonpickle.decode(json_in['key'])            
        encrypted_clientdata=pd.DataFrame(values,columns =features)
        model=None
        min_max = {'min': 0, 'max': 1000}
        model_name = cls_obj.configload()
        model_location=model_name
        model_xgboost = cls_obj.model_load(model_location)
        try:
            model,noofclasses = cls_obj.xgboostwrappertonative(model_xgboost)
        except Exception as e:
            print(e)
            model= model_xgboost
            noofclasses = 0
        cwd = os.path.abspath(os.path.dirname(__file__))
        # model_name=model_name
        file_name = model_name.rsplit('.', 1)
        file_name=file_name[0]
        file_name=file_name+"".log""
        try:
            hm_log=os.path.normpath(os.path.join(cwd,'logs',file_name))
            os.makedirs(os.path.dirname(hm_log), exist_ok=True)
        except Exception as e:
            print(""Log path error. Error Msg:  \n"",e)
        logging.basicConfig(filename=hm_log,format='%(asctime)s %(message)s', filemode='w',level=logging.DEBUG)
        log = logging.getLogger('AION')
        log.info('Server multiclass classification encryption service started...')
        log.info(""Encrypted client data is (received by server): \n""+str(encrypted_clientdata))
        output = cls_obj.ppxgboostpredict_server(model,ppBoostKey,encrypted_clientdata,min_max,noofclasses)
        print(""predictions:"",output)
        print(""Inside server_ppxgboost_8,output= \n"",output)
        return output
    except Exception as e:
        outputjson = {""status"":""ERROR"",""msg"":str(e)}    
        output = json.dumps(outputjson) 
        print(""predictions:"",output)
        return output
if __name__ == ""__main__"":
    output = spredict(sys.argv[1])"
aion_hebinaryclient.py,"# -*- coding: utf-8 -*-

# -*- coding: utf-8 -*-
import pandas as pd
import numpy as np
import logging
import os
import sys
from logging import INFO
from script.heBinary import client_ppxgboost
from script.aion_predict import selector
from script.inputprofiler import inputprofiler
## Client main class for binary classification
class aion_hebinaryclient:
    def __init__(self):        
        self.confdata=None
        
        
    def configLoad(self,jsonfile):
        import json
        jsonfile=str(jsonfile)
        with open(jsonfile, 'r') as file:
            self.confdata = json.load(file)        
        return self.confdata
    
    def dataload(self,datapath):        
        df = pd.read_csv(datapath)
        ## Data preprocess in test dataset, In aion, aion profiler will handle it.
        # df =df[~df.isin([np.nan, np.inf, -np.inf]).any(1)]
        # df=df.reset_index(drop=True) 
        profilerobj = inputprofiler()
        df = profilerobj.run(df)
        selectobj = selector()
        df = selectobj.run(df)
        return df
        
# Start Flower server for n rounds of federated learning
if __name__ == ""__main__"":
    classobj=aion_hebinaryclient()
    data_location=str(sys.argv[1])
    df=classobj.dataload(data_location)
    # print(""df: \n"",df)
    aionhmcobj=client_ppxgboost(df)        
    ppxgboost_pred=aionhmcobj.main_client()
    print(""final decrypted prediction at client side: \n"",ppxgboost_pred)
    # classobj.log.info(""At client end, homomorphic prediction df: \n""+str(ppxgboost_pred))
    # classobj.log.info(""Aion homomorphic client encrypted prediction df: \n""+str(ppxgboost_pred))
    
    
    
    "
aion_hemulticlient.py,"# -*- coding: utf-8 -*-

# -*- coding: utf-8 -*-
import pandas as pd
import numpy as np
import logging
import os
import sys
from logging import INFO
from script.heMulticlass import client_ppxgboost
from script.aion_predict import selector
from script.inputprofiler import inputprofiler
import argparse
class aion_hemulticlient:
    def __init__(self):        
        self.confdata=None
        
    def dataload(self,datapath):        
        df = pd.read_csv(datapath)
        ## Data preprocess in test dataset, In aion, aion profiler will handle it.
        # df =df[~df.isin([np.nan, np.inf, -np.inf]).any(1)]
        # df=df.reset_index(drop=True) 
        profilerobj = inputprofiler()
        df = profilerobj.run(df)
        selectobj = selector()
        df = selectobj.run(df)
        return df
        
if __name__ == ""__main__"":
    parser = argparse.ArgumentParser()        
    parser.add_argument('-i', '--inputDataLocation', help='Input Data Path')
    parser.add_argument('-k', '--keyGenerate', help='True')   
    parser.add_argument('-e', '--endPoint', help='Service End Point')       
    args = parser.parse_args()      
    if args.inputDataLocation:
        dataLocation=args.inputDataLocation
    if args.keyGenerate:
        keyGenerate = args.keyGenerate
    else:
        keyGenerate='False'
    print(keyGenerate)    
    if args.endPoint:
        endPoint=args.endPoint
    else:
        raise('End Point Not Defined')    
    classobj=aion_hemulticlient()
    df=classobj.dataload(dataLocation)
    aionhmcobj=client_ppxgboost(df,keyGenerate,endPoint)        
    ppxgboost_pred=aionhmcobj.main_client()
    print(""final decrypted prediction at client side: \n"",ppxgboost_pred)
    
    
    
    "
aion_heregressionclient.py,"# -*- coding: utf-8 -*-

# -*- coding: utf-8 -*-
import pandas as pd
import numpy as np
import logging
import os
import sys
from logging import INFO
from script.heRegression import client_ppxgboost
from script.aion_predict import selector
from script.inputprofiler import inputprofiler
import argparse
class aion_hemulticlient:
    def __init__(self):        
        self.confdata=None
        
    def dataload(self,datapath):        
        df = pd.read_csv(datapath)
        ## Data preprocess in test dataset, In aion, aion profiler will handle it.
        # df =df[~df.isin([np.nan, np.inf, -np.inf]).any(1)]
        # df=df.reset_index(drop=True) 
        profilerobj = inputprofiler()
        df = profilerobj.run(df)
        selectobj = selector()
        df = selectobj.run(df)
        return df

if __name__ == ""__main__"":
    parser = argparse.ArgumentParser()        
    parser.add_argument('-i', '--inputDataLocation', help='Input Data Path')
    parser.add_argument('-k', '--keyGenerate', help='True')   
    parser.add_argument('-e', '--endPoint', help='Service End Point')       
    args = parser.parse_args()      
    if args.inputDataLocation:
        dataLocation=args.inputDataLocation
    if args.keyGenerate:
        keyGenerate = args.keyGenerate
    else:
        keyGenerate='False'
    print(keyGenerate)    
    if args.endPoint:
        endPoint=args.endPoint
    else:
        raise('End Point Not Defined')    
    classobj=aion_hemulticlient()
    df=classobj.dataload(dataLocation)
    aionhmcobj=client_ppxgboost(df,keyGenerate,endPoint)        
    ppxgboost_pred=aionhmcobj.main_client()
    print(""final decrypted prediction at client side: \n"",ppxgboost_pred)
    
    
    
    "
heBinary.py,"# -*- coding: utf-8 -*-
import pandas as pd
from sklearn.model_selection import train_test_split
import numpy as np
from secrets import token_bytes

from ppxgboost import PaillierAPI as paillier       
from ppxgboost import BoosterParser as boostparser   
from ppxgboost import PPBooster as ppbooster       
from ppxgboost.PPBooster import MetaData           
from ppxgboost.PPKey import PPBoostKey             
# from ope.pyope.ope import OPE
from pyope.ope import OPE
import sys
sys.path.insert(0, '..')
import logging
from logging import INFO
import pickle
import requests
import json
# from json import JSONEncoder
import jsonpickle
import os
##Aion main client class for ppxgboost based encryption,decryption
class client_ppxgboost:
    def __init__(self,data):

        self.data=data
        self.prediction=None
        ## For logging
        cwd = os.path.abspath(os.path.dirname(__file__))
        # model_name=model_name
        file_name = ""he_binaryclass""        
        file_name=file_name+"".log""
        try:
            hm_log=os.path.normpath(os.path.join(cwd,'logs',file_name))
            os.makedirs(os.path.dirname(hm_log), exist_ok=True)
        except Exception as e:
            print(""Log path error. Error Msg:  \n"",e)
        logging.basicConfig(filename=hm_log,format='%(asctime)s %(message)s', filemode='w',level=logging.DEBUG)
        self.log = logging.getLogger('AION')
        self.log.info('Client binary class classification homomorphic encryption service started...')
        
    ## Loading configuration parameters, Not used now.
    def configload(self):
        try:
            data=self.confdata            
            usecase_name=str(data[""usecase_name""])
            version=str(data[""version""])
            problem_type=data[""problem_type""]
            model_location=str(data[""model_location""])
            data_location=str(data[""data_location""])
            selected_feature=data[""selected_feature""]
            if (type(selected_feature) is str):
                selected_feature=selected_feature.split(',')
            target_feature=data[""target_feature""]
            client_encryption_accuracy=str(data[""client_encryption_accuracy""])
            test_size=int(data[""test_size""])
            test_size=test_size/100
            
        except Exception as e:
            self.log.info(""Reading server config file issue. Err.Msg: %s  ""+str(e))
        return usecase_name,data_location,model_location,problem_type,version,selected_feature,target_feature,client_encryption_accuracy,test_size
    
    ## Load the model, Not used at client now.
    def model_load(self, path):
        loaded_model = pickle.load(open(path, 'rb'))
        return loaded_model

        
    #Generating secure key    
    def generate_ppboostkey(self):
            public_key, private_key = paillier.he_key_gen()
            prf_key = token_bytes(16)
            OPE_key = token_bytes(16)
            encrypter = OPE(OPE_key)
            ppBoostKey = PPBoostKey(public_key, prf_key, encrypter)            
            return public_key,private_key,prf_key,OPE_key,encrypter,ppBoostKey
        
    ## Binary client prediction (decrypted prediction)
    def ppxgboostbinary_predict(self,enc_predictions,private_key):
        dec = ppbooster.client_decrypt(private_key, enc_predictions)
        ##For binary classification
        res = ppbooster.client_decrypt_prediction_binary(private_key, enc_predictions)
        res_df=pd.DataFrame(res)        
        return res
        
    # class ppkeyEncoder(JSONEncoder):
    #     def default(self,o):
    #         return o.__dict__
    
    ## Function to connect secure server  via flask restapi (send enc data and receive enc prediction.)
    
    def connect_xgboostserver(self,ppBoostKey,encrypted_xtest):        
        url = 'http://localhost:9000//homomorphicprediction_server_api'
        enc_dict={}
        
        # df_list=[encrypted_xtest.columns.values.tolist()]+df.values.tolist()
        enc_dict['values']=encrypted_xtest.values.tolist()
        enc_dict['features']=encrypted_xtest.columns.values.tolist()
        enc_dict['key']= jsonpickle.encode(ppBoostKey)        
        json_out=json.dumps(enc_dict,indent=4)
        headers = {
            'content-type': ""application/json"",
            'cache-control': ""no-cache""
            
            }
        r = requests.post(url,data=json_out,headers=headers)        
        enc_predictions_obj=jsonpickle.decode(r.content)
        
        return enc_predictions_obj
            
    ## Create PaillierAPI based encrypted user given data , here, testdata=userdata       
    def generate_encrypted_testdata(self,prf_key,encrypter,testdata,min_max):
        feature_set_testdata=set(testdata.columns)
        ppbooster.enc_input_vector(prf_key, encrypter, feature_set_testdata, testdata, MetaData(min_max))
        return testdata
    
    ## Create min and max of testdata df for pailler encryption,decryption
    def training_dataset_parser(self, client_data: pd.DataFrame):
        """"""
        :param client_data: dataframe training data
        :return: minimum of the training dataset, and maximum of the training dataset.
        """"""
        return {'min': np.min(pd.DataFrame.min(client_data)), 'max': np.max(pd.DataFrame.max(client_data))}
    
    ## Main client function call for enc data, send data to server, receive enc pred, finally decrypt prediction
    def main_client(self):
        self.log.info('Client actual data sample (displaying last 10 values) : \n'+str(self.data.tail(10)))
        print("" Client actual data sample (displaying last 10 values) : \n"",self.data.tail(10))
        public_key,private_key,prf_key,OPE_key,encrypter,ppBoostKey = self.generate_ppboostkey()
        min_max = self.training_dataset_parser(self.data)        
        meta_min_max = MetaData(min_max)        
        
        encrypted_testdata = self.generate_encrypted_testdata(prf_key,encrypter,self.data,min_max)
        # print(""Sending encrypted client data to server....\n"")
        print(""\n Client side encrypted input data to server (displaying last 10 rows): \n"",encrypted_testdata.tail(10))        
        self.log.info('Client side encrypted input data to server (displaying last 10 rows): \n'+str(encrypted_testdata.tail(10)))
        enc_predictions = self.connect_xgboostserver(ppBoostKey,encrypted_testdata)  
        print(""\n Encrypted prediction from server (displaying last 10 values.): \n"",enc_predictions[-10:])
        self.log.info('\n Encrypted prediction from server (displaying last 10 values.): \n'+str(enc_predictions[-10:]))
        ## Decrypted predition
        dec = self.ppxgboostbinary_predict(enc_predictions,private_key)
        # ppxgboost_pred=pd.DataFrame(list(zip(dec, predictions)),columns =['homomorphic_prediction', 'actual_prediction'])
        ppxgboost_pred=pd.DataFrame(dec,columns =['homomorphic_prediction'])
        self.log.info(""final decrypted prediction at client side:: \n""+str(ppxgboost_pred))
        return ppxgboost_pred
        
        
## For standalone testing      
if __name__ == '__main__':
    problemtype='Binary classification'
    data=None
    targetfeature=None
    ppxgboost_client_obj=client_ppxgboost(problemtype,data,targetfeature)
    ppxgboost_dec_predictions = ppxgboost_client_obj.main_client()
    # print(""In main: ppxgboost_dec_predictions: \n"",ppxgboost_dec_predictions)"
heRegression.py,"# -*- coding: utf-8 -*-
import pandas as pd
from sklearn.model_selection import train_test_split
import numpy as np
from secrets import token_bytes

from ppxgboost import PaillierAPI as paillier       
from ppxgboost import BoosterParser as boostparser   
from ppxgboost import PPBooster as ppbooster       
from ppxgboost.PPBooster import MetaData           
from ppxgboost.PPKey import PPBoostKey             
# from ope.pyope.ope import OPE
from pyope.ope import OPE
import sys
sys.path.insert(0, '..')
import logging
from logging import INFO
import pickle
import requests
import json
# from json import JSONEncoder
import jsonpickle
import os
from pathlib import Path
##Aion main client class for ppxgboost based encryption,decryption
class client_ppxgboost:
    def __init__(self,data,keyGenerate,endPoint):

        self.data=data
        self.keyGenerate = keyGenerate
        self.endPoint = endPoint
        self.prediction=None
        ## For logging
        clientDirectory = os.path.abspath(os.path.dirname(__file__))
        # model_name=model_name
        file_name = ""he_regression""        
        file_name=file_name+"".log""
        self.keydir=os.path.join(clientDirectory,'..','keys')
        os.makedirs(self.keydir, exist_ok=True)
        try:
            hm_log=os.path.normpath(os.path.join(clientDirectory,'logs',file_name))
            os.makedirs(os.path.dirname(hm_log), exist_ok=True)
        except Exception as e:
            print(""Log path error. Error Msg:  \n"",e)
        logging.basicConfig(filename=hm_log,format='%(asctime)s %(message)s', filemode='w',level=logging.DEBUG)
        self.log = logging.getLogger('AION')
        self.log.info('Client Regression homomorphic encryption service started...')
        
    ## Loading configuration parameters, Not used now.
    def configload(self):
        try:
            data=self.confdata            
            usecase_name=str(data[""usecase_name""])
            version=str(data[""version""])
            problem_type=data[""problem_type""]
            model_location=str(data[""model_location""])
            data_location=str(data[""data_location""])
            selected_feature=data[""selected_feature""]
            if (type(selected_feature) is str):
                selected_feature=selected_feature.split(',')
            target_feature=data[""target_feature""]
            client_encryption_accuracy=str(data[""client_encryption_accuracy""])
            test_size=int(data[""test_size""])
            test_size=test_size/100
            
        except Exception as e:
            self.log.info(""Reading server config file issue. Err.Msg: %s  ""+str(e))
        return usecase_name,data_location,model_location,problem_type,version,selected_feature,target_feature,client_encryption_accuracy,test_size
    
    ## Load the model, Not used at client now.
    def model_load(self, path):
        loaded_model = pickle.load(open(path, 'rb'))
        return loaded_model

        
    #Generating secure key    
    def generate_ppboostkey(self):
        try:
            public_key_file = Path(__file__).parent.parent/'keys'/'public.k'
            private_key_file = Path(__file__).parent.parent/'keys'/'private.k'
            prf_key_file = Path(__file__).parent.parent/'keys'/'prf.k'
            ope_key_file = Path(__file__).parent.parent/'keys'/'ope.k'
            encryptor_key_file = Path(__file__).parent.parent/'keys'/'encryptor.k'
            boostkey_key_file = Path(__file__).parent.parent/'keys'/'boostkey.k'
            if not boostkey_key_file.exists() or self.keyGenerate == 'True':
                public_key, private_key = paillier.he_key_gen()
                pub_file = open(public_key_file, 'w')
                pub_file.write(jsonpickle.encode(public_key))
                pri_file = open(private_key_file, 'w')
                pri_file.write(jsonpickle.encode(private_key))
                prf_key = token_bytes(16)
                OPE_key = token_bytes(16)
                prf_file = open(prf_key_file, 'w')
                prf_file.write(jsonpickle.encode(prf_key))
                ope_file = open(ope_key_file, 'w')
                ope_file.write(jsonpickle.encode(OPE_key))
                encrypter = OPE(OPE_key)
                enc_file = open(encryptor_key_file, 'w')
                enc_file.write(jsonpickle.encode(encrypter))
                ppBoostKey = PPBoostKey(public_key, prf_key, encrypter)
                boost_file = open(boostkey_key_file, 'w')
                boost_file.write(jsonpickle.encode(ppBoostKey))    
            else:
                pub_file = open(public_key_file, 'r')
                public_key = jsonpickle.decode(pub_file.read())
                pub_file.close()
                pri_file = open(private_key_file, 'r')
                private_key = jsonpickle.decode(pri_file.read())
                pri_file.close()
                prf_file = open(prf_key_file, 'r')
                prf_key = jsonpickle.decode(prf_file.read())
                prf_file.close()
                ope_file = open(ope_key_file, 'r')
                OPE_key = jsonpickle.decode(ope_file.read())
                ope_file.close()
                enc_file = open(encryptor_key_file, 'r')
                encrypter = jsonpickle.decode(enc_file.read())
                enc_file.close()
                boost_file = open(boostkey_key_file, 'r')
                ppBoostKey = jsonpickle.decode(boost_file.read())
                boost_file.close()
            return public_key,private_key,prf_key,OPE_key,encrypter,ppBoostKey        
        except Exception as e:
            print(e)
        

    def ppxgboostreg_predict(self,enc_predictions,private_key):
            dec = []            
            for p in enc_predictions:
                dec.append(paillier.decrypt(private_key, p))
            
            
            dec_df=pd.DataFrame(dec)
            
            return dec
        
    # class ppkeyEncoder(JSONEncoder):
    #     def default(self,o):
    #         return o.__dict__
    
    ## Function to connect secure server  via flask restapi (send enc data and receive enc prediction.)
    def connect_xgboostserver(self,ppBoostKey,encrypted_xtest):        
        url = self.endPoint
        enc_dict={}
        
        # df_list=[encrypted_xtest.columns.values.tolist()]+df.values.tolist()
        enc_dict['values']=encrypted_xtest.values.tolist()
        enc_dict['features']=encrypted_xtest.columns.values.tolist()
        enc_dict['key']= jsonpickle.encode(ppBoostKey)        
        json_out=json.dumps(enc_dict,indent=4)
        headers = {
            'content-type': ""application/json"",
            'cache-control': ""no-cache""
            
            }
        response = requests.post(url,auth=('admin','aion'),data=json_out,headers=headers)        
        #print(response.content)
        outputStr=response.content
        outputStr = outputStr.decode('utf-8')
        outputStr = outputStr.strip()
        predict_dict = json.loads(str(outputStr))
        if (predict_dict['status'] == 'SUCCESS'):
            data = predict_dict['data']
            enc_predictions_ob=jsonpickle.decode(data)
            return enc_predictions_ob
        else:
            print('Error')
            
    ## Create PaillierAPI based encrypted user given data , here, testdata=userdata       
    def generate_encrypted_testdata(self,prf_key,encrypter,testdata,min_max):
        feature_set_testdata=set(testdata.columns)
        ppbooster.enc_input_vector(prf_key, encrypter, feature_set_testdata, testdata, MetaData(min_max))
        return testdata
    
    ## Create min and max of testdata df for pailler encryption,decryption
    def training_dataset_parser(self, client_data: pd.DataFrame):
        """"""
        :param client_data: dataframe training data
        :return: minimum of the training dataset, and maximum of the training dataset.
        """"""
        return {'min': np.min(pd.DataFrame.min(client_data)), 'max': np.max(pd.DataFrame.max(client_data))}
    
    ## Main client function call for enc data, send data to server, receive enc pred, finally decrypt prediction
    def main_client(self):
        self.log.info('Client actual data sample (displaying last 10 values) : \n'+str(self.data.tail(10)))
        print("" Client actual data sample (displaying last 10 values) : \n"",self.data.tail(10))
        public_key,private_key,prf_key,OPE_key,encrypter,ppBoostKey = self.generate_ppboostkey()
        
        min_max = self.training_dataset_parser(self.data)        
        meta_min_max = MetaData(min_max)        
        
        encrypted_testdata = self.generate_encrypted_testdata(prf_key,encrypter,self.data,min_max)
        # print(""Sending encrypted client data to server....\n"")
        print(""\n Client side encrypted input data to server (displaying last 10 rows): \n"",encrypted_testdata.tail(10))        
        self.log.info('Client side encrypted input data to server (displaying last 10 rows): \n'+str(encrypted_testdata.tail(10)))
        enc_predictions = self.connect_xgboostserver(ppBoostKey,encrypted_testdata)  
        print(""\n Encrypted prediction from server (displaying last 10 values.): \n"",enc_predictions[-10:])
        self.log.info('\n Encrypted prediction from server (displaying last 10 values.): \n'+str(enc_predictions[-10:]))
        ## Decrypted predition
        dec = self.ppxgboostreg_predict(enc_predictions,private_key)
        # ppxgboost_pred=pd.DataFrame(list(zip(dec, predictions)),columns =['homomorphic_prediction', 'actual_prediction'])
        ppxgboost_pred=pd.DataFrame(dec,columns =['homomorphic_prediction'])
        # print(""final decrypted prediction at client side: \n"",ppxgboost_pred)
        self.log.info(""Final decrypted prediction at client side:: \n""+str(ppxgboost_pred))
        return ppxgboost_pred
        
        
## For standalone testing      
if __name__ == '__main__':
    problemtype='regression'
    data=None
    targetfeature=None
    ppxgboost_client_obj=client_ppxgboost(problemtype,data,targetfeature)
    ppxgboost_dec_predictions = ppxgboost_client_obj.main_client()
    print(""In main: ppxgboost_dec_predictions: \n"",ppxgboost_dec_predictions)"
heMulticlass.py,"# -*- coding: utf-8 -*-
import pandas as pd
from sklearn.model_selection import train_test_split
import numpy as np
from secrets import token_bytes

from ppxgboost import PaillierAPI as paillier       
from ppxgboost import BoosterParser as boostparser   
from ppxgboost import PPBooster as ppbooster       
from ppxgboost.PPBooster import MetaData           
from ppxgboost.PPKey import PPBoostKey             
# from ope.pyope.ope import OPE
from pyope.ope import OPE
import sys
sys.path.insert(0, '..')
import logging
from logging import INFO
import pickle
import requests
import json
# from json import JSONEncoder
import jsonpickle
import os
from pathlib import Path
##Aion main client class for ppxgboost based encryption,decryption
class client_ppxgboost:
    def __init__(self,data,keyGenerate,endPoint):

        self.data=data
        self.keyGenerate = keyGenerate
        self.endPoint = endPoint
        self.prediction=None
        ## For logging
        clientDirectory = os.path.abspath(os.path.dirname(__file__))
        # model_name=model_name
        file_name = ""he_multiclass""        
        file_name=file_name+"".log""
        self.keydir=os.path.join(clientDirectory,'..','keys')
        os.makedirs(self.keydir, exist_ok=True)
        try:
            hm_log=os.path.normpath(os.path.join(clientDirectory,'logs',file_name))
            os.makedirs(os.path.dirname(hm_log), exist_ok=True)
        except Exception as e:
            print(""Log path error. Error Msg:  \n"",e)
        logging.basicConfig(filename=hm_log,format='%(asctime)s %(message)s', filemode='w',level=logging.DEBUG)
        self.log = logging.getLogger('AION')
        self.log.info('Client Multi class classification homomorphic encryption service started...')
        
    ## Loading configuration parameters, Not used now.
    def configload(self):
        try:
            data=self.confdata            
            usecase_name=str(data[""usecase_name""])
            version=str(data[""version""])
            problem_type=data[""problem_type""]
            model_location=str(data[""model_location""])
            data_location=str(data[""data_location""])
            selected_feature=data[""selected_feature""]
            if (type(selected_feature) is str):
                selected_feature=selected_feature.split(',')
            target_feature=data[""target_feature""]
            client_encryption_accuracy=str(data[""client_encryption_accuracy""])
            test_size=int(data[""test_size""])
            test_size=test_size/100
            
        except Exception as e:
            self.log.info(""Reading server config file issue. Err.Msg: %s  ""+str(e))
        return usecase_name,data_location,model_location,problem_type,version,selected_feature,target_feature,client_encryption_accuracy,test_size
    
    ## Load the model, Not used at client now.
    def model_load(self, path):
        loaded_model = pickle.load(open(path, 'rb'))
        return loaded_model

        
    #Generating secure key    
    def generate_ppboostkey(self):
        try:
            public_key_file = Path(__file__).parent.parent/'keys'/'public.k'
            private_key_file = Path(__file__).parent.parent/'keys'/'private.k'
            prf_key_file = Path(__file__).parent.parent/'keys'/'prf.k'
            ope_key_file = Path(__file__).parent.parent/'keys'/'ope.k'
            encryptor_key_file = Path(__file__).parent.parent/'keys'/'encryptor.k'
            boostkey_key_file = Path(__file__).parent.parent/'keys'/'boostkey.k'
            if not boostkey_key_file.exists() or self.keyGenerate == 'True':
                public_key, private_key = paillier.he_key_gen()
                pub_file = open(public_key_file, 'w')
                pub_file.write(jsonpickle.encode(public_key))
                pri_file = open(private_key_file, 'w')
                pri_file.write(jsonpickle.encode(private_key))
                prf_key = token_bytes(16)
                OPE_key = token_bytes(16)
                prf_file = open(prf_key_file, 'w')
                prf_file.write(jsonpickle.encode(prf_key))
                ope_file = open(ope_key_file, 'w')
                ope_file.write(jsonpickle.encode(OPE_key))
                encrypter = OPE(OPE_key)
                enc_file = open(encryptor_key_file, 'w')
                enc_file.write(jsonpickle.encode(encrypter))
                ppBoostKey = PPBoostKey(public_key, prf_key, encrypter)
                boost_file = open(boostkey_key_file, 'w')
                boost_file.write(jsonpickle.encode(ppBoostKey))    
            else:
                pub_file = open(public_key_file, 'r')
                public_key = jsonpickle.decode(pub_file.read())
                pub_file.close()
                pri_file = open(private_key_file, 'r')
                private_key = jsonpickle.decode(pri_file.read())
                pri_file.close()
                prf_file = open(prf_key_file, 'r')
                prf_key = jsonpickle.decode(prf_file.read())
                prf_file.close()
                ope_file = open(ope_key_file, 'r')
                OPE_key = jsonpickle.decode(ope_file.read())
                ope_file.close()
                enc_file = open(encryptor_key_file, 'r')
                encrypter = jsonpickle.decode(enc_file.read())
                enc_file.close()
                boost_file = open(boostkey_key_file, 'r')
                ppBoostKey = jsonpickle.decode(boost_file.read())
                boost_file.close()
            return public_key,private_key,prf_key,OPE_key,encrypter,ppBoostKey        
        except Exception as e:
            print(e)
   
    ## PPboost multiclass prediction fn
    def ppxgboostmulticlass_predict(self,enc_predictions,private_key):
        
        ##For binary classification
        # res = ppbooster.client_decrypt_prediction_binary(private_key, enc_predictions) 
        ## For multiclass classification
        res = ppbooster.client_decrypt_prediction_multiclass(private_key, enc_predictions)
        return res
        
    # class ppkeyEncoder(JSONEncoder):
    #     def default(self,o):
    #         return o.__dict__
    
    ## Function to connect secure server  via flask restapi (send enc data and receive enc prediction.)
    
    def connect_xgboostserver(self,ppBoostKey,encrypted_xtest):        
        url = self.endPoint
        enc_dict={}
        
        # df_list=[encrypted_xtest.columns.values.tolist()]+df.values.tolist()
        enc_dict['values']=encrypted_xtest.values.tolist()
        enc_dict['features']=encrypted_xtest.columns.values.tolist()
        enc_dict['key']= jsonpickle.encode(ppBoostKey) 
        json_out=json.dumps(enc_dict,indent=4)
        headers = {
            'content-type': ""application/json"",
            'cache-control': ""no-cache""
            
            }
        response = requests.post(url,auth=('admin','aion'),data=json_out,headers=headers)        
        #print(response.content)
        outputStr=response.content
        outputStr = outputStr.decode('utf-8')
        outputStr = outputStr.strip()
        predict_dict = json.loads(str(outputStr))
        if (predict_dict['status'] == 'SUCCESS'):
            data = predict_dict['data']
            enc_predictions_ob=jsonpickle.decode(data)
            return enc_predictions_ob
        else:
            print('Error')
            
    ## Create PaillierAPI based encrypted user given data , here, testdata=userdata       
    def generate_encrypted_testdata(self,prf_key,encrypter,testdata,min_max):
        feature_set_testdata=set(testdata.columns)
        ppbooster.enc_input_vector(prf_key, encrypter, feature_set_testdata, testdata, MetaData(min_max))
        return testdata
    
    ## Create min and max of testdata df for pailler encryption,decryption
    def training_dataset_parser(self, client_data: pd.DataFrame):
        """"""
        :param client_data: dataframe training data
        :return: minimum of the training dataset, and maximum of the training dataset.
        """"""
        return {'min': np.min(pd.DataFrame.min(client_data)), 'max': np.max(pd.DataFrame.max(client_data))}
    
    ## Main client function call for enc data, send data to server, receive enc pred, finally decrypt prediction
    def main_client(self):
        self.log.info('Client actual data sample (displaying last 10 values) : \n'+str(self.data.tail(10)))
        #print("" Client actual data sample (displaying last 10 values) : \n"",self.data.tail(10))
        public_key,private_key,prf_key,OPE_key,encrypter,ppBoostKey = self.generate_ppboostkey()
        
        min_max = self.training_dataset_parser(self.data)        
        meta_min_max = MetaData(min_max)        
        #print('++++++++++++++++++++++++++++')
        encrypted_testdata = self.generate_encrypted_testdata(prf_key,encrypter,self.data,min_max)
        # print(""Sending encrypted client data to server....\n"")
        #print(""\n Client side encrypted input data to server (displaying last 10 rows): \n"",encrypted_testdata.tail(10))        
        self.log.info('Client side encrypted input data to server (displaying last 10 rows): \n'+str(encrypted_testdata.tail(10)))
        enc_predictions = self.connect_xgboostserver(ppBoostKey,encrypted_testdata)  
        #print(""\n Encrypted prediction from server (displaying last 10 values.): \n"",enc_predictions[-10:])
        #self.log.info('\n Encrypted prediction from server (displaying last 10 values.): \n'+str(enc_predictions[-10:]))
        ## Decrypted predition
        dec = self.ppxgboostmulticlass_predict(enc_predictions,private_key)
        # ppxgboost_pred=pd.DataFrame(list(zip(dec, predictions)),columns =['homomorphic_prediction', 'actual_prediction'])
        ppxgboost_pred=pd.DataFrame(dec,columns =['homomorphic_prediction'])
        self.log.info(""final decrypted prediction at client side:: \n""+str(ppxgboost_pred))
        return ppxgboost_pred
        
        
## For standalone testing      
if __name__ == '__main__':
    problemtype='Multi class classification'
    data=None
    targetfeature=None
    ppxgboost_client_obj=client_ppxgboost(problemtype,data,targetfeature)
    ppxgboost_dec_predictions = ppxgboost_client_obj.main_client()
    # print(""In main: ppxgboost_dec_predictions: \n"",ppxgboost_dec_predictions)"
__init__.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''"
explainable_ai.py,"from script.inputprofiler import inputprofiler

def preprocessing(data):
	profilerobj = inputprofiler()
	data = profilerobj.run(data)
	data = data.astype(np.float64)    
	return(data)

import matplotlib.pyplot as plt
try:
	from sklearn.externals import joblib
except:
	import joblib    
import os,sys
import pandas as pd
from alibi.explainers import ALE,plot_ale
import io
import json
import urllib, base64
import numpy as np
from scipy.stats import linregress
from statistics import mean


def get_ranked_values(explanation):
	ranked_shap_vals = []
	for cls_idx in range(len(explanation.shap_values)):
		this_ranking = (
			explanation.raw['importances'][str(cls_idx)]['ranked_effect'],
			explanation.raw['importances'][str(cls_idx)]['names']
			)
		ranked_shap_vals.append(this_ranking)

	return ranked_shap_vals
	
def feature_importance_using_shap(model,X,featuresNames,classes,x_test,x_test_waterfall):
	from alibi.explainers import KernelShap
	import shap
	shap.initjs()
	if hasattr(model, ""decision_function""):
		pred_fcn = model.decision_function
	elif hasattr(model, ""predict_proba""):
		pred_fcn = model.predict_proba
	else:
		pred_fcn = model.predict
	try:        
		svm_explainer = KernelShap(pred_fcn,feature_names=featuresNames)
		xtest = x_test[0].reshape(1, -1)
		svm_explainer.fit(X,n_background_samples=100)
		svm_explanation  = svm_explainer.explain(xtest)
		try:
			idx = 0
			instance = x_test[0][None, :]
			pred = model.predict(instance)
			class_idx = pred.item()
			if isinstance(svm_explainer.expected_value,np.ndarray):
			
				forceplot = shap.force_plot(svm_explainer.expected_value[class_idx],svm_explanation.shap_values[class_idx][idx,:],instance,feature_names=featuresNames,matplotlib=True,show=False)
			else:
				forceplot = shap.force_plot(svm_explainer.expected_value,svm_explanation.shap_values[0][idx,:],instance,feature_names=featuresNames,matplotlib=True,show=False)
			plt.tight_layout(pad = 0)
			image = io.BytesIO()
			plt.savefig(image, format='png')
			image.seek(0)
			string = base64.b64encode(image.read())          		
			image_64 = 'data:image/png;base64,' + urllib.parse.quote(string)
		except Exception as inst:
			exc_type, exc_obj, exc_tb = sys.exc_info()
			fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
			print(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))
			image_64 = ''
		try:
			plt.clf()
			if isinstance(svm_explainer.expected_value,np.ndarray):
				r = shap.multioutput_decision_plot(svm_explainer.expected_value.tolist(),
                                   svm_explanation.shap_values,
                                   idx,
                                   feature_names=featuresNames,
                                   feature_order='importance',
                                   highlight=[class_idx],
                                   legend_labels=classes,
                                   return_objects=True,
                                   legend_location='lower right',show=False)
			else:
				expectedvalues = [svm_explainer.expected_value]
			
			
				r = shap.multioutput_decision_plot(expectedvalues,
                                   svm_explanation.shap_values,
                                   idx,
                                   feature_names=featuresNames,
								   highlight = [0],
                                   return_objects=True,
                                   legend_labels=['Value'],
                                   feature_order='importance',
                                   show=False)
			plt.tight_layout(pad = 0)
			image = io.BytesIO()
			plt.savefig(image, format='png')
			image.seek(0)
			string = base64.b64encode(image.read())          		
			image2_64 = 'data:image/png;base64,' + urllib.parse.quote(string)
		except Exception as inst:
			print(inst)
			exc_type, exc_obj, exc_tb = sys.exc_info()
			fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
			print(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))
			image2_64 = ''
	except Exception as inst:
		print(inst)
		exc_type, exc_obj, exc_tb = sys.exc_info()
		fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
		print(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))            
		image2_64 = ''   
		image_64 = ''        
	try:

		plt.clf()
		x_test_waterfall = x_test_waterfall[featuresNames]

		explainer = shap.Explainer(model.predict, x_test_waterfall, feature_names=featuresNames)

		shap_values = explainer(x_test)

		r = shap.plots.waterfall(shap_values[0], show=False)
		image = io.BytesIO()
		plt.savefig(image, format='png', bbox_inches='tight')
		image.seek(0)
		string = base64.b64encode(image.read())
		image3_64 = 'data:image/png;base64,' + urllib.parse.quote(string)
	except Exception as inst:
		print(inst)
		exc_type, exc_obj, exc_tb = sys.exc_info()
		fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
		print(str(exc_type) + ' ' + str(fname) + ' ' + str(exc_tb.tb_lineno))
		image3_64 = ''
	return (image_64, image2_64, image3_64)
	
	

	
def feature_importance(xtrain,ytrain,xfeatures,yfeature,problemType):
	if problemType == 'classification':
		from sklearn.feature_selection import SelectFromModel
		from sklearn.ensemble import ExtraTreesClassifier
		selector = SelectFromModel(ExtraTreesClassifier())
		selector.fit(xtrain,ytrain)
		values = selector.estimator_.feature_importances_
	elif problemType == 'regression':
		from sklearn.feature_selection import SelectFromModel
		from sklearn.linear_model import Lasso
		selector = SelectFromModel(Lasso())
		selector.fit(xtrain,ytrain)
		values = np.abs(selector.estimator_.coef_)
	labels = xtrain.columns.tolist()
	dft = pd.DataFrame()
	dft['labels'] = labels
	dft['values'] = values
	maxrecord = dft.iloc[dft['values'].argmax()]
	mostimportantfeature = maxrecord['labels']
	f_imp = dft.to_json(orient='records')
	return(f_imp,mostimportantfeature)

	
def get_trust_score(prdictfn,proba_fun,X_train,y_train):
	from alibi.confidence import TrustScore
	ts = TrustScore(k_filter=10,alpha=.05,filter_type='distance_knn',leaf_size=40,metric='euclidean',dist_filter_type='point')
	ts.fit(X_train, y_train, classes=3)
	y_pred  = prdictfn(X_train)
	#y_prod = proba_fun(X_train)
	#probas = y_prod[range(len(y_pred)), y_pred]
	score, closest_class = ts.score(X_train, y_pred,k=2,dist_type='point')
	return(mean(score))
	
def getCounterFactuals(model,prdictfn,features,x_train,categories):
	from alibi.explainers import CounterFactualProto
	cat_vars_ord = {}
	categoryList=categories.keys().tolist()
	categoryCountList=categories.tolist()
	for i in range(0,len(categoryCountList)):
		cat_vars_ord[categoryList[i]] = categoryCountList[i]
	print(cat_vars_ord)	
	X = x_train[0].reshape((1,) + x_train[0].shape)
	shape = X.shape
	print(shape)
	beta = .01
	c_init = 1.
	c_steps = 5
	max_iterations = 500
	rng = (-1., 1.)  # scale features between -1 and 1
	feature_range = (x_train.min(axis=0), x_train.max(axis=0))
	cf = CounterFactualProto(prdictfn,shape,cat_vars=cat_vars_ord)
	explanation = cf.explain(X)
	print(explanation)
	
def getAnchorTabularofFirstRecord(predict_fn,features,X_train,X_test,labelMap, class_percent=None):
	threshold = 0.95
	from alibi.explainers import AnchorTabular
	explainer = AnchorTabular(predict_fn, features)
	explainer.fit(X_train.values)
	X_test = X_test.values
	anchors = []
	for idx in range(len(X_test)):	
		prediction = explainer.predictor(X_test[idx].reshape(1, -1))[0]
		if len(labelMap) > 0:
			predictionstr = list(labelMap.keys())[list(labelMap.values()).index(prediction)]
		else:
			predictionstr = prediction
		explanation = explainer.explain(X_test[idx],threshold=threshold)
		if str(explanation.anchor) == '[]':
			if class_percent and class_percent.get(prediction, 0.0) > threshold:
				anchor = f""Cannot explain the prediction of this class ({predictionstr}) since there is no salient subset of features that is necessary for the prediction to hold.  This behaviour is typical when the data is very imbalanced and is seen for the majority class in a classification problem.""
			else:
				anchor = f'Can not get the explanation for {predictionstr}.'
			precision  = explanation.precision[0]
		else:
			anchor = '%s' % (' AND '.join(explanation.anchor))
			precision  = explanation.precision
		coverage = explanation.coverage
		anchorjson = {}
		anchorjson['features'] = eval(str(features))
		anchorjson['values'] = eval(str(list(X_test[idx])))
		anchorjson['prediction'] = str(predictionstr)
		anchorjson['precision'] = str(round(precision,2))
		anchorjson['anchor'] = anchor
		anchors.append(anchorjson)
		print(anchors)
	try:
		return(json.dumps(anchors))
	except Exception as e:
		exc_type, exc_obj, exc_tb = sys.exc_info()
		fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
		print(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))
		return(json.dumps({}))
	
def ale_analysis():
	displaypath = os.path.join(os.path.dirname(os.path.abspath(__file__)),""etc"",""display.json"")
	with open(displaypath) as file:
		config = json.load(file)
	file.close()
	model = joblib.load(os.path.join(os.path.dirname(os.path.abspath(__file__)),""model"",config['saved_model']))
	predict_fn = lambda x: model.predict(x)
	predictproba_fn = lambda x: model.predict_proba(x)
	dathPath = os.path.join(os.path.dirname(os.path.abspath(__file__)),'data','postprocesseddata.csv.gz')
	dataFrame=pd.read_csv(dathPath,compression='gzip')
	#dataFrame = pd.read_csv(dathPath)
	
	testdathPath = os.path.join(os.path.dirname(os.path.abspath(__file__)),'data','predicteddata.csv.gz')
	testdataFrame=pd.read_csv(testdathPath,compression='gzip')
	#testdataFrame = pd.read_csv(testdathPath)
	features = config['modelFeatures']#['SepalWidthCm','PetalLengthCm']

	targetfeature = config['targetFeature']#'Species'
	labelMap = config['labelMaps']
	targetData = dataFrame[targetfeature]
	if config['problemType'].lower() == 'regression':
		X_train = dataFrame[features]
		X_test = testdataFrame.head(5)
		X_test = X_test[features]
	else:
		valueCount=targetData.value_counts()
		class_percent = (valueCount/ len(targetData)).to_dict()
		categoryList=valueCount.keys().tolist()
		class_names = categoryList
		X_train = dataFrame[features]
		X_test = testdataFrame.groupby('predict').first().reset_index()
		X_test = X_test[features]
	f_imp,m_imp_f = feature_importance(X_train,targetData,features,targetfeature,config['problemType'].lower())
	if hasattr(model, ""decision_function""):
		logit_fun_lr = model.decision_function
		try:
			logit_ale_lr = ALE(logit_fun_lr, feature_names=features, target_names=categoryList)
			logit_exp_lr = logit_ale_lr.explain(X_train.values) 
			values = logit_exp_lr.ale_values
			feature  = logit_exp_lr.feature_names 
			feature_values = logit_exp_lr.feature_values
			lines= []
			sentences = []
			for x in range(0,len(feature)):
				f_value = feature_values[x]
				value = values[x]
				lines= []
				for y in range(0,len(class_names)):
					line = []
					for z in value:
						cordinate = z[y]
						line.append(cordinate)
					lines.append(line)
				line = lines[0]
				slope1, intercept1, r_value, p_value, std_err = linregress(f_value,line)
				line = lines[1]
				slope2, intercept2, r_value, p_value, std_err = linregress(f_value,line)
				xi = (intercept1-intercept2) / (slope2-slope1)
				xi = round(xi,2)
				lastvalues = {}
				i = 0
				for line in lines:
					value = line[len(line)-1]
					lastvalues[class_names[i]] = value
					i = i+1
				Keymax = max(lastvalues, key=lastvalues.get)
				Keymin = min(lastvalues, key=lastvalues.get)
				Keymaxclass = list(labelMap.keys())[list(labelMap.values()).index(Keymax)]
				Keyminclass = list(labelMap.keys())[list(labelMap.values()).index(Keymin)]
				sentense = '<b>Effect of '+str(feature[x])+'</b><br>For data samples having  <b>'+str(feature[x])+'</b> >= <b>~'+str(xi)+'</b> ,there is a very high chance that they are of class <b>'+str(Keymaxclass)+'</b> '+targetfeature+'. For data samples having  <b>'+str(feature[x])+'</b> < <b>~'+str(xi)+'</b> there is a very high change that they are of class <b>'+str(Keyminclass)+'</b> '+targetfeature+'.'
				sentences.append(sentense)
		except:
			sentense = ''
			sentences.append(sentense)
			xi = 0
	elif hasattr(model, ""predict_proba""):
		logit_fun_lr = model.predict_proba
		logit_ale_lr = ALE(logit_fun_lr, feature_names=features, target_names=categoryList)
		logit_exp_lr = logit_ale_lr.explain(X_train.values) 
		values = logit_exp_lr.ale_values
		feature  = logit_exp_lr.feature_names 
		feature_values = logit_exp_lr.feature_values
		lines= []
		sentences = []
		sentense = 'Graphs gives a feature value how much more(less) probability does the model assign to each class relative to mean prediction. This also means that any increase in relative probability of one class must result into a decrease in probability of another class.'
		sentences.append(sentense)
		xi = 0
	elif hasattr(model, ""predict""):
		logit_fun_lr = model.predict
		logit_ale_lr = ALE(logit_fun_lr, feature_names=features, target_names=['Value'])
		logit_exp_lr = logit_ale_lr.explain(X_train.values) 
		values = logit_exp_lr.ale_values
		feature  = logit_exp_lr.feature_names 
		feature_values = logit_exp_lr.feature_values
		lines= []
		sentences = []
		sentense = 'The ALE value corresponding to that feature value is difference to the mean effect of that feature. Put differently, the ALE value is the relative feature effect on the prediction at that feature value.'
		sentences.append(sentense)
		xi = 0
	if (len(features)%2 ==0):
		n_cols = int(len(features)/2)
	else:
		n_cols = int(len(features)/2)+1
	figheight = n_cols*3
	try:
		plot_ale(logit_exp_lr,n_cols=2, fig_kw={'figwidth': 8, 'figheight': figheight})
		plt.tight_layout(pad = 0)
		image = io.BytesIO()
		plt.savefig(image, format='png')
		image.seek(0)
		string = base64.b64encode(image.read())          		
		image_64 = 'data:image/png;base64,' + urllib.parse.quote(string)
	except:
		image_64 = ''
	#score = get_trust_score(model.predict,proba_fun_lr,X_train.values,targetData.values)
	if config['problemType'].lower() == 'classification':
		anchorjson = getAnchorTabularofFirstRecord(predict_fn,features,X_train,X_test,labelMap,class_percent)
	else:
		anchorjson = getAnchorTabularofFirstRecord(predict_fn,features,X_train,X_test,labelMap)
		#anchors=[]
		#anchorjson = json.dumps(anchors)
	#feature_importance_using_shap(model,X_train.values,features,class_names)
	#getCounterFactuals(model,predictproba_fn,features,X_train.values,valueCount)
	output_json = {""status"":""SUCCESS"",""data"":{""data"":image_64,""most_influencedfeature"":m_imp_f,""interceptionpoint"":xi,""sentences"":sentences,""feature_importance"":json.loads(f_imp),""anchorjson"":json.loads(anchorjson)}}
	output_json = json.dumps(output_json)
	print(""aion_ai_explanation:"",output_json)
	return(output_json)
    
def local_analysis(jsonData):
	jsonData = json.loads(jsonData)	
	displaypath = os.path.join(os.path.dirname(os.path.abspath(__file__)),""etc"",""display.json"")
	with open(displaypath) as file:
		config = json.load(file)
	file.close()
	model = joblib.load(os.path.join(os.path.dirname(os.path.abspath(__file__)),""model"",config['saved_model']))
	predict_fn = lambda x: model.predict(x)

	dathPath = os.path.join(os.path.dirname(os.path.abspath(__file__)),'data','postprocesseddata.csv.gz')
	dataFrame=pd.read_csv(dathPath,compression='gzip')
	testdathPath = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'data', 'predicteddata.csv.gz')
	testdataFrame = pd.read_csv(testdathPath, compression='gzip')
	features = config['modelFeatures']#['SepalWidthCm','PetalLengthCm']

	targetfeature = config['targetFeature']#'Species'
	
	targetData = dataFrame[targetfeature]
	valueCount=targetData.value_counts()
	categoryList=valueCount.keys().tolist()
	class_names = categoryList
	#class_names = class_names.sort()	
	X_train = dataFrame[features]
	from pandas import json_normalize
	df_test = json_normalize(jsonData)	
	df_test = preprocessing(df_test)
	df_test = df_test[features]
	from alibi.explainers import AnchorTabular
	explainer = AnchorTabular(predict_fn, features)
	explainer.fit(X_train.values)
	df_test = df_test.values
	prediction = explainer.predictor(df_test.reshape(1, -1))[0]
	labelMap = config['labelMaps']
	if len(labelMap) > 0:
		prediction = list(labelMap.keys())[list(labelMap.values()).index(prediction)]
	else:
		prediction = str(prediction) 
	try:	   
		explanation = explainer.explain(df_test,threshold=0.85)
		if str(explanation.anchor) == '[]':
			anchor = 'NA'
			precision  = str(round(explanation.precision[0],2))
		else:
			anchor = '%s' % (' AND '.join(explanation.anchor))
			precision  = str(round(explanation.precision,2))
		coverage = explanation.coverage
	except Exception as e:
		print(e)
		anchor = 'NA'
		precision = 0
		coverage = 0
	df_test_waterfall = testdataFrame
	forceplot,multidecisionplot,waterfallplot = feature_importance_using_shap(model,X_train.head(300).values,features,class_names,df_test,df_test_waterfall)
	output_json = {""status"":""SUCCESS"",""data"":{""anchor"":anchor,""precision"":precision,""coverage"":coverage,""prediction"":prediction,""forceplot"":forceplot,""multidecisionplot"":multidecisionplot,""waterfallplot"":waterfallplot}}
	#print(output_json)
	output_json = json.dumps(output_json)
	print(""aion_ai_explanation:"",output_json)
	return(output_json)
if __name__ == '__main__':
	analysis_type = sys.argv[1]
	if analysis_type.lower() == 'global':
		ale_analysis()
	if analysis_type.lower() == 'local':
		data = 	sys.argv[2]	
		local_analysis(data)"
explainabledl_ai.py,"from script.inputprofiler import inputprofiler

def preprocessing(data):
	profilerobj = inputprofiler()
	data = profilerobj.run(data)
	data = data.astype(np.float64)    
	return(data)

import matplotlib.pyplot as plt
try:
	from sklearn.externals import joblib
except:
	import joblib 
import os,sys
import pandas as pd
from alibi.explainers import ALE,plot_ale
import io
import json
import urllib, base64
import numpy as np
from scipy.stats import linregress
from statistics import mean
from tensorflow.keras.models import load_model
from tensorflow.keras import backend as K
import tensorflow as tf
tf.compat.v1.disable_eager_execution()
def recall_m(y_true, y_pred):
	true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
	possible_positives = K.sum(K.round(K.clip(y_true, 0, 1)))
	recall = true_positives / (possible_positives + K.epsilon())
	return recall
	
def precision_m(y_true, y_pred):
	true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
	predicted_positives = K.sum(K.round(K.clip(y_pred, 0, 1)))
	precision = true_positives / (predicted_positives + K.epsilon())
	return precision

def f1_m(y_true, y_pred):
	precision = precision_m(y_true, y_pred)
	recall = recall_m(y_true, y_pred)
	return 2*((precision*recall)/(precision+recall+K.epsilon()))
	

def rmse_m(y_true, y_pred):
	return K.sqrt(K.mean(K.square(y_pred - y_true), axis=-1))

def r_square(y_true, y_pred):
	SS_res = K.sum(K.square(y_true-y_pred))
	SS_tot = K.sum(K.square(y_true-K.mean(y_true)))
	return (1 - SS_res/(SS_tot+K.epsilon()))

def get_ranked_values(explanation):
	ranked_shap_vals = []
	for cls_idx in range(len(explanation.shap_values)):
		this_ranking = (
			explanation.raw['importances'][str(cls_idx)]['ranked_effect'],
			explanation.raw['importances'][str(cls_idx)]['names']
			)
		ranked_shap_vals.append(this_ranking)

	return ranked_shap_vals
	
def feature_importance_using_shap(model,X,featuresNames,classes,x_test,problemType,modelname,x_test_waterfall):
	from alibi.explainers import KernelShap
	import shap
	shap.initjs()
	if hasattr(model, ""decision_function"") and problemType.lower() == 'classification':
		pred_fcn = model.decision_function
	elif hasattr(model, ""predict_proba"")  and problemType.lower() == 'classification':
		pred_fcn = lambda x: model.predict_proba(np.expand_dims(x, axis=2))
	else:
		if modelname == 'Neural Network':	
			pred_fcn = lambda x: model.predict(x)
		else:
			pred_fcn = lambda x: model.predict(np.expand_dims(x, axis=2))
	svm_explainer = KernelShap(pred_fcn,feature_names=featuresNames)
	xtest = x_test[0].reshape(1, -1)
	svm_explainer.fit(X,n_background_samples=100)
	svm_explanation  = svm_explainer.explain(xtest)
	try:
		idx = 0
		instance = x_test[0][None, :]
		if problemType.lower() == 'classification':
			if modelname == 'Neural Network':
				instance = x_test
			else:
				instance = np.expand_dims(x_test, axis=2)		
			pred = np.argmax(model.predict(instance),axis=1)
			class_idx = pred.item()
		else:
			instance = np.expand_dims(x_test, axis=2)
			pred = model.predict(instance)
			class_idx = 0
		if isinstance(svm_explainer.expected_value,np.ndarray):
			forceplot = shap.force_plot(svm_explainer.expected_value[class_idx],svm_explanation.shap_values[class_idx][idx,:],instance,feature_names=featuresNames,matplotlib=True,show=False)
		else:
			forceplot = shap.force_plot(svm_explainer.expected_value,svm_explanation.shap_values[0][idx,:],instance,feature_names=featuresNames,matplotlib=True,show=False)
		plt.tight_layout(pad = 0)
		image = io.BytesIO()
		plt.savefig(image, format='png')
		image.seek(0)
		string = base64.b64encode(image.read())          		
		image_64 = 'data:image/png;base64,' + urllib.parse.quote(string)
	except Exception as inst:
		print(inst)
		exc_type, exc_obj, exc_tb = sys.exc_info()
		fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
		print(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))
		image_64 = ''
	try:
		plt.clf()
		if isinstance(svm_explainer.expected_value,np.ndarray):
			r = shap.multioutput_decision_plot(svm_explainer.expected_value.tolist(),
                                   svm_explanation.shap_values,
                                   idx,
                                   feature_names=featuresNames,
                                   feature_order='importance',
                                   highlight=[class_idx],
                                   legend_labels=classes,
                                   return_objects=True,
                                   legend_location='lower right',show=False)
		else:
			expectedvalues = [svm_explainer.expected_value]
			
			
			r = shap.multioutput_decision_plot(expectedvalues,
                                   svm_explanation.shap_values,
                                   idx,
                                   feature_names=featuresNames,
								   highlight = [0],
                                   return_objects=True,
                                   legend_labels=['Value'],
                                   feature_order='importance',
                                   show=False)
		plt.tight_layout(pad = 0)
		image = io.BytesIO()
		plt.savefig(image, format='png')
		image.seek(0)
		string = base64.b64encode(image.read())          		
		image2_64 = 'data:image/png;base64,' + urllib.parse.quote(string)
	except Exception as inst:
		print(inst)
		exc_type, exc_obj, exc_tb = sys.exc_info()
		fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
		print(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))
		image2_64 = ''
	try:

		plt.clf()
		explainer = shap.DeepExplainer(model, X)

		shap_values = explainer.shap_values(x_test_waterfall.values)

		exp = shap.plots._waterfall.waterfall_legacy(explainer.expected_value[0].numpy(), shap_values[0][0],feature_names=featuresNames,show=False)
		image = io.BytesIO()
		plt.savefig(image, format='png', bbox_inches='tight')
		image.seek(0)
		string = base64.b64encode(image.read())
		image3_64 = 'data:image/png;base64,' + urllib.parse.quote(string)
	except Exception as inst:
		print(inst)
		exc_type, exc_obj, exc_tb = sys.exc_info()
		fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
		print(str(exc_type) + ' ' + str(fname) + ' ' + str(exc_tb.tb_lineno))
		image3_64 = ''
	return(image_64,image2_64,image3_64)
	
	

	
def feature_importance(xtrain,ytrain,xfeatures,yfeature,problemType):
	if problemType == 'classification':
		from sklearn.feature_selection import SelectFromModel
		from sklearn.ensemble import ExtraTreesClassifier
		selector = SelectFromModel(ExtraTreesClassifier())
		selector.fit(xtrain,ytrain)
		values = selector.estimator_.feature_importances_
	elif problemType == 'regression':
		from sklearn.feature_selection import SelectFromModel
		from sklearn.linear_model import Lasso
		selector = SelectFromModel(Lasso())
		selector.fit(xtrain,ytrain)
		values = np.abs(selector.estimator_.coef_)
	labels = xtrain.columns.tolist()
	dft = pd.DataFrame()
	dft['labels'] = labels
	dft['values'] = values
	maxrecord = dft.iloc[dft['values'].argmax()]
	mostimportantfeature = maxrecord['labels']
	f_imp = dft.to_json(orient='records')
	return(f_imp,mostimportantfeature)

	
def get_trust_score(prdictfn,proba_fun,X_train,y_train):
	from alibi.confidence import TrustScore
	ts = TrustScore(k_filter=10,alpha=.05,filter_type='distance_knn',leaf_size=40,metric='euclidean',dist_filter_type='point')
	ts.fit(X_train, y_train, classes=3)
	y_pred  = prdictfn(X_train)
	#y_prod = proba_fun(X_train)
	#probas = y_prod[range(len(y_pred)), y_pred]
	score, closest_class = ts.score(X_train, y_pred,k=2,dist_type='point')
	return(mean(score))
	
def getCounterFactuals(model,prdictfn,features,x_train,categories):
	from alibi.explainers import CounterFactualProto
	cat_vars_ord = {}
	categoryList=categories.keys().tolist()
	categoryCountList=categories.tolist()
	for i in range(0,len(categoryCountList)):
		cat_vars_ord[categoryList[i]] = categoryCountList[i]
	print(cat_vars_ord)	
	X = x_train[0].reshape((1,) + x_train[0].shape)
	shape = X.shape
	print(shape)
	beta = .01
	c_init = 1.
	c_steps = 5
	max_iterations = 500
	rng = (-1., 1.)  # scale features between -1 and 1
	feature_range = (x_train.min(axis=0), x_train.max(axis=0))
	cf = CounterFactualProto(prdictfn,shape,cat_vars=cat_vars_ord)
	explanation = cf.explain(X)
	print(explanation)
	
def getAnchorTabularofFirstRecord(predict_fn,features,X_train,X_test,labelMap, class_percent=None):
	threshold = 0.95
	from alibi.explainers import AnchorTabular
	explainer = AnchorTabular(predict_fn, features)
	explainer.fit(X_train.values)
	X_test = X_test.values
	anchors = []
	for idx in range(len(X_test)):	
		prediction = explainer.predictor(X_test[idx].reshape(1, -1))[0]
		if isinstance(prediction,np.ndarray):
			prediction = prediction[0]
		if len(labelMap) > 0:
			predictionstr = list(labelMap.keys())[list(labelMap.values()).index(prediction)]
		else:
			predictionstr = str(prediction)
		try:
			explanation = explainer.explain(X_test[idx],threshold=threshold)
		
			if str(explanation.anchor) == '[]':
				if class_percent and class_percent.get(prediction, 0.0) > threshold:
					anchor = f""Cannot explain the prediction of this class ({predictionstr}) since there is no salient subset of features that is necessary for the prediction to hold.  This behaviour is typical when the data is very imbalanced and is seen for the majority class in a classification problem.""
				else:
					anchor = f'Can not get the explaination for {predictionstr}.'
				precision  = explanation.precision[0]
			else:
				anchor = '%s' % (' AND '.join(explanation.anchor))
				precision  = explanation.precision
			coverage = explanation.coverage
		except Exception as inst:
			print(inst)
			exc_type, exc_obj, exc_tb = sys.exc_info()
			fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
			print(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))
			anchor = 'Reason Not found'
			precision = 0
			
		
		anchorjson = {}
		anchorjson['features'] = eval(str(features))
		anchorjson['values'] = eval(str(list(X_test[idx])))
		anchorjson['prediction'] = predictionstr
		anchorjson['precision'] = precision
		anchorjson['anchor'] = anchor
		anchors.append(anchorjson)
	return(json.dumps(anchors))
	
	
def ale_analysis():
	displaypath = os.path.join(os.path.dirname(os.path.abspath(__file__)),""etc"",""display.json"")
	with open(displaypath) as file:
		config = json.load(file)
	file.close()
	scoreParam = config['scoreParam']
	filename_dl = os.path.join(os.path.dirname(os.path.abspath(__file__)),""model"",config['saved_model'])
	if(scoreParam.lower() == 'rmse'):
		model = load_model(filename_dl,custom_objects={""rmse"": rmse_m},compile=False)
		model.compile(loss='binary_crossentropy',optimizer='Nadam', metrics=[rmse_m])
	elif(scoreParam.lower() == 'r2'):
		model = load_model(filename_dl,custom_objects={""r2"": r_square},compile=False)
		model.compile(loss='binary_crossentropy',optimizer='Nadam', metrics=[r_square])
	elif(scoreParam.lower() == 'recall'):
		model = load_model(filename_dl,custom_objects={""recall"": recall_m},compile=False)
		model.compile(loss='binary_crossentropy',optimizer='Nadam', metrics=[recall_m])
	elif(scoreParam.lower() == 'precision'):
		model = load_model(filename_dl,custom_objects={""precision"": precision_m},compile=False)
		model.compile(loss='binary_crossentropy',optimizer='Nadam', metrics=[precision_m])
	elif(scoreParam.lower() == 'roc_auc'):
		model = load_model(filename_dl,compile=False)
		model.compile(loss='binary_crossentropy',optimizer='Nadam', metrics=[tf.keras.metrics.AUC()])
	elif(scoreParam.lower() == 'f1_score'):
		model = load_model(filename_dl,custom_objects={""f1_score"": f1_m},compile=False)
		model.compile(loss='binary_crossentropy',optimizer='Nadam', metrics=[f1_m])	
	else:
		model = load_model(filename_dl)	
	if config['modelname']	== 'Neural Network':
		predict_fn = lambda x: model.predict(x)
	else:
		predict_fn = lambda x: model.predict(np.expand_dims(x, axis=2))
		
	predictproba_fn = lambda x: model.predict_proba(np.expand_dims(x, axis=2))
	dathPath = os.path.join(os.path.dirname(os.path.abspath(__file__)),'data','postprocesseddata.csv.gz')
	dataFrame=pd.read_csv(dathPath,compression='gzip')
	
	testdathPath = os.path.join(os.path.dirname(os.path.abspath(__file__)),'data','predicteddata.csv.gz')
	testdataFrame=pd.read_csv(testdathPath,compression='gzip')
	features = config['modelFeatures']#['SepalWidthCm','PetalLengthCm']

	targetfeature = config['targetFeature']#'Species'
	labelMap = config['labelMaps']
	targetData = dataFrame[targetfeature]
	if config['problemType'].lower() == 'regression':
		X_train = dataFrame[features]
		X_test = testdataFrame.head(5)
		X_test = X_test[features]
	else:
		valueCount=targetData.value_counts()
		class_percent = (valueCount/ len(targetData)).to_dict()
		categoryList=valueCount.keys().tolist()
		class_names = categoryList
		X_train = dataFrame[features]
		X_test = testdataFrame.groupby('predict').first().reset_index()
		X_test = X_test[features]
	f_imp,m_imp_f = feature_importance(X_train,targetData,features,targetfeature,config['problemType'].lower())
	if hasattr(model, ""decision_function"") and config['problemType'].lower() == 'classification':
		logit_fun_lr = model.decision_function
		try:
			logit_ale_lr = ALE(logit_fun_lr, feature_names=features, target_names=categoryList)
			logit_exp_lr = logit_ale_lr.explain(X_train.values) 
			values = logit_exp_lr.ale_values
			feature  = logit_exp_lr.feature_names 
			feature_values = logit_exp_lr.feature_values
			lines= []
			sentences = []
			for x in range(0,len(feature)):
				f_value = feature_values[x]
				value = values[x]
				lines= []
				for y in range(0,len(class_names)):
					line = []
					for z in value:
						cordinate = z[y]
						line.append(cordinate)
					lines.append(line)
				line = lines[0]
				slope1, intercept1, r_value, p_value, std_err = linregress(f_value,line)
				line = lines[1]
				slope2, intercept2, r_value, p_value, std_err = linregress(f_value,line)
				xi = (intercept1-intercept2) / (slope2-slope1)
				xi = round(xi,2)
				lastvalues = {}
				i = 0
				for line in lines:
					value = line[len(line)-1]
					lastvalues[class_names[i]] = value
					i = i+1
				Keymax = max(lastvalues, key=lastvalues.get)
				Keymin = min(lastvalues, key=lastvalues.get)
				Keymaxclass = list(labelMap.keys())[list(labelMap.values()).index(Keymax)]
				Keyminclass = list(labelMap.keys())[list(labelMap.values()).index(Keymin)]
				sentense = '<b>Effect of '+str(feature[x])+'</b><br>For data samples having  <b>'+str(feature[x])+'</b> >= <b>~'+str(xi)+'</b> ,there is a very high chance that they are of class <b>'+str(Keymaxclass)+'</b> '+targetfeature+'. For data samples having  <b>'+str(feature[x])+'</b> < <b>~'+str(xi)+'</b> there is a very high change that they are of class <b>'+str(Keyminclass)+'</b> '+targetfeature+'.'
				sentences.append(sentense)
		except:
			sentense = ''
			sentences.append(sentense)
			xi = 0
	elif hasattr(model, ""predict_proba"") and config['problemType'].lower() == 'classification':
		logit_fun_lr = lambda x: model.predict_proba(np.expand_dims(x, axis=2))
		logit_ale_lr = ALE(logit_fun_lr, feature_names=features, target_names=categoryList)
		print(model.__class__)
		
		try:
			logit_exp_lr = logit_ale_lr.explain(X_train.values) 
		except:
			X = np.expand_dims(X_train, axis=2)
			logit_exp_lr = logit_ale_lr.explain(X) 
		values = logit_exp_lr.ale_values
		feature  = logit_exp_lr.feature_names 
		feature_values = logit_exp_lr.feature_values
		lines= []
		sentences = []
		sentense = 'Graphs gives a feature value how much more(less) probability does the model assign to each class relative to mean prediction. This also means that any increase in relative probability of one class must result into a decrease in probability of another class.'
		sentences.append(sentense)
		xi = 0
	elif hasattr(model, ""predict""):
		try:
			if config['modelname']	== 'Neural Network':
				logit_fun_lr = lambda x: model.predict(x)		
			else:
				logit_fun_lr = lambda x: model.predict(np.expand_dims(x, axis=2))
			logit_ale_lr = ALE(logit_fun_lr, feature_names=features, target_names=['Value'])
			logit_exp_lr = logit_ale_lr.explain(X_train.values) 
			values = logit_exp_lr.ale_values
			feature  = logit_exp_lr.feature_names 
			feature_values = logit_exp_lr.feature_values
			lines= []
			sentences = []
			sentense = 'The ALE value corresponding to that feature value is difference to the mean effect of that feature. Put differently, the ALE value is the relative feature effect on the prediction at that feature value.'
			sentences.append(sentense)
			xi = 0
		except:
			xi = 0
			sentences = []
	if (len(features)%2 ==0):
		n_cols = int(len(features)/2)
	else:
		n_cols = int(len(features)/2)+1
	figheight = n_cols*3
	try:
		plot_ale(logit_exp_lr,n_cols=2, fig_kw={'figwidth': 8, 'figheight': figheight})
		plt.tight_layout(pad = 0)
		image = io.BytesIO()
		plt.savefig(image, format='png')
		image.seek(0)
		string = base64.b64encode(image.read())          		
		image_64 = 'data:image/png;base64,' + urllib.parse.quote(string)
	except:
		image_64 = ''
	#score = get_trust_score(model.predict,proba_fun_lr,X_train.values,targetData.values)
	if config['problemType'].lower() == 'classification':
		anchorjson = getAnchorTabularofFirstRecord(predict_fn,features,X_train,X_test,labelMap,class_percent)
	else:
		anchorjson = getAnchorTabularofFirstRecord(predict_fn,features,X_train,X_test,labelMap)
		#anchors=[]
		#anchorjson = json.dumps(anchors)
	#feature_importance_using_shap(model,X_train.values,features,class_names)
	#getCounterFactuals(model,predictproba_fn,features,X_train.values,valueCount)
	output_json = {""status"":""SUCCESS"",""data"":{""data"":image_64,""most_influencedfeature"":m_imp_f,""interceptionpoint"":xi,""sentences"":sentences,""feature_importance"":json.loads(f_imp),""anchorjson"":json.loads(anchorjson)}}
	output_json = json.dumps(output_json)
	print(""aion_ai_explanation:"",output_json)
	return(output_json)
    
def local_analysis(jsonData):
	jsonData = json.loads(jsonData)	
	displaypath = os.path.join(os.path.dirname(os.path.abspath(__file__)),""etc"",""display.json"")
	with open(displaypath) as file:
		config = json.load(file)
	file.close()
	scoreParam = config['scoreParam']
	filename_dl = os.path.join(os.path.dirname(os.path.abspath(__file__)),""model"",config['saved_model'])
	if(scoreParam.lower() == 'rmse'):
		model = load_model(filename_dl,custom_objects={""rmse"": rmse_m},compile=False)
		model.compile(loss='binary_crossentropy',optimizer='Nadam', metrics=[rmse_m])
	elif(scoreParam.lower() == 'r2'):
		model = load_model(filename_dl,custom_objects={""r2"": r_square},compile=False)
		model.compile(loss='binary_crossentropy',optimizer='Nadam', metrics=[r_square])
	elif(scoreParam.lower() == 'recall'):
		model = load_model(filename_dl,custom_objects={""recall"": recall_m},compile=False)
		model.compile(loss='binary_crossentropy',optimizer='Nadam', metrics=[recall_m])
	elif(scoreParam.lower() == 'precision'):
		model = load_model(filename_dl,custom_objects={""precision"": precision_m},compile=False)
		model.compile(loss='binary_crossentropy',optimizer='Nadam', metrics=[precision_m])
	elif(scoreParam.lower() == 'roc_auc'):
		model = load_model(filename_dl,compile=False)
		model.compile(loss='binary_crossentropy',optimizer='Nadam', metrics=[tf.keras.metrics.AUC()])
	elif(scoreParam.lower() == 'f1_score'):
		model = load_model(filename_dl,custom_objects={""f1_score"": f1_m},compile=False)
		model.compile(loss='binary_crossentropy',optimizer='Nadam', metrics=[f1_m])	
	else:
		model = load_model(filename_dl)
	if config['modelname']	== 'Neural Network':
		predict_fn = lambda x: model.predict(x)
	else:
		predict_fn = lambda x: model.predict(np.expand_dims(x, axis=2))

	dathPath = os.path.join(os.path.dirname(os.path.abspath(__file__)),'data','postprocesseddata.csv.gz')
	dataFrame=pd.read_csv(dathPath,compression='gzip')
	testdathPath = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'data', 'predicteddata.csv.gz')
	testdataFrame = pd.read_csv(testdathPath,compression='gzip')
	features = config['modelFeatures']#['SepalWidthCm','PetalLengthCm']

	targetfeature = config['targetFeature']#'Species'
	
	targetData = dataFrame[targetfeature]
	valueCount=targetData.value_counts()
	categoryList=valueCount.keys().tolist()
	class_names = categoryList
	#class_names = class_names.sort()	
	X_train = dataFrame[features]
	from pandas import json_normalize
	df_test = json_normalize(jsonData)	
	df_test = preprocessing(df_test)
	df_test = df_test[features]
	from alibi.explainers import AnchorTabular
	explainer = AnchorTabular(predict_fn, features)
	explainer.fit(X_train.values)
	df_test = df_test.values
	prediction = explainer.predictor(df_test.reshape(1, -1))[0]
	if isinstance(prediction,np.ndarray):
		prediction = prediction[0]
	labelMap = config['labelMaps']
	if len(labelMap) > 0:
		prediction = list(labelMap.keys())[list(labelMap.values()).index(prediction)]
	else:
		prediction = str(prediction)
	
	try:
		explanation = explainer.explain(df_test.reshape(1, -1),threshold=0.85)
		if str(explanation.anchor) == '[]':
			anchor = 'NA'
			precision  = explanation.precision[0]
		else:
			anchor = '%s' % (' AND '.join(explanation.anchor))
			precision  = explanation.precision
		coverage = explanation.coverage
	except Exception as inst:
		print(inst)
		exc_type, exc_obj, exc_tb = sys.exc_info()
		fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
		print(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))
		anchor = 'NA'
		precision  = 0
		coverage = 0
	df_test_waterfall = testdataFrame
	forceplot,multidecisionplot,waterfallplot = feature_importance_using_shap(model,X_train.head(300).values,features,class_names,df_test,config['problemType'],config['modelname'],df_test_waterfall)
	output_json = {""status"":""SUCCESS"",""data"":{""anchor"":anchor,""precision"":precision,""coverage"":coverage,""prediction"":prediction,""forceplot"":forceplot,""multidecisionplot"":multidecisionplot,'waterfallplot':waterfallplot}}
	print(output_json)
	output_json = json.dumps(output_json)
	print(""aion_ai_explanation:"",output_json)
	return(output_json)
	
if __name__ == '__main__':
	analysis_type = sys.argv[1]
	if analysis_type.lower() == 'global':
		ale_analysis()
	if analysis_type.lower() == 'local':
		data = 	sys.argv[2]	
		#jsonData = json.loads(data)	
		local_analysis(data)	"
__init__.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''"
dataProfiler.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import io
import json
import logging
import pandas as pd
import sys
import numpy as np
from pathlib import Path
from word2number import w2n
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import OrdinalEncoder
from sklearn.preprocessing import OneHotEncoder
from sklearn.impute import SimpleImputer, KNNImputer
from sklearn.pipeline import Pipeline, FeatureUnion
from sklearn.preprocessing import FunctionTransformer
from sklearn.preprocessing import MinMaxScaler,StandardScaler
from sklearn.preprocessing import PowerTransformer
from sklearn.compose import ColumnTransformer
from sklearn.base import TransformerMixin
from sklearn.ensemble import IsolationForest
from category_encoders import TargetEncoder
import scipy
try:
    import transformations.data_profiler_functions as cs
except:
    import data_profiler_functions as cs

if 'AION' in sys.modules:
    try:
        from appbe.app_config import DEBUG_ENABLED
    except:
        DEBUG_ENABLED = False
else:
    DEBUG_ENABLED = False
log_suffix = f'[{Path(__file__).stem}] '


class profiler():

    def __init__(self, xtrain, ytrain=None, target=None, encode_target = False, config={}, keep_unprocessed=[],data_path=None,log=None):
        if not isinstance(xtrain, pd.DataFrame):
            raise ValueError(f'{log_suffix}supported data type is pandas.DataFrame but provide data is of {type(xtrain)} type')
        if xtrain.empty:
            raise ValueError(f'{log_suffix}Data frame is empty')
        if target and target in xtrain.columns:
            self.target = xtrain[target]
            xtrain.drop(target, axis=1, inplace=True)
            self.target_name = target
        elif ytrain:
            self.target = ytrain
            self.target_name = 'target'
        else:
            self.target = pd.Series()
            self.target_name = None
        self.data_path = data_path
        self.encode_target = encode_target
        self.label_encoder = None
        self.data = xtrain
        self.keep_unprocessed = keep_unprocessed
        self.colm_type = {}
        for colm, infer_type in zip(self.data.columns, self.data.dtypes):
            self.colm_type[colm] = infer_type
        self.numeric_feature = []
        self.cat_feature = []
        self.text_feature = []
        self.wordToNumericFeatures = []
        self.added_features = []
        self.pipeline = []
        self.dropped_features = {}
        self.train_features_type={}
        self.__update_type()
        self.config = config
        self.featureDict = config.get('featureDict', [])
        self.output_columns = []
        self.feature_expender = []
        self.text_to_num = {}
        self.force_numeric_conv = []
        if log:
            self.log = log
        else:
            self.log = logging.getLogger('eion')
        self.type_conversion = {}

    def log_dataframe(self, msg=None):                    
        buffer = io.StringIO()                    
        self.data.info(buf=buffer)                    
        if msg:                    
            log_text = f'Data frame after {msg}:'                    
        else:                    
            log_text = 'Data frame:'                    
        log_text += '\n\t'+str(self.data.head(2)).replace('\n','\n\t')                    
        log_text += ('\n\t' + buffer.getvalue().replace('\n','\n\t'))                    
        self.log.info(log_text)

    def transform(self):
        if self.is_target_available():
            if self.target_name:
                self.log.info(f""Target feature name: '{self.target_name}'"")
            self.log.info(f""Target feature size: {len(self.target)}"")
        else:
            self.log.info(f""Target feature not present"")
        self.log_dataframe()
        print(self.data.info())
        try:
            self.process()
        except Exception as e:            
            self.log.error(e, exc_info=True)
            raise
        pipe = FeatureUnion(self.pipeline)
        try:
            if self.text_feature:
                from text.textProfiler import set_pretrained_model
                set_pretrained_model(pipe)
            conversion_method = self.get_conversion_method()
            process_data = pipe.fit_transform(self.data, y=self.target)
            # save for testing
            if DEBUG_ENABLED:
                if isinstance(process_data, scipy.sparse.spmatrix):
                    process_data = process_data.toarray()        
                df = pd.DataFrame(process_data)
                df.to_csv('debug_preprocessed.csv', index=False)
            if self.text_feature and conversion_method == 'latentsemanticanalysis':
                n_size = self.get_tf_idf_output_size( pipe)
                dimensions = self.get_tf_idf_dimensions()
                if n_size < dimensions or n_size > dimensions:
                    dimensions = n_size
                from sklearn.decomposition import TruncatedSVD
                reducer = TruncatedSVD( n_components = dimensions)
                reduced_data = reducer.fit_transform( process_data[:,-n_size:])
                text_process_idx = [t[0] for t in pipe.transformer_list].index('text_process')
                pipe.transformer_list[text_process_idx][1].steps.append(('feature_reducer',reducer))
                if isinstance(process_data, scipy.sparse.spmatrix):
                    process_data = process_data.toarray()
                process_data = np.concatenate((process_data[:,:-n_size], reduced_data), axis=1)
                last_step = self.feature_expender.pop()
                self.feature_expender.append({'feature_reducer':list(last_step.values())[0]})
                    
        except EOFError as e:
            if ""Compressed file ended before the end-of-stream marker was reached"" in str(e):
                raise EOFError('Pretrained model is not downloaded properly')

        self.update_output_features_names(pipe)
        if isinstance(process_data, scipy.sparse.spmatrix):
            process_data = process_data.toarray()        
        df = pd.DataFrame(process_data, index=self.data.index, columns=self.output_columns)
        
        if self.is_target_available() and self.target_name:
            df[self.target_name] = self.target
        if self.keep_unprocessed:
            df[self.keep_unprocessed] = self.data[self.keep_unprocessed]
        self.log_numerical_fill()
        self.log_categorical_fill()
        self.log_normalization()
        return df, pipe, self.label_encoder
    
    def log_type_conversion(self):
        if self.log:
            self.log.info('-----------  Inspecting Features -----------')
            self.log.info('-----------  Type Conversion -----------')
            count = 0
            for k, v in self.type_conversion.items():
                if v[0] != v[1]:
                    self.log.info(f'-------> {k} -> from {v[0]} to {v[1]} : {v[2]}')
            self.log.info('Status:- |... Feature inspection done')
    
    def check_config(self):
        removeDuplicate = self.config.get('removeDuplicate', False)
        self.config['removeDuplicate'] = cs.get_boolean(removeDuplicate)
        self.config['misValueRatio'] = float(self.config.get('misValueRatio', cs.default_config['misValueRatio']))
        self.config['numericFeatureRatio'] = float(self.config.get('numericFeatureRatio', cs.default_config['numericFeatureRatio']))
        self.config['categoryMaxLabel'] = int(self.config.get('categoryMaxLabel', cs.default_config['categoryMaxLabel']))
        featureDict = self.config.get('featureDict', [])
        if isinstance(featureDict, dict):
            self.config['featureDict'] = []
        if isinstance(featureDict, str):
            self.config['featureDict'] = []
                
    def process(self):
        #remove duplicate not required at the time of prediction
        self.check_config()
        self.remove_constant_feature()
        self.remove_empty_feature(self.config['misValueRatio'])
        self.remove_index_features()
        self.dropna()
        if self.config['removeDuplicate']:
            self.drop_duplicate()
        #self.check_categorical_features()
        #self.string_to_numeric()
        self.process_target()
        self.train_features_type = {k:v for k,v in zip(self.data.columns, self.data.dtypes)}
        self.parse_process_step_config()
        self.process_drop_fillna()
        self.log_type_conversion()
        self.update_num_fill_dict()
        if DEBUG_ENABLED:
            print(self.num_fill_method_dict)
        self.update_cat_fill_dict()
        self.create_pipeline()
        self.text_pipeline(self.config)
        self.apply_outlier()
        if DEBUG_ENABLED:
            self.log.info(self.process_method)
            self.log.info(self.pipeline)
    
    def is_target_available(self):
        return (isinstance(self.target, pd.Series) and not self.target.empty) or len(self.target)
    
    def process_target(self, operation='encode', arg=None):
        if self.is_target_available():
            # drop null values
            self.__update_index( self.target.notna(), 'target')
            if self.encode_target:
                self.label_encoder = LabelEncoder()
                self.target = self.label_encoder.fit_transform(self.target)
                return self.label_encoder
        return None
        
    def is_target_column(self, column):
        return column == self.target_name
    
    def fill_default_steps(self):

        num_fill_method = cs.get_one_true_option(self.config.get('numericalFillMethod',{}))
        normalization_method = cs.get_one_true_option(self.config.get('normalization',{}),'none')
        for colm in self.numeric_feature:
            if num_fill_method:
                self.fill_missing_value_method(colm, num_fill_method.lower())
            if normalization_method:
                self.fill_normalizer_method(colm, normalization_method.lower())
        
        cat_fill_method = cs.get_one_true_option(self.config.get('categoricalFillMethod',{}))
        cat_encode_method = cs.get_one_true_option(self.config.get('categoryEncoding',{}))
        for colm in self.cat_feature:
            if cat_fill_method:
                self.fill_missing_value_method(colm, cat_fill_method.lower())
            if cat_encode_method:
                self.fill_encoder_value_method(colm, cat_encode_method.lower(), default=True)
    
    def parse_process_step_config(self):
        self.process_method = {}
        user_provided_data_type = {}
        for feat_conf in self.featureDict:
            colm = feat_conf.get('feature', '')
            if not self.is_target_column(colm):
                if colm in self.data.columns:
                    user_provided_data_type[colm] = feat_conf['type']
        if user_provided_data_type:
            self.update_user_provided_type(user_provided_data_type)
                    
        self.fill_default_steps()
        for feat_conf in self.featureDict:
            colm = feat_conf.get('feature', '')
            if not self.is_target_column(colm):
                if colm in self.data.columns:
                    if feat_conf.get('fillMethod', None):
                        self.fill_missing_value_method(colm, feat_conf['fillMethod'].lower())
                    if feat_conf.get('categoryEncoding', None):
                        self.fill_encoder_value_method(colm, feat_conf['categoryEncoding'].lower())
                    if feat_conf.get('normalization', None):
                        self.fill_normalizer_method(colm, feat_conf['normalization'].lower())
                    if feat_conf.get('outlier', None):
                        self.fill_outlier_method(colm, feat_conf['outlier'].lower())
                    if feat_conf.get('outlierOperation', None):
                        self.fill_outlier_process(colm, feat_conf['outlierOperation'].lower())
        
    
    def get_tf_idf_dimensions(self):
        dim = cs.get_one_true_option(self.config.get('embeddingSize',{}).get('TF_IDF',{}), 'default')
        return {'default': 300, '50d':50, '100d':100, '200d':200, '300d':300}[dim]

    def get_tf_idf_output_size(self, pipe):
        start_index = {}
        for feat_expender in self.feature_expender:
            if feat_expender:
                step_name = list(feat_expender.keys())[0]
                index = list(feat_expender.values())[0]
                for transformer_step in pipe.transformer_list:
                    if transformer_step[1].steps[-1][0] in step_name:
                        start_index[index] = {transformer_step[1].steps[-1][0]: transformer_step[1].steps[-1][1].get_feature_names_out()}    
        if start_index:
            for key,value in start_index.items():
                for k,v in value.items():
                    if k == 'vectorizer':
                        return len(v)
        return 0

    def update_output_features_names(self, pipe):
        columns = self.output_columns
        start_index = {}
        index_shifter = 0
        for feat_expender in self.feature_expender:
            if feat_expender:
                step_name = list(feat_expender.keys())[0]
                for key,value in start_index.items():
                    for k,v in value.items():
                        index_shifter += len(v)
                index = list(feat_expender.values())[0]
                for transformer_step in pipe.transformer_list:
                    if transformer_step[1].steps[-1][0] in step_name:
                        start_index[index + index_shifter] = {transformer_step[1].steps[-1][0]: transformer_step[1].steps[-1][1].get_feature_names_out()}
        #print(start_index)
        if start_index:
            for key,value in start_index.items():
                for k,v in value.items():
                    if k == 'vectorizer':
                        v = [f'{x}_vect' for x in v]    
                    self.output_columns[key:key] = v
                    self.added_features = [*self.added_features, *v]
                    
                    
    def text_pipeline(self, conf_json):

        if self.text_feature:
            from text.textProfiler import textProfiler
            from text.textProfiler import textCombine
            pipeList = []
            text_pipe = Pipeline([ 
                ('selector', ColumnTransformer([
                        (""selector"", ""passthrough"", self.text_feature)
                        ], remainder=""drop"")),
                (""text_fillNa"",SimpleImputer(strategy='constant', fill_value='')),
                (""merge_text_feature"", textCombine())])
            obj = textProfiler()
            pipeList = obj.textProfiler(conf_json, pipeList, self.data_path)
            last_step = ""merge_text_feature""
            for pipe_elem in pipeList:
                text_pipe.steps.append((pipe_elem[0], pipe_elem[1]))
                last_step = pipe_elem[0]
            text_transformer = ('text_process', text_pipe)
            self.pipeline.append(text_transformer)
            self.feature_expender.append({last_step:len(self.output_columns)})
            
    def create_pipeline(self):
        num_pipe = {}
        for k,v in self.num_fill_method_dict.items():
            for k1,v1 in v.items():
                if k1 and k1 != 'none':
                    num_pipe[f'{k}_{k1}'] = Pipeline([
                        ('selector', ColumnTransformer([
                                (""selector"", ""passthrough"", v1)
                                ], remainder=""drop"")),
                        (k, self.get_num_imputer(k)),
                        (k1, self.get_num_scaler(k1))
                    ])
                else:
                    num_pipe[f'{k}_{k1}'] = Pipeline([
                        ('selector', ColumnTransformer([
                                (""selector"", ""passthrough"", v1)
                                ], remainder=""drop"")),
                        (k, self.get_num_imputer(k))
                    ])
                self.output_columns.extend(v1)
        cat_pipe = {}
        for k,v in self.cat_fill_method_dict.items():
            for k1,v1 in v.items():
                cat_pipe[f'{k}_{k1}'] = Pipeline([
                    ('selector', ColumnTransformer([
                            (""selector"", ""passthrough"", v1)
                            ], remainder=""drop"")),
                    (k, self.get_cat_imputer(k)),
                    (k1, self.get_cat_encoder(k1))
                ])                   
                if k1 not in ['onehotencoding']:
                    self.output_columns.extend(v1)
                else:
                    self.feature_expender.append({k1:len(self.output_columns)})
        for key, pipe in num_pipe.items():            
            self.pipeline.append((key, pipe))
        for key, pipe in cat_pipe.items():            
            self.pipeline.append((key, pipe))
    
    ""Drop: feature during training but replace with zero during prediction ""
    def process_drop_fillna(self):
        drop_column = []
        if 'numFill' in self.process_method.keys():
            for col, method in self.process_method['numFill'].items():
                if method == 'drop':
                    self.process_method['numFill'][col] = 'zero'
                    drop_column.append(col)
        if 'catFill' in self.process_method.keys():
            for col, method in self.process_method['catFill'].items():
                if method == 'drop':
                    self.process_method['catFill'][col] = 'zero'
                    drop_column.append(col)
        if drop_column:
            self.data.dropna(subset=drop_column, inplace=True)

    def update_num_fill_dict(self):
        self.num_fill_method_dict = {}
        if 'numFill' in self.process_method.keys():
            for f in cs.supported_method['fillNa']['numeric']:
                self.num_fill_method_dict[f] = {}
                for en in cs.supported_method['normalization']:
                    self.num_fill_method_dict[f][en] = []
                    for col in self.numeric_feature:
                        numFillDict = self.process_method.get('numFill',{})
                        normalizationDict = self.process_method.get('normalization',{})
                        if f == numFillDict.get(col, '') and en == normalizationDict.get(col,''):
                            self.num_fill_method_dict[f][en].append(col)
                    if not self.num_fill_method_dict[f][en] :
                        del self.num_fill_method_dict[f][en]
                if not self.num_fill_method_dict[f]:
                    del self.num_fill_method_dict[f]

    def update_cat_fill_dict(self):
        self.cat_fill_method_dict = {}
        if 'catFill' in self.process_method.keys():
            for f in cs.supported_method['fillNa']['categorical']:
                self.cat_fill_method_dict[f] = {}
                for en in cs.supported_method['categoryEncoding']:
                    self.cat_fill_method_dict[f][en] = []
                    for col in self.cat_feature:
                        catFillDict = self.process_method.get('catFill',{})
                        catEncoderDict = self.process_method.get('catEncoder',{})
                        if f == catFillDict.get(col, '') and en == catEncoderDict.get(col,''):
                            self.cat_fill_method_dict[f][en].append(col)
                    if not self.cat_fill_method_dict[f][en] :
                        del self.cat_fill_method_dict[f][en]
                if not self.cat_fill_method_dict[f]:
                    del self.cat_fill_method_dict[f]


    def __update_type(self):
        self.numeric_feature = list( set(self.data.select_dtypes(include='number').columns.tolist()) - set(self.keep_unprocessed))
        self.cat_feature = list( set(self.data.select_dtypes(include='category').columns.tolist()) - set(self.keep_unprocessed))
        self.text_feature = list( set(self.data.select_dtypes(include='object').columns.tolist()) - set(self.keep_unprocessed))
        self.datetime_feature = list( set(self.data.select_dtypes(include='datetime').columns.tolist()) - set(self.keep_unprocessed))

    def update_user_provided_type(self, data_types):
        allowed_types = ['numerical','categorical', 'text']
        skipped_types = ['date','index']
        type_mapping = {'numerical': np.dtype('float'), 'float': np.dtype('float'),'categorical': 'category', 'text':np.dtype('object'),'date':'datetime64[ns]','index': np.dtype('int64'),}
        mapped_type = {k:type_mapping[v] for k,v in data_types.items() if v in allowed_types}
        skipped_features = [k for k,v in data_types.items() if v in skipped_types]
        if skipped_features:
            self.keep_unprocessed.extend( skipped_features)
            self.keep_unprocessed = list(set(self.keep_unprocessed))
        self.update_type(mapped_type, 'user provided data type')
        
    def get_type(self, as_list=False):
        if as_list:
            return [self.colm_type.values()]
        else:
            return self.colm_type
    
    def update_type(self, data_types={}, reason=''):
        invalid_features = [x for x in data_types.keys() if x not in self.data.columns]
        if invalid_features:
            valid_feat = list(set(data_types.keys()) - set(invalid_features))
            valid_feat_type = {k:v for k,v in data_types if k in valid_feat}
        else:
            valid_feat_type = data_types
        for k,v in valid_feat_type.items():
            if v != self.colm_type[k].name:
                try:
                    self.data.astype({k:v})
                    self.colm_type.update({k:self.data[k].dtype})
                    self.type_conversion[k] = (self.colm_type[k] , v, 'Done', reason)
                except:
                    self.type_conversion[k] = (self.colm_type[k] , v, 'Fail', reason)
                    if v == np.dtype('float64') and self.colm_type[k].name == 'object':
                        if self.check_numeric( k):
                            self.data[ k] = pd.to_numeric(self.data[ k], errors='coerce')
                            self.type_conversion[k] = (self.colm_type[k] , v, 'Done', reason)
                            self.force_numeric_conv.append( k)
                        else:
                            raise ValueError(f""Can not convert '{k}' feature to 'numeric' as numeric values are less than {self.config['numericFeatureRatio'] * 100}%"")
        self.data = self.data.astype(valid_feat_type)
        self.__update_type()
        
    def check_numeric(self, feature):
        col_values = self.data[feature].copy()
        col_values = pd.to_numeric(col_values, errors='coerce')
        if col_values.count() >= (self.config['numericFeatureRatio'] * len(col_values)):
            return True
        return False

    def string_to_numeric(self):
        def to_number(x):
            try:
                return w2n.word_to_num(x)
            except:
                return np.nan
        for col in self.text_feature:
            col_values = self.data[col].copy()
            col_values = pd.to_numeric(col_values, errors='coerce')
            if col_values.count() >= (self.config['numericFeatureRatio'] * len(col_values)):
                self.text_to_num[col] = 'float64'
                self.wordToNumericFeatures.append(col)
        if self.text_to_num:
            columns = list(self.text_to_num.keys())
            self.data[columns] = self.data[columns].apply(lambda x: to_number(x), axis=1, result_type='broadcast')
            self.update_type(self.text_to_num)
        self.log.info('-----------  Inspecting Features -----------')
        for col in self.text_feature:
            self.log.info(f'-------> Feature : {col}')
            if col in self.text_to_num:
                self.log.info('----------> Numeric Status :Yes')
                self.log.info('----------> Data Type Converting to numeric :Yes')
            else:
                self.log.info('----------> Numeric Status :No')
        self.log.info(f'\nStatus:- |... Feature inspection done for numeric data: {len(self.text_to_num)} feature(s) converted to numeric')
        self.log.info(f'\nStatus:- |... Feature word to numeric treatment done: {self.text_to_num}')
        self.log.info('-----------   Inspecting Features End -----------')
            
    def check_categorical_features(self):
        num_data = self.data.select_dtypes(include='number')
        num_data_unique = num_data.nunique()
        num_to_cat_col = {}
        for i, value in enumerate(num_data_unique):
            if value < self.config['categoryMaxLabel']:
                num_to_cat_col[num_data_unique.index[i]] = 'category'
        if num_to_cat_col:
            self.update_type(num_to_cat_col, 'numerical to categorical')
        str_to_cat_col = {}
        str_data = self.data.select_dtypes(include='object')
        str_data_unique = str_data.nunique()
        for i, value in enumerate(str_data_unique):
            if value < self.config['categoryMaxLabel']:
                str_to_cat_col[str_data_unique.index[i]] = 'category'
        for colm in str_data.columns:
            if self.data[colm].str.len().max() < cs.default_config['str_to_cat_len_max']:
                str_to_cat_col[colm] = 'category'
        if str_to_cat_col:
            self.update_type(str_to_cat_col, 'text to categorical')        
        
    def drop_features(self, features=[], reason='unspecified'):
        if isinstance(features, str):
            features = [features]
        feat_to_remove = [x for x in features if x in self.data.columns]
        if feat_to_remove:
            self.data.drop(feat_to_remove, axis=1, inplace=True)
            for feat in feat_to_remove:
                self.dropped_features[feat] = reason        
            self.log_drop_feature(feat_to_remove, reason)
            self.__update_type()
    
    def __update_index(self, indices, reason=''):
        if isinstance(indices, (bool, pd.core.series.Series)) and len(indices) == len(self.data):
            if not indices.all():
                self.data = self.data[indices]
                if self.is_target_available():
                    self.target = self.target[indices]
                self.log_update_index((indices == False).sum(), reason)
    
    def dropna(self):
        self.data.dropna(how='all',inplace=True)
        if self.is_target_available():
            self.target = self.target[self.data.index]

    def drop_duplicate(self):
        index = self.data.duplicated(keep='first')
        self.__update_index( ~index, reason='duplicate')

    def log_drop_feature(self, columns, reason):
        self.log.info(f'---------- Dropping {reason} features ----------')
        self.log.info(f'\nStatus:- |... {reason} feature treatment done: {len(columns)} {reason} feature(s) found')
        self.log.info(f'-------> Drop Features: {columns}')
        self.log.info(f'Data Frame Shape After Dropping (Rows,Columns): {self.data.shape}')
    
    def log_update_index(self,count, reason):
        if count:
            if reason == 'target':
                self.log.info('-------> Null Target Rows Drop:')
                self.log.info(f'------->     Dropped rows count: {count}')
            elif reason == 'duplicate':
                self.log.info('-------> Duplicate Rows Drop:')
                self.log.info(f'------->     Dropped rows count: {count}')
            elif reason == 'outlier':
                self.log.info(f'------->     Dropped rows count: {count}')
                self.log.info('Status:- |... Outlier treatment done')
            self.log.info(f'------->     Data Frame Shape After Dropping samples(Rows,Columns): {self.data.shape}')
    
    def log_normalization(self):
        if self.process_method.get('normalization', None):
            self.log.info(f'\nStatus:- !... Normalization treatment done')
            for method in cs.supported_method['normalization']:
                cols = []
                for col, m in self.process_method['normalization'].items():
                    if m == method:
                        cols.append(col)
                if cols and method != 'none':
                    self.log.info(f'Running {method} on features: {cols}')

    def log_numerical_fill(self):
        if self.process_method.get('numFill', None):
            self.log.info(f'\nStatus:- !... Fillna for numeric feature done')
            for method in cs.supported_method['fillNa']['numeric']:
                cols = []
                for col, m in self.process_method['numFill'].items():
                    if m == method:
                        cols.append(col)
                if cols:
                    self.log.info(f'-------> Running {method} on features: {cols}')

    def log_categorical_fill(self):
        if self.process_method.get('catFill', None):
            self.log.info(f'\nStatus:- !... FillNa for categorical feature done')
            for method in cs.supported_method['fillNa']['categorical']:
                cols = []
                for col, m in self.process_method['catFill'].items():
                    if m == method:
                        cols.append(col)
                if cols:
                    self.log.info(f'-------> Running {method} on features: {cols}')
    
    
    def remove_constant_feature(self):
        unique_values = self.data.nunique()
        constant_features = []
        for i, value in enumerate(unique_values):
            if value == 1:
                constant_features.append(unique_values.index[i])
        if constant_features:
            self.drop_features(constant_features, ""constant"")
        
    def remove_empty_feature(self, misval_ratio=1.0):
        missing_ratio = self.data.isnull().sum() / len(self.data)
        missing_ratio = {k:v for k,v in zip(self.data.columns, missing_ratio)}
        empty_features = [k for k,v in missing_ratio.items() if v > misval_ratio]
        if empty_features:
            self.drop_features(empty_features, ""empty"")

    def remove_index_features(self):
        index_feature = []
        
        for feat in self.numeric_feature:
            if self.data[feat].nunique() == len(self.data):
               #if (self.data[feat].sum()- sum(self.data.index) == (self.data.iloc[0][feat]-self.data.index[0])*len(self.data)):
                # index feature can be time based 
                count = (self.data[feat] - self.data[feat].shift() == 1).sum()
                if len(self.data) - count == 1:
                    index_feature.append(feat)
        self.drop_features(index_feature, ""index"")

    def fill_missing_value_method(self, colm, method):
        if colm in self.numeric_feature:
            if method in cs.supported_method['fillNa']['numeric']:
                if 'numFill' not in self.process_method.keys():
                    self.process_method['numFill'] = {}
                if method == 'na' and self.process_method['numFill'].get(colm, None):
                    pass # don't overwrite
                else:
                    self.process_method['numFill'][colm] = method
        if colm in self.cat_feature:
            if method in cs.supported_method['fillNa']['categorical']:
                if 'catFill' not in self.process_method.keys():
                    self.process_method['catFill'] = {}
                if method == 'na' and self.process_method['catFill'].get(colm, None):
                    pass
                else:
                    self.process_method['catFill'][colm] = method
    
    def check_encoding_method(self, method, colm,default=False):
        if not self.is_target_available() and (method.lower() == list(cs.target_encoding_method_change.keys())[0]):
            method = cs.target_encoding_method_change[method.lower()]
            if default:
                self.log.info(f""Applying Label encoding instead of Target encoding on feature '{colm}' as target feature is not present"")
        return method
    
    def fill_encoder_value_method(self,colm, method, default=False):
        if colm in self.cat_feature:
            if method.lower() in cs.supported_method['categoryEncoding']:
                if 'catEncoder' not in self.process_method.keys():
                    self.process_method['catEncoder'] = {}
                if method == 'na' and self.process_method['catEncoder'].get(colm, None):
                    pass
                else:
                    self.process_method['catEncoder'][colm] = self.check_encoding_method(method, colm,default)
            else:
                self.log.info(f""-------> categorical encoding method '{method}' is not supported. supported methods are {cs.supported_method['categoryEncoding']}"")

    def fill_normalizer_method(self,colm, method):
        if colm in self.numeric_feature:
            if method in cs.supported_method['normalization']:
                if 'normalization' not in self.process_method.keys():
                    self.process_method['normalization'] = {}
                if (method == 'na' or method == 'none')  and self.process_method['normalization'].get(colm, None):
                    pass
                else:
                    self.process_method['normalization'][colm] = method
            else:
                self.log.info(f""-------> Normalization method '{method}' is not supported. supported methods are {cs.supported_method['normalization']}"")

    def apply_outlier(self):
        inlier_indice = np.array([True] * len(self.data))
        if self.process_method.get('outlier', None):
            self.log.info('-------> Feature wise outlier detection:')
            for k,v in self.process_method['outlier'].items():
                if k in self.numeric_feature:
                    if v == 'iqr':
                        index = cs.findiqrOutlier(self.data[k])
                    elif v == 'zscore':
                        index = cs.findzscoreOutlier(self.data[k])
                    elif v == 'disable':
                        index = None
                    if k in self.process_method['outlierOperation'].keys():
                        if self.process_method['outlierOperation'][k] == 'dropdata':
                            inlier_indice = np.logical_and(inlier_indice, index)
                        elif self.process_method['outlierOperation'][k] == 'average':
                            mean = self.data[k].mean()
                            index = ~index
                            self.data.loc[index,[k]] = mean
                            self.log.info(f'------->     {k}: Replaced by Mean {mean}: total replacement {index.sum()}')
                        elif self.process_method['outlierOperation'][k] == 'nochange' and v != 'disable':
                            self.log.info(f'------->     Total outliers in ""{k}"": {(~index).sum()}')
        if self.config.get('outlierDetection',None):
            if self.config['outlierDetection'].get('IsolationForest','False') == 'True':
                if self.numeric_feature:
                    index = cs.findiforestOutlier(self.data[self.numeric_feature])
                    inlier_indice = np.logical_and(inlier_indice, index)
                    self.log.info(f'-------> Numeric feature based Outlier detection(IsolationForest):')
        if inlier_indice.sum() != len(self.data):
            self.__update_index(inlier_indice, 'outlier')

    def fill_outlier_method(self,colm, method):
        if colm in self.numeric_feature:
            if method in cs.supported_method['outlier_column_wise']:
                if 'outlier' not in self.process_method.keys():
                    self.process_method['outlier'] = {}
                if method not in ['Disable', 'na']:
                    self.process_method['outlier'][colm] = method
            else:
                self.log.info(f""-------> outlier detection method '{method}' is not supported for column wise. supported methods are {cs.supported_method['outlier_column_wise']}"")

    def fill_outlier_process(self,colm, method):
        if colm in self.numeric_feature:
            if method in cs.supported_method['outlierOperation']:
                if 'outlierOperation' not in self.process_method.keys():
                    self.process_method['outlierOperation'] = {}
                self.process_method['outlierOperation'][colm] = method
            else:
                self.log.info(f""-------> outlier process method '{method}' is not supported for column wise. supported methods are {cs.supported_method['outlierOperation']}"")
        
    def get_cat_imputer(self,method):
        if method == 'mode':
            return SimpleImputer(strategy='most_frequent')
        elif method == 'zero':
            return SimpleImputer(strategy='constant', fill_value=0)
            
    def get_cat_encoder(self,method):
        if method == 'labelencoding':
            return OrdinalEncoder()
        elif method == 'onehotencoding':
            return OneHotEncoder(sparse=False,handle_unknown=""ignore"")
        elif method == 'targetencoding':
            if not self.is_target_available():
                raise ValueError('Can not apply Target Encoding when target feature is not present')
            return TargetEncoder()

    def get_num_imputer(self,method):
        if method == 'mode':
            return SimpleImputer(strategy='most_frequent')
        elif method == 'mean':
            return SimpleImputer(strategy='mean')
        elif method == 'median':
            return SimpleImputer(strategy='median')
        elif method == 'knnimputer':
            return KNNImputer()
        elif method == 'zero':
            return SimpleImputer(strategy='constant', fill_value=0)
            
    def get_num_scaler(self,method):
        if method == 'minmax':
            return MinMaxScaler()
        elif method == 'standardscaler':
            return StandardScaler()
        elif method == 'lognormal':
            return PowerTransformer(method='yeo-johnson', standardize=False)

    def recommenderStartProfiler(self,modelFeatures):
        return cs.recommenderStartProfiler(self,modelFeatures)
        
    def folderPreprocessing(self,folderlocation,folderdetails,deployLocation):
        return cs.folderPreprocessing(self,folderlocation,folderdetails,deployLocation)

    def textSimilarityStartProfiler(self, doc_col_1, doc_col_2):
        return cs.textSimilarityStartProfiler(self, doc_col_1, doc_col_2)

    def get_conversion_method(self):
        return cs.get_one_true_option(self.config.get('textConversionMethod','')).lower()
    
def set_features(features,profiler=None):
    return cs.set_features(features,profiler)


"
data_profiler_functions.py,"import os
import sys
import numpy as np
import scipy
import pandas as pd
from pathlib import Path

default_config = {
    'misValueRatio': '1.0',
    'numericFeatureRatio': '1.0',
    'categoryMaxLabel': '20',
    'str_to_cat_len_max': 10
}

target_encoding_method_change = {'targetencoding': 'labelencoding'}

supported_method = {
    'fillNa':
        {
            'categorical' : ['mode','zero','na'],
            'numeric' : ['median','mean','knnimputer','zero','drop','na'],
        },
    'categoryEncoding': ['labelencoding','targetencoding','onehotencoding','na','none'],
    'normalization': ['standardscaler','minmax','lognormal', 'na','none'],
    'outlier_column_wise': ['iqr','zscore', 'disable', 'na'],
    'outlierOperation': ['dropdata', 'average', 'nochange']
    }
    
def findiqrOutlier(df):
    Q1 = df.quantile(0.25)
    Q3 = df.quantile(0.75)
    IQR = Q3 - Q1
    index = ~((df < (Q1 - 1.5 * IQR)) |(df > (Q3 + 1.5 * IQR)))
    return index
    
def findzscoreOutlier(df):
    z = np.abs(scipy.stats.zscore(df))
    index = (z < 3)
    return index
    
def findiforestOutlier(df):
    from sklearn.ensemble import IsolationForest
    isolation_forest = IsolationForest(n_estimators=100)
    isolation_forest.fit(df)
    y_pred_train = isolation_forest.predict(df)
    return y_pred_train == 1

def get_one_true_option(d, default_value=None):
	if isinstance(d, dict):
		for k,v in d.items():
			if (isinstance(v, str) and v.lower() == 'true') or (isinstance(v, bool) and v == True):
				return k
	return default_value

def get_boolean(value):
    if (isinstance(value, str) and value.lower() == 'true') or (isinstance(value, bool) and value == True):
        return True
    else:
        return False
        
def recommenderStartProfiler(self,modelFeatures):
    try:
        self.log.info('----------> FillNA:0')
        self.data = self.data.fillna(value=0)
        self.log.info('Status:-        !... Missing value treatment done')
        self.log.info('----------> Remove Empty Row')
        self.data = self.data.dropna(axis=0,how='all')
        self.log.info('Status:-        !... Empty feature treatment done')                      
        userId,itemId,rating = modelFeatures.split(',')
        self.data[itemId] = self.data[itemId].astype(np.int32)
        self.data[userId] = self.data[userId].astype(np.int32)
        self.data[rating] = self.data[rating].astype(np.float32)
        return self.data
    except Exception as inst:
        self.log.info(""Error: dataProfiler failed ""+str(inst))
        return(self.data)

def folderPreprocessing(self,folderlocation,folderdetails,deployLocation):
    try:
        dataset_directory = Path(folderlocation)
        dataset_csv_file = dataset_directory/folderdetails['label_csv_file_name']
        tfrecord_directory = Path(deployLocation)/'Video_TFRecord'
        from savp import PreprocessSAVP
        import csv
        csvfile = open(dataset_csv_file, newline='')
        csv_reader = csv.DictReader(csvfile)
        PreprocessSAVP(dataset_directory,csv_reader,tfrecord_directory)
        dataColumns = list(self.data.columns)
        VideoProcessing = True
        return dataColumns,VideoProcessing,tfrecord_directory
    except Exception as inst:
        self.log.info(""Error: dataProfiler failed ""+str(inst))

def textSimilarityStartProfiler(self, doc_col_1, doc_col_2):
    import os
    try:
        features = [doc_col_1, doc_col_2]
        pipe = None
        dataColumns = list(self.data.columns)
        self.numofCols = self.data.shape[1]
        self.numOfRows = self.data.shape[0]
        from transformations.textProfiler import textProfiler            
        
        self.log.info('-------> Execute Fill NA With Empty String')
        self.data = self.data.fillna(value="" "")
        self.log.info('Status:- |... Missing value treatment done')
        self.data[doc_col_1] = textProfiler().textCleaning(self.data[doc_col_1])
        self.data[doc_col_2] = textProfiler().textCleaning(self.data[doc_col_2])
        self.log.info('-------> Concatenate: ' + doc_col_1 + ' ' + doc_col_2)
        self.data['text'] = self.data[[doc_col_1, doc_col_2]].apply(lambda row: ' '.join(row.values.astype(str)), axis=1)
        from tensorflow.keras.preprocessing.text import Tokenizer
        pipe = Tokenizer()
        pipe.fit_on_texts(self.data['text'].values)
        self.log.info('-------> Tokenizer: Fit on  Concatenate Field')
        self.log.info('Status:- |... Tokenizer the text')
        self.data[doc_col_1] = self.data[doc_col_1].astype(str)
        self.data[doc_col_1] = self.data[doc_col_1].astype(str)
        return (self.data, pipe, self.target_name, features)
    except Exception as inst:
        self.log.info(""StartProfiler failed "" + str(inst))
        exc_type, exc_obj, exc_tb = sys.exc_info()
        fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)[1]
        self.log.info(str(exc_type) + ' ' + str(fname) + ' ' + str(exc_tb.tb_lineno))

def set_features(features,profiler=None):
    if profiler:
        features = [x for x in features if x not in profiler.added_features]
        return features + profiler.text_feature
    return features"
aionfls.py,"# -*- coding: utf-8 -*-
import pandas as pd
import numpy as np
import logging
import os
import sys
from flwr.common.logger import log
from logging import INFO
from flserver import flserver

class aionfls:
    def __init__(self):        
        self.confdata=None
             
    def configLoad(self,jsonfile):
        import json
        jsonfile=str(jsonfile)
        with open(jsonfile, 'r') as file:
            self.confdata = json.load(file)        
        return self.confdata
    
    def dataload(self,datapath):        
        df = pd.read_csv(datapath) #chunk_size=50000
        ## Data preprocess in test dataset, In aion, aion profiler will handle it.
        df =df[~df.isin([np.nan, np.inf, -np.inf]).any(axis=1)]
        df=df.reset_index(drop=True)        
        return df
        
# Start Flower server for n rounds of federated learning
if __name__ == ""__main__"":
    classobj=aionfls()
    json_file=sys.argv[1]
    confdata = classobj.configLoad(json_file)
    data_location = confdata[""data_location""]    
    # deploy_location=confdata['deploy_location']
    cwd = os.path.abspath(os.path.dirname(__file__))    
    model_name=confdata['model_name']
    version=str(confdata['version'])
    file_name=model_name+'_'+version+"".log""
    try:
        fl_log=os.path.normpath(os.path.join(cwd,'logs',file_name))
    except Exception as e:
        classobj.log.info(""Log path error. Error Msg:  \n"",e)
    logging.basicConfig(filename=fl_log,format='%(asctime)s %(message)s', filemode='w',level=logging.DEBUG)
    classobj.log = logging.getLogger('AION')
        
    print(""==============="")
    print(""flserver main function"")
    print(""==============="")
    if (confdata['evaluation_required'].lower() == 'false'):
        df=None
        aionflobj=flserver(df,confdata)    
        print(""flserver condition is false"")
    else:
        ## User selected option is True
        print(""flserver condition is true"")
        data_location = os.path.normpath(os.path.join(cwd, data_location))
        # print(""current data_location"",data_location)
        df=classobj.dataload(data_location)        
        aionflobj=flserver(df,confdata)
        
    status=aionflobj.runFLServer()
    classobj.log.info(""Aion FL Server run Status: \n""+str(status))
    
    
    
    "
dl_model.py,"import tensorflow as tf


def dl_regression_model(input_shape, output_shape,
                        optimizer, loss_func, act_func):
    inputs = tf.keras.Input(shape=(input_shape,))
    x = tf.keras.layers.Dense(64, 
                        kernel_initializer='he_normal',
                        bias_initializer='zeros',
                        activation=act_func)(inputs)
    x = tf.keras.layers.Dense(32, 
                        kernel_initializer='he_normal',
                        bias_initializer='zeros',
                        activation=act_func)(x)

    x = tf.keras.layers.Dense(16, 
                        kernel_initializer='he_normal',
                        bias_initializer='zeros',
                        activation=act_func)(x)

    x = tf.keras.layers.Dense(8, 
                        kernel_initializer='he_normal',
                        bias_initializer='zeros',
                        activation=act_func)(x)

    outputs = tf.keras.layers.Dense(output_shape, 
                        kernel_initializer='he_normal',
                        bias_initializer='zeros')(x)

    model = tf.keras.Model(inputs=inputs, outputs=outputs)

    model.compile(loss=loss_func , 
                    optimizer=optimizer, 
                    metrics=[""mean_absolute_error"",
                            ""mean_squared_error"",
                            ])
    return model

def dl_multiClass_classification(input_shape, output_shape,
                                optimizer, loss_func, act_func, last_act_func):
    inputs = tf.keras.Input(shape=(input_shape,))
    x = tf.keras.layers.Dense(64, 
                        kernel_initializer='he_normal',
                        bias_initializer='zeros',
                        activation=act_func)(inputs)
    x = tf.keras.layers.Dense(32, 
                        kernel_initializer='he_normal',
                        bias_initializer='zeros',
                        activation=act_func)(x)

    x = tf.keras.layers.Dense(16, 
                        kernel_initializer='he_normal',
                        bias_initializer='zeros',
                        activation=act_func)(x)

    x = tf.keras.layers.Dense(8, 
                        kernel_initializer='he_normal',
                        bias_initializer='zeros',
                        activation=act_func)(x)
    outputs = tf.keras.layers.Dense(output_shape, 
                        kernel_initializer='he_normal',
                        bias_initializer='zeros',
                        activation=last_act_func)(x)
    model = tf.keras.Model(inputs=inputs, outputs=outputs)
    model.compile(optimizer, loss_func, metrics=[""accuracy""])
    return model

def dl_binary_classification(input_shape, output_shape, 
                                optimizer, loss_func, act_func, last_act_func):
    inputs = tf.keras.Input(shape=(input_shape,))
    x = tf.keras.layers.Dense(64, 
                        kernel_initializer='he_normal',
                        bias_initializer='zeros',
                        activation=act_func)(inputs)
    x = tf.keras.layers.Dense(32, 
                        kernel_initializer='he_normal',
                        bias_initializer='zeros',
                        activation=act_func)(x)

    x = tf.keras.layers.Dense(16, 
                        kernel_initializer='he_normal',
                        bias_initializer='zeros',
                        activation=act_func)(x)

    x = tf.keras.layers.Dense(8, 
                        kernel_initializer='he_normal',
                        bias_initializer='zeros',
                        activation=act_func)(x)
                        
    outputs = tf.keras.layers.Dense(output_shape, 
                        kernel_initializer='he_normal',
                        bias_initializer='zeros',
                        activation=last_act_func)(x)
    model = tf.keras.Model(inputs=inputs, outputs=outputs)
    model.compile(optimizer, loss_func, 
                   metrics=[""accuracy""])
    return model
"
flserver.py,"# -*- coding: utf-8 -*-
""""""
Created on Wed Jun 15 14:36:11 2022

@author: @aionteam
""""""
import flwr
import flwr as fl
import tensorflow as tf
from typing import Any, Callable, Dict, List, Optional, Tuple
import utils
from sklearn.metrics import log_loss
from sklearn.linear_model import LogisticRegression
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, mean_absolute_error,r2_score
from typing import Dict
import numpy as np
import logging
import os
# import sys
from flwr.common.logger import log
from logging import INFO
import pickle as pkl
from flwr.server.client_proxy import ClientProxy
import dl_model
from sklearn.preprocessing import StandardScaler
import pandas as pd
## Below import can be used when aion specific grpc communication used.
# from aionflgrpcserver import aionflgrpcserver

# Make TensorFlow logs less verbose
os.environ[""TF_CPP_MIN_LOG_LEVEL""] = ""3""
os.environ[""GRPC_VERBOSITY""] = ""debug""

# """""" AION Federated Learning Server. Geting weights from clients, aggregate the weights by FedAvg algorithm and update the client model.""""""
class flserver():
    def __init__(self,df,confdata):
        
        self.log = logging.getLogger('AION')
        ## Below params will be used later
        self.confparams=confdata
        self.df=df
        self.fl_round=0
        print(""Inside flserver init func"")
        
        
    ## Flower server  number of rounds for fl model update (clients-server)
    def fit_round(self,rnd: int) -> Dict:
        """"""Send round number to client.""""""
        self.fl_round=rnd
        log(INFO, ""==========================="")
        self.log.info(""federated learning round: ""+str(rnd))
        log(INFO, ""federated learning round: %s "",str(rnd))
        log(INFO, ""==========================="")
        # print(f""federated learning round: {rnd}"")
        return {""rnd"": rnd}
    
    def fit_config(self,rnd: int) -> Dict:
        """"""Send round number to client.""""""
        self.round_count = rnd
        log(INFO, ""==========================="")
        log(INFO, ""Starting round %s ..."",str(rnd))
        log(INFO, ""==========================="")
        model_hyperparams = self.confparams[""model_hyperparams""]
        batch_size = model_hyperparams[""batch_size""]
        local_epochs = model_hyperparams[""epochs""]
        config = {
        ""batch_size"": int(batch_size),
        # ""local_epochs"": 1 if rnd < 2 else 2,
        ""local_epochs"": int(local_epochs),
        ""rnd"": rnd,
        }
        return config
    
    def evaluate_config(self, rnd: int):
        model_hyperparams = self.confparams[""model_hyperparams""]
        val_batch_size = model_hyperparams[""batch_size""]
        # val_steps = 5 if rnd < 4 else 10
        return {""val_batch_size"": int(val_batch_size)}
    
    ## Loading configuration parameters
    def configload(self,confparams):
        try:
            data=confparams
            server_ip=str(data[""server_IP""])
            server_port=str(data[""server_port""])
            model_name=str(data[""model_name""])
            num_clients=int(data[""min_available_clients""])
            min_fit_clients=int(data[""min_fit_clients""])
            num_train_round=int(data[""fl_round""])
            data_location=str(data[""data_location""])
            model_params=data[""model_hyperparams""]
            problem_type=data[""problem_type""]
            server_address=f""{server_ip}:{server_port}""
            # model_location=str(data[""model_store""])
            model_version=str(data[""version""])
            selected_feature=data[""selected_feature""]
            if (type(selected_feature) is str):
                selected_feature=selected_feature.split(',')
            target_feature=data[""target_feature""]
            evaluation_required=data[""evaluation_required""]
            self.log.info(""Federated Learning <Server IP:Port> ""+str(server_address))
        except Exception as e:
            log(INFO, ""Reading server config file issue. Err.Msg: %s  "",str(e))
        return server_address,model_name,num_clients,min_fit_clients,num_train_round,data_location,model_params,problem_type,model_version,selected_feature,target_feature,evaluation_required
    
    ## Save the final model	
    def model_save(self,model,model_name,problem_type,version):
       
        cwd = os.path.abspath(os.path.dirname(__file__))
        model_location=os.path.join(cwd, 'models')
        model_name=model_name
        version=str(version)
        model_name=self.confparams[""model_name""]
        if (model_name.lower() == ""deeplearning""):
            file_name = model_name + '_' +problem_type+'_'+version+ "".h5""
        else:
            file_name=file_name = model_name + '_' +problem_type+'_'+version+"".sav""
        saved_model=os.path.normpath(os.path.join(model_location,file_name))
        self.log.info(""saved_model path: ""+str(saved_model))
        try:          
            with open (saved_model,'wb') as f:
                pkl.dump(model,f)
            return True
        except Exception as e:
            self.log.info(""fl server model save error. Error Msg: ""+str(e))
            return False
        
    ## Load the model, not used now. If user want to use aion trained model for evaluation  at serverside, use this fn.
    def model_load(self, path):
        model_name=self.confparams[""model_name""]
        if (model_name.lower() == ""deeplearning""):
            loaded_model = tf.keras.models.load_model(path)
        else:
            loaded_model = pkl.load(open(path, 'rb'))
        return loaded_model
    
    # Fo normal ml models, def get_eval_fn, evaluate each round results with own dataset. It is optional, without this, fed server will aggregate (fedAvg) client weights and update results to clients without evaluate.
    def get_eval_fn(self,model,X,y,model_name,model_version):
        """"""Return an evaluation function for server-side evaluation.""""""
        self.log.info(""X_eval: \n""+str(X.shape))
        self.log.info(""y_eval: \n""+str(y.shape))
        # scaler = StandardScaler()
        # X_scaled = scaler.fit_transform(X)
        # y = pd.get_dummies(y)
        # y_class = None
        def evaluate(server_round: int,
                    parameters: fl.common.NDArrays,
                    config: Dict[str, fl.common.Scalar],):
            # self.log.info(""server side fedavg weights \n ""+str(parameters))
            try:
                problem_type=self.confparams[""problem_type""]
                # if (self.model_name.lower() == 'logisticregression' ):
                #     loss = log_loss(y, model.predict_proba(X))
                # else:
                #     loss = log_loss(y, model.predict(X))
                if (problem_type.lower() == 'classification'):
                    if (model_name.lower() == 'logisticregression' ):
                        utils.set_model_params(model, parameters)
                        loss = log_loss(y, model.predict_proba(X))
                        # loss = log_loss(y, model.predict_proba(X))
                        accuracy = model.score(X, y) 
                        log(INFO, ""Server evaluation FL Round: %s processed Weights. -- Loss: %s, -- Accuracy: %s  "",str(self.fl_round),str(loss), str(accuracy))
                        self.log.info(""Accuracy: ""+str(accuracy))
                        self.log.info(""model coefficients: ""+str(model.coef_))
                        self.log.info(""model intercept: ""+str(model.intercept_))
                        problem_type=self.confparams[""problem_type""]
                        self.model_save(model,model_name,problem_type,model_version)
                        return loss, {""accuracy"": accuracy} 
                else:
                    if (model_name.lower() == 'linearregression' ):
                        print(model, type(model))
                        print(model.get_params)
                        # rmse = mean_squared_error(y, model.predict(X), square=True)
                        rmse = np.sqrt(mean_squared_error(y, model.predict(X)))
                        mae = mean_absolute_error(y, model.predict(X))
                        r2=r2_score(y, model.predict(X))
                        loss = rmse
                        mse=mean_squared_error(y, model.predict(X))
                        rmse = np.sqrt(mean_squared_error(y, model.predict(X)))
                        mae = mean_absolute_error(y, model.predict(X))
                        r2=r2_score(y, model.predict(X))
                        loss = rmse
                        results = {
                                    ""mean_absolute_error"": mae,
                                    ""mean_squared_error"": mse,
                                    ""root_mean_squared_error"": rmse,
        							""r2"":r2,
                                    }
                        # accuracy=r2
                        log(INFO, ""Server evaluation FL Round: %s processed Weights. -- Loss: %s, -- metrics: %s  "",str(self.fl_round),str(rmse), str(results))
                        self.log.info(""model coefficients: ""+str(model.coef_))
                        self.log.info(""model intercept: ""+str(model.intercept_))
                        self.model_save(model,model_name,problem_type,model_version)
                        # return loss, len(X), results
                        return loss, results
                
            except Exception as e:
                log(INFO, ""evaluate error msg: %s  "",str(e))
        return evaluate
    
    # for deep learn models, def get_eval_fn, evaluate each round results with own dataset. It is optional, without this, fed server will aggregate (fedAvg) client weights and update results to clients without evaluate.
    def get_eval_fn_dl(self, model,X,y,model_name,model_version):    
        try:
            scaler = StandardScaler()
            X_scaled = scaler.fit_transform(X)
            # y = pd.get_dummies(y)
            y_class = None
            def evaluate(
                    server_round: int,
                    weights: fl.common.NDArrays,
                    config: Dict[str, fl.common.Scalar],
                    ) -> Optional[Tuple[float, Dict[str, fl.common.Scalar]]]:
                # Update model with the latest parameters
                model.set_weights(weights)  
                problem_type = self.confparams[""problem_type""]
                self.model_save(model, model_name,problem_type, model_version)
                if model_name == 'deeplearning':
                    if problem_type == 'regression':
                        loss, mean_absolute_error, mean_squared_error  = model.evaluate(X_scaled, 
                                                    y,
                                                    verbose=1)
                        y_pred = model.predict(X_scaled)
                        from sklearn import metrics
                        root_mean_squared_error = np.sqrt(metrics.mean_squared_error(y, y_pred))
                        log(INFO, ""global model mean_absolute_error: %f "",mean_absolute_error)      
                        log(INFO, ""global model mean_squared_error: %f "",mean_squared_error)
                        log(INFO, ""global model root_mean_squared_error: %f "",root_mean_squared_error)
                        return loss, {""mean_absolute_error"": mean_absolute_error,
                                    ""mean_squared_error"": mean_squared_error,
                                    ""root_mean_squared_error"": root_mean_squared_error}
                    
                    if problem_type == 'classification':
                        y_class = pd.get_dummies(y)
                        loss, accuracy = model.evaluate(X_scaled, y_class, verbose=1)
                        log(INFO, ""global model accuracy: %f "",round(accuracy * 100, 2))
                        log(INFO, ""global model loss: %f "", round(loss, 2))
                        return loss, {""accuracy"": accuracy}
        except Exception as e:
            log(INFO, ""get_eval_fn_dl error: %s "",str(e))
            
        return evaluate
    
    
    """""" Below part is the aion specific grpc functions. To start the grpc server and client. Currently below modules are not used.   """"""   
    # def callaiongrpcserver(self):        
    #     agrpcobj = aionflgrpcserver()
    #     status=agrpcobj.startgrpcerver()
    #     print(""server grpc start status: \t"",status)
    #     return status
    # def stopaiongrpcserver(self):
    #     agrpcobj = aionflgrpcserver()
    #     status=agrpcobj.shutserver()
    #     print(""server grpc stop status: \t"",status)
    #     return status
    
    ## This function called from aionflmain.py, and run server.
    
    ## Getting flower fl strategy
    def get_strategy(self,min_fit_clients,num_clients,eval_fn,on_fit_config_fn,on_evaluate_config_fn):
        strategy = fl.server.strategy.FedAvg(
                            min_fit_clients=min_fit_clients,
                            min_available_clients=num_clients,
                            evaluate_fn=eval_fn,
                            on_fit_config_fn=on_fit_config_fn,
                            on_evaluate_config_fn=on_evaluate_config_fn,
                            # initial_parameters=fl.common.weights_to_parameters(model.get_weights()),
                            )
        return strategy
        
    def runFLServer(self):
        try:
            server_address,model_name,num_clients,min_fit_clients,num_train_round,data_location,model_params,problem_type,model_version,selected_feature,target_feature,evaluation_required = self.configload(self.confparams)
            df = self.df
            if (evaluation_required.lower() == 'true'):
                ## One more check for NaN,Inf occurance in dataframe                
                df =df[~df.isin([np.nan, np.inf, -np.inf]).any(axis=1)]
                ## Remove index if passed.
                df=df.reset_index(drop=True)
                y=df[target_feature]    
                X=df[selected_feature]
                if (problem_type.lower() == ""classification""):
                    if (model_name.lower() == ""logisticregression""):
                        #n_classes = df[target_feature].nunique()
                        no_classes = len(df.groupby(target_feature).count())
                        no_features=len(selected_feature)
                        self.log.info(""no_classes: ""+str(no_classes))
                        self.log.info(""no_features: ""+str(no_features))
                        modelName=""logisticregression""  
                        try:
                            model = LogisticRegression(**model_params,	warm_start=True)
                        except Exception as e:
                            self.log.info(""LR model error: \n""+str(e))
                        status=utils.setmodelName(modelName)
                        utils.set_initial_params(model,no_classes,no_features)
                        
                        eval_fn=self.get_eval_fn(model,X,y,model_name,model_version)
                        on_fit_config_fn=self.fit_round
                        on_evaluate_config_fn=None
                        min_fit_clients=2
                        strategy = self.get_strategy(min_fit_clients,num_clients,eval_fn,on_fit_config_fn,on_evaluate_config_fn)
                    elif (model_name.lower() == ""deeplearning""):
                        # model_hyperparams = self.confparams[""model_hyperparams""]
                        optimizer = model_params[""optimizer""]
                        loss_func = model_params[""losses""]
                        act_func = model_params[""activation""]
                        last_act_func = model_params[""last_activation""]
                        input_shape = X.shape[1]  # len(selected_feature)  
                        output_shape = len(y.value_counts())
                        model = None
                        if output_shape == 2: 
                            if last_act_func == ""sigmoid"" and loss_func == ""binary_crossentropy"":
                                model = dl_model.dl_binary_classification(input_shape, output_shape,
                                                        optimizer, loss_func,
                                                        act_func, last_act_func)
                            elif last_act_func == ""softmax"" and loss_func == ""categorical_crossentropy"":
                                model = dl_model.dl_binary_classification(input_shape, output_shape,
                                                        optimizer, loss_func,
                                                        act_func, last_act_func)
                        else:
                                model = dl_model.dl_multiClass_classification(input_shape, 
                                                    output_shape, optimizer, loss_func,
                                                    act_func, last_act_func)
                                
                        print(model.summary())                        
                        eval_fn=self.get_eval_fn_dl(model,X,y,model_name,model_version)
                        on_fit_config_fn=self.fit_config
                        on_evaluate_config_fn=self.evaluate_config
                        strategy = self.get_strategy(min_fit_clients,num_clients,eval_fn,on_fit_config_fn,on_evaluate_config_fn)
                                                            
                elif(problem_type.lower() == ""regression""):
                    
                    if (model_name.lower() == ""linearregression""):
                        model=LinearRegression(**model_params)
                        status=utils.setmodelName(model_name)
                        utils.set_initial_params_reg(model,X.shape[0],len(selected_feature))
                        # utils.set_initial_params_reg(model,X.shape[0],X.shape[1])
                        eval_fn=self.get_eval_fn(model,X,y,model_name,model_version)
                        on_fit_config_fn=self.fit_round
                        on_evaluate_config_fn=None
                        min_fit_clients=2
                        strategy = self.get_strategy(min_fit_clients,num_clients,eval_fn,on_fit_config_fn,on_evaluate_config_fn)
                        
                    elif(model_name.lower() == ""deeplearning""):
                        input_shape = X.shape[1]  # len(selected_feature)  
                        output_shape = len(y.value_counts())
                        optimizer = model_params[""optimizer""]
                        loss_func = model_params[""losses""]
                        act_func = model_params[""activation""]
                        model = None
                        model = dl_model.dl_regression_model(input_shape, 1,
                                            optimizer, loss_func, act_func)
                        eval_fn=self.get_eval_fn_dl(model,X,y,model_name,model_version)
                        on_fit_config_fn=self.fit_config
                        on_evaluate_config_fn=self.evaluate_config
                        strategy = self.get_strategy(min_fit_clients,num_clients,eval_fn,on_fit_config_fn,on_evaluate_config_fn)
                        
                    
                  
            elif (evaluation_required.lower() == 'false'):
                
                eval_fn=None                
                if (model_name.lower() == ""deeplearning""):
                    # min_fit_clients =int( model_params[""min_fit_clients""])
                    on_fit_config_fn=self.fit_config
                    on_evaluate_config_fn=self.evaluate_config                    
                    strategy = self.get_strategy(min_fit_clients,num_clients,eval_fn,on_fit_config_fn,on_evaluate_config_fn)
                else:
                    min_fit_clients=0
                    on_fit_config_fn=self.fit_round
                    on_evaluate_config_fn=None
                    # strategy = self.get_strategy(min_fit_clients,num_clients,eval_fn,on_fit_config_fn,on_evaluate_config_fn)
                    strategy = fl.server.strategy.FedAvg(
                        min_available_clients=num_clients,
                        eval_fn=None,                                            
                        on_fit_config_fn=self.fit_round,)
            else:
                log(INFO, ""Please opt server evaluation as True or False in server configuration file."")                
        
            log(INFO, ""Federated learning Server started at @: %s "",str(server_address))
            server_rnd=1
            while (1):                
                try:
                    fl.server.start_server(server_address=server_address, strategy=strategy, config=fl.server.ServerConfig(num_rounds=num_train_round))# config={""num_rounds"": num_train_round})#config=fl.server.ServerConfig(num_rounds=3) #,force_final_distributed_eval=True)
                except Exception as e:
                    log(INFO, ""Server exception: %s "",str(e))
                    
                log(INFO, ""AION federated learning server completed for execution  cycle: %s "",str(server_rnd))
                # Evaluate the final trained model
                                
                server_rnd+=1
                
                
            log(INFO, ""AION federated learning server execution successfully completed. Please check the log file for more information."")
            return True
        except Exception as e:
            self.log.info(""AION Federated Learning Server run error. Error Msg: ""+str(e))
            log(INFO, ""Server not executing, err.msg: %s "",str(e))
            return False
            
        
        
# Start Flower server for n rounds of federated learning
# if __name__ == ""__main__"":
    
    
    
#    ''' Testing purpose code '''
    
    # super_obj=flserver1()
    # json_file=sys.argv[1]
    # super_obj.log.info(""User json_file: \n""+str(json_file))
    # # configfile=None
    # server_address,model_name,num_clients,num_train_round,data_location,model_version,model_version,selected_feature,target_feature = super_obj.configload(super_obj.confparams)
    # df = pd.read_csv(data_location)
    # # df=super_obj.df
    # df =df[~df.isin([np.nan, np.inf, -np.inf]).any(1)]
    # df=df.reset_index(drop=True)
    
    # y=df[target_feature]    
    # X = df.drop(target_feature, axis=1)   
    # no_classes = len(df.groupby(target_feature).count())
    # no_features=len(selected_feature.split(','))
    # print(""no_classes: \n"",no_classes)
    # print(""no_features: \n"",no_features)
    # # num_classes = y_train.apply(pd.Series.nunique)
    
    # if (model_name.lower() == ""logisticregression""):
        # modelName=""logisticregression""		
        # model = LogisticRegression(penalty=""l2"",max_iter=10,	warm_start=True)
        # ## May be used in future (model load for server side eval)
        # # model=super_obj.model_load(model_location)       
    
		
		
    # status=utils.setmodelName(modelName)
    # utils.set_initial_params(model,no_classes,no_features)
    # strategy = fl.server.strategy.FedAvg(
            # min_available_clients=num_clients,
            # eval_fn=super_obj.get_eval_fn(model,X,y),
            # on_fit_config_fn=super_obj.fit_round,)
    
    
    # # super_obj.log.info(""Stating federated learning server.....\n"")
    # log(INFO, ""Stating AION federated learning server....."")
    # fl.server.start_server(server_address, strategy=strategy, config={""num_rounds"": num_train_round})
    # # super_obj.log.info(""federated learning server execution completed.\n"")
    # log(INFO, ""AION federated learning server execution completed....."")
    
"
utils.py,"from typing import Tuple, Union, List
import numpy as np
from sklearn.linear_model import LogisticRegression
from sklearn.linear_model import LinearRegression
from sklearn.naive_bayes import GaussianNB
from sklearn.linear_model import SGDClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.tree import DecisionTreeClassifier
from flwr.common.logger import log
from logging import INFO

XY = Tuple[np.ndarray, np.ndarray]
Dataset = Tuple[XY, XY]
LogRegParams = Union[XY, Tuple[np.ndarray]]
XYList = List[XY]
modelUsed=None
modelname=None
def setmodelName(modelselected):
	try:
		modelname=str(modelselected)
		print(""setmodelName ,given modelname: \n"",modelname)
		if (modelname.lower() == 'logisticregression'):
			modelUsed=LogisticRegression()			
			return True
		elif (modelname.lower() == ""linearregression""):            
			modelUsed = LinearRegression()
			return True
		elif (modelname.lower() == ""sgdclassifier""):
			#from sklearn.linear_model import SGDClassifier
			modelUsed=SGDClassifier()
			return True		
		elif (modelname.lower() == ""knn""):
			modelUsed = KNeighborsClassifier()
			return True
		elif (modelname.lower() == ""decisiontreeclassifier""):
			modelUsed = DecisionTreeClassifier()
			return True
		else:
			return False
	except Exception as e:
		log(INFO, ""set fl model name fn issue: "",e)

def get_model_parameters(model:modelUsed) -> LogRegParams:
    """"""Returns the paramters of a sklearn LogisticRegression model.""""""    
    model_name=model.__class__.__name__
    if model.fit_intercept:       
        params = (model.coef_, model.intercept_)
    else:
        params = (model.coef_,)
    
    return params


def set_model_params(
    model:modelUsed, params: LogRegParams
) -> modelUsed:
    """"""Sets the parameters of a sklean LogisticRegression model.""""""    
    model.coef_ = params[0]
    model_name=model.__class__.__name__
    try:
        if model.fit_intercept:
            model.intercept_ = params[1]
    except Exception as e:
        log(INFO, ""set_model_params fn issue: "",e)
        pass
    
    return model

def set_initial_params_reg(model,no_vals,no_features):
    """"""Sets initial parameters as zeros Required since model params are
    uninitialized until model.fit is called.

    But server asks for initial parameters from clients at launch. Refer
    to sklearn.linear_model.LogisticRegression documentation for more
    information.
    """"""
      
    no_vals = no_vals
    n_features = no_features
    # model.classes_ = np.array([i for i in range(n_classes)])
    model.coef_ = np.zeros( n_features,)
    model_name=model.__class__.__name__
    
    try:
        if model.fit_intercept:
            # model.intercept_ = np.ones((no_vals,1))
            model.intercept_ = np.zeros((no_vals,))
    except Exception as e:
        log(INFO, ""set_initial_params fn issue: "",e)
        pass
    
def set_initial_params(model,no_classes,no_features):
    """"""Sets initial parameters as zeros Required since model params are
    uninitialized until model.fit is called.

    But server asks for initial parameters from clients at launch. Refer
    to sklearn.linear_model.LogisticRegression documentation for more
    information.
    """"""
      
    n_classes = no_classes 
    n_features = no_features
    model.classes_ = np.array([i for i in range(n_classes)])
    model.coef_ = np.zeros((n_classes, n_features))
    model_name=model.__class__.__name__
    try:
        if model.fit_intercept:
            model.intercept_ = np.zeros((n_classes,))
    except Exception as e:
        log(INFO, ""set_initial_params fn issue: "",e)
        pass



def shuffle(X: np.ndarray, y: np.ndarray) -> XY:
    """"""Shuffle X and y.""""""
    rng = np.random.default_rng()
    idx = rng.permutation(len(X))
    return X[idx], y[idx]


def partition(X: np.ndarray, y: np.ndarray, num_partitions: int) -> XYList:
    """"""Split X and y into a number of partitions.""""""
    return list(
        zip(np.array_split(X, num_partitions), np.array_split(y, num_partitions))
    )

"
__init__.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''"
incBatchLearning.py,"
import sys
import os
import pickle
import json
import timeit
import warnings
import traceback
import logging
from pathlib import Path
warnings.filterwarnings(""ignore"")


import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from pandas import json_normalize
import shutil
from word2number import w2n
from pytz import timezone
import datetime

from sklearn.model_selection import train_test_split
from sklearn.metrics import roc_auc_score, accuracy_score, r2_score,mean_absolute_error, mean_squared_error, recall_score, precision_score, f1_score

from river import stream

class incBatchLearner():

	def __init__(self):
		self.home = os.path.dirname(os.path.abspath(__file__))
		self.configPath = os.path.join(self.home, 'production', 'Config.json')
		self.configDict = {}
		self.updConfigDict  = None
		self.incFillPath = os.path.join(self.home,'production','profiler','incFill.pkl')
		self.incOutlierRemPath = os.path.join(self.home, 'production', 'profiler', 'incOutlierRem.pkl')
		self.incLabelMappingPath = os.path.join(self.home,'production', 'profiler' , 'incLabelMapping.pkl')
		self.incCatEncoderPath = os.path.join(self.home, 'production' , 'profiler', 'incCatEncoder.pkl')
		self.incScalerPath = os.path.join(self.home, 'production', 'profiler','incScaler.pkl')
		self.testPath = os.path.join(self.home, 'data', 'test.csv')
		self.modelName = ''
		self.incFill = None
		self.incLabelMapping = None
		self.incCatEncoder = None
		self.incScaler = None
		self.incOutlierRem = None
		self.model = None
		self.targetCol = None
		self.numFtrs = []
		self.catFtrs = []
		self.allFtrs = []
		self.logFileName=os.path.join(self.home,'log','model_training_logs.log')
		filehandler = logging.FileHandler(self.logFileName, 'a','utf-8')
		formatter = logging.Formatter('%(message)s')
		filehandler.setFormatter(formatter)
		self.log = logging.getLogger('eion')
		self.log.propagate = False
		self.log.addHandler(filehandler)
		self.log.setLevel(logging.INFO)


	def readData(self, data, isTest = False):
		if not isTest:
			self.log.info('New Data Path: '+str(data))
		else:
			self.log.info('Test Data Path: '+str(data))
		startTime = timeit.default_timer()
		if os.path.splitext(data)[1] == "".tsv"":
			df=pd.read_csv(data,encoding='utf-8',sep='\t')
		elif os.path.splitext(data)[1] == "".csv"":
			df=pd.read_csv(data,encoding='utf-8')
		elif os.path.splitext(data)[1] == "".dat"":
			df=pd.read_csv(data,encoding='utf-8')
		else:
			if os.path.splitext(data)[1] == "".json"":
				with open(data,'r',encoding='utf-8') as f:
					jsonData = json.load(f)
			else:
				jsonData = json.loads(data)
			df = json_normalize(jsonData)
		dataLoadTime = timeit.default_timer() - startTime
		self.log.info('\nData Load time(sec) :'+str(dataLoadTime))
		self.log.info('\n First ten rows of new data')
		self.log.info(df.head(10))
		self.log.info('Data Frame shape: '+str(df.shape))
		df.rename(columns=lambda x:x.strip(), inplace=True)
		return df

	def readConfig(self):
		with open(self.configPath, 'r', encoding= 'utf8') as f:
			self.configDict = json.load(f)
		self.configDict['partialFit']+=1
		self.log.info('************* Partial Fit '+str(self.configDict['partialFit'])+' *************** \n')
		msg = '-------> Execution Start Time: '+ datetime.datetime.now(timezone(""Asia/Kolkata"")).strftime('%Y-%m-%d %H:%M:%S' + ' IST')
		self.log.info(msg)
		self.targetCol = self.configDict['targetCol']
		if 'numFtrs' in self.configDict:
			self.numFtrs = self.configDict['numFtrs']
		if 'catFtrs' in self.configDict:
			self.catFtrs = self.configDict['catFtrs']
		if 'allNumCols' in self.configDict:
			self.allNumCols = self.configDict['allNumCols']
		if 'allCatCols' in self.configDict:
			self.allCatCols = self.configDict['allCatCols']
		if 'encCols' in self.configDict:
			self.encCols = self.configDict['encCols']
		if 'wordToNumCols' in self.configDict:
			self.wordToNumericCols = self.configDict['wordToNumCols']
		self.emptyFtrs = self.configDict['emptyFtrs']
		if 'encTarget' in self.configDict:
			self.encTarget = self.configDict['encTarget']
		if 'noOfClasses' in self.configDict:
			self.allClasses = list(range(int(self.configDict['noOfClasses'])))
		self.misval_ratio = self.configDict['misval_ratio']
		self.allFtrs = self.configDict['allFtrs']
		self.modelName = self.configDict['modelName']
		self.problemType = self.configDict['problemType']
		self.modelPath = os.path.join(self.home, 'production', 'model', self.modelName+'.pkl')
		self.scoreParam = self.configDict['scoreParam']
		self.score = self.configDict['score']

	def pickleLoad(self, file, filename):
		if os.path.exists(file):
			with open(file, 'rb') as f:
				model = pickle.load(f)
			file_size = os.path.getsize(file)
			self.log.info(str(filename)+"" size is :""+str(file_size)+""bytes"")		
			return model
		else:
			return None

	def s2n(self,value):
		try:
			x=eval(value)
			return x
		except:
			try:
				return w2n.word_to_num(value) 
			except:
				return np.nan 

	def convertWordToNumeric(self,dataframe,feature):
		try:
			dataframe[feature]=dataframe[feature].apply(lambda x: self.s2n(x))
			return dataframe
		except Exception as inst:
			self.log.info(""convertWordToNumeric Failed ===>""+str(inst))
			return dataframe


	def pickleDump(self, model, path):
		if model is not None:
			with open(path, 'wb') as f:
				pickle.dump(model, f)	


	def splitTrainTest(self,X,y):
		if self.problemType.lower() == 'regression':
			xtrain,xtest,ytrain,ytest=train_test_split(X,y,test_size=0.2,shuffle=True)
		else:
			try:
				xtrain,xtest,ytrain,ytest=train_test_split(X,y,stratify=y,test_size=0.2,shuffle=True)
			except:
				xtrain,xtest,ytrain,ytest=train_test_split(X,y,test_size=0.2,shuffle=True)
		return xtrain,xtest,ytrain,ytest

	def loadSavedModels(self):	
		self.incFill = self.pickleLoad(self.incFillPath, 'Online Missing Value Filler')
		self.incLabelMapping = self.pickleLoad(self.incLabelMappingPath, 'Online Label Encoder')
		self.incCatEncoder = self.pickleLoad(self.incCatEncoderPath, 'Online Categorical Encoder')
		self.incScaler = self.pickleLoad(self.incScalerPath, 'Online Scaler')
		self.incOutlierRem = self.pickleLoad(self.incOutlierRemPath, 'Online Outlier Detector')
		self.model = self.pickleLoad(self.modelPath, str(os.path.basename(self.modelPath))[:-4])
		self.log.info('\nData Profiler and ML models loaded in Memory')

	def saveModels(self):
		os.makedirs(os.path.join(self.home, 'production', 'profiler'))
		os.makedirs(os.path.join(self.home, 'production', 'model'))
		if type(self.configDict['num_fill']) == type({}) or type(self.configDict['cat_fill']) == type({}):
			self.pickleDump(self.incFill, self.incFillPath)
		self.pickleDump(self.incLabelMapping, self.incLabelMappingPath)
		self.pickleDump(self.incCatEncoder, self.incCatEncoderPath)
		self.pickleDump(self.incScaler, self.incScalerPath)
		self.pickleDump(self.incOutlierRem, self.incOutlierRemPath)
		self.pickleDump(self.model, self.modelPath)
		self.log.info('Models saved into production')
	def saveConfig(self):
		with open(self.configPath, 'w', encoding= 'utf8') as f:
			json.dump(self.updConfigDict, f,  ensure_ascii=False)

	def apply_river_model(self, x, profModel, isTest):
		if not isTest:
			profModel.learn_one(x)
		return pd.Series(profModel.transform_one(x))

	def apply_enc(self, x, isTest):	
		if not isTest:
			y = x[self.encTarget]
			self.incCatEncoder.learn_one(x, y)
		return pd.Series(self.incCatEncoder.transform_one(x))
		
	def apply_od_pipe(self, x):
		score = self.incOutlierRem.score_one(x)
		is_anomaly = self.incOutlierRem.classify(score)
		self.incOutlierRem.learn_one(x)
		return is_anomaly


	def dataFramePreProcess(self, df):
		df = df.replace('-', np.NaN)
		df = df.replace('?', np.NaN)
		df = df.replace(r'^\s*$', np.NaN, regex=True)
		columns = list(df.columns)
		if self.wordToNumericCols:
			for ftr in self.wordToNumericCols:
				if ftr in columns:
					self.log.info('Converting '+ftr+' to numeric type...')
					tempDataFrame=df.copy(deep=True)
					testDf = self.convertWordToNumeric(tempDataFrame,ftr)
					try:
						df[ftr]=testDf[ftr].astype(float)
					except:
						pass
		columns = list(df.columns)		
		for empCol in self.emptyFtrs:
			if empCol in columns:
				df = df.drop(columns=[empCol])
		columns = list(df.columns)
		self.log.info( 'Detecting Missing Values')
		nonNAArray=[]
		numOfRows = df.shape[0]
		for i in columns:
			numNa=df.loc[(pd.isna(df[i])),i ].shape[0]
			nonNAArray.append(tuple([i,numNa]))
		self.missingCols = []
		self.emptyCols = []
		for item in nonNAArray:
			numofMissingVals = item[1]
			if(numofMissingVals !=0):
				self.log.info('-------> Feature '+str(item[0]))
				self.log.info('----------> Number of Empty Rows '+str(numofMissingVals))
				self.missingCols.append(item[0])
				
			if(numofMissingVals >= numOfRows * self.misval_ratio):
				self.log.info('----------> Empty: Yes')
				self.log.info('----------> Permitted Rows: '+str(int(numOfRows * self.misval_ratio)))
				self.emptyCols.append(item[0])
		if(len(self.missingCols) !=0):
			self.log.info( '----------- Detecting for Missing Values End -----------\n')
		else:
			self.log.info( '-------> Missing Value Features :Not Any')
			self.log.info( '----------- Detecting for Missing Values End -----------\n')
		return df


	def profiler(self, df, isTest=False):
		if not isTest:
			self.log.info('Starting profiling of New Training Data')
		else:
			self.log.info('Starting profiling of Testing Data')
		startTime = timeit.default_timer()
		df = self.dataFramePreProcess(df)
		if 'num_fill' in self.configDict:
			if self.configDict['num_fill'] == 'drop':
				df = df.dropna(axis = 0, subset=self.allNumCols)
			elif self.configDict['num_fill'] == 'zero':
				df[self.allNumCols] = df[self.allNumCols].fillna(value = 0.0)
			else:
				df[self.allNumCols]= df[self.allNumCols].apply(pd.to_numeric)
				df = df.astype(object).where(df.notna(), None)	#river expects nan values to be None
				df[self.allNumCols]= df[self.allNumCols].apply(lambda row: self.apply_river_model(row.to_dict(), self.incFill['num_fill'], isTest), axis='columns')
				if not isTest:
					self.updConfigDict['num_fill'] = {col:self.incFill['num_fill'].stats[col].get() for col in self.allNumCols}
		if 'cat_fill' in self.configDict:
			if self.configDict['cat_fill'] == 'drop':
				df = df.dropna(axis = 0, subset=self.allCatCols)
			elif self.configDict['cat_fill'] == 'zero':
					df[self.allCatCols] = df[self.allCatCols].fillna(value = 0.0)
			else:
				df = df.astype(object).where(df.notna(), None)
				df[self.allCatCols]= df[self.allCatCols].apply(lambda row: self.apply_river_model(row.to_dict(),self.incFill['cat_fill'], isTest), axis='columns')
				if not isTest:
					self.updConfigDict['cat_fill'] = {col:self.incFill['cat_fill'].stats[col].get() for col in self.allCatCols}
		if not isTest:
			self.log.info('Missing value profiler model updated')


		if self.incLabelMapping:
			uq_classes = df[self.targetCol].unique()
			le_classes = list(self.incLabelMapping.classes_)
			uq_classes = [type(le_classes[0])(x) for x in uq_classes]
			unseen_classes = set(uq_classes) - set(le_classes)
			self.log.info('Existing classes: '+str(le_classes))
			if len(unseen_classes)>0:
				self.log.info('New unseen classes: '+str(unseen_classes))
				le_classes.extend(unseen_classes)
				from sklearn.preprocessing import LabelEncoder
				self.incLabelMapping = LabelEncoder()
				self.incLabelMapping.fit(le_classes)
				self.log.info(self.incLabelMapping.classes_)
				self.log.info('Label encoder refitted with new unseen classes')
			df[self.targetCol] = df[self.targetCol].apply(str)
			df[self.targetCol] = self.incLabelMapping.transform(df[self.targetCol])
			if not isTest:
				self.log.info('Target column label encoding is done')

		if self.incCatEncoder:
			if self.problemType.lower() == 'regression':
				from sklearn.preprocessing import StandardScaler
				sc = StandardScaler()
				self.encTarget = 'scaledTarget'
				df['scaledTarget'] = sc.fit_transform(df[self.targetCol].to_numpy().reshape(-1,1))
			transformed_data = df[self.encCols].apply(lambda row: self.apply_enc(row.to_dict(), isTest), axis='columns')
			if self.targetCol in transformed_data.columns:
				transformed_data.drop(self.targetCol, inplace=True, axis = 1)
			df[self.catFtrs] =  transformed_data
			if not isTest:
				self.updConfigDict['catEnc'] = []
				if len(self.catFtrs) == 1:
					col = self.catFtrs[0]
					self.configDict['catEnc'].append({col:self.incCatEncoder['TargetAgg'].state.to_dict()})
				else:
					for i, col in enumerate(self.catFtrs):
						if i==0:
							no = ''
						else:
							no = str(i)
						self.configDict['catEnc'].append({col:self.incCatEncoder['TransformerUnion']['TargetAgg'+no].state.to_dict()})
				self.log.info('Categorical encoding is done and profiler model updated')

		if self.incScaler:
			if not isTest:
				self.incScaler = self.incScaler.partial_fit(df[self.numFtrs])
				self.log.info('Numerical features scaled and profiler model updated')
			df[self.numFtrs] = self.incScaler.transform(df[self.numFtrs])

		if self.incOutlierRem and not isTest:
			df = df[df[self.numFtrs].apply(lambda x: False if self.apply_od_pipe(x.to_dict()) else True, axis=1)]
			df.reset_index(drop=True, inplace=True)
			self.log.info('Outliers removed and profiler model updated')

		if not isTest:
			self.log.info('Check config file in production folder for updated profiler values')
		profilerTime = timeit.default_timer() - startTime
		self.log.info('\nProfiling time(sec) :'+str(profilerTime))
		return df
		


	def riverTrain(self, X, Y):
		trainStream = stream.iter_pandas(X, Y)
		for i, (xi, yi) in enumerate(trainStream):
			if yi!=None:
				self.model.learn_one(xi, yi)

	def riverEvaluate(self, xtest):
		testStream = stream.iter_pandas(xtest)
		preds = []
		for xi,yi in testStream:
			pred = self.model.predict_one(xi)
			preds.append(pred)
		return preds

	def trainModel(self,df):
		startTime = timeit.default_timer()
		X = df[self.allFtrs]
		Y = df[self.targetCol]
		try:
			self.riverTrain(X,Y)
			trainTime = timeit.default_timer() - startTime
			self.log.info('\nModel Training time(sec) :'+str(trainTime))
			self.log.info(self.modelName+' model updated')
			self.log.info('First fit model params are '+str(self.configDict['modelParams']))
		except Exception as e:
			raise e



	def archiveModels(self):
		source = os.path.join(self.home, 'production')
		archivePath = os.path.join(self.home,'archives')
		if os.path.isdir(archivePath):
			NoOfArchives = sum(os.path.isdir(os.path.join(self.home,'archives',str(i))) for i in os.listdir(archivePath))
			destination = os.path.join(self.home,'archives',str(NoOfArchives+1))
		else:
			destination = os.path.join(archivePath,'1')
		if not os.path.exists(destination):
			os.makedirs(destination)
		allfiles = os.listdir(source)
		for f in allfiles:
			src_path = os.path.join(source, f)
			dst_path = os.path.join(destination, f)
			shutil.move(src_path, dst_path)
		self.log.info('Previous production models archived')

	def get_score(self,metric,actual,predict):
		if 'accuracy' in str(metric).lower():
			score = accuracy_score(actual,predict)
			score = score*100
		elif 'recall' in str(metric).lower():
			score = recall_score(actual,predict,average='macro')
			score = score*100
		elif 'precision' in str(metric).lower():
			score = precision_score(actual,predict,average='macro')
			score = score*100
		elif 'f1_score' in str(metric).lower():
			score = f1_score(actual,predict, average='macro') 
			score = score*100
		elif 'roc_auc' in str(metric).lower():
			try:
				score = roc_auc_score(actual,predict,average=""macro"")
			except:   
				try:
					actual = pd.get_dummies(actual)
					predict = pd.get_dummies(predict)            
					score = roc_auc_score(actual,predict, average='weighted', multi_class='ovr')
				except:
					score = 0
			score = score*100
		elif ('mse' in str(metric).lower()) or ('neg_mean_squared_error' in str(metric).lower()):
			score = mean_squared_error(actual,predict)
		elif ('rmse' in str(metric).lower()) or ('neg_root_mean_squared_error' in str(metric).lower()):
			score=mean_squared_error(actual,predict,squared=False)
		elif ('mae' in str(metric).lower()) or ('neg_mean_absolute_error' in str(metric).lower()):
			score=mean_absolute_error(actual,predict)
		elif 'r2' in str(metric).lower():
			score=r2_score(actual,predict)*100
		return round(score,2)

	def checkColumns(self, df):
		self.log.info('Checking DataColumns in new data')
		dfCols = list(df.columns)
		allCols = self.allFtrs.copy()
		allCols.append(self.targetCol)
		missingCols = []
		for col in allCols:
			if col not in dfCols:
				missingCols.append(col)
		if len(missingCols)>0:
			raise Exception('DataFrame is missing columns: '+str(missingCols))
		else:
			self.log.info('All required columns are present: '+str(list(dfCols)[:500]))	

	def plotMetric(self):
		y = self.configDict['metricList']
		fedrows = self.configDict['trainRowsList']
		fig = plt.figure()
		ax = fig.gca()
		if self.configDict['problemType'] == 'classification':
			ax.set_yticks(np.arange(0, 110, 10))
			plt.ylim(ymin=0)
		if self.configDict['problemType'] == 'regression':
			minMet = min(y)
			maxMet = max(y)
			plt.ylim(minMet - 10, maxMet+10)			
		plt.plot(y)
		plt.ylabel(self.scoreParam)
		plt.xlabel('Partial Fits')
		plt.title(str(self.scoreParam)+' over training rows')
		if type(fedrows[0])!=type(''):
			fedrows = [str(x) for x in fedrows]
		x = list(range(len(fedrows)))
		for i in range(len(fedrows)):
			plt.annotate(fedrows[i], (x[i], y[i] + 5))
			if self.configDict['problemType'] == 'classification':
				plt.annotate(round(y[i],1), (x[i], y[i] - 3))
		plt.grid()
		plt.savefig(os.path.join(self.home, 'production','metric'))
		return	

	def updateLearning(self,data):
		try:
			self.readConfig()
			self.updConfigDict = self.configDict.copy()
			df = self.readData(data)
			self.checkColumns(df)
			self.loadSavedModels()
			X = df[self.allFtrs]
			y = df[self.targetCol]
			xtrain,xtest,ytrain,ytest = self.splitTrainTest(X,y)
			dftrain = pd.concat((xtrain, ytrain), axis = 1)
			dftest = pd.concat((xtest, ytest), axis = 1)
			dftrain = self.profiler(dftrain)
			dftest = self.profiler(dftest, isTest = True)
			xtest = dftest[self.allFtrs]
			ytest = dftest[self.targetCol]
			self.trainModel(dftrain)
			preds = self.riverEvaluate(xtest)
			score = self.get_score(self.scoreParam, ytest, preds)
			self.updConfigDict['score'] = score
			self.log.info('Previous '+self.scoreParam+': '+str(self.configDict['score']))
			self.log.info('Current '+self.scoreParam+': '+str(self.updConfigDict['score']))
			self.configDict['trainRowsList'].append(self.configDict['trainRowsList'][-1]+xtrain.shape[0])
			self.log.info('Number of data points trained on so far: '+str(self.configDict['trainRowsList'][-1]))
			self.configDict['metricList'].append(self.updConfigDict['score'])
			self.archiveModels()
			self.plotMetric()
			self.saveModels()
			self.saveConfig()
			msg = self.scoreParam+': Previous:'+str(self.configDict['score'])+' Current:'+  str(self.updConfigDict['score'])
			output = {""status"":""SUCCESS"",""Msg"":msg}
			self.log.info(str(output))
		except Exception as e:
			print(traceback.format_exc())
			self.log.info('Partial Fit Failed '+str(traceback.format_exc()))
			if self.updConfigDict != None:
				self.saveConfig()
			output = {""status"":""FAIL"",""Msg"":str(e).strip('""')}
		return json.dumps(output)

if __name__ == ""__main__"":
	incBLObj = incBatchLearner()
	output = incBLObj.updateLearning(sys.argv[1])
	print(""aion_learner_status:"",output)
"
incBatchPrediction.py,"
import sys
import os
import pickle
import json
import traceback
import warnings
warnings.filterwarnings(""ignore"")

import numpy as np
import pandas as pd
import scipy
from pandas import json_normalize
from word2number import w2n

from river import stream


class incBatchPredictor():

	def __init__(self):
		self.home = os.path.dirname(os.path.abspath(__file__))
		self.configPath = os.path.join(self.home, 'production', 'Config.json')
		self.configDict = {}
		self.incFillPath = os.path.join(self.home,'production','profiler','incFill.pkl')
		self.incLabelMappingPath = os.path.join(self.home,'production', 'profiler' , 'incLabelMapping.pkl')
		self.incCatEncoderPath = os.path.join(self.home, 'production' , 'profiler', 'incCatEncoder.pkl')
		self.incScalerPath = os.path.join(self.home, 'production', 'profiler','incScaler.pkl')
		self.incFill = None
		self.incLabelMapping = None
		self.incCatEncoder = None
		self.incScaler = None
		self.model = None
		self.targetCol = None
		self.modelName = ''
		self.problemType = ''
		self.numFtrs = []
		self.catFtrs = []

	def readData(self, data):
		try:
			if os.path.splitext(data)[1] == "".tsv"":
				df=pd.read_csv(data,encoding='utf-8',sep='\t')
			elif os.path.splitext(data)[1] == "".csv"":
				df=pd.read_csv(data,encoding='utf-8')
			elif os.path.splitext(data)[1] == "".dat"":
				df=pd.read_csv(data,encoding='utf-8')
			else:
				if os.path.splitext(data)[1] == "".json"":
					with open(data,'r',encoding='utf-8') as f:
						jsonData = json.load(f)
				else:
					jsonData = json.loads(data)
				df = json_normalize(jsonData)
			df.rename(columns=lambda x:x.strip(), inplace=True)
			return df
		except KeyError as e:
			output = {""status"":""FAIL"",""message"":str(e).strip('""')}
			print(json.dumps(output))
		except Exception as e:
			output = {""status"":""FAIL"",""message"":str(e).strip('""')}
			print(json.dumps(output))

	def readConfig(self):
		with open(self.configPath, 'r', encoding= 'utf8') as f:
			self.configDict = json.load(f)
		self.targetCol = self.configDict['targetCol']
		if 'numFtrs' in self.configDict:
			self.numFtrs = self.configDict['numFtrs']
		if 'catFtrs' in self.configDict:
			self.catFtrs = self.configDict['catFtrs']
		if 'allNumCols' in self.configDict:
			self.allNumCols = self.configDict['allNumCols']
		if 'allCatCols' in self.configDict:
			self.allCatCols = self.configDict['allCatCols']	 
		if 'wordToNumCols' in self.configDict:
			self.wordToNumericCols = self.configDict['wordToNumCols']
		self.emptyFtrs = self.configDict['emptyFtrs']
		self.allFtrs = self.configDict['allFtrs']
		self.modelName = self.configDict['modelName']
		self.problemType = self.configDict['problemType']
		self.modelPath = os.path.join(self.home, 'production', 'model', self.modelName+'.pkl')
		self.scoreParam = self.configDict['scoreParam']
		self.score = self.configDict['score']

	def pickleLoad(self, file):
		if os.path.exists(file):
			with open(file, 'rb') as f:
				model = pickle.load(f)		
			return model
		else:
			return None

	def s2n(self,value):
		try:
			x=eval(value)
			return x
		except:
			try:
				return w2n.word_to_num(value) 
			except:
				return np.nan 

	def convertWordToNumeric(self,dataframe,feature):
		try:
			dataframe[feature]=dataframe[feature].apply(lambda x: self.s2n(x))
			return dataframe
		except Exception as inst:
			self.log.info(""convertWordToNumeric Failed ===>""+str(inst))
			return dataframe



	def loadSavedModels(self):
		self.incFill = self.pickleLoad(self.incFillPath)
		self.incLabelMapping = self.pickleLoad(self.incLabelMappingPath)
		self.incCatEncoder = self.pickleLoad(self.incCatEncoderPath)
		self.incScaler = self.pickleLoad(self.incScalerPath)
		self.model = self.pickleLoad(self.modelPath)


	def apply_river_model(self, x, profModel):
		print(profModel.imputers)
		return pd.Series(profModel.transform_one(x))

	def apply_enc(self, x):
		return pd.Series(self.incCatEncoder.transform_one(x))
		
	def dataFramePreProcess(self, df):
		df = df.replace(r'^\s*$', np.NaN, regex=True)
		df = df.replace('-', np.nan)
		df = df.replace('?', np.nan)
		columns = list(df.columns)
		if self.wordToNumericCols:
			for ftr in self.wordToNumericCols:
				if ftr in columns:
					tempDataFrame=df.copy(deep=True)
					testDf = self.convertWordToNumeric(tempDataFrame,ftr)
					try:
						df[ftr]=testDf[ftr].astype(float)
					except:
						pass		
		columns = list(df.columns)		
		for empCol in self.emptyFtrs:
			if empCol in columns:
				df = df.drop(columns=[empCol])
		return df

	def profiler(self, df):
		df = df[self.allFtrs]
		df = self.dataFramePreProcess(df)
		if 'num_fill' in self.configDict:
			if self.configDict['num_fill'] == 'drop':
					df = df.dropna(axis = 0, subset=self.allNumCols)
			elif self.configDict['num_fill'] == 'zero':
					df[self.numFtrs] = df[self.numFtrs].fillna(value = 0.0)
			else:
				for x in self.numFtrs:
					if x == self.targetCol:
						continue
					df[x] = df[x].fillna(value = self.configDict['num_fill'][x])
		if 'cat_fill' in self.configDict:
			if self.configDict['cat_fill'] == 'drop':
				df = df.dropna(axis = 0, subset=self.allCatCols)
			elif self.configDict['cat_fill'] == 'zero':
					df[self.catFtrs] = df[self.catFtrs].fillna(value = 0.0)
			else:
				for x in self.catFtrs:
					if x == self.targetCol:
						continue
					df[x] = df[x].fillna(value = self.configDict['cat_fill'][x])

		if self.incCatEncoder:
			transformed_data = df[self.catFtrs].apply(lambda row: self.apply_enc(row.to_dict()), axis='columns')
			df[self.catFtrs] =  transformed_data

		if self.incScaler:
			df[self.numFtrs] = self.incScaler.transform(df[self.numFtrs])

		return df

	def trainedModel(self,X):
		testStream = stream.iter_pandas(X)
		preds = []
		if self.problemType.lower() == 'regression':
			for xi,yi in testStream:
				try:
					pred = self.model.predict_proba_one(xi)
					preds.append(pred)
				except:
					pred = self.model.predict_one(xi)
					preds.append(pred)
			preds = pd.DataFrame(preds)
			return preds
		elif self.problemType.lower() == 'classification':
			for xi,yi in testStream:
				try:
					pred = self.model.predict_proba_one(xi)
					preds.append(pred)
				except:
					continue
			out = pd.DataFrame(preds)
			return out		


	def apply_output_format(self,df,modeloutput):
		if self.problemType.lower() == 'regression':
			df['prediction'] = 	modeloutput[0]
			df['prediction'] = df['prediction'].round(2)
		elif self.problemType.lower() == 'classification':
			modeloutput = round(modeloutput,2)
			if modeloutput.shape[1] == 1:
				df['prediction'] = modeloutput
				df['prediction'] = df['prediction'].astype(int)
			else:
				try:
					predCol = modeloutput.idxmax(axis=1)
					df['prediction'] = predCol.astype(int)
					df['prediction'] = self.incLabelMapping.inverse_transform(df['prediction'])
				except:
					df['prediction'] = modeloutput.idxmax(axis=1)
				df['probability'] = modeloutput.max(axis=1).round(2)
				modeloutput.columns = modeloutput.columns.astype(int)
				modeloutput.columns = self.incLabelMapping.inverse_transform(list(modeloutput.columns))
				df['remarks'] = modeloutput.apply(lambda x: x.to_json(), axis=1)
		outputjson = df.to_json(orient='records')
		outputjson = {""status"":""SUCCESS"",""data"":json.loads(outputjson)}
		return(json.dumps(outputjson))


		
	def predict(self,data):
		try:
			df = self.readData(data)
			dfOrg = df.copy()
			self.readConfig()
			if len(self.configDict)!=0:
				self.loadSavedModels()
				df = self.profiler(df)
				modeloutput = self.trainedModel(df)
				dfOrg = dfOrg[self.allFtrs]
				output = self.apply_output_format(dfOrg, modeloutput)
			else:
				pass
		except Exception as e:
			print(traceback.format_exc())
			output = {""status"":""FAIL"",""message"":str(e).strip('""')}
		return output

if __name__ == ""__main__"":
	incBPobj = incBatchPredictor()
	output = incBPobj.predict(sys.argv[1])
	print(""predictions:"",output)
"
dl_model.py,"import tensorflow as tf


def dl_regression_model(input_shape, output_shape,
                        optimizer, loss_func, act_func):
    inputs = tf.keras.Input(shape=(input_shape,))
    x = tf.keras.layers.Dense(64, 
                        kernel_initializer='he_normal',
                        bias_initializer='zeros',
                        activation=act_func)(inputs)
    x = tf.keras.layers.Dense(32, 
                        kernel_initializer='he_normal',
                        bias_initializer='zeros',
                        activation=act_func)(x)

    x = tf.keras.layers.Dense(16, 
                        kernel_initializer='he_normal',
                        bias_initializer='zeros',
                        activation=act_func)(x)

    x = tf.keras.layers.Dense(8, 
                        kernel_initializer='he_normal',
                        bias_initializer='zeros',
                        activation=act_func)(x)

    outputs = tf.keras.layers.Dense(output_shape, 
                        kernel_initializer='he_normal',
                        bias_initializer='zeros')(x)

    model = tf.keras.Model(inputs=inputs, outputs=outputs)

    model.compile(loss=loss_func , 
                    optimizer=optimizer, 
                    metrics=[""mean_absolute_error"",
                            ""mean_squared_error"",
                            ])
    return model

def dl_multiClass_classification(input_shape, output_shape,
                                optimizer, loss_func, act_func, last_act_func):
    inputs = tf.keras.Input(shape=(input_shape,))
    x = tf.keras.layers.Dense(64, 
                        kernel_initializer='he_normal',
                        bias_initializer='zeros',
                        activation=act_func)(inputs)
    x = tf.keras.layers.Dense(32, 
                        kernel_initializer='he_normal',
                        bias_initializer='zeros',
                        activation=act_func)(x)

    x = tf.keras.layers.Dense(16, 
                        kernel_initializer='he_normal',
                        bias_initializer='zeros',
                        activation=act_func)(x)

    x = tf.keras.layers.Dense(8, 
                        kernel_initializer='he_normal',
                        bias_initializer='zeros',
                        activation=act_func)(x)
    outputs = tf.keras.layers.Dense(output_shape, 
                        kernel_initializer='he_normal',
                        bias_initializer='zeros',
                        activation=last_act_func)(x)
    model = tf.keras.Model(inputs=inputs, outputs=outputs)
    model.compile(optimizer, loss_func, metrics=[""accuracy""])
    return model

def dl_binary_classification(input_shape, output_shape, 
                                optimizer, loss_func, act_func, last_act_func):
    inputs = tf.keras.Input(shape=(input_shape,))
    x = tf.keras.layers.Dense(64, 
                        kernel_initializer='he_normal',
                        bias_initializer='zeros',
                        activation=act_func)(inputs)
    x = tf.keras.layers.Dense(32, 
                        kernel_initializer='he_normal',
                        bias_initializer='zeros',
                        activation=act_func)(x)

    x = tf.keras.layers.Dense(16, 
                        kernel_initializer='he_normal',
                        bias_initializer='zeros',
                        activation=act_func)(x)

    x = tf.keras.layers.Dense(8, 
                        kernel_initializer='he_normal',
                        bias_initializer='zeros',
                        activation=act_func)(x)
                        
    outputs = tf.keras.layers.Dense(output_shape, 
                        kernel_initializer='he_normal',
                        bias_initializer='zeros',
                        activation=last_act_func)(x)
    model = tf.keras.Model(inputs=inputs, outputs=outputs)
    model.compile(optimizer, loss_func, 
                   metrics=[""accuracy""])
    return model
"
aionflc.py,"# -*- coding: utf-8 -*-
""""""
Created on Wed May 25 21:16:54 2022

@author: @aionteam
""""""
import tensorflow as tf
import warnings
import flwr as flower 
import numpy as np
import pandas as pd
import os
from sklearn.linear_model import LogisticRegression
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, mean_absolute_error,r2_score
from sklearn.model_selection import train_test_split
from sklearn.metrics import log_loss
import utils
import logging
from flwr.common.logger import log
from logging import INFO
import time
import pickle as pkl
import json
import sys
import random 
import string
from sklearn.preprocessing import StandardScaler
import dl_model
from sklearn import metrics
## Below import can be used when aion specific grpc communication used.
# from aiongrpcclient import aiongrpcclient
os.environ[""TF_CPP_MIN_LOG_LEVEL""] = ""3""
os.environ[""GRPC_VERBOSITY""] = ""debug""
logger = logging.getLogger('AION')
"""""" The below aion fl client is for sklearn process""""""
class aionflc(flower.client.NumPyClient):
    def __init__(self,model,num_rounds,model_name,version,wait_time,client_id,num_records,model_overwrite,problem_type,X_train, X_test, y_train, y_test):
        self.count=0
        self.num_rounds=round(num_rounds)
        self.model_name=model_name
        self.version=version
        self.wait_time=int(wait_time)
        self.client_id=client_id
        self.num_records=num_records
        self.model_overwrite=model_overwrite
        self.model=model
        self.problem_type=problem_type
        self.X_train, self.X_test, self.y_train, self.y_test=X_train, X_test, y_train, y_test
        
    # """""" The below part not used now. In future, for our own grpc communication, this module will be used.Call this function where we want. Need to modify aiongrpcproto.proto according our requirement."""""" 
    # def callaiongrpcclient(self):
    #     clientins = aiongrpcclient()
    #     status=clientins.startgrpcclient()
    #     return status
        
    #Save the final model	
    def model_save(self,model):
        ##Locate standard model dir to save model
        cwd = os.path.abspath(os.path.dirname(__file__))
        model_location=os.path.join(cwd, 'models')
        try:
            os.makedirs(model_location)
        except FileExistsError as fe:
            # here,model_location already exists
            pass

        model_name=self.model_name        
        ## Saving model
        if (self.model_overwrite.lower() == 'false'):
            version=str(self.count)
            if (model_name.lower() == ""deeplearning""):
                file_name=model_name+'_'+self.problem_type+'_'+version+"".h5""
                saved_model=os.path.normpath(os.path.join(model_location,file_name))
                log(INFO, ""flclient saved_model path: %s "",str(saved_model))                
                try: 
                    model.save(saved_model)
                    return True
                except Exception as e:
                    logger.info(""model save error. Err.Msg: ""+str(e))
                    return False
            else:
                file_name=model_name+'_'+self.problem_type+'_'+version+"".sav""
                saved_model=os.path.normpath(os.path.join(model_location,file_name))
                log(INFO, ""flclient saved_model path: %s "",str(saved_model))
                try:
                    
                    with open (saved_model,'wb') as f:
                        pkl.dump(model,f)
                    return True
                except Exception as e:
                    logger.info(""model save error. Err.Msg: ""+str(e))
                    return False
        elif (self.model_overwrite.lower() == 'true'):
            version=str(self.version)
            if (model_name.lower() == ""deeplearning""):
                file_name=model_name+'_'+self.problem_type+'_'+version+"".h5""
                saved_model=os.path.normpath(os.path.join(model_location,file_name))
                log(INFO, ""flclient saved_model path: %s "",str(saved_model))                
                try: 
                    model.save(saved_model)
                    return True
                except Exception as e:
                    logger.info(""model save error. Err.Msg: ""+str(e))
                    return False
            else:
                file_name=model_name+'_'+self.problem_type+'_'+version+"".sav""
                saved_model=os.path.normpath(os.path.join(model_location,file_name))
                log(INFO, ""flclient saved_model path: %s "",str(saved_model))            
                try: 
                    with open (saved_model,'wb') as f:
                        pkl.dump(model,f)
                    return True
                except Exception as e:
                    logger.info(""model save error. Err.Msg: ""+str(e))
                    return False
        else:
            ##Write own user instruction
            pass            
    def get_parameters(self, config):
        return utils.get_model_parameters(self.model)
    def get_properties(self,model,time_out):
        """"""Return the current client properties.""""""
        client_info={'client_id':self.client_id}
        time_out=100
        return client_info,model,time_out
    
    def fit(self, parameters, config):   
        utils.set_model_params(self.model, parameters)        
        with warnings.catch_warnings():
            warnings.simplefilter(""ignore"")                      
            num_partitions=round(self.num_rounds)
            # num_partitions=round(5)            
            xtrain=np.array_split(self.X_train, num_partitions)[self.count]
            ytrain=np.array_split(self.y_train, num_partitions)[self.count]     
            self.model.fit(xtrain, ytrain)
            time.sleep(self.wait_time) 
            self.count+=1
        print(""-- Received Weights from Server."")
        print(f""\n Training finished for FL round: {config['rnd']}.\n"")
        logger.info(""-- Received Weights from Server. "")
        logger.info(""Training finished for FL round: ""+str(config['rnd'])+"" -- Received Weights from Server"")
        model_param=utils.get_model_parameters(self.model)
        model_param=list(model_param)
        return model_param, len(self.X_train),{}
    

    # def evaluate(self, parameters, config):
        # utils.set_model_params(self.model, parameters)
        # print(""******** Test_1 ****************** \n"")
        # if (self.problem_type.lower() == 'classification'):
            # if (self.model_name.lower() == 'logisticregression' ):
                # loss = log_loss(self.y_test, self.model.predict_proba(self.X_test))
                # print(""******** Test_1a ****************** \n"")
        # else:
            # if (self.model_name.lower() == 'linearregression' ):
                # print(""******** Test_1b ****************** \n"")
                # # loss = log_loss(self.y_test, self.model.predict(self.X_test))
                # rmse = np.sqrt(mean_squared_error(self.y_test, self.model.predict(self.X_test)))
                # mae = mean_absolute_error(self.y_test, self.model.predict(self.X_test))
                # r2=r2_score(self.y_test, self.model.predict(self.X_test))
                # loss = rmse
                # # accuracy=r2
                # print(f""{self.client_id} Sending weights -- data processed {self.num_records}, -- Loss: {(rmse)}. -- r2: {r2}. "")
                # logger.info(str(self.client_id)+"" Sending weights -- data processed ""+str(self.num_records)+"".-- Loss: ""+str(rmse)+"". -- r2: ""+str(r2))
                # logger.info(""FL Client model intercept: ""+str(model.intercept_))
                # logger.info(""FL Client model coefficients: ""+str(model.coef_))
                # self.model_save(self.model)
                # return loss, len(self.X_test), {""r2"": r2}
                # print(""******** Test_1c ****************** \n"")
        # print(""******** Test_2 ****************** \n"")        
        # accuracy = self.model.score(self.X_test, self.y_test)        
        # print(f""{self.client_id} Sending weights -- data processed {self.num_records}, -- Loss: {(loss)}. -- accuracy: {accuracy}. "")
        # logger.info(str(self.client_id)+"" Sending weights -- data processed ""+str(self.num_records)+"".-- Loss: ""+str(loss)+"". -- accuracy: ""+str(accuracy))
        # logger.info(""FL Client model intercept: ""+str(model.intercept_))
        # logger.info(""FL Client model coefficients: ""+str(model.coef_))
        # self.model_save(self.model)
        # return loss, len(self.X_test), {""accuracy"": accuracy}
		
    def evaluate(self, parameters, config):
        
        utils.set_model_params(self.model, parameters)
        if (self.problem_type.lower() == 'classification'):
            if (self.model_name.lower() == 'logisticregression' ):
                loss = log_loss(self.y_test, self.model.predict_proba(self.X_test))
            accuracy = self.model.score(self.X_test, self.y_test)        
            print(f""{self.client_id} Sending weights -- data processed {self.num_records}, -- Loss: {(loss)}. -- accuracy: {accuracy}. "")
            logger.info(str(self.client_id)+"" Sending weights -- data processed ""+str(self.num_records)+"".-- Loss: ""+str(loss)+"". -- accuracy: ""+str(accuracy))
            logger.info(""FL Client model intercept: ""+str(model.intercept_))
            logger.info(""FL Client model coefficients: ""+str(model.coef_))
            self.model_save(self.model)
            return loss, len(self.X_test), {""accuracy"": accuracy}
        elif (self.problem_type.lower() == 'regression'):
            if (self.model_name.lower() == 'linearregression' ):
                # loss = log_loss(self.y_test, self.model.predict(self.X_test))
                mse=mean_squared_error(self.y_test, self.model.predict(self.X_test))
                rmse = np.sqrt(mean_squared_error(self.y_test, self.model.predict(self.X_test)))
                mae = mean_absolute_error(self.y_test, self.model.predict(self.X_test))
                r2=r2_score(self.y_test, self.model.predict(self.X_test))
                loss = rmse
                results = {
                            ""mean_absolute_error"": mae,
                            ""mean_squared_error"": mse,
                            ""root_mean_squared_error"": rmse,
							""r2"":r2,
                            }
                print(f""{self.client_id} Sending weights -- data processed {self.num_records}, -- Loss: {(rmse)}. -- metrics: {results}. "")
                logger.info(str(self.client_id)+"" Sending weights -- data processed ""+str(self.num_records)+"".-- Loss: ""+str(rmse)+"". -- metrics: ""+str(results))
                logger.info(""FL Client model intercept: ""+str(self.model.intercept_))
                logger.info(""FL Client model coefficients: ""+str(self.model.coef_))
                self.model_save(self.model)
                return loss, len(self.X_test), results

"""""" The below aion fl client is for deep learning process. 
Why different client for sklearn and deeplearn ?: Because, flower calling the client object and process all functions (get_parameters,fit and evaluate) internally. So, user space we cannot combine both (sklearn n dl) using if..else.   """"""
class aionflc_dl(flower.client.NumPyClient):
    def __init__(self,model,num_rounds,model_name,version,wait_time,client_id,num_records,model_overwrite,problem_type,X_train, X_test, y_train, y_test,model_params):
        self.count=0
        self.num_rounds=round(num_rounds)
        self.model_name=model_name
        self.version=version
        self.wait_time=int(wait_time)
        self.client_id=client_id
        self.num_records=num_records
        self.model_overwrite=model_overwrite
        self.model=model
        self.problem_type=problem_type
        self.X_train, self.X_test, self.y_train, self.y_test=X_train, X_test, y_train, y_test
        self.model_params=model_params
        
    # """""" The below part not used now. In future, for our own grpc communication, this module will be used.Call this function where we want. Need to modify aiongrpcproto.proto according our requirement."""""" 
    # def callaiongrpcclient(self):
    #     clientins = aiongrpcclient()
    #     status=clientins.startgrpcclient()
    #     return status
        
    #Save the final model	
    def model_save(self,model):
        ##Locate standard model dir to save model
        cwd = os.path.abspath(os.path.dirname(__file__))
        model_location=os.path.join(cwd, 'models')
        try:
            os.makedirs(model_location)
        except FileExistsError as fe:
            # here,model_location already exists
            pass

        model_name=self.model_name        
        # version=self.version
        ## Saving model
        if (self.model_overwrite.lower() == 'false'):
            version=str(self.count)
            if (model_name.lower() == ""deeplearning""):
                file_name=model_name+'_'+self.problem_type+'_'+version+"".h5""
                saved_model=os.path.normpath(os.path.join(model_location,file_name))
                log(INFO, ""flclient saved_model path: %s "",str(saved_model))                
                try: 
                    model.save(saved_model)
                    return True
                except Exception as e:
                    logger.info(""model save error. Err.Msg: ""+str(e))
                    return False
            else:
                file_name=model_name+'_'+self.problem_type+'_'+version+"".sav""
                saved_model=os.path.normpath(os.path.join(model_location,file_name))
                log(INFO, ""flclient saved_model path: %s "",str(saved_model))
                try:
                    
                    with open (saved_model,'wb') as f:
                        pkl.dump(model,f)
                    return True
                except Exception as e:
                    logger.info(""model save error. Err.Msg: ""+str(e))
                    return False
        elif (self.model_overwrite.lower() == 'true'):
            version=str(self.version)
            if (model_name.lower() == ""deeplearning""):
                file_name=model_name+'_'+self.problem_type+'_'+version+"".h5""
                saved_model=os.path.normpath(os.path.join(model_location,file_name))
                log(INFO, ""flclient saved_model path: %s "",str(saved_model))                
                try: 
                    model.save(saved_model)
                    return True
                except Exception as e:
                    logger.info(""model save error. Err.Msg: ""+str(e))
                    return False
            else:
                file_name=model_name+'_'+self.problem_type+'_'+version+"".sav""
                saved_model=os.path.normpath(os.path.join(model_location,file_name))
                log(INFO, ""flclient saved_model path: %s "",str(saved_model))            
                try: 
                    with open (saved_model,'wb') as f:
                        pkl.dump(model,f)
                    return True
                except Exception as e:
                    logger.info(""model save error. Err.Msg: ""+str(e))
                    return False
        else:
            ##Write own user instruction
            pass
            
    def get_parameters(self, config):
        """"""Get parameters of the local model.""""""
        return self.model.get_weights() 
        
    def get_properties(self,model,time_out):
        """"""Return the current client properties.""""""
        client_info={'client_id':self.client_id}
        time_out=100
        return client_info,model,time_out
    
    def fit(self, parameters, config):
        """"""Train parameters on the locally held training set.""""""
        # Update local model parameters
        self.model.set_weights(parameters)
        num_partitions=(self.num_rounds)
        # num_partitions=round(5)            
        xtrain=np.array_split(self.X_train, num_partitions)[self.count]
        ytrain=np.array_split(self.y_train, num_partitions)[self.count]        
        # y_train = np_utils.to_categorical(y_train, num_classes)
        # y_test = np_utils.to_categorical(y_test, num_classes)
        # Get hyperparameters for this round
        batch_size: int = int(self.model_params[""batch_size""])
        epochs: int = int(self.model_params[""epochs""])
        # round: int = config[""rnd""]
        # self.round_id = round
        log(INFO, ""==========================="")
        log(INFO, ""Start training model on local client %s round %i"",
                    self.client_id, config['rnd'])
        time.sleep(self.wait_time) 
        self.count+=1
        # Train the model using hyperparameters from config        
        history = self.model.fit(
            xtrain,
            ytrain,
            batch_size,
            epochs,
            shuffle=False,
            # validation_split=0.1,
            validation_data=(self.X_test, self.y_test),
            verbose=1
            )        
        # Return updated model parameters and results
        parameters_prime = self.model.get_weights()
        num_examples_train = len(self.X_train)
        model_name = self.model_name
        problem_type = self.problem_type
        if model_name == ""deeplearning"":
            if problem_type == ""classification"":
                acc = self.model.history.history['val_accuracy']
                log(INFO, ""Validated accuracy at the end of current round of client %s : %.2f %%"",
                            self.client_id, acc[-1]*100)
                log(INFO, ""Finished training model on local client %s"", self.client_id)
                results = {
                            ""loss"": history.history[""loss""][0],
                            ""accuracy"": history.history[""accuracy""][0],
                            ""val_loss"": history.history[""val_loss""][0],
                            ""val_accuracy"": history.history[""val_accuracy""][0],
                            }
            if problem_type == ""regression"": 
                mean_absolute_error = history.history['mean_absolute_error'][0]
                mean_squared_error = history.history['mean_squared_error'][0]
                y_pred = self.model.predict(self.X_test)
                from sklearn import metrics
                root_mean_squared_error = np.sqrt(metrics.mean_squared_error(self.y_test, y_pred))
                log(INFO, ""Mean Absolute Error at the end of current round of client %s : %f"", 
                            self.client_id, mean_absolute_error)
                log(INFO, ""Mean Squared Error at the end of current round of client %s : %f"", 
                            self.client_id, mean_squared_error)
                log(INFO, ""Root Mean Squared Error at the end of current round of client %s : %f"", 
                            self.client_id, root_mean_squared_error)
                log(INFO, ""Finished training model on local client %s"", self.client_id)
                results = {
                            ""mean_absolute_error"": mean_absolute_error,
                            ""mean_squared_error"": mean_squared_error,
                            ""root_mean_squared_error"": root_mean_squared_error,
                            }
        return parameters_prime, num_examples_train, results
    
        
    def evaluate(self, parameters, config):
        """"""Evaluate parameters on the locally held test set.""""""

        # Update local model with global parameters
        self.model.set_weights(parameters)
        num_partitions=(self.num_rounds)
        # Get config values
        # batch_size: int = config[""val_batch_size""]
        batch_size: int = int(self.model_params[""batch_size""])
        steps: int = np.ceil(len(self.X_test)/batch_size)
        num_examples_test = len(self.X_test)
        log(INFO, ""Run for only %i steps"", steps)
        # Evaluate global model parameters on the local test data and return results
        model_name = self.model_name
        problem_type = self.problem_type
        self.model_save(self.model)
        if model_name == ""deeplearning"":
            if problem_type == ""classification"":                
                loss, accuracy = self.model.evaluate(self.X_test, self.y_test,verbose=0)                
                log(INFO, ""Client %s : Accuracy %.2f %%"", self.client_id, accuracy*100)
                log(INFO, ""Client %s : Loss %.4f "", self.client_id, loss)
                return loss, num_examples_test, {""accuracy"": accuracy}
            if problem_type == ""regression"":
                loss, mean_absolute_error, mean_squared_error  = self.model.evaluate(self.X_test, self.y_test,
                                                    steps=steps,verbose=1)
                y_pred = self.model.predict(self.X_test)
                
                root_mean_squared_error = np.sqrt(metrics.mean_squared_error(self.y_test, y_pred))

                log(INFO, ""Client %s : mean_absolute_error %f "", 
                            self.client_id, mean_absolute_error)
                
                log(INFO, ""Client %s : mean_squared_error %f "", 
                            self.client_id, mean_squared_error)

                log(INFO, ""Client %s : root_mean_squared_error %f "", 
                            self.client_id, root_mean_squared_error)
                return loss, num_examples_test, {""mean_absolute_error"": mean_absolute_error,
                                                ""mean_squared_error"": mean_squared_error,
                                                ""root_mean_squared_error"": root_mean_squared_error}

def randclientid(s,c):
    c=string.ascii_uppercase + string.digits
    return ''.join(random.choice(c) for x in range(s))		
		
## Loading input data		
def dataLoad(jsonfile):  
    with open(jsonfile, 'r') as file:
        data = json.load(file)
    server_ip=str(data[""server_IP""])
    server_port=str(data[""server_port""])
    model_name=str(data[""model_name""])
    problem_type=str(data[""problem_type""])
    data_location=str(data[""data_location""])
    # deploy_location=str(data[""deploy_location""])
    model_params=data[""model_hyperparams""] 
    train_size=int(data[""train_size""])
    model_version=str(data[""version""])
    selected_feature=data[""selected_feature""]
    if (type(selected_feature) is str):
        selected_feature=selected_feature.split(',')
    model_overwrite=data['model_overwrite']
    target_feature=data[""target_feature""]
    num_records=int(data['num_records_per_round'])
    wait_time=data['wait_time']
    server_address=server_ip+':'+server_port
    # server_address=f""{server_ip}:{server_port}""
    return server_address,model_name,problem_type,data_location,model_params,model_version,selected_feature,target_feature,train_size,num_records,wait_time,model_overwrite

# def getfilepath()

"""""" Main aion federated learning client function call. """"""
if __name__ == ""__main__"":
    ##Client random id gen.
    
    rand_id=randclientid(9, ""ABC1234567890"")
    client_id='flclient-'+str(rand_id)
    
    try:
        json_file=sys.argv[1]
    except Exception as e:
        # sys.stdout.write(""Please provide input configuration file. example: < python.exe 'fedclient\aionflc.py' 'fedclient\config.json' > "")
        log(INFO, ""Please provide input configuration file. example: <python.exe 'fedclient\aionflc.py' 'fedclient\config.json'> \n"")
    server_address,model_name,problem_type,data_location,model_params,model_version,selected_feature,target_feature,train_size,num_records,wait_time,model_overwrite = dataLoad(json_file)
    file_name=model_name+'_'+model_version+"".log""
    cwd = os.path.abspath(os.path.dirname(__file__))
    log_location = os.path.join(cwd, 'logs')
    try:
        os.makedirs(log_location)
    except FileExistsError as fe:
        # here,log_location already exists
        pass
        
    try:
        logobj = logging.getLogger('AION')
        fl_log=os.path.normpath(os.path.join(log_location,file_name))
        log(INFO, ""flclient log file path: %s "",str(fl_log))
        logging.basicConfig(filename=fl_log,format='%(asctime)s %(message)s', filemode='w',level=logging.DEBUG)        
    except Exception as e:
        log(INFO, ""logging error. Error Msg: %s "",str(e))
        pass
    ## default data location ~data\inputfile.csv
    data_location = os.path.normpath(os.path.join(cwd, data_location))
    df = pd.read_csv(data_location)    
    df =df[~df.isin([np.nan, np.inf, -np.inf]).any(axis=1)]
    df=df.reset_index(drop=True)
    y=df[target_feature]
    # X = df.drop(target_feature, axis=1)
    # 
    # print(""selected_feature: \n"",selected_feature)
    X=df[selected_feature]
    input_shape = X.shape[1]  # len(selected_feature)  
    output_shape = len(y.value_counts())
    test_size=(100-train_size)/100    
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size)    
    no_classes = len(df.groupby(target_feature).count())
    no_features=len(selected_feature)
    ## Pass the train data.
    (X_train, y_train) = utils.partition(X_train, y_train, 1)[0]
    scaler = StandardScaler()
    X_train_scaled = scaler.fit_transform(X_train)
    X_test_scaled = scaler.transform(X_test)
    # y_train = pd.get_dummies(y_train)
    # y_test = pd.get_dummies(y_test)
    y_train_dl = pd.get_dummies(y_train, sparse=True)
    y_test_dl = pd.get_dummies(y_test, sparse=True)
    
    if (problem_type.lower() == ""classification""):
        if (model_name.lower() == ""logisticregression""):
            #n_classes = df[target_feature].nunique()
            no_classes = len(df.groupby(target_feature).count())
            no_features=len(selected_feature)            
            logger.info(""no_classes: ""+str(no_classes))
            logger.info(""no_features: ""+str(no_features))
            modelName=""logisticregression""  
            model = None          
            		
            model = LogisticRegression(**model_params,	warm_start=True)
                
            try:
                status=utils.setmodelName(model_name)
                utils.set_initial_params(model,no_classes,no_features)
            except Exception as e:
                print(""util error: \n"",e)
            num_rounds=round(len(df)/num_records)
            log(INFO, ""Federated learning Client connecting to Server @: %s "",str(server_address))
            try:
                flower.client.start_numpy_client(server_address=server_address, client=aionflc(model,num_rounds,model_name,model_version,wait_time,client_id,num_records,model_overwrite,problem_type,X_train_scaled, X_test_scaled, y_train, y_test))        
            except Exception as e:
                logger.info(""AION FL Client instance error: \n""+str(e))	
            log(INFO, ""AION federated learning Client %s execution completed."",str(client_id))
            
        elif (model_name.lower() == ""deeplearning""):
            optimizer = model_params[""optimizer""]
            loss_func = model_params[""losses""]
            act_func = model_params[""activation""]
            last_act_func = model_params[""last_activation""]
            input_shape = X.shape[1]  # len(selected_feature)  
            output_shape = len(y.value_counts())
            print(f""input_shape:{input_shape}, output_shape:{output_shape}."")
            
            model = None
            if output_shape == 2: 
                if last_act_func == ""sigmoid"" and loss_func == ""binary_crossentropy"":
                    model = dl_model.dl_binary_classification(input_shape, output_shape,
                                            optimizer, loss_func,
                                            act_func, last_act_func)
                elif last_act_func == ""softmax"" and loss_func == ""categorical_crossentropy"":
                    model = dl_model.dl_binary_classification(input_shape, output_shape,
                                            optimizer, loss_func,
                                            act_func, last_act_func)
            else:
                model = dl_model.dl_multiClass_classification(input_shape, 
                                            output_shape, optimizer, loss_func,
                                            act_func, last_act_func)
            print(model.summary())
            # status=utils.setmodelName(modelName)
            # utils.set_initial_params(model,no_classes,no_features)
            num_rounds=round(len(df)/num_records)
            log(INFO, ""Federated learning Client connecting to Server @: %s "",str(server_address))
            try:
                flower.client.start_numpy_client(server_address=server_address, 
                                client=aionflc_dl(model,num_rounds,model_name,model_version,wait_time,client_id,num_records,model_overwrite,problem_type,X_train_scaled, X_test_scaled, y_train_dl, y_test_dl,model_params))        
            except Exception as e:
                logger.info(""AION FL Client instance error: \n""+str(e))	
            log(INFO, ""AION federated learning Client %s execution completed."",str(client_id))
            logger.info(""AION federated learning Client execution completed.""+str(client_id))
                                
                                
    elif(problem_type.lower() == ""regression""):
            if (model_name.lower() == ""linearregression""):
                # model=LinearRegression(**model_params,warm_start=True)
                if model_params['fit_intercept'] == 'True':
                    model_params['fit_intercept'] = True
                else:
                    model_params['fit_intercept'] = False                
                if model_params['copy_X'] == 'True':
                    model_params['copy_X'] = True
                else:
                    model_params['copy_X'] = False       
                if model_params['positive'] == 'True':
                    model_params['positive'] = True
                else:
                    model_params['positive'] = False
                model=LinearRegression(**model_params)
                
                status=utils.setmodelName(model_name)
                utils.set_initial_params_reg(model,X_train.shape[0],X_train.shape[1])
                num_rounds=round(len(df)/num_records)
                log(INFO, ""Federated learning Client connecting to Server @: %s "",str(server_address))
                try:
                    flower.client.start_numpy_client(server_address=server_address, client=aionflc(model,num_rounds,model_name,model_version,wait_time,client_id,num_records,model_overwrite,problem_type,X_train_scaled, X_test_scaled, y_train, y_test))        
                except Exception as e:
                    logger.info(""AION FL Client instance error: \n""+str(e))	
                log(INFO, ""AION federated learning Client %s execution completed."",str(client_id))
                        
            elif(model_name.lower() == ""deeplearning""):
                input_shape = X.shape[1]  # len(selected_feature)  
                output_shape = len(y.value_counts())
                optimizer = model_params[""optimizer""]
                loss_func = model_params[""losses""]
                act_func = model_params[""activation""]
                model = None
                model = dl_model.dl_regression_model(input_shape, 1,
                                    optimizer, loss_func, act_func)
                
                num_rounds=round(len(df)/num_records)
                log(INFO, ""Federated learning Client connecting to Server @: %s "",str(server_address))
                try:
                    flower.client.start_numpy_client(server_address=server_address, client=aionflc_dl(model,num_rounds,model_name,model_version,wait_time,client_id,num_records,model_overwrite,problem_type,X_train_scaled, X_test_scaled, y_train, y_test,model_params))        
                except Exception as e:
                    logger.info(""AION FL Client instance error: \n""+str(e))	
                log(INFO, ""AION federated learning Client %s execution completed."",str(client_id))
"
utils.py,"from typing import Tuple, Union, List
import numpy as np
from sklearn.linear_model import LogisticRegression
from sklearn.linear_model import LinearRegression
from sklearn.naive_bayes import GaussianNB
from sklearn.linear_model import SGDClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.tree import DecisionTreeClassifier
from flwr.common.logger import log
from logging import INFO

XY = Tuple[np.ndarray, np.ndarray]
Dataset = Tuple[XY, XY]
LogRegParams = Union[XY, Tuple[np.ndarray]]
XYList = List[XY]
modelUsed=None
modelname=None
def setmodelName(modelselected):
	try:
		modelname=str(modelselected)
		print(""setmodelName ,given modelname: \n"",modelname)
		if (modelname.lower() == 'logisticregression'):
			modelUsed=LogisticRegression()			
			return True
		elif (modelname.lower() == ""linearregression""):            
			modelUsed = LinearRegression()
			return True
		elif (modelname.lower() == ""sgdclassifier""):
			#from sklearn.linear_model import SGDClassifier
			modelUsed=SGDClassifier()
			return True		
		elif (modelname.lower() == ""knn""):
			modelUsed = KNeighborsClassifier()
			return True
		elif (modelname.lower() == ""decisiontreeclassifier""):
			modelUsed = DecisionTreeClassifier()
			return True
		else:
			return False
	except Exception as e:
		log(INFO, ""set fl model name fn issue: "",e)

def get_model_parameters(model:modelUsed) -> LogRegParams:
    """"""Returns the paramters of a sklearn LogisticRegression model.""""""    
    model_name=model.__class__.__name__
    if model.fit_intercept:       
        params = (model.coef_, model.intercept_)
    else:
        params = (model.coef_,)
    
    return params


def set_model_params(
    model:modelUsed, params: LogRegParams
) -> modelUsed:
    """"""Sets the parameters of a sklean LogisticRegression model.""""""    
    model.coef_ = params[0]
    model_name=model.__class__.__name__
    try:
        if model.fit_intercept:
            model.intercept_ = params[1]
    except Exception as e:
        log(INFO, ""set_model_params fn issue: "",e)
        pass
    
    return model

def set_initial_params_reg(model,no_vals,no_features):
    """"""Sets initial parameters as zeros Required since model params are
    uninitialized until model.fit is called.

    But server asks for initial parameters from clients at launch. Refer
    to sklearn.linear_model.LogisticRegression documentation for more
    information.
    """"""
      
    no_vals = no_vals
    n_features = no_features
    # model.classes_ = np.array([i for i in range(n_classes)])
    model.coef_ = np.zeros( n_features,)
    model_name=model.__class__.__name__
    
    try:
        if model.fit_intercept:
            # model.intercept_ = np.ones((no_vals,1))
            model.intercept_ = np.zeros((no_vals,))
    except Exception as e:
        log(INFO, ""set_initial_params fn issue: "",e)
        pass
    
def set_initial_params(model,no_classes,no_features):
    """"""Sets initial parameters as zeros Required since model params are
    uninitialized until model.fit is called.

    But server asks for initial parameters from clients at launch. Refer
    to sklearn.linear_model.LogisticRegression documentation for more
    information.
    """"""
      
    n_classes = no_classes 
    n_features = no_features
    model.classes_ = np.array([i for i in range(n_classes)])
    model.coef_ = np.zeros((n_classes, n_features))
    model_name=model.__class__.__name__
    try:
        if model.fit_intercept:
            model.intercept_ = np.zeros((n_classes,))
    except Exception as e:
        log(INFO, ""set_initial_params fn issue: "",e)
        pass



def shuffle(X: np.ndarray, y: np.ndarray) -> XY:
    """"""Shuffle X and y.""""""
    rng = np.random.default_rng()
    idx = rng.permutation(len(X))
    return X[idx], y[idx]


def partition(X: np.ndarray, y: np.ndarray, num_partitions: int) -> XYList:
    """"""Split X and y into a number of partitions.""""""
    return list(
        zip(np.array_split(X, num_partitions), np.array_split(y, num_partitions))
    )

"
parameters.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
from hyperopt import fmin, tpe, hp, STATUS_OK, Trials
import numpy as np
import logging
import sys
import os

class parametersDefine():
	def __init__(self):
		self.paramDict = None
		self.log = logging.getLogger('eion')
	def getParamSpaceSize(self,paramDict):
		size=1
		if(len(paramDict)==0):
			return 0
		for keys in paramDict.keys():
			size=size*len(paramDict[keys])
		return size
	def paramDefine(self, paramSpace, method):
		paramDict = {}
		for j in list(paramSpace.keys()):
			inp = paramSpace[j]
			try:
				isLog = False
				isLin = False
				isRan = False
				isList = False
				isString = False
				try:
					# check if functions are given as input and reassign paramspace
					v = paramSpace[j]
					if 'logspace' in paramSpace[j]:
						paramSpace[j] = v[v.find(""("") + 1:v.find("")"")].replace("" "", """")
						isLog = True
					elif 'linspace' in paramSpace[j]:
						paramSpace[j] = v[v.find(""("") + 1:v.find("")"")].replace("" "", """")
						isLin = True
					elif 'range' in paramSpace[j]:
						paramSpace[j] = v[v.find(""("") + 1:v.find("")"")].replace("" "", """")
						isRan = True
					elif 'list' in paramSpace[j]:
						paramSpace[j] = v[v.find(""("") + 1:v.find("")"")].replace("" "", """")
						isList = True
					elif '[' and ']' in paramSpace[j]:
						paramSpace[j] = v.split('[')[1].split(']')[0].replace("" "", """")
						isList = True
					x = paramSpace[j].split(',')
				except Exception as e:
					if isinstance(paramSpace[j], (int, float)):
						paramSpace[j] = str(paramSpace[j])
					x = []
					x.append(paramSpace[j])
				str_arg = paramSpace[j]

				# check if arguments are string
				
				try:
					test = eval(x[0])
				except:
					isString = True

				if isString:
					paramDict.update({j: hp.choice(j, x)} if method == 'bayesopt' else {j: x})
				else:
					res = eval(str_arg)
					if isLin:
						y = eval('np.linspace' + str(res))
						paramDict.update({j: hp.uniform(j, eval(x[0]), eval(x[1]))} if method == 'bayesopt' else {j: y})
					elif isLog:
						y = eval('np.logspace' + str(res))
						paramDict.update(
							{j: hp.uniform(j, 10 ** eval(x[0]), 10 ** eval(x[1]))} if method == 'bayesopt' else {j: y})
					elif isRan:
						y = eval('np.arange' + str(res))
						paramDict.update({j: hp.choice(j, y)} if method == 'bayesopt' else {j: y})
					# check datatype of argument
					elif isinstance(eval(x[0]), bool):
						y = list(map(lambda i: eval(i), x))
						paramDict.update({j: hp.choice(j, eval(str(y)))} if method == 'bayesopt' else {j: y})
					elif isinstance(eval(x[0]), float):
						res = eval(str_arg)
						if len(str_arg.split(',')) == 3 and not isList:
							y = eval('np.linspace' + str(res))
							#print(y)
							paramDict.update({j: hp.uniform(j, eval(x[0]), eval(x[1]))} if method == 'bayesopt' else {j: y})
						else:
							y = list(res) if isinstance(res, tuple) else [res]
							paramDict.update({j: hp.choice(j, y)} if method == 'bayesopt' else {j: y})
					else:
						res = eval(str_arg)
						if len(str_arg.split(',')) == 3 and not isList:
							y = eval('np.linspace' +str(res)) if eval(x[2]) >= eval(x[1]) else eval('np.arange'+str(res))
						else:
							y = list(res) if isinstance(res, tuple) else [res]
						paramDict.update({j: hp.choice(j, y)} if method == 'bayesopt' else {j: y})
			except Exception as inst:
				self.log.info('\n-----> Parameter parsing failed!!!.' + str(inst))
				self.log.info(""The entered parameter is invalid: {""+ j +':'+ inp+'}')
				exc_type, exc_obj, exc_tb = sys.exc_info()
				fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
				self.log.info(str(exc_type) + ' ' + str(fname) + ' ' + str(exc_tb.tb_lineno))
				raise
		return paramDict
"
machinelearning.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import warnings
warnings.filterwarnings('ignore')
import logging
import sklearn
from sklearn.neighbors import NearestNeighbors
from sklearn.cluster import KMeans
from sklearn.cluster import DBSCAN
from random import sample
from numpy.random import uniform
import numpy as np
import math
import pickle
import os
from math import isnan
from sklearn.preprocessing import binarize
from sklearn.preprocessing import LabelEncoder
from sklearn.metrics import davies_bouldin_score
from utils.file_ops import save_csv_compressed
from sklearn.metrics import silhouette_score
try:
	from sklearn.metrics import calinski_harabasz_score as calinski_harabaz_score
except:
	from sklearn.metrics import calinski_harabaz_score
import pandas as pd
from sklearn.metrics import confusion_matrix
from sklearn.metrics import classification_report
from sklearn.metrics import roc_curve, auc
from sklearn.metrics import roc_auc_score
from sklearn.metrics import matthews_corrcoef
from sklearn.metrics import brier_score_loss
from sklearn.preprocessing import LabelBinarizer
from sklearn.model_selection import train_test_split
from sklearn.decomposition import LatentDirichletAllocation
from learner.classificationModel import ClassifierModel
from learner.regressionModel import RegressionModel
from sklearn.metrics import r2_score
from sklearn.metrics import mean_absolute_error,make_scorer
from sklearn.metrics import mean_squared_error
from sklearn.metrics import RocCurveDisplay, auc, roc_curve
import matplotlib.pyplot as plt

#print(""1"")
#from alibi.explainers import ALE,plot_ale
#pd.set_option('display.max_columns', 10)
#pd.set_option('display.width', None)
def get_prediction( model, loaded_model, xtrain, xtest=None):
	train_prob = None
	test_prob = None
	predictedData = []
	if xtest.empty:
		is_xtest = False
	else:
		is_xtest = True
	if model.lower() == 'lda':
		if is_xtest:
			predictedData = loaded_model.transform(xtest).argmax(axis=1)
		trainPredictedData = loaded_model.transform(xtrain)
	elif model.lower() == 'dbscan':
		if is_xtest:
			predictedData = loaded_model.fit_predict(xtest)
			predictedData = loaded_model.labels_
		trainPredictedData = loaded_model.fit_predict(xtrain)		
		trainPredictedData = loaded_model.labels_
	elif model == 'Neural Architecture Search':
		train_prob = estimator.predict(xtrain)
		if train_prob.shape[1] == 1:
			train_prob = np.hstack(( 1-train_prob, train_prob))
		trainPredictedData = np.argmax(train_prob, axis=1)				
		if is_xtest:
			test_prob = estimator.predict(xtest)
			if test_prob.shape[1] == 1:
				test_prob = np.hstack(( 1-test_prob, test_prob))
			predictedData = np.argmax(test_prob, axis=1)
	elif model in ['Deep Q Network','Dueling Deep Q Network']:
		from tf_agents.trajectories import time_step
		from tensorflow import constant
		q, _ = loaded_model(np.array(xtrain), step_type=constant([time_step.StepType.FIRST] * np.array(xtrain).shape[0]), training=False)
		train_prob = q.numpy()
		if train_prob.shape[1] == 1:
			train_prob = np.hstack(( 1-train_prob, train_prob))
		trainPredictedData = np.argmax(train_prob, axis=1)				
		predictedData = np.argmax(test_prob, axis=1)
		if is_xtest:
			q,_ = loaded_model(np.array(xtest), step_type=constant([time_step.StepType.FIRST] * np.array(xtest).shape[0]), training=False)
			test_prob = q.numpy()
			if test_prob.shape[1] == 1:
				test_prob = np.hstack(( 1-test_prob, test_prob))
			predictedData = np.argmax(test_prob, axis=1)
	else:
		if is_xtest:            
			predictedData = loaded_model.predict(xtest)
		trainPredictedData = loaded_model.predict(xtrain)
		if hasattr(loaded_model, 'predict_proba'):
			train_prob = loaded_model.predict_proba(xtrain)
			if is_xtest:            
				test_prob = loaded_model.predict_proba(xtest)
	return trainPredictedData, predictedData, train_prob, test_prob

class machinelearning(object):
	def __init__(self):
		self.features=[]
		self.log = logging.getLogger('eion')
		self.plots = []
	def cluster_tendency(self,featureData):
		self.log.info(""\n------------- Cluster Tendency Check -------------"")
		d = featureData.shape[1]
		n = len(featureData)
		m = int(0.1 * n)
		nbrs = NearestNeighbors(n_neighbors=1).fit(featureData.values)
		rand_X = sample(range(0, n, 1), m)
		ujd = []
		wjd = []
		for j in range(0, m):
			u_dist, _ = nbrs.kneighbors(uniform(np.amin(featureData,axis=0),np.amax(featureData,axis=0),d).reshape(1, -1), 2, return_distance=True)
			ujd.append(u_dist[0][1])
			if isinstance(featureData.iloc[rand_X[j]].values, pd.core.arrays.sparse.array.SparseArray):
				featureData_reshaped = np.asarray(featureData.iloc[rand_X[j]].values).reshape(1, -1)
			else:
				featureData_reshaped = featureData.iloc[rand_X[j]].values.reshape(1, -1)
			w_dist, _ = nbrs.kneighbors(featureData_reshaped, 2, return_distance=True)
			wjd.append(w_dist[0][1])
		try:
			clusetTendency = sum(ujd) / (sum(ujd) + sum(wjd))
		except:
			clusetTendency = 0
		if isnan(clusetTendency):
			clusetTendency = 0
		self.log.info(""-------> Cluster Tendency value using Hopkins Statistic: ""+str(clusetTendency))
		self.log.info(""------------- Cluster Tendency Check End-------------\n"")
		return (clusetTendency)
	
	def calculateNumberofCluster(self,featureData):
		self.log.info(""\n------------- Calculate Number of Cluster -------------"")
		Sum_of_squared_distances = []
		K = range(1,15)
		for k in K:
			km = KMeans(n_clusters=k)
			km = km.fit(featureData)
			Sum_of_squared_distances.append(km.inertia_)
		x1, y1 = 1, Sum_of_squared_distances[0]
		x2, y2 = 15, Sum_of_squared_distances[len(Sum_of_squared_distances)-1]

		distances = []
		for inertia in range(len(Sum_of_squared_distances)):
			x0 = inertia+2
			y0 = Sum_of_squared_distances[inertia]
			numerator = abs((y2-y1)*x0 - (x2-x1)*y0 + x2*y1 - y2*x1)
			denominator = math.sqrt((y2 - y1)**2 + (x2 - x1)**2)
			distances.append(numerator/denominator)
			n_clusters=distances.index(max(distances)) + 2
		self.log.info(""-------> n_clusters: ""+str(n_clusters-1))
		self.log.info(""------------- Calculate Number of Cluster End-------------\n"")
		return(n_clusters-1)
	
	def getclusterMatrix(self,featureData,targetData):
		silhouetteAvg = silhouette_score(featureData,targetData) 
		self.log.info(""-------> SilHouette_Avg: ""+str(silhouetteAvg))
		daviesBouldinScore=davies_bouldin_score(featureData, targetData)
		self.log.info(""-------> DaviesBouldinScore: ""+str(daviesBouldinScore))
		calinskiHarabazScore=calinski_harabaz_score(featureData,targetData)
		self.log.info(""-------> CalinskiHarabazScore: ""+str(calinskiHarabazScore))
		matrix = '""SilHouette_Avg"":'+str(silhouetteAvg)+',""DaviesBouldinScore"":'+str(daviesBouldinScore)+',""CalinskiHarabazScore"":'+str(calinskiHarabazScore)
		return(matrix)
		
	def get_regression_matrix(self,targetData,predictedData):
		try:    
			r2score=r2_score(targetData, predictedData)
			self.log.info('-------> R2_score :'+str(r2score))
		except Exception as e: 
			self.log.info('\n--------- r2_score ',str(e))        
			r2score = 0
		try:                        
			meanabsoluteerror=(mean_absolute_error(targetData, predictedData))
			self.log.info('-------> MAE :'+str(meanabsoluteerror))
		except Exception as e: 
			self.log.info('\n---------Error: meanabsoluteerror ',str(e))
			meanabsoluteerror = 0
		try:                        
			meanssquatederror=mean_squared_error(targetData, predictedData)
			self.log.info('-------> MSE :'+str(meanssquatederror))
		except Exception as e: 
			self.log.info('\n---------Error: meanssquatederror ',str(e))
			meanssquatederror = 0
		try:    
			rootmeanssquatederror=mean_squared_error(targetData, predictedData,squared=False)
			self.log.info('-------> RMSE :'+str(rootmeanssquatederror))
		except Exception as e: 
			self.log.info('\n---------Error: rootmeanssquatederror ',str(e))
			rootmeanssquatederror = 0
		try:
			normalised_rmse_percentage = (rootmeanssquatederror/ ( np.max(targetData) - np.min(targetData) )) * 100
			self.log.info('-------> Normalised RMSE percentage :'+str(normalised_rmse_percentage))
		except Exception as e: 
			self.log.info('\n---------Error: Normalised RMSE percentage ',str(e))
			normalised_rmse_percentage = -1
		try:    
			targetArray, predictedArray = np.array(targetData), np.array(predictedData)
			try:
				EPSILON =  1e-10
				meanpercentageerror=np.mean(np.abs((targetArray - predictedArray) / (targetArray+EPSILON)))*100
			except ZeroDivisionError:
				meanpercentageerror = 0
			self.log.info('-------> MAPE :'+str(meanpercentageerror))         
		except Exception as e: 
			self.log.info('\n---------Error: meanpercentageerror ',str(e))
			meanpercentageerror = 0		
		matrix = '""MAE"":'+str(round(meanabsoluteerror,2))+',""R2Score"":'+str(round(r2score,2))+',""MSE"":'+str(round(meanssquatederror,2))+',""MAPE"":'+str(round(meanpercentageerror,2))+',""RMSE"":'+str(round(rootmeanssquatederror,2))+',""Normalised RMSE(%)"":'+str(round(normalised_rmse_percentage,2))
		return matrix
		
	def getClassificationPerformaceMatrix(self,le_trainY,predictedData,prob,labelMaps):
		setOfyTrue = set(le_trainY)
		unqClassLst = list(setOfyTrue)
		if len(unqClassLst) <= 20:
			if str(labelMaps) != '{}':
				inv_mapping_dict = {v: k for k, v in labelMaps.items()}
				unqClassLst2 = (pd.Series(unqClassLst)).map(inv_mapping_dict)
				unqClassLst2 = list(unqClassLst2)
			else:
				unqClassLst2 = 	unqClassLst
			indexName = []
			columnName = []
			targetnames=[]
			for item in unqClassLst2:
				indexName.append(""act:""+str(item))
				columnName.append(""pre:""+str(item))
				targetnames.append(str(item))

			matrixconfusion = pd.DataFrame(confusion_matrix(le_trainY,predictedData, labels = unqClassLst),index = indexName, columns = columnName)
			pd.set_option('display.max_columns',len(targetnames)+2)
			self.log.info('-------> Confusion Matrix: ')
			self.log.info(matrixconfusion)
			pd.reset_option('display.max_columns')
			classificationreport = pd.DataFrame(classification_report(le_trainY, predictedData, labels = unqClassLst,target_names=targetnames,output_dict=True)).transpose()
			self.log.info('-------> Classification Report: ')
			self.log.info(classificationreport)
			matrixconfusion = matrixconfusion.to_json(orient='index')
			classificationreport = classificationreport.to_json(orient='index')
		else:  #bugid: 14540
			self.log.info('-------> As the number of class is more than 20, skipping the creation of confusion_matrix and classification Report')
			return """"
		lb = LabelBinarizer()
		lb.fit(le_trainY)
		transformTarget= lb.transform(le_trainY)
		if transformTarget.shape[-1] == 1:
			transformTarget = le_trainY
			prob = np.delete( prob, 0, 1)
		rocaucscore = roc_auc_score(transformTarget,prob,average=""macro"")
		brier_score = None
		mcc_score = matthews_corrcoef(le_trainY,predictedData)
		if len(unqClassLst) > 2:
			brier_score = np.mean(np.sum(np.square(prob - transformTarget), axis=1))
		else:
			brier_score = brier_score_loss(transformTarget,prob)
		self.log.info('-------> ROC AUC SCORE :'+str(rocaucscore))
		self.log.info(f'-------> Matthews correlation coefficient SCORE : {mcc_score}')
		self.log.info(f'-------> BRIER SCORE : {brier_score}')

		matrix = f'""ConfusionMatrix"": {matrixconfusion},""ClassificationReport"": {classificationreport},""ROC_AUC_SCORE"": {rocaucscore},""MCC_SCORE"": {mcc_score},""BRIER_SCORE"": {brier_score}'
		return(matrix)	

	def split_into_train_test_data(self,featureData,targetData,testPercentage,modelType='classification'):
		'''
		if cvSplit == None:
		'''
		self.log.info('\n-------------- Test Train Split ----------------')
		
		if testPercentage == 0:
			xtrain=featureData
			ytrain=targetData
			xtest=featureData
			ytest=targetData
		else:
		
			testSize=testPercentage/100
			if modelType == 'regression':
				self.log.info('-------> Split Type: Random Split')
				xtrain,xtest,ytrain,ytest=train_test_split(featureData,targetData,test_size=testSize,shuffle=True)
			else:
				try:
					self.log.info('-------> Split Type: Stratify Split')
					xtrain,xtest,ytrain,ytest=train_test_split(featureData,targetData,stratify=targetData,test_size=testSize,shuffle=True)
				except:
					self.log.info('-------> Split Type: Random Split')
					xtrain,xtest,ytrain,ytest=train_test_split(featureData,targetData,test_size=testSize,shuffle=True)
				
		self.log.info('Status:- !... Train / test split done: '+str(100-testPercentage)+'% train,'+str(testPercentage)+'% test')
		self.log.info('-------> Train Data Shape: '+str(xtrain.shape)+' ---------->')
		self.log.info('-------> Test Data Shape: '+str(xtest.shape)+' ---------->')
		self.log.info('-------------- Test Train Split End ----------------\n')
		'''
		else:
			xtrain=featureData
			ytrain=targetData
			xtest=featureData
			ytest=targetData
		'''
		return(xtrain,ytrain,xtest,ytest)
	
	def checkForClassBalancing(self,targetData):
		imbalancedCount=0
		valueCount=targetData.value_counts()
		self.log.info(""---------- Checking for Class Imbalance on Train Data---------"")
		self.log.info(""-------> Categories and Count:"")
		self.log.info(valueCount)
		categoryList=valueCount.keys().tolist()
		categoryCountList=valueCount.tolist()
		for i in range(0,len(categoryCountList)):
			if float(categoryCountList[i])<=float(0.5*max(categoryCountList)):
				self.log.info(""-------> Found Imbalanced class: '""+str(categoryList[i])+""' Count: ""+str(categoryCountList[i]))
				imbalancedCount=imbalancedCount+1
		if imbalancedCount == 0:
			self.log.info(""-------> Status: Balanced"")
			self.log.info('Status:- |... Check for Data balancing done: Balanced')		
		else:
			self.log.info(""-------> Status: Unbalanced"")
			self.log.info('Status:- |... Check for Data balancing done: Unbalanced')
		self.log.info(""---------- Checking for Class Imbalance on Train Data End---------"")
		return(imbalancedCount)
	
	def ExecuteClassBalancing(self,featureData,targetData,balancingMethod):
		from imblearn.over_sampling import SMOTE
		from imblearn.under_sampling import TomekLinks
		from collections import Counter
		self.log.info('\n------------ Balancing Start --------------')
		if balancingMethod.lower() == ""oversample"":
			self.log.info(""-------> Method: SMOTE OverSampling Technique"")
			k=1
			seed=100
			try:
				oversample = SMOTE(sampling_strategy='auto', k_neighbors=k, random_state=seed)
				balfeatureData, baltargetData = oversample.fit_resample(featureData, targetData)
				self.log.info(baltargetData.value_counts())
			except Exception as inst:
				self.log.info(""\n!!!!!!!!! OverSampling Fails ""+str(inst)+"" !!!!!!!!!!!!!!\n"")	
				balfeatureData = featureData
				baltargetData = targetData
		elif balancingMethod.lower() == ""undersample"":            
			self.log.info(""-------> Method: Tomelinks UnderSampling Technique"")
			tLinks = TomekLinks()
			balfeatureData, baltargetData= tLinks.fit_resample(featureData, targetData)
			#Added for checking balancing act by the algorithm.
			counter = Counter(baltargetData)
			self.log.info(""Class counter:\t""+str(baltargetData.value_counts()))
			max_class = max(counter,key=counter.get)
			max_value = max(counter.values())
			self.log.info(""Max samples: ""+str(max_value)+ "" in the class: ""+str(max_class))
			for k,v in counter.items():
			    if v < (max_value*98/100):
				    self.log.info(""Undersampling is not able to do perfect data balancing."")
				    self.log.info(""The method is used to identify the desired samples of data from the majority class that is having the lowest Euclidean distance with the minority class data. Downsampling may not balance the class after applying this method.\n"")
			self.log.info(baltargetData.value_counts())
		else:
			balfeatureData = featureData
			baltargetData = targetData
			self.log.info(""-------> Method: Balancing Not Applied"")
		self.log.info('-------> Memory Usage by Training DataFrame After Class Balancing '+str(featureData.memory_usage(deep=True).sum()))
		self.log.info('Status:- |... Data balancing done: '+str(balancingMethod))
		self.log.info('------------ Balancing End --------------\n')
		return(balfeatureData,baltargetData)
	
	def combine_text_features(self,dataFrame,dataColumns):
		column_merge_flag = False
		merge_columns = []
		if(len(dataColumns) > 1):
			dataFrame['combined'] = dataFrame[dataColumns].apply(lambda row: ' '.join(row.values.astype(str)), axis=1)		
			merge_columns = dataColumns
			features = ['combined']
			column_merge_flag = True
			self.log.info(""After Text Concatenation"")
			self.log.info(dataFrame['combined'].head(10))
			self.log.info(""List of Combined Columns ---> ""+ str(dataColumns) +""\n"")
		else:
			features = dataColumns
		return(dataFrame,features,column_merge_flag,merge_columns)
	'''
	def create_preprocessing_pipeline(self,X):
		textDataProfilerObj=textDataProfiler()
		tfidfVector = TfidfVectorizer(tokenizer = textDataProfilerObj.textTokenizer)
		pipe = Pipeline([(""cleaner"", TextCleaner()),('vectorizer', tfidfVector)])
		vectors=pipe.fit(X)
		transformedVector=pipe.transform(X)
		return(pipe,transformedVector)
	'''	
	def get_topics(self, model, feature_names, no_top_words):
		topicDict = {}
		for topic_idx, topic in enumerate(model.components_):
			wordDict = {}
			topicProb = [(feature_names[i],topic[i]/topic.sum()) for i in topic.argsort()[:-no_top_words - 1:-1]]
			for word, prob in topicProb:
				if word.endswith('_vect'):
					word = word[:-len('_vect')]
				wordDict[word] = prob
			topicDict[ topic_idx] = wordDict   
		return topicDict

	def transform_target_feature(self,dataFrame,targetColumn):
		targetDataType=dataFrame[targetColumn].dtypes
		pandasNumericDtypes=['int16', 'int32', 'int64', 'float16', 'float32', 'float64']
		labelMapping= {}
		if targetDataType not in pandasNumericDtypes:
			le = LabelEncoder()
			le.fit(dataFrame[targetColumn])
			le_trainY = le.transform(dataFrame[targetColumn])
			labelMapping = dict(zip(le.classes_, le.transform(le.classes_)))
			self.log.info("" \n encoded Values of predicator column ===>""+str(labelMapping))
		else:
			le_trainY = dataFrame[targetColumn]
		return le_trainY,labelMapping
	def setScoreParams(self,scoreParam,modelType,categoryCountList):
		if modelType == 'classification' or modelType == 'TextClassification':
			allowedmatrix =  ['accuracy','recall','f1_score','precision','roc_auc']
			if(scoreParam.lower() not in allowedmatrix):
				scoreParam = 'accuracy'
			elif scoreParam.lower() == 'none':
				scoreParam = 'accuracy'
			elif scoreParam.lower() == ""recall"":
				if len(categoryCountList) > 2:
					scoreParam = make_scorer(sklearn.metrics.recall_score, average = 'weighted')
				else:
					scoreParam = make_scorer(sklearn.metrics.recall_score)
			elif scoreParam.lower() == ""precision"" :
				if len(categoryCountList) > 2:
					scoreParam = make_scorer(sklearn.metrics.precision_score, average = 'weighted')
				else:
					scoreParam = make_scorer(sklearn.metrics.precision_score)
			elif scoreParam.lower() == ""f1_score"" :
				if len(categoryCountList) > 2:
					scoreParam = make_scorer(sklearn.metrics.f1_score, average = 'weighted')
				else:
					scoreParam = make_scorer(sklearn.metrics.f1_score)
			elif scoreParam.lower() == ""roc_auc"" :
				if len(categoryCountList) > 2:
					scoreParam = make_scorer(sklearn.metrics.roc_auc_score,needs_proba=True,multi_class='ovr',average='weighted')
				else:
					scoreParam = make_scorer(sklearn.metrics.roc_auc_score)
			else:
				scoreParam = scoreParam
		else:
			allowedmatrix =  ['mse','r2','rmse','mae']
			if(scoreParam.lower() not in allowedmatrix):
				scoreParam = 'neg_mean_squared_error'
			elif scoreParam.lower() == 'none':
				scoreParam = 'neg_mean_squared_error'
			elif scoreParam.lower() == 'mse':
				scoreParam = 'neg_mean_squared_error'
			elif scoreParam.lower() == 'rmse':
				#scoreParam = make_scorer(sklearn.metrics.mean_squared_error, squared = False)
				scoreParam='neg_root_mean_squared_error'
			elif scoreParam.lower() == 'mae':
				scoreParam = 'neg_mean_absolute_error'
			elif scoreParam.lower() == 'r2':
				scoreParam = 'r2'
			else:
				scoreParam = scoreParam
		#self.log.info('Status:-        !... Scoring parameters selected')
		self.log.info(""-------> Scoring parameter: ""+str(scoreParam))
		return(scoreParam)
	def getbestfeatureModel(self,modelType,scoreParam,score1,score2,model1,model2,threshold1,pscore1,rscore1,threshold2,pscore2,rscore2,featuresset1,featureset2):
		best_feature_model = featuresset1
		self.log.info('\n ---------- ML Summary ------------')
		if modelType.lower() == ""classification"":
			if(threshold1 == -1 and threshold2 == -1):
				if score1> score2:
					self.log.info('-------> Best Features: '+str(featuresset1))
					self.log.info('-------> Best Model: '+str(model1))
					self.log.info('-------> Best Score: '+str(score1))
					self.log.info('-------> Scoring Param: '+str(scoreParam))
					best_feature_model = featuresset1
				else:
					self.log.info('-------> Best Features:'+str(featureset2))
					self.log.info('-------> Best Model: '+str(model2))
					self.log.info('-------> Best Score: '+str(score2))
					self.log.info('-------> Scoring Param: '+str(scoreParam))
					best_feature_model = featureset2	
			elif(threshold1 == -1):
				self.log.info('-------> Best Features: '+str(featureset2))
				self.log.info('-------> Best Model: '+str(model2))
				self.log.info('-------> Best Score: '+str(score2))
				self.log.info('-------> Scoring Param: '+str(scoreParam))
				best_feature_model = featureset2	
			elif(threshold1 == -2):
				self.log.info('-------> Best Features: '+str(featuresset1))
				self.log.info('-------> Best Model: '+str(model1))
				self.log.info('-------> Best Score: '+str(score1))
				self.log.info('-------> Scoring Param: '+str(scoreParam))
				best_feature_model =featuresset1
			else:
				if pscore1 == pscore2:
					if rscore1 > rscore2:
						self.log.info('-------> Best Features: '+str(featuresset1))
						self.log.info('-------> Best Model: '+str(model1))
						self.log.info('-------> Best Score: '+str(score1))
						self.log.info('-------> Scoring Param: '+str(scoreParam))
						best_feature_model = featuresset1
					else:
						self.log.info('-------> Best Features: '+str(featureset2))
						self.log.info('-------> Best Model: '+str(model2))
						self.log.info('-------> Best Score: '+str(score2))
						self.log.info('-------> Scoring Param: '+str(scoreParam))
						best_feature_model = featureset2	
				elif rscore1 == rscore2:
					if pscore1 > pscore2:
						self.log.info('-------> Best Features: '+str(featuresset1))
						self.log.info('-------> Best Model: '+str(model1))
						self.log.info('-------> Best Score: '+str(score1))
						self.log.info('-------> Scoring Param: '+str(scoreParam))
						best_feature_model = featuresset1
					else:
						self.log.info('-------> Best Features: '+str(featureset2))
						self.log.info('-------> Best Model: '+str(model2))
						self.log.info('-------> Best Score: '+str(score2))
						self.log.info('-------> Scoring Param: '+str(scoreParam))
						best_feature_model = featureset2	
						
		elif modelType.lower() == ""regression"":
			if scoreParam == ""r2"" or scoreParam == ""explained_variance"":
				if score1> score2 :
					self.log.info('-------> Best Features: '+str(featuresset1))
					self.log.info('-------> Best Model: '+str(model1))
					self.log.info('-------> Best Score: '+str(score1))
					self.log.info('-------> Scoring Param: '+str(scoreParam))
					best_feature_model = featuresset1
				else:
					self.log.info('-------> Best Features: '+str(featureset2))
					self.log.info('-------> Best Model: '+str(model2))
					self.log.info('-------> Best Score: '+str(score2))
					self.log.info('-------> Scoring Param: '+str(scoreParam))
					best_feature_model = featureset2	
			else:
				if score1< score2 :
					self.log.info('-------> Best Features: '+str(featuresset1))
					self.log.info('-------> Best Model: '+str(model1))
					self.log.info('-------> Best Score: '+str(score1))
					self.log.info('-------> Scoring Param: '+str(scoreParam))
					best_feature_model = featuresset1
				else:
					self.log.info('-------> Best Features: '+str(featureset2))
					self.log.info('-------> Best Model: '+str(model2))
					self.log.info('-------> Best Score: '+str(score2))
					self.log.info('-------> Scoring Param: '+str(scoreParam))
					best_feature_model = featureset2	
		self.log.info('---------- ML Summary End ------------\n')
		return(best_feature_model)
	
	
	def startLearning(self,mlconfig,modelType,modelParams,modelList,scoreParam,targetColumn,dataFrame,xtrain,ytrain,xtest,ytest,categoryCountList,topFeatures,modelFeatures,allFeatures,targetType,deployLocation,iterName,iterVersion,trained_data_file,predicted_data_file,labelMaps,featuresBasedOn,code_configure,featureEngineeringSelector,modelEvaluationConfig,imageFolderLocation):
		model = 'None'
		params = 'None'
		score = 0xFFFF
		estimator = None
		model_tried = ''
		threshold = -1
		pscore = -1
		rscore = -1		
		topics = {}		
		if(targetColumn != ''):
			targetData = dataFrame[targetColumn]
		datacolumns=list(dataFrame.columns)
		if targetColumn in datacolumns:
			datacolumns.remove(targetColumn)
		
		if(modelType != 'clustering') and (modelType != 'TopicModelling'):
			scoreParam = self.setScoreParams(scoreParam,modelType,categoryCountList)
		
		if len(topFeatures) > 0:
			self.log.info('\n-------------- Training ML: Top/StatisticalBased Features Start --------------')
			modelbasedon = 'StatisticalBased'
			if featureEngineeringSelector.lower() == 'true':
				self.log.info('Status:- |... Algorithm analysis based on feature engineering based feature selection started')
				modelbasedon = 'DimensionalityReduction'
			else:
				self.log.info('Status:- |... Algorithm analysis based on statistical based feature selection started')
			model_type1,model1,params1, score1, estimator1,model_tried1,xtrain1,ytrain1,xtest1,ytest1,threshold1,pscore1,rscore1,method,topics=self.startLearnerModule(mlconfig,modelType,modelParams,modelList,scoreParam,targetColumn,dataFrame,xtrain,ytrain,xtest,ytest,categoryCountList,topFeatures,targetType,deployLocation,iterName,iterVersion,trained_data_file,labelMaps,featuresBasedOn, modelbasedon,code_configure,modelEvaluationConfig)
			
			if model_tried != '':
				model_tried += ','
			model_tried += model_tried1
			topFeaturesStatus = True
			if featureEngineeringSelector.lower() == 'true':
				self.log.info('Status:- |... Algorithm analysis based on feature engineering based feature selection completed')
			else:
				self.log.info('Status:- |... Algorithm analysis for statistical based feature completed')
			self.log.info('-------------- Training ML: Top/StatisticalBased Features End --------------\n')
		else:
			topFeaturesStatus = False
			
		if len(modelFeatures) > 0:
			self.log.info('\n-------------- Training ML: Models Based Selected Features  Start --------------')
			self.log.info('Status:- |... Algorithm analysis based on model based feature selection started')
			model_type2,model2,params2, score2, estimator2,model_tried2,xtrain2,ytrain2,xtest2,ytest2,threshold2,pscore2,rscore2,method,topics=self.startLearnerModule(mlconfig,modelType,modelParams,modelList,scoreParam,targetColumn,dataFrame,xtrain,ytrain,xtest,ytest,categoryCountList,modelFeatures,targetType,deployLocation,iterName,iterVersion,trained_data_file,labelMaps,featuresBasedOn, ""ModelBased"",code_configure,modelEvaluationConfig)
			#model_tried2['Features'] = 'ModelBased' 
			if model_tried != '':
				model_tried += ','
			model_tried += model_tried2            
			modelFeaturesStatus = True
			self.log.info('Status:- |... Algorithm analysis for model based selected features completed')
			self.log.info('-------------- Training ML: Models Based Selected Features  End --------------\n')
		else:
			modelFeaturesStatus = False
			
		if len(allFeatures) > 0:
			self.log.info('Status:- |... Algorithm analysis based on all features Start')
			model_type3,model3,params3, score3, estimator3,model_tried3,xtrain3,ytrain3,xtest3,ytest3,threshold3,pscore3,rscore3,method,topics=self.startLearnerModule(mlconfig,modelType,modelParams,modelList,scoreParam,targetColumn,dataFrame,xtrain,ytrain,xtest,ytest,categoryCountList,allFeatures,targetType,deployLocation,iterName,iterVersion,trained_data_file,labelMaps,featuresBasedOn, ""AllFeatures"",code_configure,modelEvaluationConfig)
			#model_tried3['Features'] = 'AllFeatures'
			allFeaturesStatus = True
			if model_tried != '':
				model_tried += ','
			model_tried += model_tried3            
			self.log.info('Status:- |... Algorithm analysis based all features completed')
		else:
			allFeaturesStatus = False
		#print(topFeaturesStatus,modelFeaturesStatus,allFeaturesStatus)            
		if topFeaturesStatus:
			if modelFeaturesStatus:
				best_feature_model = self.getbestfeatureModel(modelType,scoreParam,score1,score2,model1,model2,threshold1,pscore1,rscore1,threshold2,pscore2,rscore2,'StatisticalBased','ModelBased')
				if best_feature_model == 'StatisticalBased' and allFeaturesStatus:
					best_feature_model = self.getbestfeatureModel(modelType,scoreParam,score1,score3,model1,model3,threshold1,pscore1,rscore1,threshold3,pscore3,rscore3,'StatisticalBased','AllFeatures')
				if best_feature_model == 'ModelBased' and allFeaturesStatus:    
					best_feature_model = self.getbestfeatureModel(modelType,scoreParam,score2,score3,model2,model3,threshold2,pscore2,rscore2,threshold3,pscore3,rscore3,'ModelBased','AllFeatures')                
			elif allFeaturesStatus:
				best_feature_model = self.getbestfeatureModel(modelType,scoreParam,score1,score3,model1,model3,threshold1,pscore1,rscore1,threshold3,pscore3,rscore3,'StatisticalBased','AllFeatures')                
			else:
				best_feature_model = 'StatisticalBased'
				if featureEngineeringSelector.lower() == 'true':
					best_feature_model = 'DimensionalityReduction'                    
		else:
			if modelFeaturesStatus and allFeaturesStatus:
				best_feature_model = self.getbestfeatureModel(modelType,scoreParam,score2,score3,model2,model3,threshold2,pscore2,rscore2,threshold3,pscore3,rscore3,'ModelBased','AllFeatures')
			elif modelFeaturesStatus: 
				best_feature_model = 'ModelBased'
			elif allFeaturesStatus:
				best_feature_model = 'AllFeatures'			
				
		if (best_feature_model == 'StatisticalBased' or best_feature_model == 'DimensionalityReduction'):
			model_type = model_type1
			model = model1
			params = params1
			score = score1
			estimator = estimator1
			#model_tried = model_tried1
			xtrain = xtrain1
			ytrain = ytrain1
			xtest = xtest1
			ytest = ytest1
			features = topFeatures
			threshold = threshold1
			pscore = pscore1
			rscore = rscore1		
		elif (best_feature_model == 'AllFeatures'):
			model_type = model_type3
			model = model3
			params = params3
			score = score3
			estimator = estimator3
			#model_tried = model_tried3
			xtrain = xtrain3
			ytrain = ytrain3
			xtest = xtest3
			ytest = ytest3
			features = allFeatures
			threshold = threshold3
			pscore = pscore3
			rscore = rscore3        
		else:
			model_type = model_type2
			model = model2
			params = params2
			score = score2
			estimator = estimator2
			#model_tried = model_tried2
			xtrain = xtrain2
			ytrain = ytrain2
			xtest = xtest2
			ytest = ytest2
			threshold = threshold2
			pscore = pscore2
			rscore = rscore2
			features = modelFeatures

		if score != 'NA':
			self.log.info('Status:- |... Final Best Algorithm selected: '+model+' having score='+str(round(score,2))+' based on '+best_feature_model+' feature selection')
		filename = os.path.join(deployLocation,'model',iterName+'_'+iterVersion+'.sav')
		saved_model = iterName+'_'+iterVersion+'.sav'
		if model == 'Neural Architecture Search':		
			loaded_model = estimator
			try:
				estimator.save(filename, save_format=""tf"")
			except Exception:
				filename = os.path.join(deployLocation,'model','autoKerasModel.h5')
				estimator.save(filename)
				saved_model = 'autoKerasModel.h5'			
		else:
			pickle.dump(estimator, open(filename, 'wb'))
			loaded_model = pickle.load(open(filename, 'rb'))
		if not xtest.empty:
			df_test = xtest.copy()
		else:
			df_test = xtrain.copy()             
		if threshold == -1:
			if model.lower() == 'lda':
				predictedData = loaded_model.transform(xtest).argmax(axis=1)
				trainPredictedData = loaded_model.transform(xtrain)
			elif model.lower() == 'dbscan':
				predictedData = loaded_model.fit_predict(xtest)
				predictedData = loaded_model.labels_
				trainPredictedData = loaded_model.fit_predict(xtrain)		
				trainPredictedData = loaded_model.labels_
			elif model == 'Neural Architecture Search':
				test_prob = estimator.predict(xtest)
				train_prob = estimator.predict(xtrain)
				if train_prob.shape[1] == 1:
					train_prob = np.hstack(( 1-train_prob, train_prob))
					test_prob = np.hstack(( 1-test_prob, test_prob))
				predictedData = np.argmax(test_prob, axis=1)
				trainPredictedData = np.argmax(train_prob, axis=1)				
			elif model in ['Deep Q Network','Dueling Deep Q Network']:
				from tf_agents.trajectories import time_step
				from tensorflow import constant
				from sklearn.preprocessing import MinMaxScaler
				q, _ = loaded_model(np.array(xtest), step_type=constant([time_step.StepType.FIRST] * np.array(xtest).shape[0]), training=False)
				test_prob = MinMaxScaler().fit_transform( q.numpy())
				q, _ = loaded_model(np.array(xtrain), step_type=constant([time_step.StepType.FIRST] * np.array(xtrain).shape[0]), training=False)
				train_prob = MinMaxScaler().fit_transform( q.numpy())
				predictedData = np.argmax(test_prob, axis=1)
				trainPredictedData = np.argmax(train_prob, axis=1)	
			elif modelType == 'clustering':
				if not xtest.empty:            
					predictedData = loaded_model.predict(xtest)
				trainPredictedData = loaded_model.predict(xtrain)            
			else:
				if not xtest.empty:            
					predictedData = loaded_model.predict(xtest)
				trainPredictedData = loaded_model.predict(xtrain)
				if hasattr(loaded_model, 'predict_proba'):
					train_prob = loaded_model.predict_proba(xtrain)
					if not xtest.empty:            
						test_prob = loaded_model.predict_proba(xtest)
		else:
			self.log.info(""-------> Threshold :""+str(threshold))

			if not xtest.empty:
				#bug 12437
				if 'predict_proba' in dir(loaded_model):            
					test_prob = loaded_model.predict_proba(xtest)
					predictedData = binarize(test_prob[:,1].reshape(-1, 1),threshold=threshold)
				else:
					raise Exception('--------- Loaded model does not support predict_proba  ---------\n')
				
			train_prob = loaded_model.predict_proba(xtrain)
			trainPredictedData = binarize(train_prob[:,1].reshape(-1, 1),threshold=threshold)
		
		matrix = ''        
		try:            
			if(model_type == 'Classification'):
				self.log.info('\n--------- Performance Matrix with Train Data ---------')
				train_matrix = self.getClassificationPerformaceMatrix(ytrain,trainPredictedData,train_prob,labelMaps)
				self.log.info('--------- Performance Matrix with Train Data End ---------\n')
				if not xtest.empty:
					self.log.info('\n--------- Performance Matrix with Test Data ---------')
					performancematrix = self.getClassificationPerformaceMatrix(ytest,predictedData,test_prob,labelMaps)
					df_test['actual'] = ytest
					df_test['predict'] = predictedData
					self.log.info('--------- Performance Matrix with Test Data End ---------\n')
					matrix = performancematrix
					if hasattr( loaded_model, 'predict_proba'):
						predictedData_fit = loaded_model.predict_proba(xtest)
					elif model == 'Neural Architecture Search':
						predictedData_fit = estimator.predict(xtest)
					elif model in ['Deep Q Network','Dueling Deep Q Network']:
						from tf_agents.trajectories import time_step
						from tensorflow import constant
						q, _ = loaded_model(np.array(xtest), step_type=constant([time_step.StepType.FIRST] * np.array(xtest).shape[0]), training=False)
						predictedData_fit = q.numpy()
					else:
						predictedData_fit = loaded_model.predict(xtest)
					if predictedData_fit.shape[1] == 1:
						predictedData_fit = np.hstack((1 - predictedData_fit, predictedData_fit))
					self.auc_roccurve(ytest,predictedData_fit,labelMaps,imageFolderLocation)
				else:

					df_test['actual'] = ytrain
					df_test['predict'] = trainPredictedData
					
				
					
			elif(model_type == 'Regression'):
				self.log.info('\n--------- Performance Matrix with Train Data ---------')
				train_matrix = self.get_regression_matrix(ytrain, trainPredictedData)
				self.log.info('--------- Performance Matrix with Train Data End ---------\n')
				if not xtest.empty:
					self.log.info('\n--------- Performance Matrix with Test Data ---------')
					matrix = self.get_regression_matrix(ytest, predictedData)
					df_test['actual'] = ytest
					df_test['predict'] = predictedData
					self.log.info('--------- Performance Matrix with Test Data End ---------\n')
				else:
					df_test['actual'] = ytrain
					df_test['predict'] = trainPredictedData
			elif(model_type == 'Clustering'):
				self.log.info('\n--------- Performance Matrix with Train Data ---------')
				train_matrix = self.getclusterMatrix(xtrain,trainPredictedData)
				self.log.info('--------- Performance Matrix with Train Data End ---------\n')
				self.log.info('\n--------- Performance Matrix with Test Data ---------')
				performacematrix = self.getclusterMatrix(xtest,predictedData)
				df_test['predict'] = predictedData
				self.log.info('--------- Performance Matrix with Test Data End ---------\n')
				matrix = performacematrix
			elif(model_type.lower() == 'topicmodelling'):
				self.log.info('\n--------- Performance Matrix with Train Data ---------')
				train_matrix = """"
				self.log.info('--------- Performance Matrix with Train Data End ---------\n')
				self.log.info('\n--------- Performance Matrix with Test Data ---------')
				performacematrix = """"
				df_test['predict'] = predictedData
				self.log.info('--------- Performance Matrix with Test Data End ---------\n')
				matrix = performacematrix
		except Exception as Inst:
			self.log.info('--------- Error Performance Matrix  ---------\n')            
			self.log.info(str(Inst))
			df_test['predict'] = predictedData
			matrix = """"
			train_matrix = """"
			self.log.info('--------- Performance Matrix with Test Data End ---------\n')
		
		save_csv_compressed(df_test, predicted_data_file, encoding='utf-8')
		return 'Success',model_type,model,saved_model,matrix,train_matrix,xtrain.shape,model_tried,score,filename,features,threshold,pscore,rscore,method,estimator,xtrain,ytrain,xtest,ytest,topics,params

	def auc_roccurve(self,y_true,y_score,classee,imageFolderLocation):
					from keras.utils import to_categorical
					from sklearn.preprocessing import label_binarize
					import re
					n_classes = len(classee)
					y_true = to_categorical(y_true,num_classes = n_classes)
				   
					fpr ={}
					tpr={}
					roc_auc={}
					class_names = list(classee.keys())
					typeofclass = list(classee.values())
					n_class = len(typeofclass)
				  
					for i in range(n_classes):
						fpr[i],tpr[i],_ = roc_curve(y_true[:,i], y_score[:,i])
						roc_auc[i]= auc(fpr[i],tpr[i])
						plt.figure()
						plt.plot(fpr[i],tpr[i],label=f'{class_names[i]} (AUC = {roc_auc[i]:.2f})')
						plt.plot([0,1],[0,1], linestyle='--')
						plt.xlabel('False positive rate')
						plt.ylabel('True positive rate')
						plt.title(f'{class_names[i]} ROC Curve')
						plt.legend()
						img_location = os.path.join(imageFolderLocation,str(i)+'_roc.png')  #15092
						plt.savefig(img_location)
						

					   
				
		
	def startLearnerModule(self,mlconfig,modelType,modelParams,modelList,scoreParam,targetColumn,dataFrame,xtrain,ytrain,xtest,ytest,categoryCountList,topFeatures,targetType,deployLocation,iterName,iterVersion,trained_data_file,labelMaps,featuresBasedOn, modelFeatureBased,code_configure,modelEvaluationConfig):
		matrix = ''
		threshold = -1
		pscore = -1
		rscore = -1
		method = mlconfig['optimizationMethod']
		method = method.lower()
		geneticParam = ''
		topics = {}
		optimizationHyperParameter = mlconfig['optimizationHyperParameter']
		cvSplit = optimizationHyperParameter['trainTestCVSplit']
		nIter = int(optimizationHyperParameter['iterations'])
		if(method.lower()  == 'genetic'):
			geneticParam = optimizationHyperParameter['geneticparams']
		scoreParam = scoreParam
		if 'thresholdTunning' in mlconfig:
			thresholdTunning = mlconfig['thresholdTunning']
		else:
			thresholdTunning = 'NA'


		if len(topFeatures) !=0:
			self.features=topFeatures
		else:
			datacolumns=list(xtrain.columns)
			if targetColumn in datacolumns:
				datacolumns.remove(targetColumn)
			self.features =datacolumns
		self.log.info(f'-------> Number of Features Used For Training the Model: {len(self.features)}')
		features_names = str(self.features)
		if len(features_names) > 500:
			features_names = ','.join(self.features[:2]) + ', ..... ,' + ','.join(self.features[-2:])
		self.log.info(f'-------> Features Used For Training the Model: {features_names}')
		xtrain = xtrain[self.features]
		if not xtest.empty:
			xtest = xtest[self.features]
		if cvSplit == """":
			cvSplit =None
		else:
			cvSplit =int(cvSplit)

		if modelType == 'classification':
			model_type = ""Classification""
			MakeFP0 = False
			MakeFN0 = False
			if(len(categoryCountList) == 2):
				self.log.info(""\n -------------- Check for FP or FN -------------- "")
				self.log.info(""-------> Binary Classification"")
				if(thresholdTunning.lower() == 'fp0'):
					self.log.info(""-------> Threshold Tuning: False Positive"")
					MakeFP0 = True
				elif(thresholdTunning.lower() == 'fn0'):
					self.log.info(""-------> Threshold Tuning: False Negative"")
					MakeFN0 = True
				if MakeFP0 == False and MakeFN0 == False:
					self.log.info(""-------> Threshold Tuning: Not Any"")	
				self.log.info(""-------------- Check for FP or FN End-------------- \n"")
			elif(len(categoryCountList) > 2): #bug 12438
				self.log.info(""\n -------------- Check for FP or FN -------------- "")
				self.log.info(""-------> Multiclass Classification"")
				if(thresholdTunning.lower() == 'fp0' or thresholdTunning.lower() == 'fn0'):
					self.log.info(""-------> Threshold Tuning: Not supported"")
				else:
					self.log.info(""-------> Threshold Tuning: Not Any"")	
				self.log.info(""-------------- Check for FP or FN End-------------- \n"")
			objClf = ClassifierModel(modelList, modelParams, scoreParam, cvSplit, nIter,geneticParam, xtrain,ytrain,xtest,ytest,method,modelType,MakeFP0,MakeFN0,deployLocation)
			model, params, score, estimator,model_tried,threshold,pscore,rscore = objClf.classModelling( modelFeatureBased,code_configure)

		elif modelType == 'regression':
			model_type = ""Regression""
			objClf = RegressionModel(modelList, modelParams, scoreParam, cvSplit, nIter,geneticParam, xtrain,ytrain,xtest,ytest,method,deployLocation)
			model,params,score,estimator,model_tried = objClf.regressionModelling(modelFeatureBased,code_configure)

		elif modelType =='clustering':
			model_type = 'Clustering'
			print(modelList)
			if 'KMeans' in modelList:
				clustendency = self.cluster_tendency(xtrain)
				model='KMeans'
				model_tried = '{""Model"":""KMeans"",""Score"":""NA""}'
				kmeanmodelparams=modelParams['KMeans']
				n_clusters = kmeanmodelparams['n_clusters']
				if n_clusters == None  or n_clusters == 0 or n_clusters == '':
					n_clusters = self.calculateNumberofCluster(xtrain)
					kmeanmodelparams['n_clusters'] = n_clusters
				kmeans=KMeans(n_clusters=n_clusters)
				targetData=kmeans.fit_predict(xtrain)
				self.log.info('Status:-  |... ML Algorithm applied: KMeans')
				self.log.info('\n------------ Centers Points Start------------')
				values = kmeans.cluster_centers_.squeeze()
				#print(values)
				centers = pd.DataFrame(kmeans.cluster_centers_,columns= xtrain.columns)
				filename = os.path.join(deployLocation,'centers.csv')
				centers.to_csv(filename)
				labels = kmeans.labels_
				i=0
				for value_row in values:
					j=0
					self.log.info('------->Label: '+str(i))
					for value in value_row:
						self.log.info('---------->Feature: ""'+str(self.features[j])+'"" Center Point: '+str(value))
						j = j+1
					i = i+1
				self.log.info('------------ Centers Points Start------------\n')
				score='NA'
				scoreParam=None
				params=kmeanmodelparams
				estimator=kmeans
			if 'DBSCAN' in modelList: 
				DBSCAN_ModelParams=modelParams['DBSCAN']
				db = DBSCAN(eps=DBSCAN_ModelParams['eps'],min_samples = DBSCAN_ModelParams['min_samples']).fit(xtrain)
				#targetData=db.fit_predict(xtrain)
				self.log.info('Status:-  |... ML Algorithm applied: DBSCAN')
				labels = db.labels_	
				n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0)
				n_noise_ = list(labels).count(-1)
				self.log.info('------->Labels: '+str(labels))                
				self.log.info('------->No Of Cluster: '+str(n_clusters_))                
				self.log.info('------->No Of Noise Point: '+str(n_noise_))
				score='NA'
				scoreParam=None
				params=''
				estimator=db
				model='DBSCAN'
				model_tried = '{""Model"":""DBSCAN"",""Score"":""NA""}'

		elif modelType == 'topicmodelling':
			model_type = 'TopicModelling'
			model='LDA'
			model_tried = '{""Model"":""LDA"",""Score"":""NA""}'
			LDAmodelparams=modelParams['LDA']
			n_topics = LDAmodelparams['n_topics']
			n_words_per_topic = LDAmodelparams['n_words_per_topic']
			if n_topics == None  or n_topics == 0 or n_topics == '':
				n_topics = 10
				LDAmodelparams['n_topics'] = n_topics
			if n_words_per_topic == None  or n_words_per_topic == 0 or n_words_per_topic == '':
				n_words_per_topic = 10
				LDAmodelparams['n_words_per_topic'] = n_words_per_topic

			lda = LatentDirichletAllocation(n_components=n_topics,random_state=0)
			self.log.info('Status:-  |... ML Algorithm applied: LDA')
			targetData=lda.fit_transform(xtrain)
			topics = self.get_topics(lda, topFeatures, n_words_per_topic)
			self.log.info(topics)
			score='NA'
			scoreParam=None
			params=LDAmodelparams
			estimator=lda
			
		return model_type,model,params, score, estimator,model_tried,xtrain,ytrain,xtest,ytest,threshold,pscore,rscore,method, topics"
anomalyDetectionAE.py,"# -*- coding: utf-8 -*-
#Py Libraries import
import numpy as np
import pandas as pd
import tensorflow as tf
import matplotlib
import matplotlib.pyplot as plt
from sklearn.metrics import accuracy_score
from tensorflow.keras.optimizers import Adam,SGD
# from sklearn.preprocessing import MinMaxScaler
from tensorflow.keras import Model, Sequential
from tensorflow.keras.layers import Dense, Dropout
from sklearn.model_selection import train_test_split
from tensorflow.keras.losses import MeanSquaredLogarithmicError
import os
import json
import keras
from keras.layers import Input, Dense
from keras.callbacks import ModelCheckpoint, EarlyStopping
from sklearn.cluster import DBSCAN
from sklearn.model_selection import RandomizedSearchCV
from sklearn import metrics
import traceback
import seaborn as sns
import warnings
warnings.filterwarnings(""ignore"")
import logging
import joblib
from sklearn import preprocessing
'''
Py Engine: >= Python 3.8>

anomalyDetectionAE class purpose: To findout anomalies in the user data using autoencoder mechanism. The file contains base class anomalyDetectionAE which act as entry point .
mainAnomalyDetectionfn() method decide which algorithm (autoencoder or dbscan to be used based on user input).
Two different approaches to find out anomalies,
    1.LSTM approach (anomalyDetectionAE.aetsmodel_lstm() fn)
    2. Autoencoder approach (AeDetector class)
By default, autoencoder approach used (User can select in basic config file.)

One more limitation is, time series data will be handled by autoencoder,lstm algs.
DBScan algorithm is not supporting time series. Suggestion here is if time series data feature received, drop it.
AION dataprofiler automatically remove time feature for DBScan. But for autoencoder we are passing time series. 
Parameter information:
    df: Input dataframe from aion base class
    paramSpace: Default parameter from basic config (user config settings)
    deployLocation: Deployment location. Detailed anomalies data information are stored in ../target/output loc.
    Target: only for supervised problems.
    anomalyMethod: Algorithm to be used (autoEncoder or DBScan) received from paramSpace.
    testSize: For supervised problems, unsupervised problems we are passing whole input data.
    datetimeFeature: data time feature for autoencoder
    mv_featurebased_ad_status: If <True> univariate feature for autoencoder enabled. We findout anomalies for each features selected by user.
'''

##For autoencoder (encoder-decoder) based base class, keras Model class act as meta class. Config params received from AION config file (GUI). The below class instance have keras subclassing call to run encoder and decoder.

class AeDetector(Model):
     def __init__(self,train,test,units,latent_units,activation):
        super(AeDetector, self).__init__()
        #Because anomaly detection ,we r using 'sigmoid' activation for  all problems
        last_layer_activation='sigmoid'
        self.encoder = tf.keras.Sequential([
                                            Dense(units, activation=activation),
                                            Dense((units/2), activation=activation),
                                            Dense(latent_units, activation=activation)
        ])
        self.decoder = tf.keras.Sequential([
                                            Dense((units/2), activation=activation),
                                            Dense(units, activation=activation),
                                            Dense(train.shape[1], activation=last_layer_activation)
        ])
     ## Using keras subclassing api
     def call(self, x):         
         encoded = self.encoder(x)
         decoded = self.decoder(encoded)
         return decoded
##This below function create get_datetime class python file in target->scripts folder
    
        
'''This aion_gettimegranularity class is used to retrive the time pattern (Granularity) of given datetime feature.'''
class aion_gettimegranularity:
    cls_name=""datetimeinformation""
    
    def __init__(self,dataframe, datetimefeature):
        self.df=dataframe
        self.datetimefeature=datetimefeature
        # self.log=logging.getLogger('AION')
        self.log = logging.getLogger('eion')
        self.log.info(""To retrive the granularity of given datetime feature by aion."")
        
    def get_dfinfo(self,df):
        from io import StringIO
        buf = StringIO()
        df.info(buf=buf)
        #self.log.info(buf.getvalue())
        return buf.getvalue()
    ##Main time granularity find function   
    def get_granularity(self):
        try:
            ##get local df 
            df_t=self.df
            buf_info=self.get_dfinfo(df_t)
            self.log.info(buf_info)
            
            df_t.drop(df_t.filter(regex='Unname'),axis=1,inplace=True)
            try:
                df_t[self.datetimefeature] = pd.to_datetime(df_t[self.datetimefeature])
            except Exception as e:
                self.log.info(""Datetime feature to python datetime format convertion error.\n""+str(e))
            df_t['time_diff']=df_t[self.datetimefeature].diff().shift(-1)
            datetime_mean=df_t['time_diff'].mean()
            totsec = datetime_mean.total_seconds()
            ## Dict variable to store datetime details.Initialized all date param as False.
            status_time={""h"":False,""m"":False,""s"":False,
                         ""us"":False,""ns"":False,""Y"":False,""M"":False,""D"":False}
            if (datetime_mean.days == 0):
                if (totsec/3600 > 1):
                    ## hour
                    status_time['h']=True
                else:
                    if (totsec/60  >1):
                        ## minute
                        status_time['m']=True
                    else:
                        if (totsec <= 1e-06 and totsec > 1e-09):
                            ## microsecond
                            status_time['us']=True                   
                        elif (totsec<= 1e-09 and totsec >=1e-012):
                            ## nanosecond
                            status_time['ns']=True
                        else:
                            ## second
                            status_time['s']=True
            else:
                days=datetime_mean.days
                if (days/365>1):
                    ## year
                    status_time['Y']=True
                else:
                    if (days>30):
                        ## month
                        status_time['M']=True
                    else:
                        ## day
                        status_time['D']=True
            
            time_pattern=None
            for k,v in status_time.items():
                if (v == True):
                    time_pattern=k
            self.log.info(""<----- DateTime feature pattern (year/month/day/hour/minute/second/millisecond/microsecond/nanosecond) is: \t""+str(time_pattern))
            try:
                try:
                    df_t[self.datetimefeature] = pd.to_datetime(df_t[self.datetimefeature])
                except Exception as e:
                    pass                
                df_t['Time_diff'] = ((df_t[self.datetimefeature])).diff(-1).dt.floor('T').dt.total_seconds().div(60).abs()
                time_threshold=1
                df_t['anomalyType'] = (np.where((df_t['Time_diff'] != 1),""Point"",""Sequence""))                
                df_t.drop(""Time_diff"",axis=1,inplace=True)
            except Exception as e:
                self.log.info(""time_diff err message: ""+str(e))
        except Exception as e:
            print(""time_diff err message: "",str(e))
        return df_t

## AION Anomaly detection autoencoder main class. It receives input params from anomalyDetector class 
class anomalyDetectionAE:
    def __init__(self,df,paramSpace,deployLocation,target,anomalyMethod,testSize,datetimeFeature,mv_featurebased_ad_status):
        
        self.mc=None
        self.es=None        
        #aion gui inputs
        self.df=df
        self.paramSpace=paramSpace
        self.deployLocation=deployLocation
        self.target=target
        self.anomalyMethod=anomalyMethod
        self.testSize=round(testSize,1)        
        self.datetimeFeature=datetimeFeature
        self.log = logging.getLogger('eion')
        self.mv_featurebased_ad_status=mv_featurebased_ad_status
        """""" Uncomment below for debug purpose. """"""        
        # self.log.info(""anomalyDetectionAE constructor: df head: \n""+str(df.head()))
        # self.log.info(""anomalyDetectionAE constructor:  df type: \n""+str(type(df)))
        # self.log.info(""anomalyDetectionAE constructor:  df len: \n""+str(len(df)))
        # self.log.info(""anomalyDetectionAE constructor:  self.datetimeFeature: \n""+str((self.datetimeFeature)))
        
        
    def targetnumClass(self,data):
        count_classes = pd.value_counts(data, sort = True)
        num_of_classes= len(count_classes)
        return num_of_classes
    
    def configload(self):
        cwd = os.path.abspath(os.path.dirname(__file__))
        file_name='config.json'
        try:
            config_file=os.path.normpath(os.path.join(cwd,'config',file_name))
        except Exception as e:
            self.log.info(""<---- config path error. Error Msg:  ---->""+str(e))
        with open(config_file, 'r') as file:
            data = json.load(file)
                
        datapath=str(data[""data""])
        target=str(data[""target""])
        anomaly_algorithm=str(data[""anomalydetection_algorithm""])
        ae_hyperparameter=data[""autoEncoder""]
        dbscan_hyperparameter=data[""DBScan""]
        
        return datapath,target,ae_hyperparameter,anomaly_algorithm,dbscan_hyperparameter
    
    ## model summary
    def summary(self,model):
        return model.summary()
    
    ##To load ae model
    def model_load(self, path):
        cwd = os.path.abspath(os.path.dirname(__file__))
        file_name=path
        try:
            model_location=os.path.normpath(os.path.join(cwd,'model',file_name))
        except Exception as e:
            self.log.info(""<---- Model path error. Error Msg:  ---->""+str(e))
        loaded_model = joblib.load(model_location)
        return loaded_model
        
    ## Load dataset
    def dataload(self,datapath):  
        cwd = os.path.abspath(os.path.dirname(__file__))
        file_name=datapath
        try:
            data_file=os.path.normpath(os.path.join(cwd,'data',file_name))
        except Exception as e:
            self.log.info(""<---- data path error. Error Msg::  ---->""+str(e))
        df = pd.read_csv(data_file)
        
        return df
    
    ## Create dataframe with time sequence data, if not time series, sequence length always 1.
    def create_dataset(self,X, y, time_steps=1):
        Xs, ys = [], []
        for i in range(len(X) - time_steps):
            v = X.iloc[i:(i + time_steps)].values
            Xs.append(v)
            ys.append(y.iloc[i + time_steps])
        return np.array(Xs), np.array(ys)
    
    ##  model for time series based AE encoder, decoder fn
    def aetsmodel_lstm(self,n_dims, n_timesteps, n_bottleneck,units,activation,df):
            # inputs = Input(shape = (n_timesteps, n_dims))
            inputs = Input(shape = (df.shape[1], df.shape[2]))
            e = keras.layers.LSTM(units, activation = activation, return_sequences = True)(inputs)
            ## code layer or compressed form of data produced by the autoencoder, bottleneck layer
            latent_space = keras.layers.LSTM(n_bottleneck, activation = activation, 
                                   return_sequences = False, 
                                   name = 'bottleneck_layer')(e)
            e = keras.layers.RepeatVector(n_timesteps)(latent_space)
            decoder = keras.layers.LSTM(n_bottleneck, activation = activation, 
                           return_sequences = True)(e)
            decoder = keras.layers.LSTM(units, activation = activation, return_sequences = True)(decoder)
            outputs = keras.layers.TimeDistributed(Dense(n_dims))(decoder)
            model = Model(inputs = inputs, outputs = outputs)
            return model
        
    ## adding some model checkpoints to ensure the best values will be saved and early stopping to prevent the model from running  unnecessary.
    def callbacks(self, **kwargs):        
        self.mc = ModelCheckpoint(filepath = kwargs.get(""filename""), 
                                  save_best_only = True, verbose = 0)
        
        self.es = EarlyStopping(monitor = kwargs.get(""monitor""),
                                patience = kwargs.get(""patience""))
        
        return self.es,self.mc
        
    ##This below function create get_datetime class python file in target->scripts folder
    '''This aion_gettimegranularity  class is used to retrive the time pattern (for getting time granularity) of given datetime feature.'''
    def create_datetime_pyfile(self):
        try:
            datetimepattern_code=r""""""##
import pandas as pd
import numpy as np
class aion_gettimegranularity:
    cls_name=""datetimeinformation""
                
    def __init__(self,dataframe, datetimefeature):
        self.df=dataframe
        self.datetimefeature=datetimefeature
                    
    def get_dfinfo(self,df):
        from io import StringIO
        buf = StringIO()
        df.info(buf=buf)
        #print(buf.getvalue())
        return buf.getvalue()
                    
    def get_granularity(self):
        try:
            ##get local df 
            df_t=self.df
            buf_info=self.get_dfinfo(df_t)                        
            df_t.drop(df_t.filter(regex='Unname'),axis=1,inplace=True)
            try:
                df_t[self.datetimefeature] = pd.to_datetime(df_t[self.datetimefeature])
            except Exception as e:
                pass
                # print(""Datetime feature to python datetime format convertion error.\n"",e)
            df_t['time_diff']=df_t[self.datetimefeature].diff().shift(-1)
            datetime_mean=df_t['time_diff'].mean()
            totsec = datetime_mean.total_seconds()
            ## Dict variable to store datetime details.Initialized all date param as False.
            status_time={""h"":False,""m"":False,""s"":False,""us"":False,""ns"":False,""Y"":False,""M"":False,""D"":False}
            if (datetime_mean.days == 0):
                if (totsec/3600 > 1):
                    ## hour
                    status_time['h']=True
                else:
                    if (totsec/60  >1):
                        ## minute
                        status_time['m']=True
                    else:
                        if (totsec <= 1e-06 and totsec > 1e-09):
                            ## microsecond
                            status_time['us']=True                   
                        elif (totsec<= 1e-09 and totsec >=1e-012):
                            ## nanosecond
                            status_time['ns']=True
                        else:
                            ## second
                            status_time['s']=True
            else:
                days=datetime_mean.days
                if (days/365>1):
                    ## year
                    status_time['Y']=True
                else:
                    if (days>30):
                        ## month
                        status_time['M']=True
                    else:
                        ## day
                        status_time['D']=True
                        
            time_pattern=None
            for k,v in status_time.items():
                if (v == True):
                    time_pattern=k
            #print(""<----- DateTime feature pattern (year/month/day/hour/minute/second/millisecond/microsecond/nanosecond) is: \t"",(time_pattern))
            try:                
                try:
                    df_t[self.datetimefeature] = pd.to_datetime(df_t[self.datetimefeature])
                except Exception as e:
                    pass                
                df_t['Time_diff'] = ((df_t[self.datetimefeature])).diff(-1).dt.floor('T').dt.total_seconds().div(60).abs()
                time_threshold=1
                df_t['anomalyType'] = np.where((df_t['Time_diff'] != 1),""Point"",""Sequence"")                
                df_t.drop(""Time_diff"",axis=1,inplace=True)
            except Exception as e:
                print(""time_diff err message: "",str(e))
        except Exception as e:
            pass
            # print(""get_granularity err msg: "",(e))
        return df_t
""""""
            cwd=self.deployLocation
            file_name='aion_granularity'+'.py'
            try:                
                data_file=os.path.normpath(os.path.join(cwd,'script',file_name))
                with open(data_file,'w') as file:
                    file.write(datetimepattern_code)
            except Exception as error:
                self.log.info(""<---- datetimepattern_code write Error.:  ---->""+str(error))                
            self.log.info(""datetimepattern source code created at target folder...\n"")
        except Exception as error:
                self.log.info(""<---- datetimepattern_code function Error.:  ---->""+str(error))
                                
    ## Simple mlp based autoencoder model, not used now.    
    # def aetsmodel_lstm(self,X_train):
    #     model = keras.Sequential()
    #     # autoencoder encoder
    #     model.add(keras.layers.LSTM(
    #         units=64,
    #         input_shape=(X_train.shape[1], X_train.shape[2])
    #     ))
    #     model.add(keras.layers.Dropout(rate=0.2))
    #     model.add(keras.layers.RepeatVector(n=X_train.shape[1]))
    #     # autoencoder decoder
    #     model.add(keras.layers.LSTM(units=64, return_sequences=True))
    #     model.add(keras.layers.Dropout(rate=0.2))
    #     model.add(
    #       keras.layers.TimeDistributed(
    #         keras.layers.Dense(units=X_train.shape[2])
    #       )
    #     )
        
    #     return model
    
    ## To find optimal anomaly threshold value
    def find_threshold(self,model, x_train_scaled):
      reconstructions = model.predict(x_train_scaled)
      # provides losses of individual instances msle
      reconstruction_errors = tf.keras.losses.mae(reconstructions, x_train_scaled)
      # threshold for anomaly scores
      threshold = np.mean(reconstruction_errors.numpy())+ 2*np.std(reconstruction_errors.numpy())
      return threshold
  
    ## compiling the model with adam optimizer and mean squared error loss
    def model_compile(self, model,lr, loss, opt):
        if opt == ""adam"":
            opt = Adam(learning_rate = lr)
        else:
            opt = SGD(learning_rate = lr)
        model.compile(loss = loss, optimizer = opt)

        
    ## save anomaly points in aion target folder
    def save_anomalyvalues(self,df,file_name):
        # cwd = os.path.abspath(os.path.dirname(__file__))
        cwd=self.deployLocation
        file_name=file_name+'.csv'
        try:
            out_path=os.path.normpath(os.path.join(cwd,'output'))
            if not os.path.isdir(out_path):
                os.makedirs(out_path)
            data_file=os.path.normpath(os.path.join(cwd,'output',file_name))
        except Exception as error:
            self.log.info(""<---- autoencoder artifact_dir path. Error Msg:  ---->""+str(error))
        try:
            df.to_csv(data_file,index=False)
        except Exception as e:
            self.log.info(""<---- Saving log data frame error. Error Msg:  ---->""+str(e))
    
    ## model summary
    def summary(self,model):
        return model.summary()
    ##Method to find subsequence and point anomalies  aion_gettimegranularity
    def find_point_subsequence_anomalies(self,datetime_column,dataframe=None):
        try:
            dataframe.reset_index(level=0, inplace=True)
            try:
                dataframe[datetime_column] = pd.to_datetime(dataframe[datetime_column])                    
            except Exception as e:
                self.log.info(""Dataframe contains no datetime feature.Err.Msg: \n""+str(e))
                pass
            try:
                ##Below commented part using normalize with time delta, find point anomalies.But not used,just for reference.
                ##get day to check difference
                #date_f = dataframe[datetime_column].dt.normalize()
                ##compare successive rows and identify group size
                #dataframe['anomaly_value'] = np.where(dataframe[datetime_column].groupby(date_f.ne(date_f.shift()).cumsum()).transform('size').gt(1),'subsequence_anomaly', 'Point_anomaly')
                ##Using get_timepattern method
                aion_gettimegranularity_obj=aion_gettimegranularity(dataframe,datetime_column)
                anomaly_info_df=aion_gettimegranularity_obj.get_granularity()
            except Exception as e:
                self.log.info(""find_point_subsequence_anomalies,: aion_gettimegranularity err msg:: \n""+str(e))
            self.log.info(""find_point_subsequence_anomalies,: anomaly_info_df: \n""+str(anomaly_info_df))
        except Exception as e:
            self.log.info(""find_point_subsequence_anomalies,: err msg:: \n""+str(e))
        return anomaly_info_df
        
        
    ## Auto encoder time series function call
    
    ## dataframe info() not working for py logging, so workaround we can get information in buffer and log it.
    def get_df_info(self,df):
        from io import StringIO
        buf = StringIO()
        df.info(buf=buf)
        #self.log.info(buf.getvalue())
        return buf.getvalue()
        
    ## Method to detect time series based anomalies in user data. Using both lstm and dense based autoencoder approaches.    
    def aionAEAnomalyTS(self,df,test_size_perc,target,time_steps,dropout,mv_unique_feature_ad):
        ae_hyperparameter=self.paramSpace
        anomaly_algorithm=self.anomalyMethod

        # test_size=float(self.testSize)
        test_size=0.0
        # train_size=1-test_size
        train_size=1-test_size
        # train_size_perc=train_size*100
        train_size=int(len(df) * train_size)
        try:
            timeseries_layers=ae_hyperparameter['timeseries_layers']
            
            ## Here we are checking whether to use only LSTM layers for dnn or dense layers. Dense layers better for predicting point as well sequence anomalies in time series.
            if (timeseries_layers.lower() == 'lstm'):
                try:
                    ## Need to get normalized data for threshold calculation.
                    data_mean=df.mean(axis=0)
                    data_std=df.std(axis=0)
                    data=(df-data_mean)/data_std 
                    # train, test = df[:train_size], df[train_size:]
                    train, test = data[:train_size], data[train_size:]
                    test=train
                    test1=test  ## Need to copy test data
                    train_index=train.index
                    test_index=test.index
                    cols = df.columns
                    # train, test = train_test_split(df, test_size=test_size,random_state=42)                    
                    X_train, y_train = self.create_dataset(
                      train,
                      train,
                      time_steps
                    )
                    X_test, y_test = self.create_dataset(
                      test,
                      test,
                      time_steps  )
                    
                    n_dims=X_train.shape[2]
                    n_timesteps=X_train.shape[1]
                    opt=ae_hyperparameter['optimizer']
                    loss_fn=ae_hyperparameter[""loss""]
                    epochs=int(ae_hyperparameter['epochs'])
                    batch_size=int(ae_hyperparameter['batch_size'])
                    learning_rate=float(ae_hyperparameter['learning_rate'])
                    n_bottleneck=int(ae_hyperparameter['latentspace_size'])
                    units=int(ae_hyperparameter['hidden_units'])
                    activation=ae_hyperparameter['activation']
                    ##For task 20731
                    minimum_threshold_user = str(ae_hyperparameter['min_threshold'])
                    maximum_threshold_user = str(ae_hyperparameter['max_threshold'])
                    
                    autoencoder=self.aetsmodel_lstm(n_dims, n_timesteps, n_bottleneck,units,activation,X_train) 
                    ##To save file
                    # cwd = os.path.abspath(os.path.dirname(__file__))
                    cwd=self.deployLocation
                    try:
                        artifact_dir=os.path.normpath(os.path.join(cwd,'output','autoenc_artifact_dir'))
                        if not os.path.isdir(artifact_dir):
                            os.makedirs(artifact_dir)
                    except Exception as e:
                        self.log.info(""<---- Autoencoder artifact_dir path error. Error Msg:  ---->""+str(e))
                        
                    #dl callback fn to get best loss fn, early stopping & model checkpoint call backs
                    es,mc=self.callbacks(filename = artifact_dir, patience = 5, monitor = ""val_loss"")
                    self.model_compile(autoencoder,learning_rate, loss_fn, opt)
                    X_train = np.reshape(X_train,(X_train.shape[0],X_train.shape[1],X_train.shape[2]))                    
                    X_test = X_test.reshape((X_test.shape[0], X_test.shape[1],n_dims))
                    # y_test = y_test.reshape((y_test.shape[0], y_test.shape[1], n_dims))
                    model_hist = autoencoder.fit(
                        X_train, X_train,
                        epochs=epochs,
                        batch_size=batch_size,
                        validation_split=0.1,
                        shuffle=False,callbacks = [mc, es]
                    )
                    model_info=self.summary(autoencoder)
                    X_train_pred = autoencoder.predict(X_train)
                    train_mae_loss = np.mean(np.abs(X_train_pred - X_train), axis=1)
                    ## Task 20731
                    if ((minimum_threshold_user and minimum_threshold_user.strip()) and (maximum_threshold_user and maximum_threshold_user.strip())):
                        threshold = float(maximum_threshold_user)
                        min_threshold = float(minimum_threshold_user)
                    elif ((minimum_threshold_user.strip()) and (not maximum_threshold_user.strip())):
                        threshold = np.mean(train_mae_loss) + 2*np.std(train_mae_loss)
                        min_threshold = float(minimum_threshold_user)
                    elif ((not minimum_threshold_user.strip()) and (maximum_threshold_user.strip())):
                        threshold = float(maximum_threshold_user)
                        min_threshold = np.mean(train_mae_loss) - 2*np.std(train_mae_loss)
                    else:
                        threshold = np.mean(train_mae_loss) + 2*np.std(train_mae_loss)                        
                        min_threshold = np.mean(train_mae_loss) - 2*np.std(train_mae_loss)
                        # threshold = np.mean(train_mae_loss) + np.std(train_mae_loss)
                        
                    self.log.info(""Anomaly threshold max value based on loss fn (MAE): ""+str(threshold))
                    self.log.info(""Anomaly threshold min value based on loss fn (MAE): ""+str(min_threshold))
                    
                                    
                    X_test_pred = autoencoder.predict(X_test)
                    test_mae_loss = np.mean(np.abs(X_test_pred - X_test), axis=1)
                    test_score_df = pd.DataFrame(index=test_index[time_steps:]) 
                    if (n_dims >1):
                        columns = [f'loss_{num}' for num in range(n_dims)]
                        # test_score_df = pd.DataFrame(test_mae_loss, columns=columns, index=test_index[time_steps:])                    
                        test_score_df['loss'] = test_mae_loss.mean(axis=1)
                    else:
                        test_score_df['loss'] = test_mae_loss
                    test_score_df['max_threshold'] = threshold
                    test_score_df['min_threshold'] = min_threshold
                    test_score_df['anomaly_value'] = (test_score_df.loss > test_score_df.max_threshold)
                    test_score_df['anomaly_value'] = (test_score_df.loss < test_score_df.min_threshold)
                    ## Newly added for lstm issue                    
                    ## if coming dataframe have datetime index , copy it before concat (different indexed dfs)
                    import pandas.api.types as ptypes
                    # if (isinstance(test_score_df, pd.DatetimeIndex) and isinstance(df, pd.DatetimeIndex)):
                    test_cp_index=None
                    if (ptypes.is_datetime64_dtype(test_score_df.index) and ptypes.is_datetime64_dtype(df.index)):
                        # self.log.info(""test_score_df and df have datetime index cols"")
                        test_cp_index=test_score_df.index
                        df_cp_index=df.index
                        test_score_df=test_score_df.reset_index()
                        df=df.reset_index() ##self.datetimeFeature                        
                        test_score_df.dropna()
                        try:
                            test_score_df[self.datetimeFeature]=pd.to_datetime(test_score_df[self.datetimeFeature])
                            df[self.datetimeFeature]=pd.to_datetime(df[self.datetimeFeature])                            
                        except:
                            pass
                        try:
                            final_df=pd.DataFrame()                            
                            cols_to_use = df.columns.difference(test_score_df.columns)
                            final_df = pd.merge(test_score_df, df[cols_to_use], left_index=True, right_index=True, how='inner')
                        except Exception as e:
                            self.log.info(""final_df creation err msg: \n: ""+str(e))
                    else:
                        test_index=test_score_df.reset_index(drop=True)
                        test_cp_index=test_index.index
                        df_index=df.reset_index(drop=True)
                        final_df=pd.DataFrame()
                        final_df = test_score_df.join(df)
                    final_df.dropna()
                    ##Again set datetime index to dataframes,drop datetime feature column and set it as index.
                    try:
                        final_df.set_index(self.datetimeFeature,inplace=True)
                        df.set_index(self.datetimeFeature,inplace=True)
                        df.drop(self.datetimeFeature,axis=1,inplace=True)
                        final_df.drop(self.datetimeFeature,axis=1,inplace=True)
                    except:
                        pass
                    ## Below commented code used to print df.info() in log file (using get_df_info() methos).
                    # self.log.info(""anomaly final_df info: \n"")
                    # buf_info=self.get_df_info(final_df)
                    # self.log.info(buf_info)
                    # final_df=pd.DataFrame()
                    ##Getback the datetime index back
                    final_df.index=test_cp_index                    
                    normal_prediction_df=test_score_df.loc[test_score_df['anomaly_value']==False]
                    anomaly_prediction_df=test_score_df.loc[test_score_df['anomaly_value']==True]
                    
                    ## Newly added for lstm issue
                    anomaly_prediction_df=pd.merge(anomaly_prediction_df, final_df, on=['loss', 'max_threshold','min_threshold', 'anomaly_value'], how=""left"")
                    # anomaly_prediction_df.fillna(anomaly_prediction_df.mean(), inplace=True)
                    anomaly_prediction_df['anomaly_value']  = anomaly_prediction_df['anomaly_value'].replace([np.inf, -np.inf], np.nan)
                    # anomaly_prediction_df['anomaly_value']  = anomaly_prediction_df['anomaly_value'].replace([np.inf, -np.inf], np.nan)
                    final_df['anomaly_value']  = final_df['anomaly_value'].replace([np.inf, -np.inf], np.nan)
                    anomaly_prediction_df['anomaly_value'] = anomaly_prediction_df['anomaly_value'].replace({True: 1, False: 0})
                    final_df['anomaly_value'] = final_df['anomaly_value'].replace({True:1, False: 0})
                    #make sure no nan values after dataframe operations
                    anomaly_prediction_df.dropna()
                    final_df.dropna()
                    # anomal_loss_threshold=anomaly_prediction_df          #use if we want to save loss and threshold as dataframe info.
                    self.log.info(""Anomaly data with loss and threshold informations: \n""+str(anomaly_prediction_df))
                    """""" Saving anomaly plots in target->output->anomaly_plot folder """"""
                    ## Goto if cond for multivariate whole dataset anomaly prediction, else goto else part for feature based ad prediction.
                    if (mv_unique_feature_ad.lower()=='false'): 
                        for col in df.columns:
                            df_subset = anomaly_prediction_df[col]
                            fig, ax = plt.subplots()
                            df[col].plot(legend=False, ax=ax)                        
                            df_subset.plot(legend=False, ax=ax, color=""r"")
                            plot_name=col
                            ax.set_title(plot_name+""_Anomaly Data Plot"")
                            ax.set_xlabel(""DateTime"")
                            ax.set_ylabel(""Values"")
                            plot_name=plot_name+'_'+'anomalyplot.png'                    
                            try:
                                plot_dir=os.path.normpath(os.path.join(cwd,'output','anomaly_plot'))
                                if not os.path.isdir(plot_dir):
                                    os.makedirs(plot_dir)
                                plotpath=str(plot_dir)+'/'+plot_name
                            except Exception as e:
                                self.log.info(""<---- plot_dir path error. Error Msg:  ---->""+str(e))
                            if os.path.exists(plotpath):
                                os.remove(plotpath)
                            plt.savefig(plotpath)
                            # plt.savefig(str(plot_dir)+'/'+plot_name)
                            plt.clf()
                            plt.cla()
                            plt.close()
                    
                    else:
                        df_subset = anomaly_prediction_df
                        fig, ax = plt.subplots()
                        df.plot(legend=False, ax=ax)
                        ax.set_title(""Anomaly Data Plot"")
                        ax.set_xlabel(""X values"")
                        ax.set_ylabel(""Y Values"")
                        df_subset.plot(legend=False, ax=ax, color=""r"")
                        plot_name=df.columns[0]
                        ax.set_title(plot_name+""_Anomaly Data Plot"")
                        # ax.set_xlabel(""DateTime"")
                        # ax.set_ylabel(""Values"")
                        # plot_name=df.columns[0]
                        plot_name=plot_name+'_'+'anomalyplot.png'                    
                        try:
                            plot_dir=os.path.normpath(os.path.join(cwd,'output','anomaly_plot'))
                            if not os.path.isdir(plot_dir):
                                os.makedirs(plot_dir)
                            plotpath=str(plot_dir)+'/'+plot_name
                        except Exception as e:
                            self.log.info(""<---- plot_dir path error. Error Msg:  ---->""+str(e))
                        if os.path.exists(plotpath):
                            os.remove(plotpath)
                        plt.savefig(plotpath)
                        # plt.savefig(str(plot_dir)+'/'+plot_name)
                        plt.clf()
                        plt.cla()
                        plt.close()
                        

                    #process dt feature and save anomalies.
                    datetime_column=str(self.datetimeFeature)
                    try:
                        anomaly_prediction_df=self.find_point_subsequence_anomalies(datetime_column,anomaly_prediction_df)
                        # normal_prediction_df=self.find_point_subsequence_anomalies(datetime_column,normal_prediction_df)
                    except:
                        ##If any issue in time series point anomaly detection, skip it.
                        self.log.info(""Detecting point anomalies have some issue,check datetime feature."")
                        pass
                    combined_df=pd.concat([anomaly_prediction_df,normal_prediction_df],ignore_index=True)
                    combined_df['anomaly_value']=combined_df['anomaly_value'].fillna('Normal_Data')
                    ## If categorical features in original df, then inverse transform the values.
                    anomaly_prediction_df['anomaly_value'] = anomaly_prediction_df['anomaly_value'].replace({1: ""Anomaly"", 0: ""Normal""})
                    final_df['anomaly_value'] = final_df['anomaly_value'].replace({1: ""Anomaly"", 0: ""Normal""})
                    ##Now we are storing anomaly log (as dataframe) based on two options: 1. Anomalies based on all features, 2. Anomalies based on each individual feature.
                    if (mv_unique_feature_ad.lower()=='true'):                        
                        ## Multivariate and saving individual feature based anomalies
                        self.save_anomalyvalues(anomaly_prediction_df,(str(feature_name)+'_ts_anomaly_dataframe'))
                        # self.save_anomalyvalues(combined_df,(str(feature_name)+'_ts_overall_dataframe'))
                        try:
                            final_df=self.merge_pre_post_dfs(final_df)
                        except Exception as e:
                            self.log.info(""Anomaly Detection Merge df exception:\n""+str(e))
                            #If merge fails, just out!
                            pass
                        self.save_anomalyvalues(final_df,(str(feature_name)+'_ts_overall_dataframe'))
                        ## If we want anomaly dataframe with loss and threshold for each values (rows),please uncomment below line
                        # self.save_anomalyvalues(anomal_loss_threshold,'ts_anomaly_dataframe_lt'))
                        ## Save actual test data test_score_df
                        #self.save_anomalyvalues(test_score_df,(str(feature_name)+'_testdata'))
                    else:
                        self.save_anomalyvalues(anomaly_prediction_df,'ts_anomaly_dataframe')
                        # self.save_anomalyvalues(combined_df,'ts_normal_anomaly_dataframe')
                        try:
                            final_df=self.merge_pre_post_dfs(final_df)
                        except Exception as e:
                            self.log.info(""Anomaly Detection Merge df exception:\n""+str(e))
                            #If merge fails, just out!
                            pass
                        self.save_anomalyvalues(final_df,'ts_overall_dataframe')
                        ## If we want anomaly dataframe with loss and threshold for each values (rows),please uncomment below line
                        # self.save_anomalyvalues(anomal_loss_threshold,'ts_anomaly_dataframe_lt'))
                        ## Save actual test data test_score_df
                        #self.save_anomalyvalues(test_score_df,'testdata')
                    anomaly_info_df=final_df    
                    self.log.info(""<---- Autoencoder time series data anomalies:  ---->""+str(anomaly_prediction_df))
                    self.log.info(""<---- Autoencoder time series:Number of anomalies in data::  ---->""+str(len(anomaly_prediction_df)))
                    # return model   
                except Exception as e:
                    self.log.info(""AD lstm traceback error: \n""+str(traceback.format_exc()))
            ## Dense layer based time series AD, most real world usecases, it is working best compared to lstm based..    
            elif (timeseries_layers.lower() == 'dense'): 
                try:
                    feature_name=df.columns
                    feature_name = ' '.join(map(str, feature_name))
                    try:
                        #Passing whole data,so test size set as zero.
                        test_size=0.0
                        # train_size=1-test_size
                        train_size=1-test_size
                        # train_size_perc=train_size*100
                        train_size=int(len(df) * train_size)
                        train_data,test_data = df[:train_size], df[train_size:] 
                        test_data=train_data
                    except:
                        #If any error comes,us sklearn train test split
                        train_data,test_data = train_test_split(df,test_size=test_size,random_state=42)
                        pass
                    test_index=test_data.index   ## to get datetime index                    
                    units=int(ae_hyperparameter['hidden_units'])
                    latent_units=int(ae_hyperparameter['latentspace_size'])
                    activation=ae_hyperparameter['activation']
                    ##For task 20731
                    minimum_threshold_user = str(ae_hyperparameter['min_threshold'])
                    maximum_threshold_user = str(ae_hyperparameter['max_threshold'])
                    
                    train_data=train_data.values
                    test_data=test_data.values
                    ## tss is time series flag, true or false
                    autoencoder = AeDetector(train_data,test_data,units,latent_units,activation)
                    opt=ae_hyperparameter['optimizer']
                    loss_fn=ae_hyperparameter[""loss""]
                    epochs=int(ae_hyperparameter['epochs'])
                    batch_size=int(ae_hyperparameter['batch_size'])
                    learning_rate=float(ae_hyperparameter['learning_rate'])                    
                    cwd=self.deployLocation
                    try:
                        artifact_dir=os.path.normpath(os.path.join(cwd,'output','autoenc_artifact_dir'))
                        if not os.path.isdir(artifact_dir):
                            os.makedirs(artifact_dir)
                    except Exception as e:
                        self.log.info(""<---- artifact_dir path error. Error Msg:  ---->""+str(e))
                    es,mc=self.callbacks(filename = artifact_dir, patience = 5, monitor = ""val_loss"")
                    self.model_compile(autoencoder,learning_rate, loss_fn, opt)
                    # autoencoder.compile(optimizer='adam', loss='mae')
                    autoencoder.fit(train_data, train_data, epochs = epochs, batch_size=batch_size, validation_data=(test_data, test_data),callbacks = [mc, es])
                    # reconstructed = autoencoder(train_data)
                    reconstructed = autoencoder.predict(train_data)
                    train_mae_loss = tf.keras.losses.mae(reconstructed, train_data)
                    ## Task 20731
                    if ((minimum_threshold_user and minimum_threshold_user.strip()) and (maximum_threshold_user and maximum_threshold_user.strip())):
                        threshold = float(maximum_threshold_user)
                        min_threshold = float(minimum_threshold_user)
                    elif ((minimum_threshold_user.strip()) and (not maximum_threshold_user.strip())):
                        threshold = np.mean(train_mae_loss) + 2*np.std(train_mae_loss)
                        min_threshold = float(minimum_threshold_user)
                    elif ((not minimum_threshold_user.strip()) and (maximum_threshold_user.strip())):
                        threshold = float(maximum_threshold_user)
                        min_threshold = np.mean(train_mae_loss) - 2*np.std(train_mae_loss)
                    else:
                        threshold = np.mean(train_mae_loss) + 2*np.std(train_mae_loss)
                        min_threshold = np.mean(train_mae_loss) - 2*np.std(train_mae_loss)
                        # threshold = np.mean(train_mae_loss) + np.std(train_mae_loss)
                    self.log.info(""Anomaly threshold max value based on loss fn (MAE): ""+str(threshold))
                    self.log.info(""Anomaly threshold min value based on loss fn (MAE): ""+str(min_threshold))
                    test_labels=None                    
                    if (len(self.datetimeFeature) >= 1):
                        time_series_data=""True""
                    else:
                        time_series_data=""False""
                    pred,test_score_df,actual_data,anomaly_info_df = self.prediction(autoencoder, test_data,min_threshold, threshold,test_labels,time_series_data,time_steps,test_index)
                    # normal_prediction_df=(anomaly_info_df[~anomaly_info_df['anomaly_value']])
                    normal_prediction_df=anomaly_info_df.loc[anomaly_info_df['anomaly_value']==False]
                    anomaly_prediction_df=anomaly_info_df.loc[anomaly_info_df['anomaly_value']==True]
                    #Below ts_dataframe_anomaly not for production, just for testing purpose. If uncommented, comment it.
                    #self.save_anomalyvalues(anomaly_info_df,'ts_dataframe_normal')
                    
                    # anomal_loss_threshold=anomaly_prediction_df          #use if we want to save loss and threshold as dataframe info.
                    self.log.info(""Anomaly data with loss and threshold informations: \n""+str(anomaly_prediction_df))
                    # anomaly_prediction_df_plot=anomaly_prediction_df
                    """""" Saving anomaly plots in target->output->anomaly_plot folder """""" 
                    ## Only for multivariate (all features) based anomaly data plot
                    ## Use of the below part if anomaly df columns came as numerical columns.
                    # if not (df.columns.equals(anomaly_prediction_df.columns)):
                        # num_cols = []
                        # try:
                            # num_cols=[num_cols.append(float(col)) for col in anomaly_prediction_df.columns.values]
                        # except ValueError:
                            # pass
                        # #Dense layer scaler conversion makes column names as int values, so here find the int cols and rename to original names. 
                        # if (num_cols):
                            # anomaly_prediction_df=anomaly_prediction_df[num_cols]                
                            # anomaly_prediction_df.columns=df.columns
                            # normal_prediction_df=normal_prediction_df[num_cols]                
                            # normal_prediction_df.columns=df.columns
                    ## Goto if cond for multivariate whole dataset anomaly prediction, else goto else part for feature based ad prediction.    
                    
                    if (mv_unique_feature_ad.lower()=='false'): 
                        # for col in df.columns:
                        for col in actual_data.columns:
                            df_subset = anomaly_prediction_df[col]
                            fig, ax = plt.subplots()
                            df[col].plot(legend=False, ax=ax)                        
                            df_subset.plot(legend=False, ax=ax, color=""r"")
                            plot_name=col
                            ax.set_title(plot_name+""_Anomaly Data Plot"")
                            ax.set_xlabel(""DateTime"")
                            ax.set_ylabel(""Values"")
                            plot_name=plot_name+'_'+'anomalyplot.png'                    
                            try:
                                plot_dir=os.path.normpath(os.path.join(cwd,'output','anomaly_plot'))
                                if not os.path.isdir(plot_dir):
                                    os.makedirs(plot_dir)
                                plotpath=str(plot_dir)+'/'+plot_name
                            except Exception as e:
                                self.log.info(""<---- plot_dir path error. Error Msg:  ---->""+str(e))
                            if os.path.exists(plotpath):
                                os.remove(plotpath)
                            plt.savefig(plotpath)
                            # plt.savefig(str(plot_dir)+'/'+plot_name)
                            plt.clf()
                            plt.cla()
                            plt.close()
                            
                    else:
                            df_subset = anomaly_prediction_df
                            fig, ax = plt.subplots()
                            df.plot(legend=False, ax=ax)
                            ax.set_title(""Anomaly Data Plot"")
                            ax.set_xlabel(""DateTime"")
                            ax.set_ylabel(""Values"")
                            df_subset.plot(legend=False, ax=ax, color=""r"")
                            plot_name=df.columns[0]
                            ax.set_title(plot_name+""_Anomaly Data Plot"")
                            # ax.set_xlabel(""DateTime"")
                            # ax.set_ylabel(""Values"")
                            # plot_name=df.columns[0]
                            plot_name=plot_name+'_'+'anomalyplot.png'                    
                            try:
                                plot_dir=os.path.normpath(os.path.join(cwd,'output','anomaly_plot'))
                                if not os.path.isdir(plot_dir):
                                    os.makedirs(plot_dir)
                                plotpath=str(plot_dir)+'/'+plot_name
                            except Exception as e:
                                self.log.info(""<---- plot_dir path error. Error Msg:  ---->""+str(e))
                            if os.path.exists(plotpath):
                                os.remove(plotpath)
                            plt.savefig(plotpath)
                            # plt.savefig(str(plot_dir)+'/'+plot_name)
                            plt.clf()
                            plt.cla()
                            plt.close()

                    datetime_column=str(self.datetimeFeature)
                    # anomaly_prediction_df=self.find_point_subsequence_anomalies(datetime_column,anomaly_prediction_df)
                    # normal_prediction_df=self.find_point_subsequence_anomalies(datetime_column,normal_prediction_df)
                    try:
                        anomaly_prediction_df=self.find_point_subsequence_anomalies(datetime_column,anomaly_prediction_df)
                        # normal_prediction_df=self.find_point_subsequence_anomalies(datetime_column,normal_prediction_df)
                    except:
                        self.log.info(""Detecting point anomalies have some issue,check datetime feature."")
                        ##Just pass if datetime column provides issue, use without datetime column info
                        pass
                    combined_df=pd.concat([anomaly_prediction_df,normal_prediction_df],ignore_index=True)
                    combined_df['anomaly_value']=combined_df['anomaly_value'].fillna('Normal_Data')
                    ## If categorical features in original df, then inverse transform the values.
                    try:                        
                        # anomaly_info_df['anomaly_value']=anomaly_info_df['anomaly_value'].astype(str).replace(replace_values_F,'NormalDataPoint', regex=True)
                        self.naming_anomalyvalues(anomaly_info_df)
                    except Exception as e:
                        self.log.info(""anomaly_info_df exception err msg: \n""+str(e))

                    ##Now we are storing anomaly log (as dataframe) based on two options: 1. Anomalies based on all features, 2. Anomalies based on each individual feature.
                    if (mv_unique_feature_ad.lower()=='true'):
                        ## Multivariate and saving individual feature based anomalies
                        self.save_anomalyvalues(anomaly_prediction_df,(str(feature_name)+'_ts_anomaly_dataframe'))
                        try:
                            anomaly_info_df=self.merge_pre_post_dfs(anomaly_info_df)
                        except Exception as e:
                            #If merge fails, just out!.
                            self.log.info(""Anomaly Detection Merge df exception :\n""+str(e))
                        finally:
                            #check merging done or not, to be imp.
                            pass
                        self.save_anomalyvalues(anomaly_info_df,(str(feature_name)+'_ts_overall_dataframe'))
                        '''For overall ordered output,uncomment the below.'''
                        # self.save_anomalyvalues(combined_df,(str(feature_name)+'_ts_overall_dataframe_ordered'))                        
                        ## If we want anomaly dataframe with loss and threshold for each values (rows),please uncomment below line
                        # self.save_anomalyvalues(anomal_loss_threshold,'ts_anomaly_dataframe_lt')
                        ## Save actual test data actual_data
                        #self.save_anomalyvalues(actual_data,(str(feature_name)+'_testdata'))
                    else:
                        self.save_anomalyvalues(anomaly_prediction_df,'ts_anomaly_dataframe')
                        try:
                            anomaly_info_df=self.merge_pre_post_dfs(anomaly_info_df)
                        except Exception as e:
                            #If merge fails, just out!.
                            self.log.info(""Anomaly Detection Merge df exception :\n""+str(e))
                        finally:
                            #check merging done or not, to be imp.
                            pass
                        self.save_anomalyvalues(anomaly_info_df,'ts_overall_dataframe')
                        #Ordered data
                        # self.save_anomalyvalues(combined_df,'ts_overall_dataframe_ordered')                        
                        ## If we want anomaly dataframe with loss and threshold for each values (rows),please uncomment below line
                        # self.save_anomalyvalues(anomal_loss_threshold,'ts_anomaly_dataframe_lt'),
                        ## Save actual test data test_score_df
                        #self.save_anomalyvalues(actual_data,'testdata')
                    self.log.info(""<---- Autoencoder time series anomalies :  ---->""+str(anomaly_prediction_df))
                    self.log.info(""<---- Autoencoder time series, Number of anomalies in data: ---->""+str(len(anomaly_prediction_df)))
                    # self.save_anomalyvalues(anomaly_prediction_df,'ts_anomaly_dataframe')
                except Exception as e:
                    self.log.info(""dense layer anomaly error: \n""+str(traceback.format_exc()))
            else:
                self.log.info(""Only LSTM and Dense layers supported for time series."")
        except Exception as e:
            self.log.info(""<---- time series error msg: ---->""+str(e))
            self.log.info(""<---- time series error msg (detailed): ---->""+str(traceback.format_exc()))
        return autoencoder,anomaly_prediction_df,anomaly_info_df
    
    
    
    ## To normalize data,use when necessary
    def normalize_data(train_data,test_data):
        min_val=tf.reduce_min(train_data)
        max_val=tf.reduce_max(train_data)
        
        train_data = (train_data - min_val)/(max_val - min_val)
        test_data = (test_data - min_val)/(max_val - min_val)
        
        #converte the data into float
        train_data = tf.cast(train_data, dtype=tf.float32)
        test_data = tf.cast(test_data, dtype=tf.float32)
        return train_data,test_data
        
    ## Scaling data ,Not used because of our aion preprocessing data profiler option.  use when necessary.
    def getScaledData(method='standard', train_df=None, test_df=None, feature_col='feature'):
        from sklearn.preprocessing import StandardScaler
        if method == 'standard':
            scaler = StandardScaler()
        else:
            scaler = MinMaxScaler()
        scaler = scaler.fit(train_df[[feature_col]])
        train_df['scaled_'+feature_col] = scaler.transform(train_df[[feature_col]])
        test_df['scaled_'+feature_col] = scaler.transform(test_df[[feature_col]])
        return train_df, test_df, scaler
    
    ## prediction fn
    def prediction(self,model, data,min_threshold, threshold,test_labels,time_series_status,time_steps,test_index):
      
      # data1=scaler.inverse_transform(data)      
      try:
        df_new=self.df.drop(self.datetimeFeature,axis=1,inplace=False)
      except:
        df_new=self.df    
      try:
        actual_data=pd.DataFrame(self.df,columns=df_new.columns)
      except Exception as e:
        actual_data=pd.DataFrame(self.df)
        pass
      n_features=data.shape[1]
      self.log.info(""prediction: number of features: \n""+str(n_features))
      predicted_data = model.predict(data)
      loss = tf.keras.losses.mae(predicted_data, data)
      if (time_series_status.lower() == 'true'):
          test_score_df = pd.DataFrame(index=test_index)
          actual_data = actual_data.set_index(test_index)
          anomaly_info_df=pd.DataFrame()          
          test_score_df['loss'] = loss          
          test_score_df['max_threshold'] = threshold
          test_score_df['min_threshold'] = min_threshold
          ## Task 20731
          #test_score_df['anomaly_value'] = test_score_df.apply(lambda x: x.loss > x.max_threshold or x.loss <= x.min_threshold, axis=1)
          test_score_df['anomaly_value'] = np.where((test_score_df[""loss""] > test_score_df[""max_threshold""]) | (test_score_df[""loss""] <= test_score_df[""min_threshold""]), True, False)
          anomaly_info_df = pd.concat([actual_data, test_score_df], axis=1)
      else:
          test_score_df = pd.DataFrame()
          anomaly_info_df=pd.DataFrame()
          test_score_df['loss'] = loss
          #test_score_df['threshold'] = threshold
          test_score_df['max_threshold'] = threshold
          test_score_df['min_threshold'] = min_threshold
          ## Task 20731
          #test_score_df['anomaly_value'] = (test_score_df.loss >= test_score_df.max_threshold)
          #test_score_df['anomaly_value'] = (test_score_df.loss < test_score_df.min_threshold)
          test_score_df['anomaly_value'] = np.where((test_score_df[""loss""] > test_score_df[""max_threshold""]) | (test_score_df[""loss""] <= test_score_df[""min_threshold""]), True, False)
          anomaly_info_df = pd.concat([actual_data, test_score_df], axis=1)
      return tf.math.less(loss, threshold),test_score_df,actual_data,anomaly_info_df  
    
    ##Not used now, for data ploting purpose
    # def plot(self,autoencoder,data, n):
    #     enc_img = autoencoder.encoder(data)
    #     dec_img = autoencoder.decoder(enc_img)
    #     plt.plot(data[n], 'b')
    #     plt.plot(dec_img[n], 'r')
    #     plt.fill_between(np.arange(data.shape[1]), data[n], dec_img[n], color = 'lightcoral')
    #     plt.legend(labels=['Input', 'Reconstruction', 'Error'])
    #     plt.show()

    ## autoencoder fn for non timeseries data
    def ae_nontimeseriesmodelfn(self,df,target):
        autoencoder=None
        mv_unique_feature_ad=self.mv_featurebased_ad_status
        #For supervised non time series problems, we need to remove datetime feature. This will help scaler algs process the numeric data only.
        
        try:
            
              if (target == ''):
                try:
                    test_size=0.0
                    # train_size=1-test_size
                    train_size=1-test_size
                    # train_size_perc=train_size*100
                    train_size=int(len(df) * train_size)
                    train_data,test_data = df[:train_size], df[train_size:] 
                    test_data=train_data
                except:
                    test_size=float(self.testSize)
                    train_data,test_data = train_test_split(df,test_size=test_size,random_state=42)
                    pass

                ae_hyperparameter=self.paramSpace
                units=int(ae_hyperparameter['hidden_units'])
                latent_units=int(ae_hyperparameter['latentspace_size'])
                activation=ae_hyperparameter['activation']
                ##For task 20731
                minimum_threshold_user = str(ae_hyperparameter['min_threshold'])
                maximum_threshold_user = str(ae_hyperparameter['max_threshold'])
                train_data=train_data.values
                test_data=test_data.values

                autoencoder = AeDetector(train_data,test_data,units,latent_units,activation)
                opt=ae_hyperparameter['optimizer']
                loss_fn=ae_hyperparameter[""loss""]
                # loss_fn='binary_crossentropy'
                epochs=int(ae_hyperparameter['epochs'])
                batch_size=int(ae_hyperparameter['batch_size'])
                learning_rate=float(ae_hyperparameter['learning_rate'])
                # autoencoder.save('../output/autoenc',save_format='tf')
                # cwd = os.path.abspath(os.path.dirname(__file__))
                cwd=self.deployLocation
                try:
                    artifact_dir=os.path.normpath(os.path.join(cwd,'output','autoenc_artifact_dir'))
                    if not os.path.isdir(artifact_dir):
                        os.makedirs(artifact_dir)
                except Exception as e:
                    self.log.info(""<---- artifact_dir path error. Error Msg: ---->""+str(e))
                
                es,mc=self.callbacks(filename = artifact_dir, patience = 5, monitor = ""val_loss"")
                # es,mc=self.callbacks(filename = ""../output/autoenc.sav"", patience = 3, monitor = ""val_loss"")
                self.model_compile(autoencoder,learning_rate, loss_fn, opt)
                # autoencoder.compile(optimizer='adam', loss='mae')
                autoencoder.fit(train_data, train_data, epochs = epochs, batch_size=batch_size, validation_data=(test_data, test_data),callbacks = [mc, es])
                reconstructed = autoencoder(train_data)
                train_mae_loss = tf.keras.losses.mae(reconstructed, train_data)
                #threshold = np.mean(train_mae_loss) + 2*np.std(train_mae_loss)
                #min_threshold = np.mean(train_mae_loss)- 2*np.std(train_mae_loss)
                ## Task 20731
                if ((minimum_threshold_user and minimum_threshold_user.strip()) and (maximum_threshold_user and maximum_threshold_user.strip())):
                    threshold = float(maximum_threshold_user)
                    min_threshold = float(minimum_threshold_user)
                elif ((minimum_threshold_user.strip()) and (not maximum_threshold_user.strip())):
                    threshold = np.mean(train_mae_loss) + 2*np.std(train_mae_loss)
                    min_threshold = float(minimum_threshold_user)
                elif ((not minimum_threshold_user.strip()) and (maximum_threshold_user.strip())):
                    threshold = float(maximum_threshold_user)
                    min_threshold = np.mean(train_mae_loss) - 2*np.std(train_mae_loss)
                else:
                    threshold = np.mean(train_mae_loss) + 2*np.std(train_mae_loss)
                    min_threshold = np.mean(train_mae_loss) - 2*np.std(train_mae_loss)
                    # threshold = np.mean(train_mae_loss) + np.std(train_mae_loss)
                self.log.info(""Anomaly Upper Threshold value based on loss fn (MAE): ""+str(threshold))
                self.log.info(""Anomaly lower_threshold value based on loss fn (MAE): ""+str(min_threshold))
                test_labels=None  ## No test labels passed
                pred,test_score_df,actual_data,anomaly_info_df = self.prediction(autoencoder, test_data, min_threshold,threshold,test_labels,'False',None,None)
    
                # normal_prediction_df=(anomaly_info_df[~anomaly_info_df['anomaly_value']])
                normal_prediction_df=anomaly_info_df.loc[anomaly_info_df['anomaly_value']==False]
                anomaly_prediction_df=anomaly_info_df.loc[anomaly_info_df['anomaly_value']==True]
                self.log.info(""<---- Autoencoder (non timeseries) based anomaly detection, anomalies in data: ---->""+str(anomaly_prediction_df))
                self.log.info(""<---- Number of anomalies in data: ---->""+str(len(anomaly_prediction_df)))
                self.save_anomalyvalues(anomaly_prediction_df,'anomaly_dataframe')
                # combined_df=pd.concat([anomaly_prediction_df,normal_prediction_df],ignore_index=True)
                self.log.info(""<---- Autoencoder (non timeseries) based anomaly detection, overall data (both anomaly and non-anomaly ) in data: ---->""+str(anomaly_info_df))
                # self.save_anomalyvalues(combined_df,'overall_dataframe')
                ## If categorical features in original df, then inverse transform the values.
                try:
                    ##anomaly_info_df,total dataframe.
                    
                    self.naming_anomalyvalues(anomaly_info_df)
                except Exception as e:
                    self.log.info(""anomaly_info_df exception err msg: \n""+str(e))                
                
                ##Now we are storing anomaly log (as dataframe) based on two options: 1. Anomalies based on all features, 2. Anomalies based on each individual feature.
                if (mv_unique_feature_ad.lower()=='true'):
                    ## Multivariate and saving individual feature based anomalies
                    self.save_anomalyvalues(anomaly_prediction_df,(str(feature_name)+'_anomaly_dataframe'))
                    try:
                        anomaly_info_df=self.merge_pre_post_dfs(anomaly_info_df)
                    except Exception as e:
                        #If merge fails, just out!.
                        self.log.info(""Anomaly Detection Merge df exception :\n""+str(e))
                    finally:
                        #check merging done or not, to be imp.
                        pass
                    self.save_anomalyvalues(anomaly_info_df,(str(feature_name)+'_overall_dataframe'))                   
                    ## Save actual test data actual_data
                    #self.save_anomalyvalues(actual_data,(str(feature_name)+'_testdata'))
                else:
                    self.save_anomalyvalues(anomaly_prediction_df,'anomaly_dataframe')
                    try:
                        anomaly_info_df=self.merge_pre_post_dfs(anomaly_info_df)
                    except Exception as e:
                        #If merge fails, just out!.
                        self.log.info(""Anomaly Detection Merge df exception :\n""+str(e))
                    finally:
                        #check merging done or not, to be imp.
                        pass
                    self.save_anomalyvalues(anomaly_info_df,'overall_dataframe')
                    #Ordered data
                    # self.save_anomalyvalues(combined_df,'ts_overall_dataframe_ordered')                        
                    ## If we want anomaly dataframe with loss and threshold for each values (rows),please uncomment below line
                    # self.save_anomalyvalues(anomal_loss_threshold,'ts_anomaly_dataframe_lt'),
                    ## Save actual test data test_score_df
                    #self.save_anomalyvalues(actual_data,'testdata')
                self.log.info(""<---- Autoencoder non time series / supervised problem anomalies :  ---->""+str(anomaly_prediction_df))
                #ploting 
                df_subset = anomaly_prediction_df
                fig, ax = plt.subplots()
                df.plot(legend=False, ax=ax)
                df_subset.plot(legend=False, ax=ax, color=""r"")
                ax.set_title(""Anomaly Data Plot"")
                ax.set_xlabel(""DateTime"")
                ax.set_ylabel(""Values"")                
                plot_name='anomalyplot.png'                    
                try:
                    plot_dir=os.path.normpath(os.path.join(cwd,'output','anomaly_plot'))
                    if not os.path.isdir(plot_dir):
                        os.makedirs(plot_dir)
                    plotpath=str(plot_dir)+'/'+plot_name
                except Exception as e:
                    self.log.info(""<---- plot_dir path error. Error Msg:  ---->""+str(e))
                if os.path.exists(plotpath):
                    os.remove(plotpath)
                plt.savefig(plotpath)
                # plt.savefig(str(plot_dir)+'/'+plot_name)
                plt.clf()
                plt.cla()
                plt.close()
                
              else:
                y=df[target]
                X=df.drop(target, axis=1)                
                train_data,test_data,train_labels,test_labels=train_test_split(X,y,test_size=0.2,random_state=42)
                count_classes = pd.value_counts(df[target], sort = True)
                num_of_classes= len(count_classes)
                self.log.info(""train_data info: \n""+str(train_data.info()))
                if (num_of_classes >= 2):                    
                    # scaler = StandardScaler()
                    
                    # train_data = scaler.fit_transform(train_data)
                    # test_data = scaler.fit_transform(test_data)
                    # self.saveScaler(scaler)
                    train_labels = train_labels.astype(bool)
                    test_labels = test_labels.astype(bool)                    
                    n_train_data = train_data[train_labels]
                    n_test_data = test_data[test_labels]
                    # data1=scaler.inverse_transform(n_test_data)
                    n_test_data_actual=pd.DataFrame(n_test_data)
                    
                    ##anomaly data                    
                    an_train_data = train_data[~train_labels]
                    an_test_data = test_data[~test_labels] 
                    n_train_data = train_data[train_labels]
                    n_test_data = test_data[test_labels]
                    ae_hyperparameter=self.paramSpace
                    # autoencoder = AeDetector(n_train_data,n_test_data)
                    activation=ae_hyperparameter['activation']
                    units=int(ae_hyperparameter['hidden_units'])
                    latent_units=int(ae_hyperparameter['latentspace_size'])
                    ##For task 20731
                    minimum_threshold_user = str(ae_hyperparameter['min_threshold'])
                    maximum_threshold_user = str(ae_hyperparameter['max_threshold'])
                    autoencoder = AeDetector(n_train_data,n_test_data,units,latent_units,activation)
                    opt=ae_hyperparameter['optimizer']
                    loss_fn=ae_hyperparameter[""loss""]
                    batch_size=int(ae_hyperparameter['batch_size'])
                    # loss_fn='binary_crossentropy'
                    epochs=int(ae_hyperparameter['epochs'])
                    learning_rate=float(ae_hyperparameter['learning_rate'])
                    
                    cwd=self.deployLocation
                    try:
                        artifact_dir=os.path.normpath(os.path.join(cwd,'output','autoenc_artifact_dir'))
                        if not os.path.isdir(artifact_dir):
                            os.makedirs(artifact_dir)
                    except Exception as e:
                        self.log.info(""<---- artifact_dir path error. Error Msg: ---->""+str(e))
                    
                    es,mc=self.callbacks(filename = artifact_dir, patience = 5, monitor = ""val_loss"")
                    self.model_compile(autoencoder,learning_rate, loss_fn, opt)
                    
                    # autoencoder.compile(optimizer='adam', loss='mae')
                    autoencoder.fit(n_train_data, n_train_data, epochs = epochs, batch_size=batch_size, validation_data=(n_test_data, n_test_data),callbacks = [mc, es])
                    model_info=self.summary(autoencoder)
                    self.log.info(""<---- Auto encoder anomaly detection model information: ---->""+str(model_info))
                    # reconstructed = autoencoder(n_train_data)
                    reconstructed = autoencoder.predict(n_train_data)
                    #threshold = self.find_threshold(autoencoder, n_train_data)
                    train_mae_loss = tf.keras.losses.mae(reconstructed, n_train_data)
                    pred=tf.math.less(train_mae_loss, threshold)
                    ## Task 20731
                    if ((minimum_threshold_user and minimum_threshold_user.strip()) and (maximum_threshold_user and maximum_threshold_user.strip())):
                        threshold = float(maximum_threshold_user)
                        min_threshold = float(minimum_threshold_user)
                    elif ((minimum_threshold_user.strip()) and (not maximum_threshold_user.strip())):
                        threshold = np.mean(train_mae_loss) + 2*np.std(train_mae_loss)
                        min_threshold = float(minimum_threshold_user)
                    elif ((not minimum_threshold_user.strip()) and (maximum_threshold_user.strip())):
                        threshold = float(maximum_threshold_user)
                        min_threshold = np.mean(train_mae_loss) - 2*np.std(train_mae_loss)
                    else:
                        threshold = np.mean(train_mae_loss) + 2*np.std(train_mae_loss)
                        min_threshold = np.mean(train_mae_loss) - 2*np.std(train_mae_loss)
                    self.log.info(""Anomaly threshold max value based on loss fn (MAE): ""+str(threshold))
                    self.log.info(""Anomaly threshold min value based on loss fn (MAE): ""+str(min_threshold))
                    pred,test_score_df,actual_data,anomaly_info_df = self.prediction(autoencoder, n_test_data, min_threshold,threshold,test_labels,'False',None,None)
                    # normal_prediction_df=(anomaly_info_df[~anomaly_info_df['anomaly_value']])
                    normal_prediction_df=anomaly_info_df.loc[anomaly_info_df['anomaly_value']==False]
                    # normal_prediction_df.to_csv('normal_prediction_df.csv')                   
                    # anomaly_prediction_df=(anomaly_info_df[anomaly_info_df['anomaly_value']])
                    anomaly_prediction_df=anomaly_info_df.loc[anomaly_info_df['anomaly_value']==True]
                    self.log.info(""<---- Autoencoder (non timeseries) based anomaly detection, overall data (both anomaly and non-anomaly ) in data: ---->""+str(anomaly_info_df))
                    # self.save_anomalyvalues(combined_df,'overall_dataframe')
                    ## If categorical features in original df, then inverse transform the values.
                    try:
                        ##anomaly_info_df,total dataframe.
                        
                        self.naming_anomalyvalues(anomaly_info_df)
                    except Exception as e:
                        self.log.info(""anomaly_info_df exception err msg: \n""+str(e))                
                    
                    ##Now we are storing anomaly log (as dataframe) based on two options: 1. Anomalies based on all features, 2. Anomalies based on each individual feature.
                    if (mv_unique_feature_ad.lower()=='true'):
                        ## Multivariate and saving individual feature based anomalies
                        self.save_anomalyvalues(anomaly_prediction_df,(str(feature_name)+'_anomaly_dataframe'))
                        try:
                            anomaly_info_df=self.merge_pre_post_dfs(anomaly_info_df)
                        except Exception as e:
                            #If merge fails, just out!.
                            self.log.info(""Anomaly Detection Merge df exception :\n""+str(e))
                        finally:
                            #check merging done or not, to be imp.
                            pass
                        self.save_anomalyvalues(anomaly_info_df,(str(feature_name)+'_overall_dataframe'))                   
                        ## Save actual test data actual_data
                        #self.save_anomalyvalues(actual_data,(str(feature_name)+'_testdata'))
                    else:
                        self.save_anomalyvalues(anomaly_prediction_df,'anomaly_dataframe')
                        try:
                            anomaly_info_df=self.merge_pre_post_dfs(anomaly_info_df)
                        except Exception as e:
                            #If merge fails, just out!.
                            self.log.info(""Anomaly Detection Merge df exception :\n""+str(e))
                        finally:
                            #check merging done or not, to be imp.
                            pass
                        self.save_anomalyvalues(anomaly_info_df,'overall_dataframe')
                        
                        ## Save actual test data test_score_df
                        #self.save_anomalyvalues(actual_data,'testdata')
                    self.log.info(""<----Number of anomalies in data: ---->""+str(len(anomaly_prediction_df)))
                    """""" Plot to show case anomalies, now commented, for testing purpose uncomment and check visually anomalies. """"""  
                    #ploting 
                    df_subset = anomaly_prediction_df
                    fig, ax = plt.subplots()
                    df.plot(legend=False, ax=ax)
                    df_subset.plot(legend=False, ax=ax, color=""r"")
                    # plt.show()
                    ax.set_title(""Anomaly Data Plot"")
                    ax.set_xlabel(""DateTime"")
                    ax.set_ylabel(""Values"")
                    
                    plot_name='anomalyplot.png'                    
                    try:
                        plot_dir=os.path.normpath(os.path.join(cwd,'output','anomaly_plot'))
                        if not os.path.isdir(plot_dir):
                            os.makedirs(plot_dir)
                        plotpath=str(plot_dir)+'/'+plot_name
                    except Exception as e:
                        self.log.info(""<---- plot_dir path error. Error Msg:  ---->""+str(e))
                    if os.path.exists(plotpath):
                        os.remove(plotpath)
                    plt.savefig(plotpath)
                    # plt.savefig(str(plot_dir)+'/'+plot_name)
                    plt.clf()
                    plt.cla()
                    plt.close() 
                    
                    
                else:
                    self.log.info(""<---- Check dataset and basic configurations. ---->"")
                    
        except Exception as e:            
            self.log.info(""<---- Non time series anomaly detection error msg: ---->""+str(e))
            self.log.info(""<---- Non time series anomaly detection error msg (detailed): ---->""+str(traceback.format_exc()))
        return autoencoder,anomaly_prediction_df,anomaly_info_df
            
    ## Hyperparameter tuning autoencoders, not implemented
    def hyperparamtuning_AE(self):
        try:
            self.log.info (""autoencoder hyperparam tuning.not implemented."")
        except Exception as e:
            self.log.info(""autoencoder hyperparam tuning error: ""+str(e))
            pass

    ## randomsearch for dbscan
    def hyperparamtuning_dbscan(self,model,tuner,Parameter_Trials,data):
        
        params=model.get_params().keys()        
        try:            
            labels = model.labels_
            #df = pd.DataFrame(labels)
            try:
                scorer = metrics.silhouette_score(data, labels)
            except:
                pass            
            if (tuner.lower() == 'randomsearch'):
                # Parameters to try
                cluster_labels = model.labels_                
                Random_Search = RandomizedSearchCV(model, Parameter_Trials, n_iter=50,cv=5, scoring='adjusted_rand_score', refit=True,  n_jobs=1, verbose=5)
                RandomSearchResults=Random_Search.fit(data)
                # Fetching the best hyperparameters
                best_params=RandomSearchResults.best_params_                 
                # All the parameter combinations tried by RandomizedSearchCV
                RandomSearchResults.cv_results_['params']
        except Exception as e:
            self.log.info(""<---- dbscan hpt error msg: ---->""+str(e))
            self.log.info(""<---- dbscan hpt error msg (detailed): ---->""+str(traceback.format_exc()))
            
        return best_params
    
    ## Reading aion postprocess data from target->AION_usecaseNo->data->postprocess data
    def read_inputdata(self):
        cwd=self.deployLocation        
        try:
            in_path=os.path.normpath(os.path.join(cwd,'data'))
            if not os.path.isdir(in_path):
                self.log.info(""<---- Anomaly detection target data folder not available.--->\n"")
            postprocesseddata=os.path.normpath(os.path.join(cwd,'data','postprocesseddata.csv'))
            postprocessed_df=pd.read_csv(postprocesseddata)            
        except Exception as e:
            self.log.info(""<---- Anomaly detection target data folder not available, Reading postprocess csv file issue. Error Msg:  ---->""+str(e))
        return postprocessed_df
        
    ## Get original dataframe values using preprocess pipe after output data created.
    ##get_label_dict fn not used now. Use if preprocess_pipe based transform needed.
    def get_label_dict(self, pipe):
            label_dict = {}
            dict_pipe={}
            for (comp_name, component) in pipe.transformer_list:
                if 'labelencoding' in comp_name:
                    i=1
                    for step in component.steps:                    
                        key='val'+'_'+str(i)
                        ordinalencoder=step[1]
                        dict_pipe[f'val_{i}']=ordinalencoder
                        # dict_pipe[key].append(ordinalencoder)
                        label_dict.update(dict_pipe)
                        i=i+1
                        
                    return label_dict
                                      
                else:
                    continue
            return label_dict
        
    ## Decode label features using aion preprocessed_pipe model,not used now. If we need to use preprocess pipe for inverse transform,use below block.    
    def decoder_labeled_features(self,df):
        import joblib
        try:
            cwd=self.deployLocation
            # in_path=os.path.normpath(os.path.join(cwd,'data'))
            if not os.path.isdir(in_path):
                self.log.info(""<---- Anomaly detection target model folder not available.--->\n"")
            preprocessed_pipe=os.path.normpath(os.path.join(cwd,'model','preprocess_pipe.pkl')) 
            model = joblib.load(preprocessed_pipe)
            label_dict = get_label_dict(model)
            encoder=label_dict.get('val_4')
            num_cols = orig_data.select_dtypes(include=np.number).columns.tolist()
            cat_cols = orig_data.select_dtypes(exclude=np.number).columns.tolist()
            cat_col_actual=[]
            for col in cat_cols:
                try:
                    df1=encoder.inverse_transform(df[col])
                    cat_col_actual.append(col)
                except:
                    pass
            df1=pd.DataFrame(data=df1)
            df1.columns=cat_cols
            df2=df[num_cols]
            df_anomalyinfo_col=df['anomaly_value']
            df_list = [df2, df1, df_anomalyinfo_col]  # List of your dataframes
            combined_df = pd.concat(df_list, join='outer', axis=1).fillna(0)
        except:
            combined_df=None
            pass
        return combined_df
    
    ## save predicted data and actual data columns. For get back user original data features
    # 
    def merge_pre_post_dfs(self,out_df=None):                
        cwd=self.deployLocation
        anomaly_algorithm=str(self.anomalyMethod)
        try:
            in_path=os.path.normpath(os.path.join(cwd,'data'))
            if not os.path.isdir(in_path):
                self.log.info(""<---- Anomaly detection target data folder not available.--->\n"")
            preprocessed_file=os.path.normpath(os.path.join(cwd,'data','preprocesseddata.csv'))            
            preprocessed_df=pd.read_csv(preprocessed_file)
            ## cat_cols will get categorical col from preprocessed, cat_diff_cols will get common cat col between output df and preprocessed.
            cat_cols=preprocessed_df.select_dtypes(exclude=np.number).columns.tolist()
            num_cols = preprocessed_df.select_dtypes(include=np.number).columns.tolist()
            cat_diff_cols=list(set(cat_cols).intersection(out_df.columns.tolist()))
            diff_cols=list(set(preprocessed_df.columns).difference(out_df.columns))
            if (cat_diff_cols):
                if (len(preprocessed_df) == len(out_df)):
                    #Drop each categorical col of original data from output df (which have numerical converted values). So, in merging can be done on perfect columns
                    try:
                        ## get common categorical col name between actual and output df
                        for col in cat_diff_cols :
                            out_df.drop(col,axis=1,inplace=True)                            
                    except:
                        self.log.info(""drop col not possible, pass the step."")
                        #Just continue
                        pass
                    diff_cols=list(set(preprocessed_df.columns).difference(out_df.columns))
                    try:
                        ## Check any datetime column in output df and preprocesseddata
                        import pandas.api.types as ptypes
                        outdf_dt_index_check=ptypes.is_datetime64_dtype(out_df.index)
                        #Is output df have datetime col
                        if (outdf_dt_index_check):                            
                            if ((self.datetimeFeature.lower() !='na' and self.datetimeFeature)):
                                try:                
                                    preprocessed_df[self.datetimeFeature] = pd.to_datetime(preprocessed_df[self.datetimeFeature])
                                    preprocessed_df.set_index(self.datetimeFeature, inplace=True)
                                except Exception as e:
                                    self.log.info(""Given data not contain datetime specified.""+str(traceback.format_exc()))
                                ## Below step ,making datetime index to date time column. for merging and droping purpose.
                                preprocessed_df.reset_index(inplace=True)
                                preprocessed_df.rename(columns={""index"":self.datetimeFeature},inplace=True)
                                out_df.reset_index(inplace=True)
                                out_df.rename(columns={""index"":self.datetimeFeature},inplace=True)
                            else:
                                ## If no datetime column, we need to keep both dataframe index columns as unique. so making them as int index.
                                preprocessed_df.reset_index(inplace=True, drop=True)
                                out_df.reset_index(inplace=True, drop=True)
                                pass
                            ## below part is to get status of index columns type (datetime,int or str), commented now. If needed for debug,pls use.
                            # dt_index_check=ptypes.is_datetime64_dtype(out_df.index)
                            # int_index_check=ptypes.is_numeric_dtype(out_df.index)
                            # str_index_check=ptypes.is_string_dtype(out_df.index)
                        ## Get common column between preprocess and output df
                        try:
                            if (anomaly_algorithm.lower() == 'autoencoder'):
                                common_cols=out_df.drop(['loss','max_threshold','min_threshold','anomaly_value'],axis=1)
                                common_cols.drop(common_cols.filter(regex=""Unname""),axis=1, inplace=True)
                                merge_on_cols=common_cols.columns.tolist()                                               
                                combined_df = preprocessed_df.merge(out_df, on=merge_on_cols,how='inner')                        
                                ## Drop duplicate based on columns except time
                                # drop_duplicate_on=merge_on_cols.extend(cat_diff_cols)
                                drop_duplicate_on=merge_on_cols+cat_diff_cols
                                combined_df = combined_df.drop_duplicates(drop_duplicate_on, keep=False)
                            else:
                                ## otherwise, it is dbscan algorithm
                                common_cols=out_df.drop(['cluster','anomaly_value'],axis=1)
                                common_cols.drop(common_cols.filter(regex=""Unname""),axis=1, inplace=True)
                                merge_on_cols=common_cols.columns.tolist()                                               
                                combined_df = preprocessed_df.merge(out_df, on=merge_on_cols,how='inner')
                                ## Drop duplicate based on columns except time
                                # drop_duplicate_on=merge_on_cols+cat_diff_cols
                                combined_df = combined_df.drop_duplicates(merge_on_cols, keep='last')
                        except:
                            combined_df=out_df
                            pass
                        ## Just for reference, in future if you want different merge/join option
                        # combined_df = pd.merge(preprocessed_df[diff_cols],out_df, left_index=True, right_index=True, how='inner') 
                        
                    except Exception as e:
                        self.log.info(""<---- merge error msg : ---->""+str(e))
                        self.log.info(""<---- merge error msg (detailed): ---->""+str(traceback.format_exc()))
                        pass
                ## if both data frame have different columns (preprocessed and outdf)
                else:
                    self.log.info(""User data is preprocessed and data cleaning happened.So, actual data and processed data length mismatch. So,data records range may vary."")
                    
                    try:
                        # combined_df=self.decoder_labeled_features(out_df)
                        combined_df = preprocessed_df.merge(out_df,on=num_cols,how='inner')
                        # combined_df = combined_df.drop_duplicates(cat_cols, keep='last')
                        combined_df = combined_df.drop_duplicates(num_cols, keep='last')
                    except:
                        ## If nothing in merge works,then make outdf as final dataframe. 
                        try:
                            ## If above merge fails, change drop_duplicate hyperparam keep='last' last appearance of key occurance.
                            combined_df = preprocessed_df.merge(out_df,on=num_cols,how='inner')
                            combined_df = combined_df.drop_duplicates(cat_cols, keep=False)
                        except:
                            #If nothing is works, just keep out_df as combined df
                            combined_df=out_df
            ## if no common categorical col found between preprocessed and outdf.
            else:
                ## If merge not works,then make outdf as final dataframe. 
                if (len(cat_cols) > 0):
                    try:
                        combined_df = preprocessed_df.merge(out_df,on=num_cols,how='inner')
                        combined_df = combined_df.drop_duplicates(cat_cols, keep='last')                        
                    except:
                        #make safe for return
                        combined_df=out_df 
                else:
                    ##If no categorical features available
                    combined_df = preprocessed_df.merge(out_df,on=num_cols,how='inner')
                    combined_df = combined_df.drop_duplicates(num_cols, keep=False)
        except Exception as e:
            self.log.info(""<---- Anomaly detection target data folder not available, dataframe merging issue. Error Msg:  ---->""+str(e))
            self.log.info(""making output df as final merged data, no categorical column found in output anomaly data. It is user responsibility to check the anomaly data."")
            #make safe for return
            combined_df=out_df
        return combined_df
    
    ## for module reusability, this below naming fn created.
    def naming_anomalyvalues(self,df):
        replace_values_T='|'.join(['TRUE','True','true'])
        replace_values_F='|'.join(['FALSE','False','false'])
        try:
            df['anomaly_value']=df['anomaly_value'].astype(str).replace(replace_values_T,'AnomalyDataPoint', regex=True)
        except:
            df['anomaly_value']=df['anomaly_value'].replace(replace_values_T,'AnomalyDataPoint', regex=True)
        
        df['anomaly_value']=df['anomaly_value'].astype(str).replace(replace_values_F,'NormalDataPoint', regex=True)
        return df
    
    ## DBScan based anomaly detection
    def dbscan_ad(self,data,eps,min_samples,cols):
        try:            
            tuner='randomsearch'
            Parameter_Trials={'eps':eps,
                  'min_samples':min_samples}
            model = DBSCAN(algorithm='auto')            
            hist = model.fit(data)            
            pred = model.fit_predict(data)
            best_params = self.hyperparamtuning_dbscan(model,tuner,Parameter_Trials,data)
            self.log.info(""<---- Best hyper parameters for dbscan: ---->""+str(best_params))
            best_eps=best_params['eps']
            best_min_samples=best_params['min_samples']            
            if (best_min_samples < len(cols)):
                min_samples=len(cols)+1
            if (best_eps < 0.2):
                best_eps=0.2
            self.log.info(""best_eps: \n""+str(best_eps))
            self.log.info(""best_min_samples: \n""+str(best_min_samples))
            best_model=DBSCAN(algorithm='auto',eps = best_eps, min_samples = best_min_samples)
            hist = best_model.fit(data)            
            pred = best_model.fit_predict(data)
            
            best_labels=best_model.labels_            
            cluster_name = [""Cluster""+str(i) for i in set(best_labels)]
            # outliers = data[best_model.labels_ == -1]
            outlier_df = data.copy()            
            outlier_df.loc[:,'cluster'] = best_model.labels_
            outliers_final=outlier_df[outlier_df['cluster']==-1]
            outliers_final['anomaly_value']=outliers_final['cluster']==-1
            normaldata= outlier_df[outlier_df['cluster']!=-1]            
            self.log.info(""<---- DBScan: Anomalies in data: ---->""+str(outliers_final))
            self.log.info(""<---- DBScan: Number of anomalies in data: ---->""+str(len(outliers_final)))
            # num_cat_features=len(self.cat_cols)
            try:
                self.save_anomalyvalues(outliers_final,'dbscan_anomaly_dataframe')
                self.save_anomalyvalues(normaldata,'dbscan_normaldata_dataframe')
                outlier_df['anomaly_value']=outlier_df['cluster']==-1
                
                outlier_df=self.naming_anomalyvalues(outlier_df)
                ##Convert results to original input data form for end user ease of understanding
                try:
                    outlier_df=self.merge_pre_post_dfs(outlier_df)
                except Exception as e:
                    self.log.info(""Anomaly Detection Merge df exception:\n""+str(e))
                    #If merge fails, just out!
                    pass
                self.save_anomalyvalues(outlier_df,'dbscan_overall_dataframe')
            except Exception as e:
                self.log.info(""DBScan inversetransform err. msg: \n""+str(e))
            no_clusters = len(set(best_labels)) - (1 if -1 in best_labels else 0)
            self.log.info(""<---- DBScan: No of clusters: ---->""+str(no_clusters))
            n_noise_ = list(best_labels).count(-1)
            ## Ploting the dbscan clusters
            plot_name='dbscan_anomalyplot.png'
            fig, ax = plt.subplots()
            ax.set_title(""DBScan Clusters"")
            ax.scatter(data.iloc[:, 0], data.iloc[:, 1], c=best_labels)
            outliers_plot = data[best_model.labels_ == -1]
            ax.scatter(outliers_plot.iloc[:, 0], outliers_plot.iloc[:, 1], c='red')
            cwd=self.deployLocation            
            try:
                plot_dir=os.path.normpath(os.path.join(cwd,'output','anomaly_plot'))
                if not os.path.isdir(plot_dir):
                    os.makedirs(plot_dir)
                plotpath=str(plot_dir)+'/'+plot_name
            except Exception as e:
                self.log.info(""<---- plot_dir path error. Error Msg:  ---->""+str(e))
            if os.path.exists(plotpath):
                os.remove(plotpath)
            plt.savefig(plotpath)
            plt.clf()
            plt.cla()
            plt.close()
        except Exception as e:
            self.log.info(""<---- dbscan error msg: ---->""+str(e))
            self.log.info(""<---- dbscan error msg (detailed): ---->""+str(traceback.format_exc()))
        return best_model,outliers_final
        
    ## Inverse transform fn for categorical data
    def inverse_transform(self,df,cat_cols,le_model):        
        df_new=pd.DataFrame()
        df_new.index=df.index        
        df_reset_index=df.reset_index(drop=True)        
        for col in cat_cols:
            df_reset_index[col] = le_model.inverse_transform(df_reset_index[col].astype(int))
        df_reset_index.index=df_new.index
        df=df_reset_index
        return df
        
    ##If data comes without going via aion data profiler, we can use this below preprcessing fn ()
    ##Preprocess fn for categorical data   , not used now. 
    def preprocessfn_categorical(self,df):        
        try:
            cat_cols=self.cat_cols
            preprocessed_df=None
            le=preprocessing.LabelEncoder()
            self.le_model=le
            label_encoded_df = df.copy()
            for col in cat_cols:
                label_encoded_df[col]=le.fit_transform(label_encoded_df[col])            
        except Exception as e:
            self.log.info(""preprocessfn_categorical error traceback.""+str(traceback.format_exc()))
            
        return label_encoded_df,cat_cols
        
    ##  Design pattern: Factory,Adapter. Detect antoencoder object or dbscan object based on input params. The interface can be used for anyother extention. Not created any abstract class.
    ##Main autoencoder based anomaly detection function, from here, sub modules will be called.
    def mainAnomalyDetectionfn(self):
        df=self.df
        ## reading post processed data from target->usecase->data directory
        # df=self.read_inputdata()
        ## Below line overwrite incoming df with postprocesseddata 
        self.log.info(""<----------- In autoencoder based anomaly detection algorithm main process module, the incoming dataframe information as below: \n"")
        buf_info=self.get_df_info(df)
        self.log.info(buf_info)
        model_location=None
        time_series_data=None
        # mv_unique_feature_ad=''
        ae_hyperparameter=self.paramSpace
        # self.log.info(""mainAnomalyDetectionfn df: \n""+str(df))
        self.log.info(""paramSpace in mainano: \n""+str(self.paramSpace))
        target=self.target
        anomaly_algorithm=str(self.anomalyMethod)
        mv_unique_feature_ad=self.mv_featurebased_ad_status
        # df=self.dataload(datapath)  
        df.drop(df.filter(regex=""Unname""),axis=1, inplace=True)
        df.drop(df.filter(regex=""truncated""),axis=1, inplace=True)
        # cols2remove=df.columns[df.columns.str.startswith('Unname')]
        # df.drop(cols2remove,axis=1,inplace=True)
        # df.to_csv(""C:\Users\jayaramakrishnans\AppData\Local\Programs\HCLTech\AION\data\target\actual_df.csv"")
        datetime_column=self.datetimeFeature
        len_dtf=len(self.datetimeFeature)
        ##create datetime pattern source py file in target dir.
        self.create_datetime_pyfile()
        # cat_cols=None
        if (self.datetimeFeature.lower() == 'na' or self.datetimeFeature==''):
            len_dtf=0
        if (len_dtf >= 1 ):
            time_series_data=""True""
            
        else:
            time_series_data=""False""
            self.datetimeFeature=''

        try:
            if (target != ''):
                if (anomaly_algorithm.lower() == 'autoencoder'):
                    self.log.info(""Supervised anomaly detection started.\n"")
                    """"""  Below part for supervised time series anomaly detection.If timeseries anomaly (supervised) used in future, please uncomemnt and use below code snippet. """"""
                    # if (ae_hyperparameter['time_series_data'].lower() == 'true'):
                    #     print(""Given data is time series data and supervised learning category, because it target is labeled one."")
                    #     datetime_column=str(self.datetimeFeature)
                    #     time_steps=int(ae_hyperparameter['time_steps'])
                    #     test_size_perc=int(ae_hyperparameter['test_size_perc'])                    
                    #     df[datetime_column] = pd.to_datetime(df[datetime_column])
                    #     df.set_index(datetime_column, inplace=True)                    
                    #     self.aionAEAnomalyTS(df,test_size_perc,target,time_steps)
                    ## Removing datetime feature for supervised autoencoder (currently timeseries anomaly not supported in supervised anomaly detection autoencoder)
                    
                    test_size_perc=self.testSize*100
                    
                    df=df.dropna()                    
                    model,anomaly_prediction_df,combined_df = self.ae_nontimeseriesmodelfn(df,target)                    
                    # print(""*** End of Autoencoder based non time series Anomaly detection. *** \n"")
                    self.log.info(""*** End of Autoencoder based non time series Anomaly detection. ***"")
                    features=df.columns
                    if (len(features)== 1):
                        # print(""Problem type is Univariate time series anomaly detection.\n"")
                        self.log.info(""Problem type is Univariate time series anomaly detection.\n"")
                        test_size_perc=self.testSize*100
                        df=df.dropna()                    
                        model,anomaly_prediction_df,combined_df = self.ae_nontimeseriesmodelfn(df,target) 
                    elif (len(features) > 1): 
                        df.drop(df.filter(regex=""Unname""),axis=1, inplace=True)
                        test_size_perc=self.testSize*100
                        df=df.dropna()                    
                        model,anomaly_prediction_df,combined_df = self.ae_nontimeseriesmodelfn(df,target) 
                                
                        if (mv_unique_feature_ad.lower()=='true'):
                            self.log.info(""\n\n *** Below is the anomaly values based on each feature of multivariate time series data. ***"")
                            df.drop(df.filter(regex=""Unname""),axis=1, inplace=True)
                            multivariate_cols=  df.columns.values.tolist()
                                    
                            for col in multivariate_cols:
                                col=str(col)
                                ## creating dataframe for one of feature in multivariate dataset.
                                multivariate_col_df = df[col].to_frame()
                                model,anomaly_prediction_df,combined_df = self.ae_nontimeseriesmodelfn(multivariate_col_df,target) 
                else:
                    if (anomaly_algorithm.lower() == 'dbscan'):
                        self.log.info(""DBScan algorithm not supported for supervised training. \n"")
                        
                    
            else:
                try:
                    self.log.info(""Unsupervised anomaly detection started....\n"")
                    if (anomaly_algorithm.lower() == 'autoencoder'):
                        test_size_perc=self.testSize*100

                        
                        if (time_series_data.lower() == 'true'):
                            mv_unique_feature_ad=self.mv_featurebased_ad_status
                            dropout=float(ae_hyperparameter['dropout'])
                            datetime_column=str(self.datetimeFeature)
                            time_steps=int(ae_hyperparameter['time_steps'])                          

                            target=None
                            features=df.columns
                            if (len(features)== 1):
                                self.log.info(""Problem type is Univariate time series anomaly detection.\n"")
                                model,anomaly_prediction_df,combined_df = self.aionAEAnomalyTS(df,test_size_perc,target,time_steps,dropout,'False')
                            elif (len(features) > 1): 
                                df.drop(df.filter(regex=""Unname""),axis=1, inplace=True)
                                self.log.info(""Problem type is Multivariate time series anomaly detection.\n"")                                
                                self.log.info(""*** Detecting anomaly in the given multi feature (Multivariate) data. Anomaly values based on all the features passed to the aion anomaly AE algorithm. ***"")
                                model,anomaly_prediction_df,combined_df = self.aionAEAnomalyTS(df,test_size_perc,target,time_steps,dropout,'False')
                                if (mv_unique_feature_ad.lower()=='true'):
                                    self.log.info(""\n\n *** Below is the anomaly values based on each feature of multivariate time series data. ***"")
                                    df.drop(df.filter(regex=""Unname""),axis=1, inplace=True)
                                    multivariate_cols=  df.columns.values.tolist()
                                    # for i in range(1,len(features)):
                                    for col in multivariate_cols:
                                        col=str(col)
                                        ## creating dataframe for one of feature in multivariate dataset.
                                        multivariate_col = df[col].to_frame()                                    
                                        feature_based_model,anomaly_prediction_df_mv,combined_df = self.aionAEAnomalyTS(multivariate_col,test_size_perc,target,time_steps,dropout,mv_unique_feature_ad)
                            """""" Below code snippet is commented, the purpose is AION giving 3 option to user for time series,  < Three types: univariate_tsd(single_timeseriesdetection), multivariate_tsd, multivariate_seperate_tsd>, based on that specific sub function called. """"""
                            # if (ae_hyperparameter['timeseries_ad_type'].lower() =='univariate_tsad'):
                               ## univariate_tsd
                            #     self.aionAEAnomalyTS(df,test_size_perc,target,time_steps,dropout)
                            # elif (ae_hyperparameter['timeseries_ad_type'].lower() =='multivariate_tsad'):
                                ##multivariate_tsd
                            #     if (len(features) <=1):
                            #         # self.aionAEAnomalyTS(df,test_size_perc,target,time_steps,dropout)
                            #         print(""Given data looks like univariate data. Cannot apply multivariate. Check data and select appropriate timeseries anomaly detection option."")
                            #     else:
                            #         self.aionAEAnomalyTS(df,test_size_perc,target,time_steps,dropout)
                            # elif (ae_hyperparameter['timeseries_ad_type'].lower() =='multivariate_featurebased_tsad'): 
                                ## multivariate_seperate_tsd
                            #     # features=df.columns
                            #     df.drop(df.filter(regex=""Unname""),axis=1, inplace=True)
                            #     multivariate_cols=  df.columns.values.tolist()
                            #     print(""multivariate_cols: \n"",multivariate_cols)
                            #     print(""multivariate_cols type: \n"",type(multivariate_cols))
                            #     if (len(features) <=1):
                            #         # self.aionAEAnomalyTS(df,test_size_perc,target,time_steps,dropout)
                            #         print(""Given data looks like univariate data. Cannot use multivariate."")
                            #     else:
                            #         # for i in range(1,len(features)):
                            #         for col in multivariate_cols:
                            #             print(""processing multivariate feature name: "",col)
                            #             col=str(col)
                            #             multivariate_col = df[col].to_frame()
                            #             print(""multivariate_col type: \n"",type(multivariate_col))
                            #             self.aionAEAnomalyTS(multivariate_col,test_size_perc,target,time_steps,dropout)
                            
                            # print(""*** End of Autoencoder based time series Anomaly detection.*** \n"")
                            self.log.info(""*** End of Autoencoder based non time series Anomaly detection. ***"")
                            
                        else:
                            target=''
                            df=df.dropna()
                            model,anomaly_prediction_df,combined_df = self.ae_nontimeseriesmodelfn(df,target)
                    elif (anomaly_algorithm.lower() == 'dbscan'):
                        # df=df.dropna()
                        self.log.info(""*** DBScan algorithm enabled. ***"")
                        cols=df.columns
                        dbscan_hyperparameter=self.paramSpace
                        eps = list(dbscan_hyperparameter['eps'])
                        # eps=list(dbscan_hyperparameter['eps'])
                        # min_samples=list(dbscan_hyperparameter['min_samples']) 
                        min_samples = list(dbscan_hyperparameter['min_samples'])
                        model,outliers = self.dbscan_ad(df,eps,min_samples,cols)
                except Exception as e:
                    self.log.info(""Unsupervised anomaly detection error msg: ""+str(traceback.format_exc()))
                    
            ##main ae AeDetector
        except Exception as e:
            self.log.info(""<---- Main fn error msg of anomaly detection for debug purpose: ---->""+str(e))
            self.log.info(""<----  Main fn error msg of anomaly detection for debug purpose: (detailed): ---->""+str(traceback.format_exc()))
            
        return model

## For testing standalone code        
if __name__ == '__main__':
    # print (""main function...."")
    target=None
    df=None
    hparams=None
    AEAD=anomalyDetectionAE()
    datapath,target,ae_hyperparameter = AEAD.mainAnomalyDetectionfn()

"
anomalyDetector.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import time
import os
import sys
import logging
from sklearn.metrics import accuracy_score, make_scorer
from sklearn.model_selection import train_test_split
from sklearn.svm import OneClassSVM 
from sklearn.ensemble import IsolationForest
import pickle
from sklearn import metrics
import numpy as np
import pandas as pd
from learner.aion_matrix import aion_matrix
from learner.parameters import parametersDefine
from sklearn.metrics import f1_score
from sklearn import model_selection
from learner.anomalyDetectionAE import anomalyDetectionAE
class anomalyDetector(object):
    def __init__(self):
        self.log = logging.getLogger('eion')
        
    def startanomalydetector(self,df,target,labelMaps,inlierLabels,learnerJson,model_type,saved_model,anomalyMethod,deployLocation,predicted_data_file,testPercentage,anomalyconfig,datetimeFeature,mv_featurebased_ad_status):
        try:
            self.log.info(""startanomalydetector.... \n"")
            from io import StringIO
            buf = StringIO()
            df.info(buf=buf)
            #self.log.info(buf.getvalue())
            self.log.info(""User data info : \n""+str(buf.getvalue()))
            try:                
                df[datetimeFeature] = pd.to_datetime(df[datetimeFeature])
                df.set_index(datetimeFeature, inplace=True)
                #If still the datetime column exist in feature list, drop it. Because we already made datetime feature as index (datetimeindex)
                df.drop(datetimeFeature,axis=1,inplace=True)
            except Exception as e:
                pass
            ae_df=df
            paramObj=parametersDefine()
            anomalyMethod=anomalyMethod
            inlierLabels=inlierLabels
            anomalyDetectionType=""""
            inlierLabelList=inlierLabels.split("","")
            self.log.info(""<---- inlierLabels ---->""+inlierLabels)
            self.log.info(""<---- anomalyMethod ---->""+str(anomalyMethod))
            if target != """":
                self.log.info('Status:- |... AnomalyDetection: Supervised')         
                self.log.info(""One class based anomaly Detection by relabeling data to fit one class models"")
                combinedString=""""
                dfStr=""""
                anomalyDetectionType=""supervised""
                if not anomalyMethod.lower() == ""autoencoder"":         ##Added for auto encoder
                    self.log.info(""startanomalydetector:  df: \n""+str(df)) #task 12627
                    if labelMaps == {}:
                        for inlierVal in inlierLabelList:
                            inlier=inlierVal
                            dfStr = ""x =="" + inlier + "" or ""
                            combinedString+= dfStr
                        func= combinedString.strip("" or "")
                    else:
                        for inlierVal in inlierLabelList:
                            try:
                                if inlierVal.isnumeric():
                                    inlierVal = int(inlierVal)
                                # inlier=str(labelMaps[inlierVal]) ##Wrongly assigned inlier values to labelMaps dict key.
                                inlier = str(inlierVal)
                                dfStr = ""x =="" + str(inlier) + "" or ""
                                combinedString+= dfStr
                            except Exception as e:
                                raise Exception(e)
                                
                        func= combinedString.strip("" or "")
                        labelMaps={'InlierLabel':1,'NonInlierLabel':-1}
                    targetData=df[target]               
                    df['anomaly'] = df[target].apply(lambda x: 1 if eval(func)  else -1 )
                    anomtargetData=df['anomaly']
                    self.log.info(""dataframe after relabeling the data"")
                    self.log.info(df.head())
                    self.log.info(""target column value counts with inliers and outliers"")
                    self.log.info(df['anomaly'].value_counts())
                    df.drop([target, ""anomaly""], axis=1, inplace=True)
                    outliers = anomtargetData[anomtargetData == -1]
                    self.log.info(""outliers in data"")
                    self.log.info(outliers.shape[0])
                    self.log.info(""outlier fraction"")
                    self.log.info(outliers.shape[0]/targetData.shape[0])
                    if int(testPercentage) != 0:
                        testSize= testPercentage/100
                        xtrain, xtest, ytrain, ytest = train_test_split(df, anomtargetData, test_size = testSize)
                    else:
                        xtrain =df
                        xtest =df
                        ytrain=anomtargetData
                        ytest =anomtargetData
                        
                if anomalyMethod.lower() == ""isolationforest"":
                    modelName=""isolationforest""
                    paramSpace=anomalyconfig['modelParams']['IsolationForest']
                    paramDict =paramObj.paramDefine(paramSpace,'random')                            
                    ftwo_scorer =  make_scorer(accuracy_score)
                    isolation_forest = model_selection.RandomizedSearchCV(IsolationForest(), paramDict, scoring=ftwo_scorer,  n_iter=10)
                    mod = isolation_forest.fit(xtrain,ytrain)
                    model = mod.best_estimator_
                elif anomalyMethod.lower() == ""oneclasssvm"":
                    modelName=""oneClassSVM""
                    fthree_scorer =  make_scorer(accuracy_score)
                    paramSpace=anomalyconfig['modelParams']['oneclassSVM']
                    paramDict =paramObj.paramDefine(paramSpace,'random')
                    one_class = model_selection.RandomizedSearchCV(OneClassSVM(), paramDict, scoring=fthree_scorer,  n_iter=10)
                    mod = one_class.fit(xtrain,ytrain)
                    model = mod.best_estimator_
                elif anomalyMethod.lower() == ""autoencoder"":
                    modelName='autoencoder'
                    testSize=testPercentage/100
                    self.log.info(""Aion Autoencoder anomaly detection started.."")
                    paramSpace=anomalyconfig['modelParams']['AutoEncoder']
                    adae_obj=anomalyDetectionAE(ae_df,paramSpace,deployLocation,target,anomalyMethod,testSize,datetimeFeature,mv_featurebased_ad_status)
                    model=adae_obj.mainAnomalyDetectionfn()
                    self.log.info(""Aion Autoencoder anomaly detection completed.."")
                    
                else:
                    self.log.info(""IsolationForest, OneClassSVM and autoencoder are supported models"")
                    modelName = """"
                    model = """"

                        
            else:
                self.log.info('Status:- |... AnomalyDetection: Unsupervised')
                self.log.info(""unsupervised anomaly detection"")
                anomalyDetectionType=""unsupervised""
                model=None
                xtrain =df
                xtest = df
                ytrain = pd.DataFrame()
                if anomalyMethod.lower() == ""isolationforest"":
                    paramSpace=anomalyconfig['modelParams']['IsolationForest']
                    paramDict =paramObj.paramDefine(paramSpace,'random')                
                    modelName=""isolationforest""
                    def scorer_f(estimator, X):  
                        return np.mean(estimator.score_samples(X))
                    isolation_forest = model_selection.RandomizedSearchCV(IsolationForest(), paramDict, scoring=scorer_f,  n_iter=10)
                    
                    mod = isolation_forest.fit(xtrain)
                    self.log.info('---------> Best Param: '+str(mod.best_params_))                  
                    model = mod.best_estimator_
                elif anomalyMethod.lower() == ""oneclasssvm"":
                    paramSpace=anomalyconfig['modelParams']['oneclassSVM']
                    paramDict =paramObj.paramDefine(paramSpace,'random')
                    modelName=""oneClassSVM""
                    def scorer_f1(estimator, X):  
                        return np.mean(estimator.score_samples(X))
                    one_class = model_selection.RandomizedSearchCV(OneClassSVM(), paramDict, scoring=scorer_f1,  n_iter=10)
                    model = one_class.fit(xtrain)
                    self.log.info('---------> Best Param: '+str(model.best_params_))
                    model = model.best_estimator_
                elif anomalyMethod.lower() == ""autoencoder"":
                    ae_df.drop(ae_df.filter(regex=""Unname""),axis=1, inplace=True)
                    modelName='autoencoder'
                    testSize= testPercentage/100
                    self.log.info(""Aion Autoencoder anomaly detection started.."")
                    paramSpace=anomalyconfig['modelParams']['AutoEncoder']
                    adae_obj=anomalyDetectionAE(ae_df,paramSpace,deployLocation,target,anomalyMethod,testSize,datetimeFeature,mv_featurebased_ad_status)
                    model=adae_obj.mainAnomalyDetectionfn()
                    self.log.info(""Aion Autoencoder anomaly detection completed.."")
                elif anomalyMethod.lower() == ""dbscan"":
                    testSize=testPercentage/100
                    ae_df.drop(ae_df.filter(regex=""Unname""),axis=1, inplace=True)
                    modelName='dbscan'
                    self.log.info(""Aion DBScan anomaly detection started.."")
                    paramSpace=anomalyconfig['modelParams']['DBScan']
                    adae_obj=anomalyDetectionAE(ae_df,paramSpace,deployLocation,target,anomalyMethod,testSize,datetimeFeature,mv_featurebased_ad_status)
                    model=adae_obj.mainAnomalyDetectionfn()
                    self.log.info(""Aion DBScan anomaly detection completed.."")
                else:
                    self.log.info(""IsolationForest,OneClassSVM,autoencoder and DBScan are supported models"")
                    modelName = """"
                    model = """"  
            self.log.info('Status:- |... AnomalyDetection Algorithm applied: '+modelName)
            
            if (anomalyMethod.lower() == ""autoencoder"" or anomalyMethod.lower() == ""dbscan""):
                if (anomalyMethod.lower() == ""autoencoder""):
                    ## Since autoencoder is implemented using tf.keras, saving the model in h5 format. If we save it in .sav format will give 'TensorSliceReader constructor' error.
                    saved_model=saved_model.replace('.sav','')
                    filename = os.path.join(deployLocation,'model',saved_model)
                    model.save(filename,save_format=""tf"")                
                elif (anomalyMethod.lower() == ""dbscan""):
                    filename = os.path.join(deployLocation,'model',saved_model)
                    pickle.dump(model, open(filename, 'wb'))                
                
                matrix=''
                trainmatrix=''
                accuracy = 0
            else:
                filename = os.path.join(deployLocation,'model',saved_model)
                pickle.dump(model, open(filename, 'wb'))
                loaded_model=pickle.load(open(filename, 'rb'))
                pred_testData=loaded_model.predict(xtest)
                pred_trainData = loaded_model.predict(xtrain)
                pred_trainScore = loaded_model.decision_function(xtrain)
                self.log.info(""<--- predicted values of testdata --->"")
                self.log.info(pred_testData)
                if anomalyDetectionType == ""supervised"" :
                        df_predicted = pd.DataFrame()
                        df_predicted['actual'] = ytest
                        df_predicted['predict'] = pred_testData
                        df_predicted.to_csv(predicted_data_file)
                        preds = pred_testData
                        targs = ytest
                        unique_elements_ytest, counts_elements_ytest = np.unique(targs, return_counts=True)
                        unique_elements_pred, counts_elements_pred = np.unique(preds, return_counts=True)
                        '''
                        for i in range(0,len(unique_elements_ytest)):
                            self.log.info(""unique value :"" +str(unique_elements_ytest[i]) + ""  count in input testdata: "" + str(counts_elements_ytest[i]) +""  count in predicted testdata: "" + str(counts_elements_pred[i]))
                            self.log.info(""\n"")
                        '''
                        self.log.info(""\n======= Performance matrix on Test Data ======"")
                        aion_matrixobj  = aion_matrix()
                        self.log.info(""-------> Test Matrix: "")
                        matrix = aion_matrixobj.getClassificationPerformaceMatrix(targs,preds,labelMaps)                        
                        self.log.info(""-------> Train Matrix: "")
                        trainmatrix = aion_matrixobj.getClassificationPerformaceMatrix(ytrain,pred_trainData,labelMaps)
                        
                        #self.log.info(""-------> Confusion Matrix: "")
                        
                        self.log.info(metrics.confusion_matrix(targs,preds))
                        self.log.info(""-------> accuracy for inliers: "")
                        accuracy = metrics.accuracy_score(targs, preds)
                        self.log.info(metrics.accuracy_score(targs, preds))
                        self.log.info(""-------> precision for inliers --->"")
                        self.log.info(metrics.precision_score(targs, preds)) 
                        self.log.info(""-------> recall for inliers ---> "")
                        self.log.info(metrics.recall_score(targs, preds))
                        self.log.info(""-------> f1 for inliers--->"")
                        self.log.info(metrics.f1_score(targs, preds))
                        self.log.info(""-------> area under curve (auc) for inliers --->"")
                        self.log.info(metrics.roc_auc_score(targs, preds))
                        self.log.info(""-------> precision for outliers --->"")
                        self.log.info(1-metrics.precision_score(targs, preds)) 
                        self.log.info(""-------> recall for outliers ---> "")
                        self.log.info(1-metrics.recall_score(targs, preds))
                        self.log.info(""-------> f1 for outliers--->"")
                        self.log.info(1-metrics.f1_score(targs, preds))
                        self.log.info(""======= Performance matrix on Test Data End ======\n"")
                else:
                    df_predicted =  xtrain
                    df_predicted['predict'] = pred_trainData
                    df_predicted['score'] = pred_trainScore
                    df_predicted.to_csv(predicted_data_file, index=False)
                    matrix = ''
                    trainmatrix = ''
                    accuracy = 'NA'
            return modelName,model,matrix,trainmatrix,accuracy,labelMaps
                
        except Exception as inst:
            self.log.info(""Error: anomalyDetector failed ""+str(inst))
            exc_type, exc_obj, exc_tb = sys.exc_info()
            fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
            self.log.info(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))"
regressionModel.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
from learner.optimizetechnique import OptimizationTq
import warnings
from learner.parameters import parametersDefine
from learner.defaultAlgos import defaultParams
from hyperopt import fmin, tpe, hp, STATUS_OK, Trials
import time
import logging
import os
import sys
import json
from sklearn.svm import SVR
from sklearn.linear_model import LinearRegression
from sklearn.linear_model import Lasso
from sklearn.linear_model import Ridge
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import RandomForestRegressor
from xgboost import XGBRegressor
from lightgbm import LGBMRegressor
from catboost import CatBoostRegressor
from sklearn.metrics import r2_score
from sklearn.metrics import mean_absolute_error,make_scorer
from sklearn.metrics import mean_squared_error
from learner.aion_matrix import aion_matrix
from uncertainties.aionUQ import aionUQ
import mlflow

class RegressionModel():
	def __init__(self,modelList,params,scoreParam,cvSplit,numIter,geneticParam,trainX,trainY,testX,testY,method,deployLocation):
		self.modelList =modelList
		self.params =params
		self.trainX =trainX
		self.trainY =trainY
		self.testX = testX
		self.testY = testY
		self.method =method
		self.scoreParam=scoreParam
		self.cvSplit=cvSplit
		self.numIter=numIter
		self.geneticParam=geneticParam
		self.log = logging.getLogger('eion')
		self.deployLocation = deployLocation
		self.uq_x_train = trainX
		self.uq_x_test = testX
		self.uq_y_train = trainY
		self.uq_y_test = testY
		self.AlgorithmNames={'Linear Regression':'LinearRegression','Lasso':'Lasso','Ridge':'Ridge','Decision Tree':'DecisionTreeRegressor','Random Forest':'RandomForestRegressor','Extreme Gradient Boosting (XGBoost)':'XGBRegressor','Light Gradient Boosting (LightGBM)': 'LGBMRegressor',
                               'Categorical Boosting (CatBoost)': 'CatBoostRegressor','Bagging (Ensemble)':'BaggingRegressor','Stacking (Ensemble)':'StackingRegressor','Voting (Ensemble)':'VotingRegressor','Neural Architecture Search':'NAS'}
		self.modelToAlgoNames = {value: key for key, value in self.AlgorithmNames.items()}        
        
	def logMlflow(self, runName, params, metrices, estimator, algoName=None):
		with mlflow.start_run(run_name = runName):
			for k,v in params.items():
				mlflow.log_param(k, v)
			for k,v in metrices.items():
				mlflow.log_metric(k, v)
			if algoName == 'CatBoostRegressor':
				mlflow.catboost.log_model(estimator, ""model"")
			else:
				mlflow.sklearn.log_model(estimator, ""model"")
				model_uri = mlflow.get_artifact_uri(""model"")
				"""""" for some dataset evaluate takes more than 90 min, so commenting till some solution is not found
				evaluate_data = self.testX.copy()
				evaluate_data['target'] = self.testY.copy()
				mlflow.evaluate(model_uri, data=evaluate_data, targets='target', model_type=""regressor"")
				del evaluate_data
				""""""
			
	def regressionModelling(self,modelOrFeatureBased, code_configure):
		paramObj=parametersDefine()
		bestModel=''
		bestParams={}
		import sys
		bestScore=-sys.float_info.max #bugfix 11656
		scoredetails = ''
		self.log.info('\n---------- Regression Model has started ----------')
		try:
			self.log.info('Status:-  |... Search Optimization Method applied: '+self.method)
			for modelName in self.modelList:
				objClf = aion_matrix()
				if modelName in ['Bagging (Ensemble)','Voting (Ensemble)','Stacking (Ensemble)','Neural Architecture Search']:
					if modelName == 'Bagging (Ensemble)':
						from ensemble.ensemble_bagging import ensemble_bagging
						ensemble_bagging_obj = ensemble_bagging(self.params[modelName],self.scoreParam,0,0)
						estimator,modelParams,score,model = ensemble_bagging_obj.ensemble_bagging__regressor(self.trainX,self.trainY,self.testX,self.testY)
					if modelName == 'Stacking (Ensemble)':
						from ensemble.ensemble_stacking import ensemble_stacking
						ensemble_stacking_obj = ensemble_stacking(self.params[modelName],self.scoreParam)
						estimator,modelParams,score,model = ensemble_stacking_obj.ensemble_stacking__regressor(self.trainX,self.trainY,self.testX,self.testY,self.modelList)
					if modelName == 'Voting (Ensemble)':
						from ensemble.ensemble_voting import ensemble_voting
						ensemble_voting_obj = ensemble_voting(self.params[modelName],self.scoreParam)
						estimator,modelParams,score,model = ensemble_voting_obj.ensemble_voting__regressor(self.trainX,self.trainY,self.testX,self.testY,self.modelList)
					'''
					if modelName == 'Neural Architecture Search':
						from nas.aionNAS import aionNAS
						objNAS = aionNAS('Regression',self.params[modelName],self.trainX,self.testX,self.trainY,self.testY,self.deployLocation)	
						estimator,modelParams,score,model=objNAS.nasMain(self.scoreParam)						
					'''
					if(scoredetails != ''):
						scoredetails += ','
					scoredetails += '{""Model"":""'+self.modelToAlgoNames[model]+'"",""FeatureEngineering"":""'+str(modelOrFeatureBased)+'"",""Score"":'+str(score)+',""ModelUncertainty"":""NA""}'
					if self.scoreParam == ""r2"":
						if score > bestScore:
							bestScore =score
							bestModel =model
							bestParams=modelParams
							bestEstimator=estimator
					else:
						if abs(score) < bestScore or bestScore == -sys.float_info.max:
							bestScore =abs(score)
							bestModel =model
							bestParams=modelParams
							bestEstimator=estimator
					self.log.info('Status:-  |... ML Algorithm applied: '+modelName)
					self.log.info('Status:-   |... Score: '+objClf.get_print_score(self.scoreParam)+'='+str(round(score,2))+'\n')
					continue
				if modelName not in self.params:
					continue
				paramSpace=self.params[modelName].copy()
				algoName = self.AlgorithmNames[modelName]                
				paramDict =paramObj.paramDefine(paramSpace,self.method)
				if self.method == 'bayesopt':
					code_configure.add_model(algoName,paramSpace)
				else:
					paramDictCopy = paramDict
					# numpy array is not json serializable
					#numpy is already imported but still np.ndarray raise error
					import numpy as np
					for key,value in paramDictCopy.items():
						if isinstance(value, np.ndarray):
							paramDictCopy[key] = paramDictCopy[key].tolist()
					code_configure.add_model(algoName,paramDictCopy)
				
				if not self.method == 'bayesopt':
					paramSize = paramObj.getParamSpaceSize(paramDict)
				else:
					paramSize = 0
				if (self.method == 'bayesopt' and not paramDict) or (not self.method == 'bayesopt' and paramSize<=1):
					try:
						start = time.time()
						#function call
						defObj = defaultParams(algoName,paramDict,self.scoreParam,0,0,paramSize)
						estimator, modelParams, model,score =defObj.startTrainingRegression(self.trainX,self.trainY,self.testX,self.testY)
						executionTime = time.time() - start
						self.log.info('---------> Total Execution: ' + str(executionTime) + '\n')
						if (scoredetails != ''):
							scoredetails += ','
						scoredetails += '{""Model"":""' + self.modelToAlgoNames[model] + '"",""FeatureEngineering"":""' + str(
							modelOrFeatureBased) + '"",""Score"":' + str(score) + ',""ModelUncertainty"":""NA""}'
						if self.scoreParam == ""r2"":
							if score > bestScore:
								bestScore = score
								bestModel = model
								bestParams = modelParams
								bestEstimator = estimator
						else:
							if abs(score) < bestScore or bestScore == -sys.float_info.max:
								bestScore = abs(score)
								bestModel = model
								bestParams = modelParams
								bestEstimator = estimator
						self.log.info('Status:-  |... ML Algorithm applied: ' + modelName)
						self.log.info('Status:-   |... Score: ' + objClf.get_print_score(self.scoreParam) + '=' + str(
							round(score, 2)) + '\n')

					except Exception as inst:
						self.log.info('\n < ---------- Model Execution Failed Start--------->')
						self.log.info('\n<-------' + modelName + ' Model Execution failed!!!.' + str(inst))
						exc_type, exc_obj, exc_tb = sys.exc_info()
						fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
						self.log.info(str(exc_type) + ' ' + str(fname) + ' ' + str(exc_tb.tb_lineno))
						self.log.info('\n < ---------- Model Execution Failed End --------->')
					continue
				trainingStatus = 'Success'					
				if self.method =='grid':
					try:				
						self.log.info(""-------> Optimization Method :Grid Search"")
						self.log.info(""-------> Model Name: ""+str(modelName))
						opTq =OptimizationTq(algoName,paramDict,self.cvSplit,self.scoreParam,self.numIter,self.trainX,self.trainY)
						start = time.time()
						model,modelParams,score,estimator=opTq.gridSearchOpt()
						executionTime=time.time() - start
						if not self.testX.empty:					
							predictedData = estimator.predict(self.testX)
						
							if 'neg_mean_squared_error' in self.scoreParam:
								meanssquatederror = mean_squared_error(self.testY,predictedData)
								score = meanssquatederror
							elif 'neg_root_mean_squared_error' in self.scoreParam:
								rootmeanssquatederror=mean_squared_error(self.testY,predictedData,squared=False)
								score = rootmeanssquatederror
							elif 'mae' in self.scoreParam:
								meanabsoluteerror=mean_absolute_error(self.testY,predictedData)
								score = meanabsoluteerror
							elif 'r2' in self.scoreParam:
								r2score=r2_score(self.testY,predictedData)
								score = r2score
						problemName = estimator.__class__.__name__
						runName = algoName + '_' + modelOrFeatureBased
						metrices = {}
						metrices[""score""] = score
						try:
							self.logMlflow(runName, modelParams, metrices, estimator,algoName)
						except Exception as e:
							self.log.info('\n-----> ML flow error!!!.' + str(e))
							exc_type, exc_obj, exc_tb = sys.exc_info()
							fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
							self.log.info(str(exc_type) + ' ' + str(fname) + ' ' + str(exc_tb.tb_lineno))
							# raise
							pass
						uq_jsonobject = ''    
						try:
							if model in ['XGBRegressor','LGBMRegressor','CatBoostRegressor']:
								self.log.info('-----> Model Uncertainty Not Supported')                       
							else:
								problemName = estimator.__class__.__name__
								uqObj=aionUQ(None,None,None,problemName,modelParams,estimator,None,None,self.deployLocation)
								total_picp_percentage,total_Uncertainty_percentage,uq_medium,uq_best,scoringCriteria,uq_jsonobject=uqObj.uqMain_BBMRegression(self.uq_x_train,self.uq_x_test,self.uq_y_train,self.uq_y_test,""aionuq"")
								self.log.info(""-------> model_confidence: ""+str(total_picp_percentage)+str('%'))
								self.log.info(""-------> model_uncertainty: ""+str(total_Uncertainty_percentage)+str('%'))							                            
						except:
							pass							
						if(scoredetails != ''):
							scoredetails += ','						
						scoredetails += '{""Model"":""'+self.modelToAlgoNames[model]+'"",""FeatureEngineering"":""'+str(modelOrFeatureBased)+'"",""Score"":'+str(abs(score))+',""ModelUncertainty"":'+str(json.dumps(uq_jsonobject))+'}'
						self.log.info('---------> Total Execution: '+str(executionTime)+'\n')
						if self.scoreParam == ""r2"":
							if score > bestScore:
								bestScore =score
								bestModel =model
								bestParams=modelParams
								bestEstimator=estimator
						else:
							if abs(score) < bestScore or bestScore == -sys.float_info.max:
								bestScore =abs(score)
								bestModel =model
								bestParams=modelParams
								bestEstimator=estimator
					except Exception as inst:
						self.log.info('\n < ---------- Model Execution Failed Start--------->')
						self.log.info('\n<-------'+ modelName+' Model Execution failed!!!.'+str(inst))
						self.log.info('\n < ---------- Model Execution Failed End --------->')
						trainingStatus = 'Error (Exception)'					

				elif self.method == 'random':
					try:				
						self.log.info(""-------> Optimization Method :Random Search"")
						self.log.info(""-------> Model Name: ""+str(modelName))
						opTq =OptimizationTq(algoName,paramDict,self.cvSplit,self.scoreParam,self.numIter,self.trainX,self.trainY)
						start = time.time()
						model,modelParams,score,estimator=opTq.randomSearchOpt()
						executionTime=time.time() - start
						if not self.testX.empty:                    
							predictedData = estimator.predict(self.testX)
							if 'neg_mean_squared_error' in self.scoreParam:
								meanssquatederror = mean_squared_error(self.testY,predictedData)
								score = meanssquatederror
							elif 'neg_root_mean_squared_error' in self.scoreParam:
								rootmeanssquatederror=mean_squared_error(self.testY,predictedData,squared=False)
								score = rootmeanssquatederror
							elif 'mae' in self.scoreParam:
								meanabsoluteerror=mean_absolute_error(self.testY,predictedData)
								score = meanabsoluteerror
							elif 'r2' in self.scoreParam:
								r2score=r2_score(self.testY,predictedData)
								score = r2score
							
						if self.scoreParam == ""r2"":
							if score>bestScore:
								bestScore =score
								bestModel =model
								bestParams=modelParams
								bestEstimator=estimator
						else:
							if abs(score) < bestScore or bestScore == -sys.float_info.max:
								bestScore =abs(score)
								bestModel =model
								bestParams=modelParams
								bestEstimator=estimator
						problemName = estimator.__class__.__name__
						runName = algoName + '_' + modelOrFeatureBased
						metrices = {}
						metrices[""score""] = score
						try:
							self.logMlflow(runName, modelParams, metrices, estimator,algoName)
						except Exception as e:
							self.log.info('\n-----> ML flow error!!!.' + str(e))
							exc_type, exc_obj, exc_tb = sys.exc_info()
							fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
							self.log.info(str(exc_type) + ' ' + str(fname) + ' ' + str(exc_tb.tb_lineno))
							# raise
							pass
							
						uq_jsonobject = ''    
						try:
							if model in ['XGBRegressor','LGBMRegressor','CatBoostRegressor']:
								self.log.info('-----> Model Uncertainty Not Supported')                       
							else:                    
								problemName = estimator.__class__.__name__
								uqObj=aionUQ(None,None,None,problemName,modelParams,estimator,None,None,self.deployLocation)
								total_picp_percentage,total_Uncertainty_percentage,uq_medium,uq_best,scoringCriteria,uq_jsonobject=uqObj.uqMain_BBMRegression(self.uq_x_train,self.uq_x_test,self.uq_y_train,self.uq_y_test,""aionuq"")
								self.log.info(""-------> model_confidence: ""+str(total_picp_percentage)+str('%'))
								self.log.info(""-------> model_uncertainty: ""+str(total_Uncertainty_percentage)+str('%'))							                            
						except Exception as e:
							print(e)
							pass							
						if(scoredetails != ''):
							scoredetails += ','			
						  
						scoredetails += '{""Model"":""'+self.modelToAlgoNames[model]+'"",""FeatureEngineering"":""'+str(modelOrFeatureBased)+'"",""Score"":'+str(abs(score))+',""ModelUncertainty"":'+str(json.dumps(uq_jsonobject))+'}'
					except Exception as inst:
						self.log.info('\n < ---------- Model Execution Failed Start--------->')
						self.log.info('\n<-------'+ modelName+' Model Execution failed!!!.'+str(inst))
						self.log.info('\n < ---------- Model Execution Failed End --------->')
						trainingStatus = 'Error (Exception)'
				elif self.method == 'bayesopt':
					try:
						self.log.info(""-------> Optimization Method :BayesOpt Search"")
						self.log.info(""-------> Model Name: ""+str(modelName))
						opTq =OptimizationTq(algoName,paramDict,self.cvSplit,self.scoreParam,self.numIter,self.trainX,self.trainY)
						fun=opTq.f
						trials = Trials()
						start = time.time()
						best = fmin(fun,paramDict,algo=tpe.suggest, max_evals=100, trials=trials)
						executionTime=time.time() - start
						results = sorted(trials.results, key = lambda x: x['loss'])
						bestresult=results[0]
						model=bestresult['model']
						score=bestresult['score']
						modelParams=bestresult['params']
						res = ', '.join(""{!s}={!r}"".format(key,val) for (key,val) in modelParams.items())
						modelObj=eval(model+'('+res+')')
						estimator = modelObj.fit(self.trainX,self.trainY)
						if not self.testX.empty:                    
							predictedData = estimator.predict(self.testX)
						
							if 'neg_mean_squared_error' in self.scoreParam:
								meanssquatederror = mean_squared_error(self.testY,predictedData)
								score = meanssquatederror
							elif 'neg_root_mean_squared_error' in self.scoreParam:
								rootmeanssquatederror=mean_squared_error(self.testY,predictedData,squared=False)
								score = rootmeanssquatederror
							elif 'mae' in self.scoreParam:
								meanabsoluteerror=mean_absolute_error(self.testY,predictedData)
								score = meanabsoluteerror
							elif 'r2' in self.scoreParam:
								r2score=r2_score(self.testY,predictedData)
								score = r2score
						problemName = estimator.__class__.__name__
						runName = algoName + '_' + modelOrFeatureBased
						metrices = {}
						metrices[""score""] = score
						try:
							self.logMlflow(runName, modelParams, metrices, estimator,algoName)
						except Exception as e:
							self.log.info('\n-----> ML flow error!!!.' + str(e))
							exc_type, exc_obj, exc_tb = sys.exc_info()
							fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
							self.log.info(str(exc_type) + ' ' + str(fname) + ' ' + str(exc_tb.tb_lineno))
							# raise
							pass
						if self.scoreParam == ""r2"":
							if score>bestScore:
								bestScore =score
								bestModel =model
								bestParams=modelParams
								bestEstimator=estimator
						else:
							if abs(score) < bestScore  or bestScore == -sys.float_info.max:
								bestScore =abs(score)
								bestModel =model
								bestParams=modelParams
								bestEstimator=estimator
								
						uq_jsonobject = ''    
						try:
							if model in ['XGBRegressor','LGBMRegressor','CatBoostRegressor']:
								self.log.info('-----> Model Uncertainty Not Supported')                       
							else:						
								problemName = estimator.__class__.__name__
								uqObj=aionUQ(None,None,None,problemName,modelParams,estimator,None,None,self.deployLocation)
								total_picp_percentage,total_Uncertainty_percentage,uq_medium,uq_best,scoringCriteria,uq_jsonobject=uqObj.uqMain_BBMRegression(self.uq_x_train,self.uq_x_test,self.uq_y_train,self.uq_y_test,""aionuq"")
								self.log.info(""-------> model_confidence: ""+str(total_picp_percentage)+str('%'))
								self.log.info(""-------> model_uncertainty: ""+str(total_Uncertainty_percentage)+str('%'))							                            
						except:
							pass							
						if(scoredetails != ''):
							scoredetails += ','						
						scoredetails += '{""Model"":""'+self.modelToAlgoNames[model]+'"",""FeatureEngineering"":""'+str(modelOrFeatureBased)+'"",""Score"":'+str(abs(score))+',""ModelUncertainty"":'+str(json.dumps(uq_jsonobject))+'}'
						self.log.info('---------> Total Execution: '+str(executionTime)+'\n')
					except Exception as inst:
						self.log.info('\n < ---------- Model Execution Failed Start--------->')
						self.log.info('\n<-------'+ modelName+' Model Execution failed!!!.'+str(inst))
						self.log.info('\n < ---------- Model Execution Failed End --------->')
						trainingStatus = 'Error (Exception)'						
				else:
					trainingStatus = 'Error (HyperTunning Algo Not Supported)'
					pass
				self.log.info('Status:-  |... ML Algorithm applied: '+modelName)
				if trainingStatus.lower() == 'success':				
					self.log.info('Status:-   |... Score after hyperparameter tuning: '+objClf.get_print_score(self.scoreParam)+'='+str(round(score,2))+'\n')
				else:
					self.log.info('Status:-   |... Training Error : '+trainingStatus+'\n')									
			if bestModel != 'None':			
				self.log.info('---------- Regression Model End ---------- \n')
				self.log.info('\n------- Best Model and its parameters -------------')
				self.log.info('Status:-  |... Best Algorithm selected: '+str(self.modelToAlgoNames[bestModel])+' Score='+str(round(bestScore,2)))
				self.log.info(""-------> Best Name: ""+str(bestModel))
				self.log.info(""-------> Best Score: ""+str(bestScore))
			else:
				raise Exception(""Sorry, no model is trained"")
			return self.modelToAlgoNames[bestModel],bestParams,bestScore,bestEstimator,scoredetails
		except Exception as inst:
			self.log.info( '\n-----> regressionModel failed!!!.'+str(inst))
			exc_type, exc_obj, exc_tb = sys.exc_info()
			fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
			self.log.info(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))"
__init__.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''"
defaultAlgos.py,"import numpy as np
# from learner.classificationModel import ClassifierModel
from learner.aion_matrix import aion_matrix
from sklearn.metrics import r2_score
from sklearn.metrics import mean_absolute_error,make_scorer
from sklearn.metrics import mean_squared_error


class defaultParams():
    def __init__(self, modelName, paramDict, scoreParam, MakeFP0, MakeFN0,paramSize):
        self.modelName = modelName
        self.paramDict = paramDict
        self.scoreParam = scoreParam
        self.MakeFP0 = MakeFP0
        self.MakeFN0 = MakeFN0
        self.dictsize = paramSize

    def paramDictConvertion(self):
        if self.dictsize != 0:

            for keys in self.paramDict.keys():
                self.paramDict[keys] = self.paramDict[keys][0]
        

    def startTrainingClassification(self, trainX, trainY, testX, testY):

        threshold = -1

        precisionscore = -1

        recallscore = -1

        objClf = aion_matrix()
        self.paramDictConvertion()

        if self.modelName == 'LogisticRegression':
            from sklearn import linear_model
            estimator = linear_model.LogisticRegression()
        if self.modelName == 'GaussianNB':
            from sklearn.naive_bayes import GaussianNB
            estimator = GaussianNB()
        if self.modelName == 'SVC':
            from sklearn import svm
            estimator = svm.SVC()
        if self.modelName == 'KNeighborsClassifier':
            from sklearn.neighbors import KNeighborsClassifier
            estimator = KNeighborsClassifier()
        if self.modelName == 'DecisionTreeClassifier':
            from sklearn.tree import DecisionTreeClassifier
            estimator = DecisionTreeClassifier()
        if self.modelName == 'RandomForestClassifier':
            from sklearn.ensemble import RandomForestClassifier
            estimator = RandomForestClassifier()
        if self.modelName == 'GradientBoostingClassifier':
            from sklearn.ensemble import GradientBoostingClassifier
            estimator = GradientBoostingClassifier()
        if self.modelName == 'XGBClassifier':
            import xgboost as xgb
            estimator = xgb.XGBClassifier()
        if self.modelName == 'CatBoostClassifier':
            from catboost import CatBoostClassifier
            estimator = CatBoostClassifier()
        if self.modelName == 'LGBMClassifier':
            from lightgbm import LGBMClassifier
            estimator = LGBMClassifier()

        if self.dictsize != 0:
            estimator.set_params(**self.paramDict)
        estimator.fit(trainX, trainY)
        if not testX.empty:
            predictedData = estimator.predict(testX)
            score = objClf.get_score(self.scoreParam, testY, predictedData)
            if self.MakeFP0:
                self.log.info('-------- Calculate Threshold for FP Start-------')
                startRange = 0.0
                endRange = 1.0
                stepsize = 0.01
                threshold_range = np.arange(startRange, endRange, stepsize)
                threshold, precisionscore, recallscore = objClf.check_threshold(estimator, trainX, trainY,
                                                                                threshold_range, 'FP', self.modelName)
                self.log.info('-------- Calculate Threshold for FP End-------')
            if self.MakeFN0:
                self.log.info('-------- Calculate Threshold for FN Start-------')
                startRange = 1.0
                endRange = 0.0
                stepsize = -0.01
                threshold_range = np.arange(startRange, endRange, stepsize)
                threshold, precisionscore, recallscore = objClf.check_threshold(estimator, trainX, trainY,
                                                                                threshold_range, 'FN', self.modelName)
                self.log.info('-------- Calculate Threshold for FN End-------')
        else:
            predictedData = estimator.predict(trainX)
            score = objClf.get_score(self.scoreParam, trainY, predictedData)
            if self.MakeFP0:
                self.log.info('-------- Calculate Threshold for FP Start-------')
                startRange = 0.0
                endRange = 1.0
                stepsize = 0.01
                threshold_range = np.arange(startRange, endRange, stepsize)
                threshold, precisionscore, recallscore = objClf.check_threshold(estimator, trainX, trainY,
                                                                                threshold_range, 'FP', self.modelName)
                self.log.info('-------- Calculate Threshold for FP End-------')
            if self.MakeFN0:
                self.log.info('-------- Calculate Threshold for FN Start-------')
                startRange = 1.0
                endRange = 0.0
                stepsize = -0.01
                threshold_range = np.arange(startRange, endRange, stepsize)
                threshold, precisionscore, recallscore = objClf.check_threshold(estimator, trainX, trainY,
                                                                                threshold_range, 'FN', self.modelName)
                self.log.info('-------- Calculate Threshold for FN End-------')        
        # status, bscore, bthres, brscore, bpscore = objClf.getBestModel(self.MakeFP0,self.MakeFN0, threshold,
        #                                                              bestthreshold, recallscore, bestrecallscore,
        #                                                              precisionscore, bestprecisionscore, score,
        #                                                              bestScore)
        return estimator, estimator.get_params(), self.modelName, score, threshold, precisionscore, recallscore

    def startTrainingRegression(self, trainX, trainY, testX, testY):
        #objClf = aion_matrix()
        try:
            score = 0
            self.paramDictConvertion()
            if self.modelName==""LinearRegression"":
                from sklearn import linear_model
                estimator = linear_model.LinearRegression()
            if self.modelName==""Lasso"":
                from sklearn import linear_model
                estimator = linear_model.Lasso()
            if self.modelName==""Ridge"":
                from sklearn import linear_model
                estimator = linear_model.Ridge()
            if self.modelName==""DecisionTreeRegressor"":
                from sklearn.tree import DecisionTreeRegressor
                estimator = DecisionTreeRegressor()
            if self.modelName==""RandomForestRegressor"":
                from sklearn.ensemble import RandomForestRegressor
                estimator = RandomForestRegressor()
            if self.modelName== ""XGBRegressor"":
                import xgboost as xgb
                estimator = xgb.XGBRegressor()
            if self.modelName == 'CatBoostRegressor':
                from catboost import CatBoostRegressor
                estimator = CatBoostRegressor()
            if self.modelName == 'LGBMRegressor':
                from lightgbm import LGBMRegressor
                estimator = LGBMRegressor()
            if self.dictsize != 0:
                estimator.set_params(**self.paramDict)
            estimator.fit(trainX, trainY)
            
            
        except Exception as e:
            print(e)
        if not testX.empty:
            predictedData = estimator.predict(testX)
            if 'neg_mean_squared_error' in self.scoreParam:
                meanssquatederror = mean_squared_error(testY, predictedData)
                score = meanssquatederror
            elif 'neg_root_mean_squared_error' in self.scoreParam:
                rootmeanssquatederror = mean_squared_error(testY, predictedData, squared=False)
                score = rootmeanssquatederror
            elif 'mae' in self.scoreParam:
                meanabsoluteerror = mean_absolute_error(testY, predictedData)
                score = meanabsoluteerror
            elif 'r2' in self.scoreParam:
                r2score = r2_score(testY, predictedData)
                score = r2score
        else:
            predictedData = estimator.predict(trainX)
            if 'neg_mean_squared_error' in self.scoreParam:
                meanssquatederror = mean_squared_error(trainY, predictedData)
                score = meanssquatederror
            elif 'neg_root_mean_squared_error' in self.scoreParam:
                rootmeanssquatederror = mean_squared_error(trainY, predictedData, squared=False)
                score = rootmeanssquatederror
            elif 'mae' in self.scoreParam:
                meanabsoluteerror = mean_absolute_error(trainY, predictedData)
                score = meanabsoluteerror
            elif 'r2' in self.scoreParam:
                r2score = r2_score(trainY, predictedData)
                score = r2score
        return estimator, estimator.get_params(), self.modelName, score


"
objectDetector.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''

import os
import sys
import json
import shutil
import tarfile
import logging
import subprocess
from os.path import expanduser
import platform
from pathlib import Path, PurePosixPath
import tensorflow.compat.v2 as tf
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'	# Suppress TensorFlow logging (1)
from google.protobuf import text_format
'''
from object_detection import model_lib_v2
from object_detection import model_main_tf2
from object_detection import exporter_lib_v2
from object_detection.utils import config_util
from object_detection.protos import pipeline_pb2
'''
from learner.cloudServer import awsGPUTraining

class objectDetector(object):
	def __init__(self, dataLocation, pretrainedModels, modelDirName,remoteTrainingConfig):
		self.log = logging.getLogger('eion')
		self.dataLocation = dataLocation
		self.pretrainedModels = Path(pretrainedModels)
		self.modelDirName = Path(modelDirName['file'])
		self.modelURLDict = modelDirName
		self.gpu = remoteTrainingConfig['Enable']
		self.serverConfig = remoteTrainingConfig
		self.modelOutput = Path(dataLocation).parent/""export""
		if remoteTrainingConfig['Enable']:
			'''
			if not Path(serverConfigFile).is_file():
				raise ValueError(""Gpu training is enabled but server config file is not present."")
			with open(serverConfigFile) as fObj:
				self.serverConfig = json.load(fObj)
			'''
			self.tfRecordLoc = PurePosixPath('aion/data/od')
			self.pipelineLoc = PurePosixPath('aion/data/od')
			self.labelMapLoc = PurePosixPath('aion/data/od')
			self.gpuPretrainedModelPath = PurePosixPath('aion/pretrainedModels')/self.modelDirName
		else:
			self.tfRecordLoc = Path(dataLocation)
			self.pipelineLoc = Path(dataLocation)
			self.labelMapLoc = Path(dataLocation)
			self.gpuPretrainedModelPath = None

        
	def prepareConfig(self, detectionModel, num_classes, n_epoch, batch_size):
		home = expanduser(""~"")
		if platform.system() == 'Windows':
			modelPath = os.path.join(home,'AppData','Local','HCLT','AION','PreTrainedModels','ObjectDetection')
		else:
			modelPath = os.path.join(home,'HCLT','AION','PreTrainedModels','ObjectDetection')
		pipeline_config = str(modelPath/self.modelDirName/""pipeline.config"")
		checkPoint = ""ckpt-0""
		with open(str(modelPath/self.modelDirName/""checkpoint/checkpoint"")) as f:
			line = f.readline()
			checkPoint = line.split(':')[1].strip()[1:-1]   #(model_checkpoint_path: ""ckpt-301"") to ckpt-301
		checkPoint = ""checkpoint/""+checkPoint
		from object_detection.utils import config_util
		configs = config_util.get_configs_from_pipeline_file(pipeline_config)
		model_config = configs['model']
		if detectionModel.lower() == 'ssd':
			model_config.ssd.num_classes = num_classes
			configs['train_config'].fine_tune_checkpoint_type = ""detection""
		elif detectionModel.lower() == 'centernet':
			model_config.center_net.num_classes = num_classes
			configs['train_config'].fine_tune_checkpoint_type = ""fine_tune""
		elif detectionModel.lower() == 'fasterrcnn':
			model_config.faster_rcnn.num_classes = num_classes
			configs['train_config'].fine_tune_checkpoint_type = ""detection""
		else:
			raise ValueError(""{} Model is not supported for object detection.\n"".format(detectionModel))
		if self.gpu:
			checkpointPath = str(self.gpuPretrainedModelPath / checkPoint)
		else:
			checkpointPath = str(modelPath/self.modelDirName/checkPoint)
		configs['train_config'].fine_tune_checkpoint = checkpointPath
		configs['train_config'].num_steps = n_epoch
		configs['train_config'].batch_size = batch_size
		configs['train_input_config'].tf_record_input_reader.input_path[:] = [str(self.tfRecordLoc/""train.tfrecord"")]
		configs['train_input_config'].label_map_path = str(self.labelMapLoc/""label_map.pbtxt"")
		configs['eval_input_config'].tf_record_input_reader.input_path[:] = [self.dataLocation + ""/test.tfrecord""]
		configs['eval_input_config'].label_map_path = self.dataLocation + ""/label_map.pbtxt""
		# Save new pipeline config
		new_pipeline_proto = config_util.create_pipeline_proto_from_configs(configs)
		config_util.save_pipeline_config(new_pipeline_proto, self.dataLocation)


	def __exportModel(self):
		self.log.info('-------> exporting trained Model')
		from object_detection.protos import pipeline_pb2
		from object_detection import exporter_lib_v2    
		pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
		with tf.io.gfile.GFile(str(self.pipelineLoc/""pipeline.config""), 'r') as f:
			text_format.Merge(f.read(), pipeline_config)
		text_format.Merge('', pipeline_config)
		exporter_lib_v2.export_inference_graph(
			'image_tensor', pipeline_config, self.dataLocation,
			str(self.modelOutput))
        
	def startObjectDetector(self):
		if self.gpu:
			self.log.info('-------> Training on the cloud machine')
			self.log.info('Status:- |...Remote Machine Training')
			with open(self.dataLocation+'\model.config', 'w')as f:
				json.dump( self.modelURLDict, f)
			awsGpu = awsGPUTraining(self.serverConfig)
			try:
				awsGpu.start_instance()
				awsGpu.copy_files_to_server(self.dataLocation)
				awsGpu.start_executing_notebook()
				self.log.info('-------> Downloading trained model file')
				tarFile = awsGpu.copy_file_from_server(self.dataLocation)
				with tarfile.open(tarFile) as tar:
					tar.extractall(self.dataLocation)
				awsGpu.stop_server_instance()
			except:
				awsGpu.stop_server_instance()
				raise
			extractedPath = Path(self.dataLocation)/Path(tarFile).name.split('.')[0]
			filesList = extractedPath.glob('**/*')
			for file in filesList:
				if file.parent == extractedPath:
					if file.name == ""export"":
						shutil.copytree(file, self.modelOutput)
					elif file.is_dir():
						shutil.copytree(file, Path(self.dataLocation)/file.name)
					else:
						shutil.copy2(file, self.dataLocation)
			shutil.rmtree(extractedPath)
			Path(tarFile).unlink()
			shutil.copy2(self.dataLocation + ""/label_map.pbtxt"", str(self.modelOutput))
		else:
			self.log.info('-------> Training on the local machine')
			self.log.info('Status:- |...Local Machine Training')
			tf.config.set_soft_device_placement(True)
			strategy = tf.compat.v2.distribute.MirroredStrategy()
			with strategy.scope():
				try:
					from object_detection import model_lib_v2
					model_lib_v2.train_loop(
						pipeline_config_path=str(self.pipelineLoc/""pipeline.config""),
						model_dir=str(self.dataLocation))
				except Exception:
					raise
			self.__exportModel()
			shutil.copy2(str(self.labelMapLoc/""label_map.pbtxt""), str(self.modelOutput))
		
	def evaluateObjectDetector(self, model_dir, pipeline_config_dir=None, checkpoint_dir=None):
		if checkpoint_dir == None:
			checkpoint_dir = model_dir
		if pipeline_config_dir == None:
			pipeline_config_dir = model_dir
		self.log.info('-------> Evaluation started')
		from object_detection import model_main_tf2
		cmd = '""{}"" ""{}"" --model_dir=""{}"" --pipeline_config_path=""{}/pipeline.config"" --checkpoint_dir=""{}"" --eval_timeout=6'.format(sys.executable, model_main_tf2.__file__, model_dir, model_dir, checkpoint_dir)
		result = subprocess.run(cmd , capture_output=True, text=True,shell=True)
		precisionParam = ['Average Precision', 'Average Recall']
		text = result.stdout.split('\n')
		stats = {}
		keys = []
		try:
			for x in text:
				for y in precisionParam:
					indx = x.find(y)
					if indx != -1:
						keyValue = x[indx:].split(' = ')
						stats[keyValue[0]] = keyValue[1]
						keys.append(keyValue[0])
		except Exception as e:
			raise ValueError(""Error in evaluation: "" + str(e))
		self.log.info('-------> Evaluation statistics:')
		self.log.info(stats)
		return stats, keys
"
optimizetechnique.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import RandomizedSearchCV
from sklearn.linear_model import LogisticRegression
from sklearn.naive_bayes import GaussianNB
from sklearn.linear_model import SGDClassifier, PassiveAggressiveClassifier
from sklearn.linear_model import SGDRegressor, PassiveAggressiveRegressor
from sklearn.linear_model import SGDClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import cross_val_score
from sklearn.svm import SVC
from hyperopt import fmin, tpe, hp, STATUS_OK, Trials
from sklearn.svm import SVR
import xgboost as xgb
from xgboost import XGBClassifier
from lightgbm import LGBMClassifier
from catboost import CatBoostClassifier
from xgboost import XGBRegressor
from lightgbm import LGBMRegressor
from catboost import CatBoostRegressor
from sklearn.linear_model import LinearRegression
from sklearn.linear_model import Lasso
from sklearn.linear_model import Ridge
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import RandomForestRegressor
import warnings
warnings.filterwarnings('ignore')
import time
import logging
import sys,os
class StreamToLogger(object):
	def __init__(self, logger, log_level=logging.INFO):
		self.logger = logger
		self.log_level = log_level
		self.linebuf = ''

	def write(self, buf):
		for line in buf.rstrip().splitlines():
			self.logger.log(self.log_level, 'Model:- Iteration:: '+line.rstrip())

class OptimizationTq():
	def __init__(self,modelName,tuneParams,cvSplit,scoreParam,nIter,trainX,trainY,geneticParam=None):
		self.data = None
		self.model=modelName
		self.params =tuneParams
		self.cvSplit=cvSplit
		self.scoreParam=scoreParam
		self.trainX =trainX
		self.trainY = trainY
		self.geneticParam=geneticParam if geneticParam else {}
		self.nIter =nIter
		self.count =0
		self.best =0
		self.log = logging.getLogger('eion')
	def gridSearchOpt(self):
		try:
			sl = StreamToLogger(self.log, logging.INFO)
			oldStdout = sys.stdout
			sys.stdout = sl
			self.log.info('Model:-Model Name:: '+str(self.model))				
			modelObj=eval(self.model+'()')
			gridOp = GridSearchCV(modelObj, param_grid=self.params,scoring=self.scoreParam, cv=self.cvSplit,verbose=10)
			gridFit=gridOp.fit(self.trainX,self.trainY)
			self.log.info('Model:-Model Name:: '+str(self.model))
			self.log.info('Model:-ScoringType:: '+str(gridFit.scorer_))
			self.log.info('Model:-Best Param:: '+str(gridFit.best_params_))
			self.log.info('Model:-Validation Score:: '+str(gridFit.best_score_))
			self.log.info('Model:-CV Result:: '+str(gridFit.cv_results_))						
			self.log.info('Model:-Best Estimator:: '+str(gridFit.best_estimator_))
			sys.stdout = oldStdout
			return self.model,gridFit.best_params_,gridFit.best_score_,gridFit.best_estimator_
		except Exception as inst:
			self.log.info(""gridSearchOpt failed ==>""+str(inst))
			exc_type, exc_obj, exc_tb = sys.exc_info()
			fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
			self.log.info(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))		
	def randomSearchOpt(self):
		try:
			sl = StreamToLogger(self.log, logging.INFO)
			oldStdout = sys.stdout
			sys.stdout = sl
			self.log.info('Model:-Model Name:: '+str(self.model))
			modelObj=eval(self.model+'()')
			randomOp = RandomizedSearchCV(modelObj, param_distributions=self.params,scoring=self.scoreParam,n_iter=self.nIter,cv=self.cvSplit,verbose=10)
			randomFit=randomOp.fit(self.trainX,self.trainY)
			self.log.info('Model:-Model Name:: '+str(self.model))
			self.log.info('Model:-ScoringType:: '+str(randomFit.scorer_))
			self.log.info('Model:-Best Param:: '+str(randomFit.best_params_))
			self.log.info('Model:-Validation Score:: '+str(randomFit.best_score_))
			self.log.info('Model:-CV Result:: '+str(randomFit.cv_results_))
			self.log.info('Model:-Best Estimator:: '+str(randomFit.best_estimator_))
			sys.stdout = oldStdout
			return self.model,randomFit.best_params_,randomFit.best_score_,randomFit.best_estimator_
		except Exception as inst:
			self.log.info(""RandomsearchOptimization failed ==>""+str(inst))
			exc_type, exc_obj, exc_tb = sys.exc_info()
			fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
			self.log.info(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))
	def bayesianOpt(self,params):
		modelObj=eval(self.model+'(**'+str(params)+')')
		score=cross_val_score(modelObj, self.trainX, self.trainY,scoring=self.scoreParam,cv=self.cvSplit)
		return score.mean()
			
	def f(self,params):
		best=self.best
		count=self.count
		parameters=params
		count += 1
		classObj=OptimizationTq(self.model,self.params,self.cvSplit,self.scoreParam,self.nIter,self.trainX,self.trainY)
		acc = classObj.bayesianOpt(parameters.copy())
		return {'loss':-acc,'score': acc, 'status': STATUS_OK,'model' :self.model,'params': params}
		
		

"
cloudServer.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import boto3
import json
import time
import requests
import datetime
import uuid
import shutil
from websocket import create_connection
from botocore.exceptions import ClientError
import tarfile
from pathlib import Path, PurePosixPath
from stat import S_ISDIR
from fabric import Connection
import time
import logging

class awsGPUTraining():


    def __init__(self, config):
        local_config = {""location"":{""data"":""aion/data/od"", ""code"":"""", ""pretrainedModel"":""aion/pretrainedModels""},
                        ""jupyter"":{""header"":{""Authorization"":""Token f3af05d5348301997fb014f245569e872d27bb9018fd70d2""}, ""portNo"":""8888"",
                        ""notebook_path"":""aion/code/AWS_GPU_OD_Training.ipynb""}}
        self.serverConfig = config[""server""]
        self.sshConfig = config[""ssh""]
        self.log = logging.getLogger('eion')
        self.codeLocation = local_config[""location""][""code""]
        self.dataLocation = local_config[""location""][""data""]
        self.pretrainedModelLocation = local_config[""location""][""pretrainedModel""]
        self.jupyterConfig = local_config[""jupyter""]
        self.serverIP = """"
        if self.serverConfig[""awsAccessKeyId""] == """" or self.serverConfig[""awsSecretAccessKey""] == """":
            raise ValueError(""Cloud server configuration is not available."")
        if len(self.serverConfig[""InstanceIds""]) == 0 and self.serverConfig[""amiId""] == """":
            raise ValueError(""Please provide either InstanceIds or amiId in server config"")

        self.instanceId = []
        self.separate_instance = False
        if self.serverConfig[""amiId""] != """":
            self.separate_instance = True
        else:
            if len(self.serverConfig[""InstanceIds""]):
                if isinstance(self.serverConfig[""InstanceIds""], list):
                    self.instanceId = self.serverConfig[""InstanceIds""]
                elif isinstance(self.serverConfig[""InstanceIds""], str):
                    self.instanceId = [self.serverConfig[""InstanceIds""]]

        self.ec2_client = boto3.client(self.serverConfig[""serverName""], region_name=self.serverConfig[""regionName""], aws_access_key_id=self.serverConfig[""awsAccessKeyId""], aws_secret_access_key=self.serverConfig[""awsSecretAccessKey""])

    def __sftp_exists(self, sftp, path):
        try:
            sftp.stat(path)
            return True
        except:# IOError, e:
            #if e.errno == errno.ENOENT:
            return False
            
    def __rmtree(self, sftp, remotepath, level=0):
        for f in sftp.listdir_attr(remotepath):
            rpath = str(PurePosixPath(remotepath)/f.filename)
            if S_ISDIR(f.st_mode):
                self.__rmtree(sftp, rpath, level=(level + 1))
                sftp.rmdir(rpath)
            else:
                rpath = str(PurePosixPath(remotepath)/f.filename)
                sftp.remove(rpath)
        
    def copy_files_to_server(self, location):
        try:
            client = Connection(
                host=self.serverIP,
                user=self.sshConfig[""userName""],
                connect_kwargs={
                    ""key_filename"": self.sshConfig[""keyFilePath""],
                },
            )
            client.sudo('rm -rf {}/*'.format(self.dataLocation))
            tarFile = str((PurePosixPath(self.dataLocation).parent/PurePosixPath(self.dataLocation).name).with_suffix("".tar.gz""))
            client.put(location+'/test.tfrecord', self.dataLocation+'/test.tfrecord')
            client.put(location+'/train.tfrecord', self.dataLocation+'/train.tfrecord')
            client.put(location+'/pipeline.config', self.dataLocation+'/pipeline.config')
            client.put(location+'/label_map.pbtxt', self.dataLocation+'/label_map.pbtxt')
            client.put(location+'/model.config', self.dataLocation+'/model.config')
            if self.jupyterConfig != """":
                client.run(""touch {}"".format(self.dataLocation+'/log.txt'))
        except Exception as e:
            raise ValueError(""Error in copying data to cloud server. "" + str(e))

    def __myexec(self, ssh, cmd, timeout, want_exitcode=False):
        # one channel per command
        stdin, stdout, stderr = ssh.exec_command(cmd) 
        # get the shared channel for stdout/stderr/stdin
        channel = stdout.channel

        # we do not need stdin.
        stdin.close()                 
        # indicate that we're not going to write to that channel anymore
        channel.shutdown_write()      

        # read stdout/stderr in order to prevent read block hangs
        stdout_chunks = []
        stdout_chunks.append(stdout.channel.recv(len(stdout.channel.in_buffer)))
        # chunked read to prevent stalls
        while not channel.closed or channel.recv_ready() or channel.recv_stderr_ready(): 
            # stop if channel was closed prematurely, and there is no data in the buffers.
            got_chunk = False
            readq, _, _ = select.select([stdout.channel], [], [], timeout)
            for c in readq:
            
                if c.recv_ready(): 
                    stdout_chunks.append(stdout.channel.recv(len(c.in_buffer)))
                    got_chunk = True
                if c.recv_stderr_ready(): 
                    # make sure to read stderr to prevent stall    
                    stderr.channel.recv_stderr(len(c.in_stderr_buffer))  
                    got_chunk = True  
            '''
            1) make sure that there are at least 2 cycles with no data in the input buffers in order to not exit too early (i.e. cat on a >200k file).
            2) if no data arrived in the last loop, check if we already received the exit code
            3) check if input buffers are empty
            4) exit the loop
            '''
            if not got_chunk \
                and stdout.channel.exit_status_ready() \
                and not stderr.channel.recv_stderr_ready() \
                and not stdout.channel.recv_ready(): 
                # indicate that we're not going to read from this channel anymore
                stdout.channel.shutdown_read()  
                # close the channel
                stdout.channel.close()
                break    # exit as remote side is finished and our bufferes are empty

        # close all the pseudofiles
        stdout.close()
        stderr.close()

        if want_exitcode:
            # exit code is always ready at this point
            return (''.join(stdout_chunks), stdout.channel.recv_exit_status())
        return ''.join(stdout_chunks)


    def __myexec1(self, ssh, cmd, timeout, want_exitcode=False):
        # one channel per command
        stdin, stdout, stderr = ssh.exec_command(cmd, get_pty=True) 
        for line in iter(stderr.readline, """"):
            print(line, end="""")
        stdin.close()                 
        stdout.close()
        stderr.close()

    def executeCode(self):
        try:
            client = Connection(
                host=self.serverIP,
                user=self.sshConfig[""userName""],
                connect_kwargs={
                    ""key_filename"": self.sshConfig[""keyFilePath""],
                },
            )
            cmd = 'python3.8 {} {} {}'.format(self.codeLocation, self.dataLocation, self.pretrainedModelLocation)
            client.run( cmd)
        except Exception as e:
            raise ValueError(""Error in running code on cloud server. "" + str(e))
    
    def start_executing_notebook(self):
        try:
            publicIp_Port = self.serverIP + "":"" + self.jupyterConfig[""portNo""]
            conURL = ""ws://"" + publicIp_Port
            base = 'http://' + publicIp_Port + ''

            headers = self.jupyterConfig[""header""]
            url = base + '/api/kernels'
            flag = True
            while flag: # deadlock need to add timeout
                response = requests.post(url, headers=headers)
                flag = False
            kernel = json.loads(response.text)

            # Load the notebook and get the code of each cell
            url = base + '/api/contents/' + self.jupyterConfig[""notebook_path""]
            response = requests.get(url, headers=headers)
            file = json.loads(response.text)
            code = [c['source'] for c in file['content']['cells'] if len(c['source']) > 0 and c['cell_type']=='code' ]
            ws = create_connection(conURL + ""/api/kernels/"" + kernel[""id""] + ""/channels"",
                                   header=headers)

            def send_execute_request(code):
                msg_type = 'execute_request';
                content = {'code': code, 'silent': False}
                hdr = {'msg_id': uuid.uuid1().hex,
                       'username': 'test',
                       'session': uuid.uuid1().hex,
                       'data': datetime.datetime.now().isoformat(),
                       'msg_type': msg_type,
                       'version': '5.0'}
                msg = {'header': hdr, 'parent_header': hdr,
                       'metadata': {},
                       'content': content}
                return msg

            for c in code:
                ws.send(json.dumps(send_execute_request(c)))

            # We ignore all the other messages, we just get the code execution output
            # (this needs to be improved for production to take into account errors, large cell output, images, etc.)
            error_msg = ''
            traceback_msg = ''
            for i in range(0, len(code)):
                msg_type = '';
                while msg_type != ""stream"":
                    rsp = json.loads(ws.recv())
                    msg_type = rsp[""msg_type""]
                    if msg_type == 'error':
                        raise ValueError(""Error on Cloud machine: ""+rsp['content']['evalue'])
            ws.close()
            self.log.info('Status:-  |...Execution Started`')
        except ClientError as e:
            raise ValueError(e)



    def __wait_for_completion(self, sftp, remoteLogFile, localLogFile):
        
        waiting = True
        error_msg = """"
        while waiting:
            time.sleep(5 * 60)
            try:
                sftp.get(str(remoteLogFile), str(localLogFile))
                with open(localLogFile, ""r"") as f:
                    content = f.readlines()
                for x in content:
                    if ""Error"" in x:
                        waiting = False
                        error_msg = x
                    if ""success"" in x:
                        waiting = False
            except:
                raise (str(e))
        return error_msg
        
    def copy_file_from_server(self, localPath):
        try:
            client = Connection(
                host=self.serverIP,
                user=self.sshConfig[""userName""],
                connect_kwargs={
                    ""key_filename"": self.sshConfig[""keyFilePath""],
                },
            )

            remoteLogFile = PurePosixPath(self.dataLocation)/'log.txt'
            localLogFile = Path(localPath)/'remote_log.txt'
            client.get(str(remoteLogFile), str(localLogFile))
            tarFile = (PurePosixPath(self.dataLocation).parent/PurePosixPath(self.dataLocation).name).with_suffix("".tar.gz"")
            client.get(str(tarFile), str(Path(localPath)/tarFile.name))
        except:
            raise
        return str(Path(localPath)/tarFile.name)

    def create_instance(self):
        instances = self.ec2_client.run_instances(
                ImageId=self.serverConfig[""amiId""],
                MinCount=1,
                MaxCount=1,
                InstanceType=""t2.xlarge"",
                KeyName=""AION_GPU"",
                SecurityGroupIds = [""sg-02c3a6c8dd67edb74""]
            )    
        self.instanceId = [instances['Instances'][0]['InstanceId']]
        
    def start_instance(self):
        if self.separate_instance:
            self.create_instance()
        try:
            response = self.ec2_client.start_instances(InstanceIds=self.instanceId, DryRun=True)
        except Exception as e:
            if 'DryRunOperation' not in str(e):
                raise ValueError(""Error in starting the EC2 instance, check server configuration. "" + str(e))
        try:
            running_state_code = 16
            response = self.ec2_client.start_instances(InstanceIds=self.instanceId, DryRun=False)
            instance_status_code = 0
            while instance_status_code != running_state_code:
                response = self.ec2_client.describe_instances(InstanceIds=self.instanceId)
                instance_status_code = response['Reservations'][0]['Instances'][0]['State']['Code']
                if instance_status_code == running_state_code:
                    self.serverIP = response['Reservations'][0]['Instances'][0]['PublicIpAddress']
                    break
        except ClientError as e:
            raise ValueError(""Error in starting the EC2 instance. "" + str(e))

    def terminate_instance(self):
        ec2 = boto3.resource(self.serverConfig[""serverName""], region_name=self.serverConfig[""regionName""], aws_access_key_id=self.serverConfig[""awsAccessKeyId""], aws_secret_access_key=self.serverConfig[""awsSecretAccessKey""])

        ec2.instances.filter(InstanceIds=self.instanceId).terminate()  # for terminating an ec2 instance

    def stop_server_instance(self):
        try:
            self.ec2_client.stop_instances(InstanceIds=self.instanceId, DryRun=True)
        except Exception as e:
            if 'DryRunOperation' not in str(e):
                raise
        stopped_state_code = 80
        # Dry run succeeded, call stop_instances without dryrun
        try:
            response = self.ec2_client.stop_instances(InstanceIds=self.instanceId, DryRun=False)
            response = self.ec2_client.describe_instances(InstanceIds=self.instanceId)
            instance_status_code = 0
            while instance_status_code != stopped_state_code:
                response = self.ec2_client.describe_instances(InstanceIds=self.instanceId)
                instance_status_code = response['Reservations'][0]['Instances'][0]['State']['Code']
                if instance_status_code == stopped_state_code:
                    break
        except:
            raise ValueError(""Error in stopping the EC2 instance {}.Please stop it manually "".format(self.instanceId[0]))
        if self.separate_instance:
            try:
                self.terminate_instance()
            except:
                raise ValueError(""Error in terminating the EC2 instance {}.Please terminate it manually "".format(self.instanceId[0]))

"
classificationModel.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import time
import os
import sys
import numpy as np
from numpy import arange
from numpy import argmax
import json
from sklearn.metrics import accuracy_score
from sklearn.metrics import confusion_matrix
from sklearn.metrics import recall_score
from sklearn.metrics import precision_score
from sklearn.linear_model import LogisticRegression
from sklearn.naive_bayes import GaussianNB
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.linear_model import SGDClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import roc_curve
from sklearn.metrics import roc_auc_score
from sklearn.metrics import f1_score
from sklearn.svm import SVC
from xgboost import XGBClassifier
from lightgbm import LGBMClassifier
from catboost import CatBoostClassifier
from sklearn.preprocessing import binarize
from learner.optimizetechnique import OptimizationTq
from learner.defaultAlgos import defaultParams
from learner.parameters import parametersDefine
from hyperopt import fmin, tpe, hp, STATUS_OK, Trials
import logging
from learner.aion_matrix import aion_matrix
import mlflow
from pathlib import Path
from uncertainties.aionUQ import aionUQ
# apply threshold to positive probabilities to create labels
def to_labels(pos_probs, threshold):
	return (pos_probs >= threshold).astype('int')
class ClassifierModel():
	def __init__(self,modelList,params,scoreParam,cvSplit,numIter,geneticParam,trainX,trainY,testX,testY,method,modelType,MakeFP0,MakeFN0,deployLocation):
		self.modelList =modelList
		self.params =params
		self.trainX =trainX
		self.X =trainX
		self.trainY =trainY
		self.testX = testX
		self.testY = testY
		self.method =method
		self.scoreParam=scoreParam
		self.cvSplit=cvSplit
		self.numIter=numIter
		self.geneticParam=geneticParam
		self.MakeFP0= MakeFP0
		self.MakeFN0=MakeFN0
		self.log = logging.getLogger('eion')
		self.modelType = modelType
		self.uq_x_train = trainX
		self.uq_x_test = testX
		self.uq_y_train = trainY
		self.uq_y_test = testY
		self.deployLocation = deployLocation
		self.AlgorithmNames={'Logistic Regression':'LogisticRegression','Stochastic Gradient Descent':'SGDClassifier','Naive Bayes':'GaussianNB','Support Vector Machine':'SVC','K Nearest Neighbors':'KNeighborsClassifier','Decision Tree':'DecisionTreeClassifier','Random Forest':'RandomForestClassifier','Gradient Boosting':'GradientBoostingClassifier','Extreme Gradient Boosting (XGBoost)':'XGBClassifier','Categorical Boosting (CatBoost)': 'CatBoostClassifier','Light Gradient Boosting (LightGBM)': 'LGBMClassifier','Bagging (Ensemble)':'BaggingClassifier','Stacking (Ensemble)':'StackingClassifier','Voting (Ensemble)':'VotingClassifier','Deep Q Network':'DQN','Dueling Deep Q Network':'DDQN','Neural Architecture Search':'NAS'}
		self.modelToAlgoNames = {value: key for key, value in self.AlgorithmNames.items()}
		
	def check_threshold(self,estimator,testX,testY,threshold_range,checkParameter,modelName):
		thresholdx = -1
		for threshold in threshold_range:
			predictedData = estimator.predict_proba(testX)
			predictedData = binarize(predictedData[:,1].reshape(-1, 1),threshold=threshold)
			p_score = precision_score(testY, predictedData) 
			#self.log.info('-------------> Precision:'+str(p_score))
			r_score = recall_score(testY, predictedData)
			#self.log.info('-------------> Rscore:'+str(r_score))
			#self.log.info(confusion_matrix(testY, predictedData))
			tn, fp, fn, tp = confusion_matrix(testY, predictedData).ravel()
			if(checkParameter.lower() == 'fp'):
				if fp == 0:
					if(p_score == 1):
						thresholdx = threshold
						self.log.info('---------------> Best Threshold:'+str(threshold))
						self.log.info('---------------> Best Precision:'+str(p_score))
						self.log.info('---------------> Best Recall:'+str(r_score))
						self.log.info('---------------> TN:'+str(tn))
						self.log.info('---------------> FP:'+str(fp))
						self.log.info('---------------> FN:'+str(fn))
						self.log.info('---------------> TP:'+str(tp))
						break
			
			if(checkParameter.lower() == 'fn'):
				if fn == 0:
					if(r_score == 1):
						thresholdx = threshold
						self.log.info('---------------> Best Threshold:'+str(threshold))
						self.log.info('---------------> Best Precision:'+str(p_score))
						self.log.info('---------------> Best Recall:'+str(r_score))
						self.log.info('---------------> TN:'+str(tn))
						self.log.info('---------------> FP:'+str(fp))
						self.log.info('---------------> FN:'+str(fn))
						self.log.info('---------------> TP:'+str(tp))
						break
		return(thresholdx,p_score,r_score)
	def getBestModel(self,fp0,fn0,threshold,bestthreshold,rscore,brscore,pscore,bpscore,tscore,btscore):
		cmodel = False 
		if(threshold != -1):
			if(bestthreshold == -1):
				cmodel = True
				bestthreshold = threshold
				brscore = rscore
				bpscore = pscore
				btscore = tscore	
			elif fp0:
				if rscore > brscore:	
					cmodel = True
					bestthreshold = threshold
					brscore = rscore
					bpscore = pscore
					btscore = tscore	
				elif rscore == brscore:
					if tscore > btscore or btscore == -0xFFFF:	
						cmodel = True
						bestthreshold = threshold
						brscore = rscore
						bpscore = pscore
						btscore = tscore	
			elif fn0:
				if pscore > bpscore:	
					cmodel = True
					bestthreshold = threshold
					brscore = rscore
					bpscore = pscore
					btscore = tscore	
				elif pscore == bpscore:
					if tscore > btscore or btscore == -0xFFFF:	
						cmodel = True
						bestthreshold = threshold
						brscore = rscore
						bpscore = pscore
						btscore = tscore	
			else:
				if tscore > btscore or btscore == -0xFFFF:	
					cmodel = True	
					btscore = tscore
		else:
			if(bestthreshold == -1):
				if tscore > btscore or btscore == -0xFFFF:	
					cmodel = True
					btscore = tscore
		
		return cmodel,btscore,bestthreshold,brscore,bpscore
			

	def logMlflow(self, runName, params, metrices, estimator, algoName=None):
		with mlflow.start_run(run_name = runName):
			for k,v in params.items():
				mlflow.log_param(k, v)
			for k,v in metrices.items():
				mlflow.log_metric(k, v)
			if algoName == 'CatBoostClassifier':
				mlflow.catboost.log_model(estimator, ""model"")
			else:
				mlflow.sklearn.log_model(estimator, ""model"")
				model_uri = mlflow.get_artifact_uri(""model"")
				"""""" for some dataset evaluate takes more than 90 min, so commenting till some solution is not found
				evaluate_data = self.testX.copy()
				evaluate_data['label'] = self.testY.copy()
				mlflow.evaluate(model_uri, data=evaluate_data, targets='label', model_type=""classifier"")
				del evaluate_data
				""""""
				
	def classModelling(self, modelOrFeatureBased,code_configure):
		paramObj=parametersDefine()
		bestModel='None'
		bestParams={}
		bestScore=-0xFFFF
		bestEstimator = 'None'
		bestpipelineModel='None'
		scoredetails = ''
		threshold = -1
		bestthreshold = -1
		precisionscore =-1
		bestprecisionscore=-1
		recallscore = -1
		bestrecallscore=-1
		self.log.info('\n---------- ClassifierModel has started ----------')
		objClf = aion_matrix()
		try:
			self.log.info('Status:-  |... Search Optimization Method applied: '+self.method)
			for modelName in self.modelList:
				if modelName in ['Bagging (Ensemble)','Voting (Ensemble)','Stacking (Ensemble)','Dueling Deep Q Network','Deep Q Network','Neural Architecture Search']:
					if modelName == 'Bagging (Ensemble)':
						from ensemble.ensemble_bagging import ensemble_bagging
						ensemble_bagging_obj = ensemble_bagging(self.params[modelName],self.scoreParam,self.MakeFP0,self.MakeFN0)
						estimator,modelParams,score,model,threshold,precisionscore,recallscore = ensemble_bagging_obj.ensemble_bagging_classifier(self.trainX,self.trainY,self.testX,self.testY)
					if modelName == 'Stacking (Ensemble)':
						from ensemble.ensemble_stacking import ensemble_stacking
						ensemble_stacking_obj = ensemble_stacking(self.params[modelName],self.scoreParam)
						estimator,modelParams,score,model,threshold,precisionscore,recallscore = ensemble_stacking_obj.ensemble_stacking_classifier(self.trainX,self.trainY,self.testX,self.testY,self.MakeFP0,self.MakeFN0,self.modelList)
					if modelName == 'Voting (Ensemble)':    
						from ensemble.ensemble_voting import ensemble_voting
						ensemble_voting_obj = ensemble_voting("""",self.scoreParam)
						#bug 12437
						status,estimator,modelParams,score,model,threshold,precisionscore,recallscore = ensemble_voting_obj.ensemble_voting_classifier(self.trainX,self.trainY,self.testX,self.testY,self.MakeFP0,self.MakeFN0,self.modelList)  
						if status != ""SUCCESS"": #bug 12437
							continue                     
					if modelName == 'Deep Q Network':
						from reinforcement.DRL_train import ReinformentLearning
						rlObj = ReinformentLearning(self.params[modelName],self.scoreParam,'Classification')
						estimator,modelParams,score,model,threshold,precisionscore,recallscore = rlObj.TrainRL(self.trainX,self.trainY,self.testX,self.testY,'DQN',self.deployLocation)
					if modelName == 'Dueling Deep Q Network':
						from reinforcement.DRL_train import ReinformentLearning
						rlObj = ReinformentLearning(self.params[modelName],self.scoreParam,'Classification')
						estimator,modelParams,score,model,threshold,precisionscore,recallscore = rlObj.TrainRL(self.trainX,self.trainY,self.testX,self.testY,'DDQN',self.deployLocation)					
					'''
                    if modelName == 'Neural Architecture Search':
						from nas.aionNAS import aionNAS
						objNAS = aionNAS('Classification',self.params[modelName],self.trainX,self.testX,self.trainY,self.testY,self.deployLocation)	
						estimator,modelParams,score,model,threshold,precisionscore,recallscore=objNAS.nasMain(self.scoreParam)					
					'''
					if(scoredetails != ''):
						scoredetails += ','
					scoredetails += '{""Model"":""'+self.modelToAlgoNames[model]+'"",""FeatureEngineering"":""'+str(modelOrFeatureBased)+'"",""Score"":'+str(score)+',""ModelUncertainty"":""NA""}'
					status,bscore,bthres,brscore,bpscore = self.getBestModel(self.MakeFP0,self.MakeFN0,threshold,bestthreshold,recallscore,bestrecallscore,precisionscore,bestprecisionscore,score,bestScore)			
					if status:
						bestScore =bscore
						bestModel =model
						bestParams=modelParams
						bestEstimator=estimator
						bestthreshold = bthres
						bestrecallscore = brscore
						bestprecisionscore = bpscore
					self.log.info('Status:-  |... ML Algorithm applied: '+modelName)
					self.log.info('Status:-   |... Score: '+objClf.get_print_score(self.scoreParam)+'='+str(round(score,2))+'\n')
					continue
				paramSpace=self.params[modelName].copy()
				algoName = self.AlgorithmNames[modelName]
				paramDict =paramObj.paramDefine(paramSpace,self.method)
				if not self.method == 'bayesopt':
					paramSize = paramObj.getParamSpaceSize(paramDict)
				else:
					paramSize = 0
				if (self.method == 'bayesopt' and not paramDict) or (not self.method == 'bayesopt' and paramSize<=0):
					try:
						start = time.time()
						#function call
						defObj = defaultParams(algoName,paramDict,self.scoreParam,self.MakeFP0, self.MakeFN0,paramSize)
						estimator, modelParams, model,score, threshold, precisionscore, recallscore =defObj.startTrainingClassification(self.trainX,self.trainY,self.testX,self.testY)
						executionTime = time.time() - start
						if (scoredetails != ''):
							scoredetails += ','
						scoredetails += '{""Model"":""' + self.modelToAlgoNames[model] + '"",""FeatureEngineering"":""' + str(
							modelOrFeatureBased) + '"",""Score"":' + str(score) + ',""ModelUncertainty"":""NA""}'
						status, bscore, bthres, brscore, bpscore = self.getBestModel(self.MakeFP0, self.MakeFN0,threshold, bestthreshold,recallscore, bestrecallscore,precisionscore, bestprecisionscore,score, bestScore)
						self.log.info('---------> Total Execution: ' + str(executionTime) + '\n')
						if status:
							bestScore = bscore
							bestModel = model
							bestParams = modelParams
							bestEstimator = estimator
							bestthreshold = bthres
							bestrecallscore = brscore
							bestprecisionscore = bpscore
						self.log.info('Status:-  |... ML Algorithm applied: ' + modelName)
						self.log.info('Status:-   |... Score: ' + objClf.get_print_score(self.scoreParam) + '=' + str(
							round(score, 2)) + '\n')
					except Exception as inst:
						self.log.info('\n < ---------- Model Execution Failed Start--------->')
						self.log.info('\n<-------' + modelName + ' Model Execution failed!!!.' + str(inst))
						exc_type, exc_obj, exc_tb = sys.exc_info()
						fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
						self.log.info(str(exc_type) + ' ' + str(fname) + ' ' + str(exc_tb.tb_lineno))
						self.log.info('\n < ---------- Model Execution Failed End --------->')

					continue
				# call algorithms with default valuepass
				
				if self.method == 'bayesopt':
					code_configure.add_model(algoName,paramSpace)
				else:
					paramDictCopy = paramDict
					# numpy array is not json serializable
					#numpy is already imported but still np.ndarray raise error
					import numpy as np
					for key,value in paramDictCopy.items():
						if isinstance(value, np.ndarray):
							paramDictCopy[key] = paramDictCopy[key].tolist()
					code_configure.add_model(algoName,paramDictCopy)
				trainingStatus = 'Success'				
				if self.method =='grid':
					try:
						self.log.info(""-------> Optimization Method :Grid Search"")
						self.log.info(""-------> Model Name: ""+str(modelName))
						
						opTq =OptimizationTq(algoName,paramDict,self.cvSplit,self.scoreParam,self.numIter,self.trainX,self.trainY)
						start = time.time()
						model,modelParams,score,estimator=opTq.gridSearchOpt()
						executionTime=time.time() - start
						if not self.testX.empty:
							predictedData = estimator.predict(self.testX)
							score = objClf.get_score(self.scoreParam,self.testY,predictedData)
						else:
							score = score*100     

						problemName = estimator.__class__.__name__
						runName = algoName + '_' + modelOrFeatureBased
						metrices = {}
						metrices[""score""] = score
						try:
							self.logMlflow(runName, modelParams, metrices, estimator, algoName)
						except Exception as e:
							self.log.info('----------> ML Flow error!!!. ' + str(e))  # usnish
							pass
						output_jsonobject = """"
						problemName = estimator.__class__.__name__
						self.log.info('----------> Testing Score: '+str(score))
						try:
							if ((estimator.__class__.__name__ == ""ABCMeta"") or (model in ['SGDClassifier','XGBClassifier','CatBoostClassifier','LGBMClassifier']) ):
								self.log.info('-----> Model Uncertainty Not Supported')
							else:
								uqObj=aionUQ(None,None,None,problemName,modelParams,estimator,None,None,self.deployLocation)
								accuracy,uq_ece,output_jsonobject,model_confidence_per,model_uncertainty_per=uqObj.uqMain_BBMClassification(self.uq_x_train,self.uq_x_test,self.uq_y_train,self.uq_y_test,""aionuq"")
								self.log.info(""-------> model_confidence: ""+str(model_confidence_per)+str('%'))
								self.log.info(""-------> model_uncertainty: ""+str(model_uncertainty_per)+str('%'))							                            
						except:
							pass							
						if(scoredetails != ''):
							scoredetails += ','
						scoredetails += '{""Model"":""'+self.modelToAlgoNames[model]+'"",""FeatureEngineering"":""'+str(modelOrFeatureBased)+'"",""Score"":'+str(score)+',""ModelUncertainty"":'+str(json.dumps(output_jsonobject))+'}'
						self.log.info('----------> Testing Score: '+str(score))
						
						import numpy as np
						if self.MakeFP0:
							self.log.info('-------- Calculate Threshold for FP Start-------')
							startRange = 0.0
							endRange = 1.0
							stepsize = 0.01	
							threshold_range = np.arange(startRange,endRange,stepsize)
							threshold,precisionscore,recallscore = self.check_threshold(estimator,self.trainX,self.trainY,threshold_range,'FP',algoName)
							self.log.info('-------- Calculate Threshold for FP End-------')
						if self.MakeFN0:
							self.log.info('-------- Calculate Threshold for FN Start-------')
							startRange = 1.0
							endRange = 0.0
							stepsize = -0.01	
							threshold_range = np.arange(startRange,endRange,stepsize)
							threshold,precisionscore,recallscore = self.check_threshold(estimator,self.trainX,self.trainY,threshold_range,'FN',algoName)
							self.log.info('-------- Calculate Threshold for FN End-------')
						self.log.info('----------> Total Execution: '+str(executionTime)+'\n')
																	
						status,bscore,bthres,brscore,bpscore = self.getBestModel(self.MakeFP0,self.MakeFN0,threshold,bestthreshold,recallscore,bestrecallscore,precisionscore,bestprecisionscore,score,bestScore)			
						if status:
							bestScore =bscore
							bestModel =model
							bestParams=modelParams
							bestEstimator=estimator
							bestthreshold = bthres
							bestrecallscore = brscore
							bestprecisionscore = bpscore
					except Exception as inst:
						self.log.info('\n < ---------- Model Execution Failed Start--------->')
						self.log.info('\n<-------'+ modelName+' Model Execution failed!!!.'+str(inst))
						self.log.info('\n < ---------- Model Execution Failed End --------->')
						trainingStatus = 'Error (Exception)'
				elif self.method == 'random':
					try:
						self.log.info(""-------> Optimization Method :Random Search"")
						self.log.info(""-------> Model Name: ""+str(modelName))
						start = time.time()
						opTq =OptimizationTq(algoName,paramDict,self.cvSplit,self.scoreParam,self.numIter,self.trainX,self.trainY)
						model,modelParams,score,estimator=opTq.randomSearchOpt()
						executionTime=time.time() - start
						if not self.testX.empty:
							predictedData = estimator.predict(self.testX)
							score = objClf.get_score(self.scoreParam,self.testY,predictedData)
						else:
							score = score*100                        
                            
						problemName = estimator.__class__.__name__
						runName = algoName + '_' + modelOrFeatureBased
						metrices = {}
						metrices[""score""] = score
						try:
							self.logMlflow(runName, modelParams, metrices, estimator, algoName)
						except Exception as e:
							self.log.info('----------> ML Flow error!!!.  ' + str(e))  # usnish
							pass
						import numpy as np
						if self.MakeFP0:
							self.log.info('-------- Calculate Threshold for FP Start-------')
							startRange = 0.0
							endRange = 1.0
							stepsize = 0.01	
							threshold_range = np.arange(startRange,endRange,stepsize)
							threshold,precisionscore,recallscore = self.check_threshold(estimator,self.trainX,self.trainY,threshold_range,'FP',algoName)
							self.log.info('-------- Calculate Threshold for FP End-------')
								
						if self.MakeFN0:
							self.log.info('-------- Calculate Threshold for FN Start-------')
							startRange = 1.0
							endRange = 0.0
							stepsize = -0.01	
							threshold_range = np.arange(startRange,endRange,stepsize)
							threshold,precisionscore,recallscore = self.check_threshold(estimator,self.trainX,self.trainY,threshold_range,'FN',algoName)
							self.log.info('-------- Calculate Threshold for FN End-------')
							
						if threshold != -1:
							if not self.testX.empty:
								predictedData = estimator.predict_proba(self.testX)
								predictedData = binarize(predictedData[:,1].reshape(-1, 1),threshold=threshold)							
								score = objClf.get_score(self.scoreParam,self.testY,predictedData)	
							else:
								predictedData = estimator.predict_proba(self.trainX)
								predictedData = binarize(predictedData[:,1].reshape(-1, 1),threshold=threshold)							
								score = objClf.get_score(self.scoreParam,self.trainY,predictedData)                            
							
						self.log.info('---------> Total Execution: '+str(executionTime)+'\n')
						output_jsonobject = """"
						problemName = estimator.__class__.__name__
						self.log.info('----------> Testing Score: '+str(score))
						try:
							if ((estimator.__class__.__name__ == ""ABCMeta"") or (model in ['SGDClassifier','XGBClassifier','CatBoostClassifier','LGBMClassifier']) ):
								self.log.info('-----> Model Uncertainty Not Supported')
							else:
								uqObj=aionUQ(None,None,None,problemName,modelParams,estimator,None,None,self.deployLocation)
								accuracy,uq_ece,output_jsonobject,model_confidence_per,model_uncertainty_per=uqObj.uqMain_BBMClassification(self.uq_x_train,self.uq_x_test,self.uq_y_train,self.uq_y_test,""aionuq"")
								self.log.info(""-------> model_confidence: ""+str(model_confidence_per)+str('%'))
								self.log.info(""-------> model_uncertainty: ""+str(model_uncertainty_per)+str('%'))							                            
						except Exception as e:
							pass
						
						if(scoredetails != ''):
							scoredetails += ','
											
						scoredetails += '{""Model"":""'+self.modelToAlgoNames[model]+'"",""FeatureEngineering"":""'+str(modelOrFeatureBased)+'"",""Score"":'+str(score)+',""ModelUncertainty"":'+str(json.dumps(output_jsonobject))+'}'
						

            
						status,bscore,bthres,brscore,bpscore = self.getBestModel(self.MakeFP0,self.MakeFN0,threshold,bestthreshold,recallscore,bestrecallscore,precisionscore,bestprecisionscore,score,bestScore)			
						if status:
							bestScore =bscore
							bestModel =model
							bestParams=modelParams
							bestEstimator=estimator
							bestthreshold = threshold
							bestrecallscore = recallscore
							bestprecisionscore = precisionscore
						
					except Exception as inst:
						self.log.info('\n < ---------- Model Execution Failed Start--------->')
						self.log.info('\n<-------'+ modelName+' Model Execution failed!!!.'+str(inst))
						exc_type, exc_obj, exc_tb = sys.exc_info()
						fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
						self.log.info(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))
						self.log.info('\n < ---------- Model Execution Failed End --------->')
						trainingStatus = 'Error (Exception)'
				elif self.method == 'bayesopt':
					try:
						self.log.info(""-------> Optimization Method :BayesOpt"")
						self.log.info(""-------> Model Name: ""+str(modelName))
						
						opTq =OptimizationTq(algoName,paramDict,self.cvSplit,self.scoreParam,self.numIter,self.trainX,self.trainY)
						fun=opTq.f
						trials = Trials()
						start = time.time()
						
						best = fmin(fun,paramDict,algo=tpe.suggest, max_evals=self.numIter, trials=trials)
						executionTime=time.time() - start
						results = sorted(trials.results, key = lambda x: x['loss'])
						
						bestresult=results[0]
						model=bestresult['model']
						score=bestresult['score']
						modelParams=bestresult['params']
						
						executionTime=time.time() - start
						res = ', '.join(""{!s}={!r}"".format(key,val) for (key,val) in modelParams.items())
						
						modelObj=eval(model+'('+res+')')
						
						estimator = modelObj.fit(self.trainX,self.trainY)
						if not self.testX.empty:                        
							predictedData = estimator.predict(self.testX)
							score = objClf.get_score(self.scoreParam,self.testY,predictedData)	
                           
						problemName = estimator.__class__.__name__
						runName = algoName + '_' + modelOrFeatureBased
						metrices = {}
						metrices[""score""] = score
						try:
							self.logMlflow(runName, modelParams, metrices, estimator, algoName)
						except Exception as e:
							self.log.info('----------> ML Flow error!!!. ' + str(e))  # usnish
							pass
						output_jsonobject = """"
						problemName = estimator.__class__.__name__
						self.log.info('----------> Testing Score: '+str(score))
						try:
							if ((estimator.__class__.__name__ == ""ABCMeta"") or (model in ['SGDClassifier','XGBClassifier','CatBoostClassifier','LGBMClassifier']) ):
								self.log.info('-----> Model Uncertainty Not Supported')
							else:
								uqObj=aionUQ(None,None,None,problemName,modelParams,estimator,None,None,self.deployLocation)
								accuracy,uq_ece,output_jsonobject,model_confidence_per,model_uncertainty_per=uqObj.uqMain_BBMClassification(self.uq_x_train,self.uq_x_test,self.uq_y_train,self.uq_y_test,""aionuq"")
								self.log.info(""-------> model_confidence: ""+str(model_confidence_per)+str('%'))
								self.log.info(""-------> model_uncertainty: ""+str(model_uncertainty_per)+str('%'))							                            
						except:
							pass
                            
						if(scoredetails != ''):
							scoredetails += ','
											
						scoredetails += '{""Model"":""'+self.modelToAlgoNames[model]+'"",""FeatureEngineering"":""'+str(modelOrFeatureBased)+'"",""Score"":'+str(score)+',""ModelUncertainty"":'+str(json.dumps(output_jsonobject))+'}'
						
						'''
						test_accuracy = accuracy_score(self.testY,predictedData)
						test_precision = precision_score(self.testY,predictedData,average='macro')
						self.log.info('---------> Test Accuracy: '+str(test_accuracy))
						self.log.info('---------> Test Precision: '+str(test_precision))
						'''
						import numpy as np
						if self.MakeFP0:
							self.log.info('-------- Calculate Threshold for FP Start-------')
							startRange = 0.0
							endRange = 1.0
							stepsize = 0.01	
							threshold_range = np.arange(startRange,endRange,stepsize)
							threshold,precisionscore,recallscore = self.check_threshold(estimator,self.testX,self.testY,threshold_range,'FP',algoName)
							self.log.info('-------- Calculate Threshold for FP End-------')
						if self.MakeFN0:
							self.log.info('-------- Calculate Threshold for FN Start-------')
							startRange = 1.0
							endRange = 0.0
							stepsize = -0.01	
							threshold_range = np.arange(startRange,endRange,stepsize)
							threshold,precisionscore,recallscore = self.check_threshold(estimator,self.testX,self.testY,threshold_range,'FN',algoName)
							self.log.info('-------- Calculate Threshold for FN End-------')
						self.log.info('---------> Total Execution: '+str(executionTime)+'\n')
						status,bscore,bthres,brscore,bpscore = self.getBestModel(self.MakeFP0,self.MakeFN0,threshold,bestthreshold,recallscore,bestrecallscore,precisionscore,bestprecisionscore,score,bestScore)			
						if status:
							bestScore =score
							bestModel =model
							bestParams=modelParams
							res = ', '.join(""{!s}={!r}"".format(key,val) for (key,val) in bestParams.items())
							modelObj=eval(bestModel+'('+res+')')
							bestEstimator=estimator
							bestthreshold = threshold
							bestrecallscore = recallscore
							bestprecisionscore = precisionscore
					except Exception as inst:
						self.log.info('\n < ---------- Model Execution Failed Start--------->')
						self.log.info('\n<-------'+ modelName+' Model Execution failed!!!.'+str(inst))
						self.log.info('\n < ---------- Model Execution Failed End --------->')
						trainingStatus = 'Error (Exception)'						
				else:
					trainingStatus = 'Error (HyperTunning Algo Not Supported)'
					pass
				self.log.info('Status:-  |... ML Algorithm applied: '+modelName)
				if trainingStatus.lower() == 'success':
					self.log.info('Status:-   |... Score after hyperparameter tuning: '+objClf.get_print_score(self.scoreParam)+'='+str(round(score,2))+'\n')
				else:
					self.log.info('Status:-   |... Training Error : '+trainingStatus+'\n')					
			self.log.info('---------- ClassifierModel End ---------- \n')
			if bestModel != 'None':
				self.log.info('\n------- Best Model and its parameters -------------')
				self.log.info('Status:-  |... Best Algorithm selected: '+str(self.modelToAlgoNames[bestModel])+' Score='+str(round(bestScore,2)))
				self.log.info(""-------> Best Name: ""+str(bestModel))
				self.log.info(""-------> Best Score: ""+str(bestScore))
				return self.modelToAlgoNames[bestModel],bestParams,bestScore,bestEstimator,scoredetails,bestthreshold,bestprecisionscore,bestrecallscore
			else:
				raise Exception(""Sorry, no model is trained"")
				
		except Exception as inst:
			self.log.info( '\n-----> ClassifierModel failed!!!.'+str(inst))
			exc_type, exc_obj, exc_tb = sys.exc_info()
			fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
			self.log.info(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))"
aion_matrix.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import warnings
warnings.filterwarnings('ignore')
import pandas as pd
from sklearn.metrics import confusion_matrix
from sklearn.metrics import classification_report
from sklearn.metrics import roc_curve, auc
from sklearn.metrics import roc_auc_score
from sklearn.metrics import accuracy_score
from sklearn.metrics import r2_score
from sklearn.metrics import mean_absolute_error,make_scorer
from sklearn.metrics import mean_squared_error
from sklearn.metrics import recall_score
from sklearn.metrics import precision_score
from sklearn.metrics import f1_score
import logging
import numpy as np
from sklearn.preprocessing import binarize
from sklearn.preprocessing import LabelBinarizer
from sklearn.metrics import r2_score
from sklearn.metrics import mean_absolute_error,make_scorer
from sklearn.metrics import mean_squared_error
class aion_matrix:
	def __init__(self):
		self.log = logging.getLogger('eion')
		
	def get_print_score(self,matrix):
		if 'accuracy' in str(matrix).lower():
			return 'Accuracy'
		elif 'recall' in str(matrix).lower():
			return 'Recall'
		elif 'precision' in str(matrix).lower():
			return 'Precision'	
		elif 'f1_score' in str(matrix).lower():
			return 'F1_Score'
		elif 'roc_auc' in str(matrix).lower():
			return 'ROC_AUC' 	
		elif 'mse' in str(matrix).lower() or 'neg_mean_squared_error' in str(matrix).lower():
			return 'Mean Squared Error(MSE)'
		elif 'rmse' in str(matrix).lower() or 'neg_root_mean_squared_error' in str(matrix).lower(): 
			return 'Root Mean Suared Error(RMSE)'
		elif 'mae' in str(matrix).lower() or 'neg_mean_absolute_error' in str(matrix).lower():
			return 'Mean Absolute Error (MAE)'
		elif 'r2' in str(matrix).lower():
			return 'R-Squared(R2)'
		else:
			return 'Unknown'

	def get_score(self,matrix,actual,predict):
		if 'accuracy' in str(matrix).lower():
			ensemble_score = accuracy_score(actual,predict)
			ensemble_score = ensemble_score*100
		elif 'recall' in str(matrix).lower():
			ensemble_score = recall_score(actual,predict,average='macro')
			ensemble_score = ensemble_score*100
		elif 'precision' in str(matrix).lower():
			ensemble_score = precision_score(actual,predict,average='macro')
			ensemble_score = ensemble_score*100
		elif 'f1_score' in str(matrix).lower():
			ensemble_score = f1_score(actual,predict, average='macro') 
			ensemble_score = ensemble_score*100
		elif 'roc_auc' in str(matrix).lower():
			try:
				ensemble_score = roc_auc_score(actual,predict,average=""macro"")
			except:   
				try:
					actual = pd.get_dummies(actual)
					predict = pd.get_dummies(predict)            
					ensemble_score = roc_auc_score(actual,predict, average='weighted', multi_class='ovr')
				except:
					ensemble_score = 0
			ensemble_score = ensemble_score*100
		elif ('mse' in str(matrix).lower()) or ('neg_mean_squared_error' in str(matrix).lower()):
			ensemble_score = mean_squared_error(actual,predict)
		elif ('rmse' in str(matrix).lower()) or ('neg_root_mean_squared_error' in str(matrix).lower()):
			ensemble_score=mean_squared_error(actual,predict,squared=False)
		elif ('mae' in str(matrix).lower()) or ('neg_mean_absolute_error' in str(matrix).lower()):
			ensemble_score=mean_absolute_error(actual,predict)
		elif 'r2' in str(matrix).lower():
			ensemble_score=r2_score(actual,predict)
		return round(ensemble_score,2)
	def getClassificationPerformaceMatrix(self,le_trainY,predictedData,labelMaps):
	
		setOfyTrue = set(le_trainY)
		unqClassLst = list(setOfyTrue)
		if(str(labelMaps) != '{}'):
			inv_mapping_dict = {v: k for k, v in labelMaps.items()}
			unqClassLst2 = (pd.Series(unqClassLst)).map(inv_mapping_dict)
			unqClassLst2 = list(unqClassLst2)
		else:
			unqClassLst2 = 	unqClassLst
		indexName = []
		columnName = []
		targetnames=[]
		for item in unqClassLst2:
			indexName.append(""act:""+str(item))
			columnName.append(""pre:""+str(item))
			targetnames.append(str(item))
		
		matrixconfusion = pd.DataFrame(confusion_matrix(le_trainY,predictedData, labels = unqClassLst),index = indexName, columns = columnName)
		#pd.set_option('expand_frame_repr', False)
		pd.set_option('display.max_columns',len(targetnames)+2)
		self.log.info('-------> Confusion Matrix: ')
		self.log.info(matrixconfusion)
		pd.reset_option('display.max_columns')
		#pd.reset_option('expand_frame_repr')
		#self.log.info('-------> Confusion Matrix With Labels: ')
		#self.log.info(confusion_matrix(le_trainY,predictedData, labels = unqClassLst))
		#print(unqClassLst2)
		classificationreport = pd.DataFrame(classification_report(le_trainY, predictedData, labels = unqClassLst,target_names=targetnames,output_dict=True)).transpose()
		self.log.info('-------> Classification Report: ')
		self.log.info(classificationreport)
		lb = LabelBinarizer()
		lb.fit(le_trainY)
		transformTarget= lb.transform(le_trainY)
		transformPredict = lb.transform(predictedData)
		rocaucscore = roc_auc_score(transformTarget,transformPredict,average=""macro"")
		self.log.info('-------> ROC AUC SCORE :'+str(rocaucscore))
		matrixconfusion = matrixconfusion.to_json(orient='index')
		classificationreport = classificationreport.to_json(orient='index')
		matrix = '""ConfusionMatrix"":'+matrixconfusion+',""ClassificationReport"":'+classificationreport+',""ROC_AUC_SCORE"":'+str(rocaucscore)
		return(matrix)
		
	def get_regression_matrix(self,targetData,predictedData):
		r2score=r2_score(targetData, predictedData)
		self.log.info('-------> R2_score :'+str(r2score))
		meanabsoluteerror=(mean_absolute_error(targetData, predictedData))
		self.log.info('-------> MAE :'+str(meanabsoluteerror))
		meanssquatederror=mean_squared_error(targetData, predictedData)
		self.log.info('-------> MSE :'+str(meanssquatederror))
		rootmeanssquatederror=mean_squared_error(targetData, predictedData,squared=False)
		self.log.info('-------> RMSE :'+str(rootmeanssquatederror))
		targetArray, predictedArray = np.array(targetData), np.array(predictedData)
		try:
			EPSILON =  1e-10
			meanpercentageerror=np.mean(np.abs((targetArray - predictedArray) / (targetArray+EPSILON)))*100
		except ZeroDivisionError:
			meanpercentageerror = 0
		self.log.info('-------> MAPE :'+str(meanpercentageerror))
		try:
			normalised_rmse_percentage = round(((rootmeanssquatederror/ ( np.max(targetData) - np.min(targetData) )) * 100), 4)
		except Exception as e: 
			normalised_rmse_percentage = -1
		self.log.info('-------> Normalised RMSE percentage :'+str(normalised_rmse_percentage))
		matrix = '""MAE"":'+str(meanabsoluteerror)+',""R2Score"":'+str(r2score)+',""MSE"":'+str(meanssquatederror)+',""MAPE"":'+str(meanpercentageerror)+',""RMSE"":'+str(rootmeanssquatederror)+',""Normalised RMSE(%)"":'+str(normalised_rmse_percentage)
		return matrix
		
	def getbestfeatureModel(self,modelType,scoreParam,score1,score2,model1,model2,threshold1,pscore1,rscore1,threshold2,pscore2,rscore2):
		best_feature_model = 'Model1'
		self.log.info('\n ---------- Summary Start ------------')
		if modelType.lower() == ""classification"":
			if(threshold1 == -1 and threshold2 == -1):
				if score1> score2:
					self.log.info('-------> Best Features: Model1')
					self.log.info('-------> Best Model: '+str(model1))
					self.log.info('-------> Best Score: '+str(score1))
					self.log.info('-------> Scoring Param: '+str(scoreParam))
					best_feature_model = 'Model1'
				else:
					self.log.info('-------> Best Features: Model2')
					self.log.info('-------> Best Model: '+str(model2))
					self.log.info('-------> Best Score: '+str(score2))
					self.log.info('-------> Scoring Param: '+str(scoreParam))
					best_feature_model = 'Model2'	
			elif(threshold1 == -1):
				self.log.info('-------> Best Features: Model2')
				self.log.info('-------> Best Model: '+str(model2))
				self.log.info('-------> Best Score: '+str(score2))
				self.log.info('-------> Scoring Param: '+str(scoreParam))
				best_feature_model = 'Model2'	
			elif(threshold1 == -2):
				self.log.info('-------> Best Features: Model1')
				self.log.info('-------> Best Model: '+str(model1))
				self.log.info('-------> Best Score: '+str(score1))
				self.log.info('-------> Scoring Param: '+str(scoreParam))
				best_feature_model = 'Model1'
			else:
				if pscore1 == pscore2:
					if rscore1 > rscore2:
						self.log.info('-------> Best Features: Model1')
						self.log.info('-------> Best Model: '+str(model1))
						self.log.info('-------> Best Score: '+str(score1))
						self.log.info('-------> Scoring Param: '+str(scoreParam))
						best_feature_model = 'Model1'
					else:
						self.log.info('-------> Best Features: Model2')
						self.log.info('-------> Best Model: '+str(model2))
						self.log.info('-------> Best Score: '+str(score2))
						self.log.info('-------> Scoring Param: '+str(scoreParam))
						best_feature_model = 'Model2'	
				elif rscore1 == rscore2:
					if pscore1 > pscore2:
						self.log.info('-------> Best Features: Model1')
						self.log.info('-------> Best Model: '+str(model1))
						self.log.info('-------> Best Score: '+str(score1))
						self.log.info('-------> Scoring Param: '+str(scoreParam))
						best_feature_model = 'Model1'
					else:
						self.log.info('-------> Best Features: Model2')
						self.log.info('-------> Best Model: '+str(model2))
						self.log.info('-------> Best Score: '+str(score2))
						self.log.info('-------> Scoring Param: '+str(scoreParam))
						best_feature_model = 'Model2'	
						
		elif modelType.lower() == ""regression"":
			if scoreParam == ""r2"" or scoreParam == ""explained_variance"":
				if score1> score2 :
					self.log.info('-------> Best Features: Model1')
					self.log.info('-------> Best Model: '+str(model1))
					self.log.info('-------> Best Score: '+str(score1))
					self.log.info('-------> Scoring Param: '+str(scoreParam))
					best_feature_model = 'Model1'
				else:
					self.log.info('-------> Best Features: Model2')
					self.log.info('-------> Best Model: '+str(model2))
					self.log.info('-------> Best Score: '+str(score2))
					self.log.info('-------> Scoring Param: '+str(scoreParam))
					best_feature_model = 'Model2'	
			else:
				if score1< score2 :
					self.log.info('-------> Best Features: Model1')
					self.log.info('-------> Best Model: '+str(model1))
					self.log.info('-------> Best Score: '+str(score1))
					self.log.info('-------> Scoring Param: '+str(scoreParam))
					best_feature_model = 'Model1'
				else:
					self.log.info('-------> Best Features: Model2')
					self.log.info('-------> Best Model: '+str(model2))
					self.log.info('-------> Best Score: '+str(score2))
					self.log.info('-------> Scoring Param: '+str(scoreParam))
					best_feature_model = 'Model2'	
		self.log.info('---------- Summary End ------------\n')
		return(best_feature_model)
		
	def check_threshold(self,estimator,testX,testY,threshold_range,checkParameter,modelName):
		thresholdx = -1
		for threshold in threshold_range:
			predictedData = estimator.predict_proba(testX)
			predictedData = binarize(predictedData[:,1].reshape(-1, 1),threshold=threshold)#bug 12437
			p_score = precision_score(testY, predictedData) 
			#self.log.info('-------------> Precision:'+str(p_score))
			r_score = recall_score(testY, predictedData)
			#self.log.info('-------------> Rscore:'+str(r_score))
			#self.log.info(confusion_matrix(testY, predictedData))
			tn, fp, fn, tp = confusion_matrix(testY, predictedData).ravel()
			if(checkParameter.lower() == 'fp'):
				if fp == 0:
					if(p_score == 1):
						thresholdx = threshold
						self.log.info('---------------> Best Threshold:'+str(threshold))
						self.log.info('---------------> Best Precision:'+str(p_score))
						self.log.info('---------------> Best Recall:'+str(r_score))
						self.log.info('---------------> TN:'+str(tn))
						self.log.info('---------------> FP:'+str(fp))
						self.log.info('---------------> FN:'+str(fn))
						self.log.info('---------------> TP:'+str(tp))
						break
			
			if(checkParameter.lower() == 'fn'):
				if fn == 0:
					if(r_score == 1):
						thresholdx = threshold
						self.log.info('---------------> Best Threshold:'+str(threshold))
						self.log.info('---------------> Best Precision:'+str(p_score))
						self.log.info('---------------> Best Recall:'+str(r_score))
						self.log.info('---------------> TN:'+str(tn))
						self.log.info('---------------> FP:'+str(fp))
						self.log.info('---------------> FN:'+str(fn))
						self.log.info('---------------> TP:'+str(tp))
						break
		return(thresholdx,p_score,r_score)
		
	def getBestModel(self,fp0,fn0,threshold,bestthreshold,rscore,brscore,pscore,bpscore,tscore,btscore):
		cmodel = False 
		if(threshold != -1):
			if(bestthreshold == -1):
				cmodel = True
				bestthreshold = threshold
				brscore = rscore
				bpscore = pscore
				btscore = tscore	
			elif fp0:
				if rscore > brscore:	
					cmodel = True
					bestthreshold = threshold
					brscore = rscore
					bpscore = pscore
					btscore = tscore	
				elif rscore == brscore:
					if tscore > btscore or btscore == -0xFFFF:	
						cmodel = True
						bestthreshold = threshold
						brscore = rscore
						bpscore = pscore
						btscore = tscore	
			elif fn0:
				if pscore > bpscore:	
					cmodel = True
					bestthreshold = threshold
					brscore = rscore
					bpscore = pscore
					btscore = tscore	
				elif pscore == bpscore:
					if tscore > btscore or btscore == -0xFFFF:	
						cmodel = True
						bestthreshold = threshold
						brscore = rscore
						bpscore = pscore
						btscore = tscore	
			else:
				if tscore > btscore or btscore == -0xFFFF:	
					cmodel = True	
					btscore = tscore
		else:
			if(bestthreshold == -1):
				if tscore > btscore or btscore == -0xFFFF:	
					cmodel = True
					btscore = tscore
		
		return cmodel,btscore,bestthreshold,brscore,bpscore"
ImageLearning.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import os
import tensorflow
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout, Flatten
from tensorflow.keras.layers import Conv2D, MaxPooling2D
from tensorflow.keras.utils import to_categorical
from tensorflow.keras.preprocessing import image
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from tensorflow.keras.layers import Input
from tensorflow.keras.models import Model
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.applications import VGG16
from tensorflow.keras.callbacks import EarlyStopping
import logging
from sklearn.preprocessing import LabelEncoder
from statistics import mean 
import sys
from learner.machinelearning import machinelearning
from learner.aion_matrix import aion_matrix
from profiler.imageAug import ImageAugmentation
from pathlib import Path


class ImageLearning:
	def __init__(self,dataFrame,input_directory,outputdir,modelname,hyperParam, AugEnabled,keepAugImages,operations,augConf):
		self.image_list = dataFrame
		self.input_directory = input_directory
		self.outputdir = outputdir
		self.modelname = modelname
		self.hyperParam = hyperParam
		self.labelMapping={}
		self.log = logging.getLogger('eion')
		self.AIONNumericDtypes=['int16', 'int32', 'int64', 'float16', 'float32', 'float64']	
		self.AugEnabled = AugEnabled
		self.keepAugImages = keepAugImages        
		self.operations = operations
		self.augConf = augConf

	def TrainCAST(self,predicted_data_file):
		
		datatype = self.image_list['Label'].dtypes
		if datatype not in 	self.AIONNumericDtypes:
			labelEncode= LabelEncoder()
			self.image_list['Label'] = self.image_list['Label'].apply(str)
			self.image_list['Label'] = labelEncode.fit_transform(self.image_list['Label'])
			self.labelMapping = dict(zip(labelEncode.classes_, labelEncode.transform(labelEncode.classes_)))
			self.log.info('\n-------> First Ten Rows of Input Data After Encoding: ')
			self.log.info(self.image_list.head(10))
			self.log.info('Status:- |... Target Feature Encoding Done')
		if not os.path.exists(self.outputdir):
			os.makedirs(self.outputdir)
		train_df, test_df = train_test_split(self.image_list, random_state=42, test_size=self.hyperParam['test_split_ratio'])
		if self.AugEnabled:
			csv_file = ""tempTrainDf.csv""
			train_df.to_csv(csv_file, index=False)
			ia = ImageAugmentation(self.input_directory, csv_file)
			csv_file = ia.augment(""imageclassification"", self.operations,None,self.augConf)
			train_df = pd.read_csv(csv_file)
			Path(csv_file).unlink()
		train_image = []
		train_df.reset_index(drop=True, inplace=True)
		for i in range(train_df.shape[0]):
			#print(os.path.join(self.input_directory,str(self.image_list['File'][i])))
			img = image.load_img(os.path.join(self.input_directory,str(train_df['File'][i])), target_size=(self.hyperParam['img_width'],self.hyperParam['img_height'],self.hyperParam['img_channel']), grayscale=False)
			img = image.img_to_array(img)
			img = img/255
			train_image.append(img)
		test_image = []
		test_df.reset_index(drop=True, inplace=True)
		for i in range(test_df.shape[0]):
			#print(os.path.join(self.input_directory,str(self.image_list['File'][i])))
			img = image.load_img(os.path.join(self.input_directory,str(test_df['File'][i])), target_size=(self.hyperParam['img_width'],self.hyperParam['img_height'],self.hyperParam['img_channel']), grayscale=False)
			img = image.img_to_array(img)
			img = img/255
			test_image.append(img)
		self.log.info('Status:- |... Image Loading Done')
		X_train = np.array(train_image)
		y_train = train_df['Label']
		X_test = np.array(test_image)
		y_test = test_df['Label']
		ytrain = y_train.values
		ytrain = to_categorical(ytrain)
		ytest = y_test.values
		ytest = to_categorical(ytest)
		#print(y)		
		
		self.log.info(""Loading Imagenet Weights..."")
    
		if self.modelname == ""densenet"":
			self.log.info('Loading Densenet model')
			baseModel = tensorflow.keras.applications.DenseNet121(weights=""imagenet"", include_top=False, input_tensor=Input(shape=(self.hyperParam['img_width'], self.hyperParam['img_height'], self.hyperParam['img_channel']))) #98
		elif self.modelname == ""inception"":
			self.log.info('Loading Inception model')
			baseModel = tensorflow.keras.applications.InceptionV3(weights=""imagenet"", include_top=False, input_tensor=Input(shape=(self.hyperParam['img_width'], self.hyperParam['img_height'], self.hyperParam['img_channel']))) #97

		headModel = baseModel.output
		headModel = Flatten(name=""flatten"")(headModel)
		headModel = Dense(1024, activation='relu')(headModel)
		headModel = Dropout(0.5)(headModel)
		headModel = Dense(2, activation='sigmoid')(headModel)

		model = Model(inputs=baseModel.input, outputs=headModel)

		self.log.info(""[INFO] compiling model..."")
		opt = Adam(lr=self.hyperParam['lr'])
		model.compile(loss=""binary_crossentropy"", optimizer=opt, metrics=[""accuracy""])
		#early_stop = EarlyStopping(monitor='val_loss',patience=2)
		#history = model.fit(X_train, y_train, epochs=hyperparam_config['epochs'], validation_data=(X_test, y_test), callbacks=[early_stop])
		history = model.fit(X_train, ytrain, epochs=self.hyperParam['epochs'], validation_data=(X_test, ytest))
		self.log.info('Status:- |... Image Classification Algorithm applied:'+str(self.modelname))
		#Saving trained model weights
		model.save_weights(os.path.join(self.outputdir, self.modelname))
		saved_model = self.modelname
		modelname = self.modelname
		prediction = model.predict(X_train)
		predictedData = np.argmax(prediction,axis=1)
		mlobj = machinelearning()
		self.log.info('\n--------- Performance Matrix with Train Data ---------')
		trainingperformancematrix = mlobj.getClassificationPerformaceMatrix(y_train, predictedData,self.labelMapping)
		prediction = model.predict(X_test)
		predictedData = np.argmax(prediction,axis=1)
		self.log.info('\n--------- Performance Matrix with Test Data ---------')
		performancematrix = mlobj.getClassificationPerformaceMatrix(y_test, predictedData,self.labelMapping)
		df_test = pd.DataFrame()
		df_test['actual'] = y_test
		df_test['predict'] = predictedData
		df_test.to_csv(predicted_data_file)
		objClf = aion_matrix()
		scoring_param = 'Accuracy'
		score = objClf.get_score(scoring_param,y_test,predictedData)
		#score = mean(history.history['accuracy'])
		if self.AugEnabled and not self.keepAugImages:
			ia.removeAugmentedImages(train_df)
		scoredetails = '{""Model"":""'+modelname+'"",""Score"":'+str(round(score,2))+'}'
		self.log.info('Status:- |... Score Accuracy: '+str(round(score,2)))
		return saved_model,modelname,'ImageClassification',scoring_param,score,scoredetails,self.labelMapping,trainingperformancematrix,performancematrix
"
image_eda.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import warnings
warnings.simplefilter(""ignore"")
import os
import numpy as np
from numpy import asarray
import cv2
import sys
import random
import glob as glob
import math as m

# for gamma function, called 
from scipy.special import gamma as tgamma

import matplotlib.image as mpimg
import skimage
from libsvm import svmutil,svm
#import svmutil
from svmutil import *
from svm import *

from PIL import Image
from collections import Counter
from imutils import paths
import matplotlib.pyplot as plt

import json


###################################################################################
#Input -  # AGGD fit model, takes input as the MSCN Image / Pair-wise Product
#Output - best values of image parameters 
#Defination - used as internal method to measure_ImageQualityScore
###################################################################################
    
   
def AGGDfit(structdis):
    # variables to count positive pixels / negative pixels and their squared sum
    poscount = 0
    negcount = 0
    possqsum = 0
    negsqsum = 0
    abssum   = 0

    poscount = len(structdis[structdis > 0]) # number of positive pixels
    negcount = len(structdis[structdis < 0]) # number of negative pixels
    
    # calculate squared sum of positive pixels and negative pixels
    possqsum = np.sum(np.power(structdis[structdis > 0], 2))
    negsqsum = np.sum(np.power(structdis[structdis < 0], 2))
    
    # absolute squared sum
    abssum = np.sum(structdis[structdis > 0]) + np.sum(-1 * structdis[structdis < 0])

    # calculate left sigma variance and right sigma variance
    lsigma_best = np.sqrt((negsqsum/negcount))
    rsigma_best = np.sqrt((possqsum/poscount))

    gammahat = lsigma_best/rsigma_best
    
    # total number of pixels - totalcount
    totalcount = structdis.shape[1] * structdis.shape[0]

    rhat = m.pow(abssum/totalcount, 2)/((negsqsum + possqsum)/totalcount)
    rhatnorm = rhat * (m.pow(gammahat, 3) + 1) * (gammahat + 1)/(m.pow(m.pow(gammahat, 2) + 1, 2))
    
    prevgamma = 0
    prevdiff  = 1e10
    sampling  = 0.001
    gam = 0.2

    # vectorized function call for best fitting parameters
    vectfunc = np.vectorize(func, otypes = [np.float], cache = False)
    
    # calculate best fit params
    gamma_best = vectfunc(gam, prevgamma, prevdiff, sampling, rhatnorm)

    return [lsigma_best, rsigma_best, gamma_best] 

def func(gam, prevgamma, prevdiff, sampling, rhatnorm):
    while(gam < 10):
        r_gam = tgamma(2/gam) * tgamma(2/gam) / (tgamma(1/gam) * tgamma(3/gam))
        diff = abs(r_gam - rhatnorm)
        if(diff > prevdiff): break
        prevdiff = diff
        prevgamma = gam
        gam += sampling
    gamma_best = prevgamma
    return gamma_best

def compute_features(img):
    scalenum = 2
    feat = []
    # make a copy of the image 
    im_original = img.copy()

    # scale the images twice 
    for itr_scale in range(scalenum):
        im = im_original.copy()
        # normalize the image
        im = im / 255.0

        # calculating MSCN coefficients
        mu = cv2.GaussianBlur(im, (7, 7), 1.166)
        mu_sq = mu * mu
        sigma = cv2.GaussianBlur(im*im, (7, 7), 1.166)
        sigma = (sigma - mu_sq)**0.5
        
        # structdis is the MSCN image
        structdis = im - mu
        structdis /= (sigma + 1.0/255)
        
        # calculate best fitted parameters from MSCN image
        best_fit_params = AGGDfit(structdis)
        # unwrap the best fit parameters 
        lsigma_best = best_fit_params[0]
        rsigma_best = best_fit_params[1]
        gamma_best  = best_fit_params[2]
        
        # append the best fit parameters for MSCN image
        feat.append(gamma_best)
        feat.append((lsigma_best*lsigma_best + rsigma_best*rsigma_best)/2)

        # shifting indices for creating pair-wise products
        shifts = [[0,1], [1,0], [1,1], [-1,1]] # H V D1 D2

        for itr_shift in range(1, len(shifts) + 1):
            OrigArr = structdis
            reqshift = shifts[itr_shift-1] # shifting index

            # create transformation matrix for warpAffine function
            M = np.float32([[1, 0, reqshift[1]], [0, 1, reqshift[0]]])
            ShiftArr = cv2.warpAffine(OrigArr, M, (structdis.shape[1], structdis.shape[0]))
            
            Shifted_new_structdis = ShiftArr
            Shifted_new_structdis = Shifted_new_structdis * structdis
            # shifted_new_structdis is the pairwise product 
            # best fit the pairwise product 
            best_fit_params = AGGDfit(Shifted_new_structdis)
            lsigma_best = best_fit_params[0]
            rsigma_best = best_fit_params[1]
            gamma_best  = best_fit_params[2]

            constant = m.pow(tgamma(1/gamma_best), 0.5)/m.pow(tgamma(3/gamma_best), 0.5)
            meanparam = (rsigma_best - lsigma_best) * (tgamma(2/gamma_best)/tgamma(1/gamma_best)) * constant

            # append the best fit calculated parameters            
            feat.append(gamma_best) # gamma best
            feat.append(meanparam) # mean shape
            feat.append(m.pow(lsigma_best, 2)) # left variance square
            feat.append(m.pow(rsigma_best, 2)) # right variance square
        
        # resize the image on next iteration
        im_original = cv2.resize(im_original, (0,0), fx=0.5, fy=0.5, interpolation=cv2.INTER_CUBIC)
    return feat
       
def img_MeasureImageQuality(dataset_directory):
    """"""
    ####################################################################################
    #Input -  img_path
    #Output - Quality index of input image 
    #Defination - function to calculate BRISQUE quality score in range of 0 and 100 [0:good;100:bad]
    ####################################################################################
    """"""
    imgfile_dict = {}
    for file in os.listdir(dataset_directory):
        if (file.endswith("".jfif"") or file.endswith("".png"") or file.endswith("".jpg"") or file.endswith("".jpeg"")):
            filename = os.path.join(dataset_directory , file)
            if os.path.isfile(filename)==False:
                
                sys.exit()            
          
            file_extension = os.path.splitext(filename)[1]
    
            if file_extension=="".jfif"":
                extension="".jfif""            
        
            if file_extension=="".png"":
                extension="".png""            
        
            if file_extension=="".jpg"":
                extension="".jpg""
    
            if file_extension=="".jpeg"":
                extension="".jpeg""
       
        
            if (extension not in ["".jpg"","".jpeg"","".jfif"","".png""]):
                
                sys.exit()
         
            try:     
            # read image from given path
                dis = cv2.imread(filename, 1)
                if(dis is None):
                    sys.exit(0)
                # convert to gray scale
                dis = cv2.cvtColor(dis, cv2.COLOR_BGR2GRAY)
    
                # compute feature vectors of the image
                features = compute_features(dis)
   
                # rescale the brisqueFeatures vector from -1 to 1
                x = [0]
        
                # pre loaded lists from C++ Module to rescale brisquefeatures vector to [-1, 1]
                min_= [0.336999 ,0.019667 ,0.230000 ,-0.125959 ,0.000167 ,0.000616 ,0.231000 ,-0.125873 ,0.000165 ,0.000600 ,0.241000 ,-0.128814 ,0.000179 ,0.000386 ,0.243000 ,-        0.133080 ,0.000182 ,0.000421 ,0.436998 ,0.016929 ,0.247000 ,-0.200231 ,0.000104 ,0.000834 ,0.257000 ,-0.200017 ,0.000112 ,0.000876 ,0.257000 ,-0.155072 ,        0.000112 ,0.000356 ,0.258000 ,-0.154374 ,0.000117 ,0.000351]
            
                max_= [9.999411, 0.807472, 1.644021, 0.202917, 0.712384, 0.468672, 1.644021, 0.169548, 0.713132, 0.467896, 1.553016, 0.101368, 0.687324, 0.533087, 1.554016, 0.101000        , 0.689177, 0.533133, 3.639918, 0.800955, 1.096995, 0.175286, 0.755547, 0.399270, 1.095995, 0.155928, 0.751488, 0.402398, 1.041992, 0.093209, 0.623516,         0.532925, 1.042992, 0.093714, 0.621958, 0.534484]
    
                # append the rescaled vector to x 
                for i in range(0, 36):
                    min = min_[i]
                    max = max_[i] 
                    x.append(-1 + (2.0/(max - min) * (features[i] - min)))
                modelPath = os.path.join(os.path.dirname(os.path.abspath(__file__)),'allmodel.txt')         
                # load model 
                model = svmutil.svm_load_model(modelPath)
   
                # create svm node array from python list
                x, idx = gen_svm_nodearray(x[1:], isKernel=(model.param.kernel_type == PRECOMPUTED))
                x[36].index = -1 # set last index to -1 to indicate the end.
    
                # get important parameters from model
                svm_type = model.get_svm_type()
                is_prob_model = model.is_probability_model()
                nr_class = model.get_nr_class()
        
                if svm_type in (ONE_CLASS, EPSILON_SVR, NU_SVC):
                    # here svm_type is EPSILON_SVR as it's regression problem
                    nr_classifier = 1
                dec_values = (c_double * nr_classifier)()
        
                # calculate the quality score of the image using the model and svm_node_array
                qualityscore = svmutil.libsvm.svm_predict_probability(model, x, dec_values)
                imgfile_dict[file] = round(qualityscore,2)
                #print (""Quality Score of the given image is: "", qualityscore, ""[0:Good;100:Bad]"")
            except:
                pass
            finally:
                warnings.simplefilter(""ignore"")
    #print(imgfile_dict)
    return imgfile_dict

# calculate moode
def mode(arr):
    if arr==[]:
        return None
    else:
        return max(set(arr), key=arr.count)

def img_EDA(dataset_directory):
    
    """"""
    ####################################################################################
    #Input - dataset_directory with all type of Images
    #Output -  mean,median and mode image size, channels type, extensions, recommendation of images etc
    #Defination - img_EDA takes the all images and print the EDA results
    #################################################################################### 

    """"""
    imgeda_dict = {}
    # check input directory
    
    if os.path.isdir(dataset_directory)==False:
        print(""folder does not exist"")
        sys.exit()  
    
    width_list=[]
    height_list=[]
    k=[]
    c=[]
    cnum=[]
    v=[] 
    ext=[]               
    cnt=0
    for item in os.listdir(dataset_directory):
        if (item.endswith("".jfif"") or item.endswith("".png"") or item.endswith("".jpg"") or item.endswith("".jpeg"")):
            if os.path.isfile(os.path.join(dataset_directory , item)):
		
                im = Image.open(os.path.join(dataset_directory , item))
                c.append(im.mode)
                cnum.append(len(im.mode))
                width_list.append(im.width)
                height_list.append(im.height)
                k.append(im.size)
                v.append(im.width*im.height)
                f, e = os.path.splitext(os.path.join(dataset_directory , item))
                ext.append(e)
                cnt=cnt+1
             
    # calculate biggest and smallest image
    img_dict={}
    for key, val in zip(k, v): 
        img_dict[key] = val
        
    max_key = max(img_dict, key=img_dict.get)    
    #max_key    
    
    min_key = min(img_dict, key=img_dict.get)    
    #min_key

    imgeda_dict['Channels'] = set(c)
    imgeda_dict['Extensions'] = set(ext)
    imgeda_dict['Total_Images'] = cnt
    imgeda_dict['Smallest_Image'] = min_key
    imgeda_dict['Largest_Image'] = max_key
    imgeda_dict['Mean_Width'] = int(np.mean(width_list))
    imgeda_dict['Mean_Height'] = int(np.mean(height_list))
    imgeda_dict['Median_Width'] = int(np.median(width_list))
    imgeda_dict['Median_Height'] = int(np.median(height_list))
    imgeda_dict['Mode_Width'] = int(mode(width_list))
    imgeda_dict['Mode_Height'] = int(mode(height_list))
    imgeda_dict['Recomended_Mean_Width_Height'] = (int(np.mean(width_list)),int(np.mean(height_list)))
    imgeda_dict['Recomended_Median_Width_Height'] = (int(np.median(width_list)),int(np.median(height_list)))
    imgeda_dict['Recomended_Mode_Width_Height'] = (int(mode(width_list)),int(mode(height_list)))
    imgeda_dict['Size_Distribution'] = dict(Counter(k).items())
    imgeda_dict['Channel_Mean'] = np.mean(cnum)
    imgeda_dict['Channel_Standard_Deviation'] = np.std(cnum)
    '''   
    print('*-----------------------<<< RESULTS >>>-------------------------*')
    print()
    print('%-30s | ' % 'Channels', set(c))
    print('%-30s | ' % 'Extensions', set(ext))
    print('*---------------------------------------------------------------*')
    
    print('%-30s | ' % 'Total Images', cnt)
    
    print('%-30s | ' % 'Smallest Image', min_key)
    
    print('%-30s | ' % 'Largest Image', max_key)
    
    print('*---------------------------------------------------------------*')
    print('%-30s | ' % 'Mean Width', int(np.mean(width_list)))
    
    print('%-30s | ' % 'Mean Height', int(np.mean(height_list)))            
                
    print('*---------------------------------------------------------------*')
    print('%-30s | ' % 'Median Width', int(np.median(width_list)))
    
    print('%-30s | ' % 'Median Height', int(np.median(height_list))) 
    
    print('*---------------------------------------------------------------*')
    print('%-30s | ' % 'Mode Width', int(mode(width_list)))
    
    print('%-30s | ' % 'Mode Height', int(mode(height_list))) 
    
    print('*---------------------------------------------------------------*')
    print('%-30s | ' % 'recommended size by mean(w,h)',(int(np.mean(width_list)),int(np.mean(height_list))))
    
    print('*---------------------------------------------------------------*')
    print('%-30s | ' % 'recommended size by median(w,h)',(int(np.median(width_list)),int(np.median(height_list))))
    
    print('*---------------------------------------------------------------*')
    print('%-30s | ' % 'recommended size by mode(w,h)',(int(mode(width_list)),int(mode(height_list))))
    
    print('*---------------------------------------------------------------*')
    print('%-30s | ' % 'distribution of sizes',dict(Counter(k).items()) )
    print('*---------------------------------------------------------------*')
    print('%-30s | ' % 'channel mean',np.mean(cnum))
    print('%-30s | ' % 'channel standard deviation',np.std(cnum))
    '''            
    #print(imgeda_dict)
    return imgeda_dict


def dhash(image, hashSize=8):
    # convert the image to grayscale and resize the grayscale image,
    # adding a single column (width) so we can compute the horizontal
    # gradient
    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    resized = cv2.resize(gray, (hashSize + 1, hashSize))
    # compute the (relative) horizontal gradient between adjacent
    # column pixels
    diff = resized[:, 1:] > resized[:, :-1]
    # convert the difference image to a hash and return it
    return sum([2 ** i for (i, v) in enumerate(diff.flatten()) if v])

def img_duplicatefinder(dataset_directory):
    # grab the paths to all images in our input dataset directory and
    # then initialize our hashes dictionary
    print(""[INFO] computing image hashes..."")
    imagePaths = list(paths.list_images(dataset_directory))
    hashes = {}
    duplimg_list = []
    remove_file = 0
    # loop over our image paths
    for imagePath in imagePaths:
        # load the input image and compute the hash
        image = cv2.imread(imagePath)
        h = dhash(image)
        # grab all image paths with that hash, add the current image
        # path to it, and store the list back in the hashes dictionary
        p = hashes.get(h, [])
        p.append(imagePath)
        hashes[h] = p
		
    # loop over the image hashes
    for (h, hashedPaths) in hashes.items():
        # check to see if there is more than one image with the same hash
        if len(hashedPaths) > 1:
            #print(hashedPaths)
            duplimg_list.append(hashedPaths)


    return duplimg_list

def img_plot_colour_hist(dataset_directory):
    import io, base64, urllib
    red_values = []; green_values = []; blue_values = []; all_channels = []
    imagePaths = list(paths.list_images(dataset_directory))
    for imagePath in imagePaths:
        img = np.array(Image.open(imagePath))
        red_values.append(np.mean(img[:, :, 0]))
        green_values.append(np.mean(img[:, :, 1]))
        blue_values.append(np.mean(img[:, :, 2]))
        all_channels.append(np.mean(img))
        
    _, axes = plt.subplots(ncols=4, nrows=1, constrained_layout=True, figsize=(16, 3), sharey=True)
    for ax, column, vals, c in zip(
        axes,
        ['red', 'green', 'blue', 'all colours'],
        [red_values, green_values, blue_values, all_channels],
        'rgbk'
    ):
        ax.hist(vals, bins=100, color=c)
        ax.set_title(f'{column} hist')

    plt.suptitle(""Image Dataset Colour Distribution"")
    buf = io.BytesIO()
    plt.savefig(buf, format='png')
    buf.seek(0)
    string = base64.b64encode(buf.read())
    uri = 'data:image/png;base64,' + urllib.parse.quote(string)

    return uri"
predict.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import os
import keras
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras.utils import to_categorical
from keras.preprocessing import image
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from keras.utils import to_categorical
from Fkeras.layers import Input
from keras.models import Model
from keras.optimizers import Adam
from keras.applications import VGG16
from tensorflow.keras.callbacks import EarlyStopping
from sklearn.metrics import classification_report,confusion_matrix,precision_recall_curve
import seaborn as sns


def PredictCAST(test_csv, test_dataset_directory, load_model_dir, model_name, hparams_config_file):

    hyperparam_config = hparams_config_file['img_classifier']

    print(""[Info] loading imagenet weights..."")
    #baseModel = keras.applications.ResNet101(weights=""imagenet"", include_top=False, input_tensor=Input(shape=(128, 128, 3)))
    if model_name == ""densenet"":
        print('Loading Densenet model')
        baseModel = keras.applications.DenseNet121(weights=""imagenet"", include_top=False, input_tensor=Input(shape=(hyperparam_config['img_width'],hyperparam_config['img_height'],hyperparam_config['img_channel']))) #98
    elif model_name == ""inception"":
        print('Loading Inception model')
        baseModel = keras.applications.InceptionV3(weights=""imagenet"", include_top=False, input_tensor=Input(shape=(hyperparam_config['img_width'],hyperparam_config['img_height'],hyperparam_config['img_channel']))) #97

    headModel = baseModel.output
    headModel = Flatten(name=""flatten"")(headModel)
    headModel = Dense(1024, activation='relu')(headModel)
    headModel = Dropout(0.5)(headModel)
    headModel = Dense(2, activation='sigmoid')(headModel)

    model = Model(inputs=baseModel.input, outputs=headModel)
    print(""[INFO] compiling model..."")
    opt = Adam(lr=hyperparam_config['lr'])
    model.compile(loss=""binary_crossentropy"", optimizer=opt, metrics=[""accuracy""])

    model.load_weights(os.path.join(load_model_dir, model_name))
    #model.load_weights(load_model_dir)

    test_image = []
    
    for i in range(test_csv.shape[0]):
        img = image.load_img(test_dataset_directory + '/' + str(test_csv['file_name'][i]), target_size=(hyperparam_config['img_width'],hyperparam_config['img_height'],hyperparam_config['img_channel']), grayscale=False)
        img = image.img_to_array(img)
        img = img/255
        test_image.append(img)
    test_images = np.array(test_image)

    test_labels = test_csv['class'].values
    test_labels = to_categorical(test_labels)

    # making predictions
    prediction = model.predict(test_images)
    prediction = np.argmax(prediction,axis=1)

    print('Classification Report : ')
    print(classification_report(test_csv['class'],prediction))

    sns.heatmap(confusion_matrix(test_csv['class'],prediction),annot=True)
    plt.show()

    print('Confusion matrix : ')
    print(confusion_matrix(test_csv['class'],prediction))

    print(""[INFO] Evaluating model accuracy and loss...Take some moment..."")
    test_loss, test_acc = model.evaluate(test_images,  test_labels, verbose=2)
    print('\nTest accuracy:', test_acc)
    print('\nTest loss:', test_loss)

    print(""Prediction Completed..."")



"
__init__.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''"
predict_single.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import os
import keras
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras.utils import to_categorical
from keras.preprocessing import image
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from keras.utils import to_categorical
from keras.layers import Input
from keras.models import Model
from keras.optimizers import Adam
from keras.applications import VGG16
from tensorflow.keras.callbacks import EarlyStopping
from sklearn.metrics import classification_report,confusion_matrix,precision_recall_curve
import seaborn as sns
import cv2


def PredictCAST(test_image, load_model_dir, model_name, hparams_config_file):

    hyperparam_config = hparams_config_file['img_classifier']

    print(""[Info] loading imagenet weights..."")
    #baseModel = keras.applications.ResNet101(weights=""imagenet"", include_top=False, input_tensor=Input(shape=(128, 128, 3)))
    if model_name == ""densenet"":
        print('Loading Densenet model')
        baseModel = keras.applications.DenseNet121(weights=""imagenet"", include_top=False, input_tensor=Input(shape=(hyperparam_config['img_width'],hyperparam_config['img_height'],hyperparam_config['img_channel']))) #98
    elif model_name == ""inception"":
        print('Loading Inception model')
        baseModel = keras.applications.InceptionV3(weights=""imagenet"", include_top=False, input_tensor=Input(shape=(hyperparam_config['img_width'],hyperparam_config['img_height'],hyperparam_config['img_channel']))) #97

    headModel = baseModel.output
    headModel = Flatten(name=""flatten"")(headModel)
    headModel = Dense(1024, activation='relu')(headModel)
    headModel = Dropout(0.5)(headModel)
    headModel = Dense(2, activation='sigmoid')(headModel)

    model = Model(inputs=baseModel.input, outputs=headModel)
    print(""[INFO] compiling model..."")
    opt = Adam(lr=hyperparam_config['lr'])
    model.compile(loss=""binary_crossentropy"", optimizer=opt, metrics=[""accuracy""])

    model.load_weights(os.path.join(load_model_dir, model_name))

    img = cv2.imread(test_image)
    img = cv2.resize(img, (hyperparam_config['img_width'],hyperparam_config['img_height']))
    orig = img.copy()
    img = image.img_to_array(img)
    img = np.expand_dims(img, axis=0)
    img = img/255

    print(""[Info] predicting output"")
    #prediction = model.predict_classes(img)
    prediction = model.predict(img)
    prediction = np.argmax(prediction,axis=1)
    print(prediction)
    if (prediction<0.5):
        print(""def_front"")
        cv2.putText(orig, ""def_front"", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 0), 2)
    else:
        print(""ok_front"")
        cv2.putText(orig, ""ok_front"", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 0), 2)

    plt.imshow(orig)
    plt.axis('off')
    plt.show()

    print(""Prediction Completed..."")



"
incMachineLearning.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import warnings
warnings.filterwarnings('ignore')
import logging
import sklearn
from random import sample
from numpy.random import uniform
import numpy as np
import math
import pickle
import os
import json
from math import isnan
from sklearn.preprocessing import binarize
from sklearn.preprocessing import LabelEncoder
import pandas as pd
from sklearn.preprocessing import LabelBinarizer
from sklearn.model_selection import train_test_split
from incremental.incClassificationModel import incClassifierModel
from incremental.incRegressionModel import incRegressionModel


	
class incMachineLearning(object):
	def __init__(self,mlobj):
		self.features=[]
		self.mlobj=mlobj
		self.log = logging.getLogger('eion')

	
	

	def startLearning(self,mlconfig,modelType,modelParams,modelList,scoreParam,features,targetColumn,dataFrame,xtrain,ytrain,xtest,ytest,categoryCountList,targetType,deployLocation,iterName,iterVersion,trained_data_file,predicted_data_file,labelMaps): 
		model = 'None'
		params = 'None'
		score = 0xFFFF
		estimator = None
		model_tried = ''
		threshold = -1
		pscore = -1
		rscore = -1		
		topics = {}		
		if(targetColumn != ''):
			targetData = dataFrame[targetColumn]
		datacolumns=list(dataFrame.columns)
		if targetColumn in datacolumns:
			datacolumns.remove(targetColumn)
		

		scoreParam = self.mlobj.setScoreParams(scoreParam,modelType,categoryCountList)

		
		self.log.info('\n-------------- Training ML: Start --------------')
		model_type,model,params, score, estimator,model_tried,xtrain,ytrain,xtest,ytest,threshold,pscore,rscore,method,incObj=self.startLearnerModule(mlconfig,modelType,modelParams,modelList,scoreParam,targetColumn,dataFrame,xtrain,ytrain,xtest,ytest,categoryCountList,targetType,deployLocation,iterName,iterVersion,trained_data_file,labelMaps)
		self.log.info('-------------- Training ML: End --------------\n')				

		filename = os.path.join(deployLocation,'production','model',model+'.pkl')
		saved_model = model+'.pkl'
		pickle.dump(estimator, open(filename, 'wb'))
		df_test = xtest.copy()
		df_test.reset_index(inplace = True,drop=True)
		trainPredictedData = incObj.bestTrainPredictedData
		predictedData = incObj.bestPredictedData
		try:            
			if(model_type == 'Classification'):
				self.log.info('\n--------- Performance Matrix with Train Data ---------')
				train_matrix = self.mlobj.getClassificationPerformaceMatrix(ytrain,trainPredictedData,labelMaps)
				self.log.info('--------- Performance Matrix with Train Data End ---------\n')
				self.log.info('\n--------- Performance Matrix with Test Data ---------')
				performancematrix = self.mlobj.getClassificationPerformaceMatrix(ytest,predictedData,labelMaps)
				ytest.reset_index(inplace=True,drop=True)
				df_test['actual'] = ytest
				df_test['predict'] = predictedData
				self.log.info('--------- Performance Matrix with Test Data End ---------\n')
			
				matrix = performancematrix
			elif(model_type == 'Regression'):
				self.log.info('\n--------- Performance Matrix with Train Data ---------')
				train_matrix = self.mlobj.get_regression_matrix(ytrain, trainPredictedData)
				self.log.info('--------- Performance Matrix with Train Data End ---------\n')
				self.log.info('\n--------- Performance Matrix with Test Data ---------')
				matrix = self.mlobj.get_regression_matrix(ytest, predictedData)
				ytest.reset_index(inplace=True, drop=True)
				df_test['actual'] = ytest
				df_test['predict'] = predictedData
				self.log.info('--------- Performance Matrix with Test Data End ---------\n')

		except Exception as Inst:
			self.log.info('--------- Error Performance Matrix  ---------\n')            
			self.log.info(str(Inst))
			df_test['predict'] = predictedData
			matrix = """"
			train_matrix = """"
			self.log.info('--------- Performance Matrix with Test Data End ---------\n')
		df_test.to_csv(predicted_data_file)
		return 'Success',model_type,model,saved_model,matrix,train_matrix,xtrain.shape,model_tried,score,filename,self.features,threshold,pscore,rscore,method,estimator,xtrain,ytrain,xtest,ytest,topics,params




	def startLearnerModule(self,mlconfig,modelType,modelParams,modelList,scoreParam,targetColumn,dataFrame,xtrain,ytrain,xtest,ytest,categoryCountList,targetType,deployLocation,iterName,iterVersion,trained_data_file,labelMaps):
		matrix = ''
		threshold = -1
		pscore = -1
		rscore = -1
		datacolumns=list(xtrain.columns)
		if targetColumn in datacolumns:
			datacolumns.remove(targetColumn)
		self.features =datacolumns
		self.log.info('-------> Features Used For Training the Model: '+(str(self.features))[:500])
		xtrain = xtrain[self.features]
		xtest = xtest[self.features]
		method = mlconfig['optimizationMethod']
		method = method.lower()
		geneticParam = ''
		optimizationHyperParameter = mlconfig['optimizationHyperParameter']
		cvSplit = optimizationHyperParameter['trainTestCVSplit']
		nIter = int(optimizationHyperParameter['iterations'])
		if(method.lower()  == 'genetic'):
			geneticParam = optimizationHyperParameter['geneticparams']
		scoreParam = scoreParam
		if 'thresholdTunning' in mlconfig:
			thresholdTunning = mlconfig['thresholdTunning']
		else:
			thresholdTunning = 'NA'
		if cvSplit == """":
			cvSplit =None
		else:
			cvSplit =int(cvSplit)

		if modelType == 'classification':
			model_type = ""Classification""
			MakeFP0 = False
			MakeFN0 = False
			if(len(categoryCountList) == 2):
				if(thresholdTunning.lower() == 'fp0'):
					MakeFP0 = True
				elif(thresholdTunning.lower() == 'fn0'):
					MakeFN0 = True
			noOfClasses= len(labelMaps)
			incObjClf = incClassifierModel(noOfClasses,modelList, modelParams, scoreParam, cvSplit, nIter,geneticParam, xtrain,ytrain,xtest,ytest,method,modelType,MakeFP0,MakeFN0,deployLocation)
			model, params, score, estimator,model_tried,threshold,pscore,rscore = incObjClf.firstFit()
			incObj = incObjClf 

		elif modelType == 'regression':
			model_type = ""Regression""
			incObjReg = incRegressionModel(modelList, modelParams, scoreParam, cvSplit, nIter,geneticParam, xtrain,ytrain,xtest,ytest,method,deployLocation)
			model,params,score,estimator,model_tried = incObjReg.firstFit()
			incObj = incObjReg

			
		return model_type,model,params, score, estimator,model_tried,xtrain,ytrain,xtest,ytest,threshold,pscore,rscore,method, incObj"
incRegressionModel.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
from learner.optimizetechnique import OptimizationTq
from learner.parameters import parametersDefine
import time
import logging
import os
import sys
from sklearn.metrics import r2_score
from sklearn.metrics import mean_absolute_error,make_scorer
from sklearn.metrics import mean_squared_error
from learner.aion_matrix import aion_matrix


class incRegressionModel():
	def __init__(self,modelList,params,scoreParam,cvSplit,numIter,geneticParam,trainX,trainY,testX,testY,method,deployLocation):
		self.modelList =modelList
		self.params =params
		self.trainX =trainX
		self.trainY =trainY
		self.testX = testX
		self.testY = testY
		self.method =method
		self.scoreParam=scoreParam
		self.cvSplit=cvSplit
		self.numIter=numIter
		self.geneticParam=geneticParam
		self.log = logging.getLogger('eion')
		self.deployLocation = deployLocation
		self.bestTrainPredictedData = None
		self.bestPredictedData = None
		self.AlgorithmNames={'Online Linear Regression':'Online Linear Regression', 'Online Decision Tree Regressor':'Online Decision Tree Regressor', 'Online KNN Regressor':'Online KNN Regressor'}
		self.modelToAlgoNames = {value: key for key, value in self.AlgorithmNames.items()}

		
			
	def firstFit(self): 
		bestModel=''
		bestParams={}
		import sys
		bestScore=-sys.float_info.max #bugfix 11656
		scoredetails = ''
		self.log.info('\n---------- Regression Model has started ----------')
		try:
			for modelName in self.modelList:
				if modelName not in self.params:
					continue
				paramSpace=self.params[modelName]
				algoName = self.AlgorithmNames[modelName]
				from incremental.riverML import riverML
				riverMLObj = riverML()	
				self.log.info(""-------> Model Name: ""+str(modelName))
				start = time.time()
				model, modelParams, estimator, trainPredictedData = riverMLObj.startLearn('regression',algoName,paramSpace,self.trainX, self.trainY)
				modelParams = str(modelParams)
				executionTime=time.time() - start
				self.log.info('---------> Total Execution: '+str(executionTime))
				predictedData = riverMLObj.getPrediction(estimator,self.testX)
				if 'neg_mean_squared_error' in self.scoreParam:
					meanssquatederror = mean_squared_error(self.testY,predictedData)
					score = meanssquatederror
				elif 'neg_root_mean_squared_error' in self.scoreParam:
					rootmeanssquatederror=mean_squared_error(self.testY,predictedData,squared=False)
					score = rootmeanssquatederror
				elif 'neg_mean_absolute_error' in self.scoreParam:
					meanabsoluteerror=mean_absolute_error(self.testY,predictedData)
					score = meanabsoluteerror
				elif 'r2' in self.scoreParam:
					r2score=r2_score(self.testY,predictedData)
					score = round(r2score*100, 2)
				if self.scoreParam == ""r2"":
					if score>bestScore:
						bestScore =score
						bestModel =model
						bestParams=modelParams
						bestEstimator=estimator
						self.bestTrainPredictedData = trainPredictedData
						self.bestPredictedData = predictedData
				else:
					if abs(score) < bestScore or bestScore == -sys.float_info.max:
						bestScore =abs(score)
						bestModel =model
						bestParams=modelParams
						bestEstimator=estimator
						self.bestTrainPredictedData = trainPredictedData
						self.bestPredictedData = predictedData
				metrices = {}
				metrices[""score""] = score
				

											
				if(scoredetails != ''):
					scoredetails += ','			
					
				scoredetails += '{""Model"":""'+self.modelToAlgoNames[model]+'"",""Score"":'+str(abs(score))+'}'

				self.log.info('Status:-  |... ML Algorithm applied: '+modelName)
				self.log.info(""Status:-  |... Testing Score: ""+str(score))
			self.log.info('---------- Regression Model End ---------- \n')
			self.log.info('\n------- Best Model and its parameters -------------')
			self.log.info('Status:-  |... Best Algorithm selected: '+str(self.modelToAlgoNames[bestModel])+' Score='+str(round(bestScore,2)))
			self.log.info(""-------> Best Name: ""+str(bestModel))
			self.log.info(""-------> Best Score: ""+str(bestScore))
			return self.modelToAlgoNames[bestModel],bestParams,bestScore,bestEstimator,scoredetails
		except Exception as inst:
			self.log.info( '\n-----> regressionModel failed!!!.'+str(inst))
			exc_type, exc_obj, exc_tb = sys.exc_info()
			fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
			self.log.info(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))"
__init__.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''"
incClassificationModel.py,"


'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''

import time
import os
import sys
import numpy as np
from sklearn.metrics import confusion_matrix
from sklearn.metrics import recall_score
from sklearn.metrics import precision_score
from sklearn.preprocessing import binarize
from learner.optimizetechnique import OptimizationTq
from learner.parameters import parametersDefine
import logging
from learner.aion_matrix import aion_matrix


# apply threshold to positive probabilities to create labels
def to_labels(pos_probs, threshold):
	return (pos_probs >= threshold).astype('int')
class incClassifierModel():
	def __init__(self,noOfClasses,modelList,params,scoreParam,cvSplit,numIter,geneticParam,trainX,trainY,testX,testY,method,modelType,MakeFP0,MakeFN0,deployLocation):
		self.noOfClasses = noOfClasses
		self.modelList =modelList
		self.params =params
		self.trainX =trainX
		self.X =trainX
		self.trainY =trainY
		self.testX = testX
		self.testY = testY
		self.method =method
		self.scoreParam=scoreParam
		self.cvSplit=cvSplit
		self.numIter=numIter
		self.geneticParam=geneticParam
		self.MakeFP0= MakeFP0
		self.MakeFN0=MakeFN0
		self.log = logging.getLogger('eion')
		self.modelType = modelType
		self.deployLocation = deployLocation
		self.isRiverModel = False
		self.AlgorithmNames={'Online Logistic Regression':'Online Logistic Regression', 'Online Softmax Regression':'Online Softmax Regression', 'Online Decision Tree Classifier':'Online Decision Tree Classifier', 'Online KNN Classifier':'Online KNN Classifier'}
		self.modelToAlgoNames = {value: key for key, value in self.AlgorithmNames.items()}
		
	def check_threshold(self,estimator,testX,testY,threshold_range,checkParameter,modelName):
		thresholdx = -1
		for threshold in threshold_range:
			predictedData = estimator.predict_proba(testX)
			predictedData = binarize(predictedData[:,1].reshape(-1, 1),threshold=threshold)#bug 12437
			p_score = precision_score(testY, predictedData) 
			r_score = recall_score(testY, predictedData)
			tn, fp, fn, tp = confusion_matrix(testY, predictedData).ravel()
			if(checkParameter.lower() == 'fp'):
				if fp == 0:
					if(p_score == 1):
						thresholdx = threshold
						self.log.info('---------------> Best Threshold:'+str(threshold))
						self.log.info('---------------> Best Precision:'+str(p_score))
						self.log.info('---------------> Best Recall:'+str(r_score))
						self.log.info('---------------> TN:'+str(tn))
						self.log.info('---------------> FP:'+str(fp))
						self.log.info('---------------> FN:'+str(fn))
						self.log.info('---------------> TP:'+str(tp))
						break
			
			if(checkParameter.lower() == 'fn'):
				if fn == 0:
					if(r_score == 1):
						thresholdx = threshold
						self.log.info('---------------> Best Threshold:'+str(threshold))
						self.log.info('---------------> Best Precision:'+str(p_score))
						self.log.info('---------------> Best Recall:'+str(r_score))
						self.log.info('---------------> TN:'+str(tn))
						self.log.info('---------------> FP:'+str(fp))
						self.log.info('---------------> FN:'+str(fn))
						self.log.info('---------------> TP:'+str(tp))
						break
		return(thresholdx,p_score,r_score)

	def getBestModel(self,fp0,fn0,threshold,bestthreshold,rscore,brscore,pscore,bpscore,tscore,btscore):
		cmodel = False 
		if(threshold != -1):
			if(bestthreshold == -1):
				cmodel = True
				bestthreshold = threshold
				brscore = rscore
				bpscore = pscore
				btscore = tscore	
			elif fp0:
				if rscore > brscore:	
					cmodel = True
					bestthreshold = threshold
					brscore = rscore
					bpscore = pscore
					btscore = tscore	
				elif rscore == brscore:
					if tscore > btscore or btscore == -0xFFFF:	
						cmodel = True
						bestthreshold = threshold
						brscore = rscore
						bpscore = pscore
						btscore = tscore	
			elif fn0:
				if pscore > bpscore:	
					cmodel = True
					bestthreshold = threshold
					brscore = rscore
					bpscore = pscore
					btscore = tscore	
				elif pscore == bpscore:
					if tscore > btscore or btscore == -0xFFFF:	
						cmodel = True
						bestthreshold = threshold
						brscore = rscore
						bpscore = pscore
						btscore = tscore	
			else:
				if tscore > btscore or btscore == -0xFFFF:	
					cmodel = True	
					btscore = tscore
		else:
			if(bestthreshold == -1):
				if tscore > btscore or btscore == -0xFFFF:	
					cmodel = True
					btscore = tscore
		
		return cmodel,btscore,bestthreshold,brscore,bpscore
			
				
	def firstFit(self): 
		bestModel='None'
		bestParams={}
		bestScore=-0xFFFF
		bestEstimator = 'None'
		scoredetails = ''
		threshold = -1
		bestthreshold = -1
		precisionscore =-1
		bestprecisionscore=-1
		recallscore = -1
		bestrecallscore=-1
		self.bestTrainPredictedData = None
		self.bestPredictedData = None
		self.log.info('\n---------- ClassifierModel has started ----------')
		objClf = aion_matrix()
		try:
			for modelName in self.modelList:				
				paramSpace=self.params[modelName]
				algoName = self.AlgorithmNames[modelName]
				from incremental.riverML import riverML
				riverMLObj = riverML()	
				self.log.info(""-------> Model Name: ""+str(modelName))
				start = time.time()
				model, modelParams, estimator, trainPredictedData = riverMLObj.startLearn('classification',algoName,paramSpace,self.trainX, self.trainY, self.noOfClasses)
				modelParams = str(modelParams)
				predictedData = riverMLObj.getPrediction(estimator,self.testX)
				executionTime=time.time() - start
				self.testY.reset_index(inplace=True, drop=True)
				score = objClf.get_score(self.scoreParam,self.testY.values.flatten(),predictedData.values.flatten())
				self.log.info(str(score))
				metrices = {}
				metrices[""score""] = score
				threshold = -1
				precisionscore = precision_score(self.testY, predictedData, average='macro')
				recallscore = recall_score(self.testY, predictedData, average='macro')
				self.log.info('---------> Total Execution: '+str(executionTime))
				
		
				if(scoredetails != ''):
					scoredetails += ','	
									
				scoredetails += '{""Model"":""'+self.modelToAlgoNames[model]+'"",""Score"":'+str(score)+'}'
		
				status,bscore,bthres,brscore,bpscore = self.getBestModel(self.MakeFP0,self.MakeFN0,threshold,bestthreshold,recallscore,bestrecallscore,precisionscore,bestprecisionscore,score,bestScore)			
				if status:
					bestScore =bscore
					bestModel =model
					bestParams=modelParams
					bestEstimator=estimator
					bestthreshold = threshold
					bestrecallscore = recallscore
					bestprecisionscore = precisionscore
					self.bestTrainPredictedData = trainPredictedData
					self.bestPredictedData = predictedData
				self.log.info('Status:-  |... ML Algorithm applied: '+modelName)
				self.log.info(""Status:-  |... Testing Score: ""+str(score))

			self.log.info('---------- ClassifierModel End ---------- \n')
			self.log.info('\n------- Best Model and its parameters -------------')
			self.log.info('Status:-  |... Best Algorithm selected: '+str(self.modelToAlgoNames[bestModel])+' Score='+str(round(bestScore,2)))
			self.log.info(""-------> Best Name: ""+str(bestModel))
			self.log.info(""-------> Best Score: ""+str(bestScore))

			return self.modelToAlgoNames[bestModel],bestParams,bestScore,bestEstimator,scoredetails,bestthreshold,bestprecisionscore,bestrecallscore
		except Exception as inst:
			self.log.info( '\n-----> ClassifierModel failed!!!.'+str(inst))
			exc_type, exc_obj, exc_tb = sys.exc_info()
			fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
			self.log.info(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))

"
incProfiler.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
#System imports
import logging
import os
import sys
import pickle

#Sci-Tools imports
import numpy as np
import pandas as pd
from sklearn.preprocessing import LabelEncoder
from scipy import stats
from word2number import w2n


#river imports
from river.preprocessing import StatImputer
from river import stats, compose, anomaly



class incProfiler():
	
	def __init__(self):
		self.DtypesDic={}
		self.pandasNumericDtypes=['int16', 'int32', 'int64', 'float16', 'float32', 'float64']
		self.allNumberTypeCols = []   #all number type columns
		self.allNumCols = []   #only numerical columns which includes num features and target if it is numerical
		self.allCatCols = []
		self.numFtrs = []
		self.catFtrs = []
		self.textFtrs = []
		self.textVectorFtrs = []
		self.numDiscreteCols = []
		self.numContinuousCols = []
		self.wordToNumericFeatures=[]
		self.emptyCols=[]
		self.missingCols = []
		self.targetColumn = """"

		self.le_dict = {}
		self.configDict = {}
		self.incFill = None
		self.incLabelMapping = None
		self.incCatEncoder = None
		self.incScaler = None
		self.incOutlierRem = None
		self.log = logging.getLogger('eion')
		


	def pickleDump(self, model, path):
		if model is not None:
			with open(path, 'wb') as f:
				pickle.dump(model, f)	
				

	def saveProfilerModels(self, deployLocation):
		if isinstance(self.incFill['num_fill'], StatImputer) or isinstance(self.incFill['cat_fill'], StatImputer):
			self.pickleDump(self.incFill, os.path.join(deployLocation,'production','profiler','incFill.pkl'))
		self.pickleDump(self.incLabelMapping, os.path.join(deployLocation,'production','profiler','incLabelMapping.pkl'))
		self.pickleDump(self.incCatEncoder, os.path.join(deployLocation,'production','profiler','incCatEncoder.pkl'))
		self.pickleDump(self.incScaler, os.path.join(deployLocation,'production','profiler','incScaler.pkl'))
		self.pickleDump(self.incOutlierRem, os.path.join(deployLocation,'production','profiler','incOutlierRem.pkl'))




	def featureAnalysis(self, df, conf_json, targetFeature):
		try:
			self.log.info('-------> Remove Duplicate Rows')
			noofdplicaterows = df.duplicated(keep='first').sum()
			df = df.drop_duplicates(keep=""first"")
			df = df.reset_index(drop=True)
			self.log.info('Status:- |... Duplicate row treatment done: '+str(noofdplicaterows))
			self.log.info(df.head(5))
			self.log.info( '\n-----------  Inspecting Features -----------')	
			ctn_count = 0
			df = df.replace('-', np.nan)
			df = df.replace('?', np.nan)
			dataFDtypes=self.dataFramecolType(df)
			numerical_ratio = float(conf_json['numericFeatureRatio'])
			categoricalMaxLabel = int(conf_json['categoryMaxLabel'])
			indexFeatures = []
			numOfRows = df.shape[0]
			dataCols = df.columns
			for item in dataFDtypes:
				if(item[1] == 'object'):
					filteredDf,checkFlag = self.smartFilter(item[0],df,numerical_ratio)
					if(checkFlag):
						self.wordToNumericFeatures.append(item[0])
						self.log.info('----------> Data Type Converting to numeric :Yes')
						try:
							df[item[0]]=filteredDf[item[0]].astype(float)
						except:
							pass
						ctn_count = ctn_count+1
				else:
					count = (df[item[0]] - df[item[0]].shift() == 1).sum()
					if((numOfRows - count) == 1):
						self.log.info( '-------> Feature :'+str(item[0]))
						self.log.info('----------> Sequence Feature')
						indexFeatures.append(item[0])
			self.configDict['wordToNumCols'] = self.wordToNumericFeatures
			self.configDict['emptyFtrs'] = indexFeatures
			self.log.info('Status:- |... Feature inspection done for numeric data: '+str(ctn_count)+' feature(s) converted to numeric')
			self.log.info('Status:- |... Feature word to numeric treatment done: '+str(self.wordToNumericFeatures))
			self.log.info( '-----------  Inspecting Features End -----------\n')
		except Exception as inst:
			self.log.info(""Error in Feature inspection: ""+str(inst))
			exc_type, exc_obj, exc_tb = sys.exc_info()
			fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
			self.log.info(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))
		try:
			self.log.info('\n---------- Dropping Index features ----------')
			self.log.info('Index Features to remove '+str(indexFeatures))
			if len(indexFeatures) > 0:
				dataCols = list(set(dataCols) - set(indexFeatures))
				for empCol in indexFeatures:
					self.log.info('-------> Drop Feature: '+empCol)
					df = df.drop(columns=[empCol])
			self.log.info('---------- Dropping Index features End----------\n')	


			dataFDtypes=self.dataFramecolType(df)
			categoricalMaxLabel = int(conf_json['categoryMaxLabel'])
			for item in dataFDtypes:				
				self.DtypesDic[item[0]] = item[1]				
				nUnique=len(df[item[0]].unique().tolist())
				if item[1] in self.pandasNumericDtypes:
					self.allNumberTypeCols.append(item[0])
					if nUnique >= categoricalMaxLabel:
						self.allNumCols.append(item[0]) #pure numerical
						if item[1] in ['int16', 'int32', 'int64']:
							self.numDiscreteCols.append(item[0])
						elif item[1] in ['float16', 'float32', 'float64']:
							self.numContinuousCols.append(item[0])
					else:
						self.allCatCols.append(item[0])
				elif item[1] != 'bool':		
					if (nUnique >= categoricalMaxLabel) and targetFeature != item[0]:
						self.textFtrs.append(item[0])
					else:
						col = item[0]
						if (max(df[col].astype(str).str.split().str.len()) > 10) and targetFeature != item[0]:
							self.textFtrs.append(item[0])
						else:
							self.allCatCols.append(item[0])
				else:
					self.allCatCols.append(item[0])
			misval_ratio = float(conf_json['misValueRatio'])
			self.configDict['misval_ratio'] = misval_ratio
			missingCols, emptyCols = self.getMissingVals(df, dataCols, misval_ratio)
			if targetFeature in emptyCols:
					raise Exception('Target column '+str(targetFeature)+' cannot be empty')
			dataCols = list(set(dataCols) - set(emptyCols))	
			self.log.info('\n---------- Dropping empty features ----------')
			for empCol in emptyCols:
				self.log.info('-------> Drop Feature: '+empCol)
				df = df.drop(columns=[empCol])
			self.log.info('---------- Dropping empty features End----------\n')
			self.log.info('Status:- |... Empty feature treatment done: '+str(len(emptyCols))+' empty feature(s) found')
			self.log.info('-------> Data Frame Shape After Dropping (Rows,Columns): '+str(df.shape))
			self.allNumCols = list(set(self.allNumCols) - set(emptyCols))
			self.allCatCols = list(set(self.allCatCols) - set(emptyCols))
			self.textFtrs = list(set(self.textFtrs) - set(emptyCols))
			missingValFtrs = list(set(missingCols) - set(emptyCols))
			self.log.info(str(len(missingValFtrs))+' feature(s) found with missing value(s)')
			self.log.info('\n-------> Numerical continuous columns :'+(str(self.numContinuousCols))[:500])
			self.log.info('-------> Numerical discrete columns :'+(str(self.numDiscreteCols))[:500])
			self.log.info('-------> Non numerical columns :'+(str(self.allCatCols))[:500])
			self.log.info('-------> Text columns :'+(str(self.textFtrs))[:500])
		except Exception as inst:
			self.log.info(""Error in segregating numerical and categorical columns: ""+str(inst))
			exc_type, exc_obj, exc_tb = sys.exc_info()
			fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
			self.log.info(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))	
		return df, missingValFtrs, emptyCols, dataCols, self.allNumCols, self.allCatCols, self.textFtrs	



	def createIncProfiler(self, df, conf_json,  allNumCols, numFtrs, allCatCols, textFtrs, missingValFtrs):
		self.incLabelMapping = None
		catFtrs = allCatCols.copy()
		#LabelEncoding
		if self.targetColumn in allCatCols:
			catFtrs.remove(self.targetColumn)
			self.incLabelMapping = LabelEncoder()
			df[self.targetColumn] = df[self.targetColumn].apply(str)
			self.incLabelMapping.fit(df[self.targetColumn])
			self.le_dict = dict(zip(self.incLabelMapping.classes_, self.incLabelMapping.transform(self.incLabelMapping.classes_)))
			self.log.info('----------> Encoded Values of Target Labels: '+(str(self.le_dict))[:500])

		#self.incFill --> {num_fill:SI/0.0/'drop', cat_fill:SI/0.0/'drop'}
		#fill
		self.incFill = {}
		self.incCatEncoder = None
		self.incScaler = None
		self.incOutlierRem = None
		num_fill_method = 'Mean'
		for x in list(conf_json['numericalFillMethod'].keys()):
			if conf_json['numericalFillMethod'][x] == 'True':                
				num_fill_method = x
				break 	
		if num_fill_method.lower() =='mean':
			num_fill = [(col, stats.Mean()) for col in allNumCols]
			self.incFill['num_fill'] = StatImputer(*num_fill)
		elif num_fill_method.lower() =='min':
			num_fill = [(col, stats.Min()) for col in allNumCols]
			self.incFill['num_fill'] = StatImputer(*num_fill)					
		elif num_fill_method.lower() == 'max':
			num_fill = [(col, stats.Max()) for col in allNumCols]	
			self.incFill['num_fill'] = StatImputer(*num_fill)	
		elif num_fill_method.lower() =='zero':
			self.incFill['num_fill'] = 'zero'				
		elif num_fill_method.lower() =='drop':
			self.incFill['num_fill'] = 'drop'
		else:
			num_fill = [(col, stats.Mean()) for col in allNumCols]
			self.incFill['num_fill'] = StatImputer(*num_fill)
			
		cat_fill_method = 'Mode'
		for x in list(conf_json['categoricalFillMethod'].keys()):
			if conf_json['categoricalFillMethod'][x] == 'True':                
				cat_fill_method = x
				break 
		if cat_fill_method.lower() =='zero':
			self.incFill['cat_fill'] = 'zero'
		elif cat_fill_method.lower() == 'mode':
			cat_fill = [(col, stats.Mode()) for col in allCatCols]	
			self.incFill['cat_fill'] = StatImputer(*cat_fill)					
		elif cat_fill_method.lower() =='drop':
			self.incFill['cat_fill'] = 'drop'

		#CatEncoding
		for x in list(conf_json['categoryEncoding'].keys()):
			if conf_json['categoryEncoding'][x] == 'True':                
				catEncoder = x
				break
		catEncHow = 'Mean'
		for x in list(conf_json['targetEncodingParams']['how'].keys()):
			if conf_json['targetEncodingParams']['how'][x] == 'True':                
				catEncHow = x
				break 
		if self.targetColumn in catFtrs:
			catFtrs.remove(self.targetColumn)
		if len(catFtrs) > 0:
			from river.feature_extraction import TargetAgg
			if catEncHow.lower() == 'mean':
				agg_stat = stats.Mean()
			if catEncHow.lower() == 'bayesianmean' or catEncHow.lower() == 'bayesian mean':
				agg_stat = stats.BayesianMean(prior=0.5, prior_weight=50)
			self.incCatEncoder = TargetAgg(
				by=catFtrs[0], how=agg_stat)
			for col in catFtrs[1:]:
				self.incCatEncoder += TargetAgg(
				by=col, how=agg_stat)
			self.incCatEncoder|= compose.Discard(*catFtrs)

		#Scaling
		normalization_status = 'False'
		normalization_method = """"
		if 'normalization' in conf_json:
			nor_supported_methods =  conf_json['normalization']
			for k in nor_supported_methods.keys():   
				if conf_json['normalization'][k].lower() == 'true':                    
					normalization_status='True'
					normalization_method =k
					break
		if normalization_status.lower() == ""true"" and len(numFtrs) > 0:
			from sklearn.preprocessing import MinMaxScaler, StandardScaler, MaxAbsScaler
			if self.targetColumn in numFtrs:
				numFtrs.remove(self.targetColumn)
			if normalization_method.lower() =='standardscaler':
				self.incScaler = StandardScaler()
			elif normalization_method.lower() =='minmaxscaler' or normalization_method.lower() =='minmax':
				self.incScaler = MinMaxScaler()
			elif normalization_method.lower() =='maxabsscaler' or normalization_method.lower() =='maxabs':
				self.incScaler = MaxAbsScaler()
			else:
				self.incScaler = None

		#OutlierRemoval
			outlier_status = 'False'
			outlier_method = 'None'
			for x in list(conf_json['outlierDetection'].keys()):  
				if conf_json['outlierDetection'][x] == 'True':                
					outlier_method = x
					outlier_status = 'True'
					break
			if outlier_status and numFtrs:
				outlierMethodNames = list(conf_json['outlierDetectionParams'].keys())
				if outlier_method.lower() == 'oneclasssvm' or outlier_method.lower() == 'one class svm':
					for x in outlierMethodNames:
						if x[0].lower() == 'o':
							key = x
							break
					params = conf_json['outlierDetectionParams'][key]
					self.log.info('<--- one class SVM with quantile filter  --->')
					self.incOutlierRem = anomaly.QuantileFilter(anomaly.OneClassSVM(nu=float(params['nu'])),q=float(params['q']))
				elif outlier_method.lower() =='halfspacetrees' or outlier_method.lower() =='half space trees':
					for x in outlierMethodNames:
						if x[0].lower() == 'h':
							key = x
							break
					params = conf_json['outlierDetectionParams'][key]
					self.log.info('<--- Half space trees with quantile filter  --->')
					self.incOutlierRem = anomaly.QuantileFilter(anomaly.HalfSpaceTrees(n_trees=int(params['n_trees']),height=int(params['height']), window_size=int(params['window_size'])) ,q=float(params['q']))
				else:
					self.log.info(""No method is provided for outlier analysis"")



	def getMissingVals(self,dataframe,columns,misval_ratio):
		try:
			self.log.info( '\n----------- Detecting for Missing Values -----------')
			nonNAArray=[]
			numOfRows = dataframe.shape[0]
			for i in columns:
				numNa=dataframe.loc[(pd.isna(dataframe[i])),i ].shape[0]
				nonNAArray.append(tuple([i,numNa]))
			for item in nonNAArray:
				numofMissingVals = item[1]
				if(numofMissingVals !=0):
					self.log.info('-------> Feature '+str(item[0]))
					self.log.info('----------> Number of Empty Rows '+str(numofMissingVals))
					self.missingCols.append(item[0])
					
				if(numofMissingVals >= numOfRows * misval_ratio):
					self.log.info('----------> Empty: Yes')
					self.log.info('----------> Permitted Rows: '+str(int(numOfRows * misval_ratio)))
					self.emptyCols.append(item[0])
			if(len(self.missingCols) !=0):
				self.log.info( '----------- Detecting for Missing Values End -----------\n')
				return self.missingCols, self.emptyCols
			else:
				self.log.info( '-------> Missing Value Features :Not Any')
				self.log.info( '----------- Detecting for Missing Values End -----------\n')
				return self.missingCols, self.emptyCols
		except Exception as e:
			self.log.info(""getMissingVals failed ==>"" +str(e))
			exc_type, exc_obj, exc_tb = sys.exc_info()
			fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)[1]
			self.log.info(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))
			return None, None


	def startIncProfiler(self,df,conf_json,targetFeature,deployLocation,problemType):
		try:
			self.targetColumn = targetFeature		 
			df, missingValFtrs, emptyFtrs, dataFtrs, allNumCols, allCatCols, textFtrs = self.featureAnalysis(df, conf_json, self.targetColumn)
			if len(textFtrs)>0:
				self.log.info('Text Features are not supported. Dropping '+str(textFtrs)[:500])
				df = df.drop(columns=textFtrs)
			catFtrs = allCatCols.copy()
			numFtrs = allNumCols.copy()
			if self.targetColumn in catFtrs:
				catFtrs.remove(self.targetColumn)

			if targetFeature in allNumCols:
				numFtrs.remove(targetFeature)

			self.configDict['targetCol'] = self.targetColumn
			self.configDict['numFtrs'] = numFtrs
			self.configDict['catFtrs'] = catFtrs
			self.configDict['allNumCols'] = allNumCols
			self.configDict['allCatCols'] = allCatCols
			self.configDict['allFtrs'] = numFtrs+catFtrs


			try:
				self.log.info('\n---------- Creating Incremental profiler models ----------') 
				self.createIncProfiler(df, conf_json, allNumCols, numFtrs, allCatCols, textFtrs, missingValFtrs)
				self.log.info('\n--------- Incremental profiler models have been created ---------')
			except Exception as inst:
				self.log.info(""Error in creating Incremental profiler models""+str(inst))
				exc_type, exc_obj, exc_tb = sys.exc_info()
				fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
				self.log.info(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))
				raise

			try:
				#mvt
				# if missingValFtrs:
				if self.incFill['num_fill'] == 'drop':
					df = df.dropna(axis = 0, subset=allNumCols)
					self.configDict['num_fill'] = 'drop'
				elif self.incFill['num_fill'] == 'zero':
					df[allNumCols] = df[allNumCols].fillna(value = 0.0)
					self.configDict['num_fill'] = 'zero'
				else:
					df = df.astype(object).where(df.notna(), None)
					df[allNumCols]= df[allNumCols].apply(lambda row: self.apply_river_model(row.to_dict(), self.incFill
					['num_fill']), axis='columns')
					self.configDict['num_fill'] = {col:self.incFill['num_fill'].stats[col].get() for col in allNumCols}
				
				if self.incFill['cat_fill'] == 'drop':
					df = df.dropna(axis = 0, subset=allCatCols)
					self.configDict['cat_fill'] = 'drop'
				elif self.incFill['cat_fill'] == 'zero':
						df[allCatCols] = df[allCatCols].fillna(value = 0.0)
						self.configDict['cat_fill'] = 'zero'
				else:
					df = df.astype(object).where(df.notna(), None)
					df[allCatCols]= df[allCatCols].apply(lambda row: self.apply_river_model(row.to_dict(), self.incFill['cat_fill']), axis='columns')
					self.configDict['cat_fill'] = {col:self.incFill['cat_fill'].stats[col].get() for col in allCatCols}

				self.log.info('\nStatus:- |... Missing value treatment done')
			except Exception as inst:
				self.log.info(""Error in Missing value treatment ""+str(inst))
				exc_type, exc_obj, exc_tb = sys.exc_info()
				fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
				self.log.info(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))
				raise

			try:
				#labelenc
				if self.incLabelMapping:
					df[targetFeature] = self.incLabelMapping.transform(df[targetFeature])
					# self.configDict['labelMapping'] = self.le_dict
			except Exception as inst:
				self.log.info(""Error in Label mapping ""+str(inst))
				exc_type, exc_obj, exc_tb = sys.exc_info()
				fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
				self.log.info(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))
				raise

			try:
				#catenc
				if self.incCatEncoder:
					self.log.info('\n--------- Converting Non Numerical Categorical Features to Numerical Features ---------')
					self.encTarget = targetFeature
					if problemType.lower() == 'regression':
						from sklearn.preprocessing import StandardScaler
						sc = StandardScaler()
						self.encTarget = 'scaledTarget'
						df['scaledTarget'] = sc.fit_transform(df[targetFeature].to_numpy().reshape(-1,1))
					encCols = catFtrs.copy()
					encCols.append(self.encTarget)
					self.configDict['encCols'] = encCols
					self.configDict['encTarget'] = self.encTarget
					transformed_data = df[encCols].apply(lambda row: self.apply_enc(row.to_dict()), axis='columns')			
					if targetFeature in transformed_data.columns:
						transformed_data.drop(targetFeature, inplace=True, axis = 1)
					if problemType.lower() == 'regression':
						df.drop('scaledTarget', inplace=True, axis = 1)
					df[catFtrs] =  transformed_data
					# self.log.info('Status:- |... Target Encoding state is as follows: ')
					self.configDict['catEnc'] = []
					if len(catFtrs) == 1:
						col = catFtrs[0]
						self.configDict['catEnc'].append({col:self.incCatEncoder['TargetAgg'].state.to_dict()})
					else:
						for i, col in enumerate(catFtrs):
							if i==0:
								no = ''
							else:
								no = str(i)
							self.configDict['catEnc'].append({col:self.incCatEncoder['TransformerUnion']['TargetAgg'+no].state.to_dict()})						
					# print(self.incCatEncoder['TransformerUnion']['TargetAgg'].state)
					# self.log.info(self.incCatEncoder)
					self.log.info('Status:- |... Categorical to numeric feature conversion done: '+str(len(catFtrs))+' features converted')                

			except Exception as inst:
				self.log.info(""Error in categorical encoding ""+str(inst))
				exc_type, exc_obj, exc_tb = sys.exc_info()
				fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
				self.log.info(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))
				raise

			try:
				#scaler
				if self.incScaler:
					self.log.info(""\n---------- Data Normalization has started ----------"")
					self.incScaler = self.incScaler.partial_fit(df[numFtrs])
					df[numFtrs] = self.incScaler.transform(df[numFtrs])
					self.log.info( ""---------- Normalization Done on Following features ----------"")
					self.log.info(numFtrs)
					self.log.info('Status:- |... Normalization treatment done')
			except Exception as inst:
				self.log.info(""Error in normalization ""+str(inst))
				exc_type, exc_obj, exc_tb = sys.exc_info()
				fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
				self.log.info(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))
				raise
				
			try:
				#outlierrem
				if self.incOutlierRem:
					self.log.info('\n---------- Performing outlier analysis ----------')
					df = df[df[numFtrs].apply(lambda x: False if self.apply_od_pipe(x.to_dict()) else True, axis=1)]
					self.log.info('\n <--- dataframe after outlier analysis --->')
					df.reset_index(drop=True, inplace=True)                
					self.log.info(df.head(5))
					self.log.info('Status:- |... Outlier treatment done')
					self.log.info('\n <--- shape of dataframe after outlier analysis --->')
					self.log.info(df.shape) 
			except Exception as inst:
				self.log.info(""Error in outlier treatment ""+str(inst))
				exc_type, exc_obj, exc_tb = sys.exc_info()
				fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
				self.log.info(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))
				raise

			#saveprofiler
			self.log.info('\n---------- Saving profiler models ----------')
			self.saveProfilerModels(deployLocation)	
			self.log.info('<--- Profiler models saved at '+deployLocation+' --->')
			return df,targetFeature,missingValFtrs,numFtrs,catFtrs,self.le_dict,self.configDict,textFtrs,emptyFtrs,self.wordToNumericFeatures
		except Exception as inst:
			self.log.info(""Error: dataProfiler failed ""+str(inst))
			exc_type, exc_obj, exc_tb = sys.exc_info()
			fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
			self.log.info(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))


	def transformData(self, df, targetFeature, missingValFtrs,numFtrs, catFtrs, textFtrs):
		try:
			df = df.drop_duplicates(keep=""first"")
			df = df.reset_index(drop=True)
			df = df.replace('-', np.nan)
			df = df.replace('?', np.nan)
			text_mv_cols = list(set(missingValFtrs).intersection(set(textFtrs)))
			if len(text_mv_cols)>0:
				df[text_mv_cols] = df[text_mv_cols].fillna(value = 'NA')
			if 'num_fill' in self.configDict:
				if self.configDict['num_fill'] == 'drop':
						df = df.dropna(axis = 0, subset=self.allNumCols)
				elif self.configDict['num_fill'] == 'zero':
						df[self.allNumCols] = df[self.allNumCols].fillna(value = 0.0)
				else:
					for x in self.allNumCols:
						df[x] = df[x].fillna(value = self.configDict['num_fill'][x])
			if 'cat_fill' in self.configDict:
				if self.configDict['cat_fill'] == 'drop':
					df = df.dropna(axis = 0, subset=self.allCatCols)
				elif self.configDict['cat_fill'] == 'zero':
						df[self.allCatCols] = df[self.allCatCols].fillna(value = 0.0)
				else:
					for x in self.allCatCols:
						df[x] = df[x].fillna(value = self.configDict['cat_fill'][x])

			if self.incLabelMapping:
					df[targetFeature] = self.incLabelMapping.transform(df[targetFeature])

			if self.incCatEncoder:
				transformed_data = df[catFtrs].apply(lambda row: self.apply_enc(row.to_dict(), isTrain=False), axis='columns')
				df[catFtrs] =  transformed_data

			if self.incScaler:
				df[numFtrs] = self.incScaler.transform(df[numFtrs])

			return df
		except Exception as inst:
			self.log.info(""Error: DataProfiling transformation failed ""+str(inst))
			exc_type, exc_obj, exc_tb = sys.exc_info()
			fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
			self.log.info(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))

	
	def checknumStr(self,dataframe,feature):
		try:
			dataframe[feature]=dataframe[feature].apply(lambda x: self.testStr(x))
			return dataframe
		except:
			self.log.info(""checknumStr failed"")
			return dataframe
			
	#test whether the value is numeric /string			
	def testStr(self,value):
		try:
			x=eval(value)
			return np.nan
		except:
			return value
			
	""""""
	Missing values analysis
	Detects number of missing values in each column of dataframe
	""""""
	def checksRows(self,dataframe,target_column,dataColumns):
		self.log.info( '\n----------- Checking Target Feature Empty Rows -----------')
		if self.targetColumn != '':
			numNa=dataframe.loc[(pd.isna(dataframe[self.targetColumn])),self.targetColumn].shape[0]
			self.log.info('------->No of Empty Rows in Target Fields: '+str(numNa))
			if numNa >0:
				self.log.info('-------> Remove Empty Target Field Rows')
				dataframe = dataframe.dropna(axis=0, subset=[self.targetColumn])
		self.log.info('-------> Remove Duplicate Rows')
		dataframe = dataframe.dropna(axis=0,how='all',subset=dataColumns)
		noofdplicaterows = dataframe.duplicated(keep='first').sum()
		dataframe = dataframe.drop_duplicates(keep=""first"")
		dataframe = dataframe.reset_index(drop=True)
		return dataframe,noofdplicaterows		


	
	def apply_river_model(self, x, profModel):
		profModel.learn_one(x)
		return pd.Series(profModel.transform_one(x))

	def apply_enc(self, x, isTrain=True):
		if isTrain:
			y = x[self.encTarget]
			self.incCatEncoder.learn_one(x, y)
		return pd.Series(self.incCatEncoder.transform_one(x))
		
	def apply_od_pipe(self, x):
		score = self.incOutlierRem.score_one(x)
		is_anomaly = self.incOutlierRem.classify(score)
		self.incOutlierRem.learn_one(x)
		return is_anomaly

	#Convert Words To Number 
	def s2n(self,value):
		try:
			x=eval(value)
			return x
		except:
			try:
				return w2n.word_to_num(value) 
			except:
				return np.nan 

	def convertWordToNumeric(self,dataframe,feature):
		try:
			dataframe[feature]=dataframe[feature].apply(lambda x: self.s2n(x))
			return dataframe
		except Exception as inst:
			self.log.info(""convertWordToNumeric Failed ===>""+str(inst))
			return dataframe	


	#test whether the value is numeric /string 
	def testNum(self,value):
		try:
			x=eval(value)
			return x
		except:
			return np.nan

	##check for numeric values in string column
	def checkNumeric(self,dataframe,feature):
		try:
			dataframe[feature]=dataframe[feature].apply(lambda x: self.testNum(x))
			return dataframe
		except Exception as inst:
			self.log.info(""checkNumeric Failed ===>""+str(inst))
			return dataframe


	def smartFilter(self,feature,df,numericRatio):
		try:
			distinctCount = len(df[feature].unique())
			numOfRows = df.shape[0]
			tempDataFrame=df.copy(deep=True)
			if(distinctCount != 1):
				self.log.info('-------> Feature :'+str(feature))      
				testDf = self.checkNumeric(tempDataFrame,feature)
				tempDf = testDf[feature]
				tempDf = tempDf.dropna()
				numberOfNonNullVals = tempDf.count()
				if(numberOfNonNullVals > int(numOfRows * numericRatio)):
					tempDataFrame=df.copy(deep=True)
					testDf = self.convertWordToNumeric(tempDataFrame,feature)
					tempDf = testDf[feature]
					tempDf = tempDf.dropna()
					self.log.info('----------> Numeric Status :Yes')
					return testDf,True
				else:
					#Wasnt't a numerical feature
					self.log.info('----------> Numeric Status :No')
					#numDf = self.checknumStr(df,feature)	
					return df,False
			else:
				self.log.info( '\n---> No Numerics found in :' +str(feature))
				return df,False
  
		except:
			self.log.info( '\n---> No Numerics found in :'+str(feature))
			return df,False

	def dataFramecolType(self,dataFrame):
		dataFDtypes=[]
		try:
			dataColumns=list(dataFrame.columns)
			for i in dataColumns:
				dataType=dataFrame[i].dtypes
				dataFDtypes.append(tuple([i,str(dataType)]))
			return dataFDtypes
		except:
			self.log.info(""error in dataFramecolyType"")
			return dataFDtypes


"
riverML.py,"
import logging
import pickle
import os
import sys
import pandas as pd
from river import stream

from river.linear_model import LogisticRegression, SoftmaxRegression, LinearRegression
from river.tree import ExtremelyFastDecisionTreeClassifier, HoeffdingAdaptiveTreeRegressor
# from river.ensemble import AdaptiveRandomForestRegressor, AdaptiveRandomForestClassifier
from river.neighbors import KNNClassifier, KNNRegressor
from river.multiclass import OneVsRestClassifier
from river.optim import SGD, Adam, AdaDelta, NesterovMomentum, RMSProp
# from river.optim.losses import CrossEntropy, Log, MultiClassLoss, Poisson, RegressionLoss, BinaryLoss, Huber
# from river.optim.initializers import Normal


class riverML(object):
	def __init__(self):
		self.algoDict={'Online Logistic Regression':LogisticRegression, 'Online Softmax Regression':SoftmaxRegression, 'Online Decision Tree Classifier':ExtremelyFastDecisionTreeClassifier, 'Online KNN Classifier':KNNClassifier,'Online Linear Regression':LinearRegression, 'Online Decision Tree Regressor':HoeffdingAdaptiveTreeRegressor, 'Online KNN Regressor':KNNRegressor}
		self.optDict={'sgd': SGD, 'adam':Adam, 'adadelta':AdaDelta, 'nesterovmomentum':NesterovMomentum, 'rmsprop':RMSProp}
		self.log = logging.getLogger('eion')



	def getPrediction(self, model,X):
		testStream = stream.iter_pandas(X)
		preds = []
		for (xi,yi) in testStream:
			pred = model.predict_one(xi)
			preds.append(pred)
		return pd.DataFrame(preds)


	def startLearn(self,problemType,algoName,params,xtrain,ytrain,noOfClasses=None):
		try:
			model = self.algoDict[algoName]
			params = self.parseParams(params, algoName)
			if problemType == 'classification':
				if noOfClasses>2:
					model = OneVsRestClassifier(classifier=model(**params))
				else:
					model = model(**params)
			else:
				model = model(**params)

			trainStream = stream.iter_pandas(xtrain, ytrain)
			#head start
			for i, (xi, yi) in enumerate(trainStream):
				if i>100:
					break
				if yi!=None:
					model.learn_one(xi, yi)
			trainPredictedData = []
			trainStream = stream.iter_pandas(xtrain, ytrain)
			for i, (xi, yi) in enumerate(trainStream):
				if yi!=None:
					trainPredictedData.append(model.predict_one(xi))
					model.learn_one(xi, yi)
			trainPredictedData = pd.DataFrame(trainPredictedData)
			return algoName, params, model, trainPredictedData
		except Exception as inst:
			self.log.info( '\n-----> '+algoName+' failed!!!.'+str(inst))
			exc_type, exc_obj, exc_tb = sys.exc_info()
			fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
			self.log.info(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))

	def parseParams(self, params, algoName):
		try:
			from learner.parameters import parametersDefine
			paramsObj = parametersDefine()
			paramDict =paramsObj.paramDefine(params,method=None)
			paramDict = {k:v[0] for k,v in paramDict.items()}
			if algoName=='Online Logistic Regression' or algoName=='Online Softmax Regression' or algoName=='Online Linear Regression':
				opt = self.optDict[paramDict.pop('optimizer').lower()]
				lr = float(paramDict.pop('optimizer_lr'))
				paramDict['optimizer'] = opt(lr)
			return paramDict
		except Exception as inst:
			self.log.info( '\n-----> Parameter parsing failed!!!.'+str(inst))
			exc_type, exc_obj, exc_tb = sys.exc_info()
			fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
			self.log.info(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))



"
__init__.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''"
ensemble_bagging.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import time
import os
import sys
import numpy as np
import pandas as pd
from sklearn import model_selection
from sklearn.model_selection import train_test_split, KFold, cross_val_score
from sklearn.model_selection import KFold
#Classification metrics lib
import logging
import warnings
warnings.filterwarnings('always')  # ""error"", ""ignore"", ""always"", ""default"", ""module"" or ""once""
from learner.aion_matrix import aion_matrix
from sklearn.preprocessing import binarize



class ensemble_bagging():
    def __init__(self,ensemble_params,scoreParam,MakeFP0,MakeFN0):        
        self.ensemble_params = ensemble_params
        self.scoreParam=scoreParam
        self.MakeFP0 = MakeFP0
        self.MakeFN0 = MakeFN0
        self.log = logging.getLogger('eion')

    
    def add_alg2dict(self,k,v):
        b_dict={}
        b_dict[k]=v
        return b_dict
    
    def getSelected_algs_params(self,problemType,ensembleType,ensembleConfig):
        from learner.parameters import parametersDefine
        paramObj=parametersDefine()
        ensClass_algs_params={}
        algs_status={}
        for key,val in ensembleConfig.items():
            for s,p in val.items():
                if (s == ""enable"" and p == ""True""):
                    params = val['param']
                    params_eval = paramObj.paramDefine(params,None)
                    params_eval = {param_key: param_value[0] for param_key, param_value in params_eval.items()}
                    ensClass_algs_params[key]=params_eval
                else:
                    pass
        return ensClass_algs_params
        
    def listEnsembleClassBaggingAlgs(self,ensClass_algs_params):
        from sklearn.linear_model import LogisticRegression
        from sklearn.svm import SVC
        from sklearn.naive_bayes import GaussianNB
        from sklearn.neighbors import KNeighborsClassifier
        from sklearn.tree import DecisionTreeClassifier
        from sklearn.ensemble import BaggingClassifier, ExtraTreesClassifier, RandomForestClassifier
        ensembleBaggingClassList=list()
        for key,val in ensClass_algs_params.items():
            if (key == 'Logistic Regression'):
                lr=LogisticRegression()
                lr=lr.set_params(**val)
                ensembleBaggingClassList.append(lr)
                
            elif (key == 'Support Vector Machine'):
                svm=SVC()
                svm=svm.set_params(**val)
                ensembleBaggingClassList.append(svm)
                
            elif (key == 'Naive Bayes'):
                nb=GaussianNB()
                nb=nb.set_params(**val)
                ensembleBaggingClassList.append(nb)
                
            elif (key == 'K Nearest Neighbors'):
                knn=KNeighborsClassifier()
                knn=knn.set_params(**val)
                ensembleBaggingClassList.append(knn)
                
            elif (key == 'Decision Tree'):
                dt=DecisionTreeClassifier()
                dt=dt.set_params(**val)
                ensembleBaggingClassList.append(dt)
                
                
            elif (key == 'Random Forest'):
                rf=RandomForestClassifier()
                rf=rf.set_params(**val)
                ensembleBaggingClassList.append(rf)
                
            else:
                pass
                
            
        return ensembleBaggingClassList
    
    def listEnsembleRegBaggingAlgs(self,ensReg_algs_params):
            from sklearn.linear_model import Ridge
            from sklearn.linear_model import LinearRegression
            from sklearn.ensemble import RandomForestRegressor
            from sklearn.tree import DecisionTreeRegressor
            ensembleBaggingRegList=list()
            for key,val in ensReg_algs_params.items():
                if (key == 'Linear Regression'):
                    lir=LinearRegression()
                    lir=lir.set_params(**val)
                    ensembleBaggingRegList.append(lir)
                    
                elif (key == 'Decision Tree'):
                    dtr=DecisionTreeRegressor()
                    dtr=dtr.set_params(**val)
                    ensembleBaggingRegList.append(dtr)
                    
                elif (key == 'Ridge'):
                    ridge=Ridge()
                    ridge=ridge.set_params(**val)
                    ensembleBaggingRegList.append(ridge)                    
                
                else:
                    ensembleBaggingRegList=[]
                    
            return ensembleBaggingRegList
        
    def ensemble_bagging_classifier(self,X_train,y_train, X_test, y_test):
        ## New changes
        from sklearn.ensemble import BaggingClassifier, ExtraTreesClassifier, RandomForestClassifier
        
        ensemble_method = ""Bagging_classifier""
        problemType='classification'
        ensembleType='bagging'
        model_dict=self.ensemble_params
        ensClass_algs_params = self.getSelected_algs_params(problemType,ensembleType,model_dict)
        ensembleBaggingList = self.listEnsembleClassBaggingAlgs(ensClass_algs_params)
        
        # clf_array = model_list
        clf_array=ensembleBaggingList
        # no. of base classifier 
        num_trees = len(clf_array)
        # max_samples=float(max_samples)
        n_estimators = num_trees
        # random_state=seed
        bagging_mean={}
        bagging_std={}
        accuracy_basealgs_train={}
        accuracy_basealgs_test={}
        blable=""""
        accuracy_score_test=0
        kfold = model_selection.KFold(n_splits=10, random_state=None)
        bestScore=-0xFFFF
        scoredetails = ''
        threshold = -1
        bestthreshold = -1
        precisionscore =-1
        bestprecisionscore=-1
        recallscore = -1
        bestrecallscore=-1        
        objClf = aion_matrix()
        
        if (ensemble_method == ""Bagging_classifier""):
            #bagging ensemble of base classifier .e.g. KNeighborsClassifier base estimators, each built on random subsets of 40% of the samples and 50% of the features.
            for clf in clf_array:
                self.log.info('-----------> Ensemble Algorithm '+str(clf.__class__.__name__)) 			   
                clf.fit(X_train, y_train)
                bagging_clf = BaggingClassifier(clf,n_estimators = num_trees, random_state=10)
                bagging_clf.fit(X_train, y_train)
                bagging_scores = cross_val_score(bagging_clf, X_train, y_train, cv=kfold,n_jobs=-1)
                #bagging_ensemble_t=bagging_clf.fit(X_train, y_train)
                if not X_test.empty:
                    bag_predict=bagging_clf.predict(X_test)
                    accuracy_score_test = objClf.get_score(self.scoreParam,y_test,bag_predict)
                else:
                    accuracy_score_test = bagging_scores
                MakeFP0 = False
                MakeFN0 = False	
                if self.MakeFP0:    
                    self.log.info('-------- Ensemble: Calculate Threshold for FP Start-------')
                    startRange = 0.0
                    endRange = 1.0
                    stepsize = 0.01
                    threshold_range = np.arange(startRange,endRange,stepsize)
                    threshold,precisionscore,recallscore = objClf.check_threshold(bagging_clf,X_train,y_train,threshold_range,'FP','')
                    MakeFP0 = True
                    self.log.info('-------- Calculate Threshold for FP End-------')
                if self.MakeFN0:							
                    self.log.info('-------- Ensemble: Calculate Threshold for FN Start-------')
                    startRange = 1.0
                    endRange = 0.0
                    stepsize = -0.01
                    threshold_range = np.arange(startRange,endRange,stepsize)
                    threshold,precisionscore,recallscore = objClf.check_threshold(bagging_clf,X_train,y_train,threshold_range,'FN','')
                    MakeFN0 = True 
                    self.log.info('-------- Calculate Threshold for FN End-------')
						
                if threshold != -1:
                    if not X_test.empty:
                        predictedData = bagging_clf.predict_proba(X_test)
                        predictedData = binarize(predictedData[:,1].reshape(-1, 1),threshold=threshold)		#bug 12437					
                        accuracy_score_test = objClf.get_score(self.scoreParam,y_test,predictedData)
							
                status,bscore,bthres,brscore,bpscore = objClf.getBestModel(MakeFP0,MakeFN0,threshold,bestthreshold,recallscore,bestrecallscore,precisionscore,bestprecisionscore,accuracy_score_test,bestScore)
                if status:
                    bestScore =bscore
                    bestModel =bagging_clf.__class__.__name__
                    bestEstimator=bagging_clf
                    bestthreshold = bthres
                    bestBaseModel = clf.__class__.__name__
                    bestrecallscore = brscore
                    bestprecisionscore = bpscore
        else:
            pass

        best_alg_name=bestEstimator.__class__.__name__
        self.log.info('-----------> Best Bagging Classifier Model '+str(bestBaseModel))		
        self.log.info('-----------> Best Score '+str(bestScore))
        # self.log.info('-----------> Threshold '+str(bestthreshold)) #bug 12438
        if bestthreshold != -1:
            if not X_test.empty:
                predictedData_test = bestEstimator.predict_proba(X_test)
                predictedData_test = binarize(predictedData_test[:,1].reshape(-1, 1),threshold=bestthreshold)		#bug 12437					
            predictedData_train = bestEstimator.predict_proba(X_train)
            predictedData_train = binarize(predictedData_train[:,1].reshape(-1, 1),threshold=bestthreshold)		#bug 12437					
        else:
            if not X_test.empty:
                predictedData_test = bestEstimator.predict(X_test)
            predictedData_train = bestEstimator.predict(X_train)
        
        return bestEstimator,bestEstimator.get_params(),bestScore,best_alg_name,bestthreshold,bestprecisionscore,bestrecallscore
        
    
    def ensemble_bagging__regressor(self,X_train,y_train, X_test, y_test):
        from sklearn.ensemble import BaggingRegressor
        ensemble_method='Bagging_regressor'
        problemType='regression'
        ensembleType='bagging'
        model_dict=self.ensemble_params
        ensReg_algs_params = self.getSelected_algs_params(problemType,ensembleType,model_dict)
        ensembleBaggingList = self.listEnsembleRegBaggingAlgs(ensReg_algs_params)
        
        scoredetails = ''
        aion_matrixobj = aion_matrix()
        reg_array = ensembleBaggingList
        
        num_trees = len(reg_array)
        #self.log.info(num_trees)
        # max_samples=float(max_samples)
        n_estimators = num_trees
        r_state=10        
        
        bestModel=''
        bestParams={}
        bestScore=-sys.float_info.max #extension of bugfix 11656
        objClf = aion_matrix()
        for reg in reg_array:
            self.log.info('-----------> Ensemble Algorithm '+str(reg.__class__.__name__))
            nmodel=reg.fit(X_train, y_train)
            model = reg.__class__.__name__
            estimator = BaggingRegressor(base_estimator=reg, random_state=r_state) 
            bagging_ensemble_t=estimator.fit(X_train, y_train)
            predictedData = estimator.predict(X_test)
            score = objClf.get_score(self.scoreParam,y_test,predictedData)
            if self.scoreParam == ""r2"":
                if score > bestScore:
                    bestScore =score
                    bestModel =model
                    bestEstimator=estimator
            else:
                if abs(score) < bestScore or bestScore == -sys.float_info.max: #extension of bugfix 11656
                    bestScore =abs(score)
                    bestModel =model
                    bestEstimator=estimator
        best_alg_name=bestEstimator.__class__.__name__
        self.log.info('-----------> Best Ensemble Algorithm '+str(bestModel))		
        return bestEstimator,bestEstimator.get_params(),bestScore,best_alg_name
"
ensemble_voting.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''

import numpy as np
import logging
import warnings
from sklearn.ensemble import VotingClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.naive_bayes import GaussianNB
from sklearn.linear_model import Ridge
from sklearn.preprocessing import binarize
from sklearn.ensemble import VotingRegressor
from sklearn.svm import SVC
from sklearn.linear_model import LinearRegression
from sklearn.ensemble import RandomForestRegressor
from sklearn.tree import DecisionTreeRegressor
from learner.aion_matrix import aion_matrix
warnings.filterwarnings('always')  




class ensemble_voting():
	def __init__(self,ensemble_params,scoreParam):        
		self.ensemble_params = ensemble_params
		self.scoreParam=scoreParam
		self.final_estimator_r=''
		self.final_estimator_c=''
		self.log = logging.getLogger('eion')
	''' Read the aion config ""Ensemble-Voting"", parse the algorithm and associated params based on enable or True status.Not used now '''
	def getSelected_algs_params(self,problemType,ensembleType,ensembleConfig):
		from learner.parameters import parametersDefine
		paramObj=parametersDefine()
		ensClass_algs_params={}
		# algs_status={}
		for key,val in ensembleConfig.items():
			for s,p in val.items():
				
				if (s == ""enable"" and p == ""True""):                    
					params = val['param']                    
					params_eval = paramObj.paramDefine(params,None)
					params_eval = {param_key: param_value[0] for param_key, param_value in params_eval.items()}
					ensClass_algs_params[key]=params_eval
				else:
					pass
		return ensClass_algs_params
	
	''' To make array of voting algorithm based on user config list. Not used now, in future if needed similar line with bagging ensemble, please use this. '''
	def listEnsembleClassVotingAlgs(self,ensClass_algs_params):
		ensembleVotingClassList=list()
		for key,val in ensClass_algs_params.items():
			if (key == 'Logistic Regression'):
				lr=LogisticRegression()
				lr=lr.set_params(**val)
				ensembleVotingClassList.append(lr)
				
			elif (key == 'Support Vector Machine'):
				svm=SVC()
				svm=svm.set_params(**val)
				ensembleVotingClassList.append(svm)
				
			elif (key == 'Naive Bayes'):
				nb=GaussianNB()
				nb=nb.set_params(**val)
				ensembleVotingClassList.append(nb)
				
			elif (key == 'K Nearest Neighbors'):
				knn=KNeighborsClassifier()
				knn=knn.set_params(**val)
				ensembleVotingClassList.append(knn)
				
			elif (key == 'Decision Tree'):
				dt=DecisionTreeClassifier()
				dt=dt.set_params(**val)
				ensembleVotingClassList.append(dt)
				
				
			elif (key == 'Random Forest'):
				rf=RandomForestClassifier()
				rf=rf.set_params(**val)
				ensembleVotingClassList.append(rf)
				
			else:
				## Algorithm not found in config, so forming empty alg list. If needs, make list with default alg.
				ensembleVotingClassList=[]
				pass
			
		return ensembleVotingClassList
	
	'''  To make array of voting regression algorithm based on user config list. Not used now, in future if needed similar line with bagging ensemble, please use this. '''
	def listEnsembleRegVotingAlgs(self,ensReg_algs_params):
			
			ensembleVotingRegList=list()
			for key,val in ensReg_algs_params.items():
				if (key == 'Linear Regression'):
					lir=LinearRegression()
					lir=lir.set_params(**val)
					ensembleVotingRegList.append(lir)
				elif (key == 'Decision Tree'):
					dtr=DecisionTreeRegressor()
					dtr=dtr.set_params(**val)
					ensembleVotingRegList.append(dtr)
				elif (key == 'Ridge'):
					ridge=Ridge()
					ridge=ridge.set_params(**val)
					ensembleVotingRegList.append(ridge)
				else:
					## Algorithm not found in config, so forming empty alg list. If needs, make list with default alg.
					ensembleVotingRegList=[]                    
				
			return ensembleVotingRegList
		

		
	def ensemble_voting_classifier(self,X_train,y_train, X_test, y_test,MakeFP0,MakeFN0,modelList): 
		#bug 12437
		status='ERROR'   
		model=None
		estimator=None
		score=None
		params=None
		threshold = -1
		precisionscore =-1
		recallscore = -1      
		objClf = aion_matrix()
		try:
			lr = LogisticRegression(solver='lbfgs',random_state=1,max_iter=200)  
			rf = RandomForestClassifier(random_state=1)
			gnb = GaussianNB()
			svc = SVC(probability=True)    #Need to keep probability=True, because cross_val_score,predict_proba fn calls
			knn=KNeighborsClassifier(n_neighbors=5)
			base_estimators = []
			if 'Logistic Regression' in   modelList:
				base_estimators.append(('LogisticRegression', lr))
				self.log.info('-------- Ensemble: Logistic Regression-------')
			if 'Random Forest' in   modelList:
				base_estimators.append(('RandomForestClassifier', rf)) 
				self.log.info('-------- Ensemble: Random Forest-------')
			if 'Naive Bayes' in   modelList:
				base_estimators.append(('GaussianNB', gnb))
				self.log.info('-------- Ensemble: Naive Bayes-------')
			if 'Support Vector Machine' in   modelList:
				self.log.info('-------- Ensemble: Support Vector Machine-------')
				base_estimators.append(('SVC', svc))
			if 'K Nearest Neighbors' in   modelList:
				base_estimators.append(('KNeighborsClassifier', knn)) 
				self.log.info('-------- Ensemble: K Nearest Neighbors-------')            
			if len(base_estimators) == 0:
				self.log.info('-------- Ensemble Voting is only supported for Logistic Regression, Random Forest Classifier, Naive Bayes, SVM and KNN -------')
				status = ""UNSUPPORTED""
				return status, estimator,params,score,model,threshold,precisionscore,recallscore      
			eclf1 = VotingClassifier(base_estimators, voting='soft')    
			eclf1.fit(X_train, y_train)
			y_predict = eclf1.predict(X_test)
			score = objClf.get_score(self.scoreParam,y_test,y_predict)            
			self.log.info('-------- Ensemble (VoteClassifier) Soft Score:'+str(score)) 
			if MakeFP0:
				self.log.info('-------- Ensemble: Calculate Threshold for FP Start-------')
				startRange = 0.0
				endRange = 1.0
				stepsize = 0.01
				threshold_range = np.arange(startRange,endRange,stepsize)
				threshold,precisionscore,recallscore = objClf.check_threshold(eclf1,X_train,y_train,threshold_range,'FP','')
				self.log.info('-------- Calculate Threshold for FP End-------')
			elif MakeFN0:							
				self.log.info('-------- Ensemble: Calculate Threshold for FN Start-------')
				startRange = 1.0
				endRange = 0.0
				stepsize = -0.01
				threshold_range = np.arange(startRange,endRange,stepsize)
				threshold,precisionscore,recallscore = objClf.check_threshold(eclf1,X_train,y_train,threshold_range,'FN','')
				self.log.info('-------- Calculate Threshold for FN End-------')
			
			if threshold != -1:
				predictedData = eclf1.predict_proba(X_test)
				predictedData = binarize(predictedData[:,1].reshape(-1, 1),threshold=threshold)		#bug 12437					
				score = objClf.get_score(self.scoreParam,y_test,predictedData)							
								
			status = 'SUCCESS'
			model =eclf1.__class__.__name__
			estimator=eclf1
			params = estimator.get_params() 
			
			#bug 12437 - Removed ensemble hard voting as predict_proba in the later stages will break						
		except Exception as Inst: #bug 12437
			self.log.info('--------- Error in Ensemble Voting  ---------\n')            
			self.log.info(str(Inst))
		return status,estimator,params,score,model,threshold,precisionscore,recallscore
		
	def ensemble_voting__regressor(self,X_train,y_train, X_test, y_test,modelList):
		scoredetails = ''
		vr_predict=None
		vr_model=None
		try:
			lr = LinearRegression()
			rfr = RandomForestRegressor(n_estimators=10, random_state=1)
			dtr=DecisionTreeRegressor()
			base_estimators = []
			if 'Linear Regression' in   modelList:
				base_estimators.append(('LinearRegression', lr))
			if 'Decision Tree' in   modelList:
				base_estimators.append(('DecisionTreeRegressor', dtr))    
			if 'Random Forest' in   modelList:
				base_estimators.append(('RandomForestRegressor', rfr)) 
			if len(base_estimators) == 0:    
				base_estimators = [('LinearRegression', lr), ('RandomForestRegressor', rfr),('DecisionTreeRegressor', dtr)]
			voting_reg = VotingRegressor(base_estimators)
			vr_model=voting_reg.fit(X_train,y_train)
			vr_predict=voting_reg.predict(X_test)        
			best_vr_alg=voting_reg.__class__.__name__
			self.log.info('-----------> Voting regression Model '+str(best_vr_alg))	

		except Exception as e:
			self.log.info(""voting regression Exception info: \n"")
			self.log.info(e)
			
		aion_matrixobj = aion_matrix()    
		score = aion_matrixobj.get_score(self.scoreParam,y_test,vr_predict)
		  
		return voting_reg,voting_reg.get_params(),score,best_vr_alg  
"
__init__.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''"
ensemble_stacking.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import numpy as np
#Classification metrics lib

import logging
import warnings
from sklearn.neighbors import KNeighborsClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.naive_bayes import GaussianNB
from sklearn.preprocessing import binarize
from sklearn.svm import SVC
from sklearn.ensemble import StackingClassifier
from sklearn.linear_model import LinearRegression
from sklearn.ensemble import RandomForestRegressor
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import StackingRegressor
from sklearn.svm import LinearSVR
from sklearn.linear_model import RidgeCV
from sklearn.linear_model import LassoCV
from learner.aion_matrix import aion_matrix

warnings.filterwarnings('always')  # ""error"", ""ignore"", ""always"", ""default"", ""module"" or ""once""



class ensemble_stacking():
    def __init__(self,ensemble_params,scoreParam):        
        self.ensemble_params = ensemble_params
        self.scoreParam=scoreParam
        self.final_estimator_r=''
        self.final_estimator_c=''
        self.log = logging.getLogger('eion')

    
    ## Read the aion config ""Ensemble-Stacking"", parse the algorithm and associated params based on enable or True status.
    def getSelected_algs_params(self,problemType,ensembleType,ensembleConfig):
        from learner.parameters import parametersDefine
        paramObj=parametersDefine()
        ensClass_algs_params={}
        # algs_status={}
        for key,val in ensembleConfig.items():
            for s,p in val.items():
                if (s == ""enable"" and p == ""True""):                    
                    params = val['param']                    
                    params_eval = paramObj.paramDefine(params,None)
                    params_eval = {param_key: param_value[0] for param_key, param_value in params_eval.items()}
                    ensClass_algs_params[key]=params_eval
                else:
                    pass            

        return ensClass_algs_params
    
    ## To make array of stacking algorithm based on user config list. Not used now, in future if needed similar line with bagging ensemble, please use this.
        
    def listEnsembleClassStackingAlgs(self,ensClass_algs_params):

        ensembleBaggingClassList=list()
        for key,val in ensClass_algs_params.items():
            # print(key)
            if (key == 'Logistic Regression'):
                lr=LogisticRegression()
                lr=lr.set_params(**val)
                ensembleBaggingClassList.append(lr)
                
            elif (key == 'Support Vector Machine'):
                svm=SVC()
                svm=svm.set_params(**val)
                ensembleBaggingClassList.append(svm)
                
            elif (key == 'Naive Bayes'):
                nb=GaussianNB()
                nb=nb.set_params(**val)
                ensembleBaggingClassList.append(nb)
                
            elif (key == 'K Nearest Neighbors'):
                knn=KNeighborsClassifier()
                knn=knn.set_params(**val)
                ensembleBaggingClassList.append(knn)
                
            elif (key == 'Decision Tree'):
                dt=DecisionTreeClassifier()
                dt=dt.set_params(**val)
                ensembleBaggingClassList.append(dt)
                
                
            elif (key == 'Random Forest'):
                rf=RandomForestClassifier()
                rf=rf.set_params(**val)
                ensembleBaggingClassList.append(rf)
                
            else:
                ensembleBaggingClassList=[]
                pass
                
            
        return ensembleBaggingClassList
    

    ## To make array of stacking regression algorithm based on user config list. Not used now, in future if needed similar line with bagging ensemble, please use this.
    
    def listEnsembleRegStackingAlgs(self,ensReg_algs_params):
            
            ensembleBaggingRegList=list()
            for key,val in ensReg_algs_params.items():
                if (key == 'LinearSVR'):
                    lir=LinearSVR()
                    lir=lir.set_params(**val)
                    ensembleBaggingRegList.append(lir)
                elif (key == 'LinearRegression'):
                    lr=LinearRegression()
                    lr=lr.set_params(**val)
                    ensembleBaggingRegList.append(lr)                    
                elif (key == 'LassoCV'):
                    lcv=LassoCV()
                    lcv=lcv.set_params(**val)
                    ensembleBaggingRegList.append(lcv)
                elif (key == 'RandomForestRegressor'):
                    rfr=RandomForestRegressor()
                    rfr=rfr.set_params(**val)
                    ensembleBaggingRegList.append(rfr)                    
                elif (key == 'RidgeCV'):
                    ridge=RidgeCV()
                    ridge=ridge.set_params(**val)
                    ensembleBaggingRegList.append(ridge)                    
                
                else:
                    ## NO algorithms found in configuration settings, instead of sending empty array,we can add any one of algorithms.
                    ensembleBaggingRegList=[]                    
                
            return ensembleBaggingRegList
        
    def extract_params(self,dict):
        self.dict=dict
        for k,v in self.dict.items():
            return k,v
        
    def stacking_params(self):
        for k,v in self.ensemble_params.items():
            try:
                if (k == ""max_features_percentage""):
                    max_features_percentage=float(v)
                elif (k == ""max_samples""):
                    max_samples=float(v)
                elif (k == ""seed""):
                    seed=int(v)
                elif (k == ""final_estimator_stack_c""):
                    final_estimator_c=str(v)
                elif (k == ""final_estimator_stack_r""):
                    final_estimator_r=str(v)
                else:
                    self.log.info(""Invalid Param in ensemble advanced configuration.\n"")
            except Exception as e:
                self.log.info(""\n Ensemble config param parsing error""+str(e))
                continue
        return final_estimator_c,final_estimator_r,seed,max_samples,max_features_percentage
        
    def ensemble_stacking_classifier(self,X_train,y_train, X_test, y_test,MakeFP0,MakeFN0,modelList):
        
        final_estimator_c,final_estimator_r,seed,max_samples,max_features_percentage= self.stacking_params()
        final_estimator_c=""""
        final_estimator=final_estimator_c       
        scoredetails=''
        lr = LogisticRegression(solver='lbfgs',random_state=1,max_iter=200)  
        rf = RandomForestClassifier(random_state=2)
        gnb = GaussianNB()
        svc = SVC(probability=True)    #Need to keep probability=True, because of cross_val_score,predict_proba fn calls
        knn=KNeighborsClassifier(n_neighbors=5)
        
        try:
            if (final_estimator == 'LogisticRegression'):
                final_estimator_a=lr
            elif (final_estimator == 'RandomForestClassifier'):
                final_estimator_a=rf
            elif (final_estimator == 'GaussianNB'):
                final_estimator_a=gnb
            elif (final_estimator == 'SVC'):
                final_estimator_a=svc
            elif (final_estimator == 'KNeighborsClassifier'):
                final_estimator_a=knn
            else:
                final_estimator_a=lr
        except Exception as e:
            final_estimator_a=lr
            self.log.info(""Given stacking regression final estimator algorithm issue, using default one (LogisticRegression) as final_estimator now.\n"")
            self.log.info(e)
            #stacking estimators
        base_estimators = []
        if 'Logistic Regression' in   modelList:
            base_estimators.append(('LogisticRegression', lr))
        if 'Random Forest' in   modelList:
            base_estimators.append(('RandomForestClassifier', rf))    
        if 'Naive Bayes' in   modelList:
            base_estimators.append(('GaussianNB', gnb))
        if 'Support Vector Machine' in   modelList:
            base_estimators.append(('SVC', svc))
        if 'K Nearest Neighbors' in   modelList:
            base_estimators.append(('KNeighborsClassifier', knn)) 
        if len(base_estimators) == 0:
            base_estimators = [('LogisticRegression', lr),('RandomForestClassifier', rf),('GaussianNB', gnb),('SVC', svc),('KNeighborsClassifier', knn)]
        stacking_c = StackingClassifier(estimators=base_estimators, final_estimator=final_estimator_a)
        stacking_c.fit(X_train, y_train)
        y_predict=stacking_c.predict(X_test)
        objClf = aion_matrix()			
        accuracy_score_test = objClf.get_score(self.scoreParam,y_test,y_predict)			
        MakeFP0 = False
        MakeFN0 = False
        threshold = -1
        recallscore = -1			
        precisionscore =-1
        if MakeFP0:    
            self.log.info('-------- Ensemble: Calculate Threshold for FP Start-------')
            startRange = 0.0
            endRange = 1.0
            stepsize = 0.01
            threshold_range = np.arange(startRange,endRange,stepsize)
            threshold,precisionscore,recallscore = objClf.check_threshold(stacking_c,X_train,y_train,threshold_range,'FP','')
            MakeFP0 = True
            self.log.info('-------- Calculate Threshold for FP End-------')
        elif MakeFN0:							
            self.log.info('-------- Ensemble: Calculate Threshold for FN Start-------')
            startRange = 1.0
            endRange = 0.0
            stepsize = -0.01
            threshold_range = np.arange(startRange,endRange,stepsize)
            threshold,precisionscore,recallscore = objClf.check_threshold(stacking_c,X_train,y_train,threshold_range,'FN','')
            MakeFN0 = True 
            self.log.info('-------- Calculate Threshold for FN End-------')
						
        if threshold != -1:
            predictedData = stacking_c.predict_proba(X_test)
            predictedData = binarize(predictedData[:,1].reshape(-1, 1),threshold=threshold)			#bug 12437				
            accuracy_score_test = objClf.get_score(self.scoreParam,y_test,predictedData)			
            
        best_alg_stacking=stacking_c.__class__.__name__
        self.log.info('-----------> Best Stacking Classifier Model '+str(best_alg_stacking))		
        self.log.info('-----------> Best Score '+str(accuracy_score_test))

        
        return stacking_c,stacking_c.get_params(),accuracy_score_test,best_alg_stacking,threshold,precisionscore,recallscore
    
        
        
        
    def ensemble_stacking__regressor(self,X_train,y_train, X_test, y_test,modelList):
        
        final_estimator_c,final_estimator_r,seed,max_samples,max_features_percentage= self.stacking_params()
        final_estimator=final_estimator_r
        final_estimator_a=None
        scoredetails=''
        lr=LinearRegression()
        rcv=RidgeCV()
        svr=LinearSVR()
        lcv=LassoCV()
        rf=RandomForestRegressor(random_state=42)
        try:
            if (final_estimator == 'LinearRegression'):
                final_estimator_a=lr
            if (final_estimator == 'RidgeCV'):
                final_estimator_a=rcv
            elif (final_estimator == 'LinearSVR'):
                final_estimator_a=svr
            elif (final_estimator == 'LassoCV'):
                final_estimator_a=lcv
            elif (final_estimator == 'RandomForestRegressor'):
                final_estimator_a=rf       
            else:
                #default is RidgeCV
                final_estimator_a=rcv
        except Exception as e:
            self.log.info(""stacking regression Exception info: \n"")
            self.log.info(e)
            final_estimator_a=rcv
        base_estimators = []
        if 'Linear Regression' in   modelList:
            base_estimators.append(('LinearRegression', lr))
        if 'Ridge' in   modelList:
            base_estimators.append(('RidgeCV', rcv))    
        if 'LinearSVR' in   modelList:
            base_estimators.append(('LinearSVR', svr))
        if 'Lasso' in   modelList:
            base_estimators.append(('LassoCV', lcv))
        if 'Random Forest' in   modelList:
            base_estimators.append(('RandomForestRegressor', rf)) 
        if len(base_estimators) == 0:    
            base_estimators = [('LinearRegression', lr),('RidgeCV', rcv),('LinearSVR', svr),('LassoCV', lcv),('RandomForestRegressor', rf)]
        self.log.info(""Stacking Base Alogs :""+str(base_estimators))
        self.log.info(""Final Estimator :""+final_estimator)
        stacking_regressor = StackingRegressor(estimators=base_estimators,final_estimator=final_estimator_a)
        stacking_r_model=stacking_regressor.fit(X_train, y_train)
        stacking_rpredict=stacking_regressor.predict(X_test)
        
        
        
        best_stacking_alg=stacking_regressor.__class__.__name__
        #Accuracy
        accuracy_score_best=stacking_regressor.score(X_test, y_test)
        aion_matrixobj = aion_matrix()    
        score = aion_matrixobj.get_score(self.scoreParam,y_test,stacking_rpredict)
        return stacking_regressor,stacking_regressor.get_params(),score,best_stacking_alg
    
"
__init__.py,from .genetic_optimization import GeneticOptimizationCV
genetic_optimization.py,"from sklearn.linear_model import LogisticRegression
from sklearn.naive_bayes import GaussianNB
from sklearn.linear_model import SGDClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.linear_model import LinearRegression
from sklearn.linear_model import Lasso
from sklearn.linear_model import Ridge
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import RandomForestRegressor
import warnings
warnings.filterwarnings('ignore')
from genetic_selection import GeneticSelectionCV
def GeneticOptimizationCV(model,genetic_params,n_iter,scoring,cv):
	n_generations = n_iter
	estimator = model
	selector = GeneticSelectionCV(estimator,cv=cv,**genetic_params,n_generations=n_generations,scoring=scoring)
	return selector
"
pipelines.py,"import itertools
import logging
from typing import Optional, Dict, Union

from nltk import sent_tokenize

import torch
from transformers import(
    AutoModelForSeq2SeqLM, 
    AutoTokenizer,
    PreTrainedModel,
    PreTrainedTokenizer,
)

logger = logging.getLogger(__name__)

class QGPipeline:
    """"""Poor man's QG pipeline""""""
    def __init__(
        self,
        model: PreTrainedModel,
        tokenizer: PreTrainedTokenizer,
        ans_model: PreTrainedModel,
        ans_tokenizer: PreTrainedTokenizer,
        qg_format: str,
        use_cuda: bool
    ):
        self.model = model
        self.tokenizer = tokenizer

        self.ans_model = ans_model
        self.ans_tokenizer = ans_tokenizer

        self.qg_format = qg_format

        self.device = ""cuda"" if torch.cuda.is_available() and use_cuda else ""cpu""
        self.model.to(self.device)

        if self.ans_model is not self.model:
            self.ans_model.to(self.device)

        assert self.model.__class__.__name__ in [""T5ForConditionalGeneration"", ""BartForConditionalGeneration""]
        
        if ""T5ForConditionalGeneration"" in self.model.__class__.__name__:
            self.model_type = ""t5""
        else:
            self.model_type = ""bart""

    def __call__(self, inputs: str):
        inputs = "" "".join(inputs.split())
        sents, answers = self._extract_answers(inputs)
        flat_answers = list(itertools.chain(*answers))
        
        if len(flat_answers) == 0:
          return []

        if self.qg_format == ""prepend"":
            qg_examples = self._prepare_inputs_for_qg_from_answers_prepend(inputs, answers)
        else:
            qg_examples = self._prepare_inputs_for_qg_from_answers_hl(sents, answers)
        
        qg_inputs = [example['source_text'] for example in qg_examples]
        questions = self._generate_questions(qg_inputs)
        output = [{'answer': example['answer'], 'question': que} for example, que in zip(qg_examples, questions)]
        return output
    
    def _generate_questions(self, inputs):
        inputs = self._tokenize(inputs, padding=True, truncation=True)
        
        outs = self.model.generate(
            input_ids=inputs['input_ids'].to(self.device), 
            attention_mask=inputs['attention_mask'].to(self.device), 
            max_length=32,
            num_beams=4,
        )
        
        questions = [self.tokenizer.decode(ids, skip_special_tokens=True) for ids in outs]
        return questions
    
    def _extract_answers(self, context):
        sents, inputs = self._prepare_inputs_for_ans_extraction(context)
        inputs = self._tokenize(inputs, padding=True, truncation=True)

        outs = self.ans_model.generate(
            input_ids=inputs['input_ids'].to(self.device), 
            attention_mask=inputs['attention_mask'].to(self.device), 
            max_length=32,
        )
        
        dec = [self.ans_tokenizer.decode(ids, skip_special_tokens=False) for ids in outs]
        answers = [item.split('<sep>') for item in dec]
        answers = [i[:-1] for i in answers]
        
        return sents, answers
    
    def _tokenize(self,
        inputs,
        padding=True,
        truncation=True,
        add_special_tokens=True,
        max_length=512
    ):
        inputs = self.tokenizer.batch_encode_plus(
            inputs, 
            max_length=max_length,
            add_special_tokens=add_special_tokens,
            truncation=truncation,
            padding=""max_length"" if padding else False,
            pad_to_max_length=padding,
            return_tensors=""pt""
        )
        return inputs
    
    def _prepare_inputs_for_ans_extraction(self, text):
        sents = sent_tokenize(text)

        inputs = []
        for i in range(len(sents)):
            source_text = ""extract answers:""
            for j, sent in enumerate(sents):
                if i == j:
                    sent = ""<hl> %s <hl>"" % sent
                source_text = ""%s %s"" % (source_text, sent)
                source_text = source_text.strip()
            
            if self.model_type == ""t5"":
                source_text = source_text + "" </s>""
            inputs.append(source_text)

        return sents, inputs
    
    def _prepare_inputs_for_qg_from_answers_hl(self, sents, answers):
        inputs = []
        for i, answer in enumerate(answers):
            if len(answer) == 0: continue
            for answer_text in answer:
                sent = sents[i]
                sents_copy = sents[:]
                
                answer_text = answer_text.strip()
                
                ans_start_idx = 0
                # ans_start_idx = sent.index(answer_text)
                
                # if answer_text in sent: 
                    # ans_start_idx = sent.index(answer_text) 
                # else: 
                    # continue
                
                sent = f""{sent[:ans_start_idx]} <hl> {answer_text} <hl> {sent[ans_start_idx + len(answer_text): ]}""
                sents_copy[i] = sent
                
                source_text = "" "".join(sents_copy)
                source_text = f""generate question: {source_text}"" 
                if self.model_type == ""t5"":
                    source_text = source_text + "" </s>""
                
                inputs.append({""answer"": answer_text, ""source_text"": source_text})
        
        return inputs
    
    def _prepare_inputs_for_qg_from_answers_prepend(self, context, answers):
        flat_answers = list(itertools.chain(*answers))
        examples = []
        for answer in flat_answers:
            source_text = f""answer: {answer} context: {context}""
            if self.model_type == ""t5"":
                source_text = source_text + "" </s>""
            
            examples.append({""answer"": answer, ""source_text"": source_text})
        return examples

    
class MultiTaskQAQGPipeline(QGPipeline):
    def __init__(self, **kwargs):
        super().__init__(**kwargs)
    
    def __call__(self, inputs: Union[Dict, str]):
        if type(inputs) is str:
            # do qg
            return super().__call__(inputs)
        else:
            # do qa
            return self._extract_answer(inputs[""question""], inputs[""context""])
    
    def _prepare_inputs_for_qa(self, question, context):
        source_text = f""question: {question}  context: {context}""
        if self.model_type == ""t5"":
            source_text = source_text + "" </s>""
        return  source_text
    
    def _extract_answer(self, question, context):
        source_text = self._prepare_inputs_for_qa(question, context)
        inputs = self._tokenize([source_text], padding=False)
    
        outs = self.model.generate(
            input_ids=inputs['input_ids'].to(self.device), 
            attention_mask=inputs['attention_mask'].to(self.device), 
            max_length=16,
        )

        answer = self.tokenizer.decode(outs[0], skip_special_tokens=True)
        return answer


class E2EQGPipeline:
    def __init__(
        self,
        model: PreTrainedModel,
        tokenizer: PreTrainedTokenizer,
        use_cuda: bool
    ) :

        self.model = model
        self.tokenizer = tokenizer

        self.device = ""cuda"" if torch.cuda.is_available() and use_cuda else ""cpu""
        self.model.to(self.device)

        assert self.model.__class__.__name__ in [""T5ForConditionalGeneration"", ""BartForConditionalGeneration""]
        
        if ""T5ForConditionalGeneration"" in self.model.__class__.__name__:
            self.model_type = ""t5""
        else:
            self.model_type = ""bart""
        
        self.default_generate_kwargs = {
            ""max_length"": 256,
            ""num_beams"": 4,
            ""length_penalty"": 1.5,
            ""no_repeat_ngram_size"": 3,
            ""early_stopping"": True,
        }
    
    def __call__(self, context: str, **generate_kwargs):
        inputs = self._prepare_inputs_for_e2e_qg(context)

        # TODO: when overrding default_generate_kwargs all other arguments need to be passsed
        # find a better way to do this
        if not generate_kwargs:
            generate_kwargs = self.default_generate_kwargs
        
        input_length = inputs[""input_ids""].shape[-1]
        
        # max_length = generate_kwargs.get(""max_length"", 256)
        # if input_length < max_length:
        #     logger.warning(
        #         ""Your max_length is set to {}, but you input_length is only {}. You might consider decreasing max_length manually, e.g. summarizer('...', max_length=50)"".format(
        #             max_length, input_length
        #         )
        #     )

        outs = self.model.generate(
            input_ids=inputs['input_ids'].to(self.device), 
            attention_mask=inputs['attention_mask'].to(self.device),
            **generate_kwargs
        )

        prediction = self.tokenizer.decode(outs[0], skip_special_tokens=True)
        questions = prediction.split(""<sep>"")
        questions = [question.strip() for question in questions[:-1]]
        return questions
    
    def _prepare_inputs_for_e2e_qg(self, context):
        source_text = f""generate questions: {context}""
        if self.model_type == ""t5"":
            source_text = source_text + "" </s>""
        
        inputs = self._tokenize([source_text], padding=False)
        return inputs
    
    def _tokenize(
        self,
        inputs,
        padding=True,
        truncation=True,
        add_special_tokens=True,
        max_length=512
    ):
        inputs = self.tokenizer.batch_encode_plus(
            inputs, 
            max_length=max_length,
            add_special_tokens=add_special_tokens,
            truncation=truncation,
            padding=""max_length"" if padding else False,
            pad_to_max_length=padding,
            return_tensors=""pt""
        )
        return inputs


SUPPORTED_TASKS = {
    ""question-generation"": {
        ""impl"": QGPipeline,
        ""default"": {
            ""model"": ""valhalla/t5-small-qg-hl"",
            ""ans_model"": ""valhalla/t5-small-qa-qg-hl"",
        }
    },
    ""multitask-qa-qg"": {
        ""impl"": MultiTaskQAQGPipeline,
        ""default"": {
            ""model"": ""valhalla/t5-small-qa-qg-hl"",
        }
    },
    ""e2e-qg"": {
        ""impl"": E2EQGPipeline,
        ""default"": {
            ""model"": ""valhalla/t5-small-e2e-qg"",
        }
    }
}

def pipeline(
    task: str,
    model: Optional = None,
    tokenizer: Optional[Union[str, PreTrainedTokenizer]] = None,
    qg_format: Optional[str] = ""highlight"",
    ans_model: Optional = None,
    ans_tokenizer: Optional[Union[str, PreTrainedTokenizer]] = None,
    use_cuda: Optional[bool] = True,
    **kwargs,
):
    # Retrieve the task
    if task not in SUPPORTED_TASKS:
        raise KeyError(""Unknown task {}, available tasks are {}"".format(task, list(SUPPORTED_TASKS.keys())))

    targeted_task = SUPPORTED_TASKS[task]
    task_class = targeted_task[""impl""]

    # Use default model/config/tokenizer for the task if no model is provided
    if model is None:
        model = targeted_task[""default""][""model""]
    
    # Try to infer tokenizer from model or config name (if provided as str)
    if tokenizer is None:
        if isinstance(model, str):
            tokenizer = model
        else:
            # Impossible to guest what is the right tokenizer here
            raise Exception(
                ""Impossible to guess which tokenizer to use. ""
                ""Please provided a PretrainedTokenizer class or a path/identifier to a pretrained tokenizer.""
            )
    
    # Instantiate tokenizer if needed
    if isinstance(tokenizer, (str, tuple)):
        if isinstance(tokenizer, tuple):
            # For tuple we have (tokenizer name, {kwargs})
            tokenizer = AutoTokenizer.from_pretrained(tokenizer[0], **tokenizer[1])
        else:
            tokenizer = AutoTokenizer.from_pretrained(tokenizer)
    
    # Instantiate model if needed
    if isinstance(model, str):
        model = AutoModelForSeq2SeqLM.from_pretrained(model)
    
    if task == ""question-generation"":
        if ans_model is None:
            # load default ans model
            ans_model = targeted_task[""default""][""ans_model""]
            ans_tokenizer = AutoTokenizer.from_pretrained(ans_model)
            ans_model = AutoModelForSeq2SeqLM.from_pretrained(ans_model)
        else:
            # Try to infer tokenizer from model or config name (if provided as str)
            if ans_tokenizer is None:
                if isinstance(ans_model, str):
                    ans_tokenizer = ans_model
                else:
                    # Impossible to guest what is the right tokenizer here
                    raise Exception(
                        ""Impossible to guess which tokenizer to use. ""
                        ""Please provided a PretrainedTokenizer class or a path/identifier to a pretrained tokenizer.""
                    )
            
            # Instantiate tokenizer if needed
            if isinstance(ans_tokenizer, (str, tuple)):
                if isinstance(ans_tokenizer, tuple):
                    # For tuple we have (tokenizer name, {kwargs})
                    ans_tokenizer = AutoTokenizer.from_pretrained(ans_tokenizer[0], **ans_tokenizer[1])
                else:
                    ans_tokenizer = AutoTokenizer.from_pretrained(ans_tokenizer)

            if isinstance(ans_model, str):
                ans_model = AutoModelForSeq2SeqLM.from_pretrained(ans_model)
    
    if task == ""e2e-qg"":
        return task_class(model=model, tokenizer=tokenizer, use_cuda=use_cuda)
    elif task == ""question-generation"":
        return task_class(model=model, tokenizer=tokenizer, ans_model=ans_model, ans_tokenizer=ans_tokenizer, qg_format=qg_format, use_cuda=use_cuda)
    else:
        return task_class(model=model, tokenizer=tokenizer, ans_model=model, ans_tokenizer=tokenizer, qg_format=qg_format, use_cuda=use_cuda)
"
DRL_train.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import os
import numpy as np
import pandas as pd
import time
import sys
import logging
from reinforcement.agents.ddqn import TrainDDQN
from reinforcement.agents.dqn import TrainDQN
from reinforcement.utils import rounded_dict
from tensorflow.keras.layers import Dense, Dropout

from sklearn.model_selection import train_test_split
from learner.machinelearning import machinelearning
from learner.aion_matrix import aion_matrix

from reinforcement.metrics import network_predictions
from learner.machinelearning import machinelearning

os.environ[""CUDA_VISIBLE_DEVICES""] = ""-1""  # CPU is faster than GPU on structured data

#def TrainRL(input_csv_file, model_save_path, rl_config, RL_Algo_Name):
class ReinformentLearning():
	def __init__(self,rlConfig,scoreParam,modelType):
		
		self.rl_config= rlConfig
		self.scoreParam = scoreParam
		self.log = logging.getLogger('eion')
		self.modelType = modelType
		
	def TrainRL(self,xtrain,ytrain,xtest,ytest,algorithm,deployLocation):     
		try:
			scoredetails = ''
			X_train, xval, y_train, yval = train_test_split(xtrain, ytrain, test_size=0.2, stratify=ytrain)
			X_train = np.array(X_train)
			y_train = np.array(y_train)
			xval = np.array(xval)
			yval = np.array(yval)
			valueCount=ytrain.value_counts()
			categoryCountList=valueCount.tolist()
			xtest = np.array(xtest)
			ytest = np.array(ytest)
			objClf = aion_matrix()
			episodes = self.rl_config['episodes']                     # Total number of episodes
			warmup_steps = self.rl_config['warmup_steps']             # Amount of warmup steps to collect data with random policy
			memory_length = warmup_steps                                                # Max length of the Replay Memory
			batch_size = self.rl_config['batch_size']
			collect_steps_per_episode = self.rl_config['collect_steps_per_episode']
			collect_every = self.rl_config['collect_every']

			target_update_period = self.rl_config['target_update_period'] # Period to overwrite the target Q-network with the default Q-network
			target_update_tau = self.rl_config['target_update_tau']   # Soften the target model update
			n_step_update = self.rl_config['n_step_update']

			learning_rate = self.rl_config['learning_rate']           # Learning rate
			gamma = self.rl_config['gamma']                           # Discount factor
			min_epsilon = self.rl_config['min_epsilon']               # Minimal and final chance of choosing random action
			decay_episodes = episodes // 10                                             # Number of episodes to decay from 1.0 to `min_epsilon``

			layers = [Dense(128, activation=""relu""),            #need modification
					  Dense(64, activation=""relu""),
					  Dense(32, activation=""relu""),
					  Dense(len(np.unique(y_train)), activation=None)]
			logFilePath=os.path.join(deployLocation,'log')					  
			if algorithm == ""DQN"":
				start = time.time()
				modelName = ""DQN""
				model_save_path = os.path.dirname(__file__)
				model = TrainDQN(episodes, warmup_steps, learning_rate, gamma, min_epsilon, decay_episodes, target_update_period=target_update_period,target_update_tau=target_update_tau, batch_size=batch_size, collect_steps_per_episode=collect_steps_per_episode,memory_length=memory_length, collect_every=collect_every, n_step_update=n_step_update, model_path=model_save_path,log_dir=logFilePath)
				model.compile_model(X_train,y_train,layers)
				model.q_net.summary()
				model.train(xval,yval)
				network = model.get_network()
				predictedytrain=network_predictions(network,np.array(xtrain))
						
				predictedytest = network_predictions(network,np.array(xtest))
				
			if ""DDQN"" == algorithm:
				start = time.time()
				modelName = ""DDQN""
				model = TrainDDQN(episodes, warmup_steps, learning_rate, gamma, min_epsilon, decay_episodes, target_update_period=target_update_period,target_update_tau=target_update_tau, batch_size=batch_size, collect_steps_per_episode=collect_steps_per_episode,memory_length=memory_length, collect_every=collect_every, n_step_update=n_step_update,log_dir=logFilePath)
				
				model.compile_model(X_train,y_train,layers)
				model.q_net.summary()
				model.train(xval,yval)
				network = model.get_network()
				predictedytrain=network_predictions(network,np.array(xtrain))
				
				predictedytest = network_predictions(network,np.array(xtest))
			score = objClf.get_score(self.scoreParam,ytest,predictedytest)	
			score = round(score,2)
			
			return (network,self.rl_config,score,algorithm,-1,-1,-1)
		except Exception as inst:
			self.log.info( '\n-----> RL  Failed!!!.'+str(inst))
			exc_type, exc_obj, exc_tb = sys.exc_info()
			fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
			self.log.info(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))
		
		
		
"
DRL_predict.py,"
import os
import numpy as np
import pandas as pd
import time

from DeepRL.agents.ddqn import TrainDDQN
from DeepRL.agents.dqn import TrainDQN
from DeepRL.dataprocess import get_train_test_val
from DeepRL.utils import rounded_dict
from tensorflow.keras.layers import Dense, Dropout

from sklearn.model_selection import train_test_split

os.environ[""CUDA_VISIBLE_DEVICES""] = ""-1""  # CPU is faster than GPU on structured data

def PredictRL(input_csv_file, model_load_path, RL_hparams_config_file, RL_Algo_Name):

    if not (os.path.exists(model_load_path)):
        os.makedirs(model_load_path)

    episodes = RL_hparams_config_file['DeepRL']['episodes']                     # Total number of episodes
    warmup_steps = RL_hparams_config_file['DeepRL']['warmup_steps']             # Amount of warmup steps to collect data with random policy
    memory_length = warmup_steps                                                # Max length of the Replay Memory
    batch_size = RL_hparams_config_file['DeepRL']['batch_size']
    collect_steps_per_episode = RL_hparams_config_file['DeepRL']['collect_steps_per_episode']
    collect_every = RL_hparams_config_file['DeepRL']['collect_every']

    target_update_period = RL_hparams_config_file['DeepRL']['target_update_period'] # Period to overwrite the target Q-network with the default Q-network
    target_update_tau = RL_hparams_config_file['DeepRL']['target_update_tau']   # Soften the target model update
    n_step_update = RL_hparams_config_file['DeepRL']['n_step_update']

    learning_rate = RL_hparams_config_file['DeepRL']['learning_rate']           # Learning rate
    gamma = RL_hparams_config_file['DeepRL']['gamma']                           # Discount factor
    min_epsilon = RL_hparams_config_file['DeepRL']['min_epsilon']               # Minimal and final chance of choosing random action
    decay_episodes = episodes // 10                                             # Number of episodes to decay from 1.0 to `min_epsilon``

    #path = '/home/renith/Renith/Project/AION/Reinforcement/RL_Classification/Code/rl_text_classification/telemetry_data.csv'

    data = pd.read_csv(input_csv_file)

    device5 = data[data['device_id'] == ""Device_1""]
    device5 = device5.drop(['device_id'], axis = 1)
    device5.reset_index(drop=True, inplace=True)

    target_value = []
    for i in range(device5['device_status'].shape[0]):
        if(device5['device_status'][i] == ""NORMAL""):
            target_value.append(0.0)
        else:
            target_value.append(1.0)

    device5['target'] = target_value
    device5 = device5.drop(['device_status'], axis = 1)

    X_test = device5.iloc[:,1:-1]
    y_test = device5.iloc[:,-1]

    X_test = X_test.astype(np.float32)
    y_test = y_test.astype(np.int32)

    #Normalization
    mini, maxi = X_test.min(axis=0), X_test.max(axis=0)
    X_test -= mini
    X_test /= maxi - mini

    min_class = [1] #Minority class
    maj_class = [0] #Majority class

    #X_train, X_test, y_train, y_test = train_test_split(X_train, y_train, test_size=0.8, stratify=y_train)

    #X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=0.2, stratify=y_train)

    #X_train = np.array(X_train)
    #y_train = np.array(y_train)
    #X_val = np.array(X_val)
    #y_val = np.array(y_val)
    X_test = np.array(X_test)
    y_test = np.array(y_test)

    #X_train, y_train, X_test, y_test, X_val, y_val = get_train_test_val(X_train.values, y_train.values, X_test.values, y_test.values,
    #                                                                min_class, maj_class, val_frac=0.2)

    layers = [Dense(128, activation=""relu""),
              Dense(64, activation=""relu""),
              Dense(32, activation=""relu""),
              Dense(2, activation=None)]

    if(RL_Algo_Name == ""DDQN""):
        model = TrainDDQN(episodes, warmup_steps, learning_rate, gamma, min_epsilon, decay_episodes, target_update_period=target_update_period,
                          target_update_tau=target_update_tau, batch_size=batch_size, collect_steps_per_episode=collect_steps_per_episode,
                          memory_length=memory_length, collect_every=collect_every, n_step_update=n_step_update, model_path=model_load_path)
    elif(RL_Algo_Name == ""DQN""):
        model = TrainDQN(episodes, warmup_steps, learning_rate, gamma, min_epsilon, decay_episodes, target_update_period=target_update_period,
                          target_update_tau=target_update_tau, batch_size=batch_size, collect_steps_per_episode=collect_steps_per_episode,
                          memory_length=memory_length, collect_every=collect_every, n_step_update=n_step_update, model_path=model_load_path)

    model.compile_model(X_test, y_test, layers)
    model.q_net.summary()

    #model.train(X_val, y_val, ""F1"")

    #print(""Training Ended !!!!"")

    stats = model.evaluate(X_test, y_test)
    print(rounded_dict(stats))
    #stats = model.evaluate(X_train, y_train)
    #print(rounded_dict(stats))
"
metrics.py,"import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
from sklearn.metrics import (auc, average_precision_score, confusion_matrix,
                             f1_score, precision_recall_curve, roc_curve,precision_score,recall_score)
from tensorflow import constant
from tf_agents.trajectories import time_step


def network_predictions(network, X: np.ndarray) -> dict:
    """"""Computes y_pred using a given network.
    Input is array of data entries.

    :param network: The network to use to calculate metrics
    :type  network: (Q)Network
    :param X: X data, input to network
    :type  X: np.ndarray

    :return: Numpy array of predicted targets for given X
    :rtype: np.ndarray
    """"""
    if not isinstance(X, np.ndarray):
        raise ValueError(f""`X` must be of type `np.ndarray` not {type(X)}"")

    q, _ = network(X, step_type=constant([time_step.StepType.FIRST] * X.shape[0]), training=False)
    return np.argmax(q.numpy(), axis=1)  # Max action for each x in X


def decision_function(network, X: np.ndarray) -> dict:
    """"""Computes the score for the predicted class of each x in X using a given network.
    Input is array of data entries.

    :param network: The network to use to calculate the score per x in X
    :type  network: (Q)Network
    :param X: X data, input to network
    :type  X: np.ndarray

    :return: Numpy array of scores for given X
    :rtype: np.ndarray
    """"""
    if not isinstance(X, np.ndarray):
        raise ValueError(f""`X` must be of type `np.ndarray` not {type(X)}"")

    q, _ = network(X, step_type=constant([time_step.StepType.FIRST] * X.shape[0]), training=False)
    return np.max(q.numpy(), axis=1)  # Value of max action for each x in X


def classification_metrics(y_true: list, y_pred: list) -> dict:
    """"""Computes metrics using y_true and y_pred.

    :param y_true: True labels
    :type  y_true: np.ndarray
    :param y_pred: Predicted labels, corresponding to y_true
    :type  y_pred: np.ndarray

    :return: Dictionairy containing Geometric Mean, F1, Precision, Recall, TP, TN, FP, FN
    :rtype: dict
    """"""
    if not isinstance(y_true, (list, tuple, np.ndarray)):
        raise ValueError(f""`y_true` must be of type `list` not {type(y_true)}"")
    if not isinstance(y_pred, (list, tuple, np.ndarray)):
        raise ValueError(f""`y_pred` must be of type `list` not {type(y_pred)}"")
    if len(y_true) != len(y_pred):
        raise ValueError(""`X` and `y` must be of same length."")
    

    #G_mean = np.sqrt(recall * specificity)  # Geometric mean of recall and specificity
    F1 = f1_score(y_true, y_pred, average='macro')  # Default F-measure
    recall = recall_score(y_true,y_pred,average='macro')
    precision = precision_score(y_true,y_pred,average='macro')
    return {""F1"": F1, ""Precision"": precision, ""Recall"": recall}


def plot_pr_curve(network, X_test: np.ndarray, y_test: np.ndarray,
                  X_train: np.ndarray = None, y_train: np.ndarray = None) -> None:   # pragma: no cover
    """"""Plots PR curve of X_test and y_test of given network.
    Optionally plots PR curve of X_train and y_train.
    Average precision is shown in the legend.

    :param network: The network to use to calculate the PR curve
    :type  network: (Q)Network
    :param X_test: X data, input to network
    :type  X_test: np.ndarray
    :param y_test: True labels for `X_test`
    :type  y_test: np.ndarray
    :param X_train: Optional X data to plot validation PR curve
    :type  X_train: np.ndarray
    :param y_train: True labels for `X_val`
    :type  y_train: np.ndarray

    :return: None
    :rtype: NoneType
    """"""
    plt.plot((0, 1), (1, 0), color=""black"", linestyle=""--"", label=""Baseline"")
    # TODO: Consider changing baseline

    if X_train is not None and y_train is not None:
        y_val_score = decision_function(network, X_train)
        val_precision, val_recall, _ = precision_recall_curve(y_train, y_val_score)
        val_AP = average_precision_score(y_train, y_val_score)
        plt.plot(val_recall, val_precision, label=f""Train AP: {val_AP:.3f}"")

    y_test_score = decision_function(network, X_test)
    test_precision, test_recall, _ = precision_recall_curve(y_test, y_test_score)
    test_AP = average_precision_score(y_test, y_test_score)

    plt.plot(test_recall, test_precision, label=f""Test AP: {test_AP:.3f}"")
    plt.xlim((-0.05, 1.05))
    plt.ylim((-0.05, 1.05))
    plt.xlabel(""Recall"")
    plt.ylabel(""Precision"")
    plt.title(""PR Curve"")
    plt.gca().set_aspect(""equal"", adjustable=""box"")
    plt.legend(loc=""lower left"")
    plt.grid(True)
    plt.show()


def plot_roc_curve(network, X_test: np.ndarray, y_test: np.ndarray,
                   X_train: np.ndarray = None, y_train: np.ndarray = None) -> None:   # pragma: no cover
    """"""Plots ROC curve of X_test and y_test of given network.
    Optionally plots ROC curve of X_train and y_train.
    Average precision is shown in the legend.

    :param network: The network to use to calculate the PR curve
    :type  network: (Q)Network
    :param X_test: X data, input to network
    :type  X_test: np.ndarray
    :param y_test: True labels for `X_test`
    :type  y_test: np.ndarray
    :param X_train: Optional X data to plot validation PR curve
    :type  X_train: np.ndarray
    :param y_train: True labels for `X_val`
    :type  y_train: np.ndarray

    :return: None
    :rtype: NoneType
    """"""
    plt.plot((0, 1), (0, 1), color=""black"", linestyle=""--"", label=""Baseline"")
    # TODO: Consider changing baseline

    if X_train is not None and y_train is not None:
        y_train_score = decision_function(network, X_train)
        fpr_train, tpr_train, _ = roc_curve(y_train, y_train_score)
        plt.plot(fpr_train, tpr_train, label=f""Train AUROC: {auc(fpr_train, tpr_train):.2f}"")

    y_test_score = decision_function(network, X_test)
    fpr_test, tpr_test, _ = roc_curve(y_test, y_test_score)

    plt.plot(fpr_test, tpr_test, label=f""Test AUROC: {auc(fpr_test, tpr_test):.2f}"")
    plt.xlim((-0.05, 1.05))
    plt.ylim((-0.05, 1.05))
    plt.xlabel(""False Positive Rate"")
    plt.ylabel(""True Positive Rate"")
    plt.title(""ROC Curve"")
    plt.gca().set_aspect(""equal"", adjustable=""box"")
    plt.legend(loc=""lower right"")
    plt.grid(True)
    plt.show()


def plot_confusion_matrix(TP: int, FN: int, FP: int, TN: int) -> None:  # pragma: no cover
    """"""Plots confusion matric of given TP, FN, FP, TN.

    :param TP: True Positive
    :type  TP: int
    :param FN: False Negative
    :type  FN: int
    :param FP: False Positive
    :type  FP: int
    :param TN: True Negative
    :type  TN: int

    :return: None
    :rtype: NoneType
    """"""
    if not all(isinstance(i, (int, np.integer)) for i in (TP, FN, FP, TN)):
        raise ValueError(""Not all arguments are integers."")

    ticklabels = (""Minority"", ""Majority"")
    sns.heatmap(((TP, FN), (FP, TN)), annot=True, fmt=""_d"", cmap=""viridis"", xticklabels=ticklabels, yticklabels=ticklabels)

    plt.title(""Confusion matrix"")
    plt.xlabel(""Predicted labels"")
    plt.ylabel(""True labels"")
    plt.show()
"
utils.py,"import os
from typing import List

import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split


def split_csv(fp: str = ""./data/creditcard.csv"", fp_dest: str = ""./data"",
              name: str = ""credit"", test_size: int = 0.5, strat_col: str = ""Class"") -> None:
    """"""Splits a csv file in two, in a stratified fashion.
    Format for filenames will be `{name}0.csv and `{name}1.csv`.

    :param fp: The path at which the csv file is located.
    :type  fp: str
    :param fp_dest: The path to save the train and test files.
    :type  fp_dest: str
    :param name: The prefix for the files.
    :type  name: str
    :param test_size: The fraction of total size for the test file.
    :type  test_size: float
    :param strat_col: The column in the original csv file to stratify.

    :return: None, two files located at `fp_dest`.
    :rtype: NoneType
    """"""
    if not os.path.isfile(fp):
        raise FileNotFoundError(f""File at {fp} does not exist."")
    if not os.path.isdir(fp_dest):
        raise ValueError(f""Directory at {fp_dest} does not exist."")
    if not 0 < test_size < 1:
        raise ValueError(f""{test_size} is not in interval 0 < x < 1."")

    df = pd.read_csv(fp)

    if not (strat_col in df.columns):
        raise ValueError(f""Stratify column {strat_col} not found in DataFrame."")

    train, test = train_test_split(df, test_size=test_size, stratify=df[strat_col])

    train.to_csv(f""{fp_dest}/{name}0.csv"", index=False)
    test.to_csv(f""{fp_dest}/{name}1.csv"", index=False)


def rounded_dict(d: dict, precision: int = 6) -> dict:
    """"""Rounds all values in a dictionairy to `precision` digits after the decimal point.

    :param d: Dictionairy containing only floats or ints as values
    :type  d: dict

    :return: Rounded dictionairy
    :rtype: dict
    """"""
    return {k: round(v, precision) for k, v in d.items()}


def imbalance_ratio(y: np.ndarray, min_classes: List[int] = [1], maj_classes: List[int] = [0]) -> float:
    """"""Calculates imbalance ratio of minority class(es) and majority class(es).

    :param y: y-vector with labels.
    :type  y: np.ndarray
    :param min_classes: The labels of the minority classes
    :type  min_classes: list
    :param maj_classes: The labels of the minority classes
    :type  maj_classes: list

    :return: The imbalance ratio
    :rtype: float
    """"""
    return np.isin(y, min_classes).sum() / np.isin(y, maj_classes).sum()
"
dataprocess.py,"import os
from typing import List, Tuple

import numpy as np
from pandas import read_csv
from sklearn.model_selection import train_test_split
from sklearn.utils import shuffle
from tensorflow.keras.datasets import cifar10, fashion_mnist, imdb, mnist
from tensorflow.keras.preprocessing.sequence import pad_sequences


TrainTestData = Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]
TrainTestValData = Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray, np.ndarray, np.ndarray]


def load_image(data_source: str) -> TrainTestData:
    """"""
    Loads one of the following image datasets: {mnist, famnist, cifar10}.
    Normalizes the data. Returns X and y for both train and test datasets.
    Dtypes of X's and y's will be `float32` and `int32` to be compatible with `tf_agents`.

    :param data_source: Either mnist, famnist or cifar10
    :type  data_source: str

    :return: Tuple of (X_train, y_train, X_test, y_test) containing original split of train/test
    :rtype: tuple
    """"""
    reshape_shape = -1, 28, 28, 1

    if data_source == ""mnist"":
        (X_train, y_train), (X_test, y_test) = mnist.load_data()

    elif data_source == ""famnist"":
        (X_train, y_train), (X_test, y_test) = fashion_mnist.load_data()

    elif data_source == ""cifar10"":
        (X_train, y_train), (X_test, y_test) = cifar10.load_data()
        reshape_shape = -1, 32, 32, 3

    else:
        raise ValueError(""No valid `data_source`."")

    X_train = X_train.reshape(reshape_shape).astype(np.float32)  # Float32 is the expected dtype for the observation spec in the env
    X_test = X_test.reshape(reshape_shape).astype(np.float32)

    X_train /= 255  # /= is not available when casting int to float: https://stackoverflow.com/a/48948461/10603874
    X_test /= 255

    y_train = y_train.reshape(y_train.shape[0], ).astype(np.int32)
    y_test = y_test.reshape(y_test.shape[0], ).astype(np.int32)

    return X_train, y_train, X_test, y_test


def load_csv(fp_train: str, fp_test: str, label_col: str, drop_cols: List[str], normalization: bool = False) -> TrainTestData:
    """"""
    Loads any csv-file from local filepaths. Returns X and y for both train and test datasets.
    Option to normalize the data with min-max normalization.
    Only csv-files with float32 values for the features and int32 values for the labels supported.
    Source for dataset: https://mimic-iv.mit.edu/

    :param fp_train: Location of the train csv-file
    :type  fp_train: str
    :param fp_test: Location of the test csv-file
    :type  fp_test: str
    :param label_col: The name of the column containing the labels of the data
    :rtype label_col: str
    :param drop_cols: List of the names of the columns to be dropped. `label_col` gets dropped automatically
    :rtype drop_cols: List of strings
    :param normalization: Normalize the data with min-max normalization?
    :type  normalization: bool

    :return: Tuple of (X_train, y_train, X_test, y_test) containing original split of train/test
    :rtype: Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]
    """"""
    if not os.path.isfile(fp_train):
        raise FileNotFoundError(f""`fp_train` {fp_train} does not exist."")
    if not os.path.isfile(fp_test):
        raise FileNotFoundError(f""`fp_test` {fp_test} does not exist."")
    if not isinstance(normalization, bool):
        raise TypeError(f""`normalization` must be of type `bool`, not {type(normalization)}"")

    X_train = read_csv(fp_train).astype(np.float32)  # DataFrames directly converted to float32
    X_test = read_csv(fp_test).astype(np.float32)

    y_train = X_train[label_col].astype(np.int32)
    y_test = X_test[label_col].astype(np.int32)
    X_train.drop(columns=drop_cols + [label_col], inplace=True)  # Dropping cols and label column
    X_test.drop(columns=drop_cols + [label_col], inplace=True)

    # Other data sources are already normalized. RGB values are always in range 0 to 255.
    if normalization:
        mini, maxi = X_train.min(axis=0), X_train.max(axis=0)
        X_train -= mini
        X_train /= maxi - mini
        X_test -= mini
        X_test /= maxi - mini

    return X_train.values, y_train.values, X_test.values, y_test.values  # Numpy arrays


def load_imdb(config: Tuple[int, int] = (5_000, 500)) -> TrainTestData:
    """"""Loads the IMDB dataset. Returns X and y for both train and test datasets.

    :param config: Tuple of number of most frequent words and max length of each sequence.
    :type  config: str

    :return: Tuple of (X_train, y_train, X_test, y_test) containing original split of train/test
    :rtype: tuple
    """"""
    if not isinstance(config, (tuple, list)):
        raise TypeError(f""{type(config)} is no valid datatype for `config`."")
    if len(config) != 2:
        raise ValueError(""Tuple length of `config` must be 2."")
    if not all(i > 0 for i in config):
        raise ValueError(""All integers of `config` must be > 0."")

    (X_train, y_train), (X_test, y_test) = imdb.load_data(num_words=config[0])

    X_train = pad_sequences(X_train, maxlen=config[1])
    X_test = pad_sequences(X_test, maxlen=config[1])

    y_train = y_train.astype(np.int32)
    y_test = y_test.astype(np.int32)

    return X_train, y_train, X_test, y_test


def get_train_test_val(X_train: np.ndarray, y_train: np.ndarray, X_test: np.ndarray, y_test: np.ndarray, min_classes: List[int],
                       maj_classes: List[int], imb_ratio: float = None, imb_test: bool = True, val_frac: float = 0.25,
                       print_stats: bool = True) -> TrainTestValData:
    """"""
    Imbalances data and divides the data into train, test and validation sets.
    The imbalance rate of each individual dataset is approx. the same as the given `imb_ratio`.

    :param X_train: The X_train data
    :type  X_train: np.ndarray
    :param y_train: The y_train data
    :type  y_train: np.ndarray
    :param X_test: The X_test data
    :type  X_test: np.ndarray
    :param y_test: The y_test data
    :type  y_test: np.ndarray
    :param min_classes: List of labels of all minority classes
    :type  min_classes: list
    :param maj_classes: List of labels of all majority classes.
    :type  maj_classes: list
    :param imb_ratio: Imbalance ratio for minority to majority class: len(minority datapoints) / len(majority datapoints)
        If the `imb_ratio` is None, data will not be imbalanced and will only be relabeled to 1's and 0's.
    :type  imb_ratio: float
    :param imb_test: Imbalance the test dataset?
    :type  imb_test: bool
    :param val_frac: Fraction to take from X_train and y_train for X_val and y_val
    :type  val_frac: float
    :param print_stats: Print the imbalance ratio of the imbalanced data?
    :type  print_stats: bool

    :return: Tuple of (X_train, y_train, X_test, y_test, X_val, y_val)
    :rtype: Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray, np.ndarray, np.ndarray]
    """"""
    if not 0 < val_frac < 1:
        raise ValueError(f""{val_frac} is not in interval 0 < x < 1."")
    if not isinstance(print_stats, bool):
        raise TypeError(f""`print_stats` must be of type `bool`, not {type(print_stats)}."")

    X_train, y_train = imbalance_data(X_train, y_train, min_classes, maj_classes, imb_ratio=imb_ratio)
    # Only imbalance test-data if imb_test is True
    X_test, y_test = imbalance_data(X_test, y_test, min_classes, maj_classes, imb_ratio=imb_ratio if imb_test else None)

    # stratify=y_train to ensure class balance is kept between train and validation datasets
    X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=val_frac, stratify=y_train)

    if print_stats:
        p_train, p_test, p_val = [((y == 1).sum(), imbalance_ratio(y)) for y in (y_train, y_test, y_val)]
        print(f""Imbalance ratio `p`:\n""
              f""\ttrain:      n={p_train[0]}, p={p_train[1]:.6f}\n""
              f""\ttest:       n={p_test[0]}, p={p_test[1]:.6f}\n""
              f""\tvalidation: n={p_val[0]}, p={p_val[1]:.6f}"")

    return X_train, y_train, X_test, y_test, X_val, y_val


def imbalance_data(X: np.ndarray, y: np.ndarray, min_class: List[int], maj_class: List[int],
                   imb_ratio: float = None) -> Tuple[np.ndarray, np.ndarray]:
    """"""
    Split data in minority and majority, only values in {min_class, maj_class} will be kept.
    (Possibly) decrease minority rows to match the imbalance rate.
    If initial imb_ratio of dataset is lower than given `imb_ratio`, the imb_ratio of the returned data will not be changed.
    If the `imb_ratio` is None, data will not be imbalanced and will only be relabeled to 1's and 0's.
    """"""
    if not isinstance(X, np.ndarray):
        raise TypeError(f""`X` must be of type `np.ndarray` not {type(X)}"")
    if not isinstance(y, np.ndarray):
        raise TypeError(f""`y` must be of type `np.ndarray` not {type(y)}"")
    if X.shape[0] != y.shape[0]:
        raise ValueError(""`X` and `y` must contain the same amount of rows."")
    if not isinstance(min_class, (list, tuple)):
        raise TypeError(""`min_class` must be of type list or tuple."")
    if not isinstance(maj_class, (list, tuple)):
        raise TypeError(""`maj_class` must be of type list or tuple."")

    if (imb_ratio is not None) and not (0 < imb_ratio < 1):
        raise ValueError(f""{imb_ratio} is not in interval 0 < imb_ratio < 1."")

    if imb_ratio is None:  # Do not imbalance data if no `imb_ratio` is given
        imb_ratio = 1

    X_min = X[np.isin(y, min_class)]  # Mask the correct indexes
    X_maj = X[np.isin(y, maj_class)]  # Only keep data/labels for x in {min_class, maj_class} and forget all other

    min_len = int(X_maj.shape[0] * imb_ratio)  # Amount of rows to select from minority classes to get to correct imbalance ratio
    # Keep all majority rows, decrease minority rows to match `imb_ratio`
    X_min = X_min[np.random.choice(X_min.shape[0], min(min_len, X_min.shape[0]), replace=False), :]

    X_imb = np.concatenate([X_maj, X_min]).astype(np.float32)
    y_imb = np.concatenate((np.zeros(X_maj.shape[0]), np.ones(X_min.shape[0]))).astype(np.int32)
    X_imb, y_imb = shuffle(X_imb, y_imb)

    return X_imb, y_imb
"
dqn.py,"import os
import pickle
from datetime import datetime

import numpy as np
import tensorflow as tf
from reinforcement.environments.classifierenv import ClassifierEnv
from reinforcement.metrics import (classification_metrics, decision_function,
                            network_predictions, plot_pr_curve, plot_roc_curve)
from reinforcement.utils import imbalance_ratio
from tensorflow import data
from tensorflow.keras.optimizers import Adam
#from tf_agents.agents.dqn.dqn_agent import DdqnAgent
from tf_agents.agents import DqnAgent
from tf_agents.drivers.dynamic_step_driver import DynamicStepDriver
from tf_agents.environments.tf_py_environment import TFPyEnvironment
from tf_agents.networks.sequential import Sequential
from tf_agents.policies.random_tf_policy import RandomTFPolicy
from tf_agents.replay_buffers.tf_uniform_replay_buffer import \
    TFUniformReplayBuffer
from tf_agents.utils import common


class TrainDQN():
    """"""Wrapper for DDQN training, validation, saving etc.""""""

    def __init__(self, episodes: int, warmup_steps: int, learning_rate: float, gamma: float, min_epsilon: float, decay_episodes: int,
                 model_path: str = None, log_dir: str = None, batch_size: int = 64, memory_length: int = None,
                 collect_steps_per_episode: int = 1, val_every: int = None, target_update_period: int = 1, target_update_tau: float = 1.0,
                 progressbar: bool = True, n_step_update: int = 1, gradient_clipping: float = 1.0, collect_every: int = 1) -> None:
        """"""
        Wrapper to make training easier.
        Code is partly based of https://www.tensorflow.org/agents/tutorials/1_dqn_tutorial

        :param episodes: Number of training episodes
        :type  episodes: int
        :param warmup_steps: Number of episodes to fill Replay Buffer with random state-action pairs before training starts
        :type  warmup_steps: int
        :param learning_rate: Learning Rate for the Adam Optimizer
        :type  learning_rate: float
        :param gamma: Discount factor for the Q-values
        :type  gamma: float
        :param min_epsilon: Lowest and final value for epsilon
        :type  min_epsilon: float
        :param decay_episodes: Amount of episodes to decay from 1 to `min_epsilon`
        :type  decay_episodes: int
        :param model_path: Location to save the trained model
        :type  model_path: str
        :param log_dir: Location to save the logs, usefull for TensorBoard
        :type  log_dir: str
        :param batch_size: Number of samples in minibatch to train on each step
        :type  batch_size: int
        :param memory_length: Maximum size of the Replay Buffer
        :type  memory_length: int
        :param collect_steps_per_episode: Amount of data to collect for Replay Buffer each episiode
        :type  collect_steps_per_episode: int
        :param collect_every: Step interval to collect data during training
        :type  collect_every: int
        :param val_every: Validate the model every X episodes using the `collect_metrics()` function
        :type  val_every: int
        :param target_update_period: Update the target Q-network every X episodes
        :type  target_update_period: int
        :param target_update_tau: Parameter for softening the `target_update_period`
        :type  target_update_tau: float
        :param progressbar: Enable or disable the progressbar for collecting data and training
        :type  progressbar: bool

        :return: None
        :rtype: NoneType
        """"""
        self.episodes = episodes  # Total episodes
        self.warmup_steps = warmup_steps  # Amount of warmup steps before training
        self.batch_size = batch_size  # Batch size of Replay Memory
        self.collect_steps_per_episode = collect_steps_per_episode  # Amount of steps to collect data each episode
        self.collect_every = collect_every  # Step interval to collect data during training
        self.learning_rate = learning_rate  # Learning Rate
        self.gamma = gamma  # Discount factor
        self.min_epsilon = min_epsilon  # Minimal chance of choosing random action
        self.decay_episodes = decay_episodes  # Number of episodes to decay from 1.0 to `EPSILON`
        self.target_update_period = target_update_period  # Period for soft updates
        self.target_update_tau = target_update_tau
        self.progressbar = progressbar  # Enable or disable the progressbar for collecting data and training
        self.n_step_update = n_step_update
        self.gradient_clipping = gradient_clipping  # Clip the loss
        self.compiled = False
        NOW = ""DQN"" #datetime.now().strftime(""%Y%m%d_%H%M%S"")

        if memory_length is not None:
            self.memory_length = memory_length  # Max Replay Memory length
        else:
            self.memory_length = warmup_steps

        if val_every is not None:
            self.val_every = val_every  # Validate the policy every `val_every` episodes
        else:
            self.val_every = self.episodes // min(50, self.episodes)  # Can't validate the model 50 times if self.episodes < 50

        if model_path is not None:
            #if os.path.exists(model_path + ""/"" + NOW + "".pkl""):
            #    os.remove(model_path + ""/"" + NOW + "".pkl"")
            self.model_path = model_path + ""/"" + NOW + "".pkl""
        else:
            self.model_path = ""./models/"" + NOW + "".pkl""

        if log_dir is None:
            log_dir = ""./logs/"" + NOW
        self.writer = tf.summary.create_file_writer(log_dir)

    def compile_model(self, X_train, y_train, layers: list = [], imb_ratio: float = None, loss_fn=common.element_wise_squared_loss) -> None:
        """"""Initializes the neural networks, DDQN-agent, collect policies and replay buffer.

        :param X_train: Training data for the model.
        :type  X_train: np.ndarray
        :param y_train: Labels corresponding to `X_train`.  1 for the positive class, 0 for the negative class.
        :param y_train: np.ndarray
        :param layers: List of layers to feed into the TF-agents custom Sequential(!) layer.
        :type  layers: list
        :param imb_ratio: The imbalance ratio of the data.
        :type  imb_ratio: float
        :param loss_fn: Callable loss function
        :type  loss_fn: tf.compat.v1.losses

        :return: None
        :rtype: NoneType
        """"""
        if imb_ratio is None:
            imb_ratio = imbalance_ratio(y_train)

        self.train_env = TFPyEnvironment(ClassifierEnv(X_train, y_train, imb_ratio))
        self.global_episode = tf.Variable(0, name=""global_episode"", dtype=np.int64, trainable=False)  # Global train episode counter

        # Custom epsilon decay: https://github.com/tensorflow/agents/issues/339
        epsilon_decay = tf.compat.v1.train.polynomial_decay(
            1.0, self.global_episode, self.decay_episodes, end_learning_rate=self.min_epsilon)

        self.q_net = Sequential(layers, self.train_env.observation_spec())

        self.agent = DqnAgent(self.train_env.time_step_spec(),
                               self.train_env.action_spec(),
                               q_network=self.q_net,
                               optimizer=Adam(learning_rate=self.learning_rate),
                               td_errors_loss_fn=loss_fn,
                               train_step_counter=self.global_episode,
                               target_update_period=self.target_update_period,
                               target_update_tau=self.target_update_tau,
                               gamma=self.gamma,
                               epsilon_greedy=epsilon_decay,
                               n_step_update=self.n_step_update,
                               gradient_clipping=self.gradient_clipping)
        self.agent.initialize()

        self.random_policy = RandomTFPolicy(self.train_env.time_step_spec(), self.train_env.action_spec())
        self.replay_buffer = TFUniformReplayBuffer(data_spec=self.agent.collect_data_spec,
                                                   batch_size=self.train_env.batch_size,
                                                   max_length=self.memory_length)

        self.warmup_driver = DynamicStepDriver(self.train_env,
                                               self.random_policy,
                                               observers=[self.replay_buffer.add_batch],
                                               num_steps=self.warmup_steps)  # Uses a random policy

        self.collect_driver = DynamicStepDriver(self.train_env,
                                                self.agent.collect_policy,
                                                observers=[self.replay_buffer.add_batch],
                                                num_steps=self.collect_steps_per_episode)  # Uses the epsilon-greedy policy of the agent

        self.agent.train = common.function(self.agent.train)  # Optimalization
        self.warmup_driver.run = common.function(self.warmup_driver.run)
        self.collect_driver.run = common.function(self.collect_driver.run)

        self.compiled = True

    def train(self, *args) -> None:
        """"""Starts the training of the model. Includes warmup period, metrics collection and model saving.

        :param *args: All arguments will be passed to `collect_metrics()`.
            This can be usefull to pass callables, testing environments or validation data.
            Overwrite the TrainDQN.collect_metrics() function to use your own *args.
        :type  *args: Any

        :return: None
        :rtype: NoneType, last step is saving the model as a side-effect
        """"""
        assert self.compiled, ""Model must be compiled with model.compile_model(X_train, y_train, layers) before training.""

        # Warmup period, fill memory with random actions
        if self.progressbar:
            print(f""\033[92mCollecting data for {self.warmup_steps:_} steps... This might take a few minutes...\033[0m"")

        self.warmup_driver.run(time_step=None, policy_state=self.random_policy.get_initial_state(self.train_env.batch_size))

        if self.progressbar:
            print(f""\033[92m{self.replay_buffer.num_frames():_} frames collected!\033[0m"")

        dataset = self.replay_buffer.as_dataset(sample_batch_size=self.batch_size, num_steps=self.n_step_update + 1,
                                                num_parallel_calls=data.experimental.AUTOTUNE).prefetch(data.experimental.AUTOTUNE)
        iterator = iter(dataset)

        def _train():
            experiences, _ = next(iterator)
            return self.agent.train(experiences).loss
        _train = common.function(_train)  # Optimalization

        ts = None
        policy_state = self.agent.collect_policy.get_initial_state(self.train_env.batch_size)
        print('Before Collect Metrics')		
        self.collect_metrics(*args)  # Initial collection for step 0
        print('After Collect Metrics')
        
        for _ in range(self.episodes):
            if not self.global_episode % self.collect_every:
                # Collect a few steps using collect_policy and save to `replay_buffer`
                if self.collect_steps_per_episode != 0:
                    ts, policy_state = self.collect_driver.run(time_step=ts, policy_state=policy_state)
                

            # Sample a batch of data from `replay_buffer` and update the agent's network
            train_loss = _train()

            if not self.global_episode % self.val_every:
                with self.writer.as_default():
                    tf.summary.scalar(""train_loss"", train_loss, step=self.global_episode)

                self.collect_metrics(*args)
        

    def collect_metrics(self, X_val: np.ndarray, y_val: np.ndarray, save_best: str = None):
        """"""Collects metrics using the trained Q-network.

        :param X_val: Features of validation data, same shape as X_train
        :type  X_val: np.ndarray
        :param y_val: Labels of validation data, same shape as y_train
        :type  y_val: np.ndarra
        :param save_best: Saving the best model of all validation runs based on given metric:
            Choose one of: {Gmean, F1, Precision, Recall, TP, TN, FP, FN}
            This improves stability since the model at the last episode is not guaranteed to be the best model.
        :type  save_best: str
        """"""
        y_pred = network_predictions(self.agent._target_q_network, X_val)
        print('classification_metrics')		
        stats = classification_metrics(y_val, y_pred)
        print('Before AVGQ')
        avgQ = np.mean(decision_function(self.agent._target_q_network, X_val))  # Max action for each x in X
        print('After AVGQ')		
        if save_best is not None:
            if not hasattr(self, ""best_score""):  # If no best model yet
                self.best_score = 0.0

            if stats.get(save_best) >= self.best_score:  # Overwrite best model
                self.save_network()  # Saving directly to avoid shallow copy without trained weights
                self.best_score = stats.get(save_best)

        with self.writer.as_default():
            tf.summary.scalar(""AverageQ"", avgQ, step=self.global_episode)  # Average Q-value for this epoch
            for k, v in stats.items():
                tf.summary.scalar(k, v, step=self.global_episode)

    def evaluate(self, X_test, y_test):
        """"""
        Final evaluation of trained Q-network with X_test and y_test.
        Optional PR and ROC curve comparison to X_train, y_train to ensure no overfitting is taking place.

        :param X_test: Features of test data, same shape as X_train
        :type  X_test: np.ndarray
        :param y_test: Labels of test data, same shape as y_train
        :type  y_test: np.ndarray
        :param X_train: Features of train data
        :type  X_train: np.ndarray
        :param y_train: Labels of train data
        :type  y_train: np.ndarray
        """"""
        #if hasattr(self, ""best_score""):
        #    print(f""\033[92mBest score: {self.best_score:6f}!\033[0m"")
        #    network = self.load_network(self.model_path)  # Load best saved model
        #else:
        #    network = self.agent._target_q_network  # Load latest target model

        #network = self.load_network(self.model_path)
        #if (X_train is not None) and (y_train is not None):
        #    plot_pr_curve(network, X_test, y_test, X_train, y_train)
        #    plot_roc_curve(network, X_test, y_test, X_train, y_train)

        y_pred = network_predictions(self.agent._target_q_network, X_test)
        return classification_metrics(y_test, y_pred)

    def save_network(self):
        print('save_network')	
        """"""Saves Q-network as pickle to `model_path`.""""""
        with open(self.model_path, ""wb"") as f:  # Save Q-network as pickle
            pickle.dump(self.agent._target_q_network, f)

    def get_network(self):
        """"""Static method to load Q-network pickle from given filepath.

        :param fp: Filepath to the saved pickle of the network
        :type  fp: str

        :returns: The network-object loaded from a pickle file.
        :rtype: tensorflow.keras.models.Model
        """"""
        return self.agent._target_q_network
"
ddqn.py,"import os
import pickle
from datetime import datetime

import numpy as np
import tensorflow as tf
from reinforcement.environments.classifierenv import ClassifierEnv
from reinforcement.metrics import (classification_metrics, decision_function,
                            network_predictions, plot_pr_curve, plot_roc_curve)
from reinforcement.utils import imbalance_ratio
from tensorflow import data
from tensorflow.keras.optimizers import Adam
from tf_agents.agents.dqn.dqn_agent import DdqnAgent
from tf_agents.drivers.dynamic_step_driver import DynamicStepDriver
from tf_agents.environments.tf_py_environment import TFPyEnvironment
from tf_agents.networks.sequential import Sequential
from tf_agents.policies.random_tf_policy import RandomTFPolicy
from tf_agents.replay_buffers.tf_uniform_replay_buffer import \
    TFUniformReplayBuffer
from tf_agents.utils import common



class TrainDDQN():
    """"""Wrapper for DDQN training, validation, saving etc.""""""

    def __init__(self, episodes: int, warmup_steps: int, learning_rate: float, gamma: float, min_epsilon: float, decay_episodes: int,
                 model_path: str = None, log_dir: str = None, batch_size: int = 64, memory_length: int = None,
                 collect_steps_per_episode: int = 1, val_every: int = None, target_update_period: int = 1, target_update_tau: float = 1.0,
                 progressbar: bool = True, n_step_update: int = 1, gradient_clipping: float = 1.0, collect_every: int = 1) -> None:
        """"""
        Wrapper to make training easier.
        Code is partly based of https://www.tensorflow.org/agents/tutorials/1_dqn_tutorial

        :param episodes: Number of training episodes
        :type  episodes: int
        :param warmup_steps: Number of episodes to fill Replay Buffer with random state-action pairs before training starts
        :type  warmup_steps: int
        :param learning_rate: Learning Rate for the Adam Optimizer
        :type  learning_rate: float
        :param gamma: Discount factor for the Q-values
        :type  gamma: float
        :param min_epsilon: Lowest and final value for epsilon
        :type  min_epsilon: float
        :param decay_episodes: Amount of episodes to decay from 1 to `min_epsilon`
        :type  decay_episodes: int
        :param model_path: Location to save the trained model
        :type  model_path: str
        :param log_dir: Location to save the logs, usefull for TensorBoard
        :type  log_dir: str
        :param batch_size: Number of samples in minibatch to train on each step
        :type  batch_size: int
        :param memory_length: Maximum size of the Replay Buffer
        :type  memory_length: int
        :param collect_steps_per_episode: Amount of data to collect for Replay Buffer each episiode
        :type  collect_steps_per_episode: int
        :param collect_every: Step interval to collect data during training
        :type  collect_every: int
        :param val_every: Validate the model every X episodes using the `collect_metrics()` function
        :type  val_every: int
        :param target_update_period: Update the target Q-network every X episodes
        :type  target_update_period: int
        :param target_update_tau: Parameter for softening the `target_update_period`
        :type  target_update_tau: float
        :param progressbar: Enable or disable the progressbar for collecting data and training
        :type  progressbar: bool

        :return: None
        :rtype: NoneType
        """"""
        self.episodes = episodes  # Total episodes
        self.warmup_steps = warmup_steps  # Amount of warmup steps before training
        self.batch_size = batch_size  # Batch size of Replay Memory
        self.collect_steps_per_episode = collect_steps_per_episode  # Amount of steps to collect data each episode
        self.collect_every = collect_every  # Step interval to collect data during training
        self.learning_rate = learning_rate  # Learning Rate
        self.gamma = gamma  # Discount factor
        self.min_epsilon = min_epsilon  # Minimal chance of choosing random action
        self.decay_episodes = decay_episodes  # Number of episodes to decay from 1.0 to `EPSILON`
        self.target_update_period = target_update_period  # Period for soft updates
        self.target_update_tau = target_update_tau
        self.progressbar = progressbar  # Enable or disable the progressbar for collecting data and training
        self.n_step_update = n_step_update
        self.gradient_clipping = gradient_clipping  # Clip the loss
        self.compiled = False
        NOW = ""DDQN"" #datetime.now().strftime(""%Y%m%d_%H%M%S"")

        if memory_length is not None:
            self.memory_length = memory_length  # Max Replay Memory length
        else:
            self.memory_length = warmup_steps

        if val_every is not None:
            self.val_every = val_every  # Validate the policy every `val_every` episodes
        else:
            self.val_every = self.episodes // min(50, self.episodes)  # Can't validate the model 50 times if self.episodes < 50

        if model_path is not None:
            #if os.path.exists(model_path + ""/"" + NOW + "".pkl""):
            #    os.remove(model_path + ""/"" + NOW + "".pkl"")
            self.model_path = model_path + ""/"" + NOW + "".pkl""
        else:
            self.model_path = ""./models/"" + NOW + "".pkl""

        if log_dir is None:
            log_dir = ""./logs/"" + NOW
        self.writer = tf.summary.create_file_writer(log_dir)

    def compile_model(self, X_train, y_train, layers: list = [], imb_ratio: float = None, loss_fn=common.element_wise_squared_loss) -> None:
        """"""Initializes the neural networks, DDQN-agent, collect policies and replay buffer.

        :param X_train: Training data for the model.
        :type  X_train: np.ndarray
        :param y_train: Labels corresponding to `X_train`.  1 for the positive class, 0 for the negative class.
        :param y_train: np.ndarray
        :param layers: List of layers to feed into the TF-agents custom Sequential(!) layer.
        :type  layers: list
        :param imb_ratio: The imbalance ratio of the data.
        :type  imb_ratio: float
        :param loss_fn: Callable loss function
        :type  loss_fn: tf.compat.v1.losses

        :return: None
        :rtype: NoneType
        """"""
        if imb_ratio is None:
            imb_ratio = imbalance_ratio(y_train)

        self.train_env = TFPyEnvironment(ClassifierEnv(X_train, y_train, imb_ratio))
        self.global_episode = tf.Variable(0, name=""global_episode"", dtype=np.int64, trainable=False)  # Global train episode counter

        # Custom epsilon decay: https://github.com/tensorflow/agents/issues/339
        epsilon_decay = tf.compat.v1.train.polynomial_decay(
            1.0, self.global_episode, self.decay_episodes, end_learning_rate=self.min_epsilon)

        self.q_net = Sequential(layers, self.train_env.observation_spec())

        self.agent = DdqnAgent(self.train_env.time_step_spec(),
                               self.train_env.action_spec(),
                               q_network=self.q_net,
                               optimizer=Adam(learning_rate=self.learning_rate),
                               td_errors_loss_fn=loss_fn,
                               train_step_counter=self.global_episode,
                               target_update_period=self.target_update_period,
                               target_update_tau=self.target_update_tau,
                               gamma=self.gamma,
                               epsilon_greedy=epsilon_decay,
                               n_step_update=self.n_step_update,
                               gradient_clipping=self.gradient_clipping)
        self.agent.initialize()

        self.random_policy = RandomTFPolicy(self.train_env.time_step_spec(), self.train_env.action_spec())
        self.replay_buffer = TFUniformReplayBuffer(data_spec=self.agent.collect_data_spec,
                                                   batch_size=self.train_env.batch_size,
                                                   max_length=self.memory_length)

        self.warmup_driver = DynamicStepDriver(self.train_env,
                                               self.random_policy,
                                               observers=[self.replay_buffer.add_batch],
                                               num_steps=self.warmup_steps)  # Uses a random policy

        self.collect_driver = DynamicStepDriver(self.train_env,
                                                self.agent.collect_policy,
                                                observers=[self.replay_buffer.add_batch],
                                                num_steps=self.collect_steps_per_episode)  # Uses the epsilon-greedy policy of the agent

        self.agent.train = common.function(self.agent.train)  # Optimalization
        self.warmup_driver.run = common.function(self.warmup_driver.run)
        self.collect_driver.run = common.function(self.collect_driver.run)

        self.compiled = True

    def train(self, *args) -> None:
        """"""Starts the training of the model. Includes warmup period, metrics collection and model saving.

        :param *args: All arguments will be passed to `collect_metrics()`.
            This can be usefull to pass callables, testing environments or validation data.
            Overwrite the TrainDDQN.collect_metrics() function to use your own *args.
        :type  *args: Any

        :return: None
        :rtype: NoneType, last step is saving the model as a side-effect
        """"""
        assert self.compiled, ""Model must be compiled with model.compile_model(X_train, y_train, layers) before training.""

        # Warmup period, fill memory with random actions
        if self.progressbar:
            print(f""\033[92mCollecting data for {self.warmup_steps:_} steps... This might take a few minutes...\033[0m"")

        self.warmup_driver.run(time_step=None, policy_state=self.random_policy.get_initial_state(self.train_env.batch_size))

        if self.progressbar:
            print(f""\033[92m{self.replay_buffer.num_frames():_} frames collected!\033[0m"")

        dataset = self.replay_buffer.as_dataset(sample_batch_size=self.batch_size, num_steps=self.n_step_update + 1,
                                                num_parallel_calls=data.experimental.AUTOTUNE).prefetch(data.experimental.AUTOTUNE)
        iterator = iter(dataset)

        def _train():
            experiences, _ = next(iterator)
            return self.agent.train(experiences).loss
        _train = common.function(_train)  # Optimalization

        ts = None
        policy_state = self.agent.collect_policy.get_initial_state(self.train_env.batch_size)
        self.collect_metrics(*args)  # Initial collection for step 0
        
        for _ in range(self.episodes):
            if not self.global_episode % self.collect_every:
                # Collect a few steps using collect_policy and save to `replay_buffer`
                if self.collect_steps_per_episode != 0:
                    ts, policy_state = self.collect_driver.run(time_step=ts, policy_state=policy_state)
                

            # Sample a batch of data from `replay_buffer` and update the agent's network
            train_loss = _train()

            if not self.global_episode % self.val_every:
                with self.writer.as_default():
                    tf.summary.scalar(""train_loss"", train_loss, step=self.global_episode)

                self.collect_metrics(*args)
        

    def collect_metrics(self, X_val: np.ndarray, y_val: np.ndarray, save_best: str = None):
        """"""Collects metrics using the trained Q-network.

        :param X_val: Features of validation data, same shape as X_train
        :type  X_val: np.ndarray
        :param y_val: Labels of validation data, same shape as y_train
        :type  y_val: np.ndarray
        :param save_best: Saving the best model of all validation runs based on given metric:
            Choose one of: {Gmean, F1, Precision, Recall, TP, TN, FP, FN}
            This improves stability since the model at the last episode is not guaranteed to be the best model.
        :type  save_best: str
        """"""
        y_pred = network_predictions(self.agent._target_q_network, X_val)
        stats = classification_metrics(y_val, y_pred)
        avgQ = np.mean(decision_function(self.agent._target_q_network, X_val))  # Max action for each x in X

        if save_best is not None:
            if not hasattr(self, ""best_score""):  # If no best model yet
                self.best_score = 0.0

            if stats.get(save_best) >= self.best_score:  # Overwrite best model
                self.save_network()  # Saving directly to avoid shallow copy without trained weights
                self.best_score = stats.get(save_best)

        with self.writer.as_default():
            tf.summary.scalar(""AverageQ"", avgQ, step=self.global_episode)  # Average Q-value for this epoch
            for k, v in stats.items():
                tf.summary.scalar(k, v, step=self.global_episode)

    def evaluate(self,X_train,y_train, X_test, y_test):
        """"""
        Final evaluation of trained Q-network with X_test and y_test.
        Optional PR and ROC curve comparison to X_train, y_train to ensure no overfitting is taking place.

        :param X_test: Features of test data, same shape as X_train
        :type  X_test: np.ndarray
        :param y_test: Labels of test data, same shape as y_train
        :type  y_test: np.ndarray
        :param X_train: Features of train data
        :type  X_train: np.ndarray
        :param y_train: Labels of train data
        :type  y_train: np.ndarray
        """"""
        #if hasattr(self, ""best_score""):
        #    print(f""\033[92mBest score: {self.best_score:6f}!\033[0m"")
        #    network = self.load_network(self.model_path)  # Load best saved model
        #else:
        #    network = self.agent._target_q_network  # Load latest target model

        #network = self.load_network(self.model_path)
        #if (X_train is not None) and (y_train is not None):
        #    plot_pr_curve(network, X_test, y_test, X_train, y_train)
        #    plot_roc_curve(network, X_test, y_test, X_train, y_train)

        y_pred = network_predictions(self.agent._target_q_network, X_test)
        return classification_metrics(y_test, y_pred)
    
    def get_network(self):
        #network = self.load_network(self.model_path)
        return self.agent._target_q_network
        
    def save_network(self, filename_rl):           #usnish
        """"""Saves Q-network as pickle to `model_path`.""""""
        with open(self.filename_rl, ""wb"") as f:  # Save Q-network as pickle
            pickle.dump(self.agent._target_q_network, f)

    @staticmethod
    def load_network(fp: str):
        """"""Static method to load Q-network pickle from given filepath.

        :param fp: Filepath to the saved pickle of the network
        :type  fp: str

        :returns: The network-object loaded from a pickle file.
        :rtype: tensorflow.keras.models.Model
        """"""
        with open(fp, ""rb"") as f:  # Load the Q-network
            network = pickle.load(f)
        return network
"
classifierenv.py,"import numpy as np
from tf_agents.environments.py_environment import PyEnvironment
from tf_agents.specs.array_spec import ArraySpec, BoundedArraySpec
from tf_agents.trajectories import time_step as ts


class ClassifierEnv(PyEnvironment):
    """"""
    Custom `PyEnvironment` environment for imbalanced classification.
    Based on https://www.tensorflow.org/agents/tutorials/2_environments_tutorial
    """"""

    def __init__(self, X_train: np.ndarray, y_train: np.ndarray, imb_ratio: float):
        """"""Initialization of environment with X_train and y_train.

        :param X_train: Features shaped: [samples, ..., ]
        :type  X_train: np.ndarray
        :param y_train: Labels shaped: [samples]
        :type  y_train: np.ndarray
        :param imb_ratio: Imbalance ratio of the data
        :type  imb_ratio: float

        :returns: None
        :rtype: NoneType

        """"""
        #print('1')		
        self._action_spec = BoundedArraySpec(shape=(), dtype=np.int32, minimum=0, maximum=(len(np.unique(y_train)) - 1), name=""action"")
        #print(y_train)
        self._observation_spec = ArraySpec(shape=X_train.shape[1:], dtype=X_train.dtype, name=""observation"")
        #print('3')
        self._episode_ended = False

        self.X_train = X_train
        self.y_train = y_train
        self.imb_ratio = imb_ratio  # Imbalance ratio: 0 < imb_ratio < 1
        self.id = np.arange(self.X_train.shape[0])  # List of IDs to connect X and y data

        self.episode_step = 0  # Episode step, resets every episode
        self._state = self.X_train[self.id[self.episode_step]]

    def action_spec(self):
        """"""
        Definition of the discrete actionspace.
        1 for the positive/minority class, 0 for the negative/majority class.
        """"""
        return self._action_spec

    def observation_spec(self):
        """"""Definition of the continous statespace e.g. the observations in typical RL environments.""""""
        return self._observation_spec

    def _reset(self):
        """"""Shuffles data and returns the first state of the shuffled data to begin training on new episode.""""""
        np.random.shuffle(self.id)  # Shuffle the X and y data
        self.episode_step = 0  # Reset episode step counter at the end of every episode
        self._state = self.X_train[self.id[self.episode_step]]
        self._episode_ended = False  # Reset terminal condition

        return ts.restart(self._state)

    def _step(self, action: int):
        """"""
        Take one step in the environment.
        If the action is correct, the environment will either return 1 or `imb_ratio` depending on the current class.
        If the action is incorrect, the environment will either return -1 or -`imb_ratio` depending on the current class.
        """"""
        if self._episode_ended:
            # The last action ended the episode. Ignore the current action and start a new episode
            return self.reset()

        env_action = self.y_train[self.id[self.episode_step]]  # The label of the current state
        self.episode_step += 1

        if action == env_action:  # Correct action
            if env_action:  # Minority
                reward = 1  # True Positive
            else:  # Majority
                reward = self.imb_ratio  # True Negative

        else:  # Incorrect action
            if env_action:  # Minority
                reward = -1  # False Negative
                self._episode_ended = True  # Stop episode when minority class is misclassified
            else:  # Majority
                reward = -self.imb_ratio  # False Positive

        if self.episode_step == self.X_train.shape[0] - 1:  # If last step in data
            self._episode_ended = True

        self._state = self.X_train[self.id[self.episode_step]]  # Update state with new datapoint

        if self._episode_ended:
            return ts.termination(self._state, reward)
        else:
            return ts.transition(self._state, reward)
"
aionMlopsService.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
# -*- coding: utf-8 -*-
# -*- coding: utf-8 -*-
import logging
logging.getLogger('tensorflow').disabled = True
import json
import mlflow
import mlflow.sklearn
import mlflow.sagemaker as mfs
# from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import train_test_split
# from sklearn import datasets
import time
import numpy as np
# Load dataset
# from sklearn.datasets import load_iris
import pickle
# Load the pickled model
# from matplotlib import pyplot
import sys
import os
import boto3
import subprocess
import os.path
from os.path import expanduser
import platform
from pathlib import Path


class aionMlopsService:
    def __init__(self,model,mlflowtosagemakerDeploy,mlflowtosagemakerPushOnly,mlflowtosagemakerPushImageName,mlflowtosagemakerdeployModeluri,experiment_name,mlflow_modelname,awsaccesskey_id,awssecretaccess_key,aws_session_token,mlflow_container_name,aws_region,aws_id,iam_sagemakerfullaccess_arn,sm_app_name,sm_deploy_option,delete_ecr_repository,ecrRepositoryName):
        try:
            self.model=model
            self.mlflowtosagemakerDeploy=mlflowtosagemakerDeploy
            self.mlflowtosagemakerPushOnly=str(mlflowtosagemakerPushOnly)
            self.mlflowtosagemakerPushImageName=str(mlflowtosagemakerPushImageName)
            self.mlflowtosagemakerdeployModeluri=str(mlflowtosagemakerdeployModeluri)
            self.experiment_name=experiment_name
            self.mlflow_modelname=mlflow_modelname
            self.awsaccesskey_id=awsaccesskey_id
            self.awssecretaccess_key=awssecretaccess_key
            self.aws_session_token=aws_session_token
            self.mlflow_container_name=mlflow_container_name
            self.aws_region=aws_region
            self.aws_id=aws_id
            self.iam_sagemakerfullaccess_arn=iam_sagemakerfullaccess_arn
            self.sm_app_name=sm_app_name
            self.sm_deploy_option=sm_deploy_option
            self.delete_ecr_repository=delete_ecr_repository
            self.ecrRepositoryName=ecrRepositoryName
            
            from appbe.dataPath import LOG_LOCATION        
            sagemakerLogLocation = LOG_LOCATION
                
            try:
                os.makedirs(sagemakerLogLocation)
            except OSError as e:
                if (os.path.exists(sagemakerLogLocation)):
                    pass
                else:
                    raise OSError('sagemakerLogLocation error.')
            
            self.sagemakerLogLocation=str(sagemakerLogLocation)
                    
            
            filename_mlops = 'mlopslog_'+str(int(time.time()))
            filename_mlops=filename_mlops+'.log'
            # filename = 'mlopsLog_'+Time()
            filepath = os.path.join(self.sagemakerLogLocation, filename_mlops)            
            logging.basicConfig(filename=filepath, format='%(message)s',filemode='w') 
            # logging.basicConfig(filename=""uq_logging.log"", format='%(asctime)s %(message)s',filemode='w') 
            # logging.basicConfig(filename=""uq_logging.log"", format=' %(message)s',filemode='w')
            # logging.basicConfig(filename='uq_logging.log', encoding='utf-8', level=logging.INFO)
            self.log = logging.getLogger('aionMLOps')
            self.log.setLevel(logging.DEBUG)
            # mlflow.set_experiment(self.experiment_name)            
            
        except Exception as e:
            self.log.info('<!------------- mlflow model INIT Error ---------------> '+str(e))
            exc_type, exc_obj, exc_tb = sys.exc_info()
            fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
            self.log.info(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))

    def mlflowSetPath(self,path):
        track_dir=os.path.join(path,'mlruns')
        uri=""file:""+str(Path(track_dir))
        return uri
    
    #Currently not used this delete ecr repository option
    def ecr_repository_delete(self,rep_name):
        # import subprocess
        client = boto3.client('ecr')
        repositories = client.describe_repositories()
        ecr_delete_rep=client.delete_repository(registryId=self.aws_id,repositoryName=self.ecrRepositoryName,force=True)
        mlflow_ecr_delete=subprocess.run(['aws', 'ecr', 'delete-repository','--repository-name',rep_name,'||','true'])
        self.log.info('Success: deleted aws ecr repository which contains mlops image.')

    def check_sm_deploy_status(self,app_name):
        sage_client = boto3.client('sagemaker', region_name=self.aws_region)
        endpoint_description = sage_client.describe_endpoint(EndpointName=app_name)
        endpoint_status = endpoint_description[""EndpointStatus""]
        try:
            failure_reason=endpoint_description[""FailureReason""]
            self.log.info(""sagemaker end point creation failure reason is: ""+str(failure_reason))
        except:
            pass
        endpoint_status=str(endpoint_status)
        return endpoint_status
    
    def invoke_sm_endpoint(self,app_name, input_json):
        client = boto3.session.Session().client(""sagemaker-runtime"", self.aws_region)
    
        response = client.invoke_endpoint(
            EndpointName=app_name,
            Body=input_json,
            ContentType='application/json; format=pandas-split',
        )
    #    preds = response['Body'].read().decode(""ascii"")
        preds = response['Body'].read().decode(""ascii"")
        preds = json.loads(preds)
        # print(""preds: {}"".format(preds))
        return preds
    
    def predict_sm_app_endpoint(self,X_test):
        #print(X_test)
        import pandas as pd
        prediction=None
        AWS_ACCESS_KEY_ID=str(self.awsaccesskey_id)
        AWS_SECRET_ACCESS_KEY=str(self.awssecretaccess_key)
        AWS_SESSION_TOKEN=str(self.aws_session_token)
        region = str(self.aws_region)
        #Existing model deploy options
        # mlflowtosagemakerPushImageName=str(self.mlflowtosagemakerPushImageName)
        # mlflowtosagemakerdeployModeluri=str(self.mlflowtosagemakerdeployModeluri)
        try:
            import subprocess
            cmd = 'aws configure set region_name '+region
            os.system(cmd)
            cmd = 'aws configure set aws_access_key_id '+AWS_ACCESS_KEY_ID
            os.system(cmd)
            cmd = 'aws configure set aws_secret_access_key '+AWS_SECRET_ACCESS_KEY
            os.system(cmd)
            '''
            aws_region=subprocess.run(['aws', 'configure', 'set','region_name',region])
            aws_accesskeyid=subprocess.run(['aws', 'configure', 'set','aws_access_key_id',AWS_ACCESS_KEY_ID])
            aws_secretaccesskey=subprocess.run(['aws', 'configure', 'set','aws_secret_access_key',AWS_SECRET_ACCESS_KEY])
            '''
        except:
            pass
        #Create a session for aws communication using aws boto3 lib
        # s3_client = boto3.client('ecr',aws_access_key_id=AWS_ACCESS_KEY_ID,aws_secret_access_key=AWS_SECRET_ACCESS_KEY,aws_session_token=AWS_SESSION_TOKEN,region_name=region)
        # s3 = boto3.resource('ecr', aws_access_key_id=AWS_ACCESS_KEY_ID, aws_secret_access_key= AWS_SECRET_ACCESS_KEY)
        session = boto3.Session(aws_access_key_id=AWS_ACCESS_KEY_ID,aws_secret_access_key=AWS_SECRET_ACCESS_KEY,aws_session_token=AWS_SESSION_TOKEN,region_name=region)

        #X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.3, random_state=2)
        # query_input = pd.DataFrame(X_test).iloc[[1,5]].to_json(orient=""split"")
        try:
            query_input = pd.DataFrame(X_test).to_json(orient=""split"")
            #print(query_input)
            prediction = self.invoke_sm_endpoint(app_name=self.sm_app_name, input_json=query_input)
            # self.log.info(""sagemaker end point Prediction: \n""+str(prediction))
            
        except Exception as e:
            print(e)
        return prediction
        
    
    def deleteSagemakerApp(self,app_name,region):
        # import mlflow.sagemaker as mfs
        #	region = 'ap-south-1'
        #	app_name = 'aion-demo-app'
        mfs.delete(app_name=app_name,region_name=region, archive=False,synchronous=True, timeout_seconds=300)           
        # print(""AION mlops sagemaker application endpoint is deleted....\n"")
        self.log.info('AION mlops sagemaker application endpoint is deleted, application name is: '+str(app_name))
    
    def deployModel2sagemaker(self,mlflow_container_name,tag_id,model_path):
        
        region = str(self.aws_region)
        aws_id = str(self.aws_id)
        iam_sagemakerfullaccess_arn = str(self.iam_sagemakerfullaccess_arn)
        app_name = str(self.sm_app_name)
        
        model_uri = str(model_path)
        app_status=False
        mlflow_root_dir = None
        try:
            os.chdir(str(self.sagemakerLogLocation))
            mlflow_root_dir = os.getcwd()
            self.log.info('mlflow root dir:  '+str(mlflow_root_dir))
        except:
            self.log.info(""path issue."")
            
        try:
            c_status=self.check_sm_deploy_status(app_name)
            #if ((c_status == ""Failed"") or (c_status == ""OutOfService"")):
            if ((c_status == ""Failed"") or (c_status.lower() == ""failed"")):
                app_status=False
                self.log.info(""Sagemaker endpoint status: Failed.\n"")
                mfs.delete(app_name=app_name,region_name=region, archive=False,synchronous=True, timeout_seconds=300)
            elif ((c_status.lower() == ""inservice"") or (c_status == ""InService"")):
                app_status=True
                self.log.info(""Sagemaker endpoint status: InService. Running sagemaker endpoint name: \n""+str(app_name))                
            else:
                app_status=False
                pass
        except:
            # print(""deploy status error.\n"")            
            pass
                        
        #aws ecr model app_name should contain only [[a-zA-Z0-9-]]
        import re                    
        if app_name:
            pattern = re.compile(""[A-Za-z0-9-]+"")
            # if found match (entire string matches pattern)
            if pattern.fullmatch(app_name) is not None:
                #print(""Found match: "")
                pass
            else:                
                app_name = 'aion-demo-app'
        else:
            app_name = 'aion-demo-app'
                        
        mlflow_image=mlflow_container_name+':'+tag_id
        image_url = aws_id + '.dkr.ecr.' + region + '.amazonaws.com/' + mlflow_image
        deploy_option=""create""
        self.log.info('deploy_option: \n'+str(deploy_option))
        if (deploy_option.lower() == ""create""):
            # Other deploy modes: mlflow.sagemaker.DEPLOYMENT_MODE_ADD,mlflow.sagemaker.DEPLOYMENT_MODE_REPLACE
            if not (app_status):
                try:
                    mfs.deploy(app_name=app_name,model_uri=model_uri,region_name=region,mode=""create"",execution_role_arn=iam_sagemakerfullaccess_arn,image_url=image_url)
                    self.log.info('sagemaker endpoint created and model deployed. Application name is:  \n'+str(app_name))
                except:
                    self.log.info('Creating end point application issue.Please check the connection and aws credentials \n')
            else:
                self.log.info('Sagemaker application with user endpoint name already running.Please check. Please delete the old endpoint with same name.\n')
                
    
        elif (deploy_option.lower() == ""delete""):
            # import mlflow.sagemaker as mfs
            # #	region = 'ap-south-1'
            # #	app_name = 'aion-demo-app'
            # mfs.delete(app_name=app_name,region_name=region, archive=False,synchronous=True, timeout_seconds=300)           
            # print(""Mlflow sagemaker application endpoint is deleted....\n"")
            # self.log.info('Mlflow sagemaker application endpoint is deleted, application name is: '+str(app_name))
            pass
        elif (deploy_option.lower() == ""add""):
            pass
        elif (deploy_option.lower() == ""replace""):
            pass
        else:
            pass
        
        return app_status
        
    def mlflow2sagemaker_deploy(self):
        self.log.info('<!------------- Inside AION mlops to sagemaker communication and deploy process. ---------------> ')
        deploy_status=False
        app_name = str(self.sm_app_name)
        self.log.info('Sagemaker Application Name: '+str(app_name))
        
        uri_mlflow=self.mlflowSetPath(self.sagemakerLogLocation)
        mlflow.set_tracking_uri(uri_mlflow)
        mlops_trackuri=mlflow.get_tracking_uri()
        mlops_trackuri=str(mlops_trackuri)
        self.log.info('mlops tracking uri:  '+str(mlops_trackuri))
        localhost_deploy=False
        try:
            #Loading aion model to deploy in sagemaker
            mlflow.set_experiment(self.experiment_name)
            self.log.info('Endpoint Name: '+str(self.experiment_name))
            # Assume, the model already loaded from joblib in aionmlflow2smInterface.py file. 
            aionmodel2deploy=self.model
            # run_id = None
            # experiment_id=None
            
            
            # Use the loaded pickled model to make predictions
            # pred = knn_from_pickle.predict(X_test)
            with mlflow.start_run(run_name='AIONMLOps') as run:
                
                # aionmodel2deploy.fit(X_train, y_train)
                # predictions = aionmodel2deploy.predict(X_test)
                mlflow.sklearn.log_model(aionmodel2deploy, self.mlflow_modelname) 
                run_id = run.info.run_uuid
                experiment_id = run.info.experiment_id
                self.log.info('AION mlops experiment run_id: '+str(run_id))
                self.log.info('AION mlops experiment experiment_id: '+str(experiment_id))
                self.log.info('AION mlops experiment model_name: '+str(self.mlflow_modelname))
                artifact_uri = {mlflow.get_artifact_uri()}
                # print(""1.artifact_uri: \n"",artifact_uri)
                mlflow.end_run()
            #If we need, we can check the mlflow experiments.
            # try:    
            #     mlflow_client = mlflow.tracking.MlflowClient('./mlruns')
            #     exp_list = mlflow_client.list_experiments()
            # except:
            #     pass
            #print(""mlflow exp_list: \n"",exp_list)
            mlflow_modelname=str(self.mlflow_modelname)
            
            mlops_trackuri=mlops_trackuri.replace('file:','')
            mlops_trackuri=str(mlops_trackuri)
            # mlflow_root_dir = os.getcwd()
            mlflow_root_dir = None
            try:
                os.chdir(str(self.sagemakerLogLocation))
                mlflow_root_dir = os.getcwd()
                self.log.info('mlflow root dir:  '+str(mlflow_root_dir))
            except:
                self.log.info(""path issue."")
            model_path = 'mlruns/%s/%s/artifacts/%s' % (experiment_id, run_id,self.mlflow_modelname)
            # model_path=mlops_trackuri+'\\%s\\%s\\artifacts\\%s' % (experiment_id, run_id,mlflow_modelname)
            self.log.info(""local host aion mlops model_path is: ""+str(model_path))
            time.sleep(2)
            
            
            #print(""Environment variable setup in the current working dir for aws sagemaker cli connection... \n"") 
            self.log.info('Environment variable setup in the current working dir for aws sagemaker cli connection... \n ')
            AWS_ACCESS_KEY_ID=str(self.awsaccesskey_id)
            AWS_SECRET_ACCESS_KEY=str(self.awssecretaccess_key)
            AWS_SESSION_TOKEN=str(self.aws_session_token)
            region = str(self.aws_region)
            #Existing model deploy options
            mlflowtosagemakerPushImageName=str(self.mlflowtosagemakerPushImageName)
            mlflowtosagemakerdeployModeluri=str(self.mlflowtosagemakerdeployModeluri)
            import subprocess
            cmd = 'aws configure set region_name '+region
            os.system(cmd)
            cmd = 'aws configure set aws_access_key_id '+AWS_ACCESS_KEY_ID
            os.system(cmd)
            cmd = 'aws configure set aws_secret_access_key '+AWS_SECRET_ACCESS_KEY
            os.system(cmd)
            #Create a session for aws communication using aws boto3 lib
            # s3_client = boto3.client('ecr',aws_access_key_id=AWS_ACCESS_KEY_ID,aws_secret_access_key=AWS_SECRET_ACCESS_KEY,aws_session_token=AWS_SESSION_TOKEN,region_name=region)
            # s3 = boto3.resource('ecr', aws_access_key_id=AWS_ACCESS_KEY_ID, aws_secret_access_key= AWS_SECRET_ACCESS_KEY)
            session = boto3.Session(aws_access_key_id=AWS_ACCESS_KEY_ID,aws_secret_access_key=AWS_SECRET_ACCESS_KEY,aws_session_token=AWS_SESSION_TOKEN,region_name=region)
            # session = boto3.session.Session(
            #         aws_access_key_id=AWS_ACCESS_KEY_ID,
            #         aws_secret_access_key=AWS_SECRET_ACCESS_KEY,
            #         aws_session_token=AWS_SESSION_TOKEN
            #     )
            # awsclient = session.resource('ecr')
            # s3 = session.resource('s3')
            self.log.info('aws environment variable setup done... \n')
            try:
                os.chdir(mlflow_root_dir)
            except FileNotFoundError:
                self.log.info('Directory does not exist. '+str(mlflow_root_dir))
            except NotADirectoryError:
                self.log.info('model_path is not a directory. '+str(mlflow_root_dir))
            except PermissionError:
                self.log.info('Issue in permissions to change to model dir. '+str(mlflow_root_dir))

            mlflow_container_name=str(self.mlflow_container_name)
            mlflow_version=mlflow.__version__
            tag_id=mlflow_version
            
            
            if (self.mlflowtosagemakerPushOnly.lower() == ""true""):
                self.log.info('Selected option is <Deploy existing model to sagemaker> \n')
                aws_id=str(self.aws_id)
                arn=str(self.iam_sagemakerfullaccess_arn)
                mlflow_image=mlflow_container_name+':'+tag_id
                image_url = aws_id+'.dkr.ecr.'+region+'.amazonaws.com/'+mlflow_image
                # print(""image_url:========= \n"",image_url)
                deploy_status=True
                try:
                    model_path=mlflowtosagemakerdeployModeluri
                    # ##We need to run mlflow docker container command in the artifacts->model directory inside mlruns.
                    self.log.info('Deploy existing model container-Model path given by user: '+str(model_path))
                    try:
                        os.chdir(model_path)
                    except FileNotFoundError:
                        self.log.info('Directory does not exist. '+str(model_path))
                    except NotADirectoryError:
                        self.log.info('model_path is not a directory. '+str(model_path))
                    except PermissionError:
                        self.log.info('Issue in permissions to change to model dir. '+str(model_path))
                        
                    try:
                        mfs.push_image_to_ecr(image=mlflowtosagemakerPushImageName)
                        deploy_status=True
                        self.log.info('AION mlops  pushed the docker container to aws ecr. \n ')
                    except:
                        self.log.info(""error in pushing existing container to ecr.\n"")
                        deploy_status=False

                    
                    time.sleep(2)
                    #Now,change the working dir to root dir,because now deploy needs full mlruns to model name dir.
                    try:
                    	# print("" Changing directory to mlflow root dir....\n"")
                    	os.chdir(mlflow_root_dir)
                    except FileNotFoundError:
                        self.log.info('model path is not a directory. '+str(mlflow_root_dir))
                    except NotADirectoryError:
                        self.log.info('model path is not a directory. '+str(mlflow_root_dir))
                    	# print(""{0} is not a directory"".format(mlflow_root_dir))                    
                    except PermissionError:
                        self.log.info('Issue in permissions to change to model dir. '+str(mlflow_root_dir))
                        
                    # self.deployModel2sagemaker(mlflowtosagemakerPushImageName,tag_id,mlflowtosagemakerdeployModeluri)
                    try:
                        if (deploy_status):
                            self.deployModel2sagemaker(mlflowtosagemakerPushImageName,tag_id,mlflowtosagemakerdeployModeluri)
                            self.log.info('AION creates docker container and push the container into aws ecr.. ')
                            time.sleep(2)
                    except:
                        self.log.info('AION deploy error.check connection and aws config parameters. ')
                        deploy_status=False
                    # self.log.info('model deployed in sagemaker. ')
                except Exception as e:
                    self.log.info('AION mlops failed to push docker container in aws ecr, check configuration parameters. \n'+str(e))
            elif (self.mlflowtosagemakerPushOnly.lower() == ""false""):
                if (self.mlflowtosagemakerDeploy.lower() == ""true""):
                    self.log.info('Selected option is <Create and Deploy model> \n')
                    deploy_status=True
                    try:
                        # ##We need to run mlflow docker container command in the artifacts->model directory inside mlruns.
                        try:
                            os.chdir(model_path)
                        except FileNotFoundError:
                            self.log.info('Directory does not exist. '+str(model_path))
                        except NotADirectoryError:
                            self.log.info('model_path is not a directory. '+str(model_path))
                        except PermissionError:
                            self.log.info('Issue in permissions to change to model dir. '+str(model_path))
                        try:
                            mlflow_container_push=subprocess.run(['mlflow', 'sagemaker', 'build-and-push-container','--build','--push','--container',mlflow_container_name])
                            self.log.info('AION mlops creates docker container and push the container into aws ecr.. ')
                            deploy_status=True
                            time.sleep(2)
                        except:
                            self.log.info('error in pushing aion model container to sagemaker, please check the connection between local host to aws server.')
                            deploy_status=False
                        self.log.info('Now deploying the model container to sagemaker starts....\n ')
                        # Once docker push completes, again going back to mlflow parent dir for deployment
                        #Now,change the working dir to root dir,because now deploy needs full mlruns to model name dir.
                        try:
                        	os.chdir(mlflow_root_dir)
                        except FileNotFoundError:
                            self.log.info('model_path does not exist. '+str(mlflow_root_dir))
                        except NotADirectoryError:
                            self.log.info('model_path is not a directory. '+str(mlflow_root_dir))
                        except PermissionError:
                            self.log.info('Issue in permissions to change to model dir. '+str(mlflow_root_dir))
                            
                        # app_name = str(self.sm_app_name)
                        try:
                            if (deploy_status):
                                self.deployModel2sagemaker(mlflow_container_name,tag_id,model_path)
                        except:
                            self.log.info('mlops deploy error.check connection')
                            deploy_status=False
    
                    except Exception as e:
                        exc = {""status"":""FAIL"",""message"":str(e).strip('""')}
                        out_exc = json.dumps(exc)
                        self.log.info('mlflow failed to creates docker container please check the aws iam,ecr permission setup, aws id access_key,secret key values for aion.\n')
            
                elif(self.mlflowtosagemakerDeploy.lower() == ""false""):
                    deploy_status=False
                    localhost_deploy=True
                    self.log.info('Selected option is <Create AION mlops container in local host .> \n')
                    self.log.info(""User selected create-Deploy sagemaker option as False,"")
                    self.log.info(""Creates the AION mlops-sagemaker container locally starting,but doesn't push into aws ecr and deploy in sagemaker. Check the container in docker repository. "")
                    try:
                        # ##We need to run AION mlops docker container command in the artifacts->model directory inside mlruns.
                        try:
                            os.chdir(model_path)
                            self.log.info('After change to AION mlops model dir, cwd: '+str(model_path))
                        except FileNotFoundError:
                            self.log.info('Directory does not exist. '+str(model_path))
                        except NotADirectoryError:
                            self.log.info('model_path is not a directory. '+str(model_path))
                        except PermissionError:
                            self.log.info('Issue in permissions to change to model dir. '+str(model_path))
                        
                        # mlflow_container_local=subprocess.run(['AION mlops', 'sagemaker', 'build-and-push-container','--build','--no-push','--container',mlflow_container_name])
                        
                        try:
                            if not (deploy_status):
                                mlflow_container_local=subprocess.run(['mlflow', 'sagemaker', 'build-and-push-container','--build','--no-push','--container',mlflow_container_name])
                                self.log.info('AION creates local host bsed docker container and push the container local docker repository. Check with <docker images> command.\n ')
                                localhost_deploy=True
                                time.sleep(2)
                        except:
                            self.log.info('error in pushing aion model container to sagemaker, please check the connection between local host to aws server.')
                            deploy_status=False
                            localhost_deploy=False
                            
                        # print(""AION mlops creates docker container and push the container into aws ecr.\n"")
                        self.log.info('AION mlops creates docker container and stored locally... ')
                        time.sleep(2)
                    except Exception as e:
                        localhost_deploy=False
                        # print(""mlflow failed to creates docker container please check the aws iam,ecr permission setup, aws id access_key,secret key values for aion.\n"")
                        self.log.info('AION mlops failed to creates docker container in local machine.\n'+str(e))                  
                else:
                    self.log.info('Deploy option not selected, Please check. ')
                    localhost_deploy=False
                    deploy_status=False
            else:
                pass
                
                
            
            
                
            localhost_container_status=""Notdeployed"" 
            mlflow2sm_deploy_status=""Notdeployed""
            if localhost_deploy:
                localhost_container_status=""success""
                mlflow2sm_deploy_status=""Notdeployed""
                # print(""AION creates local docker container successfully.Please check in docker repository."")
                self.log.info(""AION creates local docker container successfully.Please check in docker repository."")
            # else:
            #     localhost_container_status=""failed""
            #     # print(""AION failed to create local docker container successfully.Please check in docker repository."")
            #     self.log.info(""AION failed to create local docker container successfully.Please check in docker repository."")
            
            if (deploy_status):
                # Finally checking whether mlops model is deployed to sagemaker or not.
                app_name = str(self.sm_app_name)
                deploy_s = self.check_sm_deploy_status(app_name)
                if (deploy_s == ""InService""):
                    # print(""AION mlops model is deployed at aws sagemaker, use application name(app_name) and region to access.\n"")
                    self.log.info('AION mlops model is deployed at aws sagemaker, use application name(app_name) and region to access.\n'+str(app_name))
                    mlflow2sm_deploy_status=""success""
                    localhost_container_status=""Notdeployed""
                else:
                    # print(""AION Mlflow model not able to deploy at aws sagemaker\n"")
                    self.log.info('AION mlops model not able to deploy at aws sagemaker.\n')
                    mlflow2sm_deploy_status=""failed""
                    localhost_container_status=""Notdeployed""
                    
            # else:
            #     mlflow2sm_deploy_status=""None""
            
            
            return mlflow2sm_deploy_status,localhost_container_status
        
        except Exception as inst:
            exc = {""status"":""FAIL"",""message"":str(inst).strip('""')}
            out_exc = json.dumps(exc)
"
__init__.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''"
__init__.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''"
baseline.py,"import joblib
import pandas as pd
import sys
import math
import time
import pandas as pd
import numpy as np
from sklearn.metrics import confusion_matrix
from sklearn.metrics import precision_score, recall_score, f1_score, accuracy_score
from sklearn.metrics import r2_score,mean_absolute_error,mean_squared_error
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report, confusion_matrix
from sklearn.svm import SVC
from sklearn.linear_model import LinearRegression
import argparse
import json

def mltesting(modelfile,datafile,features,target):


    model = joblib.load(modelfile)

    ProblemName = model.__class__.__name__


    if ProblemName in  ['LogisticRegression','SGDClassifier','SVC','DecissionTreeClassifier','RandomForestClassifier','GaussianNB','KNeighborsClassifier','DecisionTreeClassifier','GradientBoostingClassifier','XGBClassifier','LGBMClassifier','CatBoostClassifier']:
        Problemtype = 'Classification'
    elif ProblemName in  ['LinearRegression','Lasso','Ridge','DecisionTreeRegressor','RandomForestRegressor','GradientBoostingRegressor','XGBRegressor','LGBMRegressor','CatBoostRegressor']:
        Problemtype = 'Regression'
    else:
        Problemtype = 'Unknown'
    if Problemtype == 'Classification':
        Params = model.get_params()
        try:
            df = pd.read_csv(datafile,encoding='utf-8',skipinitialspace = True)
            if ProblemName == 'LogisticRegression' or ProblemName == 'DecisionTreeClassifier' or ProblemName == 'RandomForestClassifier'     or ProblemName == 'GaussianNB' or ProblemName == 'KNeighborsClassifier' or ProblemName == 'GradientBoostingClassifier' or ProblemName == 'SVC':
                features = model.feature_names_in_
            elif ProblemName == 'XGBClassifier':
                features = model.get_booster().feature_names
            elif ProblemName == 'LGBMClassifier':
                features = model.feature_name_
            elif ProblemName == 'CatBoostClassifier':
                features = model.feature_names_           
            
            modelfeatures = features
            dfp = df[modelfeatures]
            tar = target
            target = df[tar]
            predic = model.predict(dfp)
            output = {}
            matrixconfusion = pd.DataFrame(confusion_matrix(predic,target))
            matrixconfusion = matrixconfusion.to_json(orient='index')
            classificationreport = pd.DataFrame(classification_report(target,predic,output_dict=True)).transpose()
            classificationreport = round(classificationreport,2)
            classificationreport = classificationreport.to_json(orient='index')
            output[""Precision""] = ""%.2f"" % precision_score(target, predic,average='weighted')
            output[""Recall""] = ""%.2f"" % recall_score(target, predic,average='weighted')
            output[""Accuracy""] = ""%.2f"" % accuracy_score(target, predic)
            output[""ProblemName""] = ProblemName
            output[""Status""] = ""Success""
            output[""Params""] =  Params
            output[""Problemtype""] =  Problemtype
            output[""Confusionmatrix""] =  matrixconfusion
            output[""classificationreport""] =  classificationreport
            
            # import statistics
            # timearray = []
            # for i in range(0,5):
                # start = time.time()
                # predic1 = model.predict(dfp.head(1))
                # end = time.time()
                # timetaken =  (round((end - start) * 1000,2),'Seconds')
                # timearray.append(timetaken)
            # print(timearray)
                
          
            start = time.time()
            for i in range(0,5):
                predic1 = model.predict(dfp.head(1)) 
            end = time.time()
            timetaken =  (round((end - start) * 1000,2),'Seconds')
            
            # print(timetaken)
           
            start1 = time.time()
            for i in range(0,5):
                predic2 = model.predict(dfp.head(10))
            end1 = time.time()
            timetaken1 =  (round((end1 - start1) * 1000,2) ,'Seconds')
            # print(timetaken1)
            
            
            start2 = time.time()
            for i in range(0,5):
                predic3 = model.predict(dfp.head(100))
            end2 = time.time()
            timetaken2 =  (round((end2 - start2) * 1000,2) ,'Seconds')
            # print(timetaken2)
            
            output[""onerecord""] = timetaken
            output[""tenrecords""] = timetaken1
            output[""hundrecords""] = timetaken2
            print(json.dumps(output))
        except Exception as e:
            output = {}
            output['Problemtype']='Classification'
            output['Status']= ""Fail""
            output[""ProblemName""] = ProblemName
            output[""Msg""] = 'Detected Model : {} \\n Problem Type : Classification \\n Error : {}'.format(ProblemName, str(e).replace('""','//""').replace('\n', '\\n'))
            print(output[""Msg""])
            print(json.dumps(output))
            
    elif Problemtype == 'Regression':
        Params = model.get_params()
        try:
            df = pd.read_csv(datafile,encoding='utf-8',skipinitialspace = True)            
            if ProblemName == 'LinearRegression' or ProblemName == 'Lasso' or ProblemName == 'Ridge' or ProblemName == 'DecisionTreeRegressor' or ProblemName == 'RandomForestRegressor'     or ProblemName == 'GaussianNB' or ProblemName == 'KNeighborsRegressor' or ProblemName == 'GradientBoostingRegressor':
                features = model.feature_names_in_
            elif ProblemName == 'XGBRegressor':
                features = model.get_booster().feature_names
            elif ProblemName == 'LGBMRegressor':
                features = model.feature_name_
            elif ProblemName == 'CatBoostRegressor':
                features = model.feature_names_  
            modelfeatures = features
            dfp = df[modelfeatures]
            tar = target 
            target = df[tar] 
            predict = model.predict(dfp)
            mse = mean_squared_error(target, predict)
            mae = mean_absolute_error(target, predict)
            rmse = math.sqrt(mse)
            r2 = r2_score(target,predict,multioutput='variance_weighted')
            output = {}
            output[""MSE""] = ""%.2f"" % mean_squared_error(target, predict)
            output[""MAE""] = ""%.2f"" % mean_absolute_error(target, predict)
            output[""RMSE""] = ""%.2f"" % math.sqrt(mse)
            output[""R2""] =  ""%.2f"" %r2_score(target,predict,multioutput='variance_weighted')
            output[""ProblemName""] = ProblemName
            output[""Problemtype""] =  Problemtype
            output[""Params""] =  Params
            output['Status']='Success'
            start = time.time()
            predic1 = model.predict(dfp.head(1)) 
            end = time.time()
            timetaken =  (round((end - start) * 1000,2) ,'Seconds')
            
            # print(timetaken)
           
            start1 = time.time()
            predic2 = model.predict(dfp.head(10))
            end1 = time.time()
            timetaken1 =  (round((end1 - start1) * 1000,2),'Seconds')
            # print(timetaken1)
            
            
            start2 = time.time()
            predic3 = model.predict(dfp.head(100))
            end2 = time.time()
            timetaken2 =  (round((end2 - start2) * 1000,2) ,'Seconds')
            # print(timetaken2)
            
            output[""onerecord""] = timetaken
            output[""tenrecords""] = timetaken1
            output[""hundrecords""] = timetaken2
            print(json.dumps(output))
        except Exception as e:
            output = {}
            output['Problemtype']='Regression'
            output['Status']='Fail'
            output[""ProblemName""] = ProblemName
            output[""Msg""] = 'Detected Model : {} \\n Problem Type : Regression \\n Error : {}'.format(ProblemName, str(e).replace('""','//""').replace('\n', '\\n'))
            print(json.dumps(output))
        
    else:
        output = {}
        output['Problemtype']='Unknown'
        output['Status']='Fail'
        output['Params'] = ''
        output[""ProblemName""] = ProblemName
        output[""Msg""] = 'Detected Model : {} \\n Error : {}'.format(ProblemName, 'Model not supported')
        print(json.dumps(output))
    return(json.dumps(output))
    
def baseline_testing(modelFile,csvFile,features,target):
    features = [x.strip() for x in features.split(',')]    
    return mltesting(modelFile,csvFile,features,target)"
item_rating.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import pandas as pd
import numpy as np
import os
import datetime, time, timeit
from sklearn.model_selection import KFold
from sklearn.metrics import confusion_matrix 
from sklearn.metrics import accuracy_score 
from sklearn.metrics import classification_report 
import pickle
import logging

class recommendersystem():
	def __init__(self,features,svd_params):
		self.features = features
		self.svd_input = svd_params
		self.log = logging.getLogger('eion')
		print (""recommendersystem starts \n"")
		
	#To extract dict key,values
	def extract_params(self,dict):
		self.dict=dict
		for k,v in self.dict.items():
			return k,v
			

		
	def recommender_model(self,df,outputfile):
		from sklearn.metrics.pairwise import cosine_similarity
		from utils.file_ops import save_csv
		USER_ITEM_MATRIX = 'user_item_matrix'
		ITEM_SIMILARITY_MATRIX = 'item_similarity_matrix'
		selectedColumns = self.features.split(',')
		data = pd.DataFrame()
		for i in range(0,len(selectedColumns)):
			data[selectedColumns[i]] = df[selectedColumns[i]]
		dataset = data
		self.log.info('-------> Top(5) Rows')
		self.log.info(data.head(5))
		start = time.time()
		self.log.info('\n----------- Recommender System Training Starts -----------')
		#--------------- Task 11190:recommender system changes Start ---Usnish------------------#
		# selectedColumns = ['userId', 'movieId', 'rating']
		df_eda = df.groupby(selectedColumns[1]).agg(mean_rating=(selectedColumns[2], 'mean'),number_of_ratings=(selectedColumns[2], 'count')).reset_index()

		self.log.info('-------> Top 10 most rated Items:')
		self.log.info(df_eda.sort_values(by='number_of_ratings', ascending=False).head(10))

		matrix = data.pivot_table(index=selectedColumns[1], columns=selectedColumns[0], values=selectedColumns[2])
		relative_file = os.path.join(outputfile, 'data', USER_ITEM_MATRIX + '.csv')
		matrix.to_csv(relative_file)
		item_similarity_cosine = cosine_similarity(matrix.fillna(0))
		item_similarity_cosine = pd.DataFrame(item_similarity_cosine,columns=pd.Series([i + 1 for i in range(item_similarity_cosine.shape[0])],name='ItemId'),index=pd.Series([i + 1 for i in range(item_similarity_cosine.shape[0])],name='ItemId'))
		self.log.info('---------> Item-Item Similarity matrix created:')
		self.log.info(item_similarity_cosine.head(5))

		relative_file = os.path.join(outputfile, 'data', ITEM_SIMILARITY_MATRIX + '.csv')
		save_csv(item_similarity_cosine,relative_file)


		# --------------- recommender system changes End ---Usnish------------------#



		executionTime=time.time() - start
		self.log.info(""------->Execution Time: ""+str(executionTime))
		self.log.info('----------- Recommender System Training End -----------\n')

		return ""filename"",matrix,""NA"","""","""""
__init__.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''"
text_similarity.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import numpy as np
import pickle
import pandas as pd
import sys
import time
import os
from os.path import expanduser
import platform
from sklearn.preprocessing import binarize
import logging
import tensorflow as tf
from sklearn.model_selection import train_test_split
from tensorflow.keras import preprocessing
from sklearn.metrics import roc_auc_score
from sklearn.metrics import accuracy_score
from tensorflow.keras.preprocessing.sequence import pad_sequences
from tensorflow.keras.layers import Input, Embedding, LSTM, Lambda
import tensorflow.keras.backend as K
from tensorflow.keras.models import Model
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.layers import Concatenate
from tensorflow.keras.layers import Input, Dense, Flatten, GlobalMaxPool2D, GlobalAvgPool2D, Concatenate, Multiply, Dropout, Subtract, Add, Conv2D
from sklearn.metrics.pairwise import cosine_similarity, cosine_distances

import tensorflow.keras.backend as K
from tensorflow.keras.models import Model, Sequential
from tensorflow.keras import layers, utils, callbacks, optimizers, regularizers

## Keras subclassing based siamese network
class siameseNetwork(Model):
    def __init__(self, activation,inputShape, num_iterations):
        self.activation=activation
        self.log = logging.getLogger('eion')
        super(siameseNetwork, self).__init__()        
        i1 = layers.Input(shape=inputShape)
        i2 = layers.Input(shape=inputShape)
        featureExtractor = self.build_feature_extractor(inputShape, num_iterations)
        f1 = featureExtractor(i1)
        f2 = featureExtractor(i2)
        #distance vect
        distance = layers.Concatenate()([f1, f2])
        cosine_loss = tf.keras.losses.CosineSimilarity(axis=1)
        c_loss=cosine_loss(f1, f2)  
        similarity = tf.keras.layers.Dot(axes=1,normalize=True)([f1,f2])
        outputs = layers.Dense(1, activation=""sigmoid"")(distance)
        self.model = Model(inputs=[i1, i2], outputs=outputs)
    ##Build dense sequential layers 
    def build_feature_extractor(self, inputShape, num_iterations):        
        layers_config = [layers.Input(inputShape)]
        for i, n_units in enumerate(num_iterations):
            layers_config.append(layers.Dense(n_units))
            layers_config.append(layers.Dropout(0.2))
            layers_config.append(layers.BatchNormalization())
            layers_config.append(layers.Activation(self.activation))        
        model = Sequential(layers_config, name='feature_extractor')

        return model  
        
    def call(self, x):
        return self.model(x)
        
def euclidean_distance(vectors):
    (f1, f2) = vectors
    sumSquared = K.sum(K.square(f1 - f2), axis=1, keepdims=True)
    return K.sqrt(K.maximum(sumSquared, K.epsilon()))

def cosine_similarity(vectors):
    (f1, f2) = vectors
    f1 = K.l2_normalize(f1, axis=-1)
    f2 = K.l2_normalize(f2, axis=-1)
    return K.mean(f1 * f2, axis=-1, keepdims=True)
    


def cos_dist_output_shape(shapes):
    shape1, shape2 = shapes
    return (shape1[0],1)
    

class eion_similarity_siamese:
    def __init__(self):
        self.log = logging.getLogger('eion')    
        
    def siamese_model(self,df,col1,col2,targetColumn,conf,pipe,deployLocation,iterName,iterVersion,testPercentage,predicted_data_file):
        try:
            self.log.info('-------> Read Embedded File')
            home = expanduser(""~"")
            if platform.system() == 'Windows':
                modelsPath = os.path.join(home,'AppData','Local','HCLT','AION','PreTrainedModels','TextSimilarity')            
            else:  
                modelsPath = os.path.join(home,'HCLT','AION','PreTrainedModels','TextSimilarity')            
            if os.path.isdir(modelsPath) == False:
                os.makedirs(modelsPath)    
            embedding_file_path = os.path.join(modelsPath,'glove.6B.100d.txt')            
            if not os.path.exists(embedding_file_path):
                from pathlib import Path
                import urllib.request
                import zipfile
                location = modelsPath
                local_file_path =  os.path.join(location,""glove.6B.zip"")
                file_test, header_test = urllib.request.urlretrieve('http://nlp.stanford.edu/data/wordvecs/glove.6B.zip', local_file_path)
                with zipfile.ZipFile(local_file_path, 'r') as zip_ref:
                    zip_ref.extractall(location)
                os.unlink(os.path.join(location,""glove.6B.zip""))
                if os.path.isfile(os.path.join(location,""glove.6B.50d.txt"")):
                    os.unlink(os.path.join(location,""glove.6B.50d.txt""))
                if os.path.isfile(os.path.join(location,""glove.6B.300d.txt"")):
                    os.unlink(os.path.join(location,""glove.6B.300d.txt""))
                if os.path.isfile(os.path.join(location,""glove.6B.200d.txt"")):
                    os.unlink(os.path.join(location,""glove.6B.200d.txt""))
            X = df[[col1,col2]]
            Y = df[targetColumn]
            testPercentage = testPercentage
            self.log.info('\n-------------- Test Train Split ----------------')
            if testPercentage == 0:
                xtrain=X
                ytrain=Y
                xtest=X
                ytest=Y
            else:
                testSize=testPercentage/100
                self.log.info('-------> Split Type: Random Split')
                self.log.info('-------> Train Percentage: '+str(testSize))
                X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=testSize)
            self.log.info('-------> Train Data Shape: '+str(X_train.shape)+' ---------->')
            self.log.info('-------> Test Data Shape: '+str(X_test.shape)+' ---------->')
            self.log.info('-------------- Test Train Split End ----------------\n') 
            self.log.info('\n-------------- Train  Validate Split ----------------')
            X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=0.20, random_state=42)
            self.log.info('-------> Train Data Shape: '+str(X_train.shape)+' ---------->')
            self.log.info('-------> Validate Data Shape: '+str(X_val.shape)+' ---------->')
            self.log.info('-------------- Train  Validate Split End----------------\n')
            self.log.info('Status:- |... Train / test split done: '+str(100-testPercentage)+'% train,'+str(testPercentage)+'% test') 
            train_sentence1 = pipe.texts_to_sequences(X_train[col1].values)
            train_sentence2 = pipe.texts_to_sequences(X_train[col2].values)
            val_sentence1 = pipe.texts_to_sequences(X_val[col1].values)
            val_sentence2 = pipe.texts_to_sequences(X_val[col2].values)
            len_vec = [len(sent_vec) for sent_vec in train_sentence1]
            max_len = np.max(len_vec)
            len_vec = [len(sent_vec) for sent_vec in train_sentence2]
            if (max_len < np.max(len_vec)):
                max_len = np.max(len_vec)
            train_sentence1 = pad_sequences(train_sentence1, maxlen=max_len, padding='post')
            train_sentence2 = pad_sequences(train_sentence2, maxlen=max_len, padding='post')
            val_sentence1 = pad_sequences(val_sentence1, maxlen=max_len, padding='post')
            val_sentence2 = pad_sequences(val_sentence2, maxlen=max_len, padding='post')
            y_train = y_train.values
            y_val = y_val.values
            activation = str(conf['activation'])
            model = siameseNetwork(activation,inputShape=train_sentence1.shape[1], num_iterations=[10])
            model.compile(
                loss=""binary_crossentropy"", 
                optimizer=optimizers.Adam(learning_rate=0.0001),
                metrics=[""accuracy""])
            es = callbacks.EarlyStopping(monitor='val_loss', patience=5, verbose=1, restore_best_weights=True)
            rlp = callbacks.ReduceLROnPlateau(
                monitor='val_loss', factor=0.1, patience=2, min_lr=1e-10, mode='min', verbose=1
            )
            x_valid=X_val
            y_valid=y_val            
            n_epoch = int(conf['num_epochs'])
            batch_size = int(conf['batch_size'])            
            similarityIndex = conf['similarityIndex']
            model.fit([train_sentence1,train_sentence2],y_train.reshape(-1,1), epochs = n_epoch,batch_size=batch_size,
                validation_data=([val_sentence1, val_sentence2],y_val.reshape(-1,1)),callbacks=[es, rlp])
            scores = model.evaluate([val_sentence1, val_sentence2], y_val.reshape(-1,1), verbose=0)
            self.log.info('-------> Model Score Matrix: Accuracy')
            self.log.info('-------> Model Score (Validate Data) : '+str(scores[1]))
            self.log.info('Status:- |... Algorithm applied: SIAMESE')
            test_sentence1 = pipe.texts_to_sequences(X_test[col1].values)
            test_sentence2 = pipe.texts_to_sequences(X_test[col2].values)
            test_sentence1 = pad_sequences(test_sentence1, maxlen=max_len, padding='post')
            test_sentence2 = pad_sequences(test_sentence2, maxlen=max_len, padding='post')
            prediction = model.predict([test_sentence1, test_sentence2 ])
            n_epoch = conf['num_epochs']
            batch_size = conf['batch_size']
            activation = conf['activation']
            similarityIndex = conf['similarityIndex']
            self.log.info('-------> similarityIndex : '+str(similarityIndex))
            prediction = np.where(prediction > similarityIndex,1,0)
            rocauc_sco = roc_auc_score(y_test,prediction)
            acc_sco = accuracy_score(y_test, prediction)
            predict_df = pd.DataFrame()
            predict_df['actual'] = y_test
            predict_df['predict'] = prediction
            predict_df.to_csv(predicted_data_file)
            self.log.info('-------> Model Score Matrix: Accuracy')
            self.log.info('-------> Model Score (Validate Data) : '+str(scores[1]))
            self.log.info('Status:- |... Algorithm applied: SIAMESE')
            test_sentence1 = pipe.texts_to_sequences(X_test[col1].values)
            test_sentence2 = pipe.texts_to_sequences(X_test[col2].values)
            test_sentence1 = pad_sequences(test_sentence1, maxlen=max_len, padding='post')
            test_sentence2 = pad_sequences(test_sentence2, maxlen=max_len, padding='post')
            prediction = model.predict([test_sentence1, test_sentence2 ])
            prediction = np.where(prediction > similarityIndex,1,0)
            rocauc_sco = roc_auc_score(y_test,prediction)
            acc_sco = accuracy_score(y_test, prediction)
            predict_df = pd.DataFrame()
            predict_df['actual'] = y_test
            predict_df['predict'] = prediction
            predict_df.to_csv(predicted_data_file)
            self.log.info(""predict_df: \n""+str(predict_df))            
            sco = acc_sco
            self.log.info('-------> Test Data Accuracy Score : '+str(acc_sco))
            self.log.info('Status:- |... Testing Score: '+str(acc_sco))
            self.log.info('-------> Test Data ROC AUC Score : '+str(rocauc_sco))
            matrix = '""Accuracy"":'+str(acc_sco)+',""ROC AUC"":'+str(rocauc_sco)
            
            prediction = model.predict([train_sentence1, train_sentence2])
            prediction = np.where(prediction > similarityIndex,1,0)
            train_rocauc_sco = roc_auc_score(y_train,prediction)
            train_acc_sco = accuracy_score(y_train, prediction)
            self.log.info('-------> Train Data Accuracy Score : '+str(train_acc_sco))
            self.log.info('-------> Train Data ROC AUC Score : '+str(train_rocauc_sco))
            trainmatrix = '""Accuracy"":'+str(train_acc_sco)+',""ROC AUC"":'+str(train_rocauc_sco)
            model_tried = '{""Model"":""SIAMESE"",""Score"":'+str(sco)+'}'
            saved_model = 'textsimilarity_'+iterName+'_'+iterVersion
            # filename = os.path.join(deployLocation,'model','textsimilarity_'+iterName+'_'+iterVersion+'.sav')
            # filename = os.path.join(deployLocation,'model','textsimilarity_'+iterName+'_'+iterVersion+'.h5')
            ## Because we are using subclassing layer api, please use dir (as below) to store deep learn model instead of .h5 model.
            filename = os.path.join(deployLocation,'model','textsimilarity_'+iterName+'_'+iterVersion)
            model.save(filename)
            # model.save_weights(filename)
            model_name = 'SIAMESE MODEL'
            
            return(model_name,scores[1],matrix,trainmatrix,model_tried,saved_model,filename,max_len,similarityIndex)
        except Exception as inst:
            self.log.info(""SIAMESE failed "" + str(inst))
            exc_type, exc_obj, exc_tb = sys.exc_info()
            fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)[1]
            self.log.info(str(exc_type) + ' ' + str(fname) + ' ' + str(exc_tb.tb_lineno))			"
pipelines.py,"import itertools
import logging
from typing import Optional, Dict, Union

from nltk import sent_tokenize

import torch
from transformers import(
    AutoModelForSeq2SeqLM, 
    AutoTokenizer,
    PreTrainedModel,
    PreTrainedTokenizer,
)

logger = logging.getLogger(__name__)

class QGPipeline:
    """"""Poor man's QG pipeline""""""
    def __init__(
        self,
        model: PreTrainedModel,
        tokenizer: PreTrainedTokenizer,
        ans_model: PreTrainedModel,
        ans_tokenizer: PreTrainedTokenizer,
        qg_format: str,
        use_cuda: bool
    ):
        self.model = model
        self.tokenizer = tokenizer

        self.ans_model = ans_model
        self.ans_tokenizer = ans_tokenizer

        self.qg_format = qg_format

        self.device = ""cuda"" if torch.cuda.is_available() and use_cuda else ""cpu""
        self.model.to(self.device)

        if self.ans_model is not self.model:
            self.ans_model.to(self.device)

        assert self.model.__class__.__name__ in [""T5ForConditionalGeneration"", ""BartForConditionalGeneration""]
        
        if ""T5ForConditionalGeneration"" in self.model.__class__.__name__:
            self.model_type = ""t5""
        else:
            self.model_type = ""bart""

    def __call__(self, inputs: str):
        inputs = "" "".join(inputs.split())
        sents, answers = self._extract_answers(inputs)
        flat_answers = list(itertools.chain(*answers))
        
        if len(flat_answers) == 0:
          return []

        if self.qg_format == ""prepend"":
            qg_examples = self._prepare_inputs_for_qg_from_answers_prepend(inputs, answers)
        else:
            qg_examples = self._prepare_inputs_for_qg_from_answers_hl(sents, answers)
        
        qg_inputs = [example['source_text'] for example in qg_examples]
        questions = self._generate_questions(qg_inputs)
        output = [{'answer': example['answer'], 'question': que} for example, que in zip(qg_examples, questions)]
        return output
    
    def _generate_questions(self, inputs):
        inputs = self._tokenize(inputs, padding=True, truncation=True)
        
        outs = self.model.generate(
            input_ids=inputs['input_ids'].to(self.device), 
            attention_mask=inputs['attention_mask'].to(self.device), 
            max_length=32,
            num_beams=4,
        )
        
        questions = [self.tokenizer.decode(ids, skip_special_tokens=True) for ids in outs]
        return questions
    
    def _extract_answers(self, context):
        sents, inputs = self._prepare_inputs_for_ans_extraction(context)
        inputs = self._tokenize(inputs, padding=True, truncation=True)

        outs = self.ans_model.generate(
            input_ids=inputs['input_ids'].to(self.device), 
            attention_mask=inputs['attention_mask'].to(self.device), 
            max_length=32,
        )
        
        dec = [self.ans_tokenizer.decode(ids, skip_special_tokens=False) for ids in outs]
        answers = [item.split('<sep>') for item in dec]
        answers = [i[:-1] for i in answers]
        
        return sents, answers
    
    def _tokenize(self,
        inputs,
        padding=True,
        truncation=True,
        add_special_tokens=True,
        max_length=512
    ):
        inputs = self.tokenizer.batch_encode_plus(
            inputs, 
            max_length=max_length,
            add_special_tokens=add_special_tokens,
            truncation=truncation,
            padding=""max_length"" if padding else False,
            pad_to_max_length=padding,
            return_tensors=""pt""
        )
        return inputs
    
    def _prepare_inputs_for_ans_extraction(self, text):
        sents = sent_tokenize(text)

        inputs = []
        for i in range(len(sents)):
            source_text = ""extract answers:""
            for j, sent in enumerate(sents):
                if i == j:
                    sent = ""<hl> %s <hl>"" % sent
                source_text = ""%s %s"" % (source_text, sent)
                source_text = source_text.strip()
            
            if self.model_type == ""t5"":
                source_text = source_text + "" </s>""
            inputs.append(source_text)

        return sents, inputs
    
    def _prepare_inputs_for_qg_from_answers_hl(self, sents, answers):
        inputs = []
        for i, answer in enumerate(answers):
            if len(answer) == 0: continue
            for answer_text in answer:
                sent = sents[i]
                sents_copy = sents[:]
                
                answer_text = answer_text.strip()
                
                ans_start_idx = 0
                # ans_start_idx = sent.index(answer_text)
                
                # if answer_text in sent: 
                    # ans_start_idx = sent.index(answer_text) 
                # else: 
                    # continue
                
                sent = f""{sent[:ans_start_idx]} <hl> {answer_text} <hl> {sent[ans_start_idx + len(answer_text): ]}""
                sents_copy[i] = sent
                
                source_text = "" "".join(sents_copy)
                source_text = f""generate question: {source_text}"" 
                if self.model_type == ""t5"":
                    source_text = source_text + "" </s>""
                
                inputs.append({""answer"": answer_text, ""source_text"": source_text})
        
        return inputs
    
    def _prepare_inputs_for_qg_from_answers_prepend(self, context, answers):
        flat_answers = list(itertools.chain(*answers))
        examples = []
        for answer in flat_answers:
            source_text = f""answer: {answer} context: {context}""
            if self.model_type == ""t5"":
                source_text = source_text + "" </s>""
            
            examples.append({""answer"": answer, ""source_text"": source_text})
        return examples

    
class MultiTaskQAQGPipeline(QGPipeline):
    def __init__(self, **kwargs):
        super().__init__(**kwargs)
    
    def __call__(self, inputs: Union[Dict, str]):
        if type(inputs) is str:
            # do qg
            return super().__call__(inputs)
        else:
            # do qa
            return self._extract_answer(inputs[""question""], inputs[""context""])
    
    def _prepare_inputs_for_qa(self, question, context):
        source_text = f""question: {question}  context: {context}""
        if self.model_type == ""t5"":
            source_text = source_text + "" </s>""
        return  source_text
    
    def _extract_answer(self, question, context):
        source_text = self._prepare_inputs_for_qa(question, context)
        inputs = self._tokenize([source_text], padding=False)
    
        outs = self.model.generate(
            input_ids=inputs['input_ids'].to(self.device), 
            attention_mask=inputs['attention_mask'].to(self.device), 
            max_length=16,
        )

        answer = self.tokenizer.decode(outs[0], skip_special_tokens=True)
        return answer


class E2EQGPipeline:
    def __init__(
        self,
        model: PreTrainedModel,
        tokenizer: PreTrainedTokenizer,
        use_cuda: bool
    ) :

        self.model = model
        self.tokenizer = tokenizer

        self.device = ""cuda"" if torch.cuda.is_available() and use_cuda else ""cpu""
        self.model.to(self.device)

        assert self.model.__class__.__name__ in [""T5ForConditionalGeneration"", ""BartForConditionalGeneration""]
        
        if ""T5ForConditionalGeneration"" in self.model.__class__.__name__:
            self.model_type = ""t5""
        else:
            self.model_type = ""bart""
        
        self.default_generate_kwargs = {
            ""max_length"": 256,
            ""num_beams"": 4,
            ""length_penalty"": 1.5,
            ""no_repeat_ngram_size"": 3,
            ""early_stopping"": True,
        }
    
    def __call__(self, context: str, **generate_kwargs):
        inputs = self._prepare_inputs_for_e2e_qg(context)

        # TODO: when overrding default_generate_kwargs all other arguments need to be passsed
        # find a better way to do this
        if not generate_kwargs:
            generate_kwargs = self.default_generate_kwargs
        
        input_length = inputs[""input_ids""].shape[-1]
        
        # max_length = generate_kwargs.get(""max_length"", 256)
        # if input_length < max_length:
        #     logger.warning(
        #         ""Your max_length is set to {}, but you input_length is only {}. You might consider decreasing max_length manually, e.g. summarizer('...', max_length=50)"".format(
        #             max_length, input_length
        #         )
        #     )

        outs = self.model.generate(
            input_ids=inputs['input_ids'].to(self.device), 
            attention_mask=inputs['attention_mask'].to(self.device),
            **generate_kwargs
        )

        prediction = self.tokenizer.decode(outs[0], skip_special_tokens=True)
        questions = prediction.split(""<sep>"")
        questions = [question.strip() for question in questions[:-1]]
        return questions
    
    def _prepare_inputs_for_e2e_qg(self, context):
        source_text = f""generate questions: {context}""
        if self.model_type == ""t5"":
            source_text = source_text + "" </s>""
        
        inputs = self._tokenize([source_text], padding=False)
        return inputs
    
    def _tokenize(
        self,
        inputs,
        padding=True,
        truncation=True,
        add_special_tokens=True,
        max_length=512
    ):
        inputs = self.tokenizer.batch_encode_plus(
            inputs, 
            max_length=max_length,
            add_special_tokens=add_special_tokens,
            truncation=truncation,
            padding=""max_length"" if padding else False,
            pad_to_max_length=padding,
            return_tensors=""pt""
        )
        return inputs


SUPPORTED_TASKS = {
    ""question-generation"": {
        ""impl"": QGPipeline,
        ""default"": {
            ""model"": ""valhalla/t5-small-qg-hl"",
            ""ans_model"": ""valhalla/t5-small-qa-qg-hl"",
        }
    },
    ""multitask-qa-qg"": {
        ""impl"": MultiTaskQAQGPipeline,
        ""default"": {
            ""model"": ""valhalla/t5-small-qa-qg-hl"",
        }
    },
    ""e2e-qg"": {
        ""impl"": E2EQGPipeline,
        ""default"": {
            ""model"": ""valhalla/t5-small-e2e-qg"",
        }
    }
}

def pipeline(
    task: str,
    model: Optional = None,
    tokenizer: Optional[Union[str, PreTrainedTokenizer]] = None,
    qg_format: Optional[str] = ""highlight"",
    ans_model: Optional = None,
    ans_tokenizer: Optional[Union[str, PreTrainedTokenizer]] = None,
    use_cuda: Optional[bool] = True,
    **kwargs,
):
    # Retrieve the task
    if task not in SUPPORTED_TASKS:
        raise KeyError(""Unknown task {}, available tasks are {}"".format(task, list(SUPPORTED_TASKS.keys())))

    targeted_task = SUPPORTED_TASKS[task]
    task_class = targeted_task[""impl""]

    # Use default model/config/tokenizer for the task if no model is provided
    if model is None:
        model = targeted_task[""default""][""model""]
    
    # Try to infer tokenizer from model or config name (if provided as str)
    if tokenizer is None:
        if isinstance(model, str):
            tokenizer = model
        else:
            # Impossible to guest what is the right tokenizer here
            raise Exception(
                ""Impossible to guess which tokenizer to use. ""
                ""Please provided a PretrainedTokenizer class or a path/identifier to a pretrained tokenizer.""
            )
    
    # Instantiate tokenizer if needed
    if isinstance(tokenizer, (str, tuple)):
        if isinstance(tokenizer, tuple):
            # For tuple we have (tokenizer name, {kwargs})
            tokenizer = AutoTokenizer.from_pretrained(tokenizer[0], **tokenizer[1])
        else:
            tokenizer = AutoTokenizer.from_pretrained(tokenizer)
    
    # Instantiate model if needed
    if isinstance(model, str):
        model = AutoModelForSeq2SeqLM.from_pretrained(model)
    
    if task == ""question-generation"":
        if ans_model is None:
            # load default ans model
            ans_model = targeted_task[""default""][""ans_model""]
            ans_tokenizer = AutoTokenizer.from_pretrained(ans_model)
            ans_model = AutoModelForSeq2SeqLM.from_pretrained(ans_model)
        else:
            # Try to infer tokenizer from model or config name (if provided as str)
            if ans_tokenizer is None:
                if isinstance(ans_model, str):
                    ans_tokenizer = ans_model
                else:
                    # Impossible to guest what is the right tokenizer here
                    raise Exception(
                        ""Impossible to guess which tokenizer to use. ""
                        ""Please provided a PretrainedTokenizer class or a path/identifier to a pretrained tokenizer.""
                    )
            
            # Instantiate tokenizer if needed
            if isinstance(ans_tokenizer, (str, tuple)):
                if isinstance(ans_tokenizer, tuple):
                    # For tuple we have (tokenizer name, {kwargs})
                    ans_tokenizer = AutoTokenizer.from_pretrained(ans_tokenizer[0], **ans_tokenizer[1])
                else:
                    ans_tokenizer = AutoTokenizer.from_pretrained(ans_tokenizer)

            if isinstance(ans_model, str):
                ans_model = AutoModelForSeq2SeqLM.from_pretrained(ans_model)
    
    if task == ""e2e-qg"":
        return task_class(model=model, tokenizer=tokenizer, use_cuda=use_cuda)
    elif task == ""question-generation"":
        return task_class(model=model, tokenizer=tokenizer, ans_model=ans_model, ans_tokenizer=ans_tokenizer, qg_format=qg_format, use_cuda=use_cuda)
    else:
        return task_class(model=model, tokenizer=tokenizer, ans_model=model, ans_tokenizer=tokenizer, qg_format=qg_format, use_cuda=use_cuda)
"
__init__.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''"
aionNAS.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''

import logging
logging.getLogger('tensorflow').disabled = True
import json
#from nltk.corpus import stopwords
from collections import Counter
from numpy import mean
from numpy import std
from pandas import read_csv
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import OneHotEncoder
from sklearn.compose import ColumnTransformer
from learner.machinelearning import machinelearning
# from sklearn.dummy import DummyClassifier
# create histograms of numeric input variables
import sys
import os
import re
import pandas as pd
import numpy as np
from learner.aion_matrix import aion_matrix
import tensorflow as tf
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)
import autokeras as ak
# load the sonar dataset
from sklearn.model_selection import train_test_split
# from sklearn.metrics import cohen_kappa_score
# from sklearn.metrics import roc_auc_score
# from sklearn.metrics import confusion_matrix
from sklearn.metrics import roc_curve
from math import sqrt
from sklearn.metrics import mean_squared_error, explained_variance_score,mean_absolute_error
from sklearn import metrics


class aionNAS:
    def __init__(self,nas_class,nas_params,xtrain1,xtest1,ytrain1,ytest1,deployLocation):
        try:
            self.dfFeatures=None
            self.nas_class=nas_class
            self.nas_params=nas_params
            self.targetFeature=None
            self.log = logging.getLogger('eion')
            self.n_models=int(self.nas_params['n_models'])
            self.n_epochs=int(self.nas_params['n_epochs'])
            self.optimizer=self.nas_params['optimizer']
            self.metrics=self.nas_params['metrics']
            self.tuner=self.nas_params['tuner']
            self.seed=int(self.nas_params['seed'])
            self.xtrain = xtrain1
            self.xtest = xtest1
            self.ytrain = ytrain1
            self.ytest = ytest1
            #self.labelMaps = labelMaps
            self.deployLocation=deployLocation
            
        except Exception as e:
            self.log.info('<!------------- NAS INIT Error ---------------> ')
            exc_type, exc_obj, exc_tb = sys.exc_info()
            fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
            self.log.info(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))

    def paramCheck(self):
        try:
            if not (self.nas_class):
                self.log.info('<!------------- NAS class input Error  ---------------> ')
            if not (self.nas_params):
                self.log.info('<!------------- NAS model hyperparameter input Error  ---------------> ')
            if not (self.targetFeature):
                self.log.info('<!------------- NAS model targetFeature input Error  ---------------> ')
            if (self.n_models < 1):
                self.n_models=1
            if not  (self.dfFeatures):
                self.log.info('<!------------- NAS model features Error  ---------------> ')
            if (self.n_epochs < 1):
                self.n_models=1
            if not (self.optimizer):
                self.optimizer=""adam""
            if not (self.tuner):
                self.tuner=""greedy""
            if (self.seed < 1):
                self.seed=0
            if not (self.metrics):
                self.metrics=None
        except ValueError:
            self.log.info('<------------------  NAS config file error. --------------->')





    def recall_m(self,y_true, y_pred):
        true_positives = tf.keras.metrics.Sum(tf.keras.backend.round(tf.keras.backend.clip(y_true * y_pred, 0, 1)))
        possible_positives = tf.keras.metrics.Sum(tf.keras.backend.round(tf.keras.backend.clip(y_true, 0, 1)))
        recall = true_positives / (possible_positives + tf.keras.backend.epsilon())
        return recall

    def precision_m(self,y_true, y_pred):
        true_positives = tf.keras.metrics.Sum(tf.keras.backend.round(tf.keras.backend.clip(y_true * y_pred, 0, 1)))
        predicted_positives = tf.keras.metrics.Sum(tf.keras.backend.round(tf.keras.backend.clip(y_pred, 0, 1)))
        precision = true_positives / (predicted_positives + tf.keras.backend.epsilon())
        return precision

    def f1_score(self,y_true, y_pred):
        precision = self.precision_m(y_true, y_pred)
        recall = self.recall_m(y_true, y_pred)
        return 2*((precision*recall)/(precision+recall+tf.keras.backend.epsilon()))

    def nasStructdataPreprocess(self):
        df=self.data
        self.paramCheck()
        target=df[self.targetFeature].values
        counter = Counter(target)
        for k,v in counter.items():
            per = v / len(target) * 100
            self.log.info('autokeras struct Class=%d, Count=%d, Percentage=%.3f%%' % (k, v, per))
        # select columns with numerical data types
        num_ix = df.select_dtypes(include=['int64', 'float64']).columns
        subset = df[num_ix]
        last_ix = len(df.columns) - 1
        y=df[self.targetFeature]
        X = df.drop(self.targetFeature, axis=1)
        #Using Pearson Correlation
        # plt.figure(figsize=(12,10))
        # cor = df.corr()
        # sns.heatmap(cor, annot=True, cmap=plt.cm.Reds)
        # plt.show()
        # select categorical features
        cat_ix = X.select_dtypes(include=['object', 'bool']).columns
        # one hot encode cat features only
        ct = ColumnTransformer([('o',OneHotEncoder(),cat_ix)], remainder='passthrough')
        X = X.reset_index()
        X=X.replace(to_replace=""NULL"",value=0)
        X = X.dropna(how='any',axis=0)
        X = ct.fit_transform(X)
        from sklearn.preprocessing import scale
        X = scale(X)
        # label encode the target variable to have the classes 0 and 1
        y = LabelEncoder().fit_transform(y)
        # separate into train and test sets
        X_train, X_test, y_train, y_test=train_test_split(X,y,test_size=self.test_size,random_state=1)
        return X_train, X_test, y_train, y_test


    def nasStructClassification(self,scoreParam):
        try:	
            objClf = aion_matrix()
            X_train, X_test, y_train, y_test= self.xtrain, self.xtest, self.ytrain, self.ytest
            modelName=""nas_structdata_classifier""
            self.log.info(""Processing structured data block...\n"")
            s_in = ak.StructuredDataInput()
            #s_in = Flatten()(s_in)
            s_out = ak.StructuredDataBlock(categorical_encoding=True)(s_in)
            self.log.info(""Data pipe via autokeras Classification Dense layers ...\n"")
            s_out = ak.ClassificationHead()(s_out)
            self.log.info(""applying autokeras automodel to run different neural models...\n"")
            try:
                tuner = str(self.tuner).lower()
            except UnicodeEncodeError:
                tuner = (self.tuner.encode('utf8')).lower()
            nasclf = ak.AutoModel(
                inputs=s_in,
                outputs=s_out,
                overwrite=True,
                tuner=tuner,
                max_trials=self.n_models,
                seed=self.seed)
            # compile the model
            #nasclf.compile(optimizer='adam', loss='binary_crossentropy', metrics=['acc',self.f1_score,self.precision_m, self.recall_m])
            nasclf.fit(X_train, y_train, epochs=self.n_epochs)
            best_model = nasclf.export_model()
            mpredict=best_model.predict(X_test)
            mtpredict=best_model.predict(X_train)
            #loss, accuracy, f1_score, precision, recall = nasclf.evaluate(X_test, y_test, verbose=0)
            #from sklearn.metrics import classification_report
            #Classification report
            y_pred_bool = np.argmax(mpredict, axis=1)
            y_train_pred_bool = np.argmax(mtpredict, axis=1)
            score = objClf.get_score(scoreParam,y_test, y_pred_bool)
            #best_model = nasclf.export_model()
            best_model_summary=best_model.summary()
            filename = os.path.join(self.deployLocation,'log','summary.txt')
            with open(filename,'w') as f:
                best_model.summary(print_fn=lambda x: f.write(x + '\n'))
            f.close()                
            #self.log.info(""=========="")
            #self.log.info(best_model_summary)
            self.log.info(""NAS struct data classification, best model summary: \n""+str(best_model.summary(print_fn=self.log.info)))
            #self.log.info(""=========="")
            #Save and load model
            # # #try:
            # try:
            #     best_model.save(""model_class_autokeras"", save_format=""tf"")
            # except Exception:
            #     best_model.save(""model_class_autokeras.h5"")
            # loaded_model = load_model(""model_class_autokeras"", custom_objects=ak.CUSTOM_OBJECTS)
            # loadedmodel_predict=loaded_model.predict(X_test)       
            loss,accuracy_m=nasclf.evaluate(X_test, y_test)
            #mpredict_classes = mpredict.argmax(axis=-1)
            #accuracy = accuracy_score(y_test.astype(int), mpredict.astype(int))
            # precision tp / (tp + fp)
            #precision = precision_score(y_test.astype(int), mpredict.astype(int),average='macro')
            # recall: tp / (tp + fn)
            #recall = recall_score(y_test.astype(int), mpredict.astype(int),average='macro')
            #f1score=f1_score(y_test.astype(int), mpredict.astype(int) , average=""macro"")
            self.log.info(""Autokeras struct data classification metrics: \n"")
        except Exception as inst:
            self.log.info(""Error: NAS failed ""+str(inst))
            exc_type, exc_obj, exc_tb = sys.exc_info()
            fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
            self.log.info(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))
            print(inst)		
        return modelName,nasclf,score
    
    def nasStructRegressor(self,scoreParam):
        objClf = aion_matrix()
        modelName=""nas_struct_regressor""
        #self.paramCheck()
        X_train, X_test, y_train, y_test= self.xtrain, self.xtest, self.ytrain, self.ytest
        # Autokeras alg
        s_in = ak.StructuredDataInput()
        #tf.keras.layers.GlobalMaxPooling2D()(s_in)
        s_out = ak.StructuredDataBlock(categorical_encoding=True)(s_in)
        self.log.info(""Data pipe via autokeras Regression Dense layers ...\n"")
        s_out = ak.RegressionHead(loss='mse', metrics=['mae'])(s_out)
        self.log.info(""applying autokeras automodel to evaluate different neural models...\n"")
        try:
            tuner = str(self.tuner).lower()
        except UnicodeEncodeError:
            tuner = (self.tuner.encode('utf8')).lower()
        nas_reg = ak.AutoModel(
            inputs=s_in,
            outputs=s_out,
            overwrite=True,
            tuner=tuner,
            max_trials=self.n_models)
        nas_reg.fit(X_train, y_train, epochs=self.n_epochs)
        best_model = nas_reg.export_model()
        self.log.info(""NAS struct data regression best model summary: \n"")
        best_model_summary=best_model.summary(print_fn=self.log.info)
        self.log.info(best_model_summary)
        predictm=best_model.predict(X_test)
        mtpredict=best_model.predict(X_train)
        score = objClf.get_score(scoreParam,y_test, predictm)		
        self.log.info(""Autokeras struct data regression metrics: \n"")
    
        return modelName,nas_reg,score

    def nasMain(self,scoreParam):
        modelName = """"
        nasclf=None
        nas_reg=None
        #text_reg_model=None
        mse_value=0
        reg_rmse=0
        mape_reg=0
        huber_loss_reg=0
        accuracy=0
        precision=0
        recall=0
        #Dummy values to return main for classification problems
        dummy_score_1=int(0)
        #dummy_score_2=int(0)
        try:
            if ((self.nas_class.lower() == ""classification"")):
                modelName,nasclf,score=self.nasStructClassification(scoreParam)
                self.log.info('NAS Struct Classification score: '+str(score))              
                best_model_nas = nasclf.export_model()
                scoredetails = '{""Model"":""NAS"",""Score"":'+str(round(score,2))+'}'
                return best_model_nas,self.nas_params,round(score,2),'NAS',-1,-1,-1
            elif (self.nas_class.lower() == ""regression""):
                modelName,nas_reg,score =self.nasStructRegressor(scoreParam)
                self.log.info('NAS Struct Regression score: '+str(score))
                best_model_nas = nas_reg.export_model()				
                '''
                filename = os.path.join(self.deployLocation,'model','autoKerasModel')
                best_model_nas = nas_reg.export_model()
                try:
                    best_model_nas.save(filename, save_format=""tf"")
                    modelName = 'autoKerasModel'
                except Exception:
                    filename = os.path.join(self.deployLocation,'model','autoKerasModel.h5')
                    best_model_nas.save(filename)
                    modelName = 'autoKerasModel.h5'
                '''
                scoredetails = '{""Model"":""NAS"",""Score"":'+str(round(score,2))+'}'
                '''
                error_matrix = '""MSE"":""'+str(round(mse_value,2))+'"",""RMSE"":""'+str(round(reg_rmse,2))+'"",""MAPE"":""'+str(round(mape_reg,2))+'"",""MSLE"":""'+str(round(msle_reg,2))+'""'
                '''				
                return best_model_nas,self.nas_params,score,'NAS'
            else:
                pass
        except Exception as inst:
            print(inst)
            exc_type, exc_obj, exc_tb = sys.exc_info()
            fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
            print(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))
            output = {""status"":""FAIL"",""message"":str(inst).strip('""')}
            output = json.dumps(output)
        "
pushrecords.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import socket
import os
import rsa
from os.path import expanduser
from pathlib import Path
import requests
import platform
from appbe.dataPath import DATA_DIR
import socket
import getmac
import subprocess
import sys
import json
from datetime import datetime
import binascii
computername = socket.getfqdn()
global_key = '''
-----BEGIN RSA PUBLIC KEY-----
MIIBCgKCAQEAzJcxqRiUpp7CzViyqNlYaeyceDh5y6Ib4SoxoyNkN3+k0q+cr1lb
k0KdWTtHIVqH1wsLYofYjpB7X2RN0KYTv8VfwmfQNrpFEbiRz4gcAeuxGCPgGaue
N1ttujQMWHWCcY+UH5Voh8YUfkW8P+T3zxvr1d30D+kVBJC59y/31JvTzr3Bw/T+
NYv6xiienYiEYtm9d5ATioEwZOXaQBrtVvRmqcod5A1h4kn1ZauLX2Ph8H4TAuit
NLtw6xUCJNumphP7xdU+ca6P6a6eaLprgKhvky+nz16u9/AC2AazRQHKWf8orS6b
fw16JDCRs0zU4mTQLCjkUUt0edOaRhUtcQIDAQAB
-----END RSA PUBLIC KEY-----
'''

quarter_key = '''
-----BEGIN RSA PUBLIC KEY-----
MIIBCgKCAQEAmKzOJxVEV9ulA+cjfxguAduLMD47OWjLcEAEmEuK8vR4O5f6e2h1
08NniGC+nkwqmM00U7JTVBkqnt9S/JgE3pAH2xwfWda2OvXNWisWmOQdqB0+XRHh
NXsIG3yRk/sMlDpe7MJIyM5ADSu01PLn9FZTfmMq7lEp32tAf71cuUE/dwuWSvEQ
WK2hn1L4D97O43XCd7FHtMSHfgtjdcCFgX9IRgWLKC8Bm3q5qcqF4v3cHuYTj3V9
njxPtRqPg6HJFiJrm9AX5bUEHAvbTcw4wAmsNTRQHPvVB+Lc+yGh5x8crhKjNB01
gdB5I3a4mPO7dKvadR6Mr28trr0Ff5t2HQIDAQAB
-----END RSA PUBLIC KEY-----
'''

halfYear_key='''
-----BEGIN RSA PUBLIC KEY-----
MIIBCgKCAQEAgrGNwl8CNYQmVxi8/GEgPjfL5aEmyPkDyaJb9h4hZDSZCeeKd7Rv
wwhuRTdBBfOp0bQ7QS7NYMg38Xlc3x85I9RnxdQdDKn2nRuvG0hG3wMBFy/DCSXF
tXbDjJkLijAhqcBNu8m+a2Gtn14ShC7TbcfY4iVXho3WFUrn0xq6S5ducqWCsLJh
R+TNImCaMICqfoAzEDGC3ojO5Hi3vJmmyK5CVp6bt4wLRATQjcp1ujGW4Uv4kEgp
7TR077c226v1KOdKdyZPHJzT1MKwZrG2Gdluk3/Y1apbwyGzYqFdTCOAB+mE73Dn
wFXURgDJQmaU2oxxaA13WRcELpnirm+aIwIDAQAB
-----END RSA PUBLIC KEY-----
'''
oneYear_key='''
-----BEGIN RSA PUBLIC KEY-----
MIIBCgKCAQEA3GLqn+vkKn3fTNH3Bbb3Lq60pCoe+mn0KPz74Bp7p5OkZAUe14pP
Tcf/UqdPwiENhSCseWtfZmfKDK8qYRHJ5xW02+AhHPPdiacS45X504/lGG3q/4SG
ZgaFhMDvX+IH/ZH+qqbU3dRQhXJCCrAVAa7MonzM6yPiVeS2SdpMkNg1VDR1oTLB
Pn+qSV6CnkK1cYtWCRQ23GH2Ru7fc09r7m8hVcifKJze84orpHC5FX0WScQuR8h/
fs1IbGkxTOxP8vplUj/cd4JjUxgd+w+8R4kcoPhdGZF5UGeZA8xMERzQLvh+4Ui0
KIvz5/iyKB/ozaeSG0OMwDAk3WDEnb1WqQIDAQAB
-----END RSA PUBLIC KEY-----
'''
full_key='''
-----BEGIN RSA PUBLIC KEY-----
MIIBCgKCAQEAhqfNMuYYLdVrePhkO9rU/qT6FgolzI0YyzIJ2OeJE+++JioYm6nn
ohQU32iiE0DZlCCLrHJXOOIAz2Op80goX0lxtngyxVUPsiB5CI77sAC7x6K3anJ0
elpnQCC0+xV2ZL5eIMNQHLe+X6wJl/HGWqkUlxKpWr4/kBEB4EisW60OePfhntIN
4OUJ7iEq+sDdOM5WazJIXeNV1cig4i6057GE3k5ITcQUmw17DZu2+dqkIscckaG+
t5SF7Qnvt4IY8IeQp2htx3yD+CJCV0u2uKwoSFMGJn3OWdaixC3+eojyMXmfAWtQ
Ee9NLNNaTCMIvQ8BeItJLQs2Htw3bZNMvwIDAQAB
-----END RSA PUBLIC KEY-----
'''
def validate_key_Pair(privatepath,publickey):
	with open(privatepath, 'rb') as privatefile:
		keydata = privatefile.read()
	privatefile.close()
	try:
		privkey = rsa.PrivateKey.load_pkcs1(keydata,'PEM')
		data = 'Validate Global License'
		signature = rsa.sign(data.encode('utf-8'), privkey, 'SHA-1')
		pubkey = rsa.PublicKey.load_pkcs1(publickey)
	except:
		return False
	try:
		rsa.verify(data.encode('utf-8'), signature, pubkey)
		return True
	except Exception as e:
		return False
		
def updateDRecord(licensepath):
	domain_license_path = os.path.join(DATA_DIR,'License','license_domain.lic')
	if(os.path.isfile(licensepath)):
		with open(licensepath, 'rb') as f:
			licensekey = f.read()
		f.close()
		with open(domain_license_path, 'wb') as f:
			f.write(licensekey)
		f.close()
		if(validate_key_Pair(domain_license_path,global_key)):
			return True,'Valid Domain License'
		else:
			return False,'Invalid Domain License'
	else:
		return False,'File Not Exists'

def generateLicenseKey(userKey):
    record = {'UserKey':userKey}
    record = json.dumps(record)
    status = 'Error'
    url = 'https://qw7e33htlk.execute-api.ap-south-1.amazonaws.com/default/aion_license'
    try:
        response = requests.post(url, data=record,headers={""x-api-key"":""3cQKRkKA4S57pYrkFp1Dd9jRXt4xnFoB9iqhAQRM"",""Content-Type"":""application/json"",})
        if response.status_code == 200:
            outputStr=response.content
            outputStr = outputStr.decode('utf-8','ignore')
            outputStr = outputStr.strip()
            license_dict = json.loads(str(outputStr))
            if license_dict['status'] == 'success':
                status = 'Success'
                licenseKey = license_dict['msg']
            else:
                status = 'Error'
                licenseKey = ''
        else:
            status = 'Error'
            licenseKey = ''
    except Exception as inst:
        print(inst)
        status = 'Error'
        licenseKey = ''
    msg = {'status':status,'key':userKey,'licenseKey':licenseKey,'link':''}    
    return msg
def updateRecord(licensepath):
	currentDirectory = os.path.dirname(os.path.abspath(__file__))
	license_path = os.path.join(currentDirectory,'..','lic','license.lic')    
	if(os.path.isfile(licensepath)):
		with open(licensepath, 'rb') as f:
			licensekey = f.read()
		f.close()
		with open(license_path, 'wb') as f:
			f.write(licensekey)
		f.close()
		status,msg = check_domain_license()
		if status:
			status,msg = getdaysfromstartdate()
			if status:
				status,msg = check_days_license(int(msg))
		return status,msg
	else:
		return False,'File Not Exists'
		
		
def check_domain_license():
	if 'CORP.HCL.IN' in computername:
		return True,'HCL Domain'
	else:
		return True,'HCL Domain'
			
def diff_month(d1, d2):
	return (d1.year - d2.year) * 12 + d1.month - d2.month


def getdaysfromstartdate():
	currentDirectory = os.path.dirname(os.path.abspath(__file__))
	startdatePath = os.path.join(currentDirectory,'..','lic','startdate.txt')    
	
	if(os.path.isfile(startdatePath)):
		with open(startdatePath, ""rb"") as fl:
			encrypted_message = fl.read()
		fl.close()

		privkey = '''-----BEGIN RSA PRIVATE KEY-----
MIIEqwIBAAKCAQEAm75ZwaepuxGJjU1Slk1+IUO2E49Hy8i9dym5FUaBRyTRH6R+
GTF1kcpd+1QinIZDMIdsmAc95Y8pTufxY30QxCkOhVASitSQWHS/IiWQHmsTJwdr
38lqZnQQloOt/iPlhcavbxu/yKFzwBmp+nM+ErDTnCBh6EGCGrw1xWF30T2IBpmp
WwMEoqZsFV69RzwQAw39KG1KCxi5uscrB62YPgUdlT2b4Yaa90egQhGLLVdnKvhP
ORiGT9omCH90Dkm1oMMQ0Y2JBLezgXa/bunSqtTBxEwzlwUAX2JJcanFYrzKy2OL
xzwNRlWUXilZ4R/1RHAgUdNyKbYxZqc24MApoQIDAQABAoIBAQCHZ/i7gNz10qqH
2qkqGlfF7gvYd6MRTwdDGlhbYgA17ZGP9EDaAIFabtpFEAJDmgvCnotQpkMvWcet
XcUmHW89TQDd8R8d6u9QqLggpQ3nFGsDbNViLMjAKLrfUb8tjOIZ7ANNE5ArjAuK
AgYhxJ48O9bPD+xvtLwip95PHxMMz1CF0vxrpCinvPdeC3HzcnLNZWN3ustbph/4
Tx8mrKDpAVIHVYVbY4CMtm7NbIBYdyR9Lokc4zBg/OTuLo+0QRVJ3GHAN6cGxTwY
vLwN9iBBHyn9WBp5NIOSoCdob7+ce8y+X8yHmVhwRCfcrYphzfFNfP7SPNzV1dLs
dFybn/h9AoGJALCOC7ss+PBXy5WrWVNRPzFO7KrJDl5q7s/gMk0PkB4i4XOKHDTl
MhHZXhxp84HwpphwNxPHvpFe3pVZwwoe8LH1neoodlLOF0Kuk3jENh6cMhKFvcZ+
gxaBxGSCOXF/U307mh0i4AafClhVjxtLgBW5iJSVA9Brc7ZqVwxlUP7aYGzReIE1
uEMCeQDh0vq8NteUlkM/wpNzrHHqgtEzePbTYa+QcTm4xhARHR/cO+E0/mZIfltw
3NVWCIalMia+aKnvRHqHy/cQfEo2Uv/h8oARWnbrvicMRTwYL0w2GrP0f+aG0RqQ
msLMzS3kp6szhM7C99reFxdlxJoWBKkp94psOksCgYkApB01zGRudkK17EcdvjPc
sMHzfoFryNpPaI23VChuR4UW2mZ797NAypSqRXE7OALxaOuOVuWqP8jW0C9i/Cps
hI+SnZHFAw2tU3+hd3Wz9NouNUd6c2MwCSDQ5LikGttHSTa49/JuGdmGLTxCzRVu
V0NiMPMfW4I2Sk8o4U3gbzWgwiYohLrhrwJ5ANun/7IB2lIykvk7B3g1nZzRYDIk
EFpuI3ppWA8NwOUUoj/zksycQ9tx5Pn0JCMKKgYXsS322ozc3B6o3AoSC5GpzDH4
UnAOwavvC0ZZNeoEX6ok8TP7EL3EOYW8s4zIa0KFgPac0Q0+T4tFhMG9qW+PWwhy
Oxeo3wKBiCQ8LEgmHnXZv3UZvwcikj6oCrPy8fnhp5RZl2DPPlaqf3vokE6W5oEo
LIKcWKvth3EU7HRKwYgaznj/Mw55aETx31R0FiXMG266B4V7QWPF/KuaR0GBsYfu
+edGXQCnLgooKlMtQLdL5mcLXHc9x/0Z0iYEejJtbjcGR87WylSNaCH3hH703iQ=
-----END RSA PRIVATE KEY-----
		'''
		privkey = rsa.PrivateKey.load_pkcs1(privkey,'PEM')
		decrypted_message = rsa.decrypt(encrypted_message, privkey)
		decrypted_message = decrypted_message.decode()
		import datetime
		start_time = datetime.datetime.strptime(decrypted_message, '%Y-%m-%d')
		
		current_date = datetime.datetime.today().strftime('%Y-%m-%d')
		current_date = datetime.datetime.strptime(current_date, '%Y-%m-%d')
		
		Months = diff_month(current_date,start_time)
		return True,Months
	else:
		return False,'Start Date Not Exists'
def check_days_license(months):
	currentDirectory = os.path.dirname(os.path.abspath(__file__))
	license_path = os.path.join(currentDirectory,'..','lic','license.lic')
	if(os.path.isfile(license_path)):
		if(validate_key_Pair(license_path,full_key)):	
			return True,'Valid License'
		elif(validate_key_Pair(license_path,oneYear_key)):
			if months <= 12:
				return True,'Valid License'
			else:
				return False,'License for AI.ON has expired. Please contact ERS Research for renewal.'
		elif(validate_key_Pair(license_path,halfYear_key)):
			if months <= 6:
				return True,'Valid License'
			else:
				return False,'License for AI.ON has expired. Please contact ERS Research for renewal.'
		elif(validate_key_Pair(license_path,quarter_key)):	
			if months <= 3:
				return True,'Valid License'
			else:
				return False,'License for AI.ON has expired. Please contact ERS Research for renewal.'
		else:
			return False,'Invalid License'
	else:
		return False,'License Not exists.Please contact ERS Research for renewal.'

def checklicense():
    import binascii
    license_path = os.path.join(DATA_DIR,'License','license.lic')
    if(os.path.isfile(license_path)):
        try:
            with open(license_path, 'r') as privatefile:
                license_key = privatefile.read()
            privatefile.close()
            encrypted_message = binascii.unhexlify(license_key.encode())
            privkey = '''-----BEGIN RSA PRIVATE KEY-----
    MIIEqQIBAAKCAQEAhqfNMuYYLdVrePhkO9rU/qT6FgolzI0YyzIJ2OeJE+++JioY
    m6nnohQU32iiE0DZlCCLrHJXOOIAz2Op80goX0lxtngyxVUPsiB5CI77sAC7x6K3
    anJ0elpnQCC0+xV2ZL5eIMNQHLe+X6wJl/HGWqkUlxKpWr4/kBEB4EisW60OePfh
    ntIN4OUJ7iEq+sDdOM5WazJIXeNV1cig4i6057GE3k5ITcQUmw17DZu2+dqkIscc
    kaG+t5SF7Qnvt4IY8IeQp2htx3yD+CJCV0u2uKwoSFMGJn3OWdaixC3+eojyMXmf
    AWtQEe9NLNNaTCMIvQ8BeItJLQs2Htw3bZNMvwIDAQABAoIBAGGmuRnrYaeDeWAO
    CmqZxRMyQybOjyDrRgq9rAR/zJoHp8b3ikcBDTkuBQELWVZLFj7k50XU2cono9zC
    cxI5xwVrNqrUOkV+7VYJVJzPTFkT/xnEt+zbOfstKmmIDpdzthtTLuHlomhhHA83
    rPFi5a0Dpynz35suEnm6ONxx4ICONa3xkQ51ALm8EEsdJ+qRQhi2HLTF/OVZMxSa
    A2DlFd4ChOEbYaN63xVCDxPXe9BfeHd/Rnim9x4xL9i2RL+mhARUy/ZP6LMHIPk7
    NxTrGr4TuE/ETg8FZ3cywSnwsMlcplXo8Ar+5ths2XKxbmH1TI/vuQV1r7r0IeqV
    F4W/xOkCgYkAiDQy7/WyJWuT+rQ+gOjSUumXgWE3HO+vJAsy05cTZFSs+nUE4ctn
    FnvbBIRuClSr3zhcTtjaEaVnZ2OmGfOoAq0cvaXSlxqEs2456WQBf9oPHnvJEV07
    AIqzo2EuDvGUh/bkFN3+djRRL9usNNplYA8jU3OQHGdeaS15ZikT+ZkQLXoHE0Oh
    vQJ5AP0W9Qouvc9jXRhjNNOWmgt+JiHw/oQts/LUWJ2T4UJ7wKAqGwsmgf0NbF2p
    aZ6AbMc7dHzCb52iLJRxlmlkJYzg449t0MgQVxTKQ5viIAdjkRBCIY2++GcYXb6k
    6tUnF0Vm2kpffYUb5Lx5JoUE6IhMP0mEv3jKKwKBiCmvoC9lCUL+q+m9JKwbldOe
    fqowcMfAa+AiNUohIORCLjbxfa8Fq+VrvtqhFXS/+WJ2Q3o2UHe6Ie24x+uFcVRw
    Wy2IBO4ORbMM91iBLRxORvZTeHSCDj7aNKS6Z3hXY9hBLglc8DaJSJfXKdt7RC+k
    MnGmGuM2l+Sk8FTeGaj4ucTRZjz1JBkCeQDhNSV1GyShv4xeoCCoy1FmOqmZ+EWy
    vqxqv1PfXHDM5SwCGZWY9XokAGbWbWLjvOmO27QLNEV34pCCwxSR0aCsXI2B2rk2
    3Xtvr5A7zRqtGIdEDWSoKjAGJSN9+mhQpglKI3zJQ3GBGdIPeEqzgSud5SNHu01a
    IaMCgYgyoxtqdWi90iE75/x+uIVGJRdHtWoL2dr8Ixu1bOMjKCR8gjneSRTqI1tA
    lbRH5K/jg6iccB/pQmBcIPIubF10Nv/ZQV760WK/h6ue2hOCaBLWT8EQEEfBfnp+
    9rfBfNQIQIkBFTfGIHXUUPb9sJgDP1boUxcqxr9bpKUrs1EMkUd+PrvpHIj2
    -----END RSA PRIVATE KEY-----
    '''
            privkey = rsa.PrivateKey.load_pkcs1(privkey,'PEM')
            decrypted_message = rsa.decrypt(encrypted_message, privkey)
            msg = decrypted_message.decode().split('####')
            product = msg[0]     
            computernameLicense = msg[1]
            computername = socket.getfqdn()
            licenseValid = False  
            if product.lower() == 'aion':
                if computernameLicense == computername:
                    uuidlicense = msg[3]
                    uuid = guid()
                    if uuidlicense == uuid:
                        current_date = datetime.now()
                        license_expiry_date = msg[5]
                        license_expiry_date = datetime.strptime(license_expiry_date,'%Y-%m-%d  %H:%M:%S')
                        if current_date > license_expiry_date:
                            return False,'License Expire'
                        else:    
                            return True,''
            return False,'License Error'
        except Exception as e:
            print(e)
            return False,'License Error'
    else:
        return False,'Generate License'
def generate_record_key(product,version):
    computername = socket.getfqdn()
    macaddress = getmac.get_mac_address()
    license_date = datetime.today().strftime('%Y-%m-%d %H:%M:%S')
    try:
        user = os.getlogin()
    except:
        user = 'NA'
    uuid = guid()
    msg = product+'###'+version+'###'+computername+'###'+macaddress+'###'+user+'###'+sys.platform+'###'+uuid+'###'+license_date
    pkeydata='''-----BEGIN RSA PUBLIC KEY-----
MIIBCgKCAQEAm75ZwaepuxGJjU1Slk1+IUO2E49Hy8i9dym5FUaBRyTRH6R+GTF1
kcpd+1QinIZDMIdsmAc95Y8pTufxY30QxCkOhVASitSQWHS/IiWQHmsTJwdr38lq
ZnQQloOt/iPlhcavbxu/yKFzwBmp+nM+ErDTnCBh6EGCGrw1xWF30T2IBpmpWwME
oqZsFV69RzwQAw39KG1KCxi5uscrB62YPgUdlT2b4Yaa90egQhGLLVdnKvhPORiG
T9omCH90Dkm1oMMQ0Y2JBLezgXa/bunSqtTBxEwzlwUAX2JJcanFYrzKy2OLxzwN
RlWUXilZ4R/1RHAgUdNyKbYxZqc24MApoQIDAQAB
-----END RSA PUBLIC KEY-----
'''
    pubkey = rsa.PublicKey.load_pkcs1(pkeydata)
    encrypted_message = rsa.encrypt(msg.encode(), pubkey)
    encrypted_message = binascii.hexlify(encrypted_message).decode()
    return(encrypted_message)

def run(cmd):
  try:
    return subprocess.run(cmd, shell=True, capture_output=True, check=True, encoding=""utf-8"").stdout.strip()
  except Exception as e:
    print(e)
    return None

def guid():
  if sys.platform == 'darwin':
    return run(
      ""ioreg -d2 -c IOPlatformExpertDevice | awk -F\\\"" '/IOPlatformUUID/{print $(NF-1)}'"",
    )

  if sys.platform == 'win32' or sys.platform == 'cygwin' or sys.platform == 'msys':
    return run('wmic csproduct get uuid').split('\n')[2].strip()

  if sys.platform.startswith('linux'):
    return run('cat /var/lib/dbus/machine-id') or \
           run('cat /etc/machine-id')

  if sys.platform.startswith('openbsd') or sys.platform.startswith('freebsd'):
    return run('cat /etc/hostid') or \
           run('kenv -q smbios.system.uuid')

           
def updateLicense(licensekey):
    license_folder = os.path.join(DATA_DIR,'License')
    license_folder = Path(license_folder)
    license_folder.mkdir(parents=True, exist_ok=True)
    license_file = license_folder/'license.lic'
    with open(license_file, ""w"") as fl:
        fl.write(licensekey)
    fl.close()

    
def enterRecord(version):
    validLicense,msg = checklicense()
    if not validLicense:
        key = generate_record_key('AION',version)
        msg = {'status':msg,'key':key,'licenseKey':'','link':''}
    return validLicense,msg
			"
__init__.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''"
edge_convert.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import os
import platform
import json
import shutil
import logging
import sys
from AionConfigManager import AionConfigManager
from sklearn.externals import joblib
class edgeformats:
    def __init__(self,deploy_path):
        self.deploy_path = deploy_path
        self.edge_deploy_path = os.path.join(deploy_path,""edge"")
        os.mkdir(self.edge_deploy_path) 
    
    
    def converttoedgedeployment(self,saved_model,edge_format,xtrain,model_type,iterName,iterVersion,features,profiled_data_file):
        if edge_format == 'onnx':
            from skl2onnx import convert_sklearn
            from skl2onnx.common.data_types import FloatTensorType
            xtrain = xtrain[features]
            initial_type = [('float_input', FloatTensorType([None, xtrain.shape[1]]))]
            filename = os.path.join(self.deploy_path,saved_model)        		
            loaded_model = joblib.load(filename)
            onx = convert_sklearn(loaded_model, initial_types=initial_type)
            onnx_filename = os.path.join(self.edge_deploy_path, model_type + '_' + iterName + '_' + iterVersion + '.onnx')
            with open(onnx_filename, ""wb"") as f:
                f.write(onx.SerializeToString())
            self.createedgeruntimeFile(onnx_filename,profiled_data_file,features)
            
    def createedgeruntimeFile(self,onnx_filename,datafilepath,features):
        runtimefilecontent = ''
        runtimefilecontent += 'import pandas'
        runtimefilecontent += '\n'
        runtimefilecontent += 'import numpy'
        runtimefilecontent += '\n'
        runtimefilecontent += 'import sys'
        runtimefilecontent += '\n'
        runtimefilecontent += 'import onnxruntime as rt'
        runtimefilecontent += '\n'
        runtimefilecontent += 'def onnx_runtime_validation():'
        runtimefilecontent += '\n'
        runtimefilecontent += '    modelfile = r""'+str(onnx_filename)+'""'
        runtimefilecontent += '\n'
        runtimefilecontent += '    datafile = r""'+str(datafilepath)+'""'
        runtimefilecontent += '\n'
        runtimefilecontent += '    dataframe = pandas.read_csv(datafile)'
        runtimefilecontent += '\n'
        runtimefilecontent += '    dataframe = dataframe['+str(features)+']'
        runtimefilecontent += '\n'
        runtimefilecontent += '    df = dataframe.head(8)'
        runtimefilecontent += '\n'
        runtimefilecontent += '    dataset = df.values'
        runtimefilecontent += '\n'
        runtimefilecontent += '    sess = rt.InferenceSession(modelfile)'
        runtimefilecontent += '\n'
        runtimefilecontent += '    input_name = sess.get_inputs()[0].name'
        runtimefilecontent += '\n'
        runtimefilecontent += '    label_name = sess.get_outputs()[0].name'
        runtimefilecontent += '\n'
        runtimefilecontent += '    inputsize=sess.get_inputs()[0].shape'
        runtimefilecontent += '\n'
        runtimefilecontent += '    XYZ = dataset[:,0:inputsize[1]].astype(float)'
        runtimefilecontent += '\n'
        runtimefilecontent += '    pred_onx = sess.run([label_name], {input_name: XYZ.astype(numpy.float32)[0:8]})[0]'
        runtimefilecontent += '\n'
        runtimefilecontent += '    df[\'predictions\'] = pred_onx'
        runtimefilecontent += '\n'
        runtimefilecontent += '    result = df.to_json(orient=""records"")'
        runtimefilecontent += '\n'
        runtimefilecontent += '    return(result)'
        runtimefilecontent += '\n'
        runtimefilecontent += 'if __name__ == ""__main__"":'
        runtimefilecontent += '\n'
        runtimefilecontent += '    output = onnx_runtime_validation()'
        runtimefilecontent += '\n'
        runtimefilecontent += '    print(""predictions:"",output)'
        filename = os.path.join(self.edge_deploy_path,'onnxvalidation.py')
        f = open(filename, ""w"")
        f.write(str(runtimefilecontent))
        f.close()
        
        "
common.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import json
from pathlib import Path
from AION.prediction_package.imports import importModule
from AION.prediction_package import utility
from AION.prediction_package.utility import TAB_CHAR
from importlib.metadata import version

""""""
    This file provide the functionality which is common for most of the
    problem types deployment. 
""""""

def main_code():
    return """"""
class predict():

    def __init__(self):
        self.profiler = inputprofiler()
        self.selector = selector()
        self.trainer = trainer()
        self.formatter = output_format()

    def run(self, data):
        try:
            df = self._parse_data(data)
            raw_df = df.copy()
            df = self.profiler.run(df)
            df = self.selector.run(df)
            df = self.trainer.run(df)
            output = self.formatter.run(raw_df, df)
            print(""predictions:"",output)
            return (output)
        except Exception as e:
            output = {""status"":""FAIL"",""message"":str(e).strip('""')}
            print(""predictions:"",json.dumps(output))
            return (json.dumps(output))
                
    def _parse_data(self, data):
        file_path = Path(data)
        if file_path.suffix == "".tsv"":
            df = pd.read_csv(data,encoding='utf-8',sep='\\t',skipinitialspace = True,na_values=['-','?'])
        elif file_path.suffix in ["".csv"", "".dat""]:
            df=pd.read_csv(data,encoding='utf-8',skipinitialspace = True,na_values=['-','?'])
        elif file_path.suffix in ["".gz""] and file_path.stem.endswith('.csv'):
            df=pd.read_csv(data,encoding='utf-8',skipinitialspace = True,na_values=['-','?'])
        elif file_path.suffix == "".json"":
            with open(data,'r',encoding='utf-8') as f:
                jsonData = json.load(f)
                df = pd.json_normalize(jsonData)
        else:
            jsonData = json.loads(data)
            df = pd.json_normalize(jsonData)
        return df
    
import sys
if __name__ == ""__main__"":
	output = predict().run(sys.argv[1])
    """"""

def profiler_code(params, indent=0):
    """"""
        This will create the profiler file based on the config file.
        separated file is created as profiler is required for input drift also.
    """"""
    imported_modules = [
            {'module': 'json', 'mod_from': None, 'mod_as': None},
            {'module': 'scipy', 'mod_from': None, 'mod_as': None},
            {'module': 'joblib', 'mod_from': None, 'mod_as': None},
            {'module': 'numpy', 'mod_from': None, 'mod_as': 'np'},
            {'module': 'pandas', 'mod_from': None, 'mod_as': 'pd'},
            {'module': 'Path', 'mod_from': 'pathlib', 'mod_as': None}
        ]
    importer = importModule()
    utility.import_modules(importer, imported_modules)
    code = """"""    


class inputprofiler():
""""""
    init_code = """"""
    def __init__(self):
""""""
    if params.get('text_features'):
        imported_modules.append({'module':'importlib.util'})
    init_code += """"""
        # preprocessing
        preprocess_path = Path(__file__).parent.parent/'model'/'preprocess_pipe.pkl'
        if not preprocess_path.exists():
            raise ValueError(f'Preprocess model file not found: {preprocess_path}')
        self.profiler = joblib.load(preprocess_path)

""""""
    run_code = """"""
    def run(self,df):
        df = df.replace(r'^\s*$', np.NaN, regex=True)
""""""
    if params.get('input_features_type'):
        imported_modules.append({'module':'dtype','mod_from':'numpy'})
        run_code += f""""""
        df = df.astype({params.get('input_features_type')})
""""""
    if params.get('word2num_features'):
        imported_modules.append({'module':'w2n','mod_from':'word2number'})
        run_code += f""""""
        def s2n(value):
            try:
                x=eval(value)
                return x
            except:
                try:
                    return w2n.word_to_num(value)
                except:
                    return np.nan 
        df[{params['word2num_features']}] = df[{params['word2num_features']}].apply(lambda x: s2n(x))""""""
    if params.get('unpreprocessed_columns'):
        run_code += f""""""
        unpreprocessed_data = df['{params['unpreprocessed_columns'][0]}']
        df.drop(['{params['unpreprocessed_columns'][0]}'], axis=1,inplace=True)
        """"""
    if params.get('force_numeric_conv'):
        run_code += f""""""
        df[{params['force_numeric_conv']}] = df[{params['force_numeric_conv']}].apply(pd.to_numeric,errors='coerce')""""""
    if params.get('conversion_method','').lower() == 'glove':
        code_text, modules = __profiler_glove_code(params)
        imported_modules.extend( modules)
        init_code += code_text
    elif params.get('conversion_method','').lower() == 'fasttext':
        init_code += __profiler_fasttext_code(params)
    run_code += __profiler_main_code(params)
    if params.get('unpreprocessed_columns'):
        run_code += f""""""
        df['{params.get('unpreprocessed_columns')[0]}'] = unpreprocessed_data
        """"""
    utility.import_modules(importer, imported_modules)
    import_code = importer.getCode()
    return import_code + code + init_code + run_code

def __profiler_glove_code(params, indent=2):
    modules = []
    modules.append({'module':'load_pretrained','mod_from':'text.Embedding'})
    modules.append({'module':'TextProcessing','mod_from':'text'})
    code = """"""
model_path = TextProcessing.checkAndDownloadPretrainedModel('glove')
embed_size, pretrained_model = load_pretrained(model_path)
self.profiler.set_params(text_process__vectorizer__external_model = pretrained_model)
""""""
    return code.replace('\n', '\n'+(indent * TAB_CHAR)), modules

def __profiler_fasttext_code(params, indent=2):
    code = """"""
def get_pretrained_model_path():
    try:
        from AION.appbe.dataPath import DATA_DIR
        modelsPath = Path(DATA_DIR)/'PreTrainedModels'/'TextProcessing'
    except:
        modelsPath = Path('aion')/'PreTrainedModels'/'TextProcessing'
    
    if not modelsPath.exists():
        modelsPath.mkdir(parents=True, exist_ok=True)
    return modelsPath
if not importlib.util.find_spec('fasttext'):
    raise ValueError('fastText not installed')
else:
    import os
    import fasttext
    import fasttext.util
    cwd = os.getcwd()
    os.chdir(get_pretrained_model_path())
    fasttext.util.download_model('en', if_exists='ignore')
    pretrained_model = fasttext.load_model('cc.en.300.bin')
    os.chdir(cwd)
self.profiler.set_params(text_process__vectorizer__external_model = pretrained_model)
self.profiler.set_params(text_process__vectorizer__external_model_type = 'binary')
""""""
    return code.replace('\n', '\n'+(indent * TAB_CHAR))

def __profiler_main_code(params, indent=2):
    code = f""""""
df = self.profiler.transform(df)
columns = {params['output_features']}
if isinstance(df, scipy.sparse.spmatrix):
    df = pd.DataFrame(df.toarray(), columns=columns)
else:
    df = pd.DataFrame(df, columns=columns)
return df
""""""
    return code.replace('\n', '\n'+(indent * TAB_CHAR))

def feature_selector_code( params, indent=0):
    modules = [
            {'module': 'pandas', 'mod_from': None, 'mod_as': 'pd'}
        ]
    code = """"""
class selector():
    # this class 
    def __init__(self):
        pass
        
    def run(self, df):""""""
    code +=f""""""
        return df[{params['output_features']}]
""""""
    return code, modules

def feature_reducer_code( params, indent=0):
    modules = [
            {'module': 'joblib', 'mod_from': None, 'mod_as': None},
            {'module': 'pandas', 'mod_from': None, 'mod_as': 'pd'},
            {'module': 'Path', 'mod_from': 'pathlib', 'mod_as': None}
        ]
    code = f""""""
class selector():
    def __init__(self):
        reducer_file = (Path(__file__).parent/""model"")/""{params['reducer_file']}""
        if not reducer_file.exists():
            raise ValueError(f'Failed to load Feature Engineering model file: {{reducer_file}}') 
        self.model = joblib.load(reducer_file)

    def run(self, df):
        reducer_input = {params['input_features']}
        reducer_output = {params['output_features']}
        df = self.model.transform(df[reducer_input])
        return pd.DataFrame(df,columns=reducer_output)
    """"""
    if indent:
        code = code.replace('\n', '\n'+(indent * TAB_CHAR))
    return code, modules

def create_feature_list(config=None, target_feature=None, deploy_path=None):
    featurelist = []
    if 'profiler' in config:
        if 'input_features_type' in config['profiler']:
            input_features = config['profiler']['input_features_type']
            for x in input_features:
                featurelt={}
                featurelt['feature'] = x
                if x == target_feature:            
                    featurelt['Type'] = 'Target'
                else:
                    if input_features[x] in ['int','int64','float','float64']: 
                        featurelt['Type'] = 'Numeric'
                    elif input_features[x] == 'object':
                        featurelt['Type'] = 'Text'
                    elif input_features[x] == 'category':  
                        featurelt['Type'] = 'Category'   
                    else:
                        featurelt['Type'] = 'Unknown'   
                featurelist.append(featurelt)
        
    featurefile = f""""""
import json
def getfeatures():
    try:
        features = {featurelist}
        outputjson = {{""status"":""SUCCESS"",""features"":features}}
        output = json.dumps(outputjson)
        print(""Features:"",output)
        return(output)
    except Exception as e:
        output = {{""status"":""FAIL"",""message"":str(e).strip(\'""\')}}
        print(""Features:"",json.dumps(output))
        return (json.dumps(output))
        
if __name__ == ""__main__"":
    output = getfeatures()
""""""
    with open( deploy_path/'featureslist.py', 'wb') as f:
        f.write( str(featurefile).encode('utf8'))

def requirement_file(deploy_path,model,textFeatures,learner_type='ML'):
    modules = ['pandas','numpy','alibi','matplotlib','joblib','shap','ipython','category_encoders','scikit-learn','word2number','flask_restful','evidently','Flask-Cors']
    requires = ''
    for mod in modules:
        requires += f""{mod}=={version(mod)}\n""
    if len(textFeatures) > 0:
        tmodules = ['spacy','nltk','textblob','demoji','beautifulsoup4','text-unidecode','pyspellchecker','contractions','protobuf']
        for mod in tmodules:
            requires += f""{mod}=={version(mod)}\n""   
    if model == 'Extreme Gradient Boosting (XGBoost)':
        mmodules = ['xgboost']
        for mod in mmodules:
            requires += f""{mod}=={version(mod)}\n""   
    if model == 'Light Gradient Boosting (LightGBM)':
        mmodules = ['lightgbm']
        for mod in mmodules:
            requires += f""{mod}=={version(mod)}\n""               
    if model == 'Categorical Boosting (CatBoost)':
        mmodules = ['catboost']
        for mod in mmodules:
            requires += f""{mod}=={version(mod)}\n"" 
    if model.lower() == 'arima':
        mmodules = ['pmdarima']
        for mod in mmodules:
            requires += f""{mod}=={version(mod)}\n""
    if model.lower() == 'fbprophet':
        mmodules = ['prophet']
        for mod in mmodules:
            requires += f""{mod}=={version(mod)}\n""              
    if model.lower() == 'lstm' or model.lower() == 'mlp' or learner_type =='DL':
        mmodules = ['tensorflow']
        for mod in mmodules:
            requires += f""{mod}=={version(mod)}\n""  
    if model.lower() in ['cox', 'kaplanmeierfitter']: #bug 12833
        mmodules = ['lifelines']
        for mod in mmodules:
            requires += f""{mod}=={version(mod)}\n""
    if model.lower() == 'sentencetransformer': #bug 12833
        mmodules = ['sentence_transformers']
        for mod in mmodules:
            requires += f""{mod}=={version(mod)}\n""                      
    with open( deploy_path/'requirements.txt', 'wb') as f:
        f.write(str(requires).encode('utf8'))

def create_readme_file(deploy_path,modelfile,features):
    data = json.dumps([{x:x+'_value'} for x in features])
    backslash_data = data.replace('""', '\\""')
    content = f""""""
========== Files Structures ==========
{modelfile} ------ Trained Model
aion_prediction.py --> Python package entry point
script/inputprofiler.py --> Profiling like FillNA and Category to Numeric

========== How to call the model ==========
============== From Windows Terminal ==========
python aion_prediction.py ""{backslash_data}""
============== From Linux Terminal ==========
python aion_prediction.py ""{data}""

============== Output ==========
{{""status"":""SUCCESS"",""data"":[{{""Data1"":""Value"",""prediction"":""Value""}}]}}  ## for single Row/Record
{{""status"":""SUCCESS"",""data"":[{{""Data1"":""Value"",""prediction"":""Value""}},{{""Data1"":""Value"",""prediction"":""Value""}}]}}    ## For Multiple Row/Record
{{""status"":""ERROR"",""message"":""description""}}   ## In Case Exception or Error
        """"""
    filename = deploy_path/'readme.txt'
    with open(filename, 'w') as f:
        f.write(content)

def create_util_folder(deploy_path):
    import tarfile
    ext_path = Path(__file__).parent.parent/'utilities'
    for x in ext_path.iterdir():
        if x.suffix == '.tar':
            if x.name not in ['scikit_surprise-1.1.1.dist-info.tar','surprise.tar']:
                my_tar = tarfile.open(x)
                my_tar.extractall(deploy_path)
                my_tar.close()
"
model_deploy.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import os,sys
import platform
import json
import shutil
import logging
from pathlib import Path
from prediction_package import production 
from prediction_package import prediction_transformation as cs

class DeploymentManager:
    def __init__(self):
        self.requirementfile=''
        self.modelfile=''
        self.s2i_environmentfile=''
        self.selectorfile=''
        self.profilerfile=''
        self.readmepackagename=''
        self.pythonpackage=''
        self.log = logging.getLogger('eion')

    def include_import_file(self,learner_type,method,scoreParam,model_type,model):
        if((learner_type == 'DL') or (learner_type == 'TextDL')):
            self.modelfile += 'from tensorflow.keras.models import load_model'
            self.modelfile += '\n'
            self.modelfile += 'from tensorflow.keras import backend as K'
            self.modelfile += '\n'
            self.modelfile += 'import tensorflow as tf'
            self.modelfile += '\n'
        if (learner_type == 'ML' and model_type.lower()=='anomaly_detection' and model.lower() == 'autoencoder'):
            self.modelfile += 'import joblib'
            self.modelfile += '\n'
            self.modelfile += 'import os'
            self.modelfile += '\n'
            self.modelfile += 'import pandas as pd'
            self.modelfile += '\n'
            self.modelfile += 'import numpy as np'
            self.modelfile += '\n'
            self.modelfile += 'from pathlib import Path'
            self.modelfile += '\n'
            self.modelfile += 'import tensorflow as tf'
            self.modelfile += '\n'
            self.modelfile += 'from keras.models import load_model'
            self.modelfile += '\n'
            self.modelfile += 'import warnings'
            self.modelfile += '\n'
            self.modelfile += 'from sklearn.preprocessing import StandardScaler'
            self.modelfile += '\n'
            self.modelfile += 'warnings.filterwarnings(""ignore"")'
            self.modelfile += '\n'
        if(learner_type == 'ImageClassification'):
            self.modelfile += 'import os'
            self.modelfile += '\n'
            self.modelfile += 'from tensorflow.keras.models import Sequential'
            self.modelfile += '\n'
            self.modelfile += 'from tensorflow.keras.layers import Dense, Dropout, Flatten'
            self.modelfile += '\n'
            self.modelfile += 'from tensorflow.keras.preprocessing import image'
            self.modelfile += '\n'
            self.modelfile += 'import numpy as np'
            self.modelfile += '\n'
            self.modelfile += 'import tensorflow as tf'
            self.modelfile += '\n'
            self.modelfile += 'from tensorflow.keras.layers import Input'
            self.modelfile += '\n'
            self.modelfile += 'from tensorflow.keras.models import Model'
            self.modelfile += '\n'
            self.modelfile += 'from tensorflow.keras.optimizers import Adam'
            self.modelfile += '\n'
            self.modelfile += 'import cv2'
            self.modelfile += '\n'
        if(learner_type == 'objectDetection'):
            self.modelfile += 'import os\n'
            self.modelfile += 'from object_detection.utils import label_map_util\n'
            self.modelfile += 'from object_detection.utils import config_util\n'
            self.modelfile += 'from object_detection.utils import visualization_utils as viz_utils\n'
            self.modelfile += 'from object_detection.builders import model_builder\n'
            self.modelfile += 'import tensorflow as tf\n'
            self.modelfile += 'import numpy as np\n'
            self.modelfile += 'from PIL import Image\n'
            self.modelfile += 'import matplotlib.pyplot as plt\n'
            self.modelfile += 'import pandas as pd\n'
            self.modelfile += 'from pathlib import Path\n'
        if(learner_type == 'Text Similarity'):
            self.modelfile += 'from tensorflow.keras.models import load_model'
            self.modelfile += '\n'
            self.modelfile += 'from tensorflow.keras import backend as K'
            self.modelfile += '\n'
            self.modelfile += 'from tensorflow.keras.preprocessing.sequence import pad_sequences'
            self.modelfile += '\n'
            self.modelfile += 'from tensorflow.keras.preprocessing.text import Tokenizer'
            self.modelfile += '\n'
            self.modelfile += 'import tensorflow as tf'
            self.modelfile += '\n'
        if(model == 'Neural Architecture Search'):
            self.modelfile += 'from tensorflow.keras.models import load_model'
            self.modelfile += '\n'
            self.modelfile += 'from tensorflow.keras import backend as K'
            self.modelfile += '\n'
            self.modelfile += 'import tensorflow as tf'
            self.modelfile += '\n'
        self.modelfile += 'import joblib'
        self.modelfile += '\n'
        self.modelfile += 'import os'
        self.modelfile += '\n'
        self.modelfile += 'import pandas as pd'
        self.modelfile += '\n'
        self.modelfile += 'from sklearn.decomposition import LatentDirichletAllocation\n'
        self.modelfile += 'import numpy as np\n'
        self.modelfile += 'from pathlib import Path\n'
        if model.lower() == 'deep q network' or model.lower() == 'dueling deep q network':
            self.modelfile += 'from tensorflow import constant'
            self.modelfile += '\n'
            self.modelfile += 'from tf_agents.trajectories import time_step'
            self.modelfile += '\n'
            self.requirementfile += 'tensorflow==2.5.0'
        if model.lower() == 'lstm' or model.lower() == 'mlp':
            self.modelfile += 'from tensorflow.keras.models import load_model'
            self.modelfile += '\n'
            self.requirementfile += 'tensorflow==2.5.0'
        if(learner_type == 'Text Similarity'):
            self.modelfile += 'def cosine_distance(vests):'
            self.modelfile += '\n';
            self.modelfile += '    x, y = vests'
            self.modelfile += '\n';
            self.modelfile += '    x = K.l2_normalize(x, axis=-1)'
            self.modelfile += '\n';
            self.modelfile += '    y = K.l2_normalize(y, axis=-1)'
            self.modelfile += '\n';
            self.modelfile += '    return -K.mean(x * y, axis=-1, keepdims=True)'
            self.modelfile += '\n';
            self.modelfile += 'def cos_dist_output_shape(shapes):'
            self.modelfile += '\n';
            self.modelfile += '    shape1, shape2 = shapes'
            self.modelfile += '\n';
            self.modelfile += '    return (shape1[0],1)'
            self.modelfile += '\n';

        if(learner_type == 'TextDL' or learner_type == 'DL'):
            if(scoreParam.lower() == 'recall' or scoreParam.lower() == 'f1_score'):
                self.modelfile += 'def recall_m(y_true, y_pred):'
                self.modelfile += '\n';
                self.modelfile += '    true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))'
                self.modelfile += '\n';
                self.modelfile += '    possible_positives = K.sum(K.round(K.clip(y_true, 0, 1)))'
                self.modelfile += '\n';
                self.modelfile += '    recall = true_positives / (possible_positives + K.epsilon())'
                self.modelfile += '\n';
                self.modelfile += '    return recall'
                self.modelfile += '\n';
            if(scoreParam.lower() == 'precision' or scoreParam.lower() == 'f1_score'):
                self.modelfile += 'def precision_m(y_true, y_pred):'
                self.modelfile += '\n';
                self.modelfile += '    true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))'
                self.modelfile += '\n';
                self.modelfile += '    predicted_positives = K.sum(K.round(K.clip(y_pred, 0, 1)))'
                self.modelfile += '\n';
                self.modelfile += '    precision = true_positives / (predicted_positives + K.epsilon())'
                self.modelfile += '\n';
                self.modelfile += '    return precision'
                self.modelfile += '\n';
            if(scoreParam.lower() == 'f1_score'):
                self.modelfile += 'def f1_m(y_true, y_pred):'
                self.modelfile += '\n';
                self.modelfile += '    precision = precision_m(y_true, y_pred)'
                self.modelfile += '\n';
                self.modelfile += '    recall = recall_m(y_true, y_pred)'
                self.modelfile += '\n';
                self.modelfile += '    return 2*((precision*recall)/(precision+recall+K.epsilon()))'
                self.modelfile += '\n';
            if(scoreParam.lower() == 'rmse'):
                self.modelfile += 'def rmse_m(y_true, y_pred):'
                self.modelfile += '\n';
                self.modelfile += '    return K.sqrt(K.mean(K.square(y_pred - y_true), axis=-1))'
                self.modelfile += '\n';
            if(scoreParam.lower() =='r2'):
                self.modelfile += 'def r_square(y_true, y_pred):'
                self.modelfile += '\n';
                self.modelfile += '    SS_res = K.sum(K.square(y_true-y_pred))'
                self.modelfile += '\n';
                self.modelfile += '    SS_tot = K.sum(K.square(y_true-K.mean(y_true)))'
                self.modelfile += '\n';
                self.modelfile += '    return (1 - SS_res/(SS_tot+K.epsilon()))'
                self.modelfile += '\n';
        if(learner_type.lower() in ['similarityidentification','contextualsearch']):
            self.modelfile += 'from pathlib import Path\n'
            if model_type == 'BM25':
                self.modelfile += 'from rank_bm25 import BM25Okapi\n'
            elif scoreParam == 'VectorDB Cosine':
                self.modelfile += 'import chromadb\n'
            else:
                self.modelfile += 'from sklearn.metrics.pairwise import cosine_similarity\n'

        self.pythonpackage += '========== Python Packags Requires ========='
        self.pythonpackage += '\n'
        self.pythonpackage += 'scikit-learn'
        self.pythonpackage += '\n'
        self.pythonpackage += 'scipy'
        self.pythonpackage += '\n'
        self.pythonpackage += 'numpy'
        self.pythonpackage += '\n'
        if((learner_type == 'DL') or (learner_type =='TextDL')):
            self.modelfile += 'import numpy as np'
            self.modelfile += '\n'
        self.requirementfile += 'scikit-learn==0.21.3'
        self.requirementfile += '\n'
        self.requirementfile += 'scipy==1.3.3'
        self.requirementfile += '\n'
        self.requirementfile += 'numpy==1.17.4'
        self.requirementfile += '\n'

        if(learner_type == 'TextML'):
            self.requirementfile += 'spacy==2.2.3'
            self.requirementfile += '\n'
            self.requirementfile += 'https://github.com/explosion/spacy-models/releases/download/en_core_web_sm-2.2.0/en_core_web_sm-2.2.0.tar.gz'
            self.requirementfile += '\n'

        if(learner_type == 'DL' or learner_type == 'TextDL'):
            self.requirementfile += 'keras==2.3.1'
            self.requirementfile += '\n'
            self.requirementfile += 'tensorflow==2.0.0b1'
            self.requirementfile += '\n'

        if(learner_type == 'RecommenderSystem'):
            self.requirementfile += 'surprise'
            self.requirementfile += '\n'
            if(method == 'package'):
                self.modelfile += 'import surprise'
                self.modelfile += '\n'
            self.modelfile += 'import statsmodels'
            self.modelfile += '\n'
            self.requirementfile += 'statsmodels==0.10.2'
            self.requirementfile += '\n'

    def crate_readme_file(self,deploy_path,modelfile,features,method,single_file=False):
        self.readme='========== Files Structures =========='
        self.readme+='\n'
        self.readme+=modelfile+' ------ Trained Model'
        self.readme+='\n'
        self.readme+='aion_prediction.py --> Python package entry point'
        self.readme+='\n'
        if not single_file:
            self.readme+='script/inputprofiler.py --> Profiling like FillNA and Category to Numeric'
            self.readme+='\n'
            self.readme+='script/selector.py --> Feature Selection'
            self.readme+='\n'
            self.readme+='script/trained_model.py --> Read the model file and call the prediction'
            self.readme+='\n'
            self.readme+='script/output_format.py --> Output formatter file'
            self.readme+='\n'
        self.readme+= self.pythonpackage
        self.readme+= '========== How to call the model =========='
        self.readme+='\n'
        self.readme+= '============== From Windows Terminal =========='
        self.readme+='\n'
        if method == 'optimus_package':
            self.readme += 'python aion_prediction.py filename.json'
            self.readme +='\n'
            self.readme += '========== Embedded Methods =========='
            self.readme +='\n'
            self.readme += 'Function Name: predict_from_json - When input is Json Data'
            self.readme +='\n'
            self.readme += 'Function Name: predict_from_file - When input is Json File'
            self.readme +='\n'
        else:
            callpython = 'python aion_prediction.py ""[{'
            for x in features:
                if(callpython != 'python prediction.py ""[{'):
                    callpython += ','
                callpython += '\\\""'+str(x)+'\\\""'+':'+'\\\""'+str(x)+'_value'+'\\\""'
            callpython += '}]""'
            self.readme += callpython
            self.readme+='\n'
            self.readme+= '============== From Linux Terminal =========='
            self.readme+='\n'
            callpython = 'python aion_prediction.py \'[{'
            temp =callpython
            for x in features:
                if(callpython != temp):
                    callpython += ','
                callpython += '""'+str(x)+'""'+':'+'""'+str(x)+'_value'+'""'
            callpython += '}]\''
            self.readme += callpython
            self.readme+='\n'
        self.readme+= '============== Output =========='
        self.readme+='\n'
        self.readme+= '{""status"":""SUCCESS"",""data"":[{""Data1"":""Value"",""prediction"":""Value""}]}'    ## For Single Row/Record'
        self.readme+='\n'
        self.readme+= '{""status"":""SUCCESS"",""data"":[{""Data1"":""Value"",""prediction"":""Value""},{""Data1"":""Value"",""prediction"":""Value""}]}    ## For Multiple Row/Record'
        self.readme+='\n'
        self.readme+= '{""status"":""ERROR"",""message"":""description""}   ## In Case Exception or Error'
        self.readme+='\n'
        #print(self.readme)
        filename = os.path.join(deploy_path,'readme.txt')
        self.log.info('-------> Readme File Location: '+filename)
        f = open(filename, ""wb"")
        f.write(str(self.readme).encode('utf8'))
        f.close()
    def create_class(self,classname):
        #self.modelfile += 'class '+classname+'(object):'
        self.modelfile += 'class trained_model(object):'
        self.modelfile += '\n'

    def profiler_code(self,model_type,model,output_columns, features, text_feature,wordToNumericFeatures=[], deploy={},datetimeFeature=''):
        profiler = deploy.get('profiler',{})
        if isinstance(features, str):
            features = features.split(',')
        code = f""""""
import scipy
import joblib
import numpy as np
import pandas as pd
from pathlib import Path
""""""
        if text_feature:
            code += """"""
import importlib.util\n""""""

        if wordToNumericFeatures:
            code += """"""
from word2number import w2n

def s2n(value):
    try:
        x=eval(value)
        return x
    except:
        try:
            return w2n.word_to_num(value)
        except:
            return np.nan 
""""""
        if 'code' in deploy.get('preprocess',{}).keys():
            code += deploy['preprocess']['code']

        if profiler.get('conversion_method','').lower() == 'glove':
            code += """"""
class inputprofiler(object):

    def __init__(self):
        self.model = None
        preprocess_path = Path(__file__).parent.parent/'model'/'preprocess_pipe.pkl'

        if preprocess_path.exists():
            self.model = joblib.load(preprocess_path)
            from text.Embedding import load_pretrained
            from text import TextProcessing
            model_path = TextProcessing.checkAndDownloadPretrainedModel('glove')
            embed_size, loaded_model = load_pretrained(model_path)
            self.model.set_params(text_process__vectorizer__external_model = loaded_model)
        else:
            raise ValueError('Preprocess model not found')

    def apply_profiler(self,df):
        df = df.replace(r'^\s*$', np.NaN, regex=True)
""""""
        elif profiler.get('conversion_method','').lower() == 'fasttext':
            code += """"""
def get_pretrained_model_path():
    try:
        from AION.appbe.dataPath import DATA_DIR
        modelsPath = Path(DATA_DIR)/'PreTrainedModels'/'TextProcessing'
    except:
        modelsPath = Path('aion')/'PreTrainedModels'/'TextProcessing'
    
    if not modelsPath.exists():
        modelsPath.mkdir(parents=True, exist_ok=True)
    return modelsPath

class inputprofiler(object):

    def __init__(self):
        self.model = None
        preprocess_path = Path(__file__).parent.parent/'model'/'preprocess_pipe.pkl'

        if preprocess_path.exists():
            self.model = joblib.load(preprocess_path)
            if not importlib.util.find_spec('fasttext'):
                raise ValueError('fastText not installed')
            else:
                import os
                import fasttext
                import fasttext.util
                cwd = os.getcwd()
                os.chdir(get_pretrained_model_path())
                fasttext.util.download_model('en', if_exists='ignore')
                loaded_model = fasttext.load_model('cc.en.300.bin')
                os.chdir(cwd)
            self.model.set_params(text_process__vectorizer__external_model = loaded_model)
            self.model.set_params(text_process__vectorizer__external_model_type = 'binary')
        else:
            raise ValueError('Preprocess model not found')

    def apply_profiler(self,df):
        df = df.replace(r'^\s*$', np.NaN, regex=True)
""""""
        else:
            code += """"""
class inputprofiler(object):

    def __init__(self):
        self.model = None
        preprocess_path = Path(__file__).parent.parent/'model'/'preprocess_pipe.pkl'
        if preprocess_path.exists():
            self.model = joblib.load(preprocess_path)
        else:
            raise ValueError('Preprocess model not found')

    def apply_profiler(self,df):
        df = df.replace(r'^\s*$', np.NaN, regex=True)
""""""
        if 'code' in deploy.get('preprocess',{}).keys():
            code += ""        df = preprocess( df)\n""
        if wordToNumericFeatures:
            code += f""""""
        df[{wordToNumericFeatures}] = df[{wordToNumericFeatures}].apply(lambda x: s2n(x))""""""
        if profiler.get('unpreprocessed_columns'):
            code += f""""""
        unpreprocessed_data = df['{profiler['unpreprocessed_columns'][0]}']
        df.drop(['{profiler['unpreprocessed_columns'][0]}'], axis=1,inplace=True)
            """"""
        if profiler.get('force_numeric_conv'):
            code += f""""""
        df[{profiler['force_numeric_conv']}] = df[{profiler['force_numeric_conv']}].apply(pd.to_numeric,errors='coerce')
            """"""
        code += f""""""
        if self.model:
            df = self.model.transform(df)""""""
        code += f""""""    
            columns = {output_columns}
            if isinstance(df, scipy.sparse.spmatrix):
                df = pd.DataFrame(df.toarray(), columns=columns)
            else:
                df = pd.DataFrame(df, columns=columns)
            """"""
        ##The below if loop for avoiding unpreprocessed column variable storing which is not used for anomaly detection
        if model_type.lower() == 'anomaly_detection' and datetimeFeature != '' and datetimeFeature.lower() != 'na':
            pass
        else:
            if profiler.get('unpreprocessed_columns'):
                code += f""""""
        df['{profiler.get('unpreprocessed_columns')[0]}'] = unpreprocessed_data
            """"""
        if model_type.lower() == 'anomaly_detection' and datetimeFeature != '' and datetimeFeature.lower() != 'na':
            ##This below set_index is wrong, because we drop datetimefeature before profiling and doing set_index. So commented now.
            # code += f""""""
            # df.set_index('{datetimeFeature}', inplace=True)""""""
            code += f""""""
        return(df,'{datetimeFeature}')\n""""""
        else:
            code += f""""""
        return(df)""""""
        return code


    def no_profiling_code(self, features):
        if isinstance(features, str):
            features = features.split(',')
        return f""""""
import pandas as pd
import numpy as np

class inputprofiler(object):

    def apply_profiler(self,df):
        df = df.replace(r'^\s*$', np.NaN, regex=True)
        return df[{features}]
        """"""

    def create_profiler_file(self,learner_type,deploy_path,profiler,features,numericToLabel_json,column_merge_flag,text_features,preprocessing_pipe,firstDocFeature,secondDocFeature,normalizer,normFeatures,wordToNumericFeatures,conversion_method,model_type,preprocess_pipe,preprocess_out_columns, label_encoder,model, config=None,datetimeFeature=''):
        filename = str(Path(deploy_path)/'script'/'inputprofiler.py')
        if 'profiler' in config:
            if model_type == 'BM25':
                code = self.profiler_code(model_type,model,['tokenize'],features, text_features,config['profiler']['word2num_features'])
            elif model == 'KaplanMeierFitter':
                code = self.no_profiling_code(features)
            elif model.lower() in ['arima', 'fbprophet']: #task 12627
                code = self.no_profiling_code('noofforecasts')
            else:
                code = self.profiler_code(model_type,model,config['profiler']['output_features'],features, text_features,config['profiler']['word2num_features'],config,datetimeFeature)
            if code:
                with open(filename,'w',encoding=""utf-8"") as f:
                    f.write(code)
                self.log.info('-------> Profiler File Location :'+filename)
                return
        self.profilerfile += 'import pandas as pd'
        self.profilerfile += '\n'
        self.profilerfile += 'import joblib'
        self.profilerfile += '\n'
        self.profilerfile += 'import os'
        self.profilerfile += '\n'
        self.profilerfile += 'from word2number import w2n'
        self.profilerfile += '\n'

        self.profilerfile += 'import numpy as np'
        self.profilerfile += '\nfrom pathlib import Path\n'
        #print(""1"")
        #print(profiler)
        if(learner_type == 'Text Similarity' or len(text_features) > 0):
            self.profilerfile += 'from text import TextProcessing'
            self.profilerfile += '\n'
            self.profilerfile += 'def textCleaning(textCorpus):'
            self.profilerfile += '\n'
            self.profilerfile += '    textProcessor = TextProcessing.TextProcessing()'
            self.profilerfile += '\n'
            self.profilerfile += '    textCorpus = textProcessor.transform(textCorpus)'
            self.profilerfile += '\n'
            self.profilerfile += '    return(textCorpus)'
            self.profilerfile += '\n'

        self.profilerfile += 'class inputprofiler(object):'
        self.profilerfile += '\n'
        self.profilerfile += '    def s2n(self,value):'
        self.profilerfile += '\n'
        self.profilerfile += '        try:'
        self.profilerfile += '\n'
        self.profilerfile += '            x=eval(value)'
        self.profilerfile += '\n'
        self.profilerfile += '            return x'
        self.profilerfile += '\n'
        self.profilerfile += '        except:'
        self.profilerfile += '\n'
        self.profilerfile += '            try:'
        self.profilerfile += '\n'
        self.profilerfile += '                return w2n.word_to_num(value)'
        self.profilerfile += '\n'
        self.profilerfile += '            except:'
        self.profilerfile += '\n'
        self.profilerfile += '                return np.nan '
        self.profilerfile += '\n'
        self.profilerfile += '    def apply_profiler(self,df):'
        self.profilerfile += '\n'
        if(len(wordToNumericFeatures) > 0):
            for w2nFeature in wordToNumericFeatures:
                if w2nFeature not in features:
                    continue
                self.profilerfile += ""        df['""+w2nFeature+""']=df['""+w2nFeature+""'].apply(lambda x: self.s2n(x))""
                self.profilerfile += '\n'
        self.profilerfile += ""        df = df.replace(r'^\s*$', np.NaN, regex=True)""
        self.profilerfile += '\n'
        self.profilerfile += '        try:'
        self.profilerfile += '\n'
        self.profilerfile += '            df.dropna(how=""all"",axis=1,inplace=True)'
        self.profilerfile += '\n'
        self.profilerfile += '        except:'
        self.profilerfile += '\n'
        self.profilerfile += '            df.fillna(0)'
        self.profilerfile += '\n'

        if model_type.lower() != 'timeseriesforecasting': #task 11997
            self.profilerfile += '        preprocess_path = Path(__file__).parent.parent/""model""/""preprocess_pipe.pkl""\n'
            self.profilerfile += '        if preprocess_path.exists():\n'
            self.profilerfile += '            model = joblib.load(preprocess_path)\n'
            if model_type.lower()=='anomaly_detection' and model.lower() == 'autoencoder':
                self.profilerfile += f""            df[{features}] = model.transform(df[{features}])\n""
            else:
                self.profilerfile += f""            df = model.transform(df)\n""
            if 'operation' in profiler:
                y = profiler['operation']
                for action in y:
                    feature = action['feature']
                    #if feature not in features:
                    #   continue
                    operation = action['Action']
                    if(operation == 'Drop'):
                        self.profilerfile += ""        if '""+feature+""' in df.columns:""
                        self.profilerfile += '\n'
                        self.profilerfile += ""            df.drop(columns=['""+feature+""'],inplace = True)""
                        self.profilerfile += '\n'
                    if(operation == 'FillValue'):
                        self.profilerfile += ""        if '""+feature+""' in df.columns:""
                        self.profilerfile += '\n'
                        fvalue = action['value']
                        self.profilerfile += ""            df['""+feature+""'] = df['""+feature+""'].fillna(value='""+fvalue+""')""
                        self.profilerfile += '\n'
                    if(operation == 'Encoder'):
                        value = action['value']
                        value = value.replace(""\n"", ""\\n"")
                        self.profilerfile += ""        if '""+feature+""' in df.columns:""
                        self.profilerfile += '\n'
                        self.profilerfile += ""            le_dict=""+str(value)
                        self.profilerfile += '\n'
                        self.profilerfile += ""            df['""+feature+""'] = df['""+feature+""'].apply(lambda x: le_dict.get(x,-1))""
                        self.profilerfile += '\n'
                        self.profilerfile += ""            if -1 in df['""+feature+""'].values:""
                        self.profilerfile += '\n'
                        self.profilerfile += ""                raise Exception('Category value of ""+feature+"" not present in training data')""
                        self.profilerfile += '\n'
            if 'conversion' in profiler:
                catergoryConverton  = profiler['conversion']
                #print(catergoryConverton)
                if (catergoryConverton['categoryEncoding'].lower() in ['targetencoding','onehotencoding']) and ('features' in catergoryConverton):
                    self.profilerfile += ""        encoder = joblib.load(os.path.join(os.path.dirname(__file__),'..','model','categoryEncoder.pkl'))""
                    self.profilerfile += '\n'
                    self.profilerfile += ""        CategoryFeatures = ""+str(catergoryConverton['features'])
                    self.profilerfile += '\n'
                    if  catergoryConverton['categoryEncoding'].lower() == 'onehotencoding':
                        self.profilerfile += ""        transformed_data = encoder.transform(df[CategoryFeatures]).toarray()""
                        self.profilerfile += '\n'
                        self.profilerfile += ""        feature_labels = encoder.get_feature_names(CategoryFeatures)""
                        self.profilerfile += '\n'
                        self.profilerfile += ""        transformed_data = pd.DataFrame(transformed_data,columns=feature_labels)    ""
                        self.profilerfile += '\n'
                    else:
                        self.profilerfile += ""        transformed_data = encoder.transform(df[CategoryFeatures])""
                        self.profilerfile += '\n'
                    self.profilerfile += ""        dataColumns=list(df.columns)""
                    self.profilerfile += '\n'
                    self.profilerfile += ""        nonNormFeatures=list(set(dataColumns) - set(CategoryFeatures))""
                    self.profilerfile += '\n'
                    self.profilerfile += ""        dataArray=df[nonNormFeatures]""
                    self.profilerfile += '\n'
                    self.profilerfile += ""        df = pd.concat([dataArray, transformed_data],axis=1)""
                    self.profilerfile += '\n'
            y = json.loads(numericToLabel_json)

            for feature_details in y:
                feature = feature_details['feature']
                if feature not in features:
                    continue
                label = feature_details['Labels']
                bins = feature_details['Bins']
                self.profilerfile += ""        if '""+feature+""' in df.columns:""
                self.profilerfile += '\n'
                self.profilerfile += ""            cut_bins=""+str(bins)
                self.profilerfile += '\n'
                self.profilerfile += ""            cut_labels=""+str(label)
                self.profilerfile += '\n'
                self.profilerfile += ""            df['""+feature+""'] = pd.cut(df['""+feature+""'],bins=cut_bins,labels=cut_labels)""
                self.profilerfile += '\n'
                self.profilerfile += ""            df['""+feature+""'] = df['""+feature+""'].fillna(value=0)""
                self.profilerfile += '\n'

            if(len(text_features) > 0):
                if(len(text_features) > 1):
                    self.profilerfile += '        merge_features = '+str(text_features)
                    self.profilerfile += '\n'
                    self.profilerfile += '        df[\'combined\'] = df[merge_features].apply(lambda row: \' \'.join(row.values.astype(str)), axis=1)'
                    self.profilerfile += '\n'
                    self.profilerfile += '        features = [\'combined\']'
                    self.profilerfile += '\n'
                else:
                    self.profilerfile += ""        features = ""+str(text_features)
                    self.profilerfile += '\n'
                if model_type == 'BM25':
                    self.profilerfile += """"""\
        df_text = df[features[0]]
        pipe = joblib.load(os.path.join(os.path.dirname(__file__),'..','model','{preprocessing_pipe}'))
        df['tokenize'] = pipe.transform(df_text)\n"""""".format(preprocessing_pipe=preprocessing_pipe)
                elif conversion_method == 'sentenceTransformer':
                    self.profilerfile += """"""\
        df_text = df[features[0]]
        from sentence_transformers import SentenceTransformer
        model = SentenceTransformer(\'sentence-transformers/msmarco-distilroberta-base-v2\')
        df_vect = model.encode(df_text)
        for empCol in {text_features}:
            df = df.drop(columns=[empCol])
        if isinstance(df_vect, np.ndarray):
            df1 = pd.DataFrame(df_vect)
        else:
            df1 = pd.DataFrame(df_vect.toarray(),columns = pipe.named_steps[\'vectorizer\'].get_feature_names())
        df1 = df1.add_suffix(\'_vect\')
        df = pd.concat([df, df1],axis=1)\n"""""".format(preprocessing_pipe=preprocessing_pipe, text_features=text_features)
                else:
                    self.profilerfile += """"""\
        df_text = df[features[0]]
        pipe = joblib.load(os.path.join(os.path.dirname(__file__),'..','model','{preprocessing_pipe}'))
        df_vect=pipe.transform(df_text)
        for empCol in {text_features}:
            df = df.drop(columns=[empCol])
        if isinstance(df_vect, np.ndarray):
            df1 = pd.DataFrame(df_vect)
        else:
            df1 = pd.DataFrame(df_vect.toarray(),columns = pipe.named_steps[\'vectorizer\'].get_feature_names())
        df1 = df1.add_suffix(\'_vect\')
        df = pd.concat([df, df1],axis=1)\n"""""".format(preprocessing_pipe=preprocessing_pipe, text_features=text_features)

            if(learner_type == 'Text Similarity'):
                self.profilerfile += '        df[\''+firstDocFeature+'\'] = textCleaning(df[\''+firstDocFeature+'\'])'
                self.profilerfile += '\n'
                self.profilerfile += '        df[\''+secondDocFeature+'\'] = textCleaning(df[\''+secondDocFeature+'\'])'
                self.profilerfile += '\n'
            if len(normFeatures) > 0 and normalizer != '':
                self.profilerfile += ""        normFeatures = ""+str(normFeatures)
                self.profilerfile += '\n'
                self.profilerfile += '        normalizepipe = joblib.load(os.path.join(os.path.dirname(os.path.abspath(__file__)),\'..\',\'model\',\''+normalizer+'\'))'
                self.profilerfile += '\n'
                self.profilerfile += '        dataColumns=list(df.columns)'
                self.profilerfile += '\n'
                self.profilerfile += '        nonNormFeatures=list(set(dataColumns) - set(normFeatures))'
                self.profilerfile += '\n'
                self.profilerfile += '        dataframe=df[normFeatures]'
                self.profilerfile += '\n'
                self.profilerfile += '        transDf = normalizepipe.transform(dataframe)'
                self.profilerfile += '\n'
                self.profilerfile += '        nontransDF=df[nonNormFeatures].values'
                self.profilerfile += '\n'
                self.profilerfile += '        dataColumns=normFeatures+nonNormFeatures'
                self.profilerfile += '\n'
                self.profilerfile += '        scaledDf = pd.DataFrame(np.hstack((transDf, nontransDF)),columns=dataColumns)'
                self.profilerfile += '\n'
                self.profilerfile += '        df=scaledDf'
                self.profilerfile += '\n'
        else:
            self.profilerfile += '        df=df.dropna()\n'
        self.profilerfile += '        return(df)'
        filename = os.path.join(deploy_path,'script','inputprofiler.py')
        self.log.info('-------> Profiler File Location :'+filename)
        f = open(filename, ""w"",encoding=""utf-8"")
        f.write(str(self.profilerfile))
        f.close()

    def isEnglish(self, s):
        try:
            s.encode(encoding='utf-8').decode('ascii')
        except UnicodeDecodeError:
            return False
        else:
            return True

    def create_selector_file(self,deploy_path,features,pcaModel_pickle_file,bpca_features,apca_features,textFeatures,nonNumericFeatures,numericalFeatures,profiler,targetFeature, model_type,model,config=None):
        cs.create_selector_file(self,deploy_path,features,pcaModel_pickle_file,bpca_features,apca_features,textFeatures,nonNumericFeatures,numericalFeatures,profiler,targetFeature, model_type,model,config)

    def create_init_function_for_regression(self,modelfile):
        self.modelfile += '   def __init__(self):'
        self.modelfile += '\n'
        self.modelfile += ""       self.model = joblib.load(os.path.join(os.path.dirname(__file__),'..','model','""+modelfile+""'))""
        self.modelfile += '\n'

    def create_init_function_for_classification(self,modelfile,classes,learner_type,scoreParam,loss_matrix,optimizer,preprocessing_pipe,modelName,model_type,imageconfig):
        cs.create_init_function_for_classification(self,modelfile,classes,learner_type,scoreParam,loss_matrix,optimizer,preprocessing_pipe,modelName,model_type,imageconfig)

    def create_predict_proba(self,learner_type,method):
        self.modelfile += '   def predict(self,X,features_names):'
        self.modelfile += '\n'
        self.modelfile += '       return self.model.predict_proba(X)'

    def create_forcast(self,method,no_of_prediction):
        self.modelfile += '   def predict(self,X,features_names):'
        self.modelfile += '\n'
        self.modelfile += '       no_of_prediction = '+str(no_of_prediction)
        self.modelfile += '\n'
        self.modelfile += '       lag_order = self.model.k_ar'
        self.modelfile += '\n'
        self.modelfile += '       return self.model.forecast(X.values[-lag_order:],steps=no_of_prediction)'

    def create_predict(self,learner_type,method,model,model_type,threshold,firstDocFeature,secondDocFeature,padding_length,optimizationmethod,sessonal_freq,additional_regressors,feature,modelFeatures,indexFeature,lag_order,scalertransformationFile,datetimeFeature,scoreParam=None):
        scorePrm = scoreParam
        cs.create_predict(self,learner_type,method,model,model_type,threshold,firstDocFeature,secondDocFeature,padding_length,optimizationmethod,sessonal_freq,additional_regressors,feature,modelFeatures,indexFeature,lag_order,scalertransformationFile,datetimeFeature,scorePrm)

    def save_model_deploy(self,outputfolder,modelname):
        #filename = outputfolder+modelname+'.py'
        filename = os.path.join(outputfolder,'script','trained_model.py')
        self.log.info('-------> Model File Location :'+filename)
        f = open(filename, ""w"",encoding=""utf-8"")
        f.write(str(self.modelfile))
        f.close()

    def create_TextCleaner(self,outputfolder):
        profilerPath = os.path.join(outputfolder,'profiler')
        try:
            os.makedirs(profilerPath)
        except OSError:
            self.log.info(""ProfilePath Folder Already Exists"")

        try:
            textprofileFileLocation =  os.path.join(os.path.dirname(os.path.abspath(__file__)),'..','profiler','textDataProfiler.py')
            initFileLocation = os.path.join(os.path.dirname(os.path.abspath(__file__)),'..','profiler','__init__.py')
            shutil.copy2(textprofileFileLocation,profilerPath)
            shutil.copy2(initFileLocation,profilerPath)
            '''
            if(platform.system() == 'Windows'):
                shutil.copy2(os.path.dirname(os.path.abspath(__file__))+'\\..\\profiler\\textDataProfiler.py',profilerPath)
                shutil.copy2(os.path.dirname(os.path.abspath(__file__))+'\\..\\profiler\\__init__.py',profilerPath)
            else:
                shutil.copy2(os.path.dirname(os.path.abspath(__file__))+'/../profiler/textDataProfiler.py',profilerPath)
                shutil.copy2(os.path.dirname(os.path.abspath(__file__))+'/../profiler/__init__.py',profilerPath)
            '''
        except OSError:
            self.log.info(""Copy to Profiler Path Failed"")

    def listToString(self,s):
        str1='['
        for feature in s:
            if(str1 != '['):
                str1 += ','
            str1 += '""'+feature+'""'
        str1+=']'
        return str1

    def print_files(self):
        self.log.info(self.modelfile)

    def create_util_folder(self, deploy_path,learner_type):
        import tarfile
        ext_path = os.path.abspath(os.path.join(os.path.dirname(__file__), '..','utilities'))
        for x in os.listdir(ext_path):
            if x.endswith('.tar'):
                if x not in ['scikit_surprise-1.1.1.dist-info.tar','surprise.tar']:
                    tarPackage = os.path.join(ext_path, x)
                    my_tar = tarfile.open(tarPackage)
                    my_tar.extractall(deploy_path)
                    my_tar.close()
                else:
                    if learner_type == 'RecommenderSystem':
                        tarPackage = os.path.join(ext_path, x)
                        my_tar = tarfile.open(tarPackage)
                        my_tar.extractall(deploy_path)
                        my_tar.close()
    def deploy_model(self,deploy_name,deployJson,learner_type,model_type,model,scoreParam,saved_model,deploy_path,features,profiler,datalocation,output_label,column_merge_flag,textFeatures,numericalFeatures,nonNumericFeatures,preprocessing_pipe,numericToLabel_json,threshold,loss_matrix,optimizer,firstDocFeature,secondDocFeature,padding_length,trained_data_file,dictDiffCount,targetFeature,normalizer,normFeatures,pcaModel_pickle_file,bpca_features,apca_features,optimizationmethod,deployFolder,iterName,iterVersion,wordToNumericFeatures,imageconfig,sessonal_freq,additional_regressors,grouperbyjson,rowfilterexpression,xtrain,profiled_data_file,conversion_method,modelFeatures,indexFeature,lag_order,scalertransformationFile,no_of_prediction,preprocess_pipe,preprocess_out_columns, label_encoder,datetimeFeature,usecaseLocation,config=None):
        try:
            serviceName = '{}{}{}'.format(iterName, '_' if iterVersion != '' else '', iterVersion)
            self.log.info('-------> Deploy Location :'+deploy_path)
            if production.is_supported(model_type.lower()):
                if learner_type == 'Text Similarity':
                    coder = production.get_deployer(learner_type)
                    coder.create_file(deploy_path, preprocessing_pipe, saved_model, firstDocFeature, secondDocFeature)
                elif model_type.lower() in ['classification', 'regression','clustering','timeseriesforecasting']:
                    params = {}
                    params['usecase_name']= iterName
                    params['usecase_ver']= iterVersion
                    params['features']={}
                    params['features']['input_feat'] = config['profiler']['input_features']
                    params['features']['target_feat'] = targetFeature
                    params['features']['text_feat'] = textFeatures
                    params['paths']={}
                    params['paths']['deploy'] = Path(deploy_path)
                    params['paths']['usecase'] = params['paths']['deploy'].parent
                    params['profiler']=config['profiler']
                    if 'code' in config.get('preprocess',{}).keys():
                        params['profiler']['preprocess']=config['preprocess']
                    params['selector']={}
                    params['selector']['reducer']=True if pcaModel_pickle_file else False
                    params['selector']['reducer_file']=pcaModel_pickle_file
                    if pcaModel_pickle_file:
                        params['selector']['input_features']=bpca_features
                        params['selector']['output_features']=apca_features
                    else:
                        params['selector']['input_features']=config['profiler']['input_features']
                        params['selector']['output_features']=features
                    params['training']={}
                    params['training']['algo']= model
                    params['training']['model_file']=saved_model
                    if model_type.lower() == 'timeseriesforecasting':
                        if params['training']['algo'] in ['LSTM','MLP','ENCODER_DECODER_LSTM_MVI_UVO']:
                            params['training']['lag_order'] = int(lag_order)
                            params['training']['scaler_file'] = Path(scalertransformationFile).name
                        elif params['training']['algo'] == 'VAR':
                            params['training']['dictDiffCount'] = dictDiffCount
                            params['training']['no_of_prediction'] = no_of_prediction
                        elif params['training']['algo'] == 'FBPROPHET':
                            params['training']['sessonal_freq'] = sessonal_freq
                            params['training']['additional_regressors'] = additional_regressors
                    self.log.info(params)
                    deployer = production.get_deployer(model_type.lower(), params=params)
                    deployer.run( )
                self.log.info('Status:- |... Model deployment files created')
                self.log.info('Status:- |... Model deployment completed')
                return

            else:
                # for output_formatter.py
                from prediction_package.output_formatter import outputFormatter
                outputObj = outputFormatter()
                outputObj.crate_output_format_file(deploy_path, learner_type, model_type, model, output_label,
                                                   threshold, trained_data_file, dictDiffCount, targetFeature, features,datetimeFeature)
                #for aion_predict.py
                from prediction_package.aion_prediction import aionPrediction
                predictionObj = aionPrediction()
                # print(deploy_path)
                predictionObj.create_prediction_file(deploy_name, deploy_path, learner_type, grouperbyjson,rowfilterexpression,model_type,datetimeFeature)
                # for aion_service.py
                predictionObj.create_model_service(deploy_path, serviceName, model_type)
                # for aion_publish.py
                predictionObj.create_publish_service(usecaseLocation, iterName, iterVersion, model_type)
                if learner_type.lower()==""recommendersystem"":
                    # Task 11190---
                    #For recommender system
                    from prediction_package.recommender_code import generate_recommender_code
                    generate_recommender_code(deploy_path)
                    return
                #self.create_TextCleaner(deploy_path)
            if(len(textFeatures) > 0):
                self.create_TextCleaner(deploy_path)

            self.include_import_file(learner_type,deployJson['method'],scoreParam, model_type,model)

            if((learner_type == 'TS' and model.lower() not in ['lstm','mlp','var']) or  learner_type == 'RecommenderSystem'):
                features=[]

            self.create_class(deploy_name)

            if len(bpca_features) != 0:
                self.create_profiler_file(learner_type,deploy_path,profiler,bpca_features,numericToLabel_json,column_merge_flag,textFeatures,preprocessing_pipe,firstDocFeature,secondDocFeature,normalizer,normFeatures,wordToNumericFeatures,conversion_method,model_type,preprocess_pipe,preprocess_out_columns, label_encoder, model, config,datetimeFeature)
            else:
                self.create_profiler_file(learner_type,deploy_path,profiler,features,numericToLabel_json,column_merge_flag,textFeatures,preprocessing_pipe,firstDocFeature,secondDocFeature,normalizer,normFeatures,wordToNumericFeatures,conversion_method,model_type,preprocess_pipe,preprocess_out_columns, label_encoder, model, config,datetimeFeature)

            self.create_selector_file(deploy_path,features,pcaModel_pickle_file,bpca_features,apca_features,textFeatures,nonNumericFeatures,numericalFeatures,profiler,targetFeature,model_type, model,config)
            self.create_init_function_for_classification(saved_model,'classes',learner_type,scoreParam,loss_matrix,optimizer,preprocessing_pipe,model,model_type,imageconfig)
        except Exception as e:
            print(e)
            import traceback
            exception_type, exception_object, exception_traceback = sys.exc_info()
            filename = exception_traceback.tb_frame.f_code.co_filename
            line_number = exception_traceback.tb_lineno

            self.log.info(""Exception type: "", exception_type)
            self.log.info(""File name: "", filename)
            self.log.info(""Line number: "", line_number)
            self.log.info(""multivariate model build error traceback: \n""+str(traceback.print_exc()))
            raise Exception(e)
        #print(model)
        if(model.lower() == 'var'):
            self.log.info(""Create Forecast Function"")
            self.create_forcast(deployJson['method'],no_of_prediction)
        else:
            self.create_predict(learner_type,deployJson['method'],model,model_type,threshold,firstDocFeature,secondDocFeature,padding_length,optimizationmethod,sessonal_freq,additional_regressors,features,modelFeatures,indexFeature,lag_order,scalertransformationFile,datetimeFeature,scoreParam)
        self.save_model_deploy(deploy_path,deploy_name)


        if(len(textFeatures) > 0):
            if model_type.lower() == 'classification' or model_type.lower() == 'regression' or model_type.lower() == 'timeseriesforecasting':
                predictionObj.create_text_drift_file(deploy_path,textFeatures,targetFeature,model_type)
                if  model_type.lower() == 'classification':
                    predictionObj.create_classification_text_performance_file(deploy_path,textFeatures,targetFeature)
                elif model_type.lower() == 'regression':
                    predictionObj.create_regression_text_performance_file(deploy_path,textFeatures,targetFeature)

        else: 
            if model_type.lower() == 'classification' or model_type.lower() == 'regression' or model_type.lower() == 'timeseriesforecasting': #task 11997
                predictionObj.create_drift_file(deploy_path,features,targetFeature,model_type)
                if  model_type.lower() == 'classification':
                    predictionObj.create_classification_performance_file(deploy_path,features,targetFeature)
                elif model_type.lower() == 'regression':
                    predictionObj.create_regression_performance_file(deploy_path,features,targetFeature)

        self.log.info('Status:- |... Model deployment files created')
        self.crate_readme_file(deploy_path,saved_model,features,deployJson['method'])
        from prediction_package.requirements import requirementfile
        requirementfile(deploy_path,model,textFeatures,learner_type)
        os.chdir(deploy_path)
        textdata = False
        if(learner_type == 'Text Similarity' or len(textFeatures) > 0):
            textdata = True
        self.create_util_folder(deploy_path,learner_type)
        self.log.info('Status:- |... Model deployment completed')


    def deployTSum(self,deploy_path,preTrainedModellocation):
        def create_predict(preTrainedModellocation):

            text = f""""""
import sys
import json            
def predict(data):
    try:
        import pandas as pd
        import numpy as np
        from pathlib import Path
        keywordsFile =Path(__file__).parent/'data'/'keywordDataBase.csv'
        outputSumFile =Path(__file__).parent/'data'/'summarizedOutput.csv'
        fileName=data
        #print(""fileName---"",fileName)
        inputDataFileFrame = pd.DataFrame()
        inputDataFileFrame['Sentences']=""""
        rowIndex=0
        if fileName.endswith("".pdf""):
            from pypdf import PdfReader
            reader = PdfReader(fileName)
            number_of_pages = len(reader.pages)
            text=""""
            textOutputForFile=""""    
            OrgTextOutputForFile=""""                
            for i in range(number_of_pages) :
                page = reader.pages[i]
                text1 = page.extract_text()
                text=text+text1
            import nltk
            tokens = nltk.sent_tokenize(text)
            for sentence in tokens:
                sentence=sentence.replace(""\\n"", "" "")                                
                if   (len(sentence.split()) < 4 ) or (len(str(sentence.split(',')).split()) < 8)or (any(chr.isdigit() for chr in sentence)) :
                    continue
                inputDataFileFrame.at[rowIndex,'Sentences']=str(sentence.strip())              
                rowIndex=rowIndex+1
        if fileName.endswith("".txt""):
            data=[]
            with open(fileName, ""r"",encoding=""utf-8"") as f:
                data.append(f.read())
            str1 = """"
            for ele in data:
                str1 += ele
            sentences=str1.split(""."")
            count=0
            for sentence in sentences:
                count += 1
                inputDataFileFrame.at[rowIndex,'Sentences']=str(sentence.strip())
                rowIndex=rowIndex+1
        inputDataFileFrame['LabelByKw']=0            
        #print(inputDataFileFrame)
        keywordsFileFrame=pd.read_csv(keywordsFile,encoding='utf-8')
        Keyword_list = keywordsFileFrame['Keyword'].tolist()
        for i in inputDataFileFrame.index:
            for x in Keyword_list:
                if (str(inputDataFileFrame[""Sentences""][i])).lower().find(x) != -1:
                    inputDataFileFrame['LabelByKw'][i]=1
                    break
        import pickle
        from sklearn.preprocessing import LabelEncoder
        pkl_filename='classificationModel.sav'
        pkl_filename =Path(__file__).parent/'model'/'classificationModel.sav'
        with open(pkl_filename, 'rb') as file:
            pickle_model = pickle.load(file)
        testsample=inputDataFileFrame[[""Sentences""]]
        labelencoder = LabelEncoder()
        testsample[""Sentences""] = labelencoder.fit_transform(testsample[""Sentences""])
        y_predicted = pickle_model.predict_proba(testsample)

        df=pd.DataFrame({{""SectionName"":np.nan,""Sentences"":np.nan, ""Predicted_Prob"":y_predicted[:,1]}})
        df['LabelByModel']=df['Predicted_Prob'].apply(lambda x: 0 if x <= 0.5 else 1 )
        inputDataFileFrame['LabelByModel']= df['LabelByModel']
        textToSum=""""
        for i in inputDataFileFrame.index:
            if (inputDataFileFrame['LabelByModel'][i] or inputDataFileFrame['LabelByKw'][i]) :
                textToSum=textToSum+"" ""+inputDataFileFrame[""Sentences""][i]
        stdir=r""{preTrainedModellocation}""               
        stdir = stdir.replace('\\\\', '\\\\\\\\')
        from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
        modelbert = AutoModelForSeq2SeqLM.from_pretrained(stdir,local_files_only=True)
        tokenizer = AutoTokenizer.from_pretrained(stdir,local_files_only=True)
        inputs = tokenizer(""summarize: "" + textToSum, return_tensors=""pt"", max_length=512, truncation=True)
        outputs = modelbert.generate(inputs[""input_ids""], max_length=512, min_length=140, length_penalty=2.0, num_beams=4, early_stopping=True)
        summarizedOutputOfSection= tokenizer.decode(outputs[0])
        summarizedOutputOfSection=summarizedOutputOfSection.replace(""</s>"","""")
        summarizedOutputOfSection=summarizedOutputOfSection.replace(""<s>"","""")
        sumDatadata = [summarizedOutputOfSection]
        df = pd.DataFrame(sumDatadata, columns=['textSum'])
        df.to_csv(outputSumFile,encoding='utf-8')
        outputjson = {{""status"":""SUCCESS"",""msg"":""Press Download button to download summarized output"",""data"":summarizedOutputOfSection}}   
        print(""predictions:"",json.dumps(outputjson))
        return (json.dumps(outputjson))
    except KeyError as e:
        output = {{""status"":""FAIL"",""message"":str(e).strip('""')}}
        print(""predictions:"",json.dumps(output))
        return (json.dumps(output))
    except Exception as e:
        output = {{""status"":""FAIL"",""message"":str(e).strip('""')}}
        print(""predictions:"",json.dumps(output))
        return (json.dumps(output))
        
if __name__ == ""__main__"":
    output = predict(sys.argv[1])
        """"""
            return text
        deploy_path = Path(deploy_path)
        aion_prediction = deploy_path/'aion_predict.py'

        with open(aion_prediction, 'w') as f:
            f.write(create_predict(preTrainedModellocation))
"
recommender_code.py,"#task 11190: Item based Recommender system---Usnish
import os
def generate_recommender_code(deployPath):
    code = """"""
import pandas as pd
import numpy as np
import os
ITEMID = 'itemId'
DATA_FOLDER = 'data'
USER_ITEM_MATRIX = 'user_item_matrix.csv'
ITEM_SIMILARITY_MATRIX = 'item_similarity_matrix.csv'
RATING = 'rating'
SIMILARITY_SCORE = 'similarity_score'

class collaborative_filter(object):
    def __init__(self):
        self.matrix = pd.read_csv(os.path.join(os.path.dirname(__file__), '..', DATA_FOLDER, USER_ITEM_MATRIX),index_col=0)
        self.matrix.index.name = ITEMID
        self.item_similarity_cosine = pd.read_csv(os.path.join(os.path.dirname(__file__), '..', DATA_FOLDER, ITEM_SIMILARITY_MATRIX))
        self.item_similarity_cosine.index.name = ITEMID
        self.item_similarity_cosine.columns.name = ITEMID
    def item_based_rec(self,picked_userid,  number_of_recommendations,number_of_similar_items=5):
        import operator
        if not isinstance(picked_userid,str):
            picked_userid = str(picked_userid)
        if picked_userid not in self.matrix.columns:
            raise KeyError(""UserID Does Not Exist"")
        # Movies that the target user has not watched
        try:
            picked_userid_unwatched = pd.DataFrame(self.matrix[picked_userid].isna()).reset_index()
            picked_userid_unwatched = picked_userid_unwatched[picked_userid_unwatched[picked_userid] == True][ITEMID].values.tolist()
        
            # Movies that the target user has watched
            picked_userid_watched = pd.DataFrame(self.matrix[picked_userid].dropna(axis=0, how='all') \
                                             .sort_values(ascending=False)) \
                                            .reset_index() \
            .rename(columns={picked_userid: 'rating'})

            # Dictionary to save the unwatched movie and predicted rating pair
            rating_prediction = {}
            # Loop through unwatched movies
            for picked_movie in picked_userid_unwatched:
                if not isinstance(picked_movie,str):
                    picked_movie = str(picked_movie)
                # Calculate the similarity score of the picked movie with other movies
                try:
                    picked_movie_similarity_score = self.item_similarity_cosine[[picked_movie]].reset_index().rename(
                        columns={picked_movie: SIMILARITY_SCORE})
                    # Rank the similarities between the picked user watched movie and the picked unwatched movie.
                    picked_userid_watched_similarity = pd.merge(left=picked_userid_watched,
                                                                right=picked_movie_similarity_score,
                                                                on=ITEMID,
                                                                how='inner') \
                                                           .sort_values(SIMILARITY_SCORE, ascending=False)[
                                                       :number_of_similar_items]
                    # Calculate the predicted rating using weighted average of similarity scores and the ratings from picked user
                    try:
                        predicted_rating = round(np.average(picked_userid_watched_similarity[RATING],weights=picked_userid_watched_similarity[SIMILARITY_SCORE]), 6)
                    except Exception as e:
                        predicted_rating = 0
                    # Save the predicted rating in the dictionary
                    
                    rating_prediction[picked_movie] = predicted_rating
                except Exception as e:
                    rating_prediction[picked_movie] = 0
                # Return the top recommended movies

            return sorted(rating_prediction.items(), key=operator.itemgetter(1), reverse=True)[:number_of_recommendations]
        except Exception as e:
            print(e)
            raise KeyError(str(e))
    def predict(self,X):
        predictions = []
        for index,row in X.iterrows():
           score = self.item_based_rec(int(row[""uid""]),int(row[""numberOfRecommendation""]))
           df = pd.DataFrame(score,columns=['ItemId','Ratings'])
           predictions.append(df)
        return predictions""""""
    filename = os.path.join(deployPath, 'script', 'item_recommendation.py')
    # print(deploy_path)
    f = open(filename, ""wb"")

    f.write(str(code).encode('utf8'))
    f.close()
"
aion_prediction.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import os
import platform
import json
import shutil
import logging

class aionPrediction:

    def __init__(self):
        self.log = logging.getLogger('eion')        
        
    def create_optimus_prediction_file (self,classname,deploy_path,learner_type):
        self.predictionFile = 'import warnings'
        self.predictionFile += '\n'         
        self.predictionFile += 'warnings.filterwarnings(""ignore"")'
        self.predictionFile += '\n'
        self.predictionFile += 'import json'
        self.predictionFile += '\n'         
        self.predictionFile += 'import os'
        self.predictionFile += '\n'
        self.predictionFile += 'import sys'
        self.predictionFile += '\n'     
        self.predictionFile += 'import pandas as pd'
        self.predictionFile += '\n'     
        self.predictionFile += 'from pandas import json_normalize'
        self.predictionFile += '\n'
        self.predictionFile += 'from importlib import import_module'
        self.predictionFile += '\n'
        self.predictionFile += 'import importlib.util'
        self.predictionFile += '\n'
        self.predictionFile += 'class prediction:'
        self.predictionFile += '\n'
        self.predictionFile += '    def predict_from_json(self,json_data):'
        self.predictionFile += '\n'
        self.predictionFile += '        data = json.loads(json_data)'
        self.predictionFile += '\n'
        self.predictionFile += '        output=self.predict(data)'
        self.predictionFile += '\n'
        self.predictionFile += '        print(""predictions:"",output)'
        self.predictionFile += '\n'
        self.predictionFile += '\n'
        self.predictionFile += '    def predict_from_file(self,filename):'
        self.predictionFile += '\n'
        self.predictionFile += '        with open(filename,\'r\',encoding=\'utf-8\') as f:'
        self.predictionFile += '\n'
        self.predictionFile += '            data = json.load(f)'
        self.predictionFile += '\n'
        self.predictionFile += '            output=self.predict(data)'
        self.predictionFile += '\n'
        self.predictionFile += '            print(""predictions:"",output)'
        self.predictionFile += '\n'
        self.predictionFile += '\n'
        self.predictionFile += '    def predict(self,json_data):'
        self.predictionFile += '\n'
        self.predictionFile += '        try:'
        self.predictionFile += '\n'
        #self.predictionFile += '           jsonData = json.loads(json_data)'
        self.predictionFile += '            jsonData=json_data'
        self.predictionFile += '\n'
        self.predictionFile += '            model_obj = importlib.util.spec_from_file_location(""module.name"", os.path.dirname(os.path.abspath(__file__))+""/trained_model.py"")'
        self.predictionFile += '\n'
        self.predictionFile += '            model = importlib.util.module_from_spec(model_obj)'
        self.predictionFile += '\n'
        self.predictionFile += '            model_obj.loader.exec_module(model)'
        self.predictionFile += '\n'
        #if(learner_type != 'TextML'):  
        self.predictionFile += '            profiler_obj = importlib.util.spec_from_file_location(""module.name"",  os.path.dirname(os.path.abspath(__file__))+""/inputprofiler.py"")'
        self.predictionFile += '\n'
        self.predictionFile += '            inputprofiler = importlib.util.module_from_spec(profiler_obj)'
        self.predictionFile += '\n'
        self.predictionFile += '            profiler_obj.loader.exec_module(inputprofiler)'
        self.predictionFile += '\n'
            
        self.predictionFile += '            selector_obj = importlib.util.spec_from_file_location(""module.name"",  os.path.dirname(os.path.abspath(__file__))+""/selector.py"")'
        self.predictionFile += '\n'
        self.predictionFile += '            selector = importlib.util.module_from_spec(selector_obj)'
        self.predictionFile += '\n'
        self.predictionFile += '            selector_obj.loader.exec_module(selector)'
        self.predictionFile += '\n'

        self.predictionFile += '            output_format_obj = importlib.util.spec_from_file_location(""module.name"",  os.path.dirname(os.path.abspath(__file__))+""/output_format.py"")'
        self.predictionFile += '\n'
        self.predictionFile += '            output_format = importlib.util.module_from_spec(output_format_obj)'
        self.predictionFile += '\n'
        self.predictionFile += '            output_format_obj.loader.exec_module(output_format)'
        self.predictionFile += '\n'
        
        self.predictionFile += '            df = json_normalize(jsonData)'
        self.predictionFile += '\n'
        self.predictionFile += '            df0 = df.copy()'
        self.predictionFile += '\n'
        #if(learner_type != 'TextML'):
        self.predictionFile += '            profilerobj = inputprofiler.inputprofiler()'
        self.predictionFile += '\n'
        self.predictionFile += '            df = profilerobj.apply_profiler(df)'
        self.predictionFile += '\n'
        self.predictionFile += '            selectobj = selector.selector()'
        self.predictionFile += '\n'
        self.predictionFile += '            df = selectobj.apply_selector(df)'
        self.predictionFile += '\n'
        self.predictionFile += '            output = model.trained_model().predict(df,"""")'
        self.predictionFile += '\n'
        self.predictionFile += '            outputobj = output_format.output_format()'
        self.predictionFile += '\n'
        self.predictionFile += '            output = outputobj.apply_output_format(df0,output)'
        #self.predictionFile += '\n'
        #self.predictionFile += '           print(output)'
        self.predictionFile += '\n'
        self.predictionFile += '            return output'
        self.predictionFile += '\n'
        self.predictionFile += '        except KeyError as e:'
        self.predictionFile += '\n'
        self.predictionFile += '            output = {""status"":""FAIL"",""message"":str(e).strip(\'""\')}'
        self.predictionFile += '\n'
        self.predictionFile += '            return json.dumps(output)'
        self.predictionFile += '\n'
        self.predictionFile += '        except Exception as e:'
        self.predictionFile += '\n'
        self.predictionFile += '            output = {""status"":""FAIL"",""message"":str(e).strip(\'""\')}'
        self.predictionFile += '\n'
        self.predictionFile += '            return json.dumps(output)'
        self.predictionFile += '\n'
        self.predictionFile += '\n'
        self.predictionFile += 'if __name__ == ""__main__"":'
        self.predictionFile += '\n'
        self.predictionFile += '    predictobj = prediction()'
        self.predictionFile += '\n'     
        self.predictionFile += '    predictobj.predict_from_file(sys.argv[1])'
        self.predictionFile += '\n' 
            
        
        filename = os.path.join(deploy_path,'prediction.py')
        f = open(filename, ""wb"")
        f.write(str(self.predictionFile).encode('utf8'))
        f.close() 
    
    def create_text_drift_file(self,deploy_path,features,target,model_type): #task-14549
        self.predictionFile = 'import warnings'
        self.predictionFile += '\n'         
        self.predictionFile += 'warnings.filterwarnings(""ignore"")'
        self.predictionFile += '\n'
        self.predictionFile += 'import json'
        self.predictionFile += '\n'         
        self.predictionFile += 'import os'
        self.predictionFile += '\n'
        self.predictionFile += 'import sys'
        self.predictionFile += '\n'     
        self.predictionFile += 'import pandas as pd'
        self.predictionFile += '\n'
        self.predictionFile += 'from monitoring import check_drift'
        self.predictionFile += '\n'
        self.predictionFile += 'def drift(data):'
        self.predictionFile += '\n'
        self.predictionFile += '    try:'
        self.predictionFile += '\n'
        self.predictionFile += '        if os.path.splitext(data)[1] == "".json"":'
        self.predictionFile += '\n'
        self.predictionFile += '            with open(data,\'r\',encoding=\'utf-8\') as f:'
        self.predictionFile += '\n'
        self.predictionFile += '                jsonData = json.load(f)'
        self.predictionFile += '\n'
        self.predictionFile += '        else:'
        self.predictionFile += '\n'
        self.predictionFile += '            jsonData = json.loads(data)'     
        self.predictionFile += '\n'        
        self.predictionFile += '        jsonData[\'features\'] = \''+"","".join([feature for feature in features])+'\''
        self.predictionFile += '\n'
        self.predictionFile += '        jsonData[\'target\'] = \''+target+'\''
        self.predictionFile += '\n'
        if  model_type.lower() != 'timeseriesforecasting': #task 11997       
            self.predictionFile += '        htmlfilepath=evidently_details(jsonData)'
            self.predictionFile += '\n'        
        else:            
            self.predictionFile += '        htmlfilepath=\'\''        
            self.predictionFile += '\n'            
        self.predictionFile += '        jsonData = json.dumps(jsonData)'
        self.predictionFile += '\n'              
        self.predictionFile += '        output = check_drift(jsonData)'
        self.predictionFile += '\n'
        self.predictionFile += '        output = json.loads(output)'
        self.predictionFile += '\n'
        self.predictionFile += '        output[\'htmlPath\'] = str(htmlfilepath)'        
        self.predictionFile += '\n'
        self.predictionFile += '        print(""drift:"", json.dumps(output))'
        self.predictionFile += '\n'        
        self.predictionFile += '        return(output)'
        self.predictionFile += '\n'
        self.predictionFile += '    except KeyError as e:'
        self.predictionFile += '\n'
        self.predictionFile += '        output = {""status"":""FAIL"",""message"":str(e).strip(\'""\')}'
        self.predictionFile += '\n'
        self.predictionFile += '        print(""drift:"",json.dumps(output))'
        self.predictionFile += '\n'
        self.predictionFile += '        return (json.dumps(output))'
        self.predictionFile += '\n'
        self.predictionFile += '    except Exception as e:'
        self.predictionFile += '\n'
        self.predictionFile += '        output = {""status"":""FAIL"",""message"":str(e).strip(\'""\')}'
        self.predictionFile += '\n'
        self.predictionFile += '        print(""drift:"",json.dumps(output))'
        self.predictionFile += '\n'
        self.predictionFile += '        return (json.dumps(output))'
        self.predictionFile += '\n'
        if  model_type.lower() != 'timeseriesforecasting': #task 11997        
            self.predictionFile += 'def evidently_details(deployJson):'
            self.predictionFile += '\n'
            self.predictionFile += '    features = deployJson[\'features\'].split(\',\')'
            self.predictionFile += '\n'
            self.predictionFile += '    target = deployJson[\'target\']'
            self.predictionFile += '\n'
            self.predictionFile += """"""\
    try:
        from evidently.report import Report
        from evidently.metrics import TextDescriptorsDriftMetric, ColumnDriftMetric
        from evidently.pipeline.column_mapping import ColumnMapping
        from sklearn.preprocessing import LabelEncoder
        historicaldataFrame=pd.read_csv(deployJson['trainingDataLocation'],skipinitialspace = True,na_values=['-','?'])
        currentdataFrame=pd.read_csv(deployJson['currentDataLocation'],skipinitialspace = True,na_values=['-','?'])
        historicaldataFrame.columns = historicaldataFrame.columns.str.strip()
        currentdataFrame.columns = currentdataFrame.columns.str.strip()   
        hdf = historicaldataFrame.dropna(subset=features)
        cdf = currentdataFrame.dropna(subset=features)
        hdf['Text_Features'] = hdf[features].apply(""-"".join, axis=1)
        cdf['Text_Features'] = cdf[features].apply(""-"".join, axis=1)
        hdf['target'] = historicaldataFrame[target]
        cdf['target'] = currentdataFrame[target]
        le = LabelEncoder()
        le.fit(hdf['target'])            
        hdf['target'] = le.transform(hdf['target'])
        le.fit(cdf['target'])            
        cdf['target'] = le.transform(cdf['target'])
        hd = hdf[['Text_Features', 'target']]
        cd = cdf[['Text_Features', 'target']]
        column_mapping = ColumnMapping()
        column_mapping.target = 'target'
        column_mapping.prediction = 'target'
        column_mapping.text_features = ['Text_Features']
        column_mapping.numerical_features = []
        column_mapping.categorical_features = []
        performance_report = Report(metrics=[ColumnDriftMetric('target'),TextDescriptorsDriftMetric(column_name='Text_Features')])
        performance_report.run(reference_data=hd, current_data=cd,column_mapping=column_mapping)
        report = os.path.join(os.path.dirname(os.path.abspath(__file__)),""log"",""My_report.html"")
        performance_report.save_html(report)
        return(report)
    except Exception as e:
        print('Error: ', e)
        return('NA')""""""        
        
            self.predictionFile += '\n'
        self.predictionFile += 'if __name__ == ""__main__"":'
        self.predictionFile += '\n'
        self.predictionFile += '    output = drift(sys.argv[1])'
        filename = os.path.join(deploy_path,'aion_ipdrift.py')
        f = open(filename, ""wb"")
        f.write(str(self.predictionFile).encode('utf8'))
        f.close()

    def create_drift_file(self,deploy_path,features,target,model_type):
        self.predictionFile = 'import warnings'
        self.predictionFile += '\n'         
        self.predictionFile += 'warnings.filterwarnings(""ignore"")'
        self.predictionFile += '\n'
        self.predictionFile += 'import json'
        self.predictionFile += '\n'         
        self.predictionFile += 'import os'
        self.predictionFile += '\n'
        self.predictionFile += 'import sys'
        self.predictionFile += '\n'     
        self.predictionFile += 'import pandas as pd'
        self.predictionFile += '\n'
        self.predictionFile += 'from monitoring import check_drift'
        self.predictionFile += '\n'
        self.predictionFile += 'from pandas import json_normalize'
        self.predictionFile += '\n'    
        self.predictionFile += 'from script.inputprofiler import inputprofiler'
        self.predictionFile += '\n'
        self.predictionFile += 'def drift(data):'
        self.predictionFile += '\n'
        self.predictionFile += '    try:'
        self.predictionFile += '\n'
        self.predictionFile += '        if os.path.splitext(data)[1] == "".json"":'
        self.predictionFile += '\n'
        self.predictionFile += '            with open(data,\'r\',encoding=\'utf-8\') as f:'
        self.predictionFile += '\n'
        self.predictionFile += '                jsonData = json.load(f)'
        self.predictionFile += '\n'
        self.predictionFile += '        else:'
        self.predictionFile += '\n'
        self.predictionFile += '            jsonData = json.loads(data)'     
        self.predictionFile += '\n'        
        self.predictionFile += '        jsonData[\'features\'] = \''+"","".join([feature for feature in features])+'\''
        self.predictionFile += '\n'
        self.predictionFile += '        jsonData[\'target\'] = \''+target+'\''
        self.predictionFile += '\n'
        if  model_type.lower() != 'timeseriesforecasting': #task 11997       
            self.predictionFile += '        htmlfilepath=evidently_details(jsonData)'
            self.predictionFile += '\n'        
        else:            
            self.predictionFile += '        htmlfilepath=\'\''        
            self.predictionFile += '\n'            
        self.predictionFile += '        jsonData = json.dumps(jsonData)'
        self.predictionFile += '\n'              
        self.predictionFile += '        output = check_drift(jsonData)'
        self.predictionFile += '\n'
        self.predictionFile += '        output = json.loads(output)'
        self.predictionFile += '\n'
        self.predictionFile += '        output[\'htmlPath\'] = str(htmlfilepath)'        
        self.predictionFile += '\n'
        self.predictionFile += '        output = json.dumps(output)'
        self.predictionFile += '\n'
        self.predictionFile += '        print(""drift:"",output)'
        self.predictionFile += '\n'        
        self.predictionFile += '        return(output)'
        self.predictionFile += '\n'
        self.predictionFile += '    except KeyError as e:'
        self.predictionFile += '\n'
        self.predictionFile += '        output = {""status"":""FAIL"",""message"":str(e).strip(\'""\')}'
        self.predictionFile += '\n'
        self.predictionFile += '        print(""drift:"",json.dumps(output))'
        self.predictionFile += '\n'
        self.predictionFile += '        return (json.dumps(output))'
        self.predictionFile += '\n'
        self.predictionFile += '    except Exception as e:'
        self.predictionFile += '\n'
        self.predictionFile += '        output = {""status"":""FAIL"",""message"":str(e).strip(\'""\')}'
        self.predictionFile += '\n'
        self.predictionFile += '        print(""drift:"",json.dumps(output))'
        self.predictionFile += '\n'
        self.predictionFile += '        return (json.dumps(output))'
        self.predictionFile += '\n'
        if  model_type.lower() != 'timeseriesforecasting': #task 11997        
            self.predictionFile += 'def evidently_details(deployJson):'
            self.predictionFile += '\n'
            self.predictionFile += '    features = deployJson[\'features\'].split(\',\')'
            self.predictionFile += '\n'
            self.predictionFile += '    target = deployJson[\'target\']'
            self.predictionFile += '\n'
            self.predictionFile += """"""\
    try:
        from evidently.report import Report
        from evidently.metric_preset import DataDriftPreset
        historicaldataFrame=pd.read_csv(deployJson['trainingDataLocation'],skipinitialspace = True,na_values=['-','?'])
        currentdataFrame=pd.read_csv(deployJson['currentDataLocation'],skipinitialspace = True,na_values=['-','?'])
        historicaldataFrame.columns = historicaldataFrame.columns.str.strip()
        currentdataFrame.columns = currentdataFrame.columns.str.strip()
        profilerobj = inputprofiler()
        historicaldataFramep = profilerobj.run(historicaldataFrame)
        currentdataFramep = profilerobj.run(currentdataFrame)        
        hdf = historicaldataFramep[features]
        cdf = currentdataFramep[features]
        hdf['target'] = historicaldataFrame[target]
        cdf['target'] = currentdataFrame[target]
        data_drift_report = Report(metrics = [DataDriftPreset()])
        data_drift_report.run(reference_data=hdf,current_data=cdf,column_mapping = None)
        report = os.path.join(os.path.dirname(os.path.abspath(__file__)),'log','my_report.html')
        data_drift_report.save_html(report)
        return(report)
    except Exception as e:
        print('Error')
        return('NA')""""""        
        
            self.predictionFile += '\n'
        self.predictionFile += 'if __name__ == ""__main__"":'
        self.predictionFile += '\n'
        self.predictionFile += '    output = drift(sys.argv[1])'
        filename = os.path.join(deploy_path,'aion_ipdrift.py')
        f = open(filename, ""wb"")
        f.write(str(self.predictionFile).encode('utf8'))
        f.close()    
        
    def create_prediction_file(self,classname,deploy_path,learner_type,grouperbyjson,rowfilterexpression,model_type,datetimeFeature):
        self.predictionFile = 'import warnings'
        self.predictionFile += '\n'         
        self.predictionFile += 'warnings.filterwarnings(""ignore"")'
        self.predictionFile += '\n'
        self.predictionFile += 'import json'
        self.predictionFile += '\n'         
        self.predictionFile += 'import os'
        self.predictionFile += '\n'
        self.predictionFile += 'import sys'
        self.predictionFile += '\n'     
        self.predictionFile += 'import pandas as pd'
        self.predictionFile += '\n'     
        self.predictionFile += 'from pandas import json_normalize'
        self.predictionFile += '\n'

        if(learner_type.lower() != 'recommendersystem'): #task 11190
            self.predictionFile += 'from script.selector import selector'
            self.predictionFile += '\n'
            self.predictionFile += 'from script.inputprofiler import inputprofiler'
            self.predictionFile += '\n'
            #self.predictionFile += 'from '+classname+' import '+classname
            self.predictionFile += 'from script.trained_model import trained_model'
            self.predictionFile += '\n'
        else:
            self.predictionFile += 'from script.item_recommendation import collaborative_filter'
            self.predictionFile += '\n'

        self.predictionFile += 'from script.output_format import output_format'
        self.predictionFile += '\n'
        if (learner_type != 'RecommenderSystem'): #task 11190
            self.predictionFile += 'profilerobj = inputprofiler()'
            self.predictionFile += '\n'
            self.predictionFile += 'selectobj = selector()'
            self.predictionFile += '\n'
            self.predictionFile += 'modelobj = trained_model()'
            self.predictionFile += '\n'
        else:
            self.predictionFile += 'colabobj = collaborative_filter()'
            self.predictionFile += '\n'

        self.predictionFile += 'outputobj = output_format()'
        self.predictionFile += '\n'        
        self.predictionFile += 'def predict(data):'
        self.predictionFile += '\n'
        self.predictionFile += '    try:'
        self.predictionFile += '\n'
        self.predictionFile += '        if os.path.splitext(data)[1] == "".tsv"":'
        self.predictionFile += '\n'
        self.predictionFile += '            df=pd.read_csv(data,encoding=\'utf-8\',sep=\'\\t\',skipinitialspace = True,na_values=[\'-\',\'?\'])'
        self.predictionFile += '\n'
        self.predictionFile += '        elif os.path.splitext(data)[1] == "".csv"":'
        self.predictionFile += '\n'
        self.predictionFile += '            df=pd.read_csv(data,encoding=\'utf-8\',skipinitialspace = True,na_values=[\'-\',\'?\'])'
        self.predictionFile += '\n'
        self.predictionFile += '        elif os.path.splitext(data)[1] == "".dat"":'
        self.predictionFile += '\n'
        self.predictionFile += '            df=pd.read_csv(data,encoding=\'utf-8\',skipinitialspace = True,na_values=[\'-\',\'?\'])'
        self.predictionFile += '\n'
        self.predictionFile += '        else:'
        self.predictionFile += '\n'
        self.predictionFile += '            if os.path.splitext(data)[1] == "".json"":'
        self.predictionFile += '\n'
        self.predictionFile += '                with open(data,\'r\',encoding=\'utf-8\') as f:'
        self.predictionFile += '\n'
        self.predictionFile += '                    jsonData = json.load(f)'
        self.predictionFile += '\n'
        self.predictionFile += '            else:'
        self.predictionFile += '\n'
        self.predictionFile += '                jsonData = json.loads(data)'
        self.predictionFile += '\n'
        self.predictionFile += '            df = json_normalize(jsonData)'
        self.predictionFile += '\n'
        self.predictionFile += '        df.rename(columns=lambda x: x.strip(), inplace=True)'       
        self.predictionFile += '\n'
        if str(rowfilterexpression) != '':
            self.predictionFile += '        filterexpression = ""'+rowfilterexpression+'""'
            self.predictionFile += '\n'
            self.predictionFile += '        df = df.query(filterexpression)'
            self.predictionFile += '\n'
        #print(grouperbyjson)
        if str(grouperbyjson) != '':
            datetime = grouperbyjson['datetime']
            unit = grouperbyjson['unit']
            if unit == '':
                self.predictionFile += '        df[\'date\'] = pd.to_datetime(df[\''+datetime+'\'])'
                self.predictionFile += '\n'
            else:
                self.predictionFile += '        df[\'date\'] = pd.to_datetime(df[\''+datetime+'\'],unit=\''+unit+'\')'
                self.predictionFile += '\n'
            self.predictionFile += '        df = df.reset_index()'
            self.predictionFile += '\n'
            self.predictionFile += '        df.set_index(\'date\',inplace=True)'
            self.predictionFile += '\n'
            self.predictionFile += '        df = df.'+grouperbyjson['groupbystring']
            self.predictionFile += '\n'
            self.predictionFile += '        df.columns = df.columns.droplevel(0)'
            self.predictionFile += '\n'
            self.predictionFile += '        df = df.reset_index()'
            self.predictionFile += '\n'
            
        self.predictionFile += '        df0 = df.copy()'
        self.predictionFile += '\n'

        if(learner_type != 'RecommenderSystem'): #task 11190
            if model_type.lower() == 'anomaly_detection' and datetimeFeature != '' and datetimeFeature.lower() != 'na':
                self.predictionFile += '        df,datetimeFeature = profilerobj.apply_profiler(df)'
                self.predictionFile += '\n'
            else:
                self.predictionFile += '        df = profilerobj.apply_profiler(df)'
                self.predictionFile += '\n'
            self.predictionFile += '        df = selectobj.apply_selector(df)'
            self.predictionFile += '\n'
            #self.predictionFile += '        modelobj = '+classname+'()'
            self.predictionFile += '        output = modelobj.predict(df,"""")'
            self.predictionFile += '\n'
        else:
            self.predictionFile += '        output = colabobj.predict(df)'
            self.predictionFile += '\n'        
        if model_type.lower() == 'anomaly_detection' and datetimeFeature != '' and datetimeFeature.lower() != 'na':
            self.predictionFile += '        output = outputobj.apply_output_format(df0,output,datetimeFeature)'
            self.predictionFile += '\n'
        else:
            self.predictionFile += '        output = outputobj.apply_output_format(df0,output)'
            self.predictionFile += '\n'
        self.predictionFile += '        print(""predictions:"",output)'
        self.predictionFile += '\n'
        self.predictionFile += '        return(output)'
        self.predictionFile += '\n'
        self.predictionFile += '    except KeyError as e:'
        self.predictionFile += '\n'
        self.predictionFile += '        output = {""status"":""FAIL"",""message"":str(e).strip(\'""\')}'
        self.predictionFile += '\n'
        self.predictionFile += '        print(""predictions:"",json.dumps(output))'
        self.predictionFile += '\n'
        self.predictionFile += '        return (json.dumps(output))'
        self.predictionFile += '\n'
        self.predictionFile += '    except Exception as e:'
        self.predictionFile += '\n'
        self.predictionFile += '        output = {""status"":""FAIL"",""message"":str(e).strip(\'""\')}'
        self.predictionFile += '\n'
        self.predictionFile += '        print(""predictions:"",json.dumps(output))'
        self.predictionFile += '\n'
        self.predictionFile += '        return (json.dumps(output))'
        self.predictionFile += '\n'
        self.predictionFile += 'if __name__ == ""__main__"":'
        self.predictionFile += '\n'
        self.predictionFile += '    output = predict(sys.argv[1])'
        
        filename = os.path.join(deploy_path,'aion_predict.py')
        f = open(filename, ""w"")
        f.write(str(self.predictionFile))
        f.close() 
    def create_classification_text_performance_file(self,deploy_path,features,target):
        features = "","".join([feature for feature in features])
        self.predictionFile = """"""\
import pandas as pd
import warnings
warnings.filterwarnings(""ignore"")
import json
import os
import sys
from pandas import json_normalize
# from evidently.dashboard import Dashboard
# from evidently.tabs import ClassificationPerformanceTab
from evidently.pipeline.column_mapping import ColumnMapping
from aion_predict import predict
from evidently.report import Report
from evidently.pipeline.column_mapping import ColumnMapping
from evidently.metric_preset import ClassificationPreset 
def odrift(data):
    try:
""""""
        self.predictionFile += '        features = \''+features+'\''
        self.predictionFile += '\n'
        self.predictionFile += '        target = \''+target+'\''
        self.predictionFile += '\n'
        self.predictionFile +=""""""\
        if os.path.splitext(data)[1] == "".json"":
            with open(data,'r',encoding='utf-8') as f:
                jsonData = json.load(f)
        else:
            jsonData = json.loads(data)            
        production = predict().run(jsonData['currentDataLocation'])
        reference = predict().run(jsonData['trainingDataLocation'])
        production = json.loads(production)
        reference = json.loads(reference)
        if (production['status'] == 'SUCCESS' and reference['status'] == 'SUCCESS'):
            production = production['data']
            production = json_normalize(production)
            reference = reference['data']
            reference = json_normalize(reference)
            production['target'] = production[target]
            reference['target'] = reference[target]                
            column_mapping = ColumnMapping()
            column_mapping.target = target
            column_mapping.prediction = 'prediction'
            column_mapping.datetime = None
            column_mapping.text_features = features.split(',')
            iris_model_performance_dashboard = Report(metrics=[ClassificationPreset()])
            iris_model_performance_dashboard.run(reference_data=reference, current_data=production,column_mapping=column_mapping)
            report = os.path.join(os.path.dirname(os.path.abspath(__file__)),'log','performance.html')
            iris_model_performance_dashboard.save_html(report)
            metrics_output = iris_model_performance_dashboard.as_dict()
            output = {""status"":""SUCCESS"",""htmlPath"":report, 'drift_details':metrics_output['metrics']} 
            print(""drift:"",json.dumps(output))
            return (json.dumps(output))
    except KeyError as e:
        print(e)
        output = {""status"":""FAIL"",""message"":str(e).strip('""')}
        print(""drift:"",json.dumps(output))
        return (json.dumps(output))
    except Exception as e:
        print(e)
        output = {""status"":""FAIL"",""message"":str(e).strip('""')}
        print(""drift:"",json.dumps(output))
        return (json.dumps(output))  
if __name__ == ""__main__"":
    output = odrift(sys.argv[1])""""""
    
        filename = os.path.join(deploy_path,'aion_opdrift.py')
        f = open(filename, ""wb"")
        f.write(str(self.predictionFile).encode('utf8'))
        f.close()
    def create_classification_performance_file(self,deploy_path,features,target):
        features = "","".join([feature for feature in features])
        self.predictionFile = """"""\
import pandas as pd
import warnings
warnings.filterwarnings(""ignore"")
import json
import os
import sys
from pandas import json_normalize
from evidently.report import Report
from evidently.metric_preset import ClassificationPreset
from evidently.pipeline.column_mapping import ColumnMapping
from aion_predict import predict
def odrift(data):
    try:
""""""
        self.predictionFile += '        features = \''+features+'\''
        self.predictionFile += '\n'
        self.predictionFile += '        target = \''+target+'\''
        self.predictionFile += '\n'
        self.predictionFile +=""""""\
        if os.path.splitext(data)[1] == "".json"":
            with open(data,'r',encoding='utf-8') as f:
                jsonData = json.load(f)
        else:
            jsonData = json.loads(data) 
        production = predict().run(jsonData['currentDataLocation'])
        reference = predict().run(jsonData['trainingDataLocation'])
        production = json.loads(production)
        reference = json.loads(reference)
        if (production['status'] == 'SUCCESS' and reference['status'] == 'SUCCESS'):
                production = production['data']
                production = json_normalize(production)
                reference = reference['data']
                reference = json_normalize(reference)
                production['target'] = production[target]
                reference['target'] = reference[target]                
                column_mapping = ColumnMapping()
                column_mapping.target = target
                column_mapping.prediction = 'prediction'
                column_mapping.datetime = None
                column_mapping.numerical_features = features.split(',')
                model_performance_dashboard = Report(metrics = [ClassificationPreset()])
                model_performance_dashboard.run(reference_data =reference, current_data =production, column_mapping = column_mapping)
                report = os.path.join(os.path.dirname(os.path.abspath(__file__)),'log','performance.html')
                model_performance_dashboard.save_html(report)
                metrics_output = model_performance_dashboard.as_dict()
                output = {""status"":""SUCCESS"",""htmlPath"":report, 'drift_details':metrics_output['metrics']}    
                print(""drift:"",json.dumps(output))
                return (json.dumps(output))
        else:
                output = {""status"":""SUCCESS"",""htmlPath"":'NA'}    
                print(""drift:"",json.dumps(output))
                return (json.dumps(output))        
         
    except KeyError as e:
        print(e)
        output = {""status"":""FAIL"",""message"":str(e).strip('""')}
        print(""drift:"",json.dumps(output))
        return (json.dumps(output))
    except Exception as e:
        print(e)
        output = {""status"":""FAIL"",""message"":str(e).strip('""')}
        print(""drift:"",json.dumps(output))
        return (json.dumps(output))

if __name__ == ""__main__"":
    output = odrift(sys.argv[1])""""""
    
        filename = os.path.join(deploy_path,'aion_opdrift.py')
        f = open(filename, ""wb"")
        f.write(str(self.predictionFile).encode('utf8'))
        f.close()
    def create_model_service(self,deploy_path,serviceName,problemType):
            
        filedata = """"""
from flask import Flask, jsonify, request
from flask_restful import Resource, Api
from aion_predict import predict""""""
        if  problemType.lower() == 'classification' or problemType.lower() == 'regression':
            filedata += """"""        
from aion_xai import local_analysis
from aion_ipdrift import drift
from aion_opdrift import odrift""""""
        filedata += """"""
import json
import os
import pandas as pd
import io
import argparse 
from pathlib import Path
from flask_cors import CORS, cross_origin
app = Flask(__name__)
#cross origin resource from system arguments
parser = argparse.ArgumentParser()
parser.add_argument('-ip', '--ipaddress', help='IP Address')    
parser.add_argument('-p', '--port', help='Port Number')  
parser.add_argument(""-cors"", type=str, required=False) 
d = vars(parser.parse_args())

modelPath = Path(__file__).parent
try:
    with open( (modelPath/'etc')/'display.json', 'r') as f:
        disp_data = json.load(f)
        is_explainable = not disp_data.get('textFeatures')
except:
    disp_data = {}
    is_explainable = True

if ""cors"" in d.keys(): 
    if d[""cors""] != '' and d[""cors""] != None:
        d[""cors""] = [s.strip() for s in d[""cors""].split("","")]
        #cors = CORS(app, resources={r""/AION/*"": {""origins"": [""http://localhost"", ""http://localhost:5000""]}})
        cors = CORS(app, resources={r""/AION/*"": {""origins"": d[""cors""]}})
api = Api(app)
class predictapi(Resource):
    def get(self):
        features = disp_data.get('modelFeatures')
        if features:
            msg=\""""""
RequestType: POST
Content-Type=application/json
Body: {displaymsg}
            \"""""".format(displaymsg={ x:'Value' for x in features})
        else:
            displaymsg='Data in JSON Format'
        return jsonify(displaymsg)

    def post(self): 
        data = request.get_json()     
        output = predict().run(json.dumps(data))
        return jsonify(json.loads(output))

class predictfileapi(Resource):
    def post(self):              
        if 'file' in request.files:
            file = request.files['file']
            urlData = file.read()
            rawData = pd.read_csv(io.StringIO(urlData.decode('utf-8')))
            data = rawData.to_json(orient='records')
            output = predict().run(data)
            return jsonify(json.loads(output))
        else:
            displaymsg='File is mising'
            return jsonify(displaymsg)

    def get(self): 
        msg=\""""""
RequestType: POST
Body:send file content in body\""""""
        return jsonify(msg)        
        """"""
        if  problemType.lower() == 'classification' or problemType.lower() == 'regression':
            filedata += """"""        
class explainapi(Resource):
    def get(self):
        features = disp_data.get('modelFeatures')
        if features:
            msg=\""""""
RequestType: POST
Content-Type=application/json
Body: {displaymsg}
            \"""""".format(displaymsg={ x:'Value' for x in features})
        else:
            displaymsg='Data in JSON Format'
        return jsonify(displaymsg)

    def post(self):
        data = request.get_json()
        if is_explainable:
            output = local_analysis(json.dumps(data))
        else:
            output = json.dumps({""status"":""FAIL"",""data"":""explain api is not supported when text features are used for training""})
        return jsonify(json.loads(output))
        
class monitoringapi(Resource):
    def get(self):
        return jsonify({'trainingDataLocation':'Training File Location','currentDataLocation':'production Location'})
    def post(self): 
        data = request.get_json()     
        output = drift(json.dumps(data))
        return jsonify(json.loads(output))

class performanceapi(Resource):
    def get(self):
        return jsonify({'trainingDataLocation':'Training File Location','currentDataLocation':'production Location'})
    def post(self): 
        data = request.get_json()     
        output = odrift(json.dumps(data))
        return jsonify(json.loads(output))        
        """"""
        filedata += """"""       
api.add_resource(predictapi, '/AION/{serviceName}/predict')"""""".format(serviceName=serviceName)
        filedata += """"""       
api.add_resource(predictfileapi, '/AION/{serviceName}/predict_file')"""""".format(serviceName=serviceName)
        if  problemType.lower() == 'classification' or problemType.lower() == 'regression':
            filedata += """"""        
api.add_resource(explainapi, '/AION/{serviceName}/explain')
api.add_resource(monitoringapi, '/AION/{serviceName}/monitoring')
api.add_resource(performanceapi, '/AION/{serviceName}/performance')"""""".format(serviceName=serviceName)
        filedata += """"""
if __name__ == '__main__':
    args = parser.parse_args()    
    app.run(args.ipaddress,port = args.port,debug = True)""""""
        filename = os.path.join(deploy_path,'aion_service.py')
        f = open(filename, ""wb"")
        f.write(str(filedata).encode('utf8'))
        f.close()
        
    def create_regression_performance_file(self,deploy_path,features,target):
        features = "","".join([feature for feature in features])
        self.predictionFile = """"""\
import pandas as pd
import warnings
warnings.filterwarnings(""ignore"")
import json
import os
import sys
from pandas import json_normalize
from evidently.report import Report
from evidently.metric_preset import RegressionPreset
from evidently.pipeline.column_mapping import ColumnMapping
from aion_predict import predict
def odrift(data):
    try:
""""""
        self.predictionFile += '        features = \''+features+'\''
        self.predictionFile += '\n'
        self.predictionFile += '        target = \''+target+'\''
        self.predictionFile += '\n'
        self.predictionFile +=""""""\
        if os.path.splitext(data)[1] == "".json"":
            with open(data,'r',encoding='utf-8') as f:
                jsonData = json.load(f)
        else:
            jsonData = json.loads(data) 
        production = predict().run(jsonData['currentDataLocation'])
        reference = predict().run(jsonData['trainingDataLocation'])
        production = json.loads(production)
        reference = json.loads(reference)
        if (production['status'] == 'SUCCESS' and reference['status'] == 'SUCCESS'):
                production = production['data']
                production = json_normalize(production)
                reference = reference['data']
                reference = json_normalize(reference)
                production['target'] = production[target]
                reference['target'] = reference[target]                
                column_mapping = ColumnMapping()
                column_mapping.target = target
                column_mapping.prediction = 'prediction'
                column_mapping.datetime = None
                column_mapping.numerical_features = features.split(',')
                iris_model_performance_dashboard = Report(metrics=[RegressionPreset()])
                iris_model_performance_dashboard.run(reference_data = reference, current_data = production, column_mapping = column_mapping)
                report = os.path.join(os.path.dirname(os.path.abspath(__file__)),'log','performance.html')
                iris_model_performance_dashboard.save_html(report)
                metrics_output = iris_model_performance_dashboard.as_dict()
                output = {""status"":""SUCCESS"",""htmlPath"":report, 'drift_details':metrics_output['metrics']}    
                print(""drift:"",json.dumps(output))
                return (json.dumps(output))
        else:
                output = {""status"":""SUCCESS"",""htmlPath"":'NA'}    
                print(""drift:"",json.dumps(output))
                return (json.dumps(output))        
         
    except KeyError as e:
        print(e)
        output = {""status"":""FAIL"",""message"":str(e).strip('""')}
        print(""drift:"",json.dumps(output))
        return (json.dumps(output))
    except Exception as e:
        print(e)
        output = {""status"":""FAIL"",""message"":str(e).strip('""')}
        print(""drift:"",json.dumps(output))
        return (json.dumps(output))

if __name__ == ""__main__"":
    output = odrift(sys.argv[1])""""""
    
        filename = os.path.join(deploy_path,'aion_opdrift.py')
        f = open(filename, ""wb"")
        f.write(str(self.predictionFile).encode('utf8'))
        f.close()
    
    def create_regression_text_performance_file(self,deploy_path,features,target):
        features = "","".join([feature for feature in features])
        self.predictionFile = """"""\
import pandas as pd
import warnings
warnings.filterwarnings(""ignore"")
import json
import os
import sys
from pandas import json_normalize
from aion_predict import predict
from evidently.report import Report
from evidently.pipeline.column_mapping import ColumnMapping
from evidently.metric_preset import RegressionPreset
def odrift(data):
    try:
""""""
        self.predictionFile += '        features = \''+features+'\''
        self.predictionFile += '\n'
        self.predictionFile += '        target = \''+target+'\''
        self.predictionFile += '\n'
        self.predictionFile +=""""""\
        if os.path.splitext(data)[1] == "".json"":
            with open(data,'r',encoding='utf-8') as f:
                jsonData = json.load(f)
        else:
            jsonData = json.loads(data) 
        production = predict().run(jsonData['currentDataLocation'])
        reference = predict().run(jsonData['trainingDataLocation'])
        production = json.loads(production)
        reference = json.loads(reference)
        if (production['status'] == 'SUCCESS' and reference['status'] == 'SUCCESS'):
                production = production['data']
                production = json_normalize(production)
                reference = reference['data']
                reference = json_normalize(reference)
                production['target'] = production[target]
                reference['target'] = reference[target]                
                column_mapping = ColumnMapping()
                column_mapping.target = target
                column_mapping.prediction = 'prediction'
                column_mapping.datetime = None
                column_mapping.numerical_features = features.split(',')
                iris_model_performance_dashboard = Report(metrics=[RegressionPreset()])
                iris_model_performance_dashboard.run(reference_data=reference, current_data=production,column_mapping=column_mapping)
                report = os.path.join(os.path.dirname(os.path.abspath(__file__)),'log','performance.html')
                iris_model_performance_dashboard.save_html(report)
                metrics_output = iris_model_performance_dashboard.as_dict()
                output = {""status"":""SUCCESS"",""htmlPath"":report, 'drift_details':metrics_output['metrics']}    
                print(""drift:"",json.dumps(output))
                return (json.dumps(output))
        else:
                output = {""status"":""SUCCESS"",""htmlPath"":'NA'}    
                print(""drift:"",json.dumps(output))
                return (json.dumps(output))        
         
    except KeyError as e:
        print(e)
        output = {""status"":""FAIL"",""message"":str(e).strip('""')}
        print(""drift:"",json.dumps(output))
        return (json.dumps(output))
    except Exception as e:
        print(e)
        output = {""status"":""FAIL"",""message"":str(e).strip('""')}
        print(""drift:"",json.dumps(output))
        return (json.dumps(output))

if __name__ == ""__main__"":
    output = odrift(sys.argv[1])""""""
    
        filename = os.path.join(deploy_path,'aion_opdrift.py')
        f = open(filename, ""wb"")
        f.write(str(self.predictionFile).encode('utf8'))
        f.close()

    def create_publish_service(self,datalocation,usecaseid,version,problemType):
        filename = os.path.join(datalocation,'aion_publish_service.py')
        if not os.path.exists(filename):
            filedata = """"""    
import sys
import json
import time
import sqlite3
import argparse
import pandas as pd
import io
from pathlib import Path
from datetime import datetime

filename = Path(__file__).parent/'config.json'
with open (filename, ""r"") as f:
    data = json.loads(f.read())
modelVersion = str(data['version'])
modelPath = Path(__file__).parent/modelVersion
sys.path.append(str(modelPath))

try:
    with open( (modelPath/'etc')/'display.json', 'r') as f:
        disp_data = json.load(f)
        is_explainable = not disp_data.get('textFeatures')
except:
    disp_data = {}
    is_explainable = True
    
from flask import Flask, jsonify, request
from flask_restful import Resource, Api
from flask_cors import CORS, cross_origin
from flask import Response
from aion_predict import predict   
""""""
            if  problemType.lower() == 'classification' or problemType.lower() == 'regression':
                filedata += """"""        
from aion_ipdrift import drift
from aion_opdrift import odrift
if is_explainable:
    from aion_xai import local_analysis
""""""
            filedata += """"""
dataPath = Path(__file__).parent/'data'
dataPath.mkdir(parents=True, exist_ok=True)
app = Flask(__name__)
#cross origin resource from system arguments
parser = argparse.ArgumentParser()
parser.add_argument('-ip', '--ipaddress', help='IP Address')    
parser.add_argument('-p', '--port', help='Port Number')  
parser.add_argument(""-cors"", type=str, required=False) 
d = vars(parser.parse_args())

if ""cors"" in d.keys(): 
    if d[""cors""] != '' and d[""cors""] != None:
        d[""cors""] = [s.strip() for s in d[""cors""].split("","")]
        #cors = CORS(app, resources={r""/AION/*"": {""origins"": [""http://localhost"", ""http://localhost:5000""]}})
        cors = CORS(app, resources={r""/AION/*"": {""origins"": d[""cors""]}})
api = Api(app)

class sqlite_db():
    def __init__(self, location, database_file=None):
        if not isinstance(location, Path):
            location = Path(location)
        if database_file:
            self.database_name = database_file
        else:
            self.database_name = location.stem + '.db'
        db_file = str(location/self.database_name)          
        self.conn = sqlite3.connect(db_file)
        self.cursor = self.conn.cursor()
        self.tables = []

    def table_exists(self, name):
        if name in self.tables:
            return True
        elif name:
            query = f""SELECT name FROM sqlite_master WHERE type='table' AND name='{name}';""
            listOfTables = self.cursor.execute(query).fetchall()
            if len(listOfTables) > 0 :
                self.tables.append(name)
                return True
        return False

    def read(self, table_name,condition=''):
        if condition == '':
            return pd.read_sql_query(f""SELECT * FROM {table_name}"", self.conn)
        else:
            return pd.read_sql_query(f""SELECT * FROM {table_name} WHERE {condition}"", self.conn)

    def create_table(self,name, columns, dtypes):
        query = f'CREATE TABLE IF NOT EXISTS {name} ('
        
        for column, data_type in zip(columns, dtypes):
            query += f""'{column}'   TEXT,""
        query = query[:-1]
        query += ');'
        self.conn.execute(query)
        return True
    def update(self,table_name,updates,condition):
        update_query = f'UPDATE {table_name} SET {updates} WHERE {condition}'
        self.cursor.execute(update_query)
        self.conn.commit()
        return True        
    def write(self,data, table_name):
        if not self.table_exists(table_name):
            self.create_table(table_name, data.columns, data.dtypes)
        tuple_data = list(data.itertuples(index=False, name=None))
        insert_query = f'INSERT INTO {table_name} VALUES('
        for i in range(len(data.columns)):
            insert_query += '?,'
        insert_query = insert_query[:-1] + ')'
        self.cursor.executemany(insert_query, tuple_data)
        self.conn.commit()
        return True
        
    def delete(self, name):
        pass
    def close(self):
        self.conn.close()""""""      
            filedata += """"""
app = Flask(__name__)
api = Api(app)

class predictapi(Resource):

    def get(self):
        features = disp_data.get('modelFeatures')
        if features:
            msg=\""""""
RequestType: POST
Content-Type=application/json
Body: {displaymsg}
            \"""""".format(displaymsg={ x:'Value' for x in features})
        else:
            displaymsg='Data in JSON Format'
        return jsonify(displaymsg)
                
    def post(self): 
        sqlite_dbObj = sqlite_db(dataPath,'data.db')
        if not sqlite_dbObj.table_exists('metrices'):
            data = {'noOfPredictCalls':'0','noOfDriftCalls':'0',""noOfActualCalls"":'0',""mid"":'0'}
            data = pd.DataFrame(data, index=[0])
            sqlite_dbObj.create_table('metrices',data.columns, data.dtypes)        
        data = request.get_json()     
        output = predict().run(json.dumps(data))
        outputobj = json.loads(output)
        if outputobj['status'] == 'SUCCESS':
            try:
                df2 = pd.read_json(json.dumps(outputobj['data']), orient ='records')
                if not sqlite_dbObj.table_exists('prodData'):
                    sqlite_dbObj.create_table('prodData',df2.columns, df2.dtypes)                               
                sqlite_dbObj.write(df2,'prodData')    
            except:
                pass
            try:
                data = sqlite_dbObj.read('metrices')
                #print(data)
                if len(data) == 0:
                    data = [{'mid':'0','noOfPredictCalls':'1','noOfDriftCalls':'0',""noOfActualCalls"":'0'}]
                    data = pd.read_json(json.dumps(data), orient ='records')
                    sqlite_dbObj.write(data,'metrices')                              
                else:
                    noofPredictCalls = int(data['noOfPredictCalls'].iloc[0])+1                       
                    sqlite_dbObj.update('metrices',""noOfPredictCalls = '""+str(noofPredictCalls)+""'"",""mid = 0"")            
            except Exception as e:
                print(e)
                pass               
        return jsonify(json.loads(output))
class predictfileapi(Resource):
    def post(self): 
        sqlite_dbObj = sqlite_db(dataPath,'data.db')
        if not sqlite_dbObj.table_exists('metrices'):
            data = {'noOfPredictCalls':'0','noOfDriftCalls':'0',""noOfActualCalls"":'0',""mid"":'0'}
            data = pd.DataFrame(data, index=[0])
            sqlite_dbObj.create_table('metrices',data.columns, data.dtypes)        
        if 'file' in request.files:
            file = request.files['file']
            urlData = file.read()
            rawData = pd.read_csv(io.StringIO(urlData.decode('utf-8')))    
            data = rawData.to_json(orient='records')
            output = predict().run(data)
            outputobj = json.loads(output)
            if outputobj['status'] == 'SUCCESS':
                try:
                    df2 = pd.read_json(json.dumps(outputobj['data']), orient ='records')
                    if not sqlite_dbObj.table_exists('prodData'):
                        sqlite_dbObj.create_table('prodData',df2.columns, df2.dtypes)                               
                    sqlite_dbObj.write(df2,'prodData')    
                except:
                    pass
                try:
                    data = sqlite_dbObj.read('metrices')
                    #print(data)
                    if len(data) == 0:
                        data = [{'mid':'0','noOfPredictCalls':'1','noOfDriftCalls':'0',""noOfActualCalls"":'0'}]
                        data = pd.read_json(json.dumps(data), orient ='records')
                        sqlite_dbObj.write(data,'metrices')                              
                    else:
                        noofPredictCalls = int(data['noOfPredictCalls'].iloc[0])+1                       
                        sqlite_dbObj.update('metrices',""noOfPredictCalls = '""+str(noofPredictCalls)+""'"",""mid = 0"")            
                except Exception as e:
                    print(e)
                    pass               
            return jsonify(json.loads(output))            
        else:
            output = {'status':'error','msg':'File is missing'}
            return jsonify(output)
        """"""
            if  problemType.lower() == 'classification' or problemType.lower() == 'regression':
                filedata += """"""         
class explainapi(Resource):

    def get(self):
        features = disp_data.get('modelFeatures')
        if features:
            msg=\""""""
RequestType: POST
Content-Type=application/json
Body: {displaymsg}
            \"""""".format(displaymsg={ x:'Value' for x in features})
        else:
            displaymsg='Data in JSON Format'
        return jsonify(displaymsg)

    def post(self):
        data = request.get_json()
        if is_explainable:
            output = local_analysis(json.dumps(data))
        else:
            output = json.dumps({""status"":""FAIL"",""data"":""explain api is not supported when text features are used for training""})
        return jsonify(json.loads(output))

class monitoringapi(Resource):

    def get(self):
        return jsonify({'trainingDataLocation':'Training File Location','currentDataLocation':'production Location'})

    def post(self): 
        sqlite_dbObj = sqlite_db(dataPath,'data.db')    
        if not sqlite_dbObj.table_exists('monitoring'):
            data = {'status':'No Drift','Msg':'No Input Drift Found','RecordTime':'Time','version':'1'}
            data = pd.DataFrame(data, index=[0])
            sqlite_dbObj.create_table('monitoring',data.columns, data.dtypes)                            
        trainingDataPath = (modelPath/'data')/'preprocesseddata.csv.gz'
        if not sqlite_dbObj.table_exists('prodData'):        
            return jsonify({'status':'Error','msg':'Prod data not available'})        
        data = sqlite_dbObj.read('prodData')
        filetimestamp = str(int(time.time()))
        dataFile = dataPath/('AION_' + filetimestamp+'.csv')
        data.to_csv(dataFile, index=False)    
        data = request.get_json()
        data={'trainingDataLocation':trainingDataPath,'currentDataLocation':dataFile}        
        output = drift(json.dumps(data))
        outputData = json.loads(output)
        status = outputData['status']
        
        if status == 'SUCCESS':
            Msg = str(outputData['data'])
        else:
            Msg = 'Error during drift analysis'
        now = datetime.now() # current date and time     
        date_time = now.strftime(""%m/%d/%Y, %H:%M:%S"")
        data = {'status':status,'Msg':Msg,'RecordTime':date_time,'version':modelVersion}                            
        data = pd.DataFrame(data, index=[0])
        sqlite_dbObj.write(data,'monitoring')         
        return jsonify(json.loads(output))""""""
            filedata += """"""        

class matricesapi(Resource):

    def get(self):
        sqlite_dbObj = sqlite_db(dataPath,'data.db')                
        if sqlite_dbObj.table_exists('metrices'):                
            df1 = sqlite_dbObj.read('metrices')
        else:
            df1 = pd.DataFrame()
        #print(df1)            
        if sqlite_dbObj.table_exists('monitoring'):                    
            df2 = sqlite_dbObj.read('monitoring')                
        else:
            df2 = pd.DataFrame()            
        
        msg = {'Deployed Version':str(modelVersion)}            
        
        if df1.shape[0] > 0:                
            msg.update({'noOfPredictCalls':str(df1['noOfPredictCalls'].iloc[0])})
        else:
            msg.update({'noOfPredictCalls':'0'})
        driftDetails = []    
        for idx in reversed(df2.index):
            driftd = {'version':str(df2.version[idx]),'status':str(df2.status[idx]),'recordTime':str(df2.RecordTime[idx]),'msg':str(df2.Msg[idx])}                
            driftDetails.append(driftd)
        msg.update({'driftDetails':driftDetails})                   
        return jsonify(msg)

class performanceapi(Resource):

    def get(self):
        return jsonify({'trainingDataLocation':'Training File Location','currentDataLocation':'production Location'})

    def post(self): 
        sqlite_dbObj = sqlite_db(dataPath,'data.db')    
        if not sqlite_dbObj.table_exists('monitoring'):
            data = {'status':'No Drift','Msg':'No Input Drift Found','RecordTime':'Time','version':'1'}
            data = pd.DataFrame(data, index=[0])
            sqlite_dbObj.create_table('monitoring',data.columns, data.dtypes)                            
        trainingDataPath = (modelPath/'data')/'preprocesseddata.csv.gz'
        if not sqlite_dbObj.table_exists('prodData'):        
            return jsonify({'status':'Error','msg':'Prod data not available'})        
        data = sqlite_dbObj.read('prodData')
        filetimestamp = str(int(time.time()))
        dataFile = dataPath/('AION_' + filetimestamp+'.csv')
        data.to_csv(dataFile, index=False)    
        data = request.get_json()
        data={'trainingDataLocation':trainingDataPath,'currentDataLocation':dataFile}    
        output = odrift(json.dumps(data))
        return jsonify(json.loads(output))
        """"""
            filedata += """"""       
api.add_resource(predictapi, '/AION/{serviceName}/predict')
api.add_resource(predictfileapi, '/AION/{serviceName}/predict_file')
api.add_resource(matricesapi, '/AION/{serviceName}/metrices')"""""".format(serviceName=usecaseid)
            if  problemType.lower() == 'classification' or problemType.lower() == 'regression':
                filedata += """"""
api.add_resource(explainapi, '/AION/{serviceName}/explain')
api.add_resource(monitoringapi, '/AION/{serviceName}/monitoring')
api.add_resource(performanceapi, '/AION/{serviceName}/performance')
"""""".format(serviceName=usecaseid)
            filedata += """"""
if __name__ == '__main__':    
    args = parser.parse_args()        
    app.run(args.ipaddress,port = args.port,debug = True)""""""
            f = open(filename, ""wb"")
            f.write(str(filedata).encode('utf8'))
            f.close()    
            data = {'version':version}
            filename = os.path.join(datalocation,'config.json')        
            with open(filename, ""w"") as outfile:
                json.dump(data, outfile)
            outfile.close()           "
utility.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''

TAB_CHAR = ' ' * 4

def import_modules(importer, modules_list):
    for module in modules_list:
        mod_from = module.get('mod_from',None)
        mod_as = module.get('mod_as',None)
        importer.addModule(module['module'], mod_from=mod_from, mod_as=mod_as)
                
"
imports.py,"""""""
/**
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  © Copyright HCL Technologies Ltd. 2021, 2022
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*/
""""""

from importlib.metadata import version
import sys

    
class importModule():

    def __init__(self):
        self.importModule = {}
        self.stdlibModule = []
        self.localModule = {}
    
    def addLocalModule(self,module, mod_from=None, mod_as=None):
        if module == '*':
            if module not in self.localModule.keys():
                self.localModule[module]= [mod_from]
            else:
                self.localModule[module].append(mod_from)
        elif module not in self.localModule.keys():
            self.localModule[module] = {'from':mod_from, 'as':mod_as}
        
    def addModule(self, module, mod_from=None, mod_as=None):
        if module not in self.importModule.keys():
            self.importModule[module] = {'from':mod_from, 'as':mod_as}
            if module in sys.stdlib_module_names:
                self.stdlibModule.append(module)
        elif isinstance(self.importModule[module], list):
            if mod_as not in [x['as'] for x in self.importModule[module]]:
                self.importModule[module].append({'from':mod_from, 'as':mod_as})
            elif mod_as not in [x['from'] for x in self.importModule[module]]:
                self.importModule[module].append({'from':mod_from, 'as':mod_as})
        elif mod_as != self.importModule[module]['as']:
            as_list = [self.importModule[module]]
            as_list.append({'from':mod_from, 'as':mod_as})
            self.importModule[module] = as_list
        elif mod_from != self.importModule[module]['from']:
            as_list = [self.importModule[module]]
            as_list.append({'from':mod_from, 'as':mod_as})
            self.importModule[module] = as_list

    def getModules(self):
        return (self.importModule, self.stdlibModule)
        
    def getBaseModule(self, extra_importers=[]):
        modules_alias = {   'sklearn':'scikit-learn', 
                            'genetic_selection':'sklearn-genetic',
                            'google': 'google-cloud-storage',
                            'azure':'azure-storage-file-datalake'}
        local_modules = {'AIX':'/app/AIX-0.1-py3-none-any.whl'}
        modules = []
        require = """"
        if extra_importers:
            extra_importers = [importer.importModule for importer in extra_importers if isinstance(importer, importModule)]
        importers_module = [self.importModule] + extra_importers
        for importer_module in importers_module:
            for k,v in importer_module.items():
                if v['from']:
                    mod = v['from'].split('.')[0]
                else:
                    mod = k
                if mod in modules_alias.keys():
                    mod = modules_alias[mod]
                modules.append(mod)
        modules = list(set(modules))
        for mod in modules:
            try:
                if mod in local_modules.keys():
                    require += f""{local_modules[mod]}\n""
                else:
                    require += f""{mod}=={version(mod)}\n""
            except :
                if mod not in sys.stdlib_module_names:
                    raise  
        return require

    def getCode(self):
        def to_string(k, v):
            mod = ''
            if v['from']:
                mod += 'from {} '.format(v['from'])
            mod += 'import {}'.format(k)
            if v['as']:
                mod += ' as {} '.format(v['as'])
            return mod
        
        modules = """"
        local_modules = """"
        std_lib_modules = """"
        third_party_modules = """"
        for k,v in self.importModule.items():
            if k in self.stdlibModule:
                std_lib_modules = std_lib_modules + '\n' + to_string(k, v)
            elif isinstance(v, dict):
               third_party_modules = third_party_modules + '\n' + to_string(k, v)
            elif isinstance(v, list):
                for alias in v:
                    third_party_modules = third_party_modules + '\n' + to_string(k, alias)
        for k,v in self.localModule.items():
            if k != '*':
                local_modules = local_modules + '\n' + to_string(k, v)
            else:
                for mod_from in v:
                    local_modules = local_modules + '\n' + f'from {mod_from} import {k}'
        if std_lib_modules:
            modules = modules + ""\n#Standard Library modules"" + std_lib_modules
        if third_party_modules:
            modules = modules + ""\n\n#Third Party modules"" + third_party_modules
        if local_modules:
            modules = modules + ""\n\n#local modules"" + local_modules + '\n'
        return modules

    def copyCode(self, importer):
        self.importModule, self.stdlibModule = importer.getModules()
"
EncryptPythonSourceCode.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import subprocess 
import os 
import glob
import sys
import python_minifier
def encrypt_files(path):
    cwd = os.getcwd()
    secure_path = os.path.join(path,'SecuredScripts')
    try:
        if not os.path.exists(secure_path):
            os.mkdir(secure_path)
        files = [f for f in glob.glob(path + ""/*.py"")]
        for file in files:
            #encrypted_file_details[0] = file
            #file = files[0]
            #print(file)
            #filename_w_dir = os.path.splitext(file)
            filename_w_ext = os.path.basename(file)
            filename, file_extension = os.path.splitext(filename_w_ext)
            file_folder_path = os.path.join(secure_path,filename)
            #print(file_folder_path)
            
            if not os.path.exists(file_folder_path):
                os.mkdir(file_folder_path)
                
            # Minify python source code
            minify_file = os.path.join(file_folder_path,filename+'_minify.py')
            pythonfolder,_ = os.path.split(sys.executable)
            pyminify_script = os.path.join(pythonfolder,'Scripts','pyminify.exe')
            minify_command = ""\""""+sys.executable+""\"" \""""+pyminify_script+ ""\"" \"""" + file + ""\"" > \"""" + minify_file+""\""""
            subprocess.call(minify_command, shell=True)
            # Change directory to folder path
            os.chdir(file_folder_path)
            
            # Obfuscate minified file
            pyarmor_script = os.path.join(pythonfolder,'Scripts','pyarmor.exe')
            obfusc_commmand = ""\""""+sys.executable+""\"" \""""+pyarmor_script+""\"" obfuscate \"""" + minify_file+""\""""
            #print(obfusc_commmand)
            subprocess.call(obfusc_commmand, shell=True)
            
            # Change directory to dist path
            obfusc_file = os.path.join(file_folder_path,'dist',filename+'_minify.py')
            #print(obfusc_file)
            chdirpath = os.path.join(file_folder_path,'dist')
            os.chdir(chdirpath)
            
            # Compress obfuscated file
            compressed_file = os.path.join(file_folder_path,'dist',filename+'_compressed.py')
            #print(compressed_file)
            pyminifier_script = os.path.join(pythonfolder,'Scripts','pyminifier.exe')
            compress_command = ""\""""+sys.executable+""\"" \""""+pyminifier_script+""\"" --gzip -o \"""" +compressed_file + ""\"" \"""" + obfusc_file+""\""""
            #print(compress_command)
            subprocess.call(compress_command, shell=True)
            
            #compile_command = sys.executable+'-m py_compile ""' + compressed_file+'""'
            #print(compile_command)
            #subprocess.call(compile_command , shell=True)
            #encrypted_file_details['compiled_file'] = file
            #compiled_file = os.path.join(file_folder_path,'dist','__pycache__',filename+'_compressed.cpython-37.pyc')
            #encrypted_file_details[1] = compiled_file
            #encrypted_file_list.append(encrypted_file_details)
            #encrypted_file = filename + '_compressed.cpython-37_encrypted.pyc'
            #encrypt_command = ""python "" + cwd + ""\\Encrypt_Key_Dcrypt.py "" + compiled_file + ' ' + encrypted_file + "" --g -e""
            #print(encrypt_command)
            #subprocess.call(encrypt_command, shell=True)
        #encrypted_file_list += ']'
        #return(encrypted_file_list)
        os.chdir(path)
    except OSError as err:
        print (""Creation of the directory %s failed ""+str(err))


# Driver function 
if __name__==""__main__"":
    path = sys.argv[1]
    encrypt_files(path)
    
    
#(base) C:\Himanshu\DataPreprocessing>pyminify DataPreprocessing.py > DataPreprocessing_minify.py
#Obfuscate
#(base) C:\Himanshu\DataPreprocessing>pyarmor obfuscate C:\Himanshu\DataPreprocessing\DataPreprocessing_minify.py
#Compression
#(base) C:\Himanshu\DataPreprocessing>pyminifier --gzip -o C:\Himanshu\DataPreprocessing\dist\DataPreprocessing_compressed.py C:\Himanshu\DataPreprocessing\dist\DataPreprocessing_minify.py
#(base) C:\Himanshu\DataPreprocessing>cd dist
#(base) C:\Himanshu\DataPreprocessing\dist>python DataPreprocessing_compressed.py ""DocumentText"" ""Label"" 90 "".csv"" ""C:\Himanshu\DataAcquisition\ClassificationDataNewBalanced.csv""
#Compiling compressed .py to .pyc file
#(base) C:\Himanshu\DataPreprocessing\dist>python -m py_compile  DataPreprocessing_compressed.py
#Encrypt .pyc file
#(base) C:\Himanshu\DataPreprocessing\dist>python C:\Himanshu\Encrypt_Key_Dcrypt.py C:\Himanshu\DataPreprocessing\dist\__pycache__\DataPreprocessing_compressed.cpython-36.pyc DataPreprocessing_compressed.cpython-36_encrypted.pyc --g -e
#Decrypt file
#(base) C:\Himanshu\DataPreprocessing\dist>python C:\Himanshu\Encrypt_Key_Dcrypt.py DataPreprocessing_compressed.cpython-36_encrypted.pyc DataPreprocessing_compressed.cpython-36_decrypted.pyc --d
#Run decrypted file
#(base) C:\Himanshu\DataPreprocessing\dist>python DataPreprocessing_compressed.cpython-36_decrypted.pyc ""DocumentText"" ""Label"" 90 "".csv"" ""C:\Himanshu\DataAcquisition\ClassificationDataNewBalanced.csv"""
create_docker.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import os
import shutil 
import subprocess
from os.path import expanduser
import platform
deploymentfolder = os.path.join(os.path.dirname(os.path.abspath(__file__)),'HCLT','AION','target')
modelname='AION_12'
version='1'
def createDockerImage(deploymentfolder,modelname,version,learner_type,textdata):
    modelPath = os.path.join(deploymentfolder)
    filename = os.path.join(deploymentfolder,'docker_image')
    modelservice = os.path.join(os.path.dirname(os.path.abspath(__file__)),'..','..','..','..','..','extensions','run_modelService.py')
    shellscript = os.path.join(os.path.dirname(os.path.abspath(__file__)),'..','..','..','..','..','extensions','start_modelservice.sh')
    aix = os.path.join(os.path.dirname(os.path.abspath(__file__)),'..','..','..','..','..','extensions','AIX-0.1-py3-none-any.whl')
    drift = os.path.join(os.path.dirname(os.path.abspath(__file__)),'..','..','..','..','..','extensions','Drift-0.1-py3-none-any.whl')
    sitepackage = os.path.join(os.path.dirname(os.path.abspath(__file__)),'..','..','..','..','..','extensions','site-packages')
    model_dockerSetup = os.path.join(os.path.dirname(os.path.abspath(__file__)),'dockersetup','docker_'+modelname + '_' + version)
    docker_setup = os.path.join(model_dockerSetup,modelname + '_' + version)
    model_sitepackage = os.path.join(model_dockerSetup,'site-packages')
    model_dockerSetupservicefile = os.path.join(model_dockerSetup,'run_modelService.py')
    model_dockershellscript = os.path.join(model_dockerSetup,'start_modelservice.sh')
    model_aix = os.path.join(model_dockerSetup,'AIX-0.1-py3-none-any.whl')
    model_drift = os.path.join(model_dockerSetup,'Drift-0.1-py3-none-any.whl')
    
    try:
        os.mkdir(model_dockerSetup) 
    except Exception as e:
        print(""Error in creating Setup directpry ""+str(e))
        pass
    shutil.copytree(modelPath, docker_setup)
    if textdata:
        shutil.copytree(sitepackage, model_sitepackage)
        modelpretrainpath=os.path.join(model_dockerSetup,'HCLT','AION','PreTrainedModels','TextProcessing')
        '''
        try:
            os.makedirs(modelpretrainpath, exist_ok=True)
        except  Exception as e:
            print(""Error in creating Setup directpry ""+str(e))
            pass
        '''
        home = expanduser(""~"")
        if platform.system() == 'Windows':
            hostpretrainpath = os.path.join(home,'AppData','Local','HCLT','AION','PreTrainedModels','TextProcessing')
        else:
            hostpretrainpath = os.path.join(home,'HCLT','AION','PreTrainedModels','TextProcessing')
        shutil.copytree(hostpretrainpath, modelpretrainpath)
        
    shutil.copyfile(modelservice, model_dockerSetupservicefile)
    shutil.copyfile(shellscript, model_dockershellscript)
    shutil.copyfile(aix, model_aix)
    shutil.copyfile(drift,model_drift)
    try:
        os.mkdir(filename) 
    except:
        pass
    requirementfilename = os.path.join(model_dockerSetup,'requirements.txt')
    installfilename = os.path.join(model_dockerSetup,'install.py')
    dockerfile = os.path.join(model_dockerSetup,'Dockerfile')
    dockerdata='FROM python:3.8-slim-buster'
    dockerdata+='\n'
    if textdata:
        dockerdata+='WORKDIR /root'
        dockerdata+='\n'
        dockerdata+='COPY HCLT HCLT'
        dockerdata+='\n'
    dockerdata+='WORKDIR /app'
    dockerdata+='\n'
    dockerdata+='COPY  requirements.txt requirements.txt'
    dockerdata+='\n'
    dockerdata+='COPY '+modelname+'_'+version+' '+modelname+'_'+version
    dockerdata+='\n'
    if textdata:
        dockerdata+='COPY site-packages site-packages'
        dockerdata+='\n'
        dockerdata+='COPY install.py install.py'
        dockerdata+='\n'
    dockerdata+='COPY run_modelService.py  run_modelService.py'
    dockerdata+='\n'
    dockerdata+='COPY AIX-0.1-py3-none-any.whl  AIX-0.1-py3-none-any.whl'
    dockerdata+='\n'
    dockerdata+='COPY Drift-0.1-py3-none-any.whl  Drift-0.1-py3-none-any.whl'
    dockerdata+='\n'
    dockerdata+='COPY start_modelservice.sh  start_modelservice.sh'
    dockerdata+='\n'
    if textdata:
        dockerdata+='''RUN apt-get update \
 && apt-get install -y build-essential manpages-dev \   
 && python -m pip install --no-cache-dir --upgrade pip \
 && python -m pip install --no-cache-dir pandas==1.2.4 \
 && python -m pip install --no-cache-dir numpy==1.19.5 \
 && python -m pip install --no-cache-dir joblib==1.0.1 \
 && python -m pip install --no-cache-dir Cython==0.29.23 \
 && mv site-packages/* /usr/local/lib/python3.8/site-packages \
 && python -m pip install --no-cache-dir scipy==1.6.3 \
 && python -m pip install --no-cache-dir AIX-0.1-py3-none-any.whl \
 && python -m pip install --no-cache-dir Drift-0.1-py3-none-any.whl \
 && python -m pip install --no-cache-dir scikit-learn==0.24.2 \
 && python -m pip install --no-cache-dir spacy==2.2.3 \
 && python -m pip install --no-cache-dir nltk==3.6.2 \
 && python -m pip install --no-cache-dir textblob==0.15.3 \
 && python -m pip install --no-cache-dir gensim==3.8.3 \
 && python -m pip install --no-cache-dir demoji==1.1.0 \
 && python -m pip install --no-cache-dir lxml==4.6.3 \
 && python -m pip install --no-cache-dir Beautifulsoup4==4.9.3 \
 && python -m pip install --no-cache-dir Unidecode==1.2.0 \
 && python -m pip install --no-cache-dir pyspellchecker==0.6.2 \
 && python -m pip install --no-cache-dir pycontractions==2.0.1 \
 && python -m pip install --no-cache-dir tensorflow==2.4.1 \
 && python -m pip install --no-cache-dir nltk==3.6.2 \
 && python -m pip install --no-cache-dir -r requirements.txt \
 && python install.py \
 && chmod +x start_modelservice.sh
ENTRYPOINT [""./start_modelservice.sh""]
'''
    else:
        dockerdata+='''RUN apt-get update \
 && apt-get install -y build-essential manpages-dev \   
 && python -m pip install --no-cache-dir --upgrade pip \
 && python -m pip install --no-cache-dir pandas==1.2.4 \
 && python -m pip install --no-cache-dir numpy==1.19.5 \
 && python -m pip install --no-cache-dir joblib==1.0.1 \
 && python -m pip install --no-cache-dir Cython==0.29.23 \
 && python -m pip install --no-cache-dir scipy==1.6.3 \
 && python -m pip install --no-cache-dir AIX-0.1-py3-none-any.whl \
 && python -m pip install --no-cache-dir Drift-0.1-py3-none-any.whl \
 && python -m pip install --no-cache-dir scikit-learn==0.24.2 \
 && python -m pip install --no-cache-dir -r requirements.txt \
 && chmod +x start_modelservice.sh
ENTRYPOINT [""./start_modelservice.sh""]
'''
    f = open(dockerfile, ""w"")
    f.write(str(dockerdata))
    f.close()  
    requirementdata=''
    requirementdata+='word2number==1.1'
    if learner_type == 'DL':
        requirementdata+='\n'
        requirementdata+='tensorflow==2.5.0'
    f = open(requirementfilename, ""w"")
    f.write(str(requirementdata))
    f.close()
    if textdata:
        installfile='''
import nltk
import ssl
try:
    _create_unverified_https_context = ssl._create_unverified_context
except AttributeError:
    pass
else:
    ssl._create_default_https_context = _create_unverified_https_context
nltk.download('punkt')
nltk.download('wordnet')
nltk.download('stopwords')
nltk.download('averaged_perceptron_tagger')'''
        f = open(installfilename, ""w"")
        f.write(str(installfile))
        f.close()
    try:
        command = 'docker pull python:3.8-slim-buster'
        os.system(command);
        #subprocess.check_call([""chmod"", ""+x"", ""start_modelservice.sh""], cwd=model_dockerSetup)  
        subprocess.check_call([""docker"", ""build"", ""-t"",modelname.lower()+"":""+version,"".""], cwd=model_dockerSetup)  
        subprocess.check_call([""docker"", ""save"", ""-o"",modelname.lower()+""_""+version+"".tar"",modelname.lower()+"":""+version], cwd=model_dockerSetup)  
        dockerfilepath = os.path.join(model_dockerSetup,modelname.lower()+""_""+version+"".tar"")
        shutil.copyfile(dockerfilepath, os.path.join(filename,modelname.lower()+""_""+version+"".tar""))  
        shutil.rmtree(model_dockerSetup)
        return 'Success','SUCCESSFULLY'
    except Exception as e:
        print(""Error: ""+str(e))
        shutil.rmtree(model_dockerSetup)
        return 'Error',str(e)
    
#createDockerImage(deploymentfolder,modelname,version)"
requirements.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
from importlib.metadata import version
import sys
import os
def requirementfile(deploy_path,model,textFeatures,learner_type):
    print('hola', model)
    modules = ['pandas','numpy','alibi','matplotlib','joblib','shap','ipython','category_encoders','scikit-learn','word2number','flask_restful','evidently','Flask-Cors']
    requires = ''
    for mod in modules:
        requires += f""{mod}=={version(mod)}\n""
    if len(textFeatures) > 0:
        tmodules = ['spacy','nltk','textblob','demoji','beautifulsoup4','text-unidecode','pyspellchecker','contractions','protobuf']
        for mod in tmodules:
            requires += f""{mod}=={version(mod)}\n""   
    if model == 'Extreme Gradient Boosting (XGBoost)':
        mmodules = ['xgboost']
        for mod in mmodules:
            requires += f""{mod}=={version(mod)}\n""   
    if model == 'Light Gradient Boosting (LightGBM)':
        mmodules = ['lightgbm']
        for mod in mmodules:
            requires += f""{mod}=={version(mod)}\n""               
    if model == 'Categorical Boosting (CatBoost)':
        mmodules = ['catboost']
        for mod in mmodules:
            requires += f""{mod}=={version(mod)}\n"" 
    if model.lower() == 'arima':
        mmodules = ['pmdarima']
        for mod in mmodules:
            requires += f""{mod}=={version(mod)}\n""
    if model.lower() == 'fbprophet':
        mmodules = ['prophet']
        for mod in mmodules:
            requires += f""{mod}=={version(mod)}\n""              
    if model.lower() == 'lstm' or model.lower() == 'mlp' or learner_type =='DL':
        mmodules = ['tensorflow']
        for mod in mmodules:
            requires += f""{mod}=={version(mod)}\n""  
    if model.lower() in ['cox', 'kaplanmeierfitter']: #bug 12833
        mmodules = ['lifelines']
        for mod in mmodules:
            requires += f""{mod}=={version(mod)}\n""
    if model.lower() == 'sentencetransformer': #bug 12833
        mmodules = ['sentence_transformers']
        for mod in mmodules:
            requires += f""{mod}=={version(mod)}\n""                      
    filename = os.path.join(deploy_path,'requirements.txt')
    f = open(filename, ""wb"")
    f.write(str(requires).encode('utf8'))
    f.close()   
    
    
    
    
    
    "
eion_compress.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import os
import platform
import sys
import subprocess
import glob
import shutil
import time
from aion_deployment.EncryptPythonSourceCode import encrypt_files
import json
def encrypt(alldirs):
	for dir in alldirs:
		try:
			encrypt_files(dir)
		except Exception as error_obj:
			print(""Exception in encrypting"", error_obj)
		print(""-""*50)
def replace_by_compressed(alldirs):
	for dir in alldirs:
		try:
			#print(""Processing dir"", dir)
			files = [f for f in glob.glob(dir + ""/*.py"")]
			secure_path = os.path.join(dir, 'SecuredScripts')
			time.sleep(6)
			for file in files:
				try:
					filename_w_ext = os.path.basename(file)
					filename, file_extension = os.path.splitext(filename_w_ext)
					if filename == ""__init__"":
						continue	
					#print(""Processing file"", file)
					file_folder_path = os.path.join(secure_path, filename, 'dist')
					compressed_file_path = os.path.join(file_folder_path, filename+'_compressed.py')
					shutil.copy(compressed_file_path, dir)
					os.remove(file)
					new_compressed_file_path = os.path.join(dir, filename+'_compressed.py')
					target_file_path = os.path.join(dir, filename_w_ext)
					os.rename(new_compressed_file_path, target_file_path)
					if filename == 'aion_prediction':
						shutil.copytree(os.path.join(file_folder_path, 'pytransform'), os.path.join(dir, 'pytransform'))
				except Exception as error_obj:
					print(""Exception in file "", error_obj)
			shutil.rmtree(secure_path)
		except Exception as error_obj:
			print(""Exception in dir "", error_obj)

def start_Obfuscate(path):
	project_path = path
	subdirs = [dI for dI in os.listdir(project_path) if os.path.isdir(os.path.join(project_path,dI))]
	alldirs = [
		project_path,
	]
	for subdir in subdirs:
		if(subdir != 'pytransform'):
			alldirs.append(os.path.join(project_path, subdir))
	encrypt(alldirs)
	replace_by_compressed(alldirs)
	
if __name__==""__main__"":
	project_path = sys.argv[1]
	print(""project_path"", project_path)
	subdirs = [dI for dI in os.listdir(project_path) if os.path.isdir(os.path.join(project_path,dI))]
	alldirs = [
		project_path,
	]
	for subdir in subdirs:
		alldirs.append(os.path.join(project_path, subdir))
	encrypt(alldirs)
	print(""*""*50)
	replace_by_compressed(alldirs)


# python eion_compress.py ""C:\Users\ashwani.s\Desktop\22April\22April\Mohita"" ""C:\Users\ashwani.s\Desktop\eion\eion"" > logfile.log
"
production.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
from pathlib import Path
from AION.prediction_package.imports import importModule
from AION.prediction_package.aion_prediction import aionPrediction
from AION.prediction_package.utility import TAB_CHAR
from AION.prediction_package import utility
from AION.prediction_package import common
from AION.prediction_package.base import deployer


def is_supported(problem_type, algo=None):
    """"""
        Return True if problem_type supported otherwise False
    """"""
    supported = ['classification','regression','clustering','timeseriesforecasting','Text Similarity']
    return problem_type in supported
    
def get_deployer(problem_type, algo=None, params={}):
    """"""
        Return deployer class object based on problem type
        Raise error if no class is associated with problem type 
    """"""
    params['problem_type'] = problem_type
    if problem_type == 'classification':
        return classification( params)
    elif problem_type == 'regression':
        return regression( params)
    elif problem_type == 'clustering':
        return clustering( params)
    elif problem_type == 'timeseriesforecasting':
        from AION.prediction_package.time_series import forecasting
        return forecasting.get_deployer( params)
    elif problem_type == 'Text Similarity':
        return textSimilarity( params)
    else:
        raise ValueError('deployment is not supported')
    
class classification( deployer):
    
    def __init__(self, params={}):
        super().__init__( params)
        self.feature_reducer = False
        if not self.name:
            self.name = 'classification'

    def create_idrift(self):
        obj = aionPrediction()
        if self.params['features']['text_feat']:
            obj.create_text_drift_file(self.deploy_path,self.params['features']['text_feat'],self.params['features']['target_feat'],self.name)
        else:
            obj.create_drift_file(self.deploy_path,self.params['features']['input_feat'],self.params['features']['target_feat'],self.name)

    def create_odrift(self):
        obj = aionPrediction()
        if self.params['features']['text_feat']:
            obj.create_classification_text_performance_file(self.deploy_path,self.params['features']['text_feat'],self.params['features']['target_feat'])        
        else:
            obj.create_classification_performance_file(self.deploy_path,self.params['features']['input_feat'],self.params['features']['target_feat'])        

    def training_code( self):
        self.importer.addModule(module='pandas',mod_as='pd')
        code = f""""""
class trainer():        
""""""
        init_code, run_code = self._get_train_code()
        return code + init_code + run_code
        
    def _get_train_code(self):    
        init_code = f""""""
    def __init__( self):
        model_file = (Path(__file__).parent/""model"")/""{self.params['training']['model_file']}""
        if not model_file.exists():
            raise ValueError(f'Trained model file not found: {{model_file}}')""""""
            
        run_code = f""""""
    def run(self, df):\
""""""
        if self.params['training']['algo'] in ['Neural Network']:
            self.importer.addModule(module='load_model',mod_from='tensorflow.keras.models')
            init_code += f""""""
        self.model = load_model(model_file)
""""""
            run_code += """"""
        df = df.astype(np.float32)
        return pd.DataFrame(np.argmax(self.model.predict(df),axis=1))
""""""        
        elif self.params['training']['algo'] in ['Neural Architecture Search']:
            self.importer.addModule(module='load_model',mod_from='tensorflow.keras.models')
            self.importer.addModule(module='autokeras',mod_as='ak')
            init_code += f""""""
        self.model = load_model(model_file,custom_objects=ak.CUSTOM_OBJECTS)
""""""
            run_code += """"""
        df = df.astype(np.float32)
        return pd.DataFrame(self.model.predict(df))
""""""        
        elif self.params['training']['algo'] in ['Deep Q Network','Dueling Deep Q Network']:
            self.importer.addModule('joblib')
            self.importer.addModule(module='numpy',mod_as='np')
            self.importer.addModule(module='constant',mod_from='tensorflow')
            self.importer.addModule(module='time_step',mod_from='tf_agents.trajectories')
            init_code += f""""""
        self.model = joblib.load(model_file)
""""""
            run_code += """"""
        df = df.astype(np.float32)
        q, _ = self.model(np.array(df), step_type=constant([time_step.StepType.FIRST] * np.array(df).shape[0]), training=False)
        return pd.DataFrame(q.numpy())
""""""        
        elif self.params['training']['algo'] in ['Convolutional Neural Network (1D)','Recurrent Neural Network','Recurrent Neural Network (GRU)','Recurrent Neural Network (LSTM)']:
            self.importer.addModule(module='numpy',mod_as='np')
            self.importer.addModule(module='load_model',mod_from='tensorflow.keras.models')
            init_code += f""""""
        self.model = load_model(model_file)
""""""
            run_code += """"""
        df = np.expand_dims(df, axis=2)
        df = df.astype(np.float32)
        return pd.DataFrame(np.argmax(self.model.predict(df),axis=1))
""""""        
        else:
            self.importer.addModule(module='joblib')
            self.importer.addModule(module='numpy',mod_as='np')
            init_code += f""""""
        self.model = joblib.load(model_file)
""""""
            run_code += """"""
        df = df.astype(np.float32)
        return pd.DataFrame(self.model.predict_proba(df), columns=self.model.classes_)
    """"""
        return init_code, run_code
        
    def formatter_code(self):
        self.importer.addModule('json')
        self.importer.addModule('joblib')
        self.importer.addModule('pandas', mod_as='pd')
        return """"""
class output_format():

    def __init__(self):
        pass
        
    def run(self, raw_df, output):
        output = round(output,2)
        encoder_file = (Path(__file__).parent/""model"")/""label_encoder.pkl""
        if encoder_file.exists():
            encoder = joblib.load(encoder_file)
            output.rename(columns=dict(zip(output.columns, encoder.inverse_transform(list(output.columns)))), inplace=True)
        raw_df['prediction'] = output.idxmax(axis=1)
        raw_df['probability'] = output.max(axis=1).round(2)
        raw_df['remarks'] = output.apply(lambda x: x.to_json(double_precision=2), axis=1)
        outputjson = raw_df.to_json(orient='records',double_precision=5)
        outputjson = {""status"":""SUCCESS"",""data"":json.loads(outputjson)}
        return(json.dumps(outputjson))
        """"""
         
class regression( deployer):
    
    def __init__(self, params={}):
        super().__init__( params)
        self.feature_reducer = False
        if not self.name:
            self.name = 'regression'
        
    def create_idrift(self):
        obj = aionPrediction()
        if self.params['features']['text_feat']:
            obj.create_text_drift_file(self.deploy_path,self.params['features']['text_feat'],self.params['features']['target_feat'],self.name)
        else:
            obj.create_drift_file(self.deploy_path,self.params['features']['input_feat'],self.params['features']['target_feat'],self.name)

    def create_odrift(self):
        obj = aionPrediction()
        if self.params['features']['text_feat']:
            obj.create_regression_text_performance_file(self.deploy_path,self.params['features']['text_feat'],self.params['features']['target_feat'])        
        else:
            obj.create_regression_performance_file(self.deploy_path,self.params['features']['input_feat'],self.params['features']['target_feat'])        

    def training_code( self):
        self.importer.addModule(module='pandas',mod_as='pd')
        code = f""""""
class trainer():        
""""""
        init_code = f""""""
    def __init__( self):
        model_file = (Path(__file__).parent/""model"")/""{self.params['training']['model_file']}""
        if not model_file.exists():
            raise ValueError(f'Trained model file not found: {{model_file}}') 
""""""
        run_code = f""""""
    def run(self, df):\
""""""
        if self.params['training']['algo'] in ['Neural Architecture Search']:
            self.importer.addModule(module='load_model',mod_from='tensorflow.keras.models')
            self.importer.addModule(module='autokeras',mod_as='ak')
            init_code += f""""""
        self.model = load_model(model_file,custom_objects=ak.CUSTOM_OBJECTS)
""""""
            run_code += """"""
        df = df.astype(np.float32)
        return self.model.predict(df).reshape(1, -1)
""""""        
        elif self.params['training']['algo'] in ['Neural Network','Convolutional Neural Network (1D)','Recurrent Neural Network','Recurrent Neural Network (GRU)','Recurrent Neural Network (LSTM)']:
            self.importer.addModule(module='numpy',mod_as='np')
            self.importer.addModule(module='load_model',mod_from='tensorflow.keras.models')
            init_code += f""""""
        self.model = load_model(model_file)
""""""
            run_code += """"""
        df = np.expand_dims(df, axis=2)
        df = df.astype(np.float32)
        return self.model.predict(df).reshape(1, -1)
""""""        
        else:
            self.importer.addModule('joblib')
            init_code += f""""""
        self.model = joblib.load(model_file)
""""""
            run_code += """"""
        df = df.astype(np.float32)
        return self.model.predict(df).reshape(1, -1)
    """"""
        return code + init_code + run_code
        
    def formatter_code(self):
        self.importer.addModule('json')
        self.importer.addModule('pandas', mod_as='pd')
        return """"""
class output_format():

    def __init__(self):
        pass
        
    def run(self, raw_df, output):
        raw_df['prediction'] = output[0]
        raw_df['prediction'] = raw_df['prediction'].round(2)
        outputjson = raw_df.to_json(orient='records',double_precision=5)
        outputjson = {""status"":""SUCCESS"",""data"":json.loads(outputjson)}
        return(json.dumps(outputjson))
        """"""

class clustering( deployer):
    
    def __init__(self, params={}):
        super().__init__( params)
        self.feature_reducer = False
        if not self.name:
            self.name = 'clustering'
        
    def training_code( self):
        self.importer.addModule('joblib')
        self.importer.addModule(module='pandas',mod_as='pd')
        code = f""""""
class trainer():        
""""""
        init_code = f""""""
    def __init__( self):
        model_file = (Path(__file__).parent/""model"")/""{self.params['training']['model_file']}""
        if not model_file.exists():
            raise ValueError(f'Trained model file not found: {{model_file}}') 
""""""
        run_code = f""""""
    def run(self, df):\
""""""
        if self.params['training']['algo'] == 'DBSCAN':
            init_code += f""""""
        self.model = joblib.load(model_file)
""""""
            run_code += """"""
        return self.model.fit_predict(df)
""""""        
        else:
            init_code += f""""""
        self.model = joblib.load(model_file)
""""""
            run_code += """"""
        return self.model.predict(df).reshape(1, -1)
    """"""
        return code + init_code + run_code
        
    def formatter_code(self):
        self.importer.addModule('json')
        self.importer.addModule('pandas', mod_as='pd')
        return """"""
class output_format():

    def __init__(self):
        pass
        
    def run(self, raw_df, output):
        raw_df['prediction'] = output[0]
        raw_df['prediction'] = raw_df['prediction'].round(2)
        outputjson = raw_df.to_json(orient='records',double_precision=2)
        outputjson = {""status"":""SUCCESS"",""data"":json.loads(outputjson)}
        return(json.dumps(outputjson))
        """"""
        return code

if __name__ == '__main__':
    config = {'usecase_name': 'AI0110', 'usecase_ver': '1', 'features': {'input_feat': ['v2'], 'target_feat': 'v1', 'text_feat': ['v2']}, 'paths': {'deploy': r'C:/Users/vashistah/AppData/Local/Programs/HCLTech/AION/data/target/AI0110/1', 'usecase': r'C:/Users/vashistah/AppData/Local/Programs/HCLTech/AION/data/target/AI0110'}, 'profiler': {'input_features': ['v2'], 'output_features': ['07xxxxxxxxx_vect', '08700621170150p_vect', '08702840625comuk_vect', '08718726270150gbpmtmsg18_vect', '1000s_vect', '10am7pm_vect', '10k_vect', '10p_vect', '10pmin_vect', '10ppm_vect', '11mths_vect', '125gift_vect', '12hrs_vect', '12mths_vect', '150p_vect', '150perwksub_vect', '150pm_vect', '150pmin_vect', '150pmsg_vect', '150pmsgrcvdhgsuite3422landsroww1j6hl_vect', '150pmtmsgrcvd18_vect', '150ppm_vect', '150ptone_vect', '150pwk_vect', '150week_vect', '16only_vect', '18only_vect', '1hr_vect', '1minmobsmorelkpobox177hp51fl_vect', '1st_vect', '1x150pwk_vect', '20p_vect', '20pmin_vect', '21st_vect', '220cm2_vect', '24hrs_vect', '25p_vect', '26th_vect', '2day_vect', '2find_vect', '2geva_vect', '2go_vect', '2marrow_vect', '2mrw_vect', '2nd_vect', '2nite_vect', '2optout_vect', '2p_vect', '2u_vect', '2waxsto_vect', '2wks_vect', '300p_vect', '31pmsg_vect', '3510i_vect', '3d_vect', '3g_vect', '3gbp_vect', '3hrs_vect', '3mins_vect', '3qxj9_vect', '3rd_vect', '3ss_vect', '3u_vect', '3uz_vect', '3wk_vect', '40gb_vect', '4a_vect', '4d_vect', '4eva_vect', '4get_vect', '4info_vect', '4mths_vect', '4th_vect', '4u_vect', '50p_vect', '5min_vect', '5pm_vect', '5wb_vect', '5we_vect', '60pmin_vect', '6hrs_vect', '6months_vect', '6pm_vect', '7250i_vect', '7ish_vect', '8am_vect', '8pm_vect', '8th_vect', '8wp_vect', '9ae_vect', '9ja_vect', '9pm_vect', '9t_vect', 'aathi_vect', 'abi_vect', 'ability_vect', 'abiola_vect', 'able_vect', 'abt_vect', 'abta_vect', 'aburo_vect', 'ac_vect', 'academic_vect', 'acc_vect', 'accept_vect', 'access_vect', 'accident_vect', 'accidentally_vect', 'accordingly_vect', 'account_vect', 'ache_vect', 'across_vect', 'acted_vect', 'action_vect', 'activate_vect', 'activities_vect', 'actor_vect', 'actual_vect', 'actually_vect', 'ad_vect', 'adam_vect', 'add_vect', 'added_vect', 'addicted_vect', 'addie_vect', 'address_vect', 'admin_vect', 'administrator_vect', 'admirer_vect', 'admit_vect', 'adore_vect', 'adoring_vect', 'ads_vect', 'adult_vect', 'advance_vect', 'adventure_vect', 'advice_vect', 'advise_vect', 'affair_vect', 'affairs_vect', 'affectionate_vect', 'afraid_vect', 'aft_vect', 'afternoon_vect', 'aftr_vect', 'agalla_vect', 'age_vect', 'age16_vect', 'ages_vect', 'ago_vect', 'agree_vect', 'ah_vect', 'aha_vect', 'ahead_vect', 'ahmad_vect', 'ai_vect', 'aight_vect', 'aint_vect', 'air_vect', 'airport_vect', 'airtel_vect', 'aiya_vect', 'aiyah_vect', 'aiyar_vect', 'aiyo_vect', 'al_vect', 'album_vect', 'alert_vect', 'alex_vect', 'alfie_vect', 'ali_vect', 'allah_vect', 'allow_vect', 'allowed_vect', 'almost_vect', 'alone_vect', 'along_vect', 'already_vect', 'alright_vect', 'alrite_vect', 'also_vect', 'always_vect', 'alwys_vect', 'amazing_vect', 'american_vect', 'among_vect', 'amount_vect', 'amp_vect', 'amt_vect', 'andros_vect', 'angry_vect', 'annie_vect', 'anniversary_vect', 'announcement_vect', 'anot_vect', 'another_vect', 'ans_vect', 'ansr_vect', 'answer_vect', 'answered_vect', 'answering_vect', 'answers_vect', 'anthony_vect', 'anti_vect', 'anybody_vect', 'anymore_vect', 'anyone_vect', 'anything_vect', 'anytime_vect', 'anyway_vect', 'anyways_vect', 'apartment_vect', 'app_vect', 'apparently_vect', 'applebees_vect', 'apply_vect', 'appointment_vect', 'appreciate_vect', 'appreciated_vect', 'approx_vect', 'apps_vect', 'appt_vect', 'april_vect', 'ar_vect', 'arcade_vect', 'ard_vect', 'area_vect', 'argh_vect', 'argument_vect', 'arm_vect', 'armand_vect', 'arms_vect', 'around_vect', 'arrange_vect', 'arrested_vect', 'arrive_vect', 'arsenal_vect', 'art_vect', 'arun_vect', 'asap_vect', 'ashley_vect', 'ask_vect', 'askd_vect', 'asked_vect', 'askin_vect', 'asking_vect', 'asks_vect', 'asleep_vect', 'ass_vect', 'assume_vect', 'ate_vect', 'atlanta_vect', 'atlast_vect', 'atm_vect', 'attached_vect', 'attempt_vect', 'attend_vect', 'auction_vect', 'august_vect', 'aunt_vect', 'aunty_vect', 'auto_vect', 'av_vect', 'available_vect', 'avatar_vect', 'ave_vect', 'avent_vect', 'avoid_vect', 'await_vect', 'awaiting_vect', 'awake_vect', 'award_vect', 'awarded_vect', 'away_vect', 'awesome_vect', 'aww_vect', 'b4_vect', 'ba_vect', 'babe_vect', 'babes_vect', 'babies_vect', 'baby_vect', 'back_vect', 'bad_vect', 'bag_vect', 'bags_vect', 'bahamas_vect', 'bak_vect', 'balance_vect', 'bank_vect', 'banks_vect', 'bar_vect', 'barely_vect', 'basic_vect', 'basically_vect', 'bat_vect', 'bath_vect', 'bathe_vect', 'bathing_vect', 'battery_vect', 'bay_vect', 'bb_vect', 'bc_vect', 'bck_vect', 'bcoz_vect', 'bday_vect', 'be_vect', 'bears_vect', 'beautiful_vect', 'beauty_vect', 'bec_vect', 'become_vect', 'becoz_vect', 'bed_vect', 'bedrm_vect', 'bedroom_vect', 'beer_vect', 'befor_vect', 'beg_vect', 'begin_vect', 'behave_vect', 'behind_vect', 'bein_vect', 'believe_vect', 'bell_vect', 'belly_vect', 'belovd_vect', 'best_vect', 'bet_vect', 'better_vect', 'beyond_vect', 'bf_vect', 'bid_vect', 'bids_vect', 'big_vect', 'bigger_vect', 'biggest_vect', 'bill_vect', 'billed_vect', 'billion_vect', 'bills_vect', 'bin_vect', 'biola_vect', 'birds_vect', 'birla_vect', 'birth_vect', 'birthdate_vect', 'birthday_vect', 'bishan_vect', 'bit_vect', 'bitch_vect', 'bite_vect', 'black_vect', 'blackberry_vect', 'blah_vect', 'blake_vect', 'blank_vect', 'bleh_vect', 'bless_vect', 'blessing_vect', 'bloo_vect', 'blood_vect', 'bloody_vect', 'blue_vect', 'bluetooth_vect', 'bluff_vect', 'boat_vect', 'body_vect', 'bold_vect', 'bone_vect', 'bonus_vect', 'boo_vect', 'book_vect', 'booked_vect', 'booking_vect', 'books_vect', 'boost_vect', 'booty_vect', 'bored_vect', 'boring_vect', 'born_vect', 'boss_vect', 'boston_vect', 'bother_vect', 'bottom_vect', 'bought_vect', 'bout_vect', 'bowl_vect', 'box_vect', 'box326_vect', 'box334sk38ch_vect', 'box97n7qp_vect', 'boy_vect', 'boye_vect', 'boyfriend_vect', 'boys_vect', 'boytoy_vect', 'brah_vect', 'brand_vect', 'bread_vect', 'break_vect', 'breathe_vect', 'bright_vect', 'brilliant_vect', 'bring_vect', 'bringing_vect', 'brings_vect', 'british_vect', 'bro_vect', 'broad_vect', 'broke_vect', 'broken_vect', 'bros_vect', 'brothas_vect', 'brother_vect', 'brought_vect', 'bruv_vect', 'bslvyl_vect', 'bt_vect', 'btnationalrate_vect', 'btw_vect', 'bucks_vect', 'bud_vect', 'budget_vect', 'buff_vect', 'buffet_vect', 'bugis_vect', 'building_vect', 'buns_vect', 'burger_vect', 'burns_vect', 'bus_vect', 'buses_vect', 'business_vect', 'busy_vect', 'butt_vect', 'buy_vect', 'buying_vect', 'buzz_vect', 'bx420_vect', 'bx420ip45we_vect', 'bye_vect', 'ca_vect', 'cabin_vect', 'cafe_vect', 'cake_vect', 'cal_vect', 'calculation_vect', 'calicut_vect', 'california_vect', 'call_vect', 'call2optout674_vect', 'callback_vect', 'callcost_vect', 'called_vect', 'caller_vect', 'callers_vect', 'callertune_vect', 'callin_vect', 'calling_vect', 'calls_vect', 'callså_vect', 'cam_vect', 'camcorder_vect', 'came_vect', 'camera_vect', 'cameravideo_vect', 'campus_vect', 'can_vect', 'canada_vect', 'canal_vect', 'canary_vect', 'cancel_vect', 'cancelled_vect', 'cancer_vect', 'cant_vect', 'captain_vect', 'car_vect', 'card_vect', 'cardiff_vect', 'care_vect', 'cared_vect', 'career_vect', 'careful_vect', 'carefully_vect', 'caring_vect', 'carlos_vect', 'caroline_vect', 'cars_vect', 'cartoon_vect', 'case_vect', 'cash_vect', 'cashbalance_vect', 'cashin_vect', 'castor_vect', 'cat_vect', 'catch_vect', 'catching_vect', 'caught_vect', 'cause_vect', 'cbe_vect', 'cc_vect', 'cd_vect', 'cdgt_vect', 'cds_vect', 'celebrate_vect', 'celebration_vect', 'cell_vect', 'center_vect', 'centre_vect', 'certainly_vect', 'cha_vect', 'chain_vect', 'challenge_vect', 'chance_vect', 'change_vect', 'changed_vect', 'changes_vect', 'channel_vect', 'character_vect', 'charge_vect', 'charged_vect', 'charges_vect', 'charity_vect', 'charles_vect', 'chase_vect', 'chasing_vect', 'chat_vect', 'chatting_vect', 'cheap_vect', 'cheaper_vect', 'cheat_vect', 'chechi_vect', 'check_vect', 'checked_vect', 'checking_vect', 'cheers_vect', 'chennai_vect', 'cherish_vect', 'chest_vect', 'chicken_vect', 'chikku_vect', 'child_vect', 'childish_vect', 'children_vect', 'chill_vect', 'chillin_vect', 'china_vect', 'chinese_vect', 'chip_vect', 'chocolate_vect', 'choice_vect', 'choose_vect', 'chosen_vect', 'christ_vect', 'christmas_vect', 'church_vect', 'cine_vect', 'cinema_vect', 'citizen_vect', 'city_vect', 'claim_vect', 'claims_vect', 'claire_vect', 'class_vect', 'classes_vect', 'clean_vect', 'cleaning_vect', 'clear_vect', 'clearly_vect', 'click_vect', 'clock_vect', 'close_vect', 'closed_vect', 'closer_vect', 'closes_vect', 'clothes_vect', 'club_vect', 'cn_vect', 'co_vect', 'coast_vect', 'coat_vect', 'cochin_vect', 'code_vect', 'coffee_vect', 'coin_vect', 'coins_vect', 'cold_vect', 'colleagues_vect', 'collect_vect', 'collected_vect', 'collecting_vect', 'collection_vect', 'college_vect', 'colour_vect', 'come_vect', 'comedy_vect', 'comes_vect', 'comin_vect', 'coming_vect', 'commercial_vect', 'common_vect', 'community_vect', 'comp_vect', 'company_vect', 'competition_vect', 'complete_vect', 'completed_vect', 'completely_vect', 'complimentary_vect', 'computer_vect', 'concentrate_vect', 'concert_vect', 'conditions_vect', 'conducts_vect', 'confidence_vect', 'confirm_vect', 'congrats_vect', 'congratulations_vect', 'connection_vect', 'consider_vect', 'considering_vect', 'constant_vect', 'constantly_vect', 'contact_vect', 'contacted_vect', 'contacts_vect', 'content_vect', 'contents_vect', 'continue_vect', 'contract_vect', 'control_vect', 'convey_vect', 'convinced_vect', 'cool_vect', 'coping_vect', 'copy_vect', 'cornwall_vect', 'correct_vect', 'cos_vect', 'cost_vect', 'costa_vect', 'costs_vect', 'costå_vect', 'could_vect', 'count_vect', 'countin_vect', 'country_vect', 'couple_vect', 'course_vect', 'cover_vect', 'coz_vect', 'cr9_vect', 'cramps_vect', 'crave_vect', 'crazy_vect', 'created_vect', 'credit_vect', 'credited_vect', 'credits_vect', 'creepy_vect', 'crisis_vect', 'crore_vect', 'cross_vect', 'croydon_vect', 'cruise_vect', 'cry_vect', 'cs_vect', 'csbcm4235wc1n3xx_vect', 'csstop_vect', 'cud_vect', 'cuddling_vect', 'cum_vect', 'cup_vect', 'curious_vect', 'current_vect', 'currently_vect', 'cust_vect', 'custcare_vect', 'custcare08718720201_vect', 'custom_vect', 'customer_vect', 'customers_vect', 'cut_vect', 'cute_vect', 'cutting_vect', 'cuz_vect', 'cw25wx_vect', 'da_vect', 'dad_vect', 'daddy_vect', 'daily_vect', 'damn_vect', 'dance_vect', 'dancing_vect', 'dare_vect', 'dark_vect', 'darlin_vect', 'darling_vect', 'darren_vect', 'dat_vect', 'date_vect', 'dates_vect', 'dating_vect', 'dave_vect', 'day_vect', 'days_vect', 'de_vect', 'dead_vect', 'deal_vect', 'dealer_vect', 'dealing_vect', 'dear_vect', 'dearly_vect', 'death_vect', 'decide_vect', 'decided_vect', 'decimal_vect', 'decision_vect', 'deep_vect', 'def_vect', 'definite_vect', 'definitely_vect', 'del_vect', 'delete_vect', 'deleted_vect', 'delhi_vect', 'deliver_vect', 'delivered_vect', 'deliveredtomorrow_vect', 'delivery_vect', 'dem_vect', 'demand_vect', 'den_vect', 'denis_vect', 'department_vect', 'depends_vect', 'depressed_vect', 'derek_vect', 'desires_vect', 'desperate_vect', 'details_vect', 'dey_vect', 'dhoni_vect', 'dial_vect', 'dick_vect', 'dictionary_vect', 'didn_vect', 'didnt_vect', 'didt_vect', 'die_vect', 'died_vect', 'diet_vect', 'different_vect', 'difficult_vect', 'digital_vect', 'dignity_vect', 'din_vect', 'dinner_vect', 'dint_vect', 'direct_vect', 'directly_vect', 'dirty_vect', 'dis_vect', 'discount_vect', 'discuss_vect', 'dislikes_vect', 'display_vect', 'distance_vect', 'distract_vect', 'disturb_vect', 'division_vect', 'dload_vect', 'dnt_vect', 'doc_vect', 'docs_vect', 'doctor_vect', 'doesnt_vect', 'dog_vect', 'dogging_vect', 'doggy_vect', 'doin_vect', 'dollars_vect', 'don_vect', 'done_vect', 'dont_vect', 'donåõt_vect', 'door_vect', 'dorm_vect', 'double_vect', 'dough_vect', 'download_vect', 'downloads_vect', 'draw_vect', 'dream_vect', 'dreams_vect', 'dress_vect', 'dressed_vect', 'dresser_vect', 'drink_vect', 'drinking_vect', 'drinks_vect', 'drive_vect', 'driver_vect', 'drivin_vect', 'driving_vect', 'drop_vect', 'dropped_vect', 'drug_vect', 'drugs_vect', 'drunk_vect', 'dry_vect', 'ds_vect', 'dubsack_vect', 'dude_vect', 'due_vect', 'dun_vect', 'dunno_vect', 'durban_vect', 'dvd_vect', 'earlier_vect', 'early_vect', 'earth_vect', 'easier_vect', 'easily_vect', 'east_vect', 'easter_vect', 'easy_vect', 'eat_vect', 'eaten_vect', 'eatin_vect', 'eating_vect', 'ebay_vect', 'ec2a_vect', 'ee_vect', 'eek_vect', 'eerie_vect', 'effects_vect', 'eg_vect', 'egg_vect', 'eggs_vect', 'eh_vect', 'eight_vect', 'either_vect', 'ela_vect', 'electricity_vect', 'else_vect', 'elsewhere_vect', 'em_vect', 'email_vect', 'embarassed_vect', 'empty_vect', 'end_vect', 'ended_vect', 'ending_vect', 'ends_vect', 'enemy_vect', 'energy_vect', 'eng_vect', 'engin_vect', 'england_vect', 'english_vect', 'enjoy_vect', 'enjoyed_vect', 'enough_vect', 'enter_vect', 'entered_vect', 'entitled_vect', 'entry_vect', 'enuff_vect', 'envelope_vect', 'er_vect', 'erm_vect', 'escape_vect', 'especially_vect', 'esplanade_vect', 'eta_vect', 'etc_vect', 'euro_vect', 'euro2004_vect', 'europe_vect', 'eve_vect', 'eveb_vect', 'even_vect', 'evening_vect', 'event_vect', 'ever_vect', 'every_vect', 'everybody_vect', 'everyday_vect', 'everyone_vect', 'everything_vect', 'everywhere_vect', 'evn_vect', 'evng_vect', 'ex_vect', 'exact_vect', 'exactly_vect', 'exam_vect', 'exams_vect', 'excellent_vect', 'except_vect', 'exciting_vect', 'excuse_vect', 'excuses_vect', 'executive_vect', 'exeter_vect', 'exhausted_vect', 'expect_vect', 'expecting_vect', 'expensive_vect', 'experience_vect', 'expired_vect', 'expires_vect', 'explain_vect', 'explicit_vect', 'explosive_vect', 'express_vect', 'extra_vect', 'eye_vect', 'eyes_vect', 'fa_vect', 'fab_vect', 'face_vect', 'facebook_vect', 'fact_vect', 'faggy_vect', 'failed_vect', 'fair_vect', 'faith_vect', 'fall_vect', 'falls_vect', 'family_vect', 'fan_vect', 'fancies_vect', 'fancy_vect', 'fantasies_vect', 'fantastic_vect', 'fantasy_vect', 'far_vect', 'farm_vect', 'fast_vect', 'faster_vect', 'fat_vect', 'father_vect', 'fathima_vect', 'fault_vect', 'fave_vect', 'favorite_vect', 'favour_vect', 'favourite_vect', 'fb_vect', 'feb_vect', 'february_vect', 'feel_vect', 'feelin_vect', 'feeling_vect', 'feels_vect', 'fees_vect', 'feet_vect', 'fell_vect', 'felt_vect', 'fetch_vect', 'fever_vect', 'field_vect', 'fifteen_vect', 'fight_vect', 'fighting_vect', 'figure_vect', 'file_vect', 'files_vect', 'fill_vect', 'filling_vect', 'fills_vect', 'film_vect', 'final_vect', 'finally_vect', 'find_vect', 'fine_vect', 'fingers_vect', 'finish_vect', 'finished_vect', 'first_vect', 'fit_vect', 'fix_vect', 'fixed_vect', 'flag_vect', 'flaked_vect', 'flash_vect', 'flat_vect', 'flight_vect', 'flights_vect', 'flirt_vect', 'floor_vect', 'flower_vect', 'fml_vect', 'fo_vect', 'follow_vect', 'followed_vect', 'following_vect', 'fone_vect', 'food_vect', 'fool_vect', 'football_vect', 'force_vect', 'foreign_vect', 'forever_vect', 'forevr_vect', 'forget_vect', 'forgets_vect', 'forgiven_vect', 'forgot_vect', 'format_vect', 'forums_vect', 'forward_vect', 'forwarded_vect', 'found_vect', 'four_vect', 'fr_vect', 'fran_vect', 'freak_vect', 'free_vect', 'freefone_vect', 'freemsg_vect', 'freephone_vect', 'freezing_vect', 'fren_vect', 'frens_vect', 'fret_vect', 'fri_vect', 'friday_vect', 'friend_vect', 'friends_vect', 'friendship_vect', 'fringe_vect', 'frm_vect', 'frnd_vect', 'frnds_vect', 'frndship_vect', 'fuck_vect', 'fuckin_vect', 'fucking_vect', 'ful_vect', 'full_vect', 'fullonsmscom_vect', 'fun_vect', 'funny_vect', 'future_vect', 'fyi_vect', 'gal_vect', 'gals_vect', 'game_vect', 'games_vect', 'gang_vect', 'gap_vect', 'gaps_vect', 'garage_vect', 'garbage_vect', 'gary_vect', 'gas_vect', 'gautham_vect', 'gave_vect', 'gay_vect', 'gd_vect', 'ge_vect', 'gee_vect', 'geeee_vect', 'geeeee_vect', 'gender_vect', 'generally_vect', 'genius_vect', 'gentle_vect', 'gentleman_vect', 'gently_vect', 'germany_vect', 'get_vect', 'gets_vect', 'gettin_vect', 'getting_vect', 'gf_vect', 'gibbs_vect', 'gift_vect', 'gim_vect', 'girl_vect', 'girls_vect', 'gist_vect', 'giv_vect', 'give_vect', 'given_vect', 'gives_vect', 'giving_vect', 'glad_vect', 'gn_vect', 'go_vect', 'goal_vect', 'god_vect', 'goes_vect', 'goin_vect', 'going_vect', 'gold_vect', 'gon_vect', 'gona_vect', 'gone_vect', 'good_vect', 'goodmorning_vect', 'goodnight_vect', 'goodnite_vect', 'google_vect', 'gorgeous_vect', 'gossip_vect', 'got_vect', 'goto_vect', 'gotten_vect', 'govtinstituitions_vect', 'gr8_vect', 'grace_vect', 'gram_vect', 'grand_vect', 'granite_vect', 'gravity_vect', 'great_vect', 'green_vect', 'greet_vect', 'greetings_vect', 'grins_vect', 'grl_vect', 'ground_vect', 'group_vect', 'gt_vect', 'guaranteed_vect', 'gud_vect', 'gudnite_vect', 'guess_vect', 'guessing_vect', 'guide_vect', 'guilty_vect', 'guy_vect', 'guys_vect', 'gym_vect', 'ha_vect', 'haf_vect', 'haha_vect', 'hai_vect', 'hair_vect', 'haiz_vect', 'half_vect', 'halloween_vect', 'ham_vect', 'hand_vect', 'handed_vect', 'handle_vect', 'hands_vect', 'handset_vect', 'hanging_vect', 'happen_vect', 'happened_vect', 'happening_vect', 'happens_vect', 'happiness_vect', 'happy_vect', 'hard_vect', 'hardcore_vect', 'hardly_vect', 'harry_vect', 'hate_vect', 'hav_vect', 'havent_vect', 'havenåõt_vect', 'havin_vect', 'head_vect', 'headache_vect', 'headin_vect', 'heads_vect', 'hear_vect', 'heard_vect', 'heart_vect', 'heavy_vect', 'hee_vect', 'height_vect', 'held_vect', 'helen_vect', 'hell_vect', 'hella_vect', 'hello_vect', 'help_vect', 'help08712400602450p_vect', 'helpline_vect', 'hence_vect', 'henry_vect', 'heri_vect', 'herlove_vect', 'hes_vect', 'hex_vect', 'hey_vect', 'hgsuite3422lands_vect', 'hi_vect', 'hide_vect', 'high_vect', 'hill_vect', 'hint_vect', 'hip_vect', 'history_vect', 'hit_vect', 'hiya_vect', 'hl_vect', 'hlp_vect', 'hmm_vect', 'hmmm_vect', 'hmv_vect', 'ho_vect', 'hockey_vect', 'hol_vect', 'hold_vect', 'holder_vect', 'holding_vect', 'holiday_vect', 'holla_vect', 'hols_vect', 'holy_vect', 'home_vect', 'honey_vect', 'hook_vect', 'hop_vect', 'hope_vect', 'hoped_vect', 'hopefully_vect', 'hoping_vect', 'horny_vect', 'horo_vect', 'horrible_vect', 'hospital_vect', 'hospitals_vect', 'hostel_vect', 'hot_vect', 'hotel_vect', 'hotels_vect', 'hour_vect', 'hours_vect', 'house_vect', 'housemaid_vect', 'however_vect', 'hows_vect', 'howz_vect', 'hr_vect', 'hrishi_vect', 'hrs_vect', 'http_vect', 'hubby_vect', 'hug_vect', 'huh_vect', 'hun_vect', 'hungry_vect', 'hunny_vect', 'hurry_vect', 'hurt_vect', 'hurting_vect', 'hurts_vect', 'husband_vect', 'hv_vect', 'hw_vect', 'hyde_vect', 'iam_vect', 'ibhltd_vect', 'ibiza_vect', 'ic_vect', 'ice_vect', 'id_vect', 'idea_vect', 'ideal_vect', 'ideas_vect', 'identifier_vect', 'idiot_vect', 'idk_vect', 'ignore_vect', 'ikea_vect', 'il_vect', 'ill_vect', 'im_vect', 'imagine_vect', 'imma_vect', 'immediately_vect', 'imp_vect', 'important_vect', 'impossible_vect', 'improved_vect', 'in2_vect', 'inc_vect', 'inches_vect', 'incident_vect', 'include_vect', 'including_vect', 'inclusive_vect', 'inconsiderate_vect', 'indeed_vect', 'india_vect', 'indian_vect', 'indians_vect', 'indicate_vect', 'infections_vect', 'infernal_vect', 'info_vect', 'inform_vect', 'information_vect', 'informed_vect', 'innings_vect', 'insha_vect', 'inside_vect', 'instantly_vect', 'instead_vect', 'instructions_vect', 'insurance_vect', 'intelligent_vect', 'interest_vect', 'interested_vect', 'interesting_vect', 'interflora_vect', 'internet_vect', 'intro_vect', 'invest_vect', 'invite_vect', 'invited_vect', 'inviting_vect', 'iouri_vect', 'ip4_vect', 'ipod_vect', 'irritating_vect', 'iscoming_vect', 'ish_vect', 'island_vect', 'islands_vect', 'isnt_vect', 'issue_vect', 'issues_vect', 'it_vect', 'italian_vect', 'its_vect', 'itz_vect', 'itåõs_vect', 'ive_vect', 'iz_vect', 'izzit_vect', 'iåõm_vect', 'jacket_vect', 'jamster_vect', 'jan_vect', 'january_vect', 'jason_vect', 'java_vect', 'jay_vect', 'jazz_vect', 'jealous_vect', 'jeans_vect', 'jen_vect', 'jenny_vect', 'jess_vect', 'jesus_vect', 'jiayin_vect', 'jiu_vect', 'jo_vect', 'joanna_vect', 'job_vect', 'jogging_vect', 'john_vect', 'join_vect', 'joined_vect', 'joining_vect', 'joke_vect', 'jokes_vect', 'jokin_vect', 'joking_vect', 'jolly_vect', 'joy_vect', 'jsco_vect', 'jst_vect', 'juan_vect', 'juicy_vect', 'july_vect', 'june_vect', 'jus_vect', 'juz_vect', 'k52_vect', 'kadeem_vect', 'kaiez_vect', 'kallis_vect', 'kano_vect', 'kappa_vect', 'karaoke_vect', 'kate_vect', 'kay_vect', 'kb_vect', 'ke_vect', 'keep_vect', 'keeping_vect', 'keeps_vect', 'kent_vect', 'kept_vect', 'kerala_vect', 'key_vect', 'keys_vect', 'ki_vect', 'kick_vect', 'kid_vect', 'kidding_vect', 'kids_vect', 'kidz_vect', 'kind_vect', 'kinda_vect', 'kindly_vect', 'king_vect', 'kiss_vect', 'kisses_vect', 'kk_vect', 'knackered_vect', 'knew_vect', 'knock_vect', 'know_vect', 'knowing_vect', 'knows_vect', 'knw_vect', 'kz_vect', 'l8r_vect', 'la_vect', 'lab_vect', 'ladies_vect', 'lady_vect', 'lag_vect', 'laid_vect', 'land_vect', 'landline_vect', 'langport_vect', 'language_vect', 'laptop_vect', 'lar_vect', 'largest_vect', 'last_vect', 'late_vect', 'later_vect', 'latest_vect', 'latr_vect', 'laugh_vect', 'laughing_vect', 'law_vect', 'lazy_vect', 'ldn_vect', 'ldnw15h_vect', 'le_vect', 'lead_vect', 'learn_vect', 'least_vect', 'leave_vect', 'leaves_vect', 'leaving_vect', 'lect_vect', 'lecture_vect', 'left_vect', 'legal_vect', 'legs_vect', 'leh_vect', 'lei_vect', 'lem_vect', 'less_vect', 'lesson_vect', 'lessons_vect', 'let_vect', 'lets_vect', 'letter_vect', 'letters_vect', 'liao_vect', 'library_vect', 'lick_vect', 'licks_vect', 'lido_vect', 'lie_vect', 'lies_vect', 'life_vect', 'lifetime_vect', 'lift_vect', 'light_vect', 'lik_vect', 'like_vect', 'liked_vect', 'likely_vect', 'likes_vect', 'lil_vect', 'line_vect', 'linerental_vect', 'lines_vect', 'link_vect', 'lion_vect', 'lionm_vect', 'lionp_vect', 'lions_vect', 'lip_vect', 'list_vect', 'listen_vect', 'listening_vect', 'literally_vect', 'little_vect', 'live_vect', 'liverpool_vect', 'living_vect', 'lk_vect', 'll_vect', 'lmao_vect', 'lo_vect', 'loads_vect', 'loan_vect', 'loans_vect', 'local_vect', 'locations_vect', 'lock_vect', 'log_vect', 'login_vect', 'logo_vect', 'logopic_vect', 'lol_vect', 'london_vect', 'lonely_vect', 'long_vect', 'longer_vect', 'look_vect', 'lookatme_vect', 'looked_vect', 'lookin_vect', 'looking_vect', 'looks_vect', 'lor_vect', 'lose_vect', 'losing_vect', 'loss_vect', 'lost_vect', 'lot_vect', 'lotr_vect', 'lots_vect', 'lou_vect', 'loud_vect', 'lounge_vect', 'lousy_vect', 'lovable_vect', 'love_vect', 'loved_vect', 'lovely_vect', 'loveme_vect', 'lover_vect', 'loverboy_vect', 'lovers_vect', 'loves_vect', 'loving_vect', 'low_vect', 'lower_vect', 'loyal_vect', 'loyalty_vect', 'ls15hb_vect', 'lt_vect', 'ltd_vect', 'luck_vect', 'lucky_vect', 'lucy_vect', 'lunch_vect', 'luv_vect', 'lux_vect', 'luxury_vect', 'lyf_vect', 'lyfu_vect', 'lyk_vect', 'm227xy_vect', 'm26_vect', 'm263uz_vect', 'm8s_vect', 'mac_vect', 'machan_vect', 'macho_vect', 'mad_vect', 'madam_vect', 'made_vect', 'mag_vect', 'maga_vect', 'magical_vect', 'mah_vect', 'mail_vect', 'mailbox_vect', 'main_vect', 'maintain_vect', 'major_vect', 'make_vect', 'makes_vect', 'makin_vect', 'making_vect', 'malaria_vect', 'male_vect', 'mall_vect', 'man_vect', 'managed_vect', 'management_vect', 'many_vect', 'map_vect', 'march_vect', 'mark_vect', 'market_vect', 'marriage_vect', 'married_vect', 'marry_vect', 'masters_vect', 'match_vect', 'matches_vect', 'mate_vect', 'mates_vect', 'matrix3_vect', 'matter_vect', 'max10mins_vect', 'maximize_vect', 'maxå_vect', 'may_vect', 'mayb_vect', 'maybe_vect', 'mca_vect', 'mcat_vect', 'meal_vect', 'mean_vect', 'meaning_vect', 'means_vect', 'meant_vect', 'meanwhile_vect', 'med_vect', 'medical_vect', 'medicine_vect', 'meds_vect', 'meet_vect', 'meetin_vect', 'meeting_vect', 'meh_vect', 'mei_vect', 'member_vect', 'members_vect', 'men_vect', 'menu_vect', 'merry_vect', 'mess_vect', 'message_vect', 'messaged_vect', 'messages_vect', 'messaging_vect', 'met_vect', 'mid_vect', 'middle_vect', 'midnight_vect', 'mids_vect', 'might_vect', 'miles_vect', 'milk_vect', 'min_vect', 'mind_vect', 'mine_vect', 'mini_vect', 'minimum_vect', 'minor_vect', 'mins_vect', 'minute_vect', 'minutes_vect', 'minuts_vect', 'miracle_vect', 'mis_vect', 'miserable_vect', 'miss_vect', 'missed_vect', 'missin_vect', 'missing_vect', 'mistake_vect', 'mistakes_vect', 'mite_vect', 'mm_vect', 'mmm_vect', 'mmmm_vect', 'mmmmmm_vect', 'mnths_vect', 'mo_vect', 'moan_vect', 'mob_vect', 'mobile_vect', 'mobiles_vect', 'mobilesdirect_vect', 'mobilesvary_vect', 'mobileupd8_vect', 'mobno_vect', 'moby_vect', 'mode_vect', 'model_vect', 'module_vect', 'modules_vect', 'moji_vect', 'mojibiola_vect', 'mokka_vect', 'mom_vect', 'moment_vect', 'moments_vect', 'moms_vect', 'mon_vect', 'monday_vect', 'money_vect', 'monkeys_vect', 'mono_vect', 'month_vect', 'monthly_vect', 'months_vect', 'mood_vect', 'moon_vect', 'moral_vect', 'morn_vect', 'morning_vect', 'mostly_vect', 'mother_vect', 'motorola_vect', 'mouth_vect', 'move_vect', 'moved_vect', 'movie_vect', 'movies_vect', 'moving_vect', 'mp3_vect', 'mr_vect', 'mrng_vect', 'mrt_vect', 'msg_vect', 'msgs_vect', 'mths_vect', 'mu_vect', 'much_vect', 'mum_vect', 'mummy_vect', 'murder_vect', 'murdered_vect', 'murderer_vect', 'music_vect', 'must_vect', 'muz_vect', 'na_vect', 'nag_vect', 'nah_vect', 'naked_vect', 'name_vect', 'name1_vect', 'name2_vect', 'named_vect', 'names_vect', 'nan_vect', 'nap_vect', 'nasdaq_vect', 'nat_vect', 'national_vect', 'natural_vect', 'nature_vect', 'naughty_vect', 'nb_vect', 'nd_vect', 'ne_vect', 'near_vect', 'nearly_vect', 'necessarily_vect', 'necklace_vect', 'ned_vect', 'need_vect', 'needed_vect', 'needs_vect', 'neither_vect', 'net_vect', 'netcollex_vect', 'network_vect', 'networks_vect', 'neva_vect', 'never_vect', 'new_vect', 'newest_vect', 'news_vect', 'next_vect', 'ni8_vect', 'nice_vect', 'nigeria_vect', 'night_vect', 'nights_vect', 'nimya_vect', 'nite_vect', 'no1_vect', 'nobody_vect', 'noe_vect', 'nokia_vect', 'nokias_vect', 'noline_vect', 'none_vect', 'noon_vect', 'nope_vect', 'norm_vect', 'norm150ptone_vect', 'normal_vect', 'normally_vect', 'northampton_vect', 'note_vect', 'nothin_vect', 'nothing_vect', 'notice_vect', 'noun_vect', 'nowadays_vect', 'nt_vect', 'ntt_vect', 'ntwk_vect', 'num_vect', 'number_vect', 'numbers_vect', 'nuther_vect', 'nvm_vect', 'nw_vect', 'nxt_vect', 'nyc_vect', 'nydc_vect', 'nyt_vect', 'o2_vect', 'obviously_vect', 'odi_vect', 'offer_vect', 'offers_vect', 'office_vect', 'official_vect', 'officially_vect', 'ofice_vect', 'often_vect', 'oh_vect', 'oi_vect', 'oic_vect', 'ok_vect', 'okay_vect', 'okey_vect', 'okie_vect', 'ola_vect', 'old_vect', 'omg_vect', 'omw_vect', 'one_vect', 'ones_vect', 'oni_vect', 'online_vect', 'onto_vect', 'onwards_vect', 'oooh_vect', 'oops_vect', 'open_vect', 'opening_vect', 'operator_vect', 'opinion_vect', 'opportunity_vect', 'opt_vect', 'option_vect', 'optout_vect', 'or2stoptxt_vect', 'orange_vect', 'oranges_vect', 'orchard_vect', 'order_vect', 'ordered_vect', 'oredi_vect', 'original_vect', 'oru_vect', 'os_vect', 'oso_vect', 'others_vect', 'otherwise_vect', 'otside_vect', 'outside_vect', 'outstanding_vect', 'outta_vect', 'ovulation_vect', 'oz_vect', 'pa_vect', 'pack_vect', 'package_vect', 'page_vect', 'pages_vect', 'paid_vect', 'pain_vect', 'painful_vect', 'painting_vect', 'panic_vect', 'paper_vect', 'papers_vect', 'paperwork_vect', 'parco_vect', 'parent_vect', 'parents_vect', 'paris_vect', 'park_vect', 'parked_vect', 'parking_vect', 'part_vect', 'partner_vect', 'partnership_vect', 'party_vect', 'pass_vect', 'passed_vect', 'password_vect', 'past_vect', 'pattern_vect', 'patty_vect', 'pay_vect', 'paying_vect', 'payment_vect', 'payoh_vect', 'pc_vect', 'peace_vect', 'pence_vect', 'people_vect', 'per_vect', 'perfect_vect', 'period_vect', 'person_vect', 'personal_vect', 'pete_vect', 'petey_vect', 'pg_vect', 'philosophy_vect', 'phoenix_vect', 'phone_vect', 'phones_vect', 'photo_vect', 'photos_vect', 'pic_vect', 'pick_vect', 'picked_vect', 'picking_vect', 'pics_vect', 'picsfree1_vect', 'picture_vect', 'pictures_vect', 'pie_vect', 'pieces_vect', 'pig_vect', 'pilates_vect', 'pin_vect', 'pink_vect', 'piss_vect', 'pissed_vect', 'pix_vect', 'pizza_vect', 'place_vect', 'places_vect', 'plan_vect', 'planned_vect', 'planning_vect', 'plans_vect', 'play_vect', 'played_vect', 'player_vect', 'players_vect', 'playing_vect', 'please_vect', 'pleased_vect', 'pleasure_vect', 'plenty_vect', 'pls_vect', 'plus_vect', 'plz_vect', 'pm_vect', 'po_vect', 'pobox_vect', 'pobox334_vect', 'pobox36504w45wq_vect', 'pobox45w2tg150p_vect', 'pobox84_vect', 'pod_vect', 'point_vect', 'points_vect', 'poker_vect', 'pole_vect', 'police_vect', 'politicians_vect', 'poly_vect', 'polyphonic_vect', 'polys_vect', 'pongal_vect', 'poor_vect', 'pop_vect', 'popped_vect', 'porn_vect', 'possession_vect', 'possible_vect', 'post_vect', 'postcard_vect', 'postcode_vect', 'posted_vect', 'posts_vect', 'potential_vect', 'potter_vect', 'pound_vect', 'pounds_vect', 'pouts_vect', 'power_vect', 'ppl_vect', 'pple_vect', 'ppm_vect', 'prabha_vect', 'practice_vect', 'practicing_vect', 'pray_vect', 'prefer_vect', 'premier_vect', 'prepare_vect', 'prescription_vect', 'present_vect', 'press_vect', 'pretty_vect', 'prey_vect', 'price_vect', 'prince_vect', 'princess_vect', 'print_vect', 'privacy_vect', 'private_vect', 'prize_vect', 'prob_vect', 'probably_vect', 'problem_vect', 'problems_vect', 'process_vect', 'processed_vect', 'prof_vect', 'profit_vect', 'program_vect', 'project_vect', 'prolly_vect', 'promise_vect', 'promises_vect', 'promo_vect', 'proof_vect', 'properly_vect', 'prospects_vect', 'provided_vect', 'ps_vect', 'ptbo_vect', 'pub_vect', 'pull_vect', 'purchase_vect', 'purity_vect', 'purpose_vect', 'push_vect', 'pushes_vect', 'pussy_vect', 'put_vect', 'puttin_vect', 'putting_vect', 'qatar_vect', 'quality_vect', 'queen_vect', 'ques_vect', 'question_vect', 'questions_vect', 'quick_vect', 'quickly_vect', 'quiet_vect', 'quit_vect', 'quite_vect', 'quiz_vect', 'quote_vect', 'quoting_vect', 'racing_vect', 'radio_vect', 'railway_vect', 'rain_vect', 'raining_vect', 'raise_vect', 'rakhesh_vect', 'rally_vect', 'ran_vect', 'random_vect', 'randomly_vect', 'randy_vect', 'rang_vect', 'range_vect', 'ranjith_vect', 'rate_vect', 'rates_vect', 'rather_vect', 'rays_vect', 'rcvd_vect', 'rd_vect', 're_vect', 'reach_vect', 'reached_vect', 'reaching_vect', 'reaction_vect', 'read_vect', 'readers_vect', 'reading_vect', 'ready_vect', 'real_vect', 'realise_vect', 'reality_vect', 'realized_vect', 'really_vect', 'realy_vect', 'reason_vect', 'reasonable_vect', 'reasons_vect', 'reboot_vect', 'recd_vect', 'receipt_vect', 'receive_vect', 'received_vect', 'receiving_vect', 'recent_vect', 'recently_vect', 'recession_vect', 'record_vect', 'records_vect', 'recovery_vect', 'red_vect', 'ref_vect', 'reference_vect', 'reg_vect', 'regards_vect', 'register_vect', 'registered_vect', 'regret_vect', 'regular_vect', 'relation_vect', 'relax_vect', 'released_vect', 'rem_vect', 'remain_vect', 'remains_vect', 'remember_vect', 'remembered_vect', 'remembr_vect', 'remind_vect', 'reminder_vect', 'remove_vect', 'rent_vect', 'rental_vect', 'rentl_vect', 'repair_vect', 'repeat_vect', 'replied_vect', 'reply_vect', 'replying_vect', 'report_vect', 'representative_vect', 'request_vect', 'requests_vect', 'research_vect', 'resend_vect', 'respect_vect', 'respond_vect', 'responding_vect', 'response_vect', 'responsibility_vect', 'rest_vect', 'restaurant_vect', 'result_vect', 'results_vect', 'retrieve_vect', 'return_vect', 'returned_vect', 'returns_vect', 'reveal_vect', 'revealed_vect', 'review_vect', 'revision_vect', 'reward_vect', 'rhythm_vect', 'rice_vect', 'rich_vect', 'ride_vect', 'right_vect', 'rights_vect', 'ring_vect', 'ringtone_vect', 'ringtones_vect', 'rite_vect', 'river_vect', 'road_vect', 'roads_vect', 'roast_vect', 'rock_vect', 'rocks_vect', 'rofl_vect', 'roger_vect', 'role_vect', 'ron_vect', 'room_vect', 'roommate_vect', 'roommates_vect', 'rooms_vect', 'rose_vect', 'round_vect', 'row_vect', 'roww1j6hl_vect', 'roww1jhl_vect', 'royal_vect', 'rply_vect', 'rs_vect', 'rstm_vect', 'ru_vect', 'rub_vect', 'rude_vect', 'rule_vect', 'run_vect', 'running_vect', 'runs_vect', 'rush_vect', 'sacrifice_vect', 'sad_vect', 'sae_vect', 'safe_vect', 'said_vect', 'salam_vect', 'salary_vect', 'sale_vect', 'salon_vect', 'sam_vect', 'santa_vect', 'sar_vect', 'sarasota_vect', 'sarcastic_vect', 'sary_vect', 'sat_vect', 'sathya_vect', 'saturday_vect', 'savamob_vect', 'save_vect', 'saved_vect', 'saw_vect', 'say_vect', 'saying_vect', 'says_vect', 'scared_vect', 'scary_vect', 'sch_vect', 'schedule_vect', 'school_vect', 'schools_vect', 'science_vect', 'scold_vect', 'score_vect', 'scores_vect', 'scotland_vect', 'scream_vect', 'screaming_vect', 'scrounge_vect', 'se_vect', 'sea_vect', 'search_vect', 'searching_vect', 'season_vect', 'seat_vect', 'sec_vect', 'second_vect', 'seconds_vect', 'secret_vect', 'secretary_vect', 'secs_vect', 'sed_vect', 'see_vect', 'seeing_vect', 'seem_vect', 'seemed_vect', 'seems_vect', 'seen_vect', 'selected_vect', 'selection_vect', 'self_vect', 'sell_vect', 'selling_vect', 'sells_vect', 'sem_vect', 'semester_vect', 'sen_vect', 'send_vect', 'sender_vect', 'sending_vect', 'sense_vect', 'sent_vect', 'sentence_vect', 'sept_vect', 'series_vect', 'serious_vect', 'seriously_vect', 'service_vect', 'services_vect', 'serving_vect', 'set_vect', 'setting_vect', 'settings_vect', 'settle_vect', 'settled_vect', 'seven_vect', 'several_vect', 'sex_vect', 'sexy_vect', 'sh_vect', 'sha_vect', 'shall_vect', 'share_vect', 'shd_vect', 'sheets_vect', 'shes_vect', 'shesil_vect', 'shining_vect', 'ship_vect', 'shipping_vect', 'shirt_vect', 'shirts_vect', 'shit_vect', 'shld_vect', 'shocking_vect', 'shoot_vect', 'shop_vect', 'shoppin_vect', 'shopping_vect', 'short_vect', 'shorter_vect', 'shortly_vect', 'shot_vect', 'shoving_vect', 'show_vect', 'shower_vect', 'showing_vect', 'shows_vect', 'shu_vect', 'shuhui_vect', 'shy_vect', 'si_vect', 'sick_vect', 'side_vect', 'sighs_vect', 'sight_vect', 'sign_vect', 'signing_vect', 'silence_vect', 'silent_vect', 'silver_vect', 'sim_vect', 'simple_vect', 'simply_vect', 'since_vect', 'sing_vect', 'singing_vect', 'single_vect', 'singles_vect', 'sipix_vect', 'sir_vect', 'sis_vect', 'sister_vect', 'sit_vect', 'site_vect', 'sitting_vect', 'situation_vect', 'siva_vect', 'six_vect', 'size_vect', 'sk3_vect', 'sk38xh_vect', 'skilgme_vect', 'skip_vect', 'sky_vect', 'skype_vect', 'skyped_vect', 'slap_vect', 'slave_vect', 'sleep_vect', 'sleepin_vect', 'sleeping_vect', 'sleepy_vect', 'slept_vect', 'slice_vect', 'slide_vect', 'slightly_vect', 'slip_vect', 'slippers_vect', 'slo_vect', 'slots_vect', 'slow_vect', 'slowly_vect', 'small_vect', 'smashed_vect', 'smile_vect', 'smiles_vect', 'smiling_vect', 'smoke_vect', 'smoking_vect', 'sms_vect', 'smth_vect', 'sn_vect', 'snake_vect', 'snow_vect', 'social_vect', 'sofa_vect', 'soft_vect', 'software_vect', 'sol_vect', 'some1_vect', 'somebody_vect', 'someone_vect', 'somethin_vect', 'something_vect', 'sometimes_vect', 'somewhere_vect', 'song_vect', 'songs_vect', 'sony_vect', 'sonyericsson_vect', 'soon_vect', 'sooner_vect', 'sore_vect', 'sorry_vect', 'sort_vect', 'sorting_vect', 'sound_vect', 'sounds_vect', 'south_vect', 'sp_vect', 'space_vect', 'spanish_vect', 'speak_vect', 'speaking_vect', 'special_vect', 'specialcall_vect', 'specially_vect', 'speed_vect', 'spend_vect', 'spending_vect', 'spent_vect', 'spk_vect', 'spoke_vect', 'spoken_vect', 'spook_vect', 'sport_vect', 'sports_vect', 'spree_vect', 'spring_vect', 'sptv_vect', 'sry_vect', 'st_vect', 'staff_vect', 'stamps_vect', 'stand_vect', 'standard_vect', 'standing_vect', 'star_vect', 'staring_vect', 'start_vect', 'started_vect', 'starting_vect', 'starts_vect', 'starwars3_vect', 'statement_vect', 'station_vect', 'stay_vect', 'stayed_vect', 'staying_vect', 'std_vect', 'steam_vect', 'step_vect', 'steve_vect', 'stick_vect', 'sticky_vect', 'still_vect', 'stock_vect', 'stockport_vect', 'stomach_vect', 'stomps_vect', 'stones_vect', 'stop_vect', 'stopped_vect', 'stops_vect', 'store_vect', 'stores_vect', 'story_vect', 'str_vect', 'straight_vect', 'stranger_vect', 'street_vect', 'stress_vect', 'strike_vect', 'strong_vect', 'strongbuy_vect', 'stuck_vect', 'student_vect', 'study_vect', 'studying_vect', 'stuff_vect', 'stupid_vect', 'style_vect', 'stylish_vect', 'sub_vect', 'subpoly_vect', 'subs_vect', 'subscribe6gbpmnth_vect', 'subscribed_vect', 'subscriber_vect', 'subscription_vect', 'success_vect', 'successful_vect', 'successfully_vect', 'sucks_vect', 'sue_vect', 'sufficient_vect', 'suggest_vect', 'suite_vect', 'suits_vect', 'sum1_vect', 'summer_vect', 'sun_vect', 'sunday_vect', 'sunlight_vect', 'sunny_vect', 'sunshine_vect', 'suntec_vect', 'sup_vect', 'super_vect', 'superb_vect', 'superior_vect', 'supervisor_vect', 'supply_vect', 'support_vect', 'suppose_vect', 'supposed_vect', 'suprman_vect', 'sura_vect', 'sure_vect', 'surely_vect', 'surfing_vect', 'surprise_vect', 'surprised_vect', 'survey_vect', 'sux_vect', 'suzy_vect', 'sw7_vect', 'sw73ss_vect', 'sweet_vect', 'swing_vect', 'system_vect', 'ta_vect', 'tablets_vect', 'tahan_vect', 'take_vect', 'taken_vect', 'takes_vect', 'takin_vect', 'taking_vect', 'talent_vect', 'talk_vect', 'talking_vect', 'tampa_vect', 'tape_vect', 'tariffs_vect', 'tat_vect', 'taunton_vect', 'taylor_vect', 'tb_vect', 'tc_vect', 'tcrw1_vect', 'tcs_vect', 'tea_vect', 'teach_vect', 'teacher_vect', 'teaches_vect', 'team_vect', 'tear_vect', 'tease_vect', 'teasing_vect', 'tech_vect', 'technical_vect', 'tee_vect', 'teeth_vect', 'tel_vect', 'telephone_vect', 'tell_vect', 'telling_vect', 'tells_vect', 'telugu_vect', 'temple_vect', 'ten_vect', 'tenants_vect', 'tenerife_vect', 'tension_vect', 'term_vect', 'terms_vect', 'terrible_vect', 'test_vect', 'testing_vect', 'text_vect', 'texted_vect', 'texting_vect', 'textoperator_vect', 'texts_vect', 'th_vect', 'thangam_vect', 'thank_vect', 'thanks_vect', 'thanksgiving_vect', 'thanx_vect', 'that_vect', 'thats_vect', 'thatåõs_vect', 'the_vect', 'theatre_vect', 'themob_vect', 'theory_vect', 'thesis_vect', 'thgt_vect', 'thing_vect', 'things_vect', 'think_vect', 'thinkin_vect', 'thinking_vect', 'thinks_vect', 'thk_vect', 'thnk_vect', 'tho_vect', 'though_vect', 'thought_vect', 'three_vect', 'throat_vect', 'throw_vect', 'thru_vect', 'tht_vect', 'thts_vect', 'thurs_vect', 'thursday_vect', 'tick_vect', 'ticket_vect', 'tickets_vect', 'tight_vect', 'tihs_vect', 'til_vect', 'till_vect', 'time_vect', 'times_vect', 'timing_vect', 'tired_vect', 'tirunelvali_vect', 'tirupur_vect', 'tissco_vect', 'tkts_vect', 'tm_vect', 'tming_vect', 'tmobile_vect', 'tmr_vect', 'tncs_vect', 'toa_vect', 'toclaim_vect', 'today_vect', 'todays_vect', 'tog_vect', 'together_vect', 'tok_vect', 'told_vect', 'tomarrow_vect', 'tomo_vect', 'tomorrow_vect', 'tone_vect', 'tones_vect', 'tones2youcouk_vect', 'tonight_vect', 'tonite_vect', 'took_vect', 'tool_vect', 'tooo_vect', 'toot_vect', 'top_vect', 'topic_vect', 'torch_vect', 'toshiba_vect', 'tot_vect', 'total_vect', 'totally_vect', 'touch_vect', 'tough_vect', 'tour_vect', 'towards_vect', 'town_vect', 'track_vect', 'trade_vect', 'traffic_vect', 'train_vect', 'training_vect', 'transaction_vect', 'transfer_vect', 'transport_vect', 'travel_vect', 'treat_vect', 'treated_vect', 'tried_vect', 'trip_vect', 'trips_vect', 'trouble_vect', 'true_vect', 'truffles_vect', 'truly_vect', 'trust_vect', 'truth_vect', 'try_vect', 'trying_vect', 'ts_vect', 'tscs_vect', 'tscs087147403231winawk_vect', 'tt_vect', 'ttyl_vect', 'tues_vect', 'tuesday_vect', 'tuition_vect', 'turn_vect', 'turning_vect', 'turns_vect', 'tv_vect', 'twelve_vect', 'twice_vect', 'two_vect', 'txt_vect', 'txtauction_vect', 'txtin_vect', 'txting_vect', 'txtno_vect', 'txts_vect', 'txtstop_vect', 'tyler_vect', 'type_vect', 'tyrone_vect', 'u4_vect', 'ubi_vect', 'ufind_vect', 'ugh_vect', 'uh_vect', 'uk_vect', 'uks_vect', 'ultimatum_vect', 'umma_vect', 'unable_vect', 'uncle_vect', 'understand_vect', 'understanding_vect', 'understood_vect', 'underwear_vect', 'unemployed_vect', 'uni_vect', 'unique_vect', 'university_vect', 'unless_vect', 'unlimited_vect', 'unnecessarily_vect', 'unredeemed_vect', 'unsold_vect', 'unsub_vect', 'unsubscribe_vect', 'upd8_vect', 'update_vect', 'updatenow_vect', 'upgrade_vect', 'upload_vect', 'upset_vect', 'upstairs_vect', 'ur_vect', 'ure_vect', 'urgent_vect', 'urgnt_vect', 'url_vect', 'urn_vect', 'urself_vect', 'us_vect', 'usb_vect', 'use_vect', 'used_vect', 'user_vect', 'usf_vect', 'using_vect', 'usual_vect', 'usually_vect', 'vale_vect', 'valentine_vect', 'valentines_vect', 'valid_vect', 'valid12hrs_vect', 'valuable_vect', 'value_vect', 'valued_vect', 'vary_vect', 've_vect', 'vegas_vect', 'verify_vect', 'version_vect', 'via_vect', 'vid_vect', 'video_vect', 'videochat_vect', 'videophones_vect', 'vijay_vect', 'vikky_vect', 'village_vect', 'violated_vect', 'violence_vect', 'vip_vect', 'virgin_vect', 'visit_vect', 'vivek_vect', 'vl_vect', 'voda_vect', 'vodafone_vect', 'vodka_vect', 'voice_vect', 'voicemail_vect', 'vomit_vect', 'vote_vect', 'voucher_vect', 'vouchers_vect', 'vry_vect', 'vth_vect', 'w45wq_vect', 'wa_vect', 'wah_vect', 'wait_vect', 'waited_vect', 'waitin_vect', 'waiting_vect', 'wake_vect', 'waking_vect', 'wales_vect', 'walk_vect', 'walked_vect', 'walking_vect', 'walmart_vect', 'wan_vect', 'wana_vect', 'want_vect', 'wanted_vect', 'wanting_vect', 'wants_vect', 'wap_vect', 'warm_vect', 'warner_vect', 'waste_vect', 'wasted_vect', 'wat_vect', 'watch_vect', 'watching_vect', 'water_vect', 'wats_vect', 'way_vect', 'wc1n3xx_vect', 'we_vect', 'weak_vect', 'wear_vect', 'wearing_vect', 'weather_vect', 'web_vect', 'website_vect', 'wed_vect', 'wedding_vect', 'wednesday_vect', 'wee_vect', 'weed_vect', 'week_vect', 'weekend_vect', 'weekends_vect', 'weekly_vect', 'weeks_vect', 'weigh_vect', 'weight_vect', 'weird_vect', 'welcome_vect', 'well_vect', 'welp_vect', 'wen_vect', 'went_vect', 'west_vect', 'wet_vect', 'what_vect', 'whatever_vect', 'whats_vect', 'whenever_vect', 'whenevr_vect', 'wherever_vect', 'whether_vect', 'white_vect', 'whn_vect', 'whole_vect', 'whos_vect', 'whose_vect', 'wid_vect', 'widelivecomindex_vect', 'wif_vect', 'wife_vect', 'wil_vect', 'willing_vect', 'win_vect', 'wind_vect', 'wine_vect', 'winner_vect', 'winning_vect', 'wins_vect', 'wipro_vect', 'wisdom_vect', 'wise_vect', 'wish_vect', 'wishes_vect', 'wishing_vect', 'wit_vect', 'within_vect', 'without_vect', 'wiv_vect', 'wk_vect', 'wkend_vect', 'wkg_vect', 'wkly_vect', 'wks_vect', 'wld_vect', 'wml_vect', 'wn_vect', 'wnt_vect', 'wo_vect', 'woke_vect', 'woken_vect', 'woman_vect', 'women_vect', 'wonder_vect', 'wonderful_vect', 'wondering_vect', 'wont_vect', 'woot_vect', 'word_vect', 'words_vect', 'work_vect', 'workin_vect', 'working_vect', 'works_vect', 'world_vect', 'worried_vect', 'worries_vect', 'worry_vect', 'worse_vect', 'worst_vect', 'worth_vect', 'wot_vect', 'would_vect', 'wow_vect', 'write_vect', 'wrong_vect', 'wtf_vect', 'wud_vect', 'wuld_vect', 'wun_vect', 'www4tcbiz_vect', 'wwwcomuknet_vect', 'wwwetlpcoukexpressoffer_vect', 'wwwgetzedcouk_vect', 'wwwldewcom_vect', 'wwwldewcom1win150ppmx3age16_vect', 'wwwmovietriviatv_vect', 'wwwringtonescouk_vect', 'wwwsmsconet_vect', 'wwwtxttowincouk_vect', 'wwwurawinnercom_vect', 'wylie_vect', 'xchat_vect', 'xmas_vect', 'xuhui_vect', 'xx_vect', 'xxx_vect', 'xxxx_vect', 'xxxxx_vect', 'xy_vect', 'ya_vect', 'yahoo_vect', 'yan_vect', 'yar_vect', 'yay_vect', 'yck_vect', 'yeah_vect', 'year_vect', 'years_vect', 'yelling_vect', 'yellow_vect', 'yep_vect', 'yes_vect', 'yest_vect', 'yesterday_vect', 'yet_vect', 'yetunde_vect', 'yijue_vect', 'ym_vect', 'yo_vect', 'yoga_vect', 'yogasana_vect', 'yor_vect', 'you_vect', 'yr_vect', 'yrs_vect', 'yummy_vect', 'yun_vect', 'yuo_vect', 'yup_vect', 'zed_vect', 'zindgi_vect', 'ìï_vect', 'ûò_vect'], 'input_features_type': {'v2': 'O'}, 'word2num_features': [], 'unpreprocessed_columns': [], 'force_numeric_conv': [], 'conversion_method': 'TF_IDF'}, 'selector': {'reducer': False, 'reducer_file': '', 'input_features': ['v2'], 'output_features': ['07xxxxxxxxx_vect', '08700621170150p_vect', '08702840625comuk_vect', '08718726270150gbpmtmsg18_vect', '1000s_vect', '10am7pm_vect', '10k_vect', '10p_vect', '10pmin_vect', '10ppm_vect', '11mths_vect', '125gift_vect', '12hrs_vect', '12mths_vect', '150p_vect', '150perwksub_vect', '150pm_vect', '150pmin_vect', '150pmsg_vect', '150pmsgrcvdhgsuite3422landsroww1j6hl_vect', '150pmtmsgrcvd18_vect', '150ppm_vect', '150ptone_vect', '150pwk_vect', '150week_vect', '16only_vect', '18only_vect', '1hr_vect', '1minmobsmorelkpobox177hp51fl_vect', '1st_vect', '1x150pwk_vect', '20p_vect', '20pmin_vect', '21st_vect', '220cm2_vect', '24hrs_vect', '25p_vect', '26th_vect', '2day_vect', '2find_vect', '2geva_vect', '2go_vect', '2marrow_vect', '2mrw_vect', '2nd_vect', '2nite_vect', '2optout_vect', '2p_vect', '2u_vect', '2waxsto_vect', '2wks_vect', '300p_vect', '31pmsg_vect', '3510i_vect', '3d_vect', '3g_vect', '3gbp_vect', '3hrs_vect', '3mins_vect', '3qxj9_vect', '3rd_vect', '3ss_vect', '3u_vect', '3uz_vect', '3wk_vect', '40gb_vect', '4a_vect', '4d_vect', '4eva_vect', '4get_vect', '4info_vect', '4mths_vect', '4th_vect', '4u_vect', '50p_vect', '5min_vect', '5pm_vect', '5wb_vect', '5we_vect', '60pmin_vect', '6hrs_vect', '6months_vect', '6pm_vect', '7250i_vect', '7ish_vect', '8am_vect', '8pm_vect', '8th_vect', '8wp_vect', '9ae_vect', '9ja_vect', '9pm_vect', '9t_vect', 'aathi_vect', 'abi_vect', 'ability_vect', 'abiola_vect', 'able_vect', 'abt_vect', 'abta_vect', 'aburo_vect', 'ac_vect', 'academic_vect', 'acc_vect', 'accept_vect', 'access_vect', 'accident_vect', 'accidentally_vect', 'accordingly_vect', 'account_vect', 'ache_vect', 'across_vect', 'acted_vect', 'action_vect', 'activate_vect', 'activities_vect', 'actor_vect', 'actual_vect', 'actually_vect', 'ad_vect', 'adam_vect', 'add_vect', 'added_vect', 'addicted_vect', 'addie_vect', 'address_vect', 'admin_vect', 'administrator_vect', 'admirer_vect', 'admit_vect', 'adore_vect', 'adoring_vect', 'ads_vect', 'adult_vect', 'advance_vect', 'adventure_vect', 'advice_vect', 'advise_vect', 'affair_vect', 'affairs_vect', 'affectionate_vect', 'afraid_vect', 'aft_vect', 'afternoon_vect', 'aftr_vect', 'agalla_vect', 'age_vect', 'age16_vect', 'ages_vect', 'ago_vect', 'agree_vect', 'ah_vect', 'aha_vect', 'ahead_vect', 'ahmad_vect', 'ai_vect', 'aight_vect', 'aint_vect', 'air_vect', 'airport_vect', 'airtel_vect', 'aiya_vect', 'aiyah_vect', 'aiyar_vect', 'aiyo_vect', 'al_vect', 'album_vect', 'alert_vect', 'alex_vect', 'alfie_vect', 'ali_vect', 'allah_vect', 'allow_vect', 'allowed_vect', 'almost_vect', 'alone_vect', 'along_vect', 'already_vect', 'alright_vect', 'alrite_vect', 'also_vect', 'always_vect', 'alwys_vect', 'amazing_vect', 'american_vect', 'among_vect', 'amount_vect', 'amp_vect', 'amt_vect', 'andros_vect', 'angry_vect', 'annie_vect', 'anniversary_vect', 'announcement_vect', 'anot_vect', 'another_vect', 'ans_vect', 'ansr_vect', 'answer_vect', 'answered_vect', 'answering_vect', 'answers_vect', 'anthony_vect', 'anti_vect', 'anybody_vect', 'anymore_vect', 'anyone_vect', 'anything_vect', 'anytime_vect', 'anyway_vect', 'anyways_vect', 'apartment_vect', 'app_vect', 'apparently_vect', 'applebees_vect', 'apply_vect', 'appointment_vect', 'appreciate_vect', 'appreciated_vect', 'approx_vect', 'apps_vect', 'appt_vect', 'april_vect', 'ar_vect', 'arcade_vect', 'ard_vect', 'area_vect', 'argh_vect', 'argument_vect', 'arm_vect', 'armand_vect', 'arms_vect', 'around_vect', 'arrange_vect', 'arrested_vect', 'arrive_vect', 'arsenal_vect', 'art_vect', 'arun_vect', 'asap_vect', 'ashley_vect', 'ask_vect', 'askd_vect', 'asked_vect', 'askin_vect', 'asking_vect', 'asks_vect', 'asleep_vect', 'ass_vect', 'assume_vect', 'ate_vect', 'atlanta_vect', 'atlast_vect', 'atm_vect', 'attached_vect', 'attempt_vect', 'attend_vect', 'auction_vect', 'august_vect', 'aunt_vect', 'aunty_vect', 'auto_vect', 'av_vect', 'available_vect', 'avatar_vect', 'ave_vect', 'avent_vect', 'avoid_vect', 'await_vect', 'awaiting_vect', 'awake_vect', 'award_vect', 'awarded_vect', 'away_vect', 'awesome_vect', 'aww_vect', 'b4_vect', 'ba_vect', 'babe_vect', 'babes_vect', 'babies_vect', 'baby_vect', 'back_vect', 'bad_vect', 'bag_vect', 'bags_vect', 'bahamas_vect', 'bak_vect', 'balance_vect', 'bank_vect', 'banks_vect', 'bar_vect', 'barely_vect', 'basic_vect', 'basically_vect', 'bat_vect', 'bath_vect', 'bathe_vect', 'bathing_vect', 'battery_vect', 'bay_vect', 'bb_vect', 'bc_vect', 'bck_vect', 'bcoz_vect', 'bday_vect', 'be_vect', 'bears_vect', 'beautiful_vect', 'beauty_vect', 'bec_vect', 'become_vect', 'becoz_vect', 'bed_vect', 'bedrm_vect', 'bedroom_vect', 'beer_vect', 'befor_vect', 'beg_vect', 'begin_vect', 'behave_vect', 'behind_vect', 'bein_vect', 'believe_vect', 'bell_vect', 'belly_vect', 'belovd_vect', 'best_vect', 'bet_vect', 'better_vect', 'beyond_vect', 'bf_vect', 'bid_vect', 'bids_vect', 'big_vect', 'bigger_vect', 'biggest_vect', 'bill_vect', 'billed_vect', 'billion_vect', 'bills_vect', 'bin_vect', 'biola_vect', 'birds_vect', 'birla_vect', 'birth_vect', 'birthdate_vect', 'birthday_vect', 'bishan_vect', 'bit_vect', 'bitch_vect', 'bite_vect', 'black_vect', 'blackberry_vect', 'blah_vect', 'blake_vect', 'blank_vect', 'bleh_vect', 'bless_vect', 'blessing_vect', 'bloo_vect', 'blood_vect', 'bloody_vect', 'blue_vect', 'bluetooth_vect', 'bluff_vect', 'boat_vect', 'body_vect', 'bold_vect', 'bone_vect', 'bonus_vect', 'boo_vect', 'book_vect', 'booked_vect', 'booking_vect', 'books_vect', 'boost_vect', 'booty_vect', 'bored_vect', 'boring_vect', 'born_vect', 'boss_vect', 'boston_vect', 'bother_vect', 'bottom_vect', 'bought_vect', 'bout_vect', 'bowl_vect', 'box_vect', 'box326_vect', 'box334sk38ch_vect', 'box97n7qp_vect', 'boy_vect', 'boye_vect', 'boyfriend_vect', 'boys_vect', 'boytoy_vect', 'brah_vect', 'brand_vect', 'bread_vect', 'break_vect', 'breathe_vect', 'bright_vect', 'brilliant_vect', 'bring_vect', 'bringing_vect', 'brings_vect', 'british_vect', 'bro_vect', 'broad_vect', 'broke_vect', 'broken_vect', 'bros_vect', 'brothas_vect', 'brother_vect', 'brought_vect', 'bruv_vect', 'bslvyl_vect', 'bt_vect', 'btnationalrate_vect', 'btw_vect', 'bucks_vect', 'bud_vect', 'budget_vect', 'buff_vect', 'buffet_vect', 'bugis_vect', 'building_vect', 'buns_vect', 'burger_vect', 'burns_vect', 'bus_vect', 'buses_vect', 'business_vect', 'busy_vect', 'butt_vect', 'buy_vect', 'buying_vect', 'buzz_vect', 'bx420_vect', 'bx420ip45we_vect', 'bye_vect', 'ca_vect', 'cabin_vect', 'cafe_vect', 'cake_vect', 'cal_vect', 'calculation_vect', 'calicut_vect', 'california_vect', 'call_vect', 'call2optout674_vect', 'callback_vect', 'callcost_vect', 'called_vect', 'caller_vect', 'callers_vect', 'callertune_vect', 'callin_vect', 'calling_vect', 'calls_vect', 'callså_vect', 'cam_vect', 'camcorder_vect', 'came_vect', 'camera_vect', 'cameravideo_vect', 'campus_vect', 'can_vect', 'canada_vect', 'canal_vect', 'canary_vect', 'cancel_vect', 'cancelled_vect', 'cancer_vect', 'cant_vect', 'captain_vect', 'car_vect', 'card_vect', 'cardiff_vect', 'care_vect', 'cared_vect', 'career_vect', 'careful_vect', 'carefully_vect', 'caring_vect', 'carlos_vect', 'caroline_vect', 'cars_vect', 'cartoon_vect', 'case_vect', 'cash_vect', 'cashbalance_vect', 'cashin_vect', 'castor_vect', 'cat_vect', 'catch_vect', 'catching_vect', 'caught_vect', 'cause_vect', 'cbe_vect', 'cc_vect', 'cd_vect', 'cdgt_vect', 'cds_vect', 'celebrate_vect', 'celebration_vect', 'cell_vect', 'center_vect', 'centre_vect', 'certainly_vect', 'cha_vect', 'chain_vect', 'challenge_vect', 'chance_vect', 'change_vect', 'changed_vect', 'changes_vect', 'channel_vect', 'character_vect', 'charge_vect', 'charged_vect', 'charges_vect', 'charity_vect', 'charles_vect', 'chase_vect', 'chasing_vect', 'chat_vect', 'chatting_vect', 'cheap_vect', 'cheaper_vect', 'cheat_vect', 'chechi_vect', 'check_vect', 'checked_vect', 'checking_vect', 'cheers_vect', 'chennai_vect', 'cherish_vect', 'chest_vect', 'chicken_vect', 'chikku_vect', 'child_vect', 'childish_vect', 'children_vect', 'chill_vect', 'chillin_vect', 'china_vect', 'chinese_vect', 'chip_vect', 'chocolate_vect', 'choice_vect', 'choose_vect', 'chosen_vect', 'christ_vect', 'christmas_vect', 'church_vect', 'cine_vect', 'cinema_vect', 'citizen_vect', 'city_vect', 'claim_vect', 'claims_vect', 'claire_vect', 'class_vect', 'classes_vect', 'clean_vect', 'cleaning_vect', 'clear_vect', 'clearly_vect', 'click_vect', 'clock_vect', 'close_vect', 'closed_vect', 'closer_vect', 'closes_vect', 'clothes_vect', 'club_vect', 'cn_vect', 'co_vect', 'coast_vect', 'coat_vect', 'cochin_vect', 'code_vect', 'coffee_vect', 'coin_vect', 'coins_vect', 'cold_vect', 'colleagues_vect', 'collect_vect', 'collected_vect', 'collecting_vect', 'collection_vect', 'college_vect', 'colour_vect', 'come_vect', 'comedy_vect', 'comes_vect', 'comin_vect', 'coming_vect', 'commercial_vect', 'common_vect', 'community_vect', 'comp_vect', 'company_vect', 'competition_vect', 'complete_vect', 'completed_vect', 'completely_vect', 'complimentary_vect', 'computer_vect', 'concentrate_vect', 'concert_vect', 'conditions_vect', 'conducts_vect', 'confidence_vect', 'confirm_vect', 'congrats_vect', 'congratulations_vect', 'connection_vect', 'consider_vect', 'considering_vect', 'constant_vect', 'constantly_vect', 'contact_vect', 'contacted_vect', 'contacts_vect', 'content_vect', 'contents_vect', 'continue_vect', 'contract_vect', 'control_vect', 'convey_vect', 'convinced_vect', 'cool_vect', 'coping_vect', 'copy_vect', 'cornwall_vect', 'correct_vect', 'cos_vect', 'cost_vect', 'costa_vect', 'costs_vect', 'costå_vect', 'could_vect', 'count_vect', 'countin_vect', 'country_vect', 'couple_vect', 'course_vect', 'cover_vect', 'coz_vect', 'cr9_vect', 'cramps_vect', 'crave_vect', 'crazy_vect', 'created_vect', 'credit_vect', 'credited_vect', 'credits_vect', 'creepy_vect', 'crisis_vect', 'crore_vect', 'cross_vect', 'croydon_vect', 'cruise_vect', 'cry_vect', 'cs_vect', 'csbcm4235wc1n3xx_vect', 'csstop_vect', 'cud_vect', 'cuddling_vect', 'cum_vect', 'cup_vect', 'curious_vect', 'current_vect', 'currently_vect', 'cust_vect', 'custcare_vect', 'custcare08718720201_vect', 'custom_vect', 'customer_vect', 'customers_vect', 'cut_vect', 'cute_vect', 'cutting_vect', 'cuz_vect', 'cw25wx_vect', 'da_vect', 'dad_vect', 'daddy_vect', 'daily_vect', 'damn_vect', 'dance_vect', 'dancing_vect', 'dare_vect', 'dark_vect', 'darlin_vect', 'darling_vect', 'darren_vect', 'dat_vect', 'date_vect', 'dates_vect', 'dating_vect', 'dave_vect', 'day_vect', 'days_vect', 'de_vect', 'dead_vect', 'deal_vect', 'dealer_vect', 'dealing_vect', 'dear_vect', 'dearly_vect', 'death_vect', 'decide_vect', 'decided_vect', 'decimal_vect', 'decision_vect', 'deep_vect', 'def_vect', 'definite_vect', 'definitely_vect', 'del_vect', 'delete_vect', 'deleted_vect', 'delhi_vect', 'deliver_vect', 'delivered_vect', 'deliveredtomorrow_vect', 'delivery_vect', 'dem_vect', 'demand_vect', 'den_vect', 'denis_vect', 'department_vect', 'depends_vect', 'depressed_vect', 'derek_vect', 'desires_vect', 'desperate_vect', 'details_vect', 'dey_vect', 'dhoni_vect', 'dial_vect', 'dick_vect', 'dictionary_vect', 'didn_vect', 'didnt_vect', 'didt_vect', 'die_vect', 'died_vect', 'diet_vect', 'different_vect', 'difficult_vect', 'digital_vect', 'dignity_vect', 'din_vect', 'dinner_vect', 'dint_vect', 'direct_vect', 'directly_vect', 'dirty_vect', 'dis_vect', 'discount_vect', 'discuss_vect', 'dislikes_vect', 'display_vect', 'distance_vect', 'distract_vect', 'disturb_vect', 'division_vect', 'dload_vect', 'dnt_vect', 'doc_vect', 'docs_vect', 'doctor_vect', 'doesnt_vect', 'dog_vect', 'dogging_vect', 'doggy_vect', 'doin_vect', 'dollars_vect', 'don_vect', 'done_vect', 'dont_vect', 'donåõt_vect', 'door_vect', 'dorm_vect', 'double_vect', 'dough_vect', 'download_vect', 'downloads_vect', 'draw_vect', 'dream_vect', 'dreams_vect', 'dress_vect', 'dressed_vect', 'dresser_vect', 'drink_vect', 'drinking_vect', 'drinks_vect', 'drive_vect', 'driver_vect', 'drivin_vect', 'driving_vect', 'drop_vect', 'dropped_vect', 'drug_vect', 'drugs_vect', 'drunk_vect', 'dry_vect', 'ds_vect', 'dubsack_vect', 'dude_vect', 'due_vect', 'dun_vect', 'dunno_vect', 'durban_vect', 'dvd_vect', 'earlier_vect', 'early_vect', 'earth_vect', 'easier_vect', 'easily_vect', 'east_vect', 'easter_vect', 'easy_vect', 'eat_vect', 'eaten_vect', 'eatin_vect', 'eating_vect', 'ebay_vect', 'ec2a_vect', 'ee_vect', 'eek_vect', 'eerie_vect', 'effects_vect', 'eg_vect', 'egg_vect', 'eggs_vect', 'eh_vect', 'eight_vect', 'either_vect', 'ela_vect', 'electricity_vect', 'else_vect', 'elsewhere_vect', 'em_vect', 'email_vect', 'embarassed_vect', 'empty_vect', 'end_vect', 'ended_vect', 'ending_vect', 'ends_vect', 'enemy_vect', 'energy_vect', 'eng_vect', 'engin_vect', 'england_vect', 'english_vect', 'enjoy_vect', 'enjoyed_vect', 'enough_vect', 'enter_vect', 'entered_vect', 'entitled_vect', 'entry_vect', 'enuff_vect', 'envelope_vect', 'er_vect', 'erm_vect', 'escape_vect', 'especially_vect', 'esplanade_vect', 'eta_vect', 'etc_vect', 'euro_vect', 'euro2004_vect', 'europe_vect', 'eve_vect', 'eveb_vect', 'even_vect', 'evening_vect', 'event_vect', 'ever_vect', 'every_vect', 'everybody_vect', 'everyday_vect', 'everyone_vect', 'everything_vect', 'everywhere_vect', 'evn_vect', 'evng_vect', 'ex_vect', 'exact_vect', 'exactly_vect', 'exam_vect', 'exams_vect', 'excellent_vect', 'except_vect', 'exciting_vect', 'excuse_vect', 'excuses_vect', 'executive_vect', 'exeter_vect', 'exhausted_vect', 'expect_vect', 'expecting_vect', 'expensive_vect', 'experience_vect', 'expired_vect', 'expires_vect', 'explain_vect', 'explicit_vect', 'explosive_vect', 'express_vect', 'extra_vect', 'eye_vect', 'eyes_vect', 'fa_vect', 'fab_vect', 'face_vect', 'facebook_vect', 'fact_vect', 'faggy_vect', 'failed_vect', 'fair_vect', 'faith_vect', 'fall_vect', 'falls_vect', 'family_vect', 'fan_vect', 'fancies_vect', 'fancy_vect', 'fantasies_vect', 'fantastic_vect', 'fantasy_vect', 'far_vect', 'farm_vect', 'fast_vect', 'faster_vect', 'fat_vect', 'father_vect', 'fathima_vect', 'fault_vect', 'fave_vect', 'favorite_vect', 'favour_vect', 'favourite_vect', 'fb_vect', 'feb_vect', 'february_vect', 'feel_vect', 'feelin_vect', 'feeling_vect', 'feels_vect', 'fees_vect', 'feet_vect', 'fell_vect', 'felt_vect', 'fetch_vect', 'fever_vect', 'field_vect', 'fifteen_vect', 'fight_vect', 'fighting_vect', 'figure_vect', 'file_vect', 'files_vect', 'fill_vect', 'filling_vect', 'fills_vect', 'film_vect', 'final_vect', 'finally_vect', 'find_vect', 'fine_vect', 'fingers_vect', 'finish_vect', 'finished_vect', 'first_vect', 'fit_vect', 'fix_vect', 'fixed_vect', 'flag_vect', 'flaked_vect', 'flash_vect', 'flat_vect', 'flight_vect', 'flights_vect', 'flirt_vect', 'floor_vect', 'flower_vect', 'fml_vect', 'fo_vect', 'follow_vect', 'followed_vect', 'following_vect', 'fone_vect', 'food_vect', 'fool_vect', 'football_vect', 'force_vect', 'foreign_vect', 'forever_vect', 'forevr_vect', 'forget_vect', 'forgets_vect', 'forgiven_vect', 'forgot_vect', 'format_vect', 'forums_vect', 'forward_vect', 'forwarded_vect', 'found_vect', 'four_vect', 'fr_vect', 'fran_vect', 'freak_vect', 'free_vect', 'freefone_vect', 'freemsg_vect', 'freephone_vect', 'freezing_vect', 'fren_vect', 'frens_vect', 'fret_vect', 'fri_vect', 'friday_vect', 'friend_vect', 'friends_vect', 'friendship_vect', 'fringe_vect', 'frm_vect', 'frnd_vect', 'frnds_vect', 'frndship_vect', 'fuck_vect', 'fuckin_vect', 'fucking_vect', 'ful_vect', 'full_vect', 'fullonsmscom_vect', 'fun_vect', 'funny_vect', 'future_vect', 'fyi_vect', 'gal_vect', 'gals_vect', 'game_vect', 'games_vect', 'gang_vect', 'gap_vect', 'gaps_vect', 'garage_vect', 'garbage_vect', 'gary_vect', 'gas_vect', 'gautham_vect', 'gave_vect', 'gay_vect', 'gd_vect', 'ge_vect', 'gee_vect', 'geeee_vect', 'geeeee_vect', 'gender_vect', 'generally_vect', 'genius_vect', 'gentle_vect', 'gentleman_vect', 'gently_vect', 'germany_vect', 'get_vect', 'gets_vect', 'gettin_vect', 'getting_vect', 'gf_vect', 'gibbs_vect', 'gift_vect', 'gim_vect', 'girl_vect', 'girls_vect', 'gist_vect', 'giv_vect', 'give_vect', 'given_vect', 'gives_vect', 'giving_vect', 'glad_vect', 'gn_vect', 'go_vect', 'goal_vect', 'god_vect', 'goes_vect', 'goin_vect', 'going_vect', 'gold_vect', 'gon_vect', 'gona_vect', 'gone_vect', 'good_vect', 'goodmorning_vect', 'goodnight_vect', 'goodnite_vect', 'google_vect', 'gorgeous_vect', 'gossip_vect', 'got_vect', 'goto_vect', 'gotten_vect', 'govtinstituitions_vect', 'gr8_vect', 'grace_vect', 'gram_vect', 'grand_vect', 'granite_vect', 'gravity_vect', 'great_vect', 'green_vect', 'greet_vect', 'greetings_vect', 'grins_vect', 'grl_vect', 'ground_vect', 'group_vect', 'gt_vect', 'guaranteed_vect', 'gud_vect', 'gudnite_vect', 'guess_vect', 'guessing_vect', 'guide_vect', 'guilty_vect', 'guy_vect', 'guys_vect', 'gym_vect', 'ha_vect', 'haf_vect', 'haha_vect', 'hai_vect', 'hair_vect', 'haiz_vect', 'half_vect', 'halloween_vect', 'ham_vect', 'hand_vect', 'handed_vect', 'handle_vect', 'hands_vect', 'handset_vect', 'hanging_vect', 'happen_vect', 'happened_vect', 'happening_vect', 'happens_vect', 'happiness_vect', 'happy_vect', 'hard_vect', 'hardcore_vect', 'hardly_vect', 'harry_vect', 'hate_vect', 'hav_vect', 'havent_vect', 'havenåõt_vect', 'havin_vect', 'head_vect', 'headache_vect', 'headin_vect', 'heads_vect', 'hear_vect', 'heard_vect', 'heart_vect', 'heavy_vect', 'hee_vect', 'height_vect', 'held_vect', 'helen_vect', 'hell_vect', 'hella_vect', 'hello_vect', 'help_vect', 'help08712400602450p_vect', 'helpline_vect', 'hence_vect', 'henry_vect', 'heri_vect', 'herlove_vect', 'hes_vect', 'hex_vect', 'hey_vect', 'hgsuite3422lands_vect', 'hi_vect', 'hide_vect', 'high_vect', 'hill_vect', 'hint_vect', 'hip_vect', 'history_vect', 'hit_vect', 'hiya_vect', 'hl_vect', 'hlp_vect', 'hmm_vect', 'hmmm_vect', 'hmv_vect', 'ho_vect', 'hockey_vect', 'hol_vect', 'hold_vect', 'holder_vect', 'holding_vect', 'holiday_vect', 'holla_vect', 'hols_vect', 'holy_vect', 'home_vect', 'honey_vect', 'hook_vect', 'hop_vect', 'hope_vect', 'hoped_vect', 'hopefully_vect', 'hoping_vect', 'horny_vect', 'horo_vect', 'horrible_vect', 'hospital_vect', 'hospitals_vect', 'hostel_vect', 'hot_vect', 'hotel_vect', 'hotels_vect', 'hour_vect', 'hours_vect', 'house_vect', 'housemaid_vect', 'however_vect', 'hows_vect', 'howz_vect', 'hr_vect', 'hrishi_vect', 'hrs_vect', 'http_vect', 'hubby_vect', 'hug_vect', 'huh_vect', 'hun_vect', 'hungry_vect', 'hunny_vect', 'hurry_vect', 'hurt_vect', 'hurting_vect', 'hurts_vect', 'husband_vect', 'hv_vect', 'hw_vect', 'hyde_vect', 'iam_vect', 'ibhltd_vect', 'ibiza_vect', 'ic_vect', 'ice_vect', 'id_vect', 'idea_vect', 'ideal_vect', 'ideas_vect', 'identifier_vect', 'idiot_vect', 'idk_vect', 'ignore_vect', 'ikea_vect', 'il_vect', 'ill_vect', 'im_vect', 'imagine_vect', 'imma_vect', 'immediately_vect', 'imp_vect', 'important_vect', 'impossible_vect', 'improved_vect', 'in2_vect', 'inc_vect', 'inches_vect', 'incident_vect', 'include_vect', 'including_vect', 'inclusive_vect', 'inconsiderate_vect', 'indeed_vect', 'india_vect', 'indian_vect', 'indians_vect', 'indicate_vect', 'infections_vect', 'infernal_vect', 'info_vect', 'inform_vect', 'information_vect', 'informed_vect', 'innings_vect', 'insha_vect', 'inside_vect', 'instantly_vect', 'instead_vect', 'instructions_vect', 'insurance_vect', 'intelligent_vect', 'interest_vect', 'interested_vect', 'interesting_vect', 'interflora_vect', 'internet_vect', 'intro_vect', 'invest_vect', 'invite_vect', 'invited_vect', 'inviting_vect', 'iouri_vect', 'ip4_vect', 'ipod_vect', 'irritating_vect', 'iscoming_vect', 'ish_vect', 'island_vect', 'islands_vect', 'isnt_vect', 'issue_vect', 'issues_vect', 'it_vect', 'italian_vect', 'its_vect', 'itz_vect', 'itåõs_vect', 'ive_vect', 'iz_vect', 'izzit_vect', 'iåõm_vect', 'jacket_vect', 'jamster_vect', 'jan_vect', 'january_vect', 'jason_vect', 'java_vect', 'jay_vect', 'jazz_vect', 'jealous_vect', 'jeans_vect', 'jen_vect', 'jenny_vect', 'jess_vect', 'jesus_vect', 'jiayin_vect', 'jiu_vect', 'jo_vect', 'joanna_vect', 'job_vect', 'jogging_vect', 'john_vect', 'join_vect', 'joined_vect', 'joining_vect', 'joke_vect', 'jokes_vect', 'jokin_vect', 'joking_vect', 'jolly_vect', 'joy_vect', 'jsco_vect', 'jst_vect', 'juan_vect', 'juicy_vect', 'july_vect', 'june_vect', 'jus_vect', 'juz_vect', 'k52_vect', 'kadeem_vect', 'kaiez_vect', 'kallis_vect', 'kano_vect', 'kappa_vect', 'karaoke_vect', 'kate_vect', 'kay_vect', 'kb_vect', 'ke_vect', 'keep_vect', 'keeping_vect', 'keeps_vect', 'kent_vect', 'kept_vect', 'kerala_vect', 'key_vect', 'keys_vect', 'ki_vect', 'kick_vect', 'kid_vect', 'kidding_vect', 'kids_vect', 'kidz_vect', 'kind_vect', 'kinda_vect', 'kindly_vect', 'king_vect', 'kiss_vect', 'kisses_vect', 'kk_vect', 'knackered_vect', 'knew_vect', 'knock_vect', 'know_vect', 'knowing_vect', 'knows_vect', 'knw_vect', 'kz_vect', 'l8r_vect', 'la_vect', 'lab_vect', 'ladies_vect', 'lady_vect', 'lag_vect', 'laid_vect', 'land_vect', 'landline_vect', 'langport_vect', 'language_vect', 'laptop_vect', 'lar_vect', 'largest_vect', 'last_vect', 'late_vect', 'later_vect', 'latest_vect', 'latr_vect', 'laugh_vect', 'laughing_vect', 'law_vect', 'lazy_vect', 'ldn_vect', 'ldnw15h_vect', 'le_vect', 'lead_vect', 'learn_vect', 'least_vect', 'leave_vect', 'leaves_vect', 'leaving_vect', 'lect_vect', 'lecture_vect', 'left_vect', 'legal_vect', 'legs_vect', 'leh_vect', 'lei_vect', 'lem_vect', 'less_vect', 'lesson_vect', 'lessons_vect', 'let_vect', 'lets_vect', 'letter_vect', 'letters_vect', 'liao_vect', 'library_vect', 'lick_vect', 'licks_vect', 'lido_vect', 'lie_vect', 'lies_vect', 'life_vect', 'lifetime_vect', 'lift_vect', 'light_vect', 'lik_vect', 'like_vect', 'liked_vect', 'likely_vect', 'likes_vect', 'lil_vect', 'line_vect', 'linerental_vect', 'lines_vect', 'link_vect', 'lion_vect', 'lionm_vect', 'lionp_vect', 'lions_vect', 'lip_vect', 'list_vect', 'listen_vect', 'listening_vect', 'literally_vect', 'little_vect', 'live_vect', 'liverpool_vect', 'living_vect', 'lk_vect', 'll_vect', 'lmao_vect', 'lo_vect', 'loads_vect', 'loan_vect', 'loans_vect', 'local_vect', 'locations_vect', 'lock_vect', 'log_vect', 'login_vect', 'logo_vect', 'logopic_vect', 'lol_vect', 'london_vect', 'lonely_vect', 'long_vect', 'longer_vect', 'look_vect', 'lookatme_vect', 'looked_vect', 'lookin_vect', 'looking_vect', 'looks_vect', 'lor_vect', 'lose_vect', 'losing_vect', 'loss_vect', 'lost_vect', 'lot_vect', 'lotr_vect', 'lots_vect', 'lou_vect', 'loud_vect', 'lounge_vect', 'lousy_vect', 'lovable_vect', 'love_vect', 'loved_vect', 'lovely_vect', 'loveme_vect', 'lover_vect', 'loverboy_vect', 'lovers_vect', 'loves_vect', 'loving_vect', 'low_vect', 'lower_vect', 'loyal_vect', 'loyalty_vect', 'ls15hb_vect', 'lt_vect', 'ltd_vect', 'luck_vect', 'lucky_vect', 'lucy_vect', 'lunch_vect', 'luv_vect', 'lux_vect', 'luxury_vect', 'lyf_vect', 'lyfu_vect', 'lyk_vect', 'm227xy_vect', 'm26_vect', 'm263uz_vect', 'm8s_vect', 'mac_vect', 'machan_vect', 'macho_vect', 'mad_vect', 'madam_vect', 'made_vect', 'mag_vect', 'maga_vect', 'magical_vect', 'mah_vect', 'mail_vect', 'mailbox_vect', 'main_vect', 'maintain_vect', 'major_vect', 'make_vect', 'makes_vect', 'makin_vect', 'making_vect', 'malaria_vect', 'male_vect', 'mall_vect', 'man_vect', 'managed_vect', 'management_vect', 'many_vect', 'map_vect', 'march_vect', 'mark_vect', 'market_vect', 'marriage_vect', 'married_vect', 'marry_vect', 'masters_vect', 'match_vect', 'matches_vect', 'mate_vect', 'mates_vect', 'matrix3_vect', 'matter_vect', 'max10mins_vect', 'maximize_vect', 'maxå_vect', 'may_vect', 'mayb_vect', 'maybe_vect', 'mca_vect', 'mcat_vect', 'meal_vect', 'mean_vect', 'meaning_vect', 'means_vect', 'meant_vect', 'meanwhile_vect', 'med_vect', 'medical_vect', 'medicine_vect', 'meds_vect', 'meet_vect', 'meetin_vect', 'meeting_vect', 'meh_vect', 'mei_vect', 'member_vect', 'members_vect', 'men_vect', 'menu_vect', 'merry_vect', 'mess_vect', 'message_vect', 'messaged_vect', 'messages_vect', 'messaging_vect', 'met_vect', 'mid_vect', 'middle_vect', 'midnight_vect', 'mids_vect', 'might_vect', 'miles_vect', 'milk_vect', 'min_vect', 'mind_vect', 'mine_vect', 'mini_vect', 'minimum_vect', 'minor_vect', 'mins_vect', 'minute_vect', 'minutes_vect', 'minuts_vect', 'miracle_vect', 'mis_vect', 'miserable_vect', 'miss_vect', 'missed_vect', 'missin_vect', 'missing_vect', 'mistake_vect', 'mistakes_vect', 'mite_vect', 'mm_vect', 'mmm_vect', 'mmmm_vect', 'mmmmmm_vect', 'mnths_vect', 'mo_vect', 'moan_vect', 'mob_vect', 'mobile_vect', 'mobiles_vect', 'mobilesdirect_vect', 'mobilesvary_vect', 'mobileupd8_vect', 'mobno_vect', 'moby_vect', 'mode_vect', 'model_vect', 'module_vect', 'modules_vect', 'moji_vect', 'mojibiola_vect', 'mokka_vect', 'mom_vect', 'moment_vect', 'moments_vect', 'moms_vect', 'mon_vect', 'monday_vect', 'money_vect', 'monkeys_vect', 'mono_vect', 'month_vect', 'monthly_vect', 'months_vect', 'mood_vect', 'moon_vect', 'moral_vect', 'morn_vect', 'morning_vect', 'mostly_vect', 'mother_vect', 'motorola_vect', 'mouth_vect', 'move_vect', 'moved_vect', 'movie_vect', 'movies_vect', 'moving_vect', 'mp3_vect', 'mr_vect', 'mrng_vect', 'mrt_vect', 'msg_vect', 'msgs_vect', 'mths_vect', 'mu_vect', 'much_vect', 'mum_vect', 'mummy_vect', 'murder_vect', 'murdered_vect', 'murderer_vect', 'music_vect', 'must_vect', 'muz_vect', 'na_vect', 'nag_vect', 'nah_vect', 'naked_vect', 'name_vect', 'name1_vect', 'name2_vect', 'named_vect', 'names_vect', 'nan_vect', 'nap_vect', 'nasdaq_vect', 'nat_vect', 'national_vect', 'natural_vect', 'nature_vect', 'naughty_vect', 'nb_vect', 'nd_vect', 'ne_vect', 'near_vect', 'nearly_vect', 'necessarily_vect', 'necklace_vect', 'ned_vect', 'need_vect', 'needed_vect', 'needs_vect', 'neither_vect', 'net_vect', 'netcollex_vect', 'network_vect', 'networks_vect', 'neva_vect', 'never_vect', 'new_vect', 'newest_vect', 'news_vect', 'next_vect', 'ni8_vect', 'nice_vect', 'nigeria_vect', 'night_vect', 'nights_vect', 'nimya_vect', 'nite_vect', 'no1_vect', 'nobody_vect', 'noe_vect', 'nokia_vect', 'nokias_vect', 'noline_vect', 'none_vect', 'noon_vect', 'nope_vect', 'norm_vect', 'norm150ptone_vect', 'normal_vect', 'normally_vect', 'northampton_vect', 'note_vect', 'nothin_vect', 'nothing_vect', 'notice_vect', 'noun_vect', 'nowadays_vect', 'nt_vect', 'ntt_vect', 'ntwk_vect', 'num_vect', 'number_vect', 'numbers_vect', 'nuther_vect', 'nvm_vect', 'nw_vect', 'nxt_vect', 'nyc_vect', 'nydc_vect', 'nyt_vect', 'o2_vect', 'obviously_vect', 'odi_vect', 'offer_vect', 'offers_vect', 'office_vect', 'official_vect', 'officially_vect', 'ofice_vect', 'often_vect', 'oh_vect', 'oi_vect', 'oic_vect', 'ok_vect', 'okay_vect', 'okey_vect', 'okie_vect', 'ola_vect', 'old_vect', 'omg_vect', 'omw_vect', 'one_vect', 'ones_vect', 'oni_vect', 'online_vect', 'onto_vect', 'onwards_vect', 'oooh_vect', 'oops_vect', 'open_vect', 'opening_vect', 'operator_vect', 'opinion_vect', 'opportunity_vect', 'opt_vect', 'option_vect', 'optout_vect', 'or2stoptxt_vect', 'orange_vect', 'oranges_vect', 'orchard_vect', 'order_vect', 'ordered_vect', 'oredi_vect', 'original_vect', 'oru_vect', 'os_vect', 'oso_vect', 'others_vect', 'otherwise_vect', 'otside_vect', 'outside_vect', 'outstanding_vect', 'outta_vect', 'ovulation_vect', 'oz_vect', 'pa_vect', 'pack_vect', 'package_vect', 'page_vect', 'pages_vect', 'paid_vect', 'pain_vect', 'painful_vect', 'painting_vect', 'panic_vect', 'paper_vect', 'papers_vect', 'paperwork_vect', 'parco_vect', 'parent_vect', 'parents_vect', 'paris_vect', 'park_vect', 'parked_vect', 'parking_vect', 'part_vect', 'partner_vect', 'partnership_vect', 'party_vect', 'pass_vect', 'passed_vect', 'password_vect', 'past_vect', 'pattern_vect', 'patty_vect', 'pay_vect', 'paying_vect', 'payment_vect', 'payoh_vect', 'pc_vect', 'peace_vect', 'pence_vect', 'people_vect', 'per_vect', 'perfect_vect', 'period_vect', 'person_vect', 'personal_vect', 'pete_vect', 'petey_vect', 'pg_vect', 'philosophy_vect', 'phoenix_vect', 'phone_vect', 'phones_vect', 'photo_vect', 'photos_vect', 'pic_vect', 'pick_vect', 'picked_vect', 'picking_vect', 'pics_vect', 'picsfree1_vect', 'picture_vect', 'pictures_vect', 'pie_vect', 'pieces_vect', 'pig_vect', 'pilates_vect', 'pin_vect', 'pink_vect', 'piss_vect', 'pissed_vect', 'pix_vect', 'pizza_vect', 'place_vect', 'places_vect', 'plan_vect', 'planned_vect', 'planning_vect', 'plans_vect', 'play_vect', 'played_vect', 'player_vect', 'players_vect', 'playing_vect', 'please_vect', 'pleased_vect', 'pleasure_vect', 'plenty_vect', 'pls_vect', 'plus_vect', 'plz_vect', 'pm_vect', 'po_vect', 'pobox_vect', 'pobox334_vect', 'pobox36504w45wq_vect', 'pobox45w2tg150p_vect', 'pobox84_vect', 'pod_vect', 'point_vect', 'points_vect', 'poker_vect', 'pole_vect', 'police_vect', 'politicians_vect', 'poly_vect', 'polyphonic_vect', 'polys_vect', 'pongal_vect', 'poor_vect', 'pop_vect', 'popped_vect', 'porn_vect', 'possession_vect', 'possible_vect', 'post_vect', 'postcard_vect', 'postcode_vect', 'posted_vect', 'posts_vect', 'potential_vect', 'potter_vect', 'pound_vect', 'pounds_vect', 'pouts_vect', 'power_vect', 'ppl_vect', 'pple_vect', 'ppm_vect', 'prabha_vect', 'practice_vect', 'practicing_vect', 'pray_vect', 'prefer_vect', 'premier_vect', 'prepare_vect', 'prescription_vect', 'present_vect', 'press_vect', 'pretty_vect', 'prey_vect', 'price_vect', 'prince_vect', 'princess_vect', 'print_vect', 'privacy_vect', 'private_vect', 'prize_vect', 'prob_vect', 'probably_vect', 'problem_vect', 'problems_vect', 'process_vect', 'processed_vect', 'prof_vect', 'profit_vect', 'program_vect', 'project_vect', 'prolly_vect', 'promise_vect', 'promises_vect', 'promo_vect', 'proof_vect', 'properly_vect', 'prospects_vect', 'provided_vect', 'ps_vect', 'ptbo_vect', 'pub_vect', 'pull_vect', 'purchase_vect', 'purity_vect', 'purpose_vect', 'push_vect', 'pushes_vect', 'pussy_vect', 'put_vect', 'puttin_vect', 'putting_vect', 'qatar_vect', 'quality_vect', 'queen_vect', 'ques_vect', 'question_vect', 'questions_vect', 'quick_vect', 'quickly_vect', 'quiet_vect', 'quit_vect', 'quite_vect', 'quiz_vect', 'quote_vect', 'quoting_vect', 'racing_vect', 'radio_vect', 'railway_vect', 'rain_vect', 'raining_vect', 'raise_vect', 'rakhesh_vect', 'rally_vect', 'ran_vect', 'random_vect', 'randomly_vect', 'randy_vect', 'rang_vect', 'range_vect', 'ranjith_vect', 'rate_vect', 'rates_vect', 'rather_vect', 'rays_vect', 'rcvd_vect', 'rd_vect', 're_vect', 'reach_vect', 'reached_vect', 'reaching_vect', 'reaction_vect', 'read_vect', 'readers_vect', 'reading_vect', 'ready_vect', 'real_vect', 'realise_vect', 'reality_vect', 'realized_vect', 'really_vect', 'realy_vect', 'reason_vect', 'reasonable_vect', 'reasons_vect', 'reboot_vect', 'recd_vect', 'receipt_vect', 'receive_vect', 'received_vect', 'receiving_vect', 'recent_vect', 'recently_vect', 'recession_vect', 'record_vect', 'records_vect', 'recovery_vect', 'red_vect', 'ref_vect', 'reference_vect', 'reg_vect', 'regards_vect', 'register_vect', 'registered_vect', 'regret_vect', 'regular_vect', 'relation_vect', 'relax_vect', 'released_vect', 'rem_vect', 'remain_vect', 'remains_vect', 'remember_vect', 'remembered_vect', 'remembr_vect', 'remind_vect', 'reminder_vect', 'remove_vect', 'rent_vect', 'rental_vect', 'rentl_vect', 'repair_vect', 'repeat_vect', 'replied_vect', 'reply_vect', 'replying_vect', 'report_vect', 'representative_vect', 'request_vect', 'requests_vect', 'research_vect', 'resend_vect', 'respect_vect', 'respond_vect', 'responding_vect', 'response_vect', 'responsibility_vect', 'rest_vect', 'restaurant_vect', 'result_vect', 'results_vect', 'retrieve_vect', 'return_vect', 'returned_vect', 'returns_vect', 'reveal_vect', 'revealed_vect', 'review_vect', 'revision_vect', 'reward_vect', 'rhythm_vect', 'rice_vect', 'rich_vect', 'ride_vect', 'right_vect', 'rights_vect', 'ring_vect', 'ringtone_vect', 'ringtones_vect', 'rite_vect', 'river_vect', 'road_vect', 'roads_vect', 'roast_vect', 'rock_vect', 'rocks_vect', 'rofl_vect', 'roger_vect', 'role_vect', 'ron_vect', 'room_vect', 'roommate_vect', 'roommates_vect', 'rooms_vect', 'rose_vect', 'round_vect', 'row_vect', 'roww1j6hl_vect', 'roww1jhl_vect', 'royal_vect', 'rply_vect', 'rs_vect', 'rstm_vect', 'ru_vect', 'rub_vect', 'rude_vect', 'rule_vect', 'run_vect', 'running_vect', 'runs_vect', 'rush_vect', 'sacrifice_vect', 'sad_vect', 'sae_vect', 'safe_vect', 'said_vect', 'salam_vect', 'salary_vect', 'sale_vect', 'salon_vect', 'sam_vect', 'santa_vect', 'sar_vect', 'sarasota_vect', 'sarcastic_vect', 'sary_vect', 'sat_vect', 'sathya_vect', 'saturday_vect', 'savamob_vect', 'save_vect', 'saved_vect', 'saw_vect', 'say_vect', 'saying_vect', 'says_vect', 'scared_vect', 'scary_vect', 'sch_vect', 'schedule_vect', 'school_vect', 'schools_vect', 'science_vect', 'scold_vect', 'score_vect', 'scores_vect', 'scotland_vect', 'scream_vect', 'screaming_vect', 'scrounge_vect', 'se_vect', 'sea_vect', 'search_vect', 'searching_vect', 'season_vect', 'seat_vect', 'sec_vect', 'second_vect', 'seconds_vect', 'secret_vect', 'secretary_vect', 'secs_vect', 'sed_vect', 'see_vect', 'seeing_vect', 'seem_vect', 'seemed_vect', 'seems_vect', 'seen_vect', 'selected_vect', 'selection_vect', 'self_vect', 'sell_vect', 'selling_vect', 'sells_vect', 'sem_vect', 'semester_vect', 'sen_vect', 'send_vect', 'sender_vect', 'sending_vect', 'sense_vect', 'sent_vect', 'sentence_vect', 'sept_vect', 'series_vect', 'serious_vect', 'seriously_vect', 'service_vect', 'services_vect', 'serving_vect', 'set_vect', 'setting_vect', 'settings_vect', 'settle_vect', 'settled_vect', 'seven_vect', 'several_vect', 'sex_vect', 'sexy_vect', 'sh_vect', 'sha_vect', 'shall_vect', 'share_vect', 'shd_vect', 'sheets_vect', 'shes_vect', 'shesil_vect', 'shining_vect', 'ship_vect', 'shipping_vect', 'shirt_vect', 'shirts_vect', 'shit_vect', 'shld_vect', 'shocking_vect', 'shoot_vect', 'shop_vect', 'shoppin_vect', 'shopping_vect', 'short_vect', 'shorter_vect', 'shortly_vect', 'shot_vect', 'shoving_vect', 'show_vect', 'shower_vect', 'showing_vect', 'shows_vect', 'shu_vect', 'shuhui_vect', 'shy_vect', 'si_vect', 'sick_vect', 'side_vect', 'sighs_vect', 'sight_vect', 'sign_vect', 'signing_vect', 'silence_vect', 'silent_vect', 'silver_vect', 'sim_vect', 'simple_vect', 'simply_vect', 'since_vect', 'sing_vect', 'singing_vect', 'single_vect', 'singles_vect', 'sipix_vect', 'sir_vect', 'sis_vect', 'sister_vect', 'sit_vect', 'site_vect', 'sitting_vect', 'situation_vect', 'siva_vect', 'six_vect', 'size_vect', 'sk3_vect', 'sk38xh_vect', 'skilgme_vect', 'skip_vect', 'sky_vect', 'skype_vect', 'skyped_vect', 'slap_vect', 'slave_vect', 'sleep_vect', 'sleepin_vect', 'sleeping_vect', 'sleepy_vect', 'slept_vect', 'slice_vect', 'slide_vect', 'slightly_vect', 'slip_vect', 'slippers_vect', 'slo_vect', 'slots_vect', 'slow_vect', 'slowly_vect', 'small_vect', 'smashed_vect', 'smile_vect', 'smiles_vect', 'smiling_vect', 'smoke_vect', 'smoking_vect', 'sms_vect', 'smth_vect', 'sn_vect', 'snake_vect', 'snow_vect', 'social_vect', 'sofa_vect', 'soft_vect', 'software_vect', 'sol_vect', 'some1_vect', 'somebody_vect', 'someone_vect', 'somethin_vect', 'something_vect', 'sometimes_vect', 'somewhere_vect', 'song_vect', 'songs_vect', 'sony_vect', 'sonyericsson_vect', 'soon_vect', 'sooner_vect', 'sore_vect', 'sorry_vect', 'sort_vect', 'sorting_vect', 'sound_vect', 'sounds_vect', 'south_vect', 'sp_vect', 'space_vect', 'spanish_vect', 'speak_vect', 'speaking_vect', 'special_vect', 'specialcall_vect', 'specially_vect', 'speed_vect', 'spend_vect', 'spending_vect', 'spent_vect', 'spk_vect', 'spoke_vect', 'spoken_vect', 'spook_vect', 'sport_vect', 'sports_vect', 'spree_vect', 'spring_vect', 'sptv_vect', 'sry_vect', 'st_vect', 'staff_vect', 'stamps_vect', 'stand_vect', 'standard_vect', 'standing_vect', 'star_vect', 'staring_vect', 'start_vect', 'started_vect', 'starting_vect', 'starts_vect', 'starwars3_vect', 'statement_vect', 'station_vect', 'stay_vect', 'stayed_vect', 'staying_vect', 'std_vect', 'steam_vect', 'step_vect', 'steve_vect', 'stick_vect', 'sticky_vect', 'still_vect', 'stock_vect', 'stockport_vect', 'stomach_vect', 'stomps_vect', 'stones_vect', 'stop_vect', 'stopped_vect', 'stops_vect', 'store_vect', 'stores_vect', 'story_vect', 'str_vect', 'straight_vect', 'stranger_vect', 'street_vect', 'stress_vect', 'strike_vect', 'strong_vect', 'strongbuy_vect', 'stuck_vect', 'student_vect', 'study_vect', 'studying_vect', 'stuff_vect', 'stupid_vect', 'style_vect', 'stylish_vect', 'sub_vect', 'subpoly_vect', 'subs_vect', 'subscribe6gbpmnth_vect', 'subscribed_vect', 'subscriber_vect', 'subscription_vect', 'success_vect', 'successful_vect', 'successfully_vect', 'sucks_vect', 'sue_vect', 'sufficient_vect', 'suggest_vect', 'suite_vect', 'suits_vect', 'sum1_vect', 'summer_vect', 'sun_vect', 'sunday_vect', 'sunlight_vect', 'sunny_vect', 'sunshine_vect', 'suntec_vect', 'sup_vect', 'super_vect', 'superb_vect', 'superior_vect', 'supervisor_vect', 'supply_vect', 'support_vect', 'suppose_vect', 'supposed_vect', 'suprman_vect', 'sura_vect', 'sure_vect', 'surely_vect', 'surfing_vect', 'surprise_vect', 'surprised_vect', 'survey_vect', 'sux_vect', 'suzy_vect', 'sw7_vect', 'sw73ss_vect', 'sweet_vect', 'swing_vect', 'system_vect', 'ta_vect', 'tablets_vect', 'tahan_vect', 'take_vect', 'taken_vect', 'takes_vect', 'takin_vect', 'taking_vect', 'talent_vect', 'talk_vect', 'talking_vect', 'tampa_vect', 'tape_vect', 'tariffs_vect', 'tat_vect', 'taunton_vect', 'taylor_vect', 'tb_vect', 'tc_vect', 'tcrw1_vect', 'tcs_vect', 'tea_vect', 'teach_vect', 'teacher_vect', 'teaches_vect', 'team_vect', 'tear_vect', 'tease_vect', 'teasing_vect', 'tech_vect', 'technical_vect', 'tee_vect', 'teeth_vect', 'tel_vect', 'telephone_vect', 'tell_vect', 'telling_vect', 'tells_vect', 'telugu_vect', 'temple_vect', 'ten_vect', 'tenants_vect', 'tenerife_vect', 'tension_vect', 'term_vect', 'terms_vect', 'terrible_vect', 'test_vect', 'testing_vect', 'text_vect', 'texted_vect', 'texting_vect', 'textoperator_vect', 'texts_vect', 'th_vect', 'thangam_vect', 'thank_vect', 'thanks_vect', 'thanksgiving_vect', 'thanx_vect', 'that_vect', 'thats_vect', 'thatåõs_vect', 'the_vect', 'theatre_vect', 'themob_vect', 'theory_vect', 'thesis_vect', 'thgt_vect', 'thing_vect', 'things_vect', 'think_vect', 'thinkin_vect', 'thinking_vect', 'thinks_vect', 'thk_vect', 'thnk_vect', 'tho_vect', 'though_vect', 'thought_vect', 'three_vect', 'throat_vect', 'throw_vect', 'thru_vect', 'tht_vect', 'thts_vect', 'thurs_vect', 'thursday_vect', 'tick_vect', 'ticket_vect', 'tickets_vect', 'tight_vect', 'tihs_vect', 'til_vect', 'till_vect', 'time_vect', 'times_vect', 'timing_vect', 'tired_vect', 'tirunelvali_vect', 'tirupur_vect', 'tissco_vect', 'tkts_vect', 'tm_vect', 'tming_vect', 'tmobile_vect', 'tmr_vect', 'tncs_vect', 'toa_vect', 'toclaim_vect', 'today_vect', 'todays_vect', 'tog_vect', 'together_vect', 'tok_vect', 'told_vect', 'tomarrow_vect', 'tomo_vect', 'tomorrow_vect', 'tone_vect', 'tones_vect', 'tones2youcouk_vect', 'tonight_vect', 'tonite_vect', 'took_vect', 'tool_vect', 'tooo_vect', 'toot_vect', 'top_vect', 'topic_vect', 'torch_vect', 'toshiba_vect', 'tot_vect', 'total_vect', 'totally_vect', 'touch_vect', 'tough_vect', 'tour_vect', 'towards_vect', 'town_vect', 'track_vect', 'trade_vect', 'traffic_vect', 'train_vect', 'training_vect', 'transaction_vect', 'transfer_vect', 'transport_vect', 'travel_vect', 'treat_vect', 'treated_vect', 'tried_vect', 'trip_vect', 'trips_vect', 'trouble_vect', 'true_vect', 'truffles_vect', 'truly_vect', 'trust_vect', 'truth_vect', 'try_vect', 'trying_vect', 'ts_vect', 'tscs_vect', 'tscs087147403231winawk_vect', 'tt_vect', 'ttyl_vect', 'tues_vect', 'tuesday_vect', 'tuition_vect', 'turn_vect', 'turning_vect', 'turns_vect', 'tv_vect', 'twelve_vect', 'twice_vect', 'two_vect', 'txt_vect', 'txtauction_vect', 'txtin_vect', 'txting_vect', 'txtno_vect', 'txts_vect', 'txtstop_vect', 'tyler_vect', 'type_vect', 'tyrone_vect', 'u4_vect', 'ubi_vect', 'ufind_vect', 'ugh_vect', 'uh_vect', 'uk_vect', 'uks_vect', 'ultimatum_vect', 'umma_vect', 'unable_vect', 'uncle_vect', 'understand_vect', 'understanding_vect', 'understood_vect', 'underwear_vect', 'unemployed_vect', 'uni_vect', 'unique_vect', 'university_vect', 'unless_vect', 'unlimited_vect', 'unnecessarily_vect', 'unredeemed_vect', 'unsold_vect', 'unsub_vect', 'unsubscribe_vect', 'upd8_vect', 'update_vect', 'updatenow_vect', 'upgrade_vect', 'upload_vect', 'upset_vect', 'upstairs_vect', 'ur_vect', 'ure_vect', 'urgent_vect', 'urgnt_vect', 'url_vect', 'urn_vect', 'urself_vect', 'us_vect', 'usb_vect', 'use_vect', 'used_vect', 'user_vect', 'usf_vect', 'using_vect', 'usual_vect', 'usually_vect', 'vale_vect', 'valentine_vect', 'valentines_vect', 'valid_vect', 'valid12hrs_vect', 'valuable_vect', 'value_vect', 'valued_vect', 'vary_vect', 've_vect', 'vegas_vect', 'verify_vect', 'version_vect', 'via_vect', 'vid_vect', 'video_vect', 'videochat_vect', 'videophones_vect', 'vijay_vect', 'vikky_vect', 'village_vect', 'violated_vect', 'violence_vect', 'vip_vect', 'virgin_vect', 'visit_vect', 'vivek_vect', 'vl_vect', 'voda_vect', 'vodafone_vect', 'vodka_vect', 'voice_vect', 'voicemail_vect', 'vomit_vect', 'vote_vect', 'voucher_vect', 'vouchers_vect', 'vry_vect', 'vth_vect', 'w45wq_vect', 'wa_vect', 'wah_vect', 'wait_vect', 'waited_vect', 'waitin_vect', 'waiting_vect', 'wake_vect', 'waking_vect', 'wales_vect', 'walk_vect', 'walked_vect', 'walking_vect', 'walmart_vect', 'wan_vect', 'wana_vect', 'want_vect', 'wanted_vect', 'wanting_vect', 'wants_vect', 'wap_vect', 'warm_vect', 'warner_vect', 'waste_vect', 'wasted_vect', 'wat_vect', 'watch_vect', 'watching_vect', 'water_vect', 'wats_vect', 'way_vect', 'wc1n3xx_vect', 'we_vect', 'weak_vect', 'wear_vect', 'wearing_vect', 'weather_vect', 'web_vect', 'website_vect', 'wed_vect', 'wedding_vect', 'wednesday_vect', 'wee_vect', 'weed_vect', 'week_vect', 'weekend_vect', 'weekends_vect', 'weekly_vect', 'weeks_vect', 'weigh_vect', 'weight_vect', 'weird_vect', 'welcome_vect', 'well_vect', 'welp_vect', 'wen_vect', 'went_vect', 'west_vect', 'wet_vect', 'what_vect', 'whatever_vect', 'whats_vect', 'whenever_vect', 'whenevr_vect', 'wherever_vect', 'whether_vect', 'white_vect', 'whn_vect', 'whole_vect', 'whos_vect', 'whose_vect', 'wid_vect', 'widelivecomindex_vect', 'wif_vect', 'wife_vect', 'wil_vect', 'willing_vect', 'win_vect', 'wind_vect', 'wine_vect', 'winner_vect', 'winning_vect', 'wins_vect', 'wipro_vect', 'wisdom_vect', 'wise_vect', 'wish_vect', 'wishes_vect', 'wishing_vect', 'wit_vect', 'within_vect', 'without_vect', 'wiv_vect', 'wk_vect', 'wkend_vect', 'wkg_vect', 'wkly_vect', 'wks_vect', 'wld_vect', 'wml_vect', 'wn_vect', 'wnt_vect', 'wo_vect', 'woke_vect', 'woken_vect', 'woman_vect', 'women_vect', 'wonder_vect', 'wonderful_vect', 'wondering_vect', 'wont_vect', 'woot_vect', 'word_vect', 'words_vect', 'work_vect', 'workin_vect', 'working_vect', 'works_vect', 'world_vect', 'worried_vect', 'worries_vect', 'worry_vect', 'worse_vect', 'worst_vect', 'worth_vect', 'wot_vect', 'would_vect', 'wow_vect', 'write_vect', 'wrong_vect', 'wtf_vect', 'wud_vect', 'wuld_vect', 'wun_vect', 'www4tcbiz_vect', 'wwwcomuknet_vect', 'wwwetlpcoukexpressoffer_vect', 'wwwgetzedcouk_vect', 'wwwldewcom_vect', 'wwwldewcom1win150ppmx3age16_vect', 'wwwmovietriviatv_vect', 'wwwringtonescouk_vect', 'wwwsmsconet_vect', 'wwwtxttowincouk_vect', 'wwwurawinnercom_vect', 'wylie_vect', 'xchat_vect', 'xmas_vect', 'xuhui_vect', 'xx_vect', 'xxx_vect', 'xxxx_vect', 'xxxxx_vect', 'xy_vect', 'ya_vect', 'yahoo_vect', 'yan_vect', 'yar_vect', 'yay_vect', 'yck_vect', 'yeah_vect', 'year_vect', 'years_vect', 'yelling_vect', 'yellow_vect', 'yep_vect', 'yes_vect', 'yest_vect', 'yesterday_vect', 'yet_vect', 'yetunde_vect', 'yijue_vect', 'ym_vect', 'yo_vect', 'yoga_vect', 'yogasana_vect', 'yor_vect', 'you_vect', 'yr_vect', 'yrs_vect', 'yummy_vect', 'yun_vect', 'yuo_vect', 'yup_vect', 'zed_vect', 'zindgi_vect', 'ìï_vect', 'ûò_vect']}, 'training': {'algo': 'Logistic Regression', 'model_file': 'AI0110_1.sav'}}
    deployer = get_deployer('classification',params=config)
    deployer.run( )"
output_formatter.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import os
import platform
import json
import shutil
import logging

class outputFormatter:
    def __init__(self):
        self.log = logging.getLogger('eion')
        self.log.info('========> Inside Output Formatter')  
    
    def crate_output_format_file(self,deploy_path,learner_type,modelType,model,output_label,threshold,trained_data_file,dictDiffCount,targetFeature,features,datetimeFeature):
        self.output_formatfile = 'import json'  
        self.output_formatfile += '\n'
        self.output_formatfile += 'import numpy as np'
        self.output_formatfile += '\n'
        self.output_formatfile += 'import pandas as pd'
        self.output_formatfile += '\n'
        self.output_formatfile += 'import os'
        self.output_formatfile += '\n'
        self.output_formatfile += 'from pathlib import Path'
        self.output_formatfile += '\n'
        if((model.lower() in  ['autoencoder','dbscan']) and modelType.lower()==""anomaly_detection""):
            self.output_formatfile += 'from script.aion_granularity import aion_gettimegranularity'
            self.output_formatfile += '\n'
        
        self.output_formatfile += 'class output_format(object):'
        self.output_formatfile += '\n'
        if(model ==  'VAR'):
            self.output_formatfile += '    def invertTransformation(self,predictions):'
            self.output_formatfile += '\n'
            self.output_formatfile += '        datasetdf = pd.read_csv(os.path.join(os.path.dirname(os.path.abspath(__file__)),"".."",""data"",""trainingdata.csv""))'
            self.output_formatfile += '\n'
            self.output_formatfile += '        dictDiffCount = '+str(dictDiffCount)
            self.output_formatfile += '\n'
            self.output_formatfile += '        targetFeature = ""'+str(targetFeature)+'""'
            self.output_formatfile += '\n'
            self.output_formatfile += '        columns = targetFeature.split("","")'
            self.output_formatfile += '\n'
            self.output_formatfile += '        pred = pd.DataFrame(index=range(0,len(predictions)),columns=columns)'
            self.output_formatfile += '\n'
            self.output_formatfile += '        for j in range(0,len(columns)):'
            self.output_formatfile += '\n'
            self.output_formatfile += '            for i in range(0, len(predictions)):'
            self.output_formatfile += '\n'
            self.output_formatfile += '                pred.iloc[i][j] = round(predictions[i][j],2)'
            self.output_formatfile += '\n'
            self.output_formatfile += '        prediction = pred'
            self.output_formatfile += '\n'
            self.output_formatfile += '        for col in columns:'
            self.output_formatfile += '\n'  
            self.output_formatfile += '            if col in dictDiffCount:'
            self.output_formatfile += '\n'      
            self.output_formatfile += '                if dictDiffCount[col]==2:'
            self.output_formatfile += '\n'
            self.output_formatfile += '                    prediction[col] = (datasetdf[col].iloc[-1]-datasetdf[col].iloc[-2]) + prediction[col].cumsum()'
            self.output_formatfile += '\n'
            self.output_formatfile += '                prediction[col] = datasetdf[col].iloc[-1] + prediction[col].cumsum()'
            self.output_formatfile += '\n'
            self.output_formatfile += '        prediction = pred'
            self.output_formatfile += '\n'
            self.output_formatfile += '        return(prediction)'
            self.output_formatfile += '\n'
        self.log.info(""op:modelType: \n""+str(modelType))
        if((model.lower() in  ['autoencoder','dbscan']) and modelType.lower()==""anomaly_detection""):
        # if modelType == 'anomaly_detection':
            self.output_formatfile += '    def find_point_subsequence_anomalies(self,datetime_column,dataframe=None):'      
            self.output_formatfile += '\n'
            self.output_formatfile += '        try:'        
            self.output_formatfile += '\n'
            self.output_formatfile += '            dataframe[datetime_column] = pd.to_datetime(dataframe[datetime_column]) '
            self.output_formatfile += '\n'
            self.output_formatfile += '            aion_gettimegranularity_obj=aion_gettimegranularity(dataframe,datetime_column) '
            self.output_formatfile += '\n'
            self.output_formatfile += '            anomaly_info_df=aion_gettimegranularity_obj.get_granularity() '
            self.output_formatfile += '\n'
            self.output_formatfile += '        except Exception as e:'
            self.output_formatfile += '\n'
            self.output_formatfile += '            print(f""find_point_subsequence_anomalies,: aion_gettimegranularity err msg:{e} "")\n'
            self.output_formatfile += '        return anomaly_info_df'
            self.output_formatfile += '\n'
        if((model.lower() in  ['autoencoder','dbscan']) and modelType.lower()==""anomaly_detection""):    
            if (datetimeFeature!='' and datetimeFeature!='NA'):
                self.output_formatfile += '    def apply_output_format(self,df,modeloutput,datetimeFeature):'
                self.output_formatfile += '\n'
            else:
                self.output_formatfile += '    def apply_output_format(self,df,modeloutput):'       
                self.output_formatfile += '\n'
        else:
            self.output_formatfile += '    def apply_output_format(self,df,modeloutput):'       
            self.output_formatfile += '\n'
            
        if modelType.lower() == 'classification':
            self.output_formatfile += '        modeloutput = round(modeloutput,2)'
            self.output_formatfile += '\n'
        
        
        if(learner_type == 'ImageClassification'):
            if(str(output_label) != '{}'):
                inv_mapping_dict = {v: k for k, v in output_label.items()}
                self.output_formatfile += '        le_dict = '+ str(inv_mapping_dict)
                self.output_formatfile += '\n'
                self.output_formatfile += '        predictions = []'
                self.output_formatfile += '\n'
                self.output_formatfile += '        for x in modeloutput:'
                self.output_formatfile += '\n'
                self.output_formatfile += '            x = le_dict[x]'
                self.output_formatfile += '\n'
                self.output_formatfile += '            predictions.append(x)'
                self.output_formatfile += '\n'
            else:
                self.output_formatfile += '        predictions=modeloutput'
                self.output_formatfile += '\n'  
            self.output_formatfile += '        df[\'prediction\'] = predictions'
            self.output_formatfile += '\n'
            self.output_formatfile += '        outputjson = df.to_json(orient=\'records\')'
            self.output_formatfile += '\n'      
            self.output_formatfile += '        outputjson = {""status"":""SUCCESS"",""data"":json.loads(outputjson)}'
            self.output_formatfile += '\n'                  
        elif(learner_type == 'Text Similarity'):
            self.output_formatfile += '        df[\'prediction\'] = np.where(modeloutput > '+str(threshold)+',1,0)'
            self.output_formatfile += '\n'
            self.output_formatfile += '        df[\'probability\'] = modeloutput'
            self.output_formatfile += '\n'
            self.output_formatfile += '        outputjson = df.to_json(orient=\'records\',double_precision=2)'
            self.output_formatfile += '\n'
            self.output_formatfile += '        outputjson = {""status"":""SUCCESS"",""data"":json.loads(outputjson)}'
            self.output_formatfile += '\n'
        elif(learner_type ==  'TS'):
            if(model == 'VAR'):
                self.output_formatfile += '        modeloutput = self.invertTransformation(modeloutput)'
                self.output_formatfile += '\n'
                self.output_formatfile += '        modeloutput = modeloutput.to_json(orient=\'records\',double_precision=2)'
                self.output_formatfile += '\n'
                self.output_formatfile += '        outputjson = {""status"":""SUCCESS"",""data"":json.loads(modeloutput)}'
            elif(model.lower() == 'fbprophet'):
                self.output_formatfile += '        modeloutput = modeloutput.to_json(orient=\'records\')'
                self.output_formatfile += '\n'
                self.output_formatfile += '        outputjson = {""status"":""SUCCESS"",""data"":json.loads(modeloutput)}'
            elif((model.lower() == 'lstm' or model.lower() == 'mlp')  and len(features) >= 1):
                self.output_formatfile += '        modeloutput = modeloutput.round(2)\n'
                self.output_formatfile += '        modeloutput = modeloutput.to_json(orient=\'records\')\n'
                self.output_formatfile += '        outputjson = {""status"":""SUCCESS"",""data"":json.loads(modeloutput)}\n'
            else:
                self.output_formatfile += '        modeloutput = modeloutput.round(2)'
                self.output_formatfile += '\n'
                self.output_formatfile += '        modeloutput = json.dumps(modeloutput.tolist())'
                self.output_formatfile += '\n'
                self.output_formatfile += '        outputjson = {""status"":""SUCCESS"",""data"":eval(modeloutput)}'
            self.output_formatfile += '\n'
        elif(learner_type in  ['RecommenderSystem','similarityIdentification','contextualSearch']):
            self.output_formatfile += '\n'
            self.output_formatfile += '        df[\'prediction\'] = modeloutput'
            self.output_formatfile += '\n'          
            self.output_formatfile += '        outputjson = df.to_json(orient=\'records\',double_precision=2)'
            self.output_formatfile += '\n'
            self.output_formatfile += '        outputjson = {""status"":""SUCCESS"",""data"":json.loads(outputjson)}'
            self.output_formatfile += '\n'
        else:           
            if(modelType == 'Classification' or modelType == 'TLClassification' or modelType == 'anomaly_detection'):
                if(modelType == 'Classification' or modelType == 'TLClassification' or modelType == 'anomaly_detection'):
                    if(str(output_label) != '{}'):
                        inv_mapping_dict = {v: k for k, v in output_label.items()}
                        self.output_formatfile += '        le_dict = '+ str(inv_mapping_dict)
                        self.output_formatfile += '\n'
                        '''
                        if(model in ['SGDClassifier']):
                            self.output_formatfile += '        modeloutput  = modeloutput.replace({""predict_class"": le_dict})'
                        else:
                            self.output_formatfile += '        modeloutput = modeloutput.rename(columns=le_dict)'
                        '''
                        if modelType != 'anomaly_detection':
                            self.output_formatfile += '        modeloutput = modeloutput.rename(columns=le_dict)'
                            self.output_formatfile += '\n'
                if(threshold != -1):
                    '''
                    if(model in ['SGDClassifier']):
                        self.output_formatfile += '        df[\'prediction\'] = np.where(modeloutput[\'probability\'] > '+str(threshold)+',1,0)'
                        self.output_formatfile += '\n'
                        self.output_formatfile += '        df[\'probability\'] = modeloutput[\'probability\']'          
                        self.output_formatfile += '\n'
                        self.output_formatfile += '        df[\'remarks\'] = """"'
                        self.output_formatfile += '\n'
                    else:
                        self.output_formatfile += '        predictedData = modeloutput.iloc[:,1]'
                        self.output_formatfile += '\n'
                        self.output_formatfile += '        df[\'prediction\'] = np.where(predictedData > '+str(threshold)+',modeloutput.columns[1],modeloutput.columns[0])'     
                        self.output_formatfile += '\n'
                        self.output_formatfile += '        df[\'probability\'] = np.where(df[\'prediction\'] == modeloutput.columns[1],modeloutput.iloc[:,1],modeloutput.iloc[:,0])'
                        self.output_formatfile += '\n'
                        self.output_formatfile += '        df[\'remarks\'] = modeloutput.apply(lambda x: x.to_json(double_precision=2), axis=1)'                        
                        self.output_formatfile += '\n'  
                    '''
                    self.output_formatfile += '        predictedData = modeloutput.iloc[:,1]'
                    self.output_formatfile += '\n'
                    self.output_formatfile += '        df[\'prediction\'] = np.where(predictedData > '+str(threshold)+',modeloutput.columns[1],modeloutput.columns[0])'     
                    self.output_formatfile += '\n'
                    self.output_formatfile += '        df[\'probability\'] = np.where(df[\'prediction\'] == modeloutput.columns[1],modeloutput.iloc[:,1],modeloutput.iloc[:,0])'
                    self.output_formatfile += '\n'
                    self.output_formatfile += '        df[\'remarks\'] = modeloutput.apply(lambda x: x.to_json(double_precision=2), axis=1)'                        
                    self.output_formatfile += '\n'  
                else:
                    '''
                    if(model in ['SGDClassifier']):
                        self.output_formatfile += '        df[\'prediction\'] = modeloutput[\'predict_class\']'     
                        self.output_formatfile += '\n'      
                        self.output_formatfile += '        df[\'probability\'] = """"'            
                        self.output_formatfile += '\n'
                        self.output_formatfile += '        df[\'remarks\'] = ""NA""'
                        self.output_formatfile += '\n'
                    else:
                    
                        self.output_formatfile += '        df[\'prediction\'] = modeloutput.idxmax(axis=1)'         
                        self.output_formatfile += '\n'      
                        self.output_formatfile += '        df[\'probability\'] = modeloutput.max(axis=1)'           
                        self.output_formatfile += '\n'      
                        self.output_formatfile += '        df[\'remarks\'] = modeloutput.apply(lambda x: x.to_json(double_precision=2), axis=1)'                        
                        self.output_formatfile += '\n'  
                    '''
                    if modelType == 'anomaly_detection':
                        # if (model.lower()=='autoencoder'):
                        if model.lower() in ['autoencoder']:
                            if (datetimeFeature != '' and datetimeFeature.lower() != 'na'):
                                self.output_formatfile += '        df[modeloutput.columns] = modeloutput\n'
                                self.output_formatfile += '        anomaly_df=df[df[\'anomaly\'] == True]\n'
                                self.output_formatfile += '        anomaly_prediction_df=self.find_point_subsequence_anomalies(datetimeFeature,anomaly_df)\n'
                                self.output_formatfile += '        new_dir = str(Path(__file__).parent.parent/\'data\')\n'                                
                                self.output_formatfile += '        anomaly_prediction_df.to_csv(f""{new_dir}/anomaly_data.csv"")\n'
                                self.output_formatfile += '        try:\n'
                                self.output_formatfile += '            anomaly_prediction_df[datetimeFeature]=pd.to_datetime(anomaly_prediction_df[datetimeFeature])\n'
                                self.output_formatfile += '            df[datetimeFeature]=pd.to_datetime(df[datetimeFeature])\n'
                                self.output_formatfile += '            anomaly_prediction_df.drop(""Time_diff"",axis=1,inplace=True)\n'
                                self.output_formatfile += '        except:\n'
                                self.output_formatfile += '            pass\n'
                                self.output_formatfile += '        try:\n'
                                self.output_formatfile += '            df_out = pd.merge(df, anomaly_prediction_df, on=df.columns.values.tolist(), how=\'left\')\n'
                                self.output_formatfile += '            df_out[\'anomaly\'].replace([\'None\', \'NaN\', np.nan], ""Normal"", inplace=True)\n'
                                self.output_formatfile += '            df_out[\'anomalyType\'].replace([\'None\', \'NaN\', np.nan], ""Normal"", inplace=True)\n'
                                self.output_formatfile += '            df_out.to_csv(f""{new_dir}/overall_ad_output.csv"") \n'
                                self.output_formatfile += '            df_out[datetimeFeature]=df_out[datetimeFeature].astype(str) \n'
                                self.output_formatfile += '            df_out.drop(""time_diff"",axis=1,inplace=True)\n'
                                self.output_formatfile += '        except Exception as e:\n'
                                self.output_formatfile += '            print(""anomaly data updated issue"",e)\n'
                                self.output_formatfile += '        df_out[datetimeFeature]=df_out[datetimeFeature].astype(str)\n'
                                self.output_formatfile += '        df=df_out   \n'
                            else:
                                self.output_formatfile += '        df[modeloutput.columns] = modeloutput\n' 
                        elif (model.lower()=='dbscan'):
                            if (datetimeFeature != '' and datetimeFeature.lower() != 'na'):
                                self.output_formatfile += '        df[\'anomaly\'] = modeloutput[\'cluster\']== -1\n'
                                self.output_formatfile += '        anomaly_df=df[df[\'anomaly\'] == True]\n'
                                self.output_formatfile += '        anomaly_prediction_df=self.find_point_subsequence_anomalies(datetimeFeature,anomaly_df)\n'                                
                                self.output_formatfile += '        new_dir = str(Path(__file__).parent.parent/\'data\')\n'
                                self.output_formatfile += '        try:\n'
                                self.output_formatfile += '            anomaly_prediction_df[datetimeFeature]=pd.to_datetime(anomaly_prediction_df[datetimeFeature])\n'
                                self.output_formatfile += '            df[datetimeFeature]=pd.to_datetime(df[datetimeFeature])\n'
                                self.output_formatfile += '        except:\n'
                                self.output_formatfile += '            pass\n'
                                self.output_formatfile += '        try:\n'
                                self.output_formatfile += '            df_out = pd.merge(df, anomaly_prediction_df, on=df.columns.values.tolist(), how=\'left\')\n'
                                self.output_formatfile += '            df_out[\'anomaly\'].replace([\'None\', \'NaN\', np.nan], ""Normal"", inplace=True)\n'
                                self.output_formatfile += '            df_out.to_csv(f""{new_dir}/overall_ad_output.csv"") \n'
                                self.output_formatfile += '            df_out[datetimeFeature]=df_out[datetimeFeature].astype(str)\n'
                                self.output_formatfile += '        except Exception as e:\n'
                                self.output_formatfile += '            print(""anomaly data updated."")\n'
                                self.output_formatfile += '            df_out[datetimeFeature]=df_out[datetimeFeature].astype(str)\n'
                                self.output_formatfile += '        df=df_out   \n'
                            else:
                                self.output_formatfile += '        df[\'anomaly\'] = modeloutput[\'cluster\']== -1\n'
                                self.output_formatfile += '        df.sort_values(by=[\'anomaly\'], ascending=False, inplace=True)\n'
                        else:
                            self.output_formatfile += '        df[\'prediction\'] =     modeloutput'
                            self.output_formatfile += '\n'                          
                    else:
                        self.output_formatfile += '        df[\'prediction\'] = modeloutput.idxmax(axis=1)'         
                        self.output_formatfile += '\n'      
                        if learner_type != 'DL':
                            self.output_formatfile += '        df[\'probability\'] = modeloutput.max(axis=1).round(2)'          
                            self.output_formatfile += '\n'      
                            self.output_formatfile += '        df[\'remarks\'] = modeloutput.apply(lambda x: x.to_json(double_precision=2), axis=1)'
                            self.output_formatfile += '\n'  
            else:
                if model == 'COX':
                    self.output_formatfile += '\n'
                    self.output_formatfile += '        modeloutput[0] = modeloutput[0].round(2)'
                    self.output_formatfile += '\n'
                    #self.output_formatfile += '        modeloutput = modeloutput[0].to_json(orient=\'records\',double_precision=2)'
                    #self.output_formatfile += '\n'
                    self.output_formatfile += '        df[\'prediction\'] =     modeloutput'
                    self.output_formatfile += '\n'                          
                else:
                    self.output_formatfile += '        df[\'prediction\'] =     modeloutput[0]'
                    if(learner_type == 'objectDetection'):    
                        self.output_formatfile += '\n'                          
                        self.output_formatfile += '        df[\'prediction\'] = df[\'prediction\']'
                    else:
                        self.output_formatfile += '\n'                          
                        self.output_formatfile += '        df[\'prediction\'] = df[\'prediction\'].round(2)'                            
                    self.output_formatfile += '\n'                    
            self.output_formatfile += '        outputjson = df.to_json(orient=\'records\',double_precision=2)'
            self.output_formatfile += '\n'      
            self.output_formatfile += '        outputjson = {""status"":""SUCCESS"",""data"":json.loads(outputjson)}'
            self.output_formatfile += '\n'      
        self.output_formatfile += '        return(json.dumps(outputjson))'  
        filename = os.path.join(deploy_path,'script','output_format.py')
        #print(deploy_path)
        f = open(filename, ""wb"")
        self.log.info('-------> Output Mapping File Location :'+filename)
        f.write(str(self.output_formatfile).encode('utf8'))
        f.close()"
inputdrift.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import pandas as pd
import numpy as np
import scipy 
import warnings
import scipy.stats as st
import logging
import json
class inputdrift():
	def __init__(self,conf):
		self.log = logging.getLogger('eion')		
					
	def get_input_drift(self,ndf,hdf,outputfolder):
		selectedColumns = self.features.split(',')
		dataalertcount=0
		distributionChangeColumns=""""
		distributionChangeMessage=[]
		for i in range(0,len(selectedColumns)):
			data1=hdf[selectedColumns[i]]
			data2=ndf[selectedColumns[i]]
			if(data1.dtype !=""str"" and data2.dtype !=""str""  ):
				cumulativeData=data1.append(data2)
				teststaticValue=teststatic(self,data1,data2)
				if (teststaticValue < 0.05):
					distributionName1,sse1=DistributionFinder(self,data1)
					distributionName2,sse2=DistributionFinder(self,data2)
					if(distributionName1 == distributionName2):
						dataalertcount = dataalertcount
					else:
						dataalertcount = dataalertcount+1
						distributionChangeColumns=distributionChangeColumns+selectedColumns[i]+"",""
						changedColumn = {}
						changedColumn['Feature'] = selectedColumns[i]
						changedColumn['KS_Training'] = teststaticValue
						changedColumn['Training_Distribution'] = distributionName1
						changedColumn['New_Distribution'] = distributionName2
						distributionChangeMessage.append(changedColumn)
                                                
				else :
					dataalertcount = dataalertcount

			else :
				response =""Selected Columns should be Numerical Values""
		               	        
			if(dataalertcount == 0):
				resultStatus=""Model is working as expected""
			else :
				resultStatus=json.dumps(distributionChangeMessage)
				
		return(dataalertcount,resultStatus)
		
def DistributionFinder(self,data):
	try:
		distributionName =""""
		sse =0.0
		KStestStatic=0.0
		dataType=""""
		if(data.dtype == ""float64""):
			dataType =""Continuous""
		elif(data.dtype ==""int""):
			dataType=""Discrete""
		elif(data.dtype ==""int64""):
			dataType=""Discrete""	
		if(dataType == ""Discrete""):
			distributions= [st.bernoulli,st.binom,st.geom,st.nbinom,st.poisson]                
			index, counts = np.unique(data.astype(int),return_counts=True)

			if(len(index)>=2):
				best_sse = np.inf
				y1=[]
				total=sum(counts)
				mean=float(sum(index*counts))/total
				variance=float((sum(index**2*counts) -total*mean**2))/(total-1)
				dispersion=mean/float(variance)
				theta=1/float(dispersion)
				r=mean*(float(theta)/1-theta)

				for j in counts:
						y1.append(float(j)/total)
									
				pmf1=st.bernoulli.pmf(index,mean)      
				pmf2=st.binom.pmf(index,len(index),p=mean/len(index))
				pmf3=st.geom.pmf(index,1/float(1+mean))
				pmf4=st.nbinom.pmf(index,mean,r)
				pmf5=st.poisson.pmf(index,mean)

				sse1 = np.sum(np.power(y1 - pmf1, 2.0))
				sse2 = np.sum(np.power(y1 - pmf2, 2.0))
				sse3 = np.sum(np.power(y1 - pmf3, 2.0))
				sse4 = np.sum(np.power(y1 - pmf4, 2.0))
				sse5 = np.sum(np.power(y1-  pmf5, 2.0))

				sselist=[sse1,sse2,sse3,sse4,sse5]

				for i in range(0,len(sselist)):
				  if best_sse > sselist[i] > 0:
					  best_distribution = distributions[i].name
					  best_sse = sselist[i]

			elif (len(index) == 1): 
				best_distribution = ""Constant Data-No Distribution""
				best_sse = 0.0

			distributionName =best_distribution
			sse=best_sse   

		elif(dataType == ""Continuous""): 
				 
			distributions = [st.uniform,st.expon,st.weibull_max,st.weibull_min,st.chi,st.norm,st.lognorm,st.t,st.gamma,st.beta]

			best_distribution = st.norm.name
			best_sse = np.inf
			datamin=data.min()
			datamax=data.max()
			nrange=datamax-datamin
				 
			y, x = np.histogram(data.astype(float), bins='auto', density=True)
			x = (x + np.roll(x, -1))[:-1] / 2.0
									
			for distribution in distributions:
					with warnings.catch_warnings():
							warnings.filterwarnings('ignore')
									
							params = distribution.fit(data.astype(float))
									# Separate parts of parameters
							arg = params[:-2]
							loc = params[-2]
							scale = params[-1]

									# Calculate fitted PDF and error with fit in distribution
							pdf = distribution.pdf(x, loc=loc, scale=scale, *arg)
							sse = np.sum(np.power(y - pdf, 2.0))
							if(best_sse >sse > 0):
									best_distribution = distribution.name
									best_sse = sse

			distributionName =best_distribution
			sse=best_sse 
	except:
		response = str(sys.exc_info()[0])
		message='Job has Failed'+response
		print(message)
	return distributionName,sse

##KStestStatic -pvalue finding 
def teststatic(self,data1,data2):
	try:
		teststatic =st.ks_2samp(data1,data2)
		pValue=0.0
		scipyVersion =scipy.__version__
		if(scipyVersion <= ""0.14.1""):
			pValue =teststatic[1]
		else:
			pValue =teststatic.pvalue
	except:
		response = str(sys.exc_info()[0])
		print(""Input Drift Job Failed ""+response)
	return pValue
			
"
prediction_transformation.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import os,sys
import platform
import json
import shutil
import logging
from pathlib import Path

def create_selector_file(self,deploy_path,features,pcaModel_pickle_file,bpca_features,apca_features,textFeatures,nonNumericFeatures,numericalFeatures,profiler,targetFeature, model_type,model,config=None):
    self.selectorfile += 'import pandas as pd'
    self.selectorfile += '\n'
    self.selectorfile += 'import joblib'
    self.selectorfile += '\n'
    self.selectorfile += 'import os'
    self.selectorfile += '\n'
    self.selectorfile += 'import numpy as np'
    self.selectorfile += '\n'
    self.selectorfile += 'class selector(object):'
    self.selectorfile += '\n'
    self.selectorfile += '    def apply_selector(self,df):'
    self.selectorfile += '\n'
    if pcaModel_pickle_file != '':
        self.selectorfile += ""        pcaModel = joblib.load(os.path.join(os.path.dirname(__file__),'..','model','""+pcaModel_pickle_file+""'))""  
        self.selectorfile += '\n'
        self.selectorfile += '        bpca_features = '+str(bpca_features)
        self.selectorfile += '\n'
        self.selectorfile += '        apca_features = '+str(apca_features)
        self.selectorfile += '\n'
        self.selectorfile += '        df = pcaModel.transform(df[bpca_features])'
        self.selectorfile += '\n'
        self.selectorfile += '        df = pd.DataFrame(df,columns=apca_features)'
        self.selectorfile += '\n'
    if(len(features) != 0) and model_type != 'BM25':
        if model_type.lower()!='anomaly_detection' and model.lower() != 'autoencoder':
            self.selectorfile += '        df = df['+str(features)+']'
            self.selectorfile += '\n'
    self.selectorfile += '        return(df)'
    filename = os.path.join(deploy_path,'script','selector.py')             
    f = open(filename, ""wb"")
    self.log.info('-------> Feature Selector File Location :'+filename)
    f.write(str(self.selectorfile).encode('utf8'))
    f.close()       
    featurefile = 'import json'     
    featurefile +='\n'        
    featurefile += 'def getfeatures():'     
    featurefile +='\n'
    featurefile +='    try:'        
    featurefile +='\n'
    featurelist = []
    if 'profiler' in config:
        if 'input_features_type' in config['profiler']:
            inputfeatures = config['profiler']['input_features_type']
            for x in inputfeatures:
                featurelt={}
                featurelt['feature'] = x
                print(x,inputfeatures[x])
                if x == targetFeature:            
                    featurelt['Type'] = 'Target'
                else:
                    if inputfeatures[x] in ['int','int64','float','float64']: 
                        featurelt['Type'] = 'Numeric'
                    elif inputfeatures[x] == 'object':
                        featurelt['Type'] = 'Text'
                    elif inputfeatures[x] == 'category':  
                        featurelt['Type'] = 'Category'   
                    else:
                        featurelt['Type'] = 'Unknown'   
                featurelist.append(featurelt)
        
    featurefile +='        features = '+str(featurelist)
    featurefile +='\n'
    featurefile +='        outputjson = {""status"":""SUCCESS"",""features"":features}'
    featurefile +='\n'
    featurefile +='        output = json.dumps(outputjson)'       
    featurefile +='\n'
    featurefile +='        print(""Features:"",output)'       
    featurefile +='\n'
    featurefile +='        return(output)'              
    featurefile +='\n'
    featurefile +='    except Exception as e:'      
    featurefile +='\n'
    featurefile +='        output = {""status"":""FAIL"",""message"":str(e).strip(\'""\')}'
    featurefile +='\n'
    featurefile +='        print(""Features:"",json.dumps(output))'        
    featurefile +='\n'
    featurefile +='        return (json.dumps(output))'     
    featurefile +='\n'
    featurefile +='if __name__ == ""__main__"":'        
    featurefile +='\n'
    featurefile +='    output = getfeatures()'      
    filename = os.path.join(deploy_path,'featureslist.py')              
    f = open(filename, ""wb"")
    f.write(str(featurefile).encode('utf8'))
    f.close()        

def create_init_function_for_classification(self,modelfile,classes,learner_type,scoreParam,loss_matrix,optimizer,preprocessing_pipe,modelName,model_type,imageconfig):
    self.modelfile += '   def __init__(self):'
    self.modelfile += '\n'
    if (learner_type == 'ML' and model_type.lower()=='anomaly_detection' and modelName.lower()==""autoencoder""):
        modelfile=modelfile.replace('.sav','')
        self.modelfile+=""      self.model = tf.keras.models.load_model(os.path.join(os.path.dirname(__file__),'..','model','""+modelfile+""'))""
        self.modelfile += '\n'
    elif(learner_type == 'TextDL' or learner_type == 'DL'):
        if modelName.lower() == 'googlemodelsearch':
            self.modelfile += '        import autokeras as ak'
            self.modelfile += '\n'
            self.modelfile += ""        self.model = load_model(os.path.join(os.path.dirname(__file__),'..','model','modelsearch_rootdir','saved_model_onnx.onnx'))""                
            self.modelfile += '\n'         
        else:
            if scoreParam == 'recall':
                self.modelfile += ""       self.model = load_model(os.path.join(os.path.dirname(__file__),'..','model','""+modelfile+""'),custom_objects={'recall': recall_m},compile=False)""
                self.modelfile += '\n'
                self.modelfile += '       self.model.compile(loss=\''+loss_matrix+'\',optimizer=\''+optimizer+'\', metrics=[recall_m])'
                self.modelfile += '\n'
            elif scoreParam == 'precision':
                self.modelfile += ""       self.model = load_model(os.path.join(os.path.dirname(__file__),'..','model','""+modelfile+""'),custom_objects={'precision': precision_m},compile=False)""
                self.modelfile += '\n'
                self.modelfile += '       self.model.compile(loss=\''+loss_matrix+'\',optimizer=\''+optimizer+'\', metrics=[precision_m])'
                self.modelfile += '\n'
            elif scoreParam == 'roc_auc':
                self.modelfile += ""       self.model = load_model(os.path.join(os.path.dirname(__file__),'..','model','""+modelfile+""'),compile=False)""
                self.modelfile += '\n'
                self.modelfile += '       self.model.compile(loss=\''+loss_matrix+'\',optimizer=\''+optimizer+'\', metrics=[tf.keras.metrics.AUC()])'
                self.modelfile += '\n'
            elif scoreParam == 'f1_score':
                self.modelfile += ""       self.model = load_model(os.path.join(os.path.dirname(__file__),'..','model','""+modelfile+""'),custom_objects={'f1_score': f1_m},compile=False)""
                self.modelfile += '\n'
                self.modelfile += '       self.model.compile(loss=\''+loss_matrix+'\',optimizer=\''+optimizer+'\', metrics=[f1_m])'
                self.modelfile += '\n'
            elif scoreParam == 'r2':
                self.modelfile += ""       self.model = load_model(os.path.join(os.path.dirname(__file__),'..','model','""+modelfile+""'),custom_objects={'r2': r_square},compile=False)""
                self.modelfile += '\n'
                self.modelfile += '       self.model.compile(loss=\''+loss_matrix+'\',optimizer=\''+optimizer+'\', metrics=[r_square])'
                self.modelfile += '\n'
            elif scoreParam == 'rmse':
                self.modelfile += ""       self.model = load_model(os.path.join(os.path.dirname(__file__),'..','model','""+modelfile+""'),custom_objects={'rmse': rmse_m},compile=False)""
                self.modelfile += '\n'
                self.modelfile += '       self.model.compile(loss=\''+loss_matrix+'\',optimizer=\''+optimizer+'\', metrics=[rmse_m])'
                self.modelfile += '\n'
            elif scoreParam == 'mse':
                self.modelfile += ""       self.model = load_model(os.path.join(os.path.dirname(__file__),'..','model','""+modelfile+""'))""
                self.modelfile += '\n'
            elif scoreParam == 'mae':
                self.modelfile += ""       self.model = load_model(os.path.join(os.path.dirname(__file__),'..','model','""+modelfile+""'))""        
                self.modelfile += '\n'
        
            elif scoreParam == 'accuracy':
                self.modelfile += ""       self.model = load_model(os.path.join(os.path.dirname(__file__),'..','model','""+modelfile+""'))""        
                self.modelfile += '\n'
            else:
                self.modelfile += ""       self.model = load_model(os.path.join(os.path.dirname(__file__),'..','model','""+modelfile+""'))""        
                self.modelfile += '\n'
    elif(learner_type == 'Text Similarity'):
        self.modelfile += ""       self.preprocessing = joblib.load(os.path.join(os.path.dirname(__file__),'..','model','""+preprocessing_pipe+""'))""
        self.modelfile += '\n'
        self.modelfile += ""       self.model = load_model(os.path.join(os.path.dirname(__file__),'..','model','""+modelfile+""'), custom_objects={'cosine_distance': cosine_distance, 'cos_dist_output_shape': cos_dist_output_shape})""
        self.modelfile += '\n'
    elif(learner_type in ['similarityIdentification','contextualSearch']):
        if scoreParam == 'VectorDB Cosine':
            vectorfiledbname = 'trainingdataVecDB'
            self.modelfile += f""\
            \n        persist_directory = os.path.join(os.path.dirname(__file__),'..','data')\
            \n        client = chromadb.PersistentClient(path=persist_directory)\
            \n        self.collection_name = '{vectorfiledbname}'\
            \n        self.collection = client.get_collection(self.collection_name)\n""

        else:
            self.modelfile += ""        self.train_input = pd.read_csv(os.path.join(os.path.dirname(__file__),'..','data','trainingdata.csv'))\n\n""
    elif(learner_type == 'ImageClassification'):
        self.modelfile += '        self.config='+str(imageconfig)       
        self.modelfile += '\n'
        if(modelName.lower() == 'densenet'):
            self.modelfile += '        baseModel = tf.keras.applications.DenseNet121(weights=""imagenet"", include_top=False, input_tensor=Input(shape=(self.config[\'img_width\'],self.config[\'img_height\'],self.config[\'img_channel\'])))'
        else:
            self.modelfile += '        baseModel = tensorflow.keras.applications.InceptionV3(weights=""imagenet"", include_top=False, input_tensor=Input(shape=(self.config[\'img_width\'],self.config[\'img_height\'],self.config[\'img_channel\'])))'
        self.modelfile += '\n'
        self.modelfile += '        headModel = baseModel.output'
        self.modelfile += '\n'
        self.modelfile += '        headModel = Flatten(name=""flatten"")(headModel)'
        self.modelfile += '\n'
        self.modelfile += '        headModel = Dense(1024, activation=\'relu\')(headModel)'
        self.modelfile += '\n'
        self.modelfile += '        headModel = Dropout(0.5)(headModel)'
        self.modelfile += '\n'
        self.modelfile += '        headModel = Dense(2, activation=\'sigmoid\')(headModel)'
        self.modelfile += '\n'
        self.modelfile += '        headModel = self.model = Model(inputs=baseModel.input, outputs=headModel)'
        self.modelfile += '\n'
        self.modelfile += '        opt = Adam(lr=self.config[\'lr\'])'
        self.modelfile += '\n'
        self.modelfile += '        self.model.compile(loss=""binary_crossentropy"", optimizer=opt, metrics=[""accuracy""])'
        self.modelfile += '\n'
        self.modelfile += ""        self.model.load_weights(os.path.join(os.path.dirname(__file__),'..','model','""+modelfile+""'))""
        self.modelfile += '\n'
    elif(learner_type == 'objectDetection'):
        self.modelfile += ""        self.MODEL_LOCATION = os.path.join(os.path.dirname(__file__),'..','model')\n""
        self.modelfile += '        PATH_TO_CFG = self.MODEL_LOCATION+""/export/pipeline.config""\n'
        self.modelfile += '        PATH_TO_CKPT =  self.MODEL_LOCATION+""/export/checkpoint/""\n'
        self.modelfile += '        PATH_TO_LABELS = self.MODEL_LOCATION+""/export/label_map.pbtxt""\n'
        self.modelfile += '        configs = config_util.get_configs_from_pipeline_file(PATH_TO_CFG)\n'
        self.modelfile += '        self.detection_model = model_builder.build(model_config=configs[""model""], is_training=False)\n'
        self.modelfile += '        ckpt = tf.compat.v2.train.Checkpoint(model=self.detection_model)\n'
        self.modelfile += '        ckpt.restore(os.path.join(PATH_TO_CKPT, ""ckpt-0"")).expect_partial()\n'
        self.modelfile += '        self.category_index = label_map_util.create_category_index_from_labelmap(PATH_TO_LABELS,\
                                                                use_display_name=True)\n'
    elif learner_type == 'TS' and (modelName.lower() == 'lstm' or modelName.lower() == 'mlp'):  
        self.modelfile += ""       self.model = load_model(os.path.join(os.path.dirname(__file__),'..','model','""+modelfile+""'))""
        self.modelfile += '\n'
    elif modelName.lower() == 'neural architecture search':
        self.modelfile += '       import autokeras as ak'
        self.modelfile += '\n'
        self.modelfile += ""       self.model = load_model(os.path.join(os.path.dirname(__file__),'..','model','""+modelfile+""'),custom_objects=ak.CUSTOM_OBJECTS)""                
        self.modelfile += '\n'                          
    else:
        self.modelfile += ""       self.model = joblib.load(os.path.join(os.path.dirname(__file__),'..','model','""+modelfile+""'))""
        self.modelfile += '\n'
    
def create_predict(self,learner_type,method,model,model_type,threshold,firstDocFeature,secondDocFeature,padding_length,optimizationmethod,sessonal_freq,additional_regressors,feature,modelFeatures,indexFeature,lag_order,scalertransformationFile,datetimeFeature,scoreParam=None):
    self.modelfile += '   def predict(self,X,features_names):'
    self.modelfile += '\n'
            
    if (learner_type == 'ML' and model_type.lower()=='anomaly_detection' and model.lower()==""autoencoder""): 
        
        self.modelfile += f""       X=X[{feature}]\n""
        self.modelfile += f""       X = np.asarray(X).astype('float32')\n""        
        self.modelfile += f""       reconstructed = self.model.predict(X)\n""
        self.modelfile += f""       predict_loss = tf.keras.losses.mae(reconstructed,X)\n""
        self.modelfile += '       max_threshold = np.mean(predict_loss) + 2*np.std(predict_loss)\n'
        self.modelfile += '       min_threshold = np.mean(predict_loss) - 2*np.std(predict_loss)\n'
        self.modelfile += '       prediction_df = pd.DataFrame()\n'
        self.modelfile += '       prediction_df[""loss""] = predict_loss\n'
        self.modelfile += '       prediction_df[""max_threshold""] = max_threshold\n'
        self.modelfile += '       prediction_df[""min_threshold""] = min_threshold\n'
        self.modelfile += '       prediction_df[""anomaly""] = np.where((prediction_df[""loss""] > prediction_df[""max_threshold""]) | (prediction_df[""loss""] <= prediction_df[""min_threshold""]), True, False)\n'
        self.modelfile += '       return prediction_df\n'
            
            
    elif(learner_type == 'RecommenderSystem'):
        self.modelfile += '       predictions = []'
        self.modelfile += '\n'
        self.modelfile += '       for index,row in X.iterrows():'
        self.modelfile += '\n'
        self.modelfile += '           score = self.model.predict(int(row[""uid""]),int(row[""iid""]))'
        self.modelfile += '\n'
        self.modelfile += '           predictions.append(score.est)'
        self.modelfile += '\n'
        self.modelfile += '       return predictions'           
    elif(learner_type in ['similarityIdentification','contextualSearch']):
        tfeatures = list(modelFeatures.split("",""))
        if indexFeature != ''  and indexFeature != 'NA':
            ifeatures = indexFeature.split("","")
            for ifes in ifeatures:              
                if ifes not in tfeatures:
                    tfeatures.append(ifes) 
        if model_type == 'BM25':
            self.modelfile += f""\n\
    tokenized_corpus =[doc.split(' ') for doc in self.train_input.tokenize]\n\
    bm25 = BM25Okapi(tokenized_corpus)\n\
    tokenized_query = [doc.split(' ') for doc in X.tokenize]\n\
    logcnt = 5\n\
    output = []\n\
    for query in tokenized_query:\n\
        doc_scores = bm25.get_scores(query)\n\
        related_docs_indices = np.argsort(doc_scores)[::-1][:logcnt]\n\
        x = self.train_input[{tfeatures}].loc[self.train_input.index[related_docs_indices]]\n\
        x['Score'] = doc_scores[related_docs_indices]\n\
        x['Score'] = round(x['Score'],2).astype(str)+'%'\n\
        output.append(x)\n\
    return output\n""
        elif scoreParam == 'VectorDB Cosine':
            featuresVecDB = modelFeatures.split("","")
            self.modelfile += '        logcnt = 5\n'
            self.modelfile += f""        columns = {featuresVecDB}\n""
            self.modelfile += f""\
            \n        output = []\
            \n        for rowindex, row in X.iterrows():\
            \n            queryembedding = X.iloc[rowindex:rowindex+1].to_numpy()\
            \n            results = self.collection.query(\
            \n                query_embeddings=queryembedding.tolist(),\
            \n                n_results=logcnt\
            \n            )\
            \n            x = pd.DataFrame(columns=columns)\
            \n            for i in range(0, len(results['ids'][0])):\
            \n                documentAry = results['documents'][0][i]\
            \n                documentAry = documentAry.split(' ~&~ ')\
            \n                for j in range(0, len(documentAry)):\
            \n                    x.at[i,columns[j]] = documentAry[j]\
            \n                x.at[i,'Score'] = results['distances'][0][i]\
            \n            output.append(x)\
            \n        return output""
        else:
            self.modelfile += '        columns = self.train_input.columns.tolist()\n'
            self.modelfile += '        logcnt = 5\n'
            self.modelfile += f""        train_input = self.train_input[{tfeatures}]\n""
            for tf in tfeatures:
                self.modelfile += f""        columns.remove('{tf}')\n""
            self.modelfile += f""\
            \n        results = cosine_similarity(self.train_input[columns],X)\
            \n        output = []\
            \n        for i in range(results.shape[1]):\
            \n            related_docs_indices = results[:,i].argsort(axis=0)[:-(int(logcnt) + 1):-1]\
            \n            x=self.train_input[{tfeatures}].loc[self.train_input.index[related_docs_indices]]\
            \n            scores = []\
            \n            for j in range(0,logcnt):\
            \n                scores.append(str(round((results[related_docs_indices][j][i])*100))+'%')\
            \n            x['Score'] = scores\
            \n            output.append(x)\
            \n        return output""
    elif(learner_type == 'Text Similarity'):
        self.modelfile += '       X[""'+firstDocFeature+'""] = X[""'+firstDocFeature+'""].astype(str)'
        self.modelfile += '\n'  
        self.modelfile += '       X[""'+secondDocFeature+'""] = X[""'+secondDocFeature+'""].astype(str)'
        self.modelfile += '\n'  
        self.modelfile += '       test_sentence1 = self.preprocessing.texts_to_sequences(X[""'+firstDocFeature+'""].values)' 
        self.modelfile += '\n'  
        self.modelfile += '       test_sentence2 = self.preprocessing.texts_to_sequences(X[""'+secondDocFeature+'""].values)' 
        self.modelfile += '\n'
        self.modelfile += '       test_sentence1 = pad_sequences(test_sentence1, maxlen='+str(padding_length)+', padding=\'post\')' 
        self.modelfile += '\n'
        self.modelfile += '       test_sentence2 = pad_sequences(test_sentence2, maxlen='+str(padding_length)+', padding=\'post\')' 
        self.modelfile += '\n'
        self.modelfile += '       prediction = self.model.predict([test_sentence1, test_sentence2 ])' 
        self.modelfile += '\n'
        self.modelfile += '       return(prediction)' 
        self.modelfile += '\n'
    elif(learner_type == 'ImageClassification'): 
        self.modelfile += '       predictions = []' 
        self.modelfile += '\n'
        self.modelfile += '       for index, row in X.iterrows(): ' 
        self.modelfile += '\n'
        self.modelfile += '           img = cv2.imread(row[\'imagepath\'])' 
        self.modelfile += '\n'
        self.modelfile += '           img = cv2.resize(img, (self.config[\'img_width\'],self.config[\'img_height\']))' 
        self.modelfile += '\n'
        self.modelfile += '           img = image.img_to_array(img)' 
        self.modelfile += '\n'
        self.modelfile += '           img = np.expand_dims(img, axis=0)' 
        self.modelfile += '\n'
        self.modelfile += '           img = img/255' 
        self.modelfile += '\n'
        self.modelfile += '           prediction = self.model.predict(img)' 
        self.modelfile += '\n'
        self.modelfile += '           prediction = np.argmax(prediction,axis=1)' 
        self.modelfile += '\n'
        self.modelfile += '           predictions.append(prediction[0])' 
        self.modelfile += '\n'
        self.modelfile += '       return(predictions)' 
        self.modelfile += '\n'
    elif(learner_type == 'objectDetection'): 
        self.modelfile += '        @tf.function\n'
        self.modelfile += '        def detect_fn(image):\n'
        self.modelfile += '            image, shapes = self.detection_model.preprocess(image)\n'
        self.modelfile += '            prediction_dict = self.detection_model.predict(image, shapes)\n'
        self.modelfile += '            detections = self.detection_model.postprocess(prediction_dict, shapes)\n'
        self.modelfile += '            return detections\n'
        self.modelfile += '        def load_image_into_numpy_array(path):\n'
        self.modelfile += '            return np.array(Image.open(path))\n'
        self.modelfile += '        imageLocation = []\n'
        self.modelfile += '        for i, row in X.iterrows():\n'
        self.modelfile += '            if (""confidance"" in row) and row[""confidance""] <= 1.0:\n'
        self.modelfile += '                confidance = row[""confidance""]\n'
        self.modelfile += '            else:\n'
        self.modelfile += '                confidance = 0.8\n'
        self.modelfile += '            imageName = str(Path(row[""imagepath""]).stem)+""_output""+str(Path(row[""imagepath""]).suffix)\n'
        self.modelfile += '            image_np = load_image_into_numpy_array(row[""imagepath""])\n'
        self.modelfile += '            input_tensor = tf.convert_to_tensor(np.expand_dims(image_np, 0), dtype=tf.float32)\n'
        self.modelfile += '            detections = detect_fn(input_tensor)\n'
        self.modelfile += '            num_detections = int(detections.pop(""num_detections""))\n'
        self.modelfile += '            detections = {key: value[0, :num_detections].numpy()\n\
                                                        for key, value in detections.items()}\n'
        self.modelfile += '            detections[""num_detections""] = num_detections\n'
        self.modelfile += '            detections[""detection_classes""] = detections[""detection_classes""].astype(np.int64)\n'
        self.modelfile += '            label_id_offset = 1\n'
        self.modelfile += '            image_np_with_detections = image_np.copy()\n'
        self.modelfile += '            viz_utils.visualize_boxes_and_labels_on_image_array(\n\
                        image_np_with_detections,\n\
                        detections[""detection_boxes""],\n\
                        detections[""detection_classes""]+label_id_offset,\n\
                        detections[""detection_scores""],\n\
                        self.category_index,\n\
                        use_normalized_coordinates=True,\n\
                        max_boxes_to_draw=200,\n\
                        min_score_thresh=confidance,\n\
                        agnostic_mode=False)\n'

        self.modelfile += '            plt.figure()\n'
        self.modelfile += '            plt.imsave(os.path.join(self.MODEL_LOCATION,imageName), image_np_with_detections)\n'
        self.modelfile += '            imageLocation.append(os.path.join(self.MODEL_LOCATION,imageName))\n'
        self.modelfile += '        plt.show()\n'
        self.modelfile += '        return imageLocation\n'
    else:
        if(learner_type == 'DL' and model != 'Neural Network'):
            self.modelfile += '       X = np.expand_dims(X, axis=2)' 
            self.modelfile += '\n'  
        if(learner_type == 'TextDL'):
            self.modelfile += '       return pd.DataFrame(np.argmax(self.model.predict(X),axis=1))'
            self.modelfile += '\n'
        elif(learner_type == 'TextML'):
            self.modelfile += '       return pd.DataFrame(self.model.predict_proba(X),columns=self.model.classes_)'
            self.modelfile += '\n'
        elif(learner_type == 'DL' and model_type == 'Classification'):
            self.modelfile += '       X = X.astype(np.float32)'
            self.modelfile += '\n'            
            self.modelfile += '       return pd.DataFrame(np.argmax(self.model.predict(X),axis=1))'
            self.modelfile += '\n'
        else:
            if(model_type == 'Classification' or model_type == 'TLClassification'):
                if model == 'Neural Architecture Search':
                    self.modelfile += '       X = X.astype(np.float32)'
                    self.modelfile += '\n'                                          
                    self.modelfile += '       return pd.DataFrame(self.model.predict(X))'
                    self.modelfile += '\n'
                else:   
                    if optimizationmethod == 'genetic':
                        self.modelfile += '\n'
                        self.modelfile += '       try:'
                        self.modelfile += '\n'
                        self.modelfile += '           return pd.DataFrame(self.model.predict_proba(X))'
                        self.modelfile += '\n'
                        self.modelfile += '       except:'
                        self.modelfile += '\n'
                        self.modelfile += '           return pd.DataFrame(self.model.predict(X))'
                    else:
                        self.modelfile += '       X = X.astype(np.float32)'
                        self.modelfile += '\n'
                        if model.lower() == 'deep q network' or model.lower() == 'dueling deep q network': 
                            self.modelfile += '       q, _ = self.model(np.array(X), step_type=constant([time_step.StepType.FIRST] * np.array(X).shape[0]), training=False)'
                            self.modelfile += '\n'
                            self.modelfile += '       return pd.DataFrame(q.numpy())'                               
                        else:
                            self.modelfile += '       return pd.DataFrame(self.model.predict_proba(X), columns=self.model.classes_)'
                    self.modelfile += '\n'
            elif model_type == 'Regression' and model == 'NAS':
                    self.modelfile += \
""""""
   X = X.astype(np.float32)
   return self.model.predict(X)
""""""                    
            elif(learner_type == 'TS'):
                if model.lower() == 'fbprophet':
                    self.modelfile += '       sessonal_freq=""'+str(sessonal_freq)+'""'
                    self.modelfile += '\n'
                    self.modelfile += '       ts_prophet_future = self.model.make_future_dataframe(periods=int(X[""noofforecasts""][0]),freq=sessonal_freq,include_history = False)'
                    self.modelfile += '\n'
                    if (additional_regressors):
                        self.modelfile += '\n'
                        self.modelfile += '       additional_regressors='+str(additional_regressors)
                        self.modelfile += '\n'
                        self.modelfile += '       ts_prophet_future[additional_regressors] = dataFrame[additional_regressors]'
                        self.modelfile += '\n'
                        self.modelfile += '       ts_prophet_future.reset_index(drop=True)'
                        self.modelfile += '\n'
                        self.modelfile += '       ts_prophet_future=ts_prophet_future.dropna()'
                    self.modelfile += '\n'
                    self.modelfile += '       train_forecast = self.model.predict(ts_prophet_future)'
                    self.modelfile += '\n'
                    self.modelfile += '       prophet_forecast_tail=train_forecast[[\'ds\', \'yhat\', \'yhat_lower\',\'yhat_upper\']].tail( int(X[""noofforecasts""][0]))'
                    self.modelfile += '\n'
                    self.modelfile += '       return(prophet_forecast_tail)'
                elif model.lower() == 'lstm' or model.lower() == 'mlp':
                    self.modelfile += '       lag_order='+str(lag_order)
                    self.modelfile += '\n'
                    self.modelfile += '       xt = X.values'
                    self.modelfile += '\n'      
                    scalertransformationFile = scalertransformationFile.split('\\')[-1]
                    self.modelfile += '       loaded_scaler_model = joblib.load(os.path.join(os.path.dirname(__file__),\'..\',\'model\',\''+scalertransformationFile+'\'))'                 
                    self.modelfile += '\n'                  
                    self.modelfile += '       xt = xt.astype(\'float32\')'
                    self.modelfile += '\n'                  
                    self.modelfile += '       xt = loaded_scaler_model.transform(xt)'                       
                    self.modelfile += '\n'                                          
                    self.modelfile += '       noOfPredictions = 10'
                    self.modelfile += '\n'                      
                    self.modelfile += '       pred_data  = xt'
                    self.modelfile += '\n'                      
                    self.modelfile += '       y_future = []'
                    self.modelfile += '\n'
                    self.modelfile += '       for i in range(noOfPredictions):'
                    self.modelfile += '\n'                      
                    if len(feature) == 1:
                        self.modelfile += '           pred_data = pred_data[-lag_order:]'
                        self.modelfile += '\n'
                        if model.lower() == 'mlp':
                            self.modelfile += '           pred_data = pred_data.reshape((1,lag_order))'
                        else:
                            self.modelfile += '           pred_data = pred_data.reshape((1,lag_order,1))'                           
                        self.modelfile += '\n'
                        self.modelfile += '           pred = self.model.predict(pred_data)'                     
                        self.modelfile += '\n'
                        self.modelfile += '           predoutput =  loaded_scaler_model.inverse_transform(pred) '                       
                        self.modelfile += '\n'                          
                        self.modelfile += '           y_future.append(predoutput.flatten()[-1])'                        
                        self.modelfile += '\n'                      
                        self.modelfile += '           pred_data = np.append(pred_data,pred)'                        
                        self.modelfile += '\n'
                        self.modelfile += '       pred = pd.DataFrame(index=range(0,len(y_future)),columns='+str(feature)+')'                           
                        self.modelfile += '\n'
                        self.modelfile += '       for i in range(0, len(y_future)):'                            
                        self.modelfile += '\n'          
                        self.modelfile += '           pred.iloc[i] = y_future[i]'
                        self.modelfile += '\n'
                        self.modelfile += '       return pred'
                    else:
                        self.modelfile += '           pdata = pred_data[-lag_order:]'
                        self.modelfile += '\n'
                        self.modelfile += '           pdata = pdata.reshape((1,lag_order,'+str(len(feature))+'))'
                        self.modelfile += '\n'
                        self.modelfile += '           pred = self.model.predict(pdata)'                     
                        self.modelfile += '\n'
                        self.modelfile += '           predoutput =  loaded_scaler_model.inverse_transform(pred) '                       
                        self.modelfile += '\n'                      
                        self.modelfile += '           y_future.append(predoutput)'                      
                        self.modelfile += '\n'                      
                        self.modelfile += '           pred_data = np.append(pred_data,pred,axis=0)'                     
                        self.modelfile += '\n'
                        self.modelfile += '       pred = pd.DataFrame(index=range(0,len(y_future)),columns='+str(feature)+')'                           
                        self.modelfile += '\n'
                        self.modelfile += '       for i in range(0, len(y_future)):'                            
                        self.modelfile += '\n'          
                        self.modelfile += '           pred.iloc[i] = y_future[i]'
                        self.modelfile += '\n'
                        self.modelfile += '       return pred'                      
                else:
                    self.modelfile += '       return self.model.predict(n_periods=int(X[""noofforecasts""][0]))'  
            else:               
                if model == 'KaplanMeierFitter':
                    self.modelfile += '\n'
                    self.modelfile += '        res = self.model.predict(X[\''+feature[0]+'\'].astype(int))'
                    self.modelfile += '\n'
                    self.modelfile += '        if isinstance(res, pd.DataFrame):\n'
                    self.modelfile += '             return res.values.reshape(1,-1)\n'
                    self.modelfile += '        else:\n'
                    self.modelfile += '             return np.array([res])\n'
                elif model == 'COX':
                    self.modelfile += '        res = []\n'
                    self.modelfile += '        for idx,row in X.iterrows():\n'
                    self.modelfile += '             res.append(self.model.predict_survival_function(X, times=row[self.model.duration_col])[idx].values[0])\n'
                    self.modelfile += '        return pd.DataFrame(res)'
                    #self.modelfile += '        return self.model.predict_survival_function(X, times=X[self.model.duration_col])'
                    self.modelfile += '\n'                  
                elif(learner_type == 'DL' and model_type in ['Classification','Regression']):
                    self.modelfile += '       X = X.astype(np.float32)'
                    self.modelfile += '\n'                             
                    self.modelfile += '       return self.model.predict(X).reshape(1, -1)'
                    self.modelfile += '\n'
                elif (model_type == 'Clustering' and model == 'DBSCAN'):
                    self.modelfile += '       return self.model.fit_predict(X)'
                elif(model_type.lower() == 'anomaly_detection' and model.lower() == 'dbscan'):                        
                    self.modelfile += ""       pred=self.model.fit_predict(X)\n""
                    self.modelfile += ""       X.loc[:,'cluster'] = self.model.labels_ \n""          
                    self.modelfile += '       return X\n'
                elif model_type.lower() == 'anomaly_detection':
                    self.modelfile += '       X = X.astype(np.float32)\n'
                    self.modelfile += '       return self.model.predict(X)'                    
                else:
                    if model_type != 'Clustering':
                        self.modelfile += '       X = X.astype(np.float32)'
                        self.modelfile += '\n'                      
                #self.modelfile += '       return self.model.predict(X).reshape(1, -1)'
                    self.modelfile += \
""""""
       if isinstance(self.model, LatentDirichletAllocation):
           output = np.matrix(self.model.transform(X)).argmax(axis=1)
           return output.flatten().tolist()
       return self.model.predict(X).reshape(1, -1)
""""""
                
"
base.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
from pathlib import Path
from AION.prediction_package.imports import importModule
from AION.prediction_package.aion_prediction import aionPrediction
from AION.prediction_package.utility import TAB_CHAR
from AION.prediction_package import utility
from AION.prediction_package import common

def file_header( usecase=''):
    return ''

class deployer():
    """"""
        base deployer class which can be used to generate the deployemnt code.
        This class will be inherited by deployer specific to problem type.
    """"""

    def __init__(self, params={}):
        if not params['paths']['deploy']:
            raise ValueError('Deploy path is not provided')
        self.deploy_path = Path(params['paths']['deploy'])
        if not self.deploy_path.exists():
            self.deploy_path.mkdir(parents=True, exist_ok=True)
        self.name = params.get('problem_type', '')
        self.params = params
        self.importer = importModule()
        self.feature_reducer = False
        
    def profiler_code(self):
        return common.profiler_code(self.params['profiler'])
        
    def feature_engg_code(self):
        if self.params['selector'].get('reducer',False):
            code, modules = common.feature_reducer_code(self.params['selector'])
        else:
            code, modules = common.feature_selector_code(self.params['selector'])
        utility.import_modules(self.importer, modules)
        return code
        
    def training_code(self):
        return common.training_code(self.params['training'])
        
    def formatter_code(self):
        return ''

    def run(self):
        """"""
            run function will be called to start the deployment process.
            This function will create following files
            inputprofiler.py for preprocessing the input
            aion_predict.py for prediction
            model service file 
        """"""
        code = self.predict_code( )
        with open(self.deploy_path/'aion_predict.py', 'w') as f:
            f.write(code)
        profiler_code = self.profiler_code()
        with open(self.deploy_path/'script'/'inputprofiler.py', 'w') as f:
            f.write(profiler_code)
        self.create_model_service( )
        self.create_publish_service()
        self.create_idrift()
        self.create_odrift()
        common.create_feature_list(self.params, self.params['features']['target_feat'], self.deploy_path)
        common.requirement_file(self.deploy_path,self.params['training']['algo'],self.params['features']['text_feat'])
        common.create_readme_file(self.deploy_path, self.params['training']['model_file'], self.params['features']['input_feat'])
        self.create_utils_folder()
        
    def predict_code(self):
        imported_modules = [
                {'module': 'json', 'mod_from': None, 'mod_as': None},
                {'module': 'joblib', 'mod_from': None, 'mod_as': None},
                {'module': 'numpy', 'mod_from': None, 'mod_as': 'np'},
                {'module': 'pandas', 'mod_from': None, 'mod_as': 'pd'},
                {'module': 'Path', 'mod_from': 'pathlib', 'mod_as': None}
            ]

        utility.import_modules(self.importer, imported_modules)
        self.importer.addLocalModule(module='inputprofiler',mod_from='script.inputprofiler')
        code_text = """"
        code_text += self.feature_engg_code()
        code_text += self.training_code()
        code_text += self.formatter_code()
        code_text += common.main_code()

        code = file_header()
        code += self.importer.getCode()
        return code + code_text
        
    def create_model_service(self):
        service_name = '{}{}{}'.format(self.params['usecase_name'], '_' if self.params['usecase_ver'] != '' else '', self.params['usecase_ver'])
        obj = aionPrediction()
        obj.create_model_service(self.deploy_path, service_name, self.name)

    def create_publish_service(self):
        obj = aionPrediction()
        obj.create_publish_service(self.params['paths']['usecase'], self.params['usecase_name'],self.params['usecase_ver'], self.name)

    def create_idrift(self):
        pass
        
    def create_odrift(self):
        pass

    def create_utils_folder(self):
        common.create_util_folder(self.deploy_path)

"
forecasting.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
from pathlib import Path
from AION.prediction_package.imports import importModule
from AION.prediction_package.aion_prediction import aionPrediction
from AION.prediction_package.utility import TAB_CHAR
from AION.prediction_package import utility
from AION.prediction_package.base import deployer
from AION.prediction_package import common
import numpy as np




def get_deployer( params):

    if params['training']['algo'] == 'ARIMA':
        return arima(params)
    elif params['training']['algo'] == 'LSTM':
        return lstm(params)
    elif params['training']['algo'] == 'ENCODER_DECODER_LSTM_MVI_UVO':
        return lstmencdec_mviuvo(params)
    elif params['training']['algo'] == 'MLP':
        return mlp(params)
    elif params['training']['algo'] == 'VAR':
        return var(params)
    elif params['training']['algo'] == 'FBPROPHET':
        return fbprophet(params)
    else:
        raise ValueError(f""Algorithm {params['training']['algo']} for time series forecasting is not supported"")

def _profiler_code(params, importer):
    """"""
        This will create the profiler file based on the config file.
        separated file is created as profiler is required for input drift also.
    """"""
    imported_modules = [
            {'module': 'json', 'mod_from': None, 'mod_as': None},
            {'module': 'scipy', 'mod_from': None, 'mod_as': None},
            {'module': 'joblib', 'mod_from': None, 'mod_as': None},
            {'module': 'numpy', 'mod_from': None, 'mod_as': 'np'},
            {'module': 'pandas', 'mod_from': None, 'mod_as': 'pd'},
            {'module': 'Path', 'mod_from': 'pathlib', 'mod_as': None}
        ]
    utility.import_modules(importer, imported_modules)
    if 'code' in params['profiler'].get('preprocess',{}).keys():
        code = params['profiler']['preprocess']['code']
    else:
        code = """"
    code += """"""    

class inputprofiler():
    """"""
    init_code = """"""
    def __init__(self):
    """"""
    init_code += """"""
        # preprocessing
        preprocess_path = Path(__file__).parent.parent/'model'/'preprocess_pipe.pkl'
        if not preprocess_path.exists():
            raise ValueError(f'Preprocess model file not found: {preprocess_path}')
        self.profiler = joblib.load(preprocess_path)
    """"""
    run_code = """"""
    def run(self,df):
        df = df.replace(r'^\s*$', np.NaN, regex=True)
    """"""
    if 'code' in params['profiler'].get('preprocess',{}).keys():
        run_code += """"""
        df = preprocess( df)""""""
    if params['profiler'].get('unpreprocessed_columns'):
        run_code += f""""""
        unpreprocessed_data = df['{params['profiler']['unpreprocessed_columns'][0]}']
        df.drop(['{params['profiler']['unpreprocessed_columns'][0]}'], axis=1,inplace=True)
            """"""
    if params['profiler'].get('force_numeric_conv'):
        run_code += f""""""
        df[{params['profiler']['force_numeric_conv']}] = df[{params['profiler']['force_numeric_conv']}].apply(pd.to_numeric,errors='coerce')""""""
    run_code += _profiler_main_code(params)
    if params['profiler'].get('unpreprocessed_columns'):
        run_code += f""""""
        df['{params['profiler'].get('unpreprocessed_columns')[0]}'] = unpreprocessed_data
""""""
    run_code += """"""        return df
""""""
    utility.import_modules(importer, imported_modules)
    import_code = importer.getCode()
    return import_code + code + init_code + run_code

def _profiler_main_code(params):
    code = f""""""
        df = self.profiler.transform(df)
        columns = {params['profiler']['output_features']}
        if isinstance(df, scipy.sparse.spmatrix):
            df = pd.DataFrame(df.toarray(), columns=columns)
        else:
            df = pd.DataFrame(df, columns=columns)
    """"""
    return code

class arima( deployer):
    
    def __init__(self, params={}):
        super().__init__( params)
        self.name = 'timeseriesforecasting'
            
    def profiler_code( self):
        imported_modules = [
                {'module': 'numpy', 'mod_from': None, 'mod_as': 'np'},
                {'module': 'pandas', 'mod_from': None, 'mod_as': 'pd'},
            ]
        importer = importModule()
        utility.import_modules(importer, imported_modules)
        code = """"""    


class inputprofiler():

    def __init__(self):
        pass
        
    def run( self,df):
        df = df.replace(r'^\s*$', np.NaN, regex=True)
        return df[['noofforecasts']]
""""""
        return importer.getCode() + code

    def feature_engg_code(self):
        self.importer.addModule(module='pandas',mod_as='pd')
        return f""""""
class selector():

    def __init__(self):
        pass
        
    def run(self, df):
        return df
""""""
    def training_code( self):
        self.importer.addModule(module='pandas',mod_as='pd')
        self.importer.addModule(module='Path',mod_from='pathlib')
        self.importer.addModule(module='numpy',mod_as='np')
        self.importer.addModule(module='joblib')
        return f""""""
class trainer():

   def __init__(self):
        model_file = (Path(__file__).parent/""model"")/""{self.params['training']['model_file']}""
        if not model_file.exists():
            raise ValueError(f'Trained model file not found: {{model_file}}')
        self.model = joblib.load(model_file)
       
   def run(self,df):
       return self.model.predict(n_periods=int(df[""noofforecasts""][0]))
    """"""

    def formatter_code(self):
        self.importer.addModule('json')
        self.importer.addModule('pandas', mod_as='pd')
        return """"""

class output_format():

    def __init__( self):
        pass
        
    def run(self,raw_df,df):
        df = df.round(2)
        df = json.dumps(df.tolist())
        outputjson = {""status"":""SUCCESS"",""data"":eval(df)}
        return(json.dumps(outputjson))
""""""

class lstm( deployer):
    
    def __init__(self, params={}):
        super().__init__( params)
        self.name = 'timeseriesforecasting'
            
    def profiler_code(self):
        importer = importModule()
        return _profiler_code( self.params, importer)

    def training_code( self):
        self.importer.addModule(module='pandas',mod_as='pd')
        self.importer.addModule(module='Path',mod_from='pathlib')
        code = f""""""
class trainer():        
""""""
        init_code, run_code = self._get_train_code()
        return code + init_code + run_code

    def _get_train_code(self):    
        self.importer.addModule(module='load_model',mod_from='tensorflow.keras.models')
        init_code = f""""""
    def __init__( self):
        model_file = (Path(__file__).parent/""model"")/""{self.params['training']['model_file']}""
        if not model_file.exists():
            raise ValueError(f'Trained model file not found: {{model_file}}')
        self.model = load_model(model_file)
        """"""
            
        run_code = f""""""
    def run(self, df):
        lag_order={self.params['training']['lag_order']}
        xt = df.values
        scaler_file = (Path(__file__).parent/""model"")/""{self.params['training']['scaler_file']}""
        if not scaler_file.exists():
            raise ValueError(f'Scaling file not found: {{scaler_file}}')
        loaded_scaler_model = joblib.load(scaler_file)
        xt = xt.astype('float32')
        xt = loaded_scaler_model.transform(xt)
        noOfPredictions = 10
        pred_data  = xt
        y_future = []
        for i in range(noOfPredictions):
""""""
        if len(self.params['selector']['output_features']) == 1:
            run_code += f""""""
            pred_data = pred_data[-lag_order:]
            pred_data = pred_data.reshape((1,lag_order,1))
            pred = self.model.predict(pred_data)
            predoutput =  loaded_scaler_model.inverse_transform(pred) 
            y_future.append(predoutput.flatten()[-1])
            pred_data = np.append(pred_data,pred)
        pred = pd.DataFrame(index=range(0,len(y_future)),columns={self.params['selector']['output_features']})
        for i in range(0, len(y_future)):
            pred.iloc[i] = y_future[i]
        return pred
""""""
        else:
            run_code += f""""""
            pdata = pred_data[-lag_order:]
            pdata = pdata.reshape((1,lag_order,{len(self.params['selector']['output_features'])}))
            pred = self.model.predict(pdata)
            predoutput =  loaded_scaler_model.inverse_transform(pred)
            y_future.append(predoutput)
            pred_data = np.append(pred_data,pred,axis=0)
        pred = pd.DataFrame(index=range(0,len(y_future)),columns={self.params['selector']['output_features']})
        for i in range(0, len(y_future)):
            pred.iloc[i] = y_future[i]
        return pred
""""""
        return init_code, run_code

    def formatter_code(self):
        self.importer.addModule('json')
        self.importer.addModule('pandas', mod_as='pd')
        return """"""

class output_format():

    def __init__( self):
        pass
        
    def run(self,raw_df,df):
        df = df.round(2)
        df = df.to_json(orient='records')
        outputjson = {""status"":""SUCCESS"",""data"":json.loads(df)}
        return(json.dumps(outputjson))
""""""

class lstmencdec_mviuvo( deployer):
    
    def __init__(self, params={}):
        super().__init__( params)
        self.name = 'timeseriesforecasting'
        outputFeatrues = params['profiler']['output_features']
        self.targetColIndx = outputFeatrues.index(params['features']['target_feat'])
        selectedColDict = params['selector']['output_features']
        self.selectedCols = list()
        for col in selectedColDict:
            self.selectedCols.append(col)
            
    def profiler_code(self):
        importer = importModule()
        return _profiler_code( self.params, importer)

    def training_code( self):
        self.importer.addModule(module='pandas',mod_as='pd')
        self.importer.addModule(module='Path',mod_from='pathlib')
        code = f""""""
class trainer():        
""""""
        init_code, run_code = self._get_train_code()
        return code + init_code + run_code

    def _get_train_code(self):    
        self.importer.addModule(module='load_model',mod_from='tensorflow.keras.models')
        init_code = f""""""
    def __init__( self):
        model_file = (Path(__file__).parent/""model"")/""{self.params['training']['model_file']}""
        if not model_file.exists():
            raise ValueError(f'Trained model file not found: {{model_file}}')
        self.model = load_model(model_file)
        """"""
            
        run_code = f""""""
    def run(self, df):
        targetColIndx = {self.targetColIndx}
        lag_order={self.params['training']['lag_order']}
        xt = df.values
        scaler_file = (Path(__file__).parent/""model"")/""{self.params['training']['scaler_file']}""
        if not scaler_file.exists():
            raise ValueError(f'Scaling file not found: {{scaler_file}}')
        loaded_scaler_model = joblib.load(scaler_file)
        xt = xt.astype('float32')
        xt = loaded_scaler_model.transform(xt)
        noOfPredictions = 10
        pred_data  = xt
        y_future = []
        pdata = pred_data[-lag_order:]
        pdata = pdata.reshape((1,lag_order,{len(self.params['selector']['output_features'])}))
        pred = self.model.predict(pdata)
        pred_1d = pred.ravel()
        pdata_2d = pdata.ravel().reshape(len(pdata) * lag_order, {len(self.params['selector']['output_features'])})
        pdata_2d[:,targetColIndx] = pred_1d
        pred_2d_inv =   loaded_scaler_model.inverse_transform(pdata_2d) 
        predout = pred_2d_inv[:, targetColIndx]  
        predout = predout.reshape(len(pred_1d),1) 
        pred = pd.DataFrame(index=range(0,len(predout)),columns=['{self.params['features']['target_feat']}'])
        for i in range(0, len(predout)):
            pred.iloc[i] = predout[i]
        return pred
""""""
        return init_code, run_code
    
    def feature_engg_code(self):
        self.importer.addModule(module='pandas',mod_as='pd')
        
        return f""""""
class selector():

    def __init__(self):
        pass
        
    def run(self, df):
        return df[{self.selectedCols}]
""""""

    def formatter_code(self):
        self.importer.addModule('json')
        self.importer.addModule('pandas', mod_as='pd')
        return """"""

class output_format():

    def __init__( self):
        pass
        
    def run(self,raw_df,df):
        df = df.round(2)
        df = df.to_json(orient='records')
        outputjson = {""status"":""SUCCESS"",""data"":json.loads(df)}
        return(json.dumps(outputjson))
""""""

class mlp( lstm):
    
    def __init__(self, params={}):
        super().__init__( params)
        self.name = 'timeseriesforecasting'

    def training_code( self):
        self.importer.addModule(module='pandas',mod_as='pd')
        self.importer.addModule(module='Path',mod_from='pathlib')
        code = f""""""
class trainer():        
""""""
        init_code, run_code = self._get_train_code()
        return code + init_code + run_code

    def _get_train_code(self):    
        self.importer.addModule(module='load_model',mod_from='tensorflow.keras.models')
        init_code = f""""""
    def __init__( self):
        model_file = (Path(__file__).parent/""model"")/""{self.params['training']['model_file']}""
        if not model_file.exists():
            raise ValueError(f'Trained model file not found: {{model_file}}')
        self.model = load_model(model_file)""""""
            
        run_code = f""""""
    def run(self, df):
        lag_order={self.params['training']['lag_order']}
        xt = df.values
        scaler_file = (Path(__file__).parent/""model"")/""{self.params['training']['scaler_file']}""
        if not scaler_file.exists():
            raise ValueError(f'Scaling file not found: {{scaler_file}}')
        loaded_scaler_model = joblib.load(scaler_file)
        xt = xt.astype('float32')
        xt = loaded_scaler_model.transform(xt)
        noOfPredictions = 10
        pred_data  = xt
        y_future = []
        for i in range(noOfPredictions):
""""""
        if len(self.params['selector']['output_features']) == 1:
            run_code += f""""""
            pred_data = pred_data[-lag_order:]
            pred_data = pred_data.reshape((1,lag_order))
            pred = self.model.predict(pred_data)
            predoutput =  loaded_scaler_model.inverse_transform(pred) 
            y_future.append(predoutput.flatten()[-1])
            pred_data = np.append(pred_data,pred)
        pred = pd.DataFrame(index=range(0,len(y_future)),columns={self.params['selector']['output_features']})
        for i in range(0, len(y_future)):
            pred.iloc[i] = y_future[i]
        return pred
""""""
        else:
            run_code += f""""""
            pdata = pred_data[-lag_order:]
            pdata = pdata.reshape((1,lag_order,{len(self.params['selector']['output_features'])}))
            pred = self.model.predict(pdata)
            predoutput =  loaded_scaler_model.inverse_transform(pred)
            y_future.append(predoutput)
            pred_data = np.append(pred_data,pred,axis=0)
        pred = pd.DataFrame(index=range(0,len(y_future)),columns={self.params['selector']['output_features']})
        for i in range(0, len(y_future)):
            pred.iloc[i] = y_future[i]
        return pred
""""""
        return init_code, run_code

class var( deployer):
    
    def __init__(self, params={}):
        super().__init__( params)
        self.name = 'timeseriesforecasting'

    def profiler_code(self):
        importer = importModule()
        code = _profiler_code( self.params, importer)
        return code

    def feature_engg_code(self):
        self.importer.addModule(module='pandas',mod_as='pd')
        return f""""""
class selector():

    def __init__(self):
        pass
        
    def run(self, df):
        return df[{self.params['selector']['output_features']}]
""""""
    def training_code( self):
        self.importer.addModule(module='joblib')
        return f""""""
class trainer():        

    def __init__( self):
        model_file = (Path(__file__).parent/""model"")/""{self.params['training']['model_file']}""
        if not model_file.exists():
            raise ValueError(f'Trained model file not found: {{model_file}}')
        self.model = joblib.load(model_file)
        
    def run(self,df):
        lag_order = self.model.k_ar
        return self.model.forecast(df.values[-lag_order:],steps={self.params['training']['no_of_prediction']})
    """"""
    def formatter_code(self):
        self.importer.addModule('json')
        self.importer.addModule('pandas', mod_as='pd')
        return f""""""

class output_format():

    def __init__( self):
        pass
        
    def invertTransformation(self,predictions):
        datasetdf = pd.read_csv((Path(__file__).parent/""data"")/""trainingdata.csv"")
        dictDiffCount = {self.params['training']['dictDiffCount']}
        target_features = ""{self.params['features']['target_feat']}""
        columns = target_features.split(',')
        pred = pd.DataFrame(index=range(0,len(predictions)),columns=columns)
        for j in range(0,len(columns)):
            for i in range(0, len(predictions)):
                pred.iloc[i][j] = round(predictions[i][j],2)
        prediction = pred
        for col in columns:
            if col in dictDiffCount:
                if dictDiffCount[col]==2:
                    prediction[col] = (datasetdf[col].iloc[-1]-datasetdf[col].iloc[-2]) + prediction[col].cumsum()
                prediction[col] = datasetdf[col].iloc[-1] + prediction[col].cumsum()
        prediction = pred
        return(prediction)

    def run(self,raw_df,df):
        df = self.invertTransformation(df)
        df = df.to_json(orient='records',double_precision=2)
        outputjson = {{""status"":""SUCCESS"",""data"":json.loads(df)}}
        return(json.dumps(outputjson)) 
""""""

class fbprophet( deployer):
    
    def __init__(self, params={}):
        super().__init__( params)
        self.name = 'timeseriesforecasting'
            
    def profiler_code( self):
        imported_modules = [
                {'module': 'numpy', 'mod_from': None, 'mod_as': 'np'},
                {'module': 'pandas', 'mod_from': None, 'mod_as': 'pd'},
            ]
        importer = importModule()
        utility.import_modules(importer, imported_modules)
        code = """"""    


class inputprofiler():

    def __init__(self):
        pass
        
    def run( self,df):
        df = df.replace(r'^\s*$', np.NaN, regex=True)
        return df[['noofforecasts']]
""""""
        return importer.getCode() + code

    def feature_engg_code(self):
        self.importer.addModule(module='pandas',mod_as='pd')
        return f""""""
class selector():

    def __init__(self):
        pass
        
    def run(self, df):
        return df
""""""
    def training_code( self):
        self.importer.addModule(module='pandas',mod_as='pd')
        self.importer.addModule(module='Path',mod_from='pathlib')
        self.importer.addModule(module='joblib')
        code = f""""""
class trainer():

    def __init__(self):
        model_file = (Path(__file__).parent/""model"")/""{self.params['training']['model_file']}""
        if not model_file.exists():
            raise ValueError(f'Trained model file not found: {{model_file}}')
        self.model = joblib.load(model_file)
       
""""""
        code += f""""""
    def run(self,df):
        sessonal_freq = '{self.params['training']['sessonal_freq']}'
        ts_prophet_future = self.model.make_future_dataframe(periods=int(df[""noofforecasts""][0]),freq=sessonal_freq,include_history = False)
    """"""
        if (self.params['training']['additional_regressors']):
            code += f""""""
        additional_regressors={self.params['training']['additional_regressors']}
        ts_prophet_future[additional_regressors] = dataFrame[additional_regressors]
        ts_prophet_future.reset_index(drop=True)
        ts_prophet_future=ts_prophet_future.dropna()
    """"""
        code += """"""
        train_forecast = self.model.predict(ts_prophet_future)
        prophet_forecast_tail=train_forecast[[\'ds\', \'yhat\', \'yhat_lower\',\'yhat_upper\']].tail( int(df[""noofforecasts""][0]))
        return(prophet_forecast_tail)""""""
        return code

    def formatter_code(self):
        self.importer.addModule('json')
        self.importer.addModule('pandas', mod_as='pd')
        return """"""

class output_format():

    def __init__( self):
        pass
        
    def run(self,raw_df,df):
        df = df.to_json(orient='records')
        outputjson = {""status"":""SUCCESS"",""data"":json.loads(df)}
        return(json.dumps(outputjson))
        """"""
"
local_pipeline.py,"import docker
import json
import logging
def read_json(file_path):                    
	data = None                    
	with open(file_path,'r') as f:                    
		data = json.load(f)                    
	return data

def run_pipeline(inputconfig):	
	inputconfig  = json.loads(inputconfig)
	logfilepath = inputconfig['logfilepath']
	logging.basicConfig(level=logging.INFO,filename =logfilepath)		
	usecasename = inputconfig['usecase']
	logging.info(""UseCaseName :""+str(usecasename))
	version = inputconfig['version']
	logging.info(""version :""+str(version))
	config = inputconfig['dockerlist']   
	persistancevolume = inputconfig['persistancevolume']
	logging.info(""PersistanceVolume :""+str(persistancevolume))
	datasetpath = inputconfig['datasetpath']   
	logging.info(""DataSet Path :""+str(datasetpath))
	config = read_json(config) 
	client = docker.from_env()
	inputconfig = {'modelName':usecasename,'modelVersion':str(version),'dataLocation':datasetpath}
	inputconfig = json.dumps(inputconfig)					                    
	inputconfig = inputconfig.replace('""', '\\""')
	logging.info(""===== Model Monitoring Container Start ====="")
	outputStr = client.containers.run(config['ModelMonitoring'],'python code.py -i'+datasetpath,volumes=[persistancevolume+':/aion'])
	outputStr = outputStr.decode('utf-8')
	logging.info('ModelMonitoring: '+str(outputStr))
	print('ModelMonitoring: '+str(outputStr))
	logging.info(""===== ModelMonitoring Stop ====="")
	logging.info(""===== Data Ingestion Container Start ====="")
	outputStr = client.containers.run(config['DataIngestion'],'python code.py',volumes=[persistancevolume+':/aion'])
	outputStr = outputStr.decode('utf-8')
	logging.info('DataIngestion: '+str(outputStr))
	print('DataIngestion: '+str(outputStr))
	logging.info(""===== Data Ingestion Container Stop ====="")
	outputStr = outputStr.strip()
	decoded_data = json.loads(outputStr)
	status = decoded_data['Status']
	if status != 'Success':
		output = {'Status':'Error','Msg':'Data Ingestion Fails'}
	logging.info(""===== Transformation Container Start ====="")
	outputStr = client.containers.run(config['DataTransformation'],'python code.py',volumes=[persistancevolume+':/aion'])	
	outputStr = outputStr.decode('utf-8')
	logging.info('Data Transformations: '+str(outputStr))
	print('Data Transformations: '+str(outputStr))
	logging.info(""===== Transformation Container Done ====="")
	outputStr = outputStr.strip()
	decoded_data = json.loads(outputStr)
	status = decoded_data['Status']
	if status != 'Success':
		output = {'Status':'Error','Msg':'Data Transformations Fails'}
	logging.info(""===== Feature Engineering Container Start ====="")
	outputStr = client.containers.run(config['FeatureEngineering'],'python code.py',volumes=[persistancevolume+':/aion'])	
	outputStr = outputStr.decode('utf-8')
	logging.info('FeatureEngineering: '+str(outputStr))
	print('FeatureEngineering: '+str(outputStr))	
	logging.info(""===== Feature Engineering Container Done ====="")
	outputStr = outputStr.strip()
	decoded_data = json.loads(outputStr)
	status = decoded_data['Status']
	modeltraining = config['ModelTraining'] 
	for mt in modeltraining:
		logging.info(""===== Training Container Start ====="")
		outputStr = client.containers.run(mt['Training'],'python code.py',volumes=[persistancevolume+':/aion'])
		outputStr = outputStr.decode('utf-8')
		logging.info('ModelTraining: '+str(outputStr))
		print('ModelTraining: '+str(outputStr))			
		logging.info(""===== Training Container Done ====="")
		outputStr = outputStr.strip()
		try:
			decoded_data = json.loads(outputStr)
			status = decoded_data['Status']
		except Exception as inst:
			logging.info(inst)
	logging.info(""===== Model Registry Start ====="")		
	outputStr = client.containers.run(config['ModelRegistry'],'python code.py',volumes=[persistancevolume+':/aion'])
	outputStr = outputStr.decode('utf-8')
	logging.info('ModelRegistry: '+str(outputStr))
	print('ModelRegistry: '+str(outputStr))
	logging.info(""===== ModelRegistry Done ====="")		
	logging.info(""===== ModelServing Start ====="")		
	outputStr = client.containers.run(config['ModelServing'],'python code.py',volumes=[persistancevolume+':/aion'])
	outputStr = outputStr.decode('utf-8')
	logging.info('Prediction: '+str(outputStr))
	print('Prediction: '+str(outputStr))
	logging.info(""===== ModelServing Done ====="")			"
build_container.py,"import os
import shutil 
import sys
import subprocess
from os.path import expanduser 
import platform
import json

def createDockerImage(model_name,model_version,module,folderpath):
	command = 'docker pull python:3.8-slim-buster'
	os.system(command);
	subprocess.check_call([""docker"", ""build"", ""-t"",module+'_'+model_name.lower()+"":""+model_version,"".""], cwd=folderpath)  
	
def local_docker_build(config):
	print(config)
	config  = json.loads(config)
	model_name = config['usecase']
	model_version  = config['version']
	mlaac__code_path = config['mlacPath']  
	docker_images = {}
	docker_images['ModelMonitoring'] = 'modelmonitoring'+'_'+model_name.lower()+':'+model_version
	dataset_addr = os.path.join(mlaac__code_path,'ModelMonitoring')
	createDockerImage(model_name,model_version,'modelmonitoring',dataset_addr)
	docker_images['DataIngestion'] = 'dataingestion'+'_'+model_name.lower()+':'+model_version
	dataset_addr = os.path.join(mlaac__code_path,'DataIngestion')
	createDockerImage(model_name,model_version,'dataingestion',dataset_addr)
	transformer_addr = os.path.join(mlaac__code_path,'DataTransformation')
	docker_images['DataTransformation'] = 'datatransformation'+'_'+model_name.lower()+':'+model_version
	createDockerImage(model_name,model_version,'datatransformation',transformer_addr)
	featureengineering_addr = os.path.join(mlaac__code_path,'FeatureEngineering')
	docker_images['FeatureEngineering'] = 'featureengineering'+'_'+model_name.lower()+':'+model_version
	createDockerImage(model_name,model_version,'featureengineering',featureengineering_addr)
	from os import listdir
	arr = [filename for filename in os.listdir(mlaac__code_path) if filename.startswith(""ModelTraining"")]	
	docker_training_images = []
	for x in arr:
		dockertraing={}
		dockertraing['Training'] = str(x).lower()+'_'+model_name.lower()+':'+model_version
		docker_training_images.append(dockertraing)
		training_addri = os.path.join(mlaac__code_path,x)
		createDockerImage(model_name,model_version,str(x).lower(),training_addri)
	docker_images['ModelTraining'] = docker_training_images
	docker_images['ModelRegistry'] = 'modelregistry'+'_'+model_name.lower()+':'+model_version
	deploy_addr = os.path.join(mlaac__code_path,'ModelRegistry')
	createDockerImage(model_name,model_version,'modelregistry',deploy_addr)	
	docker_images['ModelServing'] = 'modelserving'+'_'+model_name.lower()+':'+model_version
	deploy_addr = os.path.join(mlaac__code_path,'ModelServing')
	createDockerImage(model_name,model_version,'modelserving',deploy_addr)
	outputjsonFile = os.path.join(mlaac__code_path,'dockerlist.json')
	with open(outputjsonFile, 'w') as f:
		json.dump(docker_images, f)
	f.close()
	output = {'Status':'Success','Msg':outputjsonFile}
	output = json.dumps(output)
	print(""aion_build_container:"",output)"
git_upload.py,"import os
import sys
import json
from pathlib import Path
import subprocess
import shutil
import argparse
       
def create_and_save_yaml(git_storage_path, container_label,usecasepath):
    file_name_prefix = 'gh-acr-'
    yaml_file = f""""""\
name: gh-acr-{container_label}
on: 
  push:
    branches: main
    paths: {container_label}/**
  workflow_dispatch:
jobs:
  gh-acr-build-push:
    runs-on: ubuntu-latest 
    steps:
    - name: 'checkout action'
      uses: actions/checkout@main
    
    - name: 'azure login'
      uses: azure/login@v1
      with:
        creds: ${{{{ secrets.AZURE_CREDENTIALS }}}}
    
    - name: 'build and push image'
      uses: azure/docker-login@v1
      with:
        login-server: ${{{{ secrets.REGISTRY_LOGIN_SERVER }}}}
        username: ${{{{ secrets.REGISTRY_USERNAME }}}}
        password: ${{{{ secrets.REGISTRY_PASSWORD }}}}
    - run:  |
        docker build ./{container_label}/ModelMonitoring -t ${{{{ secrets.REGISTRY_LOGIN_SERVER }}}}/modelmonitoring:{container_label}
        docker push ${{{{ secrets.REGISTRY_LOGIN_SERVER }}}}/modelmonitoring:{container_label}
        docker build ./{container_label}/DataIngestion -t ${{{{ secrets.REGISTRY_LOGIN_SERVER }}}}/dataingestion:{container_label}
        docker push ${{{{ secrets.REGISTRY_LOGIN_SERVER }}}}/dataingestion:{container_label}		
        docker build ./{container_label}/DataTransformation -t ${{{{ secrets.REGISTRY_LOGIN_SERVER }}}}/datatransformation:{container_label}
        docker push ${{{{ secrets.REGISTRY_LOGIN_SERVER }}}}/datatransformation:{container_label}
        docker build ./{container_label}/FeatureEngineering -t ${{{{ secrets.REGISTRY_LOGIN_SERVER }}}}/featureengineering:{container_label}
        docker push ${{{{ secrets.REGISTRY_LOGIN_SERVER }}}}/featureengineering:{container_label}
        docker build ./{container_label}/ModelRegistry -t ${{{{ secrets.REGISTRY_LOGIN_SERVER }}}}/modelregistry:{container_label}
        docker push ${{{{ secrets.REGISTRY_LOGIN_SERVER }}}}/modelregistry:{container_label}		
        docker build ./{container_label}/ModelServing -t ${{{{ secrets.REGISTRY_LOGIN_SERVER }}}}/modelserving:{container_label}
        docker push ${{{{ secrets.REGISTRY_LOGIN_SERVER }}}}/modelserving:{container_label}		
""""""
    arr = [filename for filename in os.listdir(usecasepath) if filename.startswith(""ModelTraining"")]
    for x in arr:
        yaml_file+='        docker build ./'+container_label+'/'+x+' -t ${{ secrets.REGISTRY_LOGIN_SERVER }}/'+x.lower()+':'+container_label
        yaml_file+='\n'		
        yaml_file+='        docker push ${{ secrets.REGISTRY_LOGIN_SERVER }}/'+x.lower()+':'+container_label
        yaml_file+='\n'
    with open(Path(git_storage_path)/(file_name_prefix + container_label + '.yaml'), 'w') as f:
        f.write(yaml_file)

def run_cmd(cmd):
    try:
        subprocess.check_output(cmd, stderr=subprocess.PIPE)
    except subprocess.CalledProcessError as e:
        if e.stderr:
            if isinstance(e.stderr, bytes):
                err_msg = e.stderr.decode(sys.getfilesystemencoding())
            else:
                err_msg = e.stderr
        elif e.output:
            if isinstance(e.output, bytes):
                err_msg = e.output.decode(sys.getfilesystemencoding())
            else:
                err_msg = e.output
        else:
            err_msg = str(e)
        return False, err_msg
    return True, """"

def validate_config(config):
    non_null_keys = ['url','username', 'token', 'location', 'gitFolderLocation', 'email', 'modelName']
    missing_keys = [k for k in non_null_keys if k not in config.keys()]
    if missing_keys:
        raise ValueError(f""following fields are missing in config file: {missing_keys}"")
    for k,v in config.items():
        if k in non_null_keys and not v:
            raise ValueError(f""Please provide value for '{k}' in config file."")

def upload(config):    
    
    validate_config(config)
    url_type = config.get('url_type','https')
    if url_type == 'https':
        https_str = ""https://""
        url = https_str + config['username'] + "":"" + config['token'] + ""@"" + config['url'][len(https_str):]
    else:
        url = config['url']
    model_location = Path(config['location'])
    git_folder_location = Path(config['gitFolderLocation'])
    git_folder_location.mkdir(parents=True, exist_ok=True)
    (git_folder_location/'.github'/'workflows').mkdir(parents=True, exist_ok=True)
    if not model_location.exists():
        raise ValueError('Trained model data not found')

    os.chdir(str(git_folder_location))
    (git_folder_location/config['modelName']).mkdir(parents=True, exist_ok=True)
    shutil.copytree(model_location, git_folder_location/config['modelName'], dirs_exist_ok=True)
    create_and_save_yaml((git_folder_location/'.github'/'workflows'), config['modelName'],config['location']) 
    if (Path(git_folder_location)/'.git').exists():
        first_upload = False
    else:
        first_upload = True
    if first_upload:
        cmd = ['git','init']
        status, msg = run_cmd(cmd)
        if not status:
            raise ValueError(msg)

        cmd = ['git','config','user.name',config['username']]
        status, msg = run_cmd(cmd)
        if not status:
            raise ValueError(msg)

        cmd = ['git','config','user.email',config['email']]
        status, msg = run_cmd(cmd)
        if not status:
            raise ValueError(msg)
        
    cmd = ['git','add', '-A']
    status, msg = run_cmd(cmd)
    if not status:
        raise ValueError(msg)

    cmd = ['git','commit','-m',f""commit {config['modelName']}""]
    status, msg = run_cmd(cmd)
    if not status:
        raise ValueError(msg)

    cmd = ['git','branch','-M','main']
    status, msg = run_cmd(cmd)
    if not status:
        raise ValueError(msg)

    if first_upload:
        cmd = ['git','remote','add','origin', url]
        status, msg = run_cmd(cmd)
        if not status:
            raise ValueError(msg)

        cmd = ['git','push','-f','-u','origin', 'main']
        status, msg = run_cmd(cmd)
        if not status:
            raise ValueError(msg)
    else:
        cmd = ['git','push']
        status, msg = run_cmd(cmd)
        if not status:
            raise ValueError(msg)
    
    return json.dumps({'Status':'SUCCESS'})
    
if __name__ == '__main__':                
    try:                
        if shutil.which('git') is None:
            raise ValueError(""git is not installed on this system"")
        parser = argparse.ArgumentParser()        
        parser.add_argument('-c', '--config', help='Config file location or as a string')

        args = parser.parse_args()        
        if Path(args.config).is_file() and Path(args.config).suffix == '.json':                
            with open(args.config,'r') as f:                    
                config = json.load(f)           
        else:                
            config = json.loads(args.config)                
        print(upload(config))
    except Exception as e:                
        status = {'Status':'Failure','msg':str(e)}                
        print(json.dumps(status))"
__init__.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''"
kafka_consumer.py,"from kafka import KafkaConsumer
from json import loads
import pandas as pd
import json
import os,sys
import time
import multiprocessing
from os.path import expanduser
import platform
import datetime
modelDetails = {}
class Process(multiprocessing.Process):
    def __init__(self, modelSignature,jsonData,predictedData,modelpath):
        super(Process, self).__init__()
        self.config = jsonData
        self.modelSignature = modelSignature
        self.data = predictedData
        self.modelpath = modelpath
    def run(self):
        #data = pd.json_normalize(self.data)
        minotoringService = self.config['minotoringService']['url']
        trainingdatalocation = self.config['trainingDataLocation'][self.modelSignature]
        #filetimestamp = 'AION_'+str(int(time.time()))+'.csv'
        #data.to_csv(dataFile, index=False)
        inputFieldsJson = {""trainingDataLocation"":trainingdatalocation,""currentDataLocation"":self.data}
        inputFieldsJson = json.dumps(inputFieldsJson)
        ser_url = minotoringService+self.modelSignature+'/monitoring'
        driftTime = datetime.datetime.now()
        import requests
        try:
            response = requests.post(ser_url, data=inputFieldsJson,headers={""Content-Type"":""application/json"",})
            outputStr=response.content
            outputStr = outputStr.decode('utf-8')
            outputStr = outputStr.strip()
            decoded_data = json.loads(outputStr)
            print(decoded_data)
            status = decoded_data['status']
            msg = decoded_data['data']
        except Exception as inst:
            if 'Failed to establish a new connection' in str(inst):
                status = 'Fail'
                msg = 'AION Service needs to be started'
            else:
                status = 'Fail'
                msg = 'Error during Drift Analysis'
        statusFile = os.path.join(self.modelpath,self.modelSignature+'_status.csv')
        df = pd.DataFrame(columns = ['dateTime', 'status', 'msg'])
        df = df.append({'dateTime' : driftTime, 'status' : status, 'msg' : msg},ignore_index = True)
        
        print(df)
        if (os.path.exists(statusFile)):
            df.to_csv(statusFile, mode='a', header=False,index=False)
        else:
            df.to_csv(statusFile, header=True,index=False)
        
        
        
        
def launch_kafka_consumer():
    from appbe.dataPath import DATA_DIR  
    configfile = os.path.join(os.path.dirname(__file__),'..','config','kafkaConfig.conf')
    with open(configfile,'r',encoding='utf-8') as f:
        jsonData = json.load(f)
    f.close()
    kafkaIP=jsonData['kafkaCluster']['ip']
    kafkaport = jsonData['kafkaCluster']['port']
    topic = jsonData['kafkaCluster']['topic']
    kafkaurl = kafkaIP+':'+kafkaport
    if jsonData['database']['csv'] == 'True':
        database = 'csv'
    elif jsonData['database']['mySql'] == 'True':
        database = 'mySql'
    else:
        database = 'csv'
    kafkaPath = os.path.join(DATA_DIR,'kafka')
    if not (os.path.exists(kafkaPath)):    
        try:
            os.makedirs(kafkaPath)
        except OSError as e:
            pass
    consumer = KafkaConsumer(topic,bootstrap_servers=[kafkaurl],auto_offset_reset='earliest',enable_auto_commit=True,group_id='my-group',value_deserializer=lambda x: loads(x.decode('utf-8')))
    for message in consumer:
        message = message.value
        data = message['data']
        data = pd.json_normalize(data)
        modelname = message['usecasename']
        version = message['version']
        modelSignature = modelname+'_'+str(version)
        modelpath = os.path.join(kafkaPath,modelSignature)
        try:
            os.makedirs(modelpath)
        except OSError as e:
            pass
        secondsSinceEpoch = time.time()
        if modelSignature not in modelDetails:
            modelDetails[modelSignature] = {}
            modelDetails[modelSignature]['startTime'] = secondsSinceEpoch  
        if database == 'csv':
            csvfile = os.path.join(modelpath,modelSignature+'.csv')
            if (os.path.exists(csvfile)):
                data.to_csv(csvfile, mode='a', header=False,index=False)
            else:
                data.to_csv(csvfile, header=True,index=False)
        modelTimeFrame = jsonData['timeFrame'][modelSignature]
        currentseconds = time.time()
        print(currentseconds - modelDetails[modelSignature]['startTime'])
        if (currentseconds - modelDetails[modelSignature]['startTime']) >= float(modelTimeFrame):
            csv_path = os.path.join(modelpath,modelSignature+'.csv')
            #predictedData = pd.read_csv(csv_path)   
            ##predictedData = predictedData.to_json(orient=""records"")
            index = Process(modelSignature,jsonData,csv_path,modelpath)
            index.start()
            modelDetails[modelSignature]['startTime'] = secondsSinceEpoch    
        
        "
pattern.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import pandas as pd  
import numpy as np
import sys
import math
import markov_clustering as mc
import os
import networkx as nx
import logging
import json
## How far you'd like your random-walkers to go (bigger number -> more walking)
EXPANSION_POWER = 2
## How tightly clustered you'd like your final picture to be (bigger number -> more clusters)
INFLATION_POWER = 2
## If you can manage 100 iterations then do so - otherwise, check you've hit a stable end-point.
ITERATION_COUNT = 100
def normalize(matrix):
	return matrix/np.sum(matrix, axis=0)

def expand(matrix, power):
	return np.linalg.matrix_power(matrix, power)

def inflate(matrix, power):
	for entry in np.nditer(matrix, op_flags=['readwrite']):
		entry[...] = math.pow(entry, power)
	return matrix
class pattern:

	def __init__(self,modelFeatures,targetFeature):
		self.modelFeatures = modelFeatures.split(',')
		self.targetFeature = targetFeature
		self.log = logging.getLogger('eion')
        
	def training(self,df,outputLocation):
		df[""code""] = df[self.targetFeature].astype(""category"")
		df['code'] = df.code.cat.codes
		df2 = df[[self.targetFeature,'code']]
		df2 = df2.drop_duplicates()
		code_book = df2.to_dict('records')
		size = len(code_book)		
		if self.targetFeature in self.modelFeatures:
			self.modelFeatures.remove(self.targetFeature)
		df['prev_code'] = df.groupby(self.modelFeatures)['code'].shift()
		df['prev_activity'] = df.groupby(self.modelFeatures)[self.targetFeature].shift()
		print(self.modelFeatures)
		df = df.dropna(axis=0, subset=['prev_code'])
		df['prev_code'] = df['prev_code'].astype('int32')
		matrix = np.zeros((size, size),float)
		np.set_printoptions(suppress=True)
		for index, row in df.iterrows():
			matrix[int(row['prev_code'])][int(row['code'])] += 1
		np.fill_diagonal(matrix, 1)
		matrix = normalize(matrix)
		pmatrix = matrix
		i = 0
		records = []
		for row in matrix:
			j = 0
			for val in row:
				for event in code_book:
					if event['code'] == i:
						page = event[self.targetFeature]
					if event['code'] == j:
						nextpage = event[self.targetFeature]
				record = {}
				record['State'] = page
				record['NextState'] = nextpage
				record['Probability'] = round(val,2)
				records.append(record)
				j = j+1
			i = i+1
		df_probability = pd.DataFrame(records)
		self.log.info('Status:- |... StateTransition Probability Matrix')
		for _ in range(ITERATION_COUNT):
			matrix = normalize(inflate(expand(matrix, EXPANSION_POWER), INFLATION_POWER))
		result = mc.run_mcl(matrix)           # run MCL with default parameters
		c = 0
		clusters = mc.get_clusters(matrix)    # get clusters
		self.log.info('Status:- |... StateTransition Algorithm applied: MarkovClustering')
		clusterrecords = []
		for cluster in clusters:
			clusterid = c
			clusterlist = ''
			for pageid in cluster:
				for event in code_book:
					if event['code'] == pageid:
						page = event[self.targetFeature]
				if clusterlist != '':
					clusterlist = clusterlist+','
				clusterlist = clusterlist+page
			record = {}
			record['clusterid'] = c
			record['clusterlist'] = clusterlist
			clusterrecords.append(record)
			c = c+1
		df_cluster = pd.DataFrame(clusterrecords)
		probabilityoutputfile = os.path.join(outputLocation, 'stateTransitionProbability.csv')
		self.log.info('-------> State Transition Probability Matrix:' + probabilityoutputfile)
		df_probability.to_csv(probabilityoutputfile,index=False)
		clusteringoutputfile = os.path.join(outputLocation, 'stateClustering.csv')
		self.log.info('-------> State Transition Probability Grouping:' + clusteringoutputfile)
		df_cluster.to_csv(clusteringoutputfile,index=False)
		datadetailsfile = os.path.join(outputLocation, 'datadetails.json')                
		dataanalytics = {}
		dataanalytics['activity'] = self.targetFeature
		dataanalytics['sessionid'] = self.modelFeatures[0]
		updatedConfig = json.dumps(dataanalytics)
		with open(datadetailsfile, ""w"") as fpWrite:
			fpWrite.write(updatedConfig)             
		fpWrite.close()
		evaulatemodel = '{""Model"":""MarkovClustering"",""Score"":0}'
		return(evaulatemodel,probabilityoutputfile,clusteringoutputfile)
"
__init__.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''"
runtime_utility.py,"
            
class aionRunTimeUtility:
	# def __init__(self):
		# print(""AI.ON ConversionUtility function init..."")    
	def executeOnRuntime(self,inputModelName,inputDataSet):
		# print(""AI.ON ConversionUtility function starts..."")    
		RuntimeType = inputModelName.rsplit('.', 1)[1]
		inputDataType = inputDataSet.rsplit('.', 1)[1]
		if((RuntimeType == 'ONNX' or RuntimeType == 'onnx') and (inputDataType.lower()=='json')):
			# print(""Inference through ONNX Runtime  started [ML]"")  
			import pandas
			import json
			with open(inputDataSet) as datafile:
			    data = json.load(datafile)
			dataframe = pandas.DataFrame(data,index=[0])
			
			import numpy
			import onnxruntime as rt
			sess = rt.InferenceSession(inputModelName)
			input_name = sess.get_inputs()[0].name
			label_name = sess.get_outputs()[0].name
			inputsize=sess.get_inputs()[0].shape
			first_n_column  = dataframe.iloc[: , :inputsize[1]]
			dataset = first_n_column.values
			if(inputsize[1]!=len(dataframe.columns)):            
			    print(""Error : Input Data size does not match"")
			    return 0            
			
			pred_onx = sess.run([label_name], {input_name: dataset.astype(numpy.float32)[0:1]})[0]
			# for i in range(0, 1):
            
			#print(""ONNX Runtime Prediction [csv]: "",pred_onx)
			output = numpy.squeeze(pred_onx)
			predictions = numpy.squeeze(output)
			prediction = numpy.argmax(predictions)
			return(prediction)
			       
			# print(""Inference through ONNX modelcompleted "")   
		if((RuntimeType == 'ONNX' or RuntimeType == 'onnx') and (inputDataType!='json')):
 
			import numpy as np
			import onnxruntime as rt
			from tensorflow.keras.preprocessing import image
			sess = rt.InferenceSession(inputModelName)
			input_name = sess.get_inputs()[0].name
			label_name = sess.get_outputs()[0].name
			inputsize=sess.get_inputs()[0].shape
			img = image.load_img(inputDataSet, target_size=(inputsize[1], inputsize[2]))
			x = image.img_to_array(img)
			x = np.expand_dims(x, axis=0)
			pred_onx = sess.run([label_name], {input_name: x.astype(np.float32)[0:1]})[0]
			output = np.squeeze(pred_onx)
			predictions = np.squeeze(output)
			return(pred_onx)



		if((RuntimeType == 'TFLITE' or RuntimeType == 'tflite')and (inputDataType=='json')):
			
			import numpy as np
			import tensorflow as tf
			import pandas
			from numpy import asarray
			interpreter = tf.lite.Interpreter(model_path=inputModelName)
			interpreter.allocate_tensors()
			input_details = interpreter.get_input_details()
			output_details = interpreter.get_output_details()
			input_shape = input_details[0]['shape']
			import pandas
			import json
			with open(inputDataSet) as datafile:
			    data = json.load(datafile)
			dataframe = pandas.DataFrame(data,index=[0])
			dataset = dataframe.values

			XYZ = dataset[:,0:input_shape[1]].astype(float)

			input_data = asarray(XYZ[0]).reshape((1, input_shape[1]))
			for i in range(0, 1):
				input_data = asarray(XYZ[i]).reshape((1,input_shape[1]))
				interpreter.set_tensor(input_details[0]['index'], input_data.astype(np.float32)[0:1])
				interpreter.invoke()
				output_data = interpreter.get_tensor(output_details[0]['index'])
				predictions = np.squeeze(output_data)
				prediction = np.argmax(predictions)
			 				
				return(prediction)
		if((RuntimeType == 'TFLITE' or RuntimeType == 'tflite') and (inputDataType!='json')):
			
            
			import numpy as np
			from tensorflow.keras.preprocessing import image
			import os
			import tensorflow as tf
			import pandas
			from numpy import asarray
			interpreter = tf.lite.Interpreter(model_path=inputModelName)
			interpreter.allocate_tensors()
			input_details = interpreter.get_input_details()
			output_details = interpreter.get_output_details()
			input_shape = input_details[0]['shape']

			
			img = image.load_img(inputDataSet, target_size=(input_shape[1], input_shape[2]))
			x = image.img_to_array(img)
			x = np.expand_dims(x, axis=0)
			interpreter.set_tensor(input_details[0]['index'], x.astype(np.float32)[0:1])
			interpreter.invoke()
			output_data = interpreter.get_tensor(output_details[0]['index'])
			predictions = np.squeeze(output_data)
			prediction = np.argmax(predictions)
			return(prediction)

def runTimeTesting(inputModelName,inputDataSet):
    objRunTimeUtility=aionRunTimeUtility()
    return(objRunTimeUtility.executeOnRuntime(inputModelName,inputDataSet))

            "
model_convertions.py,"import os 
import sys
import logging
import json
import joblib
from pathlib import Path
import platform
from datetime import datetime as dt
import time        
import argparse

log = None

def get_true_option(d, default_value=None):
    if isinstance(d, dict):
        for k,v in d.items():
            if (isinstance(v, str) and v.lower() == 'true') or (isinstance(v, bool) and v == True):
                return k
    return default_value

def convert_keras2onnx(input_model, output_file):
    import tensorflow  as tf
    import tf2onnx
    from tensorflow.keras.models import load_model
    model = load_model(input_model)
    config = model.get_config()
    modelInputShape=config[""layers""][0][""config""][""batch_input_shape""]
    spec = (tf.TensorSpec(modelInputShape, tf.float32, name=""input""),)
    model_proto, _ = tf2onnx.convert.from_keras(model, input_signature=spec, opset=13, output_path=output_file)

def convert_sklearn2onnx(input_model, file_path, input_shape=1):
    #print('Instead convert_sklearn2onnx')
    from skl2onnx import convert_sklearn
    #print('Instead convert_sklearn2onnx')
    from skl2onnx.common.data_types import FloatTensorType
    sklearn_model = joblib.load(input_model)
    sklearn_model_name= str(type(sklearn_model)).split(""."")[-1][:-2]
    initial_type = [('float_input', FloatTensorType([None, input_shape]))]                
    model = convert_sklearn(sklearn_model, initial_types=initial_type)                    
    with open(file_path, ""wb"") as f:
        f.write(model.SerializeToString())

def convert_xgboost2onnx(input_model, file_path, input_shape=1):
    from onnxmltools.convert import convert_xgboost
    from onnxmltools.convert.common.data_types import FloatTensorType
    xgBoost_model = joblib.load(input_model)
    if not xgBoost_model.n_estimators:
        xgBoost_model.n_estimators = xgBoost_model.get_num_boosting_rounds()
    n_features = xgBoost_model.n_features_in_    
    xgBoost_model.get_booster().feature_names = [f'f{x}' for x in range(n_features)]
    initial_type = [('float_input', FloatTensorType([None, xgBoost_model.n_features_in_]))]
    model = convert_xgboost(xgBoost_model, initial_types=initial_type)
    with open(file_path, ""wb"") as f:
        f.write(model.SerializeToString())

def convert_lightgbm2onnx(input_model, file_path):
    from onnxmltools.convert import convert_lightgbm
    from onnxmltools.convert.common.data_types import FloatTensorType

    lightGBM_model = joblib.load(input_model)
    initial_type = [('float_input', FloatTensorType([None, lightGBM_model.n_features_in_]))]
    model = convert_lightgbm(lightGBM_model, initial_types=initial_type, zipmap=False)
    with open(file_path, ""wb"") as f:
        f.write(model.SerializeToString())

def convert_coreml2onnx(input_model, file_path):
    import coremltools
    import onnxmltools           
    coreml_model = coremltools.utils.load_spec(input_model)
    onnx_model = onnxmltools.convert_coreml(coreml_model)
    onnxmltools.utils.save_model(onnx_model, file_path)

def convert_tflite2onnx(input_model, file_path):
    cmd = f""{sys.executable} -m tf2onnx.convert --opset 13 --tflite {str(input_model)} --output {str(file_path)}""
    os.system(cmd)

def convert_tensorflow2onnx(input_model, file_path):
    import subprocess
    cmd = [sys.executable, '-m','tf2onnx.convert','--saved-model',str(input_model),'--output',str(file_path)]
    result = subprocess.check_output(cmd)
    result = result.decode('utf-8')

def convert_libsvm2onnx(input_model, file_path):
    import onnxmltools
    import libsvm.svmutil as svmutil
    from onnxmltools.convert.libsvm import convert
    from onnxmltools.convert.common.data_types import FloatTensorType
    loaded_model=svmutil.svm_load_model(str(input_model))
    model = convert(loaded_model, ""node"", [('input', FloatTensorType())])
    onnxmltools.utils.save_model(model, file_path)

def optimize_onnx(onnx_model_file, output_file_path):
    from onnxruntime.quantization import quantize_dynamic, QuantType
    quantize_dynamic(onnx_model_file, output_file_path, weight_type=QuantType.QUInt8)
    return True

def convert_keras2tflite(input_model, file_path, optimized=False):
    import tensorflow as tf
    converter = tf.compat.v1.lite.TFLiteConverter.from_keras_model_file(input_model)
    if optimized:
        converter.optimizations = [tf.lite.Optimize.DEFAULT]
        converter.target_spec.supported_types = [tf.float16]
    model = converter.convert()
    with open(file_path, 'wb') as f:
        f.write(model)

def convert_tensorflow2tflite(input_model, file_path, optimized=False):
    import tensorflow as tf
    modelpath=str(input_model)
    #converter = tf.compat.v1.lite.TFLiteConverter.from_saved_model(input_model)
    converter = tf.compat.v1.lite.TFLiteConverter.from_saved_model(modelpath)    
    if optimized:
        converter.optimizations = [tf.lite.Optimize.DEFAULT]
        converter.target_spec.supported_types = [tf.float16]
    model = converter.convert()
    with open(file_path, 'wb') as f:
        f.write(model)

class model_converter():
    
    def __init__(self, model_path, output_path,input_format,output_format, shape=None):
        if not self.is_conversion_supported(input_format,output_format):
            raise ValueError(f""{input_format} to {output_format} is not supported"")
        if not Path(model_path).exists():
            raise ValueError(f""Model doen't exists at: {model_path}"")
        self.model_path = Path(model_path)
        self.output_path = Path(output_path)
        self.output_path.mkdir(parents=True, exist_ok=True)
        self.input_format = input_format
        self.output_format = output_format
        self.shape = shape
        
    def is_conversion_supported(self, model_format, output_format):
        onnx_formats = ['onnx_standard','onnx_optimized']
        tflite_formats = ['tflite_standard','tflite_optimized']
        sagemaker_formats = ['sagemaker']
        all_formats = onnx_formats + tflite_formats + sagemaker_formats
        
        formats = {'sklearn':onnx_formats + sagemaker_formats, 'keras':onnx_formats + tflite_formats, 
        'tensorflow':onnx_formats + tflite_formats, 'tflite':onnx_formats, 'lightgbm':onnx_formats, 
        'xgboost':onnx_formats, 'libsvm':onnx_formats,'coreml':['onnx_standard'] }
        
        if model_format in list(formats.keys()) and output_format in all_formats:
            if output_format in formats[model_format]:
                return True
        return False
        
    def convert(self):
        if self.output_format == 'onnx_standard':
            output_file = self.output_path/(self.model_path.stem + '.onnx')
            if self.input_format == 'sklearn':
                model = convert_sklearn2onnx(self.model_path, output_file, self.shape)
            elif self.input_format == 'keras':
                convert_keras2onnx(self.model_path, output_file)
            elif self.input_format == 'lightgbm':
                convert_lightgbm2onnx(self.model_path, output_file)
            elif self.input_format == 'xgboost':
                convert_xgboost2onnx(self.model_path, output_file)
            elif self.input_format == 'libsvm':
                convert_libsvm2onnx(self.model_path, output_file)
            elif self.input_format == 'coreml':
                convert_coreml2onnx(self.model_path, output_file)
            elif self.input_format == 'tflite':
                convert_tflite2onnx(self.model_path, output_file)
            elif self.input_format == 'tensorflow':
                convert_tensorflow2onnx(self.model_path, output_file)
                
        elif self.output_format == 'onnx_optimized':
            onnx_std_file = self.output_path/(self.model_path.stem + '_unquant.onnx')
            if onnx_std_file.exists():
                onnx_std_file.unlink()
            output_file = self.output_path/(self.model_path.stem + 'Opt.onnx')
            if self.input_format == 'sklearn':
                convert_sklearn2onnx(self.model_path, onnx_std_file, self.shape)
            elif self.input_format == 'keras':
                convert_keras2onnx(self.model_path, onnx_std_file)
            elif self.input_format == 'lightgbm':
                convert_lightgbm2onnx(self.model_path, onnx_std_file)
            elif self.input_format == 'xgboost':
                convert_xgboost2onnx(self.model_path, onnx_std_file)
            elif self.input_format == 'libsvm':
                convert_libsvm2onnx(self.model_path, onnx_std_file)
            elif self.input_format == 'tflite':
                convert_tflite2onnx(self.model_path, onnx_std_file)
            elif self.input_format == 'tensorflow':
                convert_tensorflow2onnx(self.model_path, onnx_std_file)
            if onnx_std_file.exists():
                try:
                    optimize_onnx(onnx_std_file, output_file)
                except Exception as e:
                    raise
                finally:
                    onnx_std_file.unlink()
                    temp_file = onnx_std_file.parent/(onnx_std_file.stem + '-opt.onnx')
                    if temp_file.exists():
                        temp_file.unlink()
        elif self.output_format in ['tflite_standard', 'tflite_optimized']:
            if self.output_format == 'tflite_optimized':
                output_file = self.output_path/(self.model_path.stem + 'Opt.tflite')
                optimized = True
            else:
                output_file = self.output_path/(self.model_path.stem + '.tflite')
                optimized = False
            if self.input_format == 'keras':
                convert_keras2tflite(self.model_path, output_file, optimized)
            elif self.input_format == 'tensorflow':
                convert_tensorflow2tflite(self.model_path, output_file, optimized)

def run(model_path, output_path, input_format, output_format, input_shape=None):   
    from appbe.dataPath import LOG_LOCATION   
    input_format = input_format.lower()
    output_format = output_format.lower()
    log_file_path = Path(LOG_LOCATION)
    log_file_path.mkdir(parents=True, exist_ok=True)
    time_stamp = dt.fromtimestamp(time.time()).strftime('%Y-%m-%d-%H-%M-%S')        
    fileName='modelConversion_'+time_stamp+'.log'       
    filehandler = logging.FileHandler(log_file_path/fileName, 'w','utf-8')
    formatter = logging.Formatter('%(message)s')
    filehandler.setFormatter(formatter)
    log = logging.getLogger('modelConversionUtility')
    log.propagate = False 
    for hdlr in log.handlers[:]:  # remove the existing file handlers
        if isinstance(hdlr,logging.FileHandler):
            log.removeHandler(hdlr)
    log.addHandler(filehandler)
    log.setLevel(logging.INFO)
    log.info('------------------ModelConversionUtility---------------------')
    log.info(f'Input model path: {model_path}')
    log.info(f'Output model path: {output_path}')
    log.info(f'Input model format: {input_format}')
    log.info(f'Output model format: {output_format}')
    log.info(f'\nConverting {input_format} to {output_format} start:')
    output ={}
    output['logfiles'] = str(log_file_path/fileName)
    
    log.info(f""\nExecution Start Time: {dt.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S')}"")
    try:
        start_time = time.time()
        objConvUtility=model_converter(model_path,output_path,input_format,output_format,input_shape)
        objConvUtility.convert()
        end_time = time.time()
        log.info(f""Time required for conversion: {end_time - start_time} sec"")
        log.info(f'\nConverting {input_format} to {output_format} Successful')
        output['Convert'] = ""Success""
    except Exception as e:
        output['Convert'] = ""Error""
        log.info('Error: ' + str(e))
        log.error(e, exc_info=True)
        if 'not supported' in str(e):
            output['sub error'] = ""Not supported""
    output = json.dumps(output)
    log.info(f'Output: {output}')
    return output
    
def convert(config_file):
    with open(config_file, 'r') as f:
        config = json.load(f)
    model_path = config['advance']['aionConversionUtility']['modelpath']
    output_path = config['advance']['aionConversionUtility']['deployedlocation']
    input_format = get_true_option(config['advance']['aionConversionUtility']['inputModelType'],'').lower()
    output_format = get_true_option(config['advance']['aionConversionUtility']['outputModelType'],'').lower()
    if input_format==""keras"":
        input_shape = int(config['advance']['aionConversionUtility']['inputShape'])
    if input_format!=""keras"":        
        input_shape = config['advance']['aionConversionUtility']['numberoffeatures']
        input_shape = int(input_shape) if input_shape else 0
    #input_shape = int(config['advance']['aionConversionUtility']['numberoffeatures'])        
    output = run(model_path, output_path, input_format, output_format, input_shape)
    print(output)"
run_onnxinference.py,"import pandas
import numpy
import sys
import onnxruntime as rt

def onnx_runtime_validation(modelfile,datafile):
    dataframe = pandas.read_csv(datafile)   
    df = dataframe.head(8)
    dataset = df.values
    sess = rt.InferenceSession(modelfile)
    input_name = sess.get_inputs()[0].name
    label_name = sess.get_outputs()[0].name
    inputsize=sess.get_inputs()[0].shape
    XYZ = dataset[:,0:inputsize[1]].astype(float)
    pred_onx = sess.run([label_name], {input_name: XYZ.astype(numpy.float32)[0:8]})[0]    
    print(""Prediction of AION generated/converted model on ONNX runtime for  8 sets of data"")
    for i in range(0, 8):
        output = numpy.squeeze(pred_onx[i])
        predictions = numpy.squeeze(output)
        prediction = numpy.argmax(predictions)
        df['predictions'] = predictions
    result = df.to_json(orient=""records"")
    return(result)
if __name__ == ""__main__"":
    output = onnx_runtime_validation(sys.argv[1],sys.argv[2])
    print(""predictions:"",output)
"
__init__.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''"
__init__.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''"
aionNAS.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''

import logging
logging.getLogger('tensorflow').disabled = True
import json
#from nltk.corpus import stopwords
from collections import Counter
from numpy import mean
from numpy import std
from pandas import read_csv
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import OneHotEncoder
from sklearn.compose import ColumnTransformer
from learner.machinelearning import machinelearning
# from sklearn.dummy import DummyClassifier
# create histograms of numeric input variables
import sys
import os
import re
import pandas as pd
import numpy as np
from learner.aion_matrix import aion_matrix
import tensorflow as tf
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)
import autokeras as ak
# load the sonar dataset
from sklearn.model_selection import train_test_split
# from sklearn.metrics import cohen_kappa_score
# from sklearn.metrics import roc_auc_score
# from sklearn.metrics import confusion_matrix
from sklearn.metrics import roc_curve
from math import sqrt
from sklearn.metrics import mean_squared_error, explained_variance_score,mean_absolute_error
from sklearn import metrics


class aionNAS:
    def __init__(self,nas_class,nas_params,xtrain1,xtest1,ytrain1,ytest1,deployLocation):
        try:
            self.dfFeatures=None
            self.nas_class=nas_class
            self.nas_params=nas_params
            self.targetFeature=None
            self.log = logging.getLogger('eion')
            self.n_models=int(self.nas_params['n_models'])
            self.n_epochs=int(self.nas_params['n_epochs'])
            self.optimizer=self.nas_params['optimizer']
            self.metrics=self.nas_params['metrics']
            self.tuner=self.nas_params['tuner']
            self.seed=int(self.nas_params['seed'])
            self.xtrain = xtrain1
            self.xtest = xtest1
            self.ytrain = ytrain1
            self.ytest = ytest1
            #self.labelMaps = labelMaps
            self.deployLocation=deployLocation
            
        except Exception as e:
            self.log.info('<!------------- NAS INIT Error ---------------> ')
            exc_type, exc_obj, exc_tb = sys.exc_info()
            fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
            self.log.info(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))

    def paramCheck(self):
        try:
            if not (self.nas_class):
                self.log.info('<!------------- NAS class input Error  ---------------> ')
            if not (self.nas_params):
                self.log.info('<!------------- NAS model hyperparameter input Error  ---------------> ')
            if not (self.targetFeature):
                self.log.info('<!------------- NAS model targetFeature input Error  ---------------> ')
            if (self.n_models < 1):
                self.n_models=1
            if not  (self.dfFeatures):
                self.log.info('<!------------- NAS model features Error  ---------------> ')
            if (self.n_epochs < 1):
                self.n_models=1
            if not (self.optimizer):
                self.optimizer=""adam""
            if not (self.tuner):
                self.tuner=""greedy""
            if (self.seed < 1):
                self.seed=0
            if not (self.metrics):
                self.metrics=None
        except ValueError:
            self.log.info('<------------------  NAS config file error. --------------->')





    def recall_m(self,y_true, y_pred):
        true_positives = tf.keras.metrics.Sum(tf.keras.backend.round(tf.keras.backend.clip(y_true * y_pred, 0, 1)))
        possible_positives = tf.keras.metrics.Sum(tf.keras.backend.round(tf.keras.backend.clip(y_true, 0, 1)))
        recall = true_positives / (possible_positives + tf.keras.backend.epsilon())
        return recall

    def precision_m(self,y_true, y_pred):
        true_positives = tf.keras.metrics.Sum(tf.keras.backend.round(tf.keras.backend.clip(y_true * y_pred, 0, 1)))
        predicted_positives = tf.keras.metrics.Sum(tf.keras.backend.round(tf.keras.backend.clip(y_pred, 0, 1)))
        precision = true_positives / (predicted_positives + tf.keras.backend.epsilon())
        return precision

    def f1_score(self,y_true, y_pred):
        precision = self.precision_m(y_true, y_pred)
        recall = self.recall_m(y_true, y_pred)
        return 2*((precision*recall)/(precision+recall+tf.keras.backend.epsilon()))

    def nasStructdataPreprocess(self):
        df=self.data
        self.paramCheck()
        target=df[self.targetFeature].values
        counter = Counter(target)
        for k,v in counter.items():
            per = v / len(target) * 100
            self.log.info('autokeras struct Class=%d, Count=%d, Percentage=%.3f%%' % (k, v, per))
        # select columns with numerical data types
        num_ix = df.select_dtypes(include=['int64', 'float64']).columns
        subset = df[num_ix]
        last_ix = len(df.columns) - 1
        y=df[self.targetFeature]
        X = df.drop(self.targetFeature, axis=1)
        #Using Pearson Correlation
        # plt.figure(figsize=(12,10))
        # cor = df.corr()
        # sns.heatmap(cor, annot=True, cmap=plt.cm.Reds)
        # plt.show()
        # select categorical features
        cat_ix = X.select_dtypes(include=['object', 'bool']).columns
        # one hot encode cat features only
        ct = ColumnTransformer([('o',OneHotEncoder(),cat_ix)], remainder='passthrough')
        X = X.reset_index()
        X=X.replace(to_replace=""NULL"",value=0)
        X = X.dropna(how='any',axis=0)
        X = ct.fit_transform(X)
        from sklearn.preprocessing import scale
        X = scale(X)
        # label encode the target variable to have the classes 0 and 1
        y = LabelEncoder().fit_transform(y)
        # separate into train and test sets
        X_train, X_test, y_train, y_test=train_test_split(X,y,test_size=self.test_size,random_state=1)
        return X_train, X_test, y_train, y_test


    def nasStructClassification(self,scoreParam):
        try:	
            objClf = aion_matrix()
            X_train, X_test, y_train, y_test= self.xtrain, self.xtest, self.ytrain, self.ytest
            modelName=""nas_structdata_classifier""
            self.log.info(""Processing structured data block...\n"")
            s_in = ak.StructuredDataInput()
            #s_in = Flatten()(s_in)
            s_out = ak.StructuredDataBlock(categorical_encoding=True)(s_in)
            self.log.info(""Data pipe via autokeras Classification Dense layers ...\n"")
            s_out = ak.ClassificationHead()(s_out)
            self.log.info(""applying autokeras automodel to run different neural models...\n"")
            try:
                tuner = str(self.tuner).lower()
            except UnicodeEncodeError:
                tuner = (self.tuner.encode('utf8')).lower()
            nasclf = ak.AutoModel(
                inputs=s_in,
                outputs=s_out,
                overwrite=True,
                tuner=tuner,
                max_trials=self.n_models,
                seed=self.seed)
            # compile the model
            #nasclf.compile(optimizer='adam', loss='binary_crossentropy', metrics=['acc',self.f1_score,self.precision_m, self.recall_m])
            nasclf.fit(X_train, y_train, epochs=self.n_epochs)
            best_model = nasclf.export_model()
            mpredict=best_model.predict(X_test)
            mtpredict=best_model.predict(X_train)
            #loss, accuracy, f1_score, precision, recall = nasclf.evaluate(X_test, y_test, verbose=0)
            #from sklearn.metrics import classification_report
            #Classification report
            y_pred_bool = np.argmax(mpredict, axis=1)
            y_train_pred_bool = np.argmax(mtpredict, axis=1)
            score = objClf.get_score(scoreParam,y_test, y_pred_bool)
            #best_model = nasclf.export_model()
            best_model_summary=best_model.summary()
            filename = os.path.join(self.deployLocation,'log','summary.txt')
            with open(filename,'w') as f:
                best_model.summary(print_fn=lambda x: f.write(x + '\n'))
            f.close()                
            #self.log.info(""=========="")
            #self.log.info(best_model_summary)
            self.log.info(""NAS struct data classification, best model summary: \n""+str(best_model.summary(print_fn=self.log.info)))
            #self.log.info(""=========="")
            #Save and load model
            # # #try:
            # try:
            #     best_model.save(""model_class_autokeras"", save_format=""tf"")
            # except Exception:
            #     best_model.save(""model_class_autokeras.h5"")
            # loaded_model = load_model(""model_class_autokeras"", custom_objects=ak.CUSTOM_OBJECTS)
            # loadedmodel_predict=loaded_model.predict(X_test)       
            loss,accuracy_m=nasclf.evaluate(X_test, y_test)
            #mpredict_classes = mpredict.argmax(axis=-1)
            #accuracy = accuracy_score(y_test.astype(int), mpredict.astype(int))
            # precision tp / (tp + fp)
            #precision = precision_score(y_test.astype(int), mpredict.astype(int),average='macro')
            # recall: tp / (tp + fn)
            #recall = recall_score(y_test.astype(int), mpredict.astype(int),average='macro')
            #f1score=f1_score(y_test.astype(int), mpredict.astype(int) , average=""macro"")
            self.log.info(""Autokeras struct data classification metrics: \n"")
        except Exception as inst:
            self.log.info(""Error: NAS failed ""+str(inst))
            exc_type, exc_obj, exc_tb = sys.exc_info()
            fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
            self.log.info(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))
            print(inst)		
        return modelName,nasclf,score
    
    def nasStructRegressor(self,scoreParam):
        objClf = aion_matrix()
        modelName=""nas_struct_regressor""
        #self.paramCheck()
        X_train, X_test, y_train, y_test= self.xtrain, self.xtest, self.ytrain, self.ytest
        # Autokeras alg
        s_in = ak.StructuredDataInput()
        #tf.keras.layers.GlobalMaxPooling2D()(s_in)
        s_out = ak.StructuredDataBlock(categorical_encoding=True)(s_in)
        self.log.info(""Data pipe via autokeras Regression Dense layers ...\n"")
        s_out = ak.RegressionHead(loss='mse', metrics=['mae'])(s_out)
        self.log.info(""applying autokeras automodel to evaluate different neural models...\n"")
        try:
            tuner = str(self.tuner).lower()
        except UnicodeEncodeError:
            tuner = (self.tuner.encode('utf8')).lower()
        nas_reg = ak.AutoModel(
            inputs=s_in,
            outputs=s_out,
            overwrite=True,
            tuner=tuner,
            max_trials=self.n_models)
        nas_reg.fit(X_train, y_train, epochs=self.n_epochs)
        best_model = nas_reg.export_model()
        self.log.info(""NAS struct data regression best model summary: \n"")
        best_model_summary=best_model.summary(print_fn=self.log.info)
        self.log.info(best_model_summary)
        predictm=best_model.predict(X_test)
        mtpredict=best_model.predict(X_train)
        score = objClf.get_score(scoreParam,y_test, predictm)		
        self.log.info(""Autokeras struct data regression metrics: \n"")
    
        return modelName,nas_reg,score

    def nasMain(self,scoreParam):
        modelName = """"
        nasclf=None
        nas_reg=None
        #text_reg_model=None
        mse_value=0
        reg_rmse=0
        mape_reg=0
        huber_loss_reg=0
        accuracy=0
        precision=0
        recall=0
        #Dummy values to return main for classification problems
        dummy_score_1=int(0)
        #dummy_score_2=int(0)
        try:
            if ((self.nas_class.lower() == ""classification"")):
                modelName,nasclf,score=self.nasStructClassification(scoreParam)
                self.log.info('NAS Struct Classification score: '+str(score))              
                best_model_nas = nasclf.export_model()
                scoredetails = '{""Model"":""NAS"",""Score"":'+str(round(score,2))+'}'
                return best_model_nas,self.nas_params,round(score,2),'NAS',-1,-1,-1
            elif (self.nas_class.lower() == ""regression""):
                modelName,nas_reg,score =self.nasStructRegressor(scoreParam)
                self.log.info('NAS Struct Regression score: '+str(score))
                best_model_nas = nas_reg.export_model()				
                '''
                filename = os.path.join(self.deployLocation,'model','autoKerasModel')
                best_model_nas = nas_reg.export_model()
                try:
                    best_model_nas.save(filename, save_format=""tf"")
                    modelName = 'autoKerasModel'
                except Exception:
                    filename = os.path.join(self.deployLocation,'model','autoKerasModel.h5')
                    best_model_nas.save(filename)
                    modelName = 'autoKerasModel.h5'
                '''
                scoredetails = '{""Model"":""NAS"",""Score"":'+str(round(score,2))+'}'
                '''
                error_matrix = '""MSE"":""'+str(round(mse_value,2))+'"",""RMSE"":""'+str(round(reg_rmse,2))+'"",""MAPE"":""'+str(round(mape_reg,2))+'"",""MSLE"":""'+str(round(msle_reg,2))+'""'
                '''				
                return best_model_nas,self.nas_params,score,'NAS'
            else:
                pass
        except Exception as inst:
            print(inst)
            exc_type, exc_obj, exc_tb = sys.exc_info()
            fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
            print(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))
            output = {""status"":""FAIL"",""message"":str(inst).strip('""')}
            output = json.dumps(output)
        "
__init__.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''"
survival_analysis.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''# -*- coding: utf-8 -*-

""""""
@author: satish_k
""""""

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import statistics
from sklearn.impute import SimpleImputer
from sklearn.model_selection import train_test_split
from lifelines import KaplanMeierFitter, CoxPHFitter
from lifelines.statistics import logrank_test
from scipy import stats
import logging


class SurvivalAnalysis(object):

    def __init__(self, df, method, event_column, duration_column, fitter_param=None, df_negate=None ):
        pd.options.display.width = 30
        self.df = df
        self.fitter_param = fitter_param
        self.method = method
        self.event_column = event_column
        self.duration_column = duration_column        
        self.models = []
        self.train = df.drop_duplicates().reset_index()
        self.test = None
        if isinstance(df_negate, pd.DataFrame):
            self.df_n = df_negate.drop_duplicates().reset_index()
        else:
            self.df_n = None
        self.log = logging.getLogger('eion')
        self.plots = []

    def learn(self):
        self.log.info('\n---------- SurvivalAnalysis learner has started ----------')
        self.log.info('\n---------- SurvivalAnalysis learner method is ""%s"" ----------'%self.method)

        lifelines_univariate_models = [""AalenJohansenFitter"", ""BreslowFlemingHarringtonFitter"", ""ExponentialFitter"", ""GeneralizedGammaFitter"",
        ""KaplanMeierFitter"", ""LogLogisticFitter"", ""LogNormalFitter"", ""MixtureCureFitter"", ""NelsonAalenFitter"", ""PiecewiseExponentialFitter"",
        ""SplineFitter"", ""WeibullFitter""]

        lifelines_regression_models = [""AalenAdditiveFitter"", ""CRCSplineFitter"", ""CoxPHFitter"", ""CoxTimeVaryingFitter"", ""GeneralizedGammaRegressionFitter"",
        ""LogLogisticAFTFitter"", ""LogNormalAFTFitter"", ""PiecewiseExponentialRegressionFitter"", ""WeibullAFTFitter""]
        
        
        if self.method.lower() in ['kaplanmeierfitter','kaplanmeier','kaplan-meier','kaplan meier','kaplan','km','kmf']:
            self.log.info('\n---------- SurvivalAnalysis learner method ""%s"" has started ----------'%self.method)
            #from lifelines.utils import find_best_parametric_model
            #m,s = find_best_parametric_model(event_times=self.df[self.duration_column])
            if not isinstance(self.df_n, pd.DataFrame):
                kmf = KaplanMeierFitter()
                self.log.info('\n Shape of training data - %s'%str(self.train.shape))
                T = self.train[self.duration_column]
                E = self.train[self.event_column]
                self.log.info('\n T : \n%s'%str(T))
                self.log.info('\n E : \n%s'%str(E))
                K = kmf.fit(T, E)
                ax = plt.subplot(111)
                
                kmf_sf = K.survival_function_
                ax = kmf_sf.plot(ax=ax)

                kmf_sf_json = self.survival_probability_to_json(kmf_sf)
                self.models.append(K)
                plt.title(""KM Survival Functions"")
                self.plots.append(plt)
                self.log.info('\n---------- SurvivalAnalysis learner method ""%s"" has ended ----------'%self.method)
                self.log.info('\n---------- SurvivalAnalysis learner has ended ----------')
                return kmf_sf_json
            else:
                kmf1 = KaplanMeierFitter()
                kmf2 = KaplanMeierFitter()
                T1 = self.train[self.duration_column]
                E1 = self.train[self.event_column]
                #self.df_n = self.df_n.drop('fin', axis=1)
                T2 = self.df_n[self.duration_column]
                E2 = self.df_n[self.event_column]
                
                ax = plt.subplot(111)
                plt.title(""KM Survival Functions - Filter vs Negation"")
                self.log.info('\n---------- SurvivalAnalysis learner ""%s"" fitting for filter expression has started----------'%self.method)
                kmf1.fit(T1, E1)
                ax = kmf1.plot(ax=ax, label='%s'%self.fitter_param)
                self.log.info('\n---------- SurvivalAnalysis learner ""%s"" fitting for filter expression has ended----------'%self.method)
                self.log.info('\n---------- SurvivalAnalysis learner ""%s"" fitting for negation has started----------'%self.method)
                kmf2.fit(T2, E2)
                ax = kmf2.plot(ax=ax, label='~%s'%self.fitter_param)
                self.log.info('\n---------- SurvivalAnalysis learner ""%s"" fitting for negation has ended----------'%self.method)
                self.models.extend([kmf1,kmf2])

                kmf1_sf = kmf1.survival_function_
                kmf2_sf = kmf2.survival_function_
                kmf1_sf_json = self.survival_probability_to_json(kmf1_sf)
                self.plots.append(plt)
                self.log.info('\n---------- SurvivalAnalysis learner method ""%s"" has ended ----------'%self.method)
                self.log.info('\n---------- SurvivalAnalysis learner has ended ----------')
                return kmf1_sf_json
                    
        elif self.method.lower() in ['coxphfitter','coxregression','cox-regression','cox regression','coxproportionalhazard','coxph','cox','cph']:
            self.log.info('\n---------- SurvivalAnalysis learner method ""%s"" has started ----------'%self.method)
            #from lifelines.utils import k_fold_cross_validation
            if not isinstance(self.df_n, pd.DataFrame):
                cph = CoxPHFitter()
                C = cph.fit(self.train, self.duration_column, self.event_column, show_progress=True)
                self.models.append(C)
                cph_sf = C.baseline_survival_
                ax = plt.subplot(111)
                ax = C.plot(ax=ax)
                cph_sf_json = self.survival_probability_to_json(cph_sf)
                self.log.info('\n Summary : \n%s'%str(C.summary))
                plt.title(""COX hazard ratio"")
                self.plots.append(plt)
                self.log.info('\n---------- SurvivalAnalysis learner method ""%s"" has ended ----------'%self.method)
                self.log.info('\n---------- SurvivalAnalysis learner has ended ----------')
                #plt.show()
                return cph_sf_json
            else:
                cph1 = CoxPHFitter(penalizer=0.0001)
                cph2 = CoxPHFitter(penalizer=0.0001)
                ax = plt.subplot(211)
                plt.title(""COX hazard ratio - [%s](Top) vs [~(%s)](Bottom)""%(self.fitter_param,self.fitter_param))
                #self.train = self.train.drop('fin',axis=1)
                self.df_n = self.drop_constant_features(self.df_n)
                self.log.info('\n---------- SurvivalAnalysis learner ""%s"" fitting for filter expression has started----------'%self.method)
                cph1.fit(self.train, self.duration_column, self.event_column, show_progress=True, step_size=0.4)
                ax = cph1.plot(ax=ax, label='%s'%self.fitter_param)
                self.log.info('\n---------- SurvivalAnalysis learner ""%s"" fitting for filter expression has ended----------'%self.method)
                self.log.info('\n---------- SurvivalAnalysis learner ""%s"" fitting for negation has started----------'%self.method)
                cph2.fit(self.df_n, self.duration_column, self.event_column, show_progress=True, step_size=0.4)
                ax = plt.subplot(212)
                ax = cph2.plot(ax=ax, label='~%s'%self.fitter_param)
                self.log.info('\n---------- SurvivalAnalysis learner ""%s"" fitting for negation has ended----------'%self.method)
                self.models.extend([cph1,cph2])

                cph1_sf = cph1.baseline_survival_
                cph2_sf = cph2.baseline_survival_
                cph1_sf_json = self.survival_probability_to_json(cph1_sf)
                #plt.show()
                plt.tight_layout()
                self.plots.append(plt)
                self.log.info('\n---------- SurvivalAnalysis learner method ""%s"" has ended ----------'%self.method)
                self.log.info('\n---------- SurvivalAnalysis learner has ended ----------')
                return cph1_sf_json
    
    def survival_probability_to_json(self, sf):
        '''
        sf = Survival function i.e. KaplanMeierFitter.survival_function_ or CoxPHFitter.baseline_survival_
        returns json of survival probabilities
        '''
        sf = sf[sf.columns[0]].apply(lambda x: ""%4.2f""%(x*100))
        self.log.info('\n Survival probabilities : \n%s'%str(sf))
        sf = sf.reset_index()			
        sf = sf.sort_values(sf.columns[0])       
        sf_json = sf.to_json(orient='records')
        self.log.info('\n Survival prbability json : \n%s'%str(sf_json))
        
        return sf_json
    
    def drop_constant_features(self, df):
        for col in df.columns:
            if len(df[col].unique()) == 1:
                df.drop(col,inplace=True,axis=1)
        return df
    
    def predict(self):
        if self.method == 'KaplanMeierFitter':
            return self.model.predict(self.test[self.duration_column])
            #kmf.predict()
            #kmf.median_survival_time_
            #from lifelines.utils import median_survival_times
            #median_ci = median_survival_times(kmf.confidence_interval_)
            
        elif self.method == 'CoxPHFitter':
            #print('train score',self.model.score(self.train))
            #print('test score',self.model.score(self.test))
            return self.model.predict_survival_function(self.test)
            #cph.predict_cumulative_hazard()
            #cph.predict_expectation()
            #cph.predict_log_partial_hazard()
            #cph.predict_median()
            #cph.predict_partial_hazard()
            #cph.predict_percentile()
            #cph.predict_survival_function()
            #cph.predict_hazard()
            #cph.score()
            #cph.summary()

#if __name__ == ""__main__"":
#    data_file = r""C:\Users\satish_k\Desktop\Work\input\echocardiogram.csv""
#    #data_file = r""C:\Users\satish_k\Desktop\Work\input\lymphoma.csv""
#    method = ""CoxPHFitter""
#    event_column = ""alive""
#    duration_column = ""survival""
#    sa = SurvivalAnalysis(data_file, method, event_column, duration_column)
#   sa.profiler()
#    model = sa.learn()
#    print(sa.predict())
    #print(model.survival_function_)

    
"
DebiasingManager.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
from sklearn.preprocessing import MinMaxScaler, LabelEncoder

import numpy as np

import logging
logging.getLogger('tensorflow').disabled = True

import aif360
from aif360.datasets import StandardDataset
from aif360.algorithms.preprocessing.reweighing import Reweighing
from aif360.algorithms.preprocessing import DisparateImpactRemover

class DebiasingManager:

    def __init__(self):
        self.data = ''

    # ------------------------------- Debiasing Changes -------------------------------
    def get_attributes(self, data, selected_attr=None):
        unprivileged_groups = []
        privileged_groups = []
        if selected_attr == None:
            selected_attr = data.protected_attribute_names
        
        for attr in selected_attr:
                idx = data.protected_attribute_names.index(attr)
                privileged_groups.append({attr:data.privileged_protected_attributes[idx]}) 
                unprivileged_groups.append({attr:data.unprivileged_protected_attributes[idx]}) 
        return privileged_groups, unprivileged_groups
    # -------------------------------                   -------------------------------
        

    def Bias_Mitigate(self, dataFrame, protected_feature, privileged_className, target_feature, algorithm):
    
        # log = logging.getLogger('eion')
        # log.propagate = False
        
        data_encoded = dataFrame.copy()
        categorical_names = {}
        encoders = {}
        
        dataFrame = dataFrame.replace('Unknown', 'NA')
        dataFrame = dataFrame.replace(np.nan, 'NA')
        try:
            # Label-Encoding
            for feature in dataFrame.columns:
                le = LabelEncoder()
                le.fit(data_encoded[feature])
                data_encoded[feature] = le.transform(data_encoded[feature])
                categorical_names[feature] = le.classes_
                encoders[feature] = le
            
            privileged_class = np.where(categorical_names[protected_feature] == privileged_className)[0]
            target_feature_count = len(data_encoded[target_feature].value_counts())  
            # Check if it's BinaryLabel
            if target_feature_count == 2:
                binaryLabelDataset = aif360.datasets.BinaryLabelDataset(
                                                    favorable_label='1',
                                                    unfavorable_label='0',
                                                    df=data_encoded,
                                                    label_names=[target_feature],
                                                    protected_attribute_names=[protected_feature])
                data_orig = binaryLabelDataset
            
            # Check if it's Non-BinaryLabel
            if target_feature_count > 2:
                data_orig = StandardDataset(data_encoded, 
                                label_name=target_feature, 
                                favorable_classes=[1], 
                                protected_attribute_names=[protected_feature], 
                                privileged_classes=[privileged_class])
            
            if algorithm == 'DIR':
                DIR = DisparateImpactRemover(repair_level=0.9)
                data_transf_train = DIR.fit_transform(data_orig)
                # log.info('Status:-|... DIR applied on input dataset')
            else:
                privileged_groups, unprivileged_groups = self.get_attributes(data_orig, selected_attr=[protected_feature])
                RW = Reweighing(unprivileged_groups=unprivileged_groups, privileged_groups=privileged_groups)
                data_transf_train = RW.fit_transform(data_orig)
                # log.info('Status:-|... Reweighing applied on input dataset')
            
            transf_dataFrame = data_transf_train.convert_to_dataframe()[0]
            
            data_decoded = transf_dataFrame.copy().astype('int')
            for column in data_decoded.columns:
                data_decoded[column] = encoders[column].inverse_transform(data_decoded[column])
            
            debiased_dataFrame = data_decoded
            
        except Exception as e:
            print(e)
            debiased_dataFrame = dataFrame
            
        return debiased_dataFrame
"
actian.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import pyodbc as pyodbc
import pandas as pd
import json
def simple_select(c, sql_query, bind_params=None, display_sql=False):
    """"""where c is a cursor""""""
    if bind_params is None:
        c.execute(sql_query)
    else:
        if display_sql:
            c.execute(sql_query, bind_params)
    headers = []
    if c.description is not None:
        # We have a SELECT statement
        for x in c.description:
            headers.append(x[0])
        row_count = 0
        row = c.fetchone()
        data=[]
        while row:
            row_count += 1
            xrow={}
            for i in range(len(row)):
                xrow[headers[i]] = row[i]
            data.append(xrow)
            row = c.fetchone()
    #df = pd.DataFrame(data)
    return(data)
    
def validatequery(request,query):
    resultdata = []
    try:
        server_url = request.session['server_url']
        username_actian = request.session['username']
        password_actian =  request.session['password']
        database_actian = request.session['database']
        conn = get_connection(server_url,username_actian,password_actian,database_actian)
        sql_text = query
        cur = conn.cursor()
        resultdata = simple_select(cur, query)
        cur.close()

        if len(resultdata) > 0:
            return ""Query executed successfully""
        else:
            return ""No rows returned""
    except Exception as e:
        print(e)
        return str(e)

def executequery(request,query):
    resultdata = []
    try:
        server_url = request.session['server_url']
        username_actian = request.session['username']
        password_actian =  request.session['password']
        database_actian = request.session['database']
        conn = get_connection(server_url,username_actian,password_actian,database_actian)
        sql_text = query
        cur = conn.cursor()
        resultdata = simple_select(cur, query)
        cur.close()
        return(resultdata)
    except Exception as e:
        print(e)
        return(resultdata)
        
def list_tables_fields(request,table_list):
    table_field_obj = {}
    table_field_obj['data'] = []
    try:
        server_url = request.session['server_url']
        username_actian = request.session['username']
        password_actian =  request.session['password']
        database_actian = request.session['database']
        
        table_list = json.loads(table_list)
        conn = get_connection(server_url,username_actian,password_actian,database_actian)
        for table in table_list:
            tf_obj = {}
            tf_obj['TableName'] = str(table).strip()
            tf_obj['Fields']= []

            field_list = []
            sql_text = ""SELECT column_name, false as is_select FROM iicolumns WHERE table_name='""+table+""'""
            cur = conn.cursor()
            field_list = simple_select(cur, sql_text)
            cur.close()
            print(field_list)
            tf_obj['Fields'] = field_list
            table_field_obj['data'].append(tf_obj)
        print(""----------------------"")
        print(table_field_obj)
        print(json.dumps(table_field_obj))
        print(""----------------------"")
        return json.dumps(table_field_obj)
    except Exception as e:
        print(""Something went wrong ""+str(e))
        return table_field_obj
        
def list_tables(request):
    server_url = request.session['server_url']
    username_actian = request.session['username']
    password_actian =  request.session['password']
    database_actian = request.session['database']
    dt_list = []
    try:
        conn = get_connection(server_url,username_actian,password_actian,database_actian)
        sql_text = ""select table_name from iitables where table_type='T' and table_owner='""+username_actian+""'""
        cur = conn.cursor()

        dt_list = simple_select(cur, sql_text)
        cur.close()
        return dt_list
    except:
        print(""Something went wrong"")
        return dt_list
        
def get_connection(server_url,username_actian,password_actian,database_actian):
    conn = pyodbc.connect(""driver=Ingres;servertype=ingres;server=@""+str(server_url)+"",tcp_ip,VW;uid=""+str(username_actian)+"";pwd=""+str(password_actian)+"";database=""+str(database_actian))
    print(""connected"")
    return conn

        
def getDataFromActianAvalanche(request):
    server_url = request.POST.get('server_url')
    username_actian = request.POST.get('username')
    password_actian = request.POST.get('password')
    database_actian = request.POST.get('database')
    table_actian = request.POST.get('table')
    conn = get_connection(server_url,username_actian,password_actian,database_actian)
    c = conn.cursor()
    sql_text = ""select * from ""+str(table_actian)    
    data = simple_select(c, sql_text)
    df = pd.DataFrame(data)
    return(df)"
dataPath.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import os
from os.path import expanduser
import platform
DEFAULT_FILE_PATH = os.path.join(os.path.dirname(os.path.abspath(__file__)),'conf')
cur_dir = os.path.dirname(os.path.abspath(__file__))
home = expanduser(""~"")
if platform.system() == 'Windows':
    DATA_DIR = os.path.normpath(os.path.join(cur_dir,'..','..','..','..','..','..','data'))
    DATA_FILE_PATH = os.path.join(DATA_DIR,'storage')
    CONFIG_FILE_PATH = os.path.join(DATA_DIR,'config')
    DEPLOY_LOCATION = os.path.join(DATA_DIR,'target')
    LOG_LOCATION = os.path.join(DATA_DIR,'logs')
    LOG_FILE = os.path.join(DATA_DIR,'logs','ux.log')
else:
    DATA_DIR = os.path.join(home,'HCLT','data')
    DATA_FILE_PATH = os.path.join(DATA_DIR,'storage')
    CONFIG_FILE_PATH = os.path.join(DATA_DIR,'config')
    DEPLOY_LOCATION = os.path.join(DATA_DIR,'target')
    LOG_FILE = os.path.join(DATA_DIR,'logs','ux.log')
    LOG_LOCATION = os.path.join(DATA_DIR,'logs')"
pages.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import os,sys
from appbe import compute
from appbe.aion_config import kafka_setting
from appbe.aion_config import running_setting
from records import pushrecords
from appbe import service_url
import json
import time
import pandas as pd
from django.db.models import Max, F
from os.path import expanduser
import platform
from appbe.data_io import sqlite_db
import subprocess
from appbe.dataPath import DEFAULT_FILE_PATH
from appbe.dataPath import DATA_FILE_PATH
from appbe.dataPath import CONFIG_FILE_PATH
from appbe.dataPath import DEPLOY_LOCATION
from appbe.dataPath import DATA_DIR
DEPLOY_DATABASE_PATH = os.path.join(DATA_DIR,'sqlite')
def pushRecordForTraining():
	from appbe.pages import getversion
	AION_VERSION = getversion()
	try:
		status,msg = pushrecords.enterRecord(AION_VERSION)
	except Exception as e:
		print(""Exception"", e)
		status = False
		msg = str(e)
	return status,msg
    
def getversion():
    configFolder = 	os.path.join(os.path.dirname(os.path.abspath(__file__)),'..','config')
    version = 'NA'
    for file in os.listdir(configFolder):
        if file.endswith("".var""):
            version = file.rsplit('.', 1)
            version = version[0]
            break
    return version
def getusercasestatus(request):
    if 'UseCaseName' in request.session:
        selected_use_case = request.session['UseCaseName']
    else:
        selected_use_case = 'Not Defined'

    if 'ModelVersion' in request.session:
        ModelVersion = request.session['ModelVersion']
    else:
        ModelVersion = 0

    if 'ModelStatus' in request.session:
        ModelStatus = request.session['ModelStatus']
    else:
        ModelStatus = 'Not Trained'
    return selected_use_case,ModelVersion,ModelStatus

def getMLModels(configSettingsJson):
    mlmodels =''
    dlmodels = ''
    problem_type = """"
    problemtypes = configSettingsJson['basic']['analysisType'] 
    for k in problemtypes.keys():
        if configSettingsJson['basic']['analysisType'][k] == 'True':
            problem_type = k
            break
    sc = """"
    if problemtypes in ['classification','regression','survivalAnalysis']:
        scoringCreteria = configSettingsJson['basic']['scoringCriteria'][problem_type]
        for k in scoringCreteria.keys():
            if configSettingsJson['basic']['scoringCriteria'][problem_type][k] == 'True':
                sc = k
                break
    else:
        sc = 'NA'
    if problem_type in ['classification','regression']:
        algorihtms = configSettingsJson['basic']['algorithms'][problem_type]
        #print(algorihtms)
        for k in algorihtms.keys():
            #print(configSettingsJson['basic']['algorithms'][problem_type][k])
            if configSettingsJson['basic']['algorithms'][problem_type][k] == 'True':
                if k in ['SNN','RNN','CNN']:
                    if dlmodels != '':
                        dlmodels += ', '
                    dlmodels += k
                else:
                    if mlmodels != '':
                        mlmodels += ', '
                    mlmodels += k                    
    elif problem_type in ['videoForecasting','imageClassification','objectDetection']:      
        algorihtms = configSettingsJson['basic']['algorithms'][problem_type]
        for k in algorihtms.keys():
            if configSettingsJson['basic']['algorithms'][problem_type][k] == 'True':
                if dlmodels != '':
                    dlmodels += ', '
                dlmodels += k
    else:
        algorihtms = configSettingsJson['basic']['algorithms'][problem_type]
        for k in algorihtms.keys():
            if configSettingsJson['basic']['algorithms'][problem_type][k] == 'True':
                if mlmodels != '':
                    mlmodels += ', ' 
                mlmodels += k
    displayProblemType = problem_type
    selected_model_size = ''
    if problem_type.lower() == 'llmfinetuning':
        displayProblemType = 'LLM Fine-Tuning'
        supported_model_types = configSettingsJson['basic']['modelSize'][problem_type][mlmodels]
        for k in supported_model_types.keys():
            if configSettingsJson['basic']['modelSize'][problem_type][mlmodels][k] == 'True':
                selected_model_size = k
                break
    #print(selected_model_size)
    if mlmodels == 'TF_IDF':
        mlmodels = 'TF-IDF'
    if mlmodels == 'LatentSemanticAnalysis':
        mlmodels = 'Latent Semantic Analysis (LSA)'
    if mlmodels == 'SentenceTransformer_distilroberta':
        mlmodels = 'SentenceTransformer (DistilRoBERTa)'
    if mlmodels == 'SentenceTransformer_miniLM':
        mlmodels = 'SentenceTransformer (MiniLM)'
    if mlmodels == 'SentenceTransformer_mpnet':
        mlmodels = 'SentenceTransformer (MPNet)'
    return(problem_type,displayProblemType,sc,mlmodels,dlmodels,selected_model_size)
    
def get_usecase_page(request,usecasedetails,Existusecases,usecaseId = None,search_text=None):
    
    try:
        x = request.build_absolute_uri().split(""http://"")
        y =	x[1].split(""/"")
        url = y[0].split("":"")
        tacking_url = url[0]
    except:	
        tacking_url = '127.0.0.1'	
    computeinfrastructure = compute.readComputeConfig()
    
        
    
    ruuningSetting = running_setting()
    selected_use_case,ModelVersion,ModelStatus = getusercasestatus(request)
    status = 'SUCCESS'
    ser_url = service_url.read_service_url_params(request)
    hosturl =request.get_host()
    hosturl = hosturl.split(':')   
    hosturl = hosturl[0]
    packagetip='''
Call From Command Line
1. Click AION Shell
2. python {packageAbsolutePath}/aion_prediction.py {json_data}
Call As a Package
1. Go To package_path\WHEELfile
2. python -m pip install {packageName}-py3-none-any.whl
Call the predict function after wheel package installation
1. from {packageName} import aion_prediction as p1
2. p1.predict({json_data})'''	
    models = Existusecases.objects.filter(Status='SUCCESS').order_by('-id')
    usecase = usecasedetails.objects.all().order_by('-id')
    usecase = landing_page(usecasedetails,Existusecases,hosturl,usecaseId,search_text)   
    if len(usecase) > 0: 		
        nouc = usecasedetails.objects.latest('id')  
        nouc = (nouc.id)+1
        nouc = str(nouc).zfill(4)
    else:
        nouc = 1      		
        nouc = str(nouc).zfill(4)
    description_text = 'This is a usecase for AI' + str(nouc)
    context = {'description_text':description_text,'usecasedetail': usecase, 'nouc': nouc, 'models': models, 'selected_use_case': selected_use_case,'ser_url':ser_url,'packagetip':packagetip,'tacking_url':tacking_url,
                       'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion, 'selected': 'usecase','computeinfrastructure':computeinfrastructure,'computeinfrastructure':computeinfrastructure,'ruuningSetting':ruuningSetting}
    return status,context,'usecases.html'

def checkText(configPath):
    isText='False'
    with open(configPath) as config:
        data = json.load(config)
    for feature in data['advance']['profiler']['featureDict'] :
        if feature['type']=='text':
            isText = 'True';
            break;

    return isText
    
# For Task ID 12393
# For BUG ID 13161
def checkFE(configPath):    
    isFE = 'False'
    with open(configPath) as config:
        data = json.load(config)
    is_selection_method = data.get('advance', {}).get('selector', {}).get('selectionMethod', {}).get('featureEngineering','False')
    feature_dict= data.get('advance', {}).get('selector', {}).get('featureEngineering', {})
    if 'null' in feature_dict.keys():
        feature_dict.pop('null')
    if is_selection_method == 'True' or 'True' in list(feature_dict.values()):
        isFE = 'True'     
    return isFE   

def get_model(Existusecases,usercaseid,version=-1):
    from django.core import serializers
    if version == -1:
        models = Existusecases.objects.filter(ModelName=usercaseid).order_by('-id')
    else:
        models = Existusecases.objects.filter(ModelName=usercaseid,Version=version).order_by('-id')
    for model in models:
        model.scoringCreteria = 'NA'
        model.score = 'NA'
        model.deploymodel = 'NA'
        model.problemType = 'NA'
        model.maacsupport = 'False'    
        model.flserversupport = 'False'
        model.onlinelerningsupport = 'False'
        model.oltrainingdetails=''
        model.xplain = 'True'
        model.isText = 'False'        
        problemTypeNames = {'topicmodelling':'TopicModelling','anomalydetection':'AnomalyDetection'}
        if model.Status == 'SUCCESS':
            if os.path.isdir(str(model.DeployPath)):
                modelPath = os.path.join(str(model.DeployPath),'etc','output.json')
                try:	
                    with open(modelPath) as file:
                        outputconfig = json.load(file)
                    file.close()
                    if outputconfig['status'] == 'SUCCESS':
                        model.scoringCreteria = outputconfig['data']['ScoreType']
                        model.score = outputconfig['data']['BestScore']
                        model.deploymodel = outputconfig['data']['BestModel']
                        model.problemType = outputconfig['data']['ModelType']
                        if model.problemType in ['topicmodelling','anomalydetection']:
                            model.problemType = problemTypeNames[model.problemType]
                        model.featuresused = outputconfig['data']['featuresused']
                        model.targetFeature = outputconfig['data']['targetFeature']
                        if 'params' in outputconfig['data']:
                            model.modelParams = outputconfig['data']['params']
                        model.modelType = outputconfig['data']['ModelType']
                        model.isText = checkText(str(model.ConfigPath))
                        model.isFeatureEng = checkFE(str(model.ConfigPath))#task id 12393
                        model.dataPath =  os.path.join(str(model.DeployPath),'data', 'postprocesseddata.csv.gz')
                        mlacSupportedModel = [""Logistic Regression"",""Naive Bayes"",""Decision Tree"",""Random Forest"",
                        ""Support Vector Machine"",""K Nearest Neighbors"",""Gradient Boosting"",""Extreme Gradient Boosting (XGBoost)"",""Light Gradient Boosting (LightGBM)"",
                        ""Categorical Boosting (CatBoost)"",""Linear Regression"",""Lasso"",""Ridge"",""MLP"",""LSTM""]

                        if model.problemType.lower() in ['classification','regression','timeseriesforecasting']: #task 11997
                            if model.deploymodel in mlacSupportedModel:
                                model.maacsupport = 'True'
                        if model.problemType.lower() not in ['classification','regression']:
                            model.xplain = 'False'    
                        elif model in [""Neural Architecture Search""]:
                            model.xplain = 'False'    
                        model.flserversupport = 'False'
                        model.onlinelerningsupport = 'False'
                        supportedmodels = [""Logistic Regression"",""Neural Network"",""Linear Regression""]
                        if model.deploymodel in supportedmodels:
                            model.flserversupport = 'True'
                        else:
                            model.flserversupport = 'False'
                        supportedmodels = [""Extreme Gradient Boosting (XGBoost)""]
                        if model.deploymodel in supportedmodels:
                            model.encryptionsupport = 'True'
                        else:
                            model.encryptionsupport = 'False'                      
                        supportedmodels = [""Online Decision Tree Classifier"",""Online Logistic Regression"",""Online Linear Regression"",""Online Decision Tree Regressor"",""Online KNN Regressor"",""Online Softmax Regression"",""Online KNN Classifier""]
                        if model.deploymodel in supportedmodels:
                            model.onlinelerningsupport = 'True'
                            onlineoutputPath = os.path.join(str(model.DeployPath),'production','Config.json')
                            with open(onlineoutputPath) as file:
                                onlineoutputPath = json.load(file)
                            file.close()
                            details = {'Score' :onlineoutputPath['metricList'],'DataSize':onlineoutputPath['trainRowsList']}
                            dfonline = pd.DataFrame(details)
                            model.oltrainingdetails = dfonline
                        else:
                            model.onlinelerningsupport = 'False'    
                except Exception as e:   
                    print(e)
                    pass
            
    return models


def landing_page(usecasedetails,Existusecases,hosturl,usecaseId = None,search_text=None):
    
    sqlite_dbObj = sqlite_db(DEPLOY_DATABASE_PATH,'deploy.db')
    if usecaseId:
        usecase = usecasedetails.objects.filter(id=usecaseId)
        
    else:
        if search_text:
            usecase = usecasedetails.objects.filter(UsecaseName__contains=str(search_text)).order_by('-id')
        else:
            #usecase = usecasedetails.objects.all().order_by('-id')[:100]    #top 100 records
            usecase = usecasedetails.objects.all().order_by('-id')   #top 100 records
    usecaselist=[]

    if not usecaseId:
        for x in usecase:
            problemType= 'NA'
            publish_url = ''
            otherModel = {}
            models = Existusecases.objects.filter(Status='SUCCESS',publishStatus='Published',ModelName=x.id).order_by('-id')
            
            if len(models) > 0:
                #print(models[0])
                version = models[0].Version 
                if os.path.isdir(str(models[0].DeployPath)):
                    modelPath = os.path.join(str(models[0].DeployPath),'etc','output.json')
                    with open(modelPath) as file:
                        outputconfig = json.load(file)
                    problemType = outputconfig['data']['ModelType']
                #print(problemType.lower())
                if problemType.lower() == ""llm fine-tuning"":
                    cloudconfig = os.path.normpath(
                        os.path.join(os.path.dirname(os.path.abspath(__file__)), '..', 'config', 'compute_conf.json'))
                    print(cloudconfig)
                    from appbe.models import get_instance
                    hypervisor,instanceid,region,image,status = get_instance(x.usecaseid+ '_' + str(version))
                    from llm.llm_inference import get_ip
                    instanceip = get_ip(cloudconfig,instanceid,hypervisor,region,image)   #usnish__ server maynot running
                    if instanceip != '':
                        publish_url = 'http://' + instanceip + ':' + '8000' + '/generate'
                    else:
                        publish_url = 'service not available'
                else:
                    publish_url = 'http://'+hosturl+':'+str(models[0].portNo)+'/AION/'+x.usecaseid+'/predict'
                publish_status = 'Published'
                #publish_url = 'http://'+hosturl+':'+str(models[0].portNo)+'/AION/'+x.usecaseid+'/predict'
                parentModel = get_model(Existusecases,x.id,int(version))
            else:
                models = Existusecases.objects.filter(Status='SUCCESS',ModelName=x.id).order_by('-id')
                if len(models) > 0:
                    publish_status = 'Trained'
                    version = models[0].Version
                    parentModel = get_model(Existusecases,x.id,int(version))
                else:
                    models = Existusecases.objects.filter(ModelName=x.id).order_by('-id')
                    if len(models)==0:
                        publish_status= 'Not Trained'
                        version = -1   
                    else:
                        if models[0].Status == 'FAIL':
                            publish_status= 'Failed'
                        elif models[0].Status == 'Running':
                            publish_status = 'Running'
                        else:
                            publish_status='Not Trained'
                            
                        problemType = models[0].ProblemType
                        version = models[0].Version
                    parentModel={}
            usecasedetails = {'uuid':x.id,'description':x.Description,'usecaseid':x.usecaseid,'usecase':x.UsecaseName,'status':publish_status,'publish_url':publish_url,'version':version,'parentModel':parentModel,'otherModel':otherModel,'problemType':problemType}
            usecaselist.append(usecasedetails)
    else:
        for x in usecase:
            otherModel = get_model(Existusecases,x.id)
            problemType = otherModel[0].problemType
            usecasedetails = {'uuid':x.id,'description':x.Description,'usecase':x.UsecaseName,'status':'','version':'','parentModel':{},'otherModel':otherModel,'problemType':problemType}
            usecaselist.append(usecasedetails) 
    
    return usecaselist
def get_landing_model(Existusecases):
        models = Existusecases.objects.filter(Status='SUCCESS').order_by('-id')
        for model in models:
            model.scoringCreteria = 'NA'
            model.score = 'NA'
            model.deploymodel = 'NA'
            if os.path.isdir(str(model.DeployPath)):
                modelPath = os.path.join(str(model.DeployPath),'etc','output.json')
                try:	
                    with open(modelPath) as file:
                        outputconfig = json.load(file)
                    file.close()
                    if outputconfig['status'] == 'SUCCESS':
                        model.scoringCreteria = outputconfig['data']['ScoreType']
                        model.score = outputconfig['data']['BestScore']
                        model.deploymodel = outputconfig['data']['BestModel']
                        model.problemType = outputconfig['data']['ModelType']
                        model.maacsupport = 'True'
                        model.flserversupport = 'False'
                        model.onlinelerningsupport = 'False'
                        supportedmodels = [""Logistic Regression"",""Neural Network"",""Linear Regression""]
                        if model.deploymodel in supportedmodels:
                            model.flserversupport = 'True'
                        else:
                            model.flserversupport = 'False'
                        supportedmodels = [""Extreme Gradient Boosting (XGBoost)""]
                        if model.deploymodel in supportedmodels:
                            model.encryptionsupport = 'True'
                        else:
                            model.encryptionsupport = 'False'                        
                        supportedmodels = [""Online Decision Tree Classifier"",""Online Logistic Regression""]
                        if model.deploymodel in supportedmodels:
                            model.onlinelerningsupport = 'True'
                            onlineoutputPath = os.path.join(str(model.DeployPath),'production','Config.json')
                            with open(onlineoutputPath) as file:
                                onlineoutputPath = json.load(file)
                            file.close()
                            details = {'Score' :onlineoutputPath['metricList'],'DataSize':onlineoutputPath['trainRowsList']}
                            dfonline = pd.DataFrame(details)
                            model.oltrainingdetails = dfonline
                        else:
                            model.onlinelerningsupport = 'False'    
                except Exception as e:    
                    pass
        return models

def usecase_page(request,usecasedetails,Existusecases,usecaseid,search_text):
    
    try:
        from appbe import read_service_url_params
        tacking_url = read_service_url_params(request)
    except:	
        tacking_url = '127.0.0.1'	
    hosturl =request.get_host()
    hosturl = hosturl.split(':')   
    hosturl = hosturl[0]
    computeinfrastructure = compute.readComputeConfig()  
    from appbe.aion_config import settings
    usecasetab = settings()
    kafkaSetting = kafka_setting()
    ruuningSetting = running_setting()
    selected_use_case,ModelVersion,ModelStatus = getusercasestatus(request)
    status,msg = pushRecordForTraining()
    if status == False:
        context = {'msg':msg}
        context['selected'] = 'License'
        return status,context,'licenseexpired.html'
    ser_url = service_url.read_service_url_params(request)
    packagetip='''
Call From Command Line
1. Click AION Shell
2. python {packageAbsolutePath}/aion_predict.py {json_data}
Call As a Package
1. Go To package_path\publish\package
2. python -m pip install {packageName}-py3-none-any.whl
Call the predict function after wheel package installation
1. from {packageName} import aion_predict as p1
2. p1.predict({json_data})'''
    if request.method == ""POST"":
        usecasename = request.POST.get('UsecaseName')
        description = request.POST.get('Description')
        usecaseid = request.POST.get('usecaseid')
        #print('1',usecasename)
        if (usecasename == ''):
            
            usecase = landing_page(usecasedetails,Existusecases,hosturl)
            if len(usecase) > 0: 		
                nouc = usecasedetails.objects.latest('id')  
                nouc = (nouc.id)+1
            else:
                nouc = 1
            nouc = str(nouc).zfill(4)
            description_text = 'This is a usecase for AI' + str(nouc)
            context = {'description_text':description_text,'usecase':'usecase','Notallowed':'Usecasename is mandatory','ser_url':ser_url,'packagetip':packagetip,'usecasedetail': usecase,'nouc':nouc, 'ser_url':ser_url,'packagetip':packagetip, 'selected_use_case': selected_use_case, 'ModelStatus': ModelStatus,'tacking_url':tacking_url,'usecasetab':usecasetab,
                           'ModelVersion': ModelVersion, 'selected': 'usecase','computeinfrastructure':computeinfrastructure,'kafkaSetting':kafkaSetting,'ruuningSetting':ruuningSetting}
            return status,context,'usecases.html'
        else:
            usecase_count = usecasedetails.objects.filter(usecaseid=usecaseid).count()
            usecasename_count = usecasedetails.objects.filter(UsecaseName=usecasename).count()
            usecase = landing_page(usecasedetails,Existusecases,hosturl)
            
            
                        
            if (usecase_count > 0) or (usecasename_count > 0):
                
                nouc = usecasedetails.objects.latest('id')  
                nouc = (nouc.id)+1
                nouc = str(nouc).zfill(4)
                Msg = 'Error in usecase creating, try again'
                if usecase_count > 0:
                    Msg = 'Error in usecase creating, try again'
                if usecasename_count > 0:
                    Msg = 'There is already a use case with same name, please provide unique name'
                description_text = 'This is a usecase for AI' + str(nouc)
                context = {'description_text':description_text,'usecasedetail': usecase, 'nouc': nouc,'Status':'error','Msg': Msg,'tacking_url':tacking_url,'usecasetab':usecasetab,'selected_use_case': selected_use_case, 'ModelStatus': ModelStatus,'ser_url':ser_url,'packagetip':packagetip,
                               'ModelVersion': ModelVersion, 'selected': 'usecase','computeinfrastructure':computeinfrastructure,'kafkaSetting':kafkaSetting,'ruuningSetting':ruuningSetting}
                return status,context,'usecases.html'
                
            else:
                clusteringModels = Existusecases.objects.filter(Status='SUCCESS',ProblemType='unsupervised').order_by('-id')
                from appbe.s3bucketsDB import get_s3_bucket
                from appbe.gcsbucketsDB import get_gcs_bucket
                from appbe.azureStorageDB import get_azureStorage
                p = usecasedetails(UsecaseName=usecasename,usecaseid=usecaseid,Description=description)
                p.save()
                s1 = Existusecases.objects.filter(ModelName=p.id).annotate(maxver=Max('ModelName__existusecases__Version'))
                config_list = s1.filter(Version=F('maxver'))
                if config_list.count() > 0:
                    Version = config_list[0].Version
                    Version = Version + 1
                else:
                    Version = 1                
                ps = Existusecases(DataFilePath='', DeployPath='', Status='Not Trained',ConfigPath='', Version=Version, ModelName=p,TrainOuputLocation='')
                ps.save()
                request.session['ModelName'] = p.id
                request.session['UseCaseName'] = usecasename
                request.session['usecaseid'] = usecaseid
                request.session['ModelVersion'] = Version
                request.session['ModelStatus'] = 'Not Trained'
                request.session['currentstate'] = 0
                request.session['finalstate'] = 0
                selected_use_case = usecasename
                model_status = 'Not Trained'
                ModelVersion = Version
                from appbe.telemetry import UseCaseCreated
                UseCaseCreated(usecaseid+'-'+str(Version))
                if len(usecase) > 0:
                    nouc = usecasedetails.objects.latest('id')  
                    nouc = (nouc.id)+1
                else:
                    nouc = 1
                nouc = str(nouc).zfill(4)
                description_text = 'This is a usecase for AI' + str(nouc)
                context = {'description_text':description_text,'usecasedetail': usecase, 'nouc': nouc, 'newusercase': usecasename,'tacking_url':tacking_url,'finalstate':request.session['finalstate'],
                               'description': description,'selected_use_case': selected_use_case,'ser_url':ser_url,'packagetip':packagetip,'clusteringModels':clusteringModels,'s3buckets':get_s3_bucket(),'gcsbuckets':get_gcs_bucket(),'usecasetab':usecasetab,'azurestorage':get_azureStorage(),
                             'ModelStatus': model_status, 'ModelVersion': ModelVersion, 'selected': 'modeltraning','computeinfrastructure':computeinfrastructure}
                return status,context,'upload.html'
    else:


        models = get_landing_model(Existusecases)

        usecase = landing_page(usecasedetails,Existusecases,hosturl,usecaseid,search_text)
        if len(usecase) > 0: 		
            nouc = usecasedetails.objects.latest('id')  
            nouc = (nouc.id)+1
        else:
            nouc = 1
        nouc = str(nouc).zfill(4)
        description_text = 'This is a usecase for AI' + str(nouc)
        context = {'description_text':description_text,'usecasedetail': usecase, 'nouc': nouc, 'models': models, 'selected_use_case': selected_use_case,'ser_url':ser_url,'packagetip':packagetip,'tacking_url':tacking_url,'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion, 'selected': 'usecase','computeinfrastructure':computeinfrastructure,'kafkaSetting':kafkaSetting,'ruuningSetting':ruuningSetting,'usecasetab':usecasetab}
        if usecaseid:
            context.update({'ucdetails':'True'})
        return status,context,'usecases.html'
        
def index_page(request,usecasedetails,Existusecases):
    if 'ModelVersion' in request.session:
        del request.session['ModelVersion']
    if 'UseCaseName' in request.session:
        del request.session['UseCaseName']
    if 'ModelStatus' in request.session:
        del request.session['ModelStatus']
    if 'currentstate' in request.session:
        del request.session['currentstate']
    if 'finalstate' in request.session:
        del request.session['finalstate']
    return usecases_page(request,usecasedetails,Existusecases)

def usecases_page(request,usecasedetails,Existusecases,usecaseid=None,substring=None):
    return usecase_page(request,usecasedetails,Existusecases,usecaseid,substring)

def mllite_page(request):
    from appbe.aion_config import settings
    usecasetab = settings()
    status,msg = pushRecordForTraining()
    if status == False:
        context = {'selected':'mllite','lerror':msg}
        return context
    configFile = os.path.join(DEFAULT_FILE_PATH, 'model_converter.json')
    f = open(configFile, ""r"")
    configSettings = f.read()
    f.close()
    configSettingsJson = json.loads(configSettings) 
    context = {}
    context = {'selected':'mllite','sagemaker':configSettingsJson,'usecasetab':usecasetab}
    return context
def mltesting_page(request):
    from appbe.aion_config import settings
    usecasetab = settings()   
    status,msg = pushRecordForTraining()
    if status == False:
        context = {'lerror':msg}
        return context
    if request.method == ""POST"":
        models = request.POST['model']
        datap = request.POST['data']
        if(os.path.isfile(models) and os.path.isfile(datap)):
            request.session['datalocation'] = datap
            df = pd.read_csv(datap,encoding='utf-8',skipinitialspace = True,encoding_errors= 'replace')
            trainfea = df.columns.tolist()
            featurs = request.POST.getlist('Training')
            feature = "","".join(featurs)
            filetimestamp = str(int(time.time()))
            settingconfig = os.path.join(CONFIG_FILE_PATH, 'MLTest_' + filetimestamp + '.json')
            request.session['MLTestResult'] = settingconfig
            mltestresult={}
            mltestresult['models'] = models
            mltestresult['datap'] = datap
            mltestresult['feature'] = feature
            # features = ['PetalLengthCm','PetalWidthCm']
            targ = request.POST['Target']
            tar =[targ]
            mltestresult['target'] = targ
            mltestresult = json.dumps(mltestresult)
            with open(settingconfig, ""w"") as fpWrite:
                fpWrite.write(mltestresult)
            fpWrite.close()
            from pathlib import Path
            mltest={}
            if Path(models).is_file() and Path(datap).is_file():
                try:
                    from mltest import baseline
                    outputStr = baseline.baseline_testing(models,datap, feature, targ)
                    #scriptPath = os.path.normpath(os.path.join(os.path.dirname(os.path.abspath(__file__)), '..', '..','bin','run_mltest.py'))
                    #print(scriptPath, models, datap, feature, targ)
                    #outputStr = subprocess.check_output([sys.executable, scriptPath, models, datap, feature, targ])
                    #print(outputStr)
                    #outputStr = outputStr.decode('utf-8')
                    #outputStr= outputStr.replace('\'','\""')
                    #print('ou',outputStr)
                    #outputStr = outputStr.strip()
                    mltest = json.loads(outputStr)
                    Problemtype= mltest['Problemtype']
                    with open(request.session['MLTestResult'], 'r+') as f:
                        mltestresult = json.load(f)
                    f.close()
                    mltestresult['Problemtype'] = Problemtype
                    mltestresult['ProblemName'] = mltest['ProblemName']
                    status = mltest['Status']
                    if status == 'Fail':
                        errormsg= mltest['Msg']
                        context = {'error':errormsg,'mltest':'mltest'}
                    else:        
                        if Problemtype == 'Classification':
                            mltestresult['Score'] = mltest['Accuracy']
                            mltestresult['Params'] = mltest['Params']
                            Problem= mltest['ProblemName']
                            Parameters= mltest['Params']
                            round_params = {}
                            for key, value in Parameters.items():
                                if isinstance(value, float):
                                    round_params[key] = round(value,2)
                                else:
                                    round_params[key] = value
                            matrixconfusion = mltest['Confusionmatrix']
                            classificationreport =  mltest['classificationreport']
                            classificationreport = json.loads(classificationreport)
                            matrixconfusion = json.loads(matrixconfusion)
                            indexName =[]
                            columnName = []
                            for i in matrixconfusion.keys():
                            
                                indexName.append(""act:""+str(i))
                            
                            for j in matrixconfusion[i].keys():
                            
                                columnName.append(""pre:""+str(j))
                            df3 = pd.DataFrame.from_dict(classificationreport)
                            df = df3.transpose()
                            df2 = pd.DataFrame.from_dict(matrixconfusion)
                            df1 = pd.DataFrame(df2.values,index=indexName,columns=columnName)
                            report = df.to_html()
                            report1 = df1.to_html()
                            recordone = mltest['onerecord']
                            recordsten = mltest['tenrecords']
                            recordshund = mltest['hundrecords']
                            context = {'modelname': models,'datapath':datap,'features':featurs,'target':tar,'Problemtype':Problem,'modeltype':Problemtype,'Parameter':round_params,'Onerecord':recordone,'Tenrecords':recordsten,'Hundrecords':recordshund,'matrixconfusion':report1,'classificationreport':report,'classification':'classification','df':df,'df1':df1,'basemltest':'basemltest','success':'success','trainfea':trainfea,'selected':'mltesting','usecasetab':usecasetab}
                    
                        elif Problemtype == 'Regression':
                            Problem= mltest['ProblemName']
                            mltestresult['Params'] = mltest['Params']                            
                            mltestresult['Score'] = mltest['R2']
                            Parameters= mltest['Params']
                            round_params = {}
                            for key, value in Parameters.items():
                                if isinstance(value, float):
                                    round_params[key] = round(value,2)
                                else:
                                    round_params[key] = value
                            Mse = mltest['MSE']
                            Mae = mltest['MAE']
                            Rmse = mltest['RMSE']
                            R2 = mltest['R2']           
                            recordone = mltest['onerecord']
                            recordsten = mltest['tenrecords']
                            recordshund = mltest['hundrecords']
                            context = {'modelname': models,'datapath':datap,'features':featurs,'target':tar,  'Problemtype':Problem,'Parameter':round_params,'Onerecord':recordone,'Tenrecords':recordsten,'Hundrecords':recordshund,'Mse':Mse,'Mae':Mae,'Rmse':Rmse,'R2Score':R2,'regression':'regression','success':""success"",'selected': 'mltest','basemltest':'basemltest','usecasetab':usecasetab}
                        else:
                           errormsg= mltest['Msg']
                           context = {'error':errormsg,'mltest':'mltest'} 
                           
                        
                        mltestresult = json.dumps(mltestresult)
                        with open(settingconfig, ""w"") as fpWrite:
                            fpWrite.write(mltestresult)
                        fpWrite.close()    
                except Exception as e:
                    print(""-------------""+str(e)+'=================')
                    e = str(e).replace('\'','')
                    errormsg = 'Error: Exception '+str(e)
                    context = {'error':errormsg,'mltest':'mltest'}
            else:
                if not (Path(models).is_file() and Path(datap).is_file()):
                    context = {'error':""Please Check ModelPath & Datapath Format"",""result"":""result"",'selected':'mltesting','usecasetab':usecasetab}
                elif not Path(models).is_file():
                    context = {'error':""Please Check ModelPath Format"",""result"":""result"",'selected':'mltesting','usecasetab':usecasetab}
                elif not Path(datap).is_file():
                    context = {'error':""Please Check DataPath Format"",""result"":""result"",'selected':'mltesting','usecasetab':usecasetab}
        else:
            context = {'error':'Either model path or data path does not exist','mltest':'mltest','usecasetab':usecasetab}
    else:
        context = {'selected':'mltesting','usecasetab':usecasetab}
    return context"
aion_config.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import os,sys
import json
import platform
import subprocess
def kafka_setting():
    file_path = os.path.abspath(os.path.join(os.path.dirname(__file__),'..','config','kafkaConfig.conf'))
    f = open(file_path, ""r"")
    configSettings = f.read()
    f.close()
    configSettingsJson = json.loads(configSettings)
    from os.path import expanduser
    home = expanduser(""~"")
    if platform.system() == 'Windows':
        DEPLOY_LOCATION = os.path.join(home,'AppData','Local','HCLT','AION','target','kafka')
    else:
        DEPLOY_LOCATION = os.path.join(home,'HCLT','AION','target','kafka')
    configSettingsJson['kafkalocation'] = DEPLOY_LOCATION
    return(configSettingsJson)

def start_tracking():
    from appbe.dataPath import DEPLOY_LOCATION    
    import platform
    mlflowpath = os.path.normpath(os.path.join(os.path.dirname(__file__),'..','..','..','..','Scripts','mlflow.exe'))
    script_path = os.path.normpath(os.path.join(os.path.dirname(__file__),'..','..','..','..','Scripts')) 
    #Updating path for system environment; Bug-13835
    os.environ['PATH']= os.environ['PATH']+ ';'+ str(script_path) 
    DEPLOY_LOCATION = os.path.join(DEPLOY_LOCATION,'mlruns')
    if platform.system() == 'Windows':
        subprocess.Popen([sys.executable, mlflowpath,""ui"", ""--backend-store-uri"",""file:///""+DEPLOY_LOCATION])
    else:
        subprocess.Popen(['mlflow',""ui"",""-h"",""0.0.0.0"",""--backend-store-uri"",""file:///""+DEPLOY_LOCATION])

def aion_tracking():
    status = 'Success'
    import requests
    try:
        response = requests.get('http://localhost:5000')
        if response.status_code != 200:
           status = 'Error'
    except Exception as inst:
        print(inst)     
        status = 'Error'
    return status
    
def aion_service():
    try:
        if platform.system() == 'Windows':
            nooftasks = getrunningstatus('AION_Service')
        else:
            nooftasks = getrunningstatus('run_service') 		
        if len(nooftasks):
            status = 'Running'
        else:
            if platform.system() == 'Windows':
                servicepath = os.path.normpath(os.path.join(os.path.dirname(os.path.abspath(__file__)),'..','sbin','AION_Service.bat'))			
                os.system('start cmd /c ""'+servicepath+'""')
            else:
                servicepath = os.path.normpath(os.path.join(os.path.dirname(os.path.abspath(__file__)),'..','bin','run_service.py'))
                subprocess.Popen([sys.executable,servicepath])
            status = 'Started'
    except Exception as inst:
        print(inst)
        status = 'Error'
    return status
    
   
def getrunningstatus(name):
    try:
        taskdetails = []
        if platform.system() == 'Windows':
            r = ([line.split() for line in subprocess.check_output('tasklist /v /FI ""IMAGENAME eq conhost.exe""').decode('UTF-8').splitlines()])
            r.append([line.split() for line in subprocess.check_output('tasklist /v /FI ""IMAGENAME eq cmd.exe""').decode('UTF-8').splitlines()])
        else:
            r = ([line.split() for line in subprocess.check_output(""ps -ef | grep .py"",shell=True).decode('UTF-8').splitlines()])
        for i in range(len(r)):
            s = r[i]
            if any(name in j for j in s):    
                taskdetails.append('Yes')
                break
        return (taskdetails)
    except Exception as inst:
        print(inst)
        status = 'Error'
    return status        
def getTasks(mlflow,consumer,service):
    mlflowlist = []
    consumerlist=[]
    servicelist = []
    #r = os.popen('tasklist /v').read().strip().split('\n')
    try:
        if platform.system() == 'Windows':
            r = ([line.split() for line in subprocess.check_output('tasklist /v /FI ""IMAGENAME eq conhost.exe""').decode('UTF-8').splitlines()])
            r.append([line.split() for line in subprocess.check_output('tasklist /v /FI ""IMAGENAME eq cmd.exe""').decode('UTF-8').splitlines()])
        else:
            r = ([line.split() for line in subprocess.check_output(""ps -ef | grep .py"",shell=True).decode('UTF-8').splitlines()])
    except Exception as e:
        print(e)
        r = []
        
    #print(r)
    #print ('# of tasks is %s' % (len(r)))
    for i in range(len(r)):
        s = r[i]
        if any(mlflow in j for j in s):
            mlflowlist.append('Yes')
        if any(consumer in j for j in s):
            consumerlist.append('Yes')
        if any(service in j for j in s):
            servicelist.append('Yes')        
    return (mlflowlist,consumerlist,servicelist)

def running_setting():
    otherApps = {}
    if platform.system() == 'Windows':
        mlflowlist,consumerlist,servicelist = getTasks('AION_MLFlow','AION_Consumer','AION_Service')
    else:
        mlflowlist,consumerlist,servicelist = getTasks('run_mlflow','AION_Consumer','run_service')	
    if len(mlflowlist):
        otherApps['modeltracking'] = 'Running'
    else:        
        otherApps['modeltracking'] = 'Not Running'
        
    #nooftasks = getTasks('AION_Consumer')
    if len(consumerlist):
        otherApps['consumer'] = 'Running'
    else:        
        otherApps['consumer'] = 'Not Running'        

    #nooftasks = getTasks('AION_Service')
    if len(servicelist):
        otherApps['service'] = 'Running'
    else:        
        otherApps['service'] = 'Not Running'
    return(otherApps)


#EDA Performance change
# ----------------------------
def eda_setting():
    configfilepath = os.path.join(os.path.dirname(os.path.abspath(__file__)),'..','config','eda.config')
    sample_size=''
    try:
        if(os.path.isfile(configfilepath)):
            file = open(configfilepath, ""r"")
            read = file.read()
            file.close()
            for line in read.splitlines():
                if 'sample_size=' in line:
                    sample_size = line.split('=',1)[1] 
    except Exception as inst:
        pass    
    return(sample_size)
def get_telemetryoptout():
    telemetryoptuout = ""No""
    from appbe.sqliteUtility import sqlite_db
    from appbe.dataPath import DATA_DIR
    file_path = os.path.join(DATA_DIR, 'sqlite')
    sqlite_obj = sqlite_db(file_path, 'config.db')
    try:
        if sqlite_obj.table_exists('settings'):
            data = sqlite_obj.read_data('settings')
            for values in data:
                telemetryoptuout = values[7]
 
        else:
            telemetryoptuout = 'No'
    except Exception as e:
        print(e)
        telemetryoptuout ='No'
    return telemetryoptuout    
def get_edafeatures():
    No_of_Permissible_Features_EDA = """"
    from appbe.sqliteUtility import sqlite_db
    from appbe.dataPath import DATA_DIR
    file_path = os.path.join(DATA_DIR, 'sqlite')
    sqlite_obj = sqlite_db(file_path, 'config.db')
    try:
        if sqlite_obj.table_exists('settings'):
            data = sqlite_obj.read_data('settings')
            for values in data:
                No_of_Permissible_Features_EDA = values[3]
 
        else:
            configfilepath = os.path.join(os.path.dirname(os.path.abspath(__file__)), '..', 'config', 'aion.config')
            if (os.path.isfile(configfilepath)):
                file = open(configfilepath, ""r"")
                read = file.read()
                file.close()
                for line in read.splitlines():
                    if 'No_of_Permissible_Features_EDA=' in line:
                        No_of_Permissible_Features_EDA = line.split('=', 1)[1]
    except Exception as e:
        print(e)
        No_of_Permissible_Features_EDA =20
    return No_of_Permissible_Features_EDA
    
def get_graviton_data():
    graviton_url = """"
    graviton_userid = """"

    from appbe.sqliteUtility import sqlite_db
    from appbe.dataPath import DATA_DIR
    
    file_path = os.path.join(DATA_DIR, 'sqlite')
    sqlite_obj = sqlite_db(file_path, 'config.db')
    try:
        if sqlite_obj.table_exists('settings'):
            data = sqlite_obj.read_data('settings')
            for values in data:
                graviton_url = values[0]
                graviton_userid = values[1]

        else:
            configfilepath = os.path.join(os.path.dirname(os.path.abspath(__file__)), '..', 'config', 'aion.config')
            if (os.path.isfile(configfilepath)):
                file = open(configfilepath, ""r"")
                read = file.read()
                file.close()
                for line in read.splitlines():
                    if 'graviton_url=' in line:
                        graviton_url = line.split('=', 1)[1]
                    if 'graviton_userid=' in line:
                        graviton_userid = line.split('=', 1)[1]

    except Exception as e:
        print(e)
        graviton_url = """"
        graviton_userid = """"
    return graviton_url,graviton_userid


def get_llm_data():
    apiKeyIdLLM = """"
    apiUrlLLM = """"
    from appbe.sqliteUtility import sqlite_db
    from appbe.dataPath import DATA_DIR
    
    file_path = os.path.join(DATA_DIR, 'sqlite')
    sqlite_obj = sqlite_db(file_path, 'config.db')
    try:
        if sqlite_obj.table_exists('openai'):
            data = sqlite_obj.read_data('openai')[0]
            param_keys = ['api_type','api_key','api_base','api_version']
            openai_data = dict((x,y) for x,y in zip(param_keys,data))                                
            return  openai_data['api_key'],openai_data['api_base'],openai_data['api_type'],openai_data['api_version']    
    except Exception as e:
        print(e)
        apiKeyIdLLM = """"
        apiUrlLLM = """"
    return apiKeyIdLLM,apiUrlLLM,"""",""""
    
    

def settings():
    configfilepath = os.path.join(os.path.dirname(os.path.abspath(__file__)),'..','config','aion.config')
    usecase='disable'
    graviton_url = ''
    graviton_userid = ''
    apiKeyIdLLM = '' 
    apiUrlLLM = ''         
    No_of_Permissible_Features_EDA = ''
    try:
        from appbe.sqliteUtility import sqlite_db
        import pandas as pd
        from appbe.dataPath import DATA_DIR
        file_path = os.path.join(DATA_DIR, 'sqlite')
        sqlite_obj = sqlite_db(file_path, 'config.db')
        if sqlite_obj.table_exists('settings'):        
            column_names = sqlite_obj.column_names('settings')
            data = sqlite_obj.read_data('settings')
            if 'telemetryOptOut' not in column_names:
                query = 'Alter Table settings ADD telemetryOptOut TEXT'
                sqlite_obj.execute_query(query)
                
            if 'No_of_Permissible_Features_EDA' not in column_names or 'apiKeyIdLLM' not in column_names:
                sqlite_obj.drop_table('settings')
                configfilepath = os.path.join(os.path.dirname(os.path.abspath(__file__)), '..', 'config', 'aion.config')
                file = open(configfilepath, ""r"")
                dataread = file.read()
                for line in dataread.splitlines():    
                    if 'usecase=' in line:
                        cusecase = line.split('=', 1)[1]
                    if 'graviton_url=' in line:
                        cgraviton_url = line.split('=', 1)[1]
                    if 'graviton_userid=' in line:
                        cgraviton_userid = line.split('=', 1)[1]
                    if 'No_of_Permissible_Features_EDA=' in line:
                        cNo_of_Permissible_Features_EDA = line.split('=', 1)[1]
                    if 'apiKeyIdLLM=' in line:
                        capiKeyIdLLM = ''
                    if 'apiUrlLLM=' in line:
                        capiUrlLLM = ''
                file.close()
                if 'apiKeyIdLLM' not in column_names:
                    apiKeyIdLLM = capiKeyIdLLM
                if 'apiUrlLLM' not in column_names:
                    apiUrlLLM = capiUrlLLM
                if 'No_of_Permissible_Features_EDA' not in column_names:
                    No_of_Permissible_Features_EDA = cNo_of_Permissible_Features_EDA                    
                newdata = {}
                newdata.update({'graviton_url':[data[0][0]],'graviton_userid': [data[0][1]],'usecase': [data[0][2]],'No_of_Permissible_Features_EDA':[No_of_Permissible_Features_EDA],'settingsid':['1'],'apiKeyIdLLM' :apiKeyIdLLM,'apiUrlLLM':apiUrlLLM,'telemetryOptOut':telemetryOptOut})
                sqlite_obj.write_data(pd.DataFrame.from_dict(newdata),'settings')
                data = sqlite_obj.read_data('settings')
            for values in data:                
                graviton_url = values[0]
                graviton_userid = values[1]
                usecase = values[2]
                No_of_Permissible_Features_EDA = values[3]
                telemetryOptOut = values[7]
        else:
            configfilepath = os.path.join(os.path.dirname(os.path.abspath(__file__)), '..', 'config', 'aion.config')
            if (os.path.isfile(configfilepath)):
                file = open(configfilepath, ""r"")
                read = file.read()
                file.close()
                apiKeyIdLLM = ''
                apiUrlLLM = ''
                for line in read.splitlines():    
                    if 'usecase=' in line:
                        usecase = line.split('=', 1)[1]
                    if 'graviton_url=' in line:
                        graviton_url = line.split('=', 1)[1]
                    if 'graviton_userid=' in line:
                        graviton_userid = line.split('=', 1)[1]
                    if 'No_of_Permissible_Features_EDA=' in line:
                        No_of_Permissible_Features_EDA = line.split('=', 1)[1]
                newdata = {}
                newdata.update({'graviton_url':[graviton_url],'graviton_userid': [graviton_userid],'usecase': [usecase],'No_of_Permissible_Features_EDA':[No_of_Permissible_Features_EDA],'settingsid':['1'],'apiKeyIdLLM' :'','apiUrlLLM':'','telemetryOptOut':['No']})
                # --------else create table and update the data, write data will create a table if it does nt exists-----
                sqlite_obj.write_data(pd.DataFrame.from_dict(newdata),'settings')
        return(usecase)
    except Exception as e:
        print(e)
        configfilepath = os.path.join(os.path.dirname(os.path.abspath(__file__)),'..','config','aion.config')
        try:
            if(os.path.isfile(configfilepath)):
                file = open(configfilepath, ""r"")
                read = file.read()
                file.close()
                for line in read.splitlines():
                    if 'usecase=' in line:
                        usecase = line.split('=',1)[1]
                    if 'graviton_url=' in line:
                        graviton_url = line.split('=',1)[1]
                    if 'graviton_userid=' in line:
                        graviton_userid = line.split('=',1)[1]
                    if 'No_of_Permissible_Features_EDA=' in line:
                        No_of_Permissible_Features_EDA = line.split('=', 1)[1]
                    if 'apiKeyIdLLM=' in line:
                        apiKeyIdLLM = line.split('=', 1)[1]                                                
                    if 'apiUrlLLM=' in line:
                        apiUrlLLM = line.split('=', 1)[1]                                                                                                
        except Exception as inst:
            pass
        external_system = 'enable'
        semantico = 'enable'
        return(usecase)


def addKafkaModel(request,datalocation):
    file_path = os.path.abspath(os.path.join(os.path.dirname(__file__),'..','config','kafkaConfig.conf'))
    f = open(file_path, ""r+"")
    configSettings = f.read()
    configSettingsJson = json.loads(configSettings)
    modelSignature = request.POST.get('modelsignature')
    timeframe = request.POST.get('timeframe')
    command = request.POST.get('kafkasubmit')
    if command.lower() == 'configure':
        configSettingsJson['timeFrame'][modelSignature] = str(timeframe)
        configSettingsJson['trainingDataLocation'][modelSignature] = datalocation
    elif command.lower() == 'unconfigure':
        del configSettingsJson['timeFrame'][modelSignature]    
    updatedConfigSettingsJson = json.dumps(configSettingsJson)
    f.seek(0)
    f.write(updatedConfigSettingsJson)
    f.truncate()
    f.close()

def saveopenaisettings(request):
    try:
        from appbe.sqliteUtility import sqlite_db
        from appbe.dataPath import DATA_DIR
        import pandas as pd
        file_path = os.path.join(DATA_DIR, 'sqlite')
        sqlite_obj = sqlite_db(file_path, 'config.db')
        if sqlite_obj.table_exists('openai'):        
            updated_data = 'api_type=""'+request.POST.get('api_type')+'"",api_key=""'+request.POST.get('apiKeyIdLLM')+'"",api_base=""'+request.POST.get('apiUrlLLM')+'"",api_version=""'+request.POST.get('api_version')+'""'
            sqlite_obj.update_data(updated_data,'','openai')
        else:
            newdata = {}
            newdata.update({'api_type':['azure'],'api_key': [request.POST.get('apiKeyIdLLM')],'api_base': [request.POST.get('apiUrlLLM')],'api_version':[request.POST.get('api_version')]})
            sqlite_obj.write_data(pd.DataFrame.from_dict(newdata),'openai')
    except Exception as e:
        print(e)

def savegravitonconfig(request):
    try:
        from appbe.sqliteUtility import sqlite_db
        from appbe.dataPath import DATA_DIR
        import pandas as pd
        file_path = os.path.join(DATA_DIR, 'sqlite')
        sqlite_obj = sqlite_db(file_path, 'config.db')
        updated_data = 'graviton_url=""'+request.POST.get('graviton_url')+'"",graviton_userid=""'+request.POST.get('graviton_userid')+'""'
        sqlite_obj.update_data(updated_data,'settingsid=1','settings')
    except Exception as e:
        print(e)
def saveconfigfile(request):
    try:
        from appbe.sqliteUtility import sqlite_db
        from appbe.dataPath import DATA_DIR
        import pandas as pd
        file_path = os.path.join(DATA_DIR, 'sqlite')
        sqlite_obj = sqlite_db(file_path, 'config.db')
        updated_data = 'usecase=""'+request.POST.get('usecasetab')+'"",No_of_Permissible_Features_EDA=""'+request.POST.get('edefeatures')+'"",telemetryOptOut=""'+request.POST.get('telemetryOptOut')+'""'
        print(updated_data)
        sqlite_obj.update_data(updated_data,'settingsid=1','settings')
        return request.POST.get('usecasetab')
    except Exception as e:
        print(e)"
reports.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import pandas as pd
import numpy as np
import json
import os

def downloadtrainingfile(request,Existusecases):
    usename = request.session['UseCaseName'].replace("" "", ""_"") + '_' + str(request.session['ModelVersion'])
    updatedConfigFile = request.session['config_json']
    f = open(updatedConfigFile, ""r+"", encoding=""utf-8"")
    configSettingsData = f.read()
    configSettingsJson = json.loads(configSettingsData)
    modelName = request.session['UseCaseName']
    modelVersion = request.session['ModelVersion']
    modelStatus = request.session['ModelStatus']
    model = Existusecases.objects.get(ModelName=request.session['ModelName'],Version=request.session['ModelVersion'])
    output_train_json_filename = str(model.TrainOuputLocation)
    f = open(output_train_json_filename, ""r+"")
    training_output = f.read()
    f.close()
    dict = {'Attribute':[],
    'Value':[]
    }
    training_output = json.loads(training_output)
    dfdashbord = pd.DataFrame(dict)
    dfdashbord.loc[len(dfdashbord.index)] = ['UseCaseName',modelName]
    dfdashbord.loc[len(dfdashbord.index)] = ['ProblemType',training_output['data']['ModelType']]
    
    dfdashbord.loc[len(dfdashbord.index)] = ['Version',str(modelVersion)]
    dfdashbord.loc[len(dfdashbord.index)] = ['Status',modelStatus]
    if 'vmDetails' in training_output['data']:
        dfdashbord.loc[len(dfdashbord.index)] = ['DeployLocation', training_output['data']['vmDetails']]
    else:
        dfdashbord.loc[len(dfdashbord.index)] = ['DeployLocation',training_output['data']['deployLocation']]
    dfdashbord.loc[len(dfdashbord.index)] = ['BestModel',training_output['data']['BestModel']]
    dfdashbord.loc[len(dfdashbord.index)] = ['BestScore',training_output['data']['BestScore']]
    dfdashbord.loc[len(dfdashbord.index)] = ['ScoringParam',training_output['data']['ScoreType']]

    if training_output['data']['ModelType'] != 'LLM Fine-Tuning':
        dfdashbord.loc[len(dfdashbord.index)] = ['Test%',configSettingsJson['advance']['testPercentage']]
        dfdashbord.loc[len(dfdashbord.index)] = ['FeaturesUsed',training_output['data']['featuresused']]
    from io import BytesIO as IO 
    excel_file = IO()        
    edaFileName = usename + '_training.xlsx'
    excel_writer = pd.ExcelWriter(excel_file, engine=""xlsxwriter"") 
    dfdashbord.to_excel(excel_writer, sheet_name='Dashboard',index=False)
    if training_output['data']['ModelType'].lower() != 'multimodellearning' and training_output['data']['ModelType'].lower() != 'multilabelprediction':
        EvaluatedModels = training_output['data']['EvaluatedModels']
        EvaluatedModels = pd.DataFrame(EvaluatedModels)
        EvaluatedModels.to_excel(excel_writer, sheet_name='EvaluatedModels',startrow=0 , startcol=0)
    if training_output['data']['ModelType'].lower() == 'classification':
        #print(training_output['data']['matrix'])
        row1 = 10
        row2 = 10
        if 'ConfusionMatrix' in training_output['data']['matrix']:
            confusionMatrix = training_output['data']['matrix']['ConfusionMatrix']
            confusionMatrix = pd.DataFrame(confusionMatrix)
            confusionMatrix.to_excel(excel_writer, sheet_name='Testing Matrix',startrow=0 , startcol=0)
            row1 =confusionMatrix.shape[0]+5
        if 'ConfusionMatrix' in training_output['data']['trainmatrix']:
            confusionMatrix = training_output['data']['trainmatrix']['ConfusionMatrix']
            confusionMatrix = pd.DataFrame(confusionMatrix)
            confusionMatrix.to_excel(excel_writer, sheet_name='Training Matrix',startrow=0 , startcol=0)
        if 'ClassificationReport' in training_output['data']['matrix']:
            confusionMatrix = training_output['data']['matrix']['ClassificationReport']
            confusionMatrix = pd.DataFrame(confusionMatrix)
            confusionMatrix.to_excel(excel_writer, sheet_name='Testing Matrix',startrow=row1 , startcol=0)
        if 'ClassificationReport' in training_output['data']['trainmatrix']:
            confusionMatrix = training_output['data']['trainmatrix']['ClassificationReport']
            confusionMatrix = pd.DataFrame(confusionMatrix)
            confusionMatrix.to_excel(excel_writer, sheet_name='Training Matrix',startrow=row2 , startcol=0)
    if training_output['data']['ModelType'].lower() == 'regression':
            dict = {'Attribute':[],'Value':[]}
            testingDF = pd.DataFrame(dict)        
            try:
                testingDF.loc[len(testingDF.index)] = ['MAE',training_output['data']['matrix']['MAE']]
                testingDF.loc[len(testingDF.index)] = ['R2Score',training_output['data']['matrix']['R2Score']]
                testingDF.loc[len(testingDF.index)] = ['MSE',training_output['data']['matrix']['MSE']]
                testingDF.loc[len(testingDF.index)] = ['MAPE',training_output['data']['matrix']['MAPE']]
                testingDF.loc[len(testingDF.index)] = ['RMSE',training_output['data']['matrix']['RMSE']]
            except:
                pass
            testingDF.to_excel(excel_writer, sheet_name='Testing Matrix',startrow=0 , startcol=0)   
            trainingDF = pd.DataFrame(dict)        
            try:
                trainingDF.loc[len(trainingDF.index)] = ['MAE',training_output['data']['trainmatrix']['MAE']]
                trainingDF.loc[len(trainingDF.index)] = ['R2Score',training_output['data']['trainmatrix']['R2Score']]
                trainingDF.loc[len(trainingDF.index)] = ['MSE',training_output['data']['trainmatrix']['MSE']]
                trainingDF.loc[len(trainingDF.index)] = ['MAPE',training_output['data']['trainmatrix']['MAPE']]
                trainingDF.loc[len(trainingDF.index)] = ['RMSE',training_output['data']['trainmatrix']['RMSE']]
            except:
                pass
            trainingDF.to_excel(excel_writer, sheet_name='Training Matrix',startrow=0 , startcol=0)   
    if training_output['data']['ModelType'].lower() == 'clustering':
            dict = {'Attribute':[],'Value':[]}
            trainingDF = pd.DataFrame(dict)
            try:
                trainingDF.loc[len(trainingDF.index)] = ['SilHouette_Avg',round(training_output['data']['trainmatrix']['SilHouette_Avg'],2)]
                trainingDF.loc[len(trainingDF.index)] = ['DaviesBouldinScore',round(training_output['data']['trainmatrix']['DaviesBouldinScore'],2)]
                trainingDF.loc[len(trainingDF.index)] = ['CalinskiHarabazScore',round(training_output['data']['trainmatrix']['CalinskiHarabazScore'],2)]
            except:
                pass
            trainingDF.to_excel(excel_writer, sheet_name='Training Matrix',startrow=0 , startcol=0)
            centroidpath = os.path.join(training_output['data']['deployLocation'],'centers.csv')
            if(os.path.isfile(centroidpath)):
                df_center = pd.read_csv(centroidpath)	
                df_center = df_center.rename(columns={""Unnamed: 0"": ""Cluster""})
                df_center.to_excel(excel_writer, sheet_name='Centroid',startrow=0 , startcol=0)
    if training_output['data']['ModelType'].lower() == 'timeseriesforecasting': #task 11997
            if training_output['data']['BestModel'].lower() == 'var':
                dict = {'Features':[],'Attribute':[],'Value':[]}
                trainingDF = pd.DataFrame(dict) 
                FeaturesMatrix = training_output['data']['matrix']
                for x in FeaturesMatrix:
                    try:
                        trainingDF.loc[len(trainingDF.index)] = [x['Features'],'MAE',x['MAE']]
                        trainingDF.loc[len(trainingDF.index)] = [x['Features'],'MSE',x['MSE']]
                        trainingDF.loc[len(trainingDF.index)] = [x['Features'],'MAPE',x['MAPE']]
                        trainingDF.loc[len(trainingDF.index)] = [x['Features'],'RMSE',x['RMSE']]
                    except:
                        pass
                trainingDF.to_excel(excel_writer, sheet_name='Testing Matrix',startrow=0 , startcol=0)   
            else:
                dict = {'Attribute':[],'Value':[]}
                trainingDF = pd.DataFrame(dict)
                try:
                    trainingDF.loc[len(trainingDF.index)] = ['MAE',training_output['data']['matrix']['MAE']]
                    trainingDF.loc[len(trainingDF.index)] = ['MSE',training_output['data']['matrix']['MSE']]
                    trainingDF.loc[len(trainingDF.index)] = ['MAPE',training_output['data']['matrix']['MAPE']]
                    trainingDF.loc[len(trainingDF.index)] = ['RMSE',training_output['data']['matrix']['RMSE']]
                except:
                    pass
                trainingDF.to_excel(excel_writer, sheet_name='Testing Matrix',startrow=0 , startcol=0)   
    workbook  = excel_writer.book
        
    #excel_writer.save()
    excel_writer.close()
    excel_file.seek(0)
    return edaFileName,excel_file
"
images_analysis.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
def analysis_images(folder_path):
    from AIX import image_eda
    qualityscore = image_eda.img_MeasureImageQuality(folder_path)
    eda_result = image_eda.img_EDA(folder_path)
    #Image Duplicate Finder
    duplicate_img = image_eda.img_duplicatefinder(folder_path)
    color_plt = image_eda.img_plot_colour_hist(folder_path)
    return qualityscore,eda_result,duplicate_img,color_plt"
models.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import os.path
from pathlib import Path
import time
import subprocess
import sys
import shutil
from appbe.aion_config import kafka_setting
from appbe.aion_config import running_setting
from appbe.publish import chech_publish_info
from llm.llm_tuning import update_sqllite_data
from appbe.data_io import sqlite_db
from appbe.dataPath import DATA_DIR
from appbe import installPackage
from appbe import compute
import json
import os
import signal
from os.path import expanduser
import platform
import pandas as pd
LOG_FILE_PATH = os.path.join(DATA_DIR,'logs')
GITHUB_FILE_PATH = os.path.join(DATA_DIR,'github')	
PUBLISH_PATH = os.path.join(DATA_DIR,'target')	
DEPLOY_DATABASE_PATH = os.path.join(DATA_DIR,'sqlite')    
os.makedirs(LOG_FILE_PATH, exist_ok=True)
'''
def check_publish_info(usecase,version):
    sqlite_dbObj = sqlite_db(DEPLOY_DATABASE_PATH,'deploy.db')
    if sqlite_dbObj.table_exists('publish'):    
        
        publishState= 'Published'
'''
def get_instance(modelID):
    from appbe.sqliteUtility import sqlite_db
    from appbe.dataPath import DATA_DIR
    file_path = os.path.join(DATA_DIR,'sqlite')
    sqlite_obj = sqlite_db(file_path,'config.db')
    if sqlite_obj.table_exists(""LLMTuning""):
        data = sqlite_obj.get_data('LLMTuning','usecaseid',modelID)
        
        if len(data) > 0:
            return (data[3],data[2],data[5],data[6],data[4])
        else:
            return '','','','',''
    else:
        return '','','','',''
def startServices(request,usecasedetails,Existusecases):
    try:
        models = Existusecases.objects.filter(publishStatus='Published')
        print(models)
        if len(models) > 0:
            for model in models:
                try:
                    portNo = model.portNo
                    ppid = model.publishPID
                    if ppid == 0:
                       continue 
                    
                    try:
                        os.kill(int(model.publishPID), signal.SIGTERM)
                    except Exception as e:
                        print(e)
                    scriptPath = os.path.join(PUBLISH_PATH,model.ModelName.usecaseid,'aion_publish_service.py')
                    
                    if os.path.exists(scriptPath):
                        outputStr = subprocess.Popen([sys.executable, scriptPath,'-ip','0.0.0.0','-p',str(portNo)])
                        model.publishStatus = 'Published'
                        model.publishPID = outputStr.pid
                        model.portNo = portNo
                        model.save()
                    else:
                        print(""Pass"")
                        pass
                except Exception as e: 
                    print(e)
    except Exception as e:
        print(e)
    
def publishmodel(request,usecaseid,version,Existusecases,usecasedetails):
    portNo=0 
    usecased = usecasedetails.objects.get(usecaseid=usecaseid)
    models = Existusecases.objects.filter(ModelName=usecased,publishStatus='Published')
    if len(models) > 0:
        for model in models:
            try:
                portNo = model.portNo
                try:
                   os.kill(int(model.publishPID), signal.SIGTERM)
                except Exception as e:
                   print(e)
                mod = Existusecases.objects.get(id=model.id)
                mod.publishStatus = ''
                mod.publishPID = 0
                mod.portNo = 0
                mod.save()
            except Exception as e:
                print(e)
                pass	
    missingNumbers = []           
    if portNo == 0:           
        models = Existusecases.objects.filter(publishStatus='Published')
        usedPortNo=[]
        for model in models:
            usedPortNo.append(model.portNo)
        startPortNo = 8091
        endPortNo = 8091+5
        missingNumbers = [ i  for i in range(startPortNo,endPortNo) if i not in usedPortNo]
        if len(missingNumbers) > 0:
            portNo =  missingNumbers[0]
    if portNo != 0:
        scriptPath = os.path.join(PUBLISH_PATH,usecaseid,'aion_publish_service.py')
        
        model = Existusecases.objects.get(ModelName=usecased,Version=version)
        isExist = os.path.exists(scriptPath)
        if isExist:
            configfile = os.path.join(PUBLISH_PATH,usecaseid,'config.json')
            configdata = {'version': str(version)}			
            with open(configfile, ""w"") as outfile:
                json.dump(configdata, outfile)
            outfile.close()				
            outputStr = subprocess.Popen([sys.executable, scriptPath,'-ip','0.0.0.0','-p',str(portNo)])
            model.publishStatus = 'Published'
            model.publishPID = outputStr.pid
            model.portNo = portNo
            model.save()
            Status = 'SUCCESS'
            hosturl =request.get_host()
            hosturl = hosturl.split(':')
            url = 'http://'+hosturl[0]+':'+str(portNo)+'/AION/'+str(usecaseid)+'/predict'
            Msg = 'Model Published Successfully'
        else:
            Status = 'Error'
            Msg = 'Model Published Error'
            url = ''
    else:
        Status = 'Error'
        Msg = 'All ports are utilized'
        url=''
    return Status,Msg,url
def get_published_models(instanceid):       
    from appbe.sqliteUtility import sqlite_db
    
    file_path = os.path.join(DATA_DIR,'sqlite')
    sqlite_obj = sqlite_db(file_path,'config.db')
    if sqlite_obj.table_exists(""LLMTuning""):
        condition = f'""instance""==""{instanceid}"" AND ""status""==""Published""'
        datas = sqlite_obj.read_data('LLMTuning',condition)
        
        if len(datas)>0:
            return True,datas[0][0]   
        return False,''
    
def maac_command(request,Existusecases,usecasedetails):
    command = request.POST.get('maacsubmit')
    kafkaSetting = kafka_setting()
    ruuningSetting = running_setting()
    computeinfrastructure = compute.readComputeConfig()
    modelID = request.POST.get('modelID')
    Version = request.POST.get('Version')
    p = Existusecases.objects.get(id=modelID,Version=Version)
    usecasename = p.ModelName.usecaseid    #bugid 13339
    usecaseid = p.ModelName.id

    # runningStatus,pid,ip,port = installPackage.checkModelServiceRunning(usecasename)
    # installationStatus,modelName,modelVersion=installPackage.checkInstalledPackge(usecasename)
    usecasedetail = usecasedetails.objects.get(id=p.ModelName.id)
    usecase = usecasedetails.objects.all()
    problemType = p.ProblemType
    score = 0
    scoreType = ''
    deployedModel = ''    
    deployedModelVersion = p.Version
    models = Existusecases.objects.filter(ModelName=usecasedetail,Status='SUCCESS')
    computeinfrastructure = compute.readComputeConfig()
    for model in models:
        model.scoringCreteria = 'NA'
        model.score = 'NA'
        model.deploymodel = 'NA'
        if os.path.isdir(str(model.DeployPath)):
            modelPath = os.path.join(str(model.DeployPath),'etc','output.json')
            try:	
                with open(modelPath) as file:
                    outputconfig = json.load(file)
                file.close()
                if outputconfig['status'] == 'SUCCESS':
                    if deployedModelVersion == model.Version:
                        problemType = outputconfig['data']['ModelType']
                        scoreType = outputconfig['data']['ScoreType']
                        score = outputconfig['data']['BestScore']
                        deployedModel = outputconfig['data']['BestModel']
                    model.scoringCreteria = outputconfig['data']['ScoreType']
                    model.score = outputconfig['data']['BestScore']
                    model.deploymodel = outputconfig['data']['BestModel']
                    model.maacsupport = 'True'
                    model.flserversupport = 'False'
                    supportedmodels = [""Logistic Regression"",""Neural Network"",""Linear Regression""]
                    if model.deploymodel in supportedmodels:
                        model.flserversupport = 'True'
                    else:
                        model.flserversupport = 'False'
                    supportedmodels = [""Extreme Gradient Boosting (XGBoost)""]
                    if model.deploymodel in supportedmodels:
                        model.encryptionsupport = 'True'
                    else:
                        model.encryptionsupport = 'False'                        
            except Exception as e:    
                print(e)
                pass
    MLaaC_output = ''
    	
    if command == 'generatemaac':
        deployPath  =  str(p.DeployPath)
        codeconfig = os.path.join(deployPath,'etc','code_config.json')
        if os.path.isfile(codeconfig):
            with open(codeconfig,'r') as f:                    
                cconfig = json.load(f)              
            f.close()    
            dbserver = request.POST.get('productiondb')
            db_config = {}
            if dbserver.lower() == 'influxdb':
                cconfig['prod_db_type'] = 'influx'
                db_config['host'] = request.POST.get('influxdbhost')
                db_config['port'] = request.POST.get('influxdbportno')
                db_config['user'] = request.POST.get('influxdbuser')
                db_config['password'] = request.POST.get('influxpassword')
                db_config['database'] = 'production'   
                db_config['measurement'] = usecasename
                tags = {}
                db_config['tags']=tags
                cconfig['db_config'] = db_config
            else:
                cconfig['prod_db_type'] = 'sqlite'            
                cconfig['db_config'] = db_config
            dbserver = request.POST.get('mlflowserver')
            mlflow_config = {}
            if dbserver.lower() == 'local':
                cconfig['mlflow_config'] = mlflow_config
            else:
                mlflow_config['tracking_uri_type'] = request.POST.get('mlflowserverurl')
                mlflow_config['tracking_uri'] = request.POST.get('mlflowserverurl')
                mlflow_config['registry_uri'] = request.POST.get('mlflowserverurl')                 
                mlflow_config['artifacts_uri'] = request.POST.get('mlflowserverurl') 
                cconfig['mlflow_config'] = mlflow_config
            with open(codeconfig,'w') as f:                    
                json.dump(cconfig, f)                 
            f.close()
            from bin.aion_mlac import generate_mlac_code
            outputStr = generate_mlac_code(codeconfig)
            output = json.loads(outputStr)
            from appbe.telemetry import UpdateTelemetry
            UpdateTelemetry(request.session['usecaseid']+'-'+str(request.session['ModelVersion']),'MLaC','Yes')
            if output['Status'] == 'SUCCESS':
                Status = 'SUCCESS'
                MLaaC_output = output['MLaC_Location'].replace('\\', '\\\\')
                Msg = 'MLaC code successfully generated'
            else:
                Status = 'Failure'
                Msg = output['msg']
        else:
            Status = 'Failure'
            Msg = 'Code Config Not Present'
    if command == 'buildContainer':
        deployPath  =  str(p.DeployPath)
        maac_path = os.path.join(deployPath,'publish','MLaC')
        if os.path.isdir(maac_path):
            config={'usecase':str(usecasename),'version':str(p.Version),'mlacPath':maac_path}
            config = json.dumps(config)    
            scriptPath = os.path.normpath(os.path.join(os.path.dirname(os.path.abspath(__file__)), '..','aion.py'))
            
            if platform.system() == 'Windows':
                outputStr = subprocess.Popen([sys.executable, scriptPath,'-m','buildMLaCContainerLocal' ,'-j',config],creationflags = subprocess.CREATE_NEW_CONSOLE)
            else:
                outputStr = subprocess.Popen([sys.executable, scriptPath,'-m','buildMLaCContainerLocal' ,'-j',config])            
            #cmd = scriptPath+"" ""+str(usecasename)+"" ""+str(p.Version)+"" ""+str(maac_path)
            #subprocess.Popen(cmd,shell=True)
            Status = 'SUCCESS'
            Msg = 'Build Container Started'
        else:
            Status = 'Failure'
            Msg = 'Run Code Generator'
    if command == 'runpipeline':
        deployPath  =  str(p.DeployPath)
        dockerlist = os.path.join(deployPath,'publish','MLaC','dockerlist.json')	
        if os.path.isfile(dockerlist):
            persistancevolume = request.POST.get('persistancevolume')
            datasetpath = request.POST.get('dataset')
            filetimestamp = str(int(time.time()))
            logfilepath = os.path.join(LOG_FILE_PATH,'AIONPipeline_'+str(filetimestamp)+'.log')
            config={'usecase':str(usecasename),'version':str(p.Version),'persistancevolume':persistancevolume,'datasetpath':datasetpath,'dockerlist':str(dockerlist),'logfilepath':logfilepath}
            config = json.dumps(config)    
            scriptPath = os.path.normpath(os.path.join(os.path.dirname(os.path.abspath(__file__)), '..','aion.py'))			
            if platform.system() == 'Windows':
                outputStr = subprocess.Popen([sys.executable, scriptPath,'-m','runpipelinelocal','-j',config],creationflags = subprocess.CREATE_NEW_CONSOLE)			
            else:
                outputStr = subprocess.Popen([sys.executable, scriptPath, str(usecasename),str(p.Version),persistancevolume,datasetpath,str(dockerlist),logfilepath])			            
            Status = 'SUCCESS'
            Msg = 'Pipeline Started'
            MLaaC_output = 'Check log file for pipeline execution status: ' + str(logfilepath)
        else:
            Status = 'Failure'
            Msg = 'Not found container information'
    if command == 'generateyaml':
        deployPath  =  str(p.DeployPath)
        maac_path = os.path.join(deployPath,'publish','MLaC')		
        if os.path.isdir(maac_path):
            persistancevolume = request.POST.get('persistancevolume')
            datasetpath = request.POST.get('dataset')			
            supported_urls_starts_with = ('gs://','https://','http://')                    
            if datasetpath.startswith(supported_urls_starts_with):		
                datasetpath = request.POST.get('dataset') 			
            else:			
                datasetpath = '/aion/'+request.POST.get('dataset')
            serviceport = request.POST.get('serviceport') 	
            scriptPath = os.path.normpath(os.path.join(os.path.dirname(os.path.abspath(__file__)), '..', '..','bin','run_generateyaml.py'))
            outputStr = subprocess.check_output([sys.executable, scriptPath, str(usecasename),str(p.Version),persistancevolume,datasetpath,maac_path,serviceport])
            outputStr = outputStr.decode('utf-8')
            outputStr=outputStr.strip()
            print(outputStr)
            output = json.loads(outputStr)
            if output['Status'] == 'SUCCESS':
                Status = 'SUCCESS'
                MLaaC_output = output['location']
                Msg = 'MLaaC dockerfile successfully generated'
            else:
                Status = 'Failure'
                Msg = output['msg']
        else:
            Status = 'Failure'
            Msg = 'Execute generate code first'
    if command == 'githubupload':
        if shutil.which('git') is None:
            Status = 'Failure'
            Msg = 'Git is not installed, Please install Git first.'            
        else:
            try:
                deployPath  =  str(p.DeployPath)
                maac_path = os.path.join(deployPath,'publish','MLaC')			
                if os.path.isdir(maac_path): 
                    githuburl = request.POST.get('githuburl')
                    githubusername = request.POST.get('githubusername')
                    githubtoken = request.POST.get('githubtoken')
                    githubemail = request.POST.get('githubemail')
                    githubconfig = {""url_type"":""https"",""url"":githuburl,""username"":githubusername,""email"":githubemail,""token"":githubtoken,""location"":maac_path,""modelName"":usecasename,""gitFolderLocation"":GITHUB_FILE_PATH}
                    from mlops import git_upload
                    outputStr = git_upload.upload(githubconfig)
                    print(outputStr)
                    output = json.loads(outputStr)
                    if output['Status'] == 'SUCCESS':
                        Status = 'SUCCESS'
                        MLaaC_output = githuburl
                        Msg = 'Code Uploaded to GitHub Successfully'
                    else:
                        Status = 'Failure'
                        Msg = output['msg']
                else:
                    Status = 'Failure'
                    Msg = 'GitHub Upload failed'
            except Exception as e:
                print(e)
                Status = 'Failure'
                Msg = 'GitHub Upload failed'            
    if command == 'unpublishmodel':
        try:
            models = Existusecases.objects.filter(ModelName=usecasedetail,publishStatus='Published')
            if len(models) > 0:
                for model in models:
                    try:

                        if problemType.lower() == ""llm fine-tuning"":
                            cloudconfig = os.path.normpath(
                            os.path.join(os.path.dirname(os.path.abspath(__file__)), '..', 'config', 'compute_conf.json'))
                            modelid = usecasename + '_' + str(Version)
                            usecasename = usecasename.replace("" "", ""_"")
                            
                            hypervisor,instanceid,region,image,status = get_instance(usecasename + '_' + str(Version))
                            from llm.llm_inference import kill_inference_server
                            kill_inference_server(cloudconfig,instanceid,hypervisor,region,image)
                            
                            update_sqllite_data(modelid,'status','Success')
                        else:
                            try:
                                os.kill(int(model.publishPID), signal.SIGTERM)
                                mod.publishPID = 0
                            except Exception as e:
                                print(e)
                        mod = Existusecases.objects.get(id=model.id)
                        mod.publishStatus = ''
                        
                        mod.portNo = 0
                        mod.save()
                        Status = 'SUCCESS'
                        Msg = 'Model Unpublished Successfully'
                    except Exception as e:
                        print(e)
                        Status = 'Error'
                        Msg = 'Model Unpublished Error'
        except Exception as e:
            exc_type, exc_obj, exc_tb = sys.exc_info()
            fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
            print(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))
            print(e)
            pass        
        
    if command == 'publishmodel':
        
        try:
            portNo=0            
            models = Existusecases.objects.filter(ModelName=usecasedetail,publishStatus='Published')
            if len(models) > 0:
                for model in models:
                    try:
                        portNo = model.portNo
                        try:
                            os.kill(int(model.publishPID), signal.SIGTERM)
                        except Exception as e:
                            print(e)
                        mod = Existusecases.objects.get(id=model.id)
                        mod.publishStatus = ''
                        mod.publishPID = 0
                        mod.portNo = 0
                        mod.save()
                    except Exception as e:
                        print(e)
                        pass
            missingNumbers = []

            if problemType.lower() == ""llm fine-tuning"":
                model = Existusecases.objects.get(ModelName=usecasedetail,Version=Version)
                try:
                    usecasename = usecasename.replace("" "", ""_"")
                    hypervisor,instanceid,region,image,status = get_instance(usecasename + '_' + str(Version))
                    if status.lower() in ['published','success'] :
                        if status.lower() == 'published':
                            from llm.llm_inference import kill_inference_server
                            kill_inference_server('',instanceid, hypervisor, region, image)
                            update_sqllite_data(usecasename + '_' + str(Version), 'status', 'Success')
                        already_published,published_usecase = get_published_models(instanceid)
                        if already_published:
                            Status = 'Error'
                            Msg = f'{published_usecase} is published at the same id, Please Unpublish mentioned model to proceed.'
                        else:
                            if not region:
                                region = ''
                            cloudconfig = os.path.normpath(
                                os.path.join(os.path.dirname(os.path.abspath(__file__)), '..', 'config', 'compute_conf.json'))
                            usecase = usecasename + '_' + str(Version)
                            #modelid = usecasename + '_' + str(Version)
                            scriptPath = os.path.normpath(os.path.join(os.path.dirname(os.path.abspath(__file__)), '..', 'aion.py'))
                            cmd = [sys.executable, scriptPath, '-m', 'llmpublish', '-cc', cloudconfig, '-i',instanceid,'-hv',hypervisor,'-md',deployedModel,'-uc',usecase,'-r',region,'-im',image ]
                            outputStr = subprocess.Popen(cmd)
                            model.publishStatus = 'Published'
                            model.publishPID = 0
                            model.portNo = 8000
                            model.save()
                            Status = 'SUCCESS'
                            from llm.llm_inference import get_ip
                            instanceip = get_ip(cloudconfig,instanceid,hypervisor,region,image)
                            print(instanceip)
                            url = 'http://' + instanceip + ':' + str(model.portNo) + '/generate'
                            Msg = 'Model Published Successfully, Server will take few minutes to be ready for Inferencing. URL: ' + url
                            update_sqllite_data(usecase,'status','Published')
                    else:
                        Status = 'Error'
                        Msg = 'Only Trained models are availble for Publish.'
                        
                except Exception as e:
                    print(e)
                    exc_type, exc_obj, exc_tb = sys.exc_info()
                    fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
                    print(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))
                    Status = 'Error'
                    Msg = 'Model Published Error'
                
            else:
                if portNo == 0:           
                    models = Existusecases.objects.filter(publishStatus='Published')
                    usedPortNo=[]
                    for model in models:
                        usedPortNo.append(model.portNo)
                    startPortNo = 8091
                    endPortNo = 8091+5
                    missingNumbers = [ i  for i in range(startPortNo,endPortNo) if i not in usedPortNo]
                    if len(missingNumbers) > 0:
                        portNo =  missingNumbers[0]
                if portNo != 0:
                    model = Existusecases.objects.get(ModelName=usecasedetail,Version=Version)    
                    scriptPath = os.path.join(PUBLISH_PATH,usecasename,'aion_publish_service.py')
                    isExist = os.path.exists(scriptPath)
                    if isExist:
                        configfile = os.path.join(PUBLISH_PATH,usecasename,'config.json')
                        configdata = {'version': str(Version)}
                        with open(configfile, ""w"") as outfile:
                            json.dump(configdata, outfile)
                        outfile.close()
                        outputStr = subprocess.Popen([sys.executable, scriptPath,'-ip','0.0.0.0','-p',str(portNo)])
                        model.publishStatus = 'Published'
                        model.publishPID = outputStr.pid
                        model.portNo = portNo
                        model.save()
                        Status = 'SUCCESS'
                        hosturl =request.get_host()
                        hosturl = hosturl.split(':')
                        url = 'http://'+hosturl[0]+':'+str(portNo)+'/AION/'+str(usecasename)+'/predict'
                        Msg = 'Model Published Successfully URL: '+url
                    else:
                        Status = 'Error'
                        Msg = 'Model Published Error'
                else:
                    Status = 'Error'
                    Msg = 'All ports are utilized'
        except Exception as e:
            exc_type, exc_obj, exc_tb = sys.exc_info()
            fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
            print(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))
            print(e)
            pass
    if command == 'generatekubeflowyaml':
        try:
            if problemType.lower() == 'timeseriesforecasting': #task 11997
                from appbe.aionpipelinets import aionpipelinets	
            else:
                from appbe.aionpipeline import aionpipeline       
            deployPath  =  str(p.DeployPath)	
            codeconfig = os.path.join(deployPath,'etc','code_config.json')
            featuresmapping = {'modelBased':'mlbased','statisticalBased':'statisticalBased'}
            if os.path.isfile(codeconfig):    	
                with open(codeconfig,'r') as f:                    
                    codeconfig = json.load(f)                    
                f.close()
                modelsarray=[]
                for featureselection in codeconfig['feature_selector']:					
                    for algo in codeconfig['algorithms'].keys():
                        if problemType.lower() == 'timeseriesforecasting': #task 11997
                            modelname = 'modeltraining_'+algo.lower()
                        else:
                            modelname = 'modeltraining_'+algo.lower()+'_'+featuresmapping[featureselection]
                        modelx = {'modelname':modelname}		
                        modelsarray.append(modelx)
                modelsjson = {'models':modelsarray}
                kubeflowhost= request.POST.get('kubeflowhost')         			
                containerregistry= request.POST.get('containerregistry')			
                containerlabel= request.POST.get('containerlabel')			
                containersecret= request.POST.get('containersecret')
                if problemType.lower() == 'timeseriesforecasting': #task 11997
                    ap = aionpipelinets(modelsjson,containerregistry,containerlabel,containersecret)
                else:        
                    ap = aionpipeline(modelsjson,containerregistry,containerlabel,containersecret)
                ap.aion_mlops()
                ap.compilepl()    
                ap.executepl(kubeflowhost)			
                Status = 'SUCCESS'
                MLaaC_output = ''
                Msg = 'MLOps pipeline executed successfully'                 			
        except Exception as e:
            print(e)
            Status = 'Failure'
            Msg = 'Error in pipeline execution'		
    from appbe.pages import get_usecase_page    
    if command in ['publishmodel','unpublishmodel']:        
        status,context,action = get_usecase_page(request,usecasedetails,Existusecases,usecaseid)
        context['Status'] = Status
        context['MLaaC_output'] = MLaaC_output    
        context['Msg'] = Msg    
        return(context,'usecasedetails.html')
    else:
        status,context,action = get_usecase_page(request,usecasedetails,Existusecases)        
        context['Status'] = Status
        context['MLaaC_output'] = MLaaC_output    
        context['Msg'] = Msg    
        return(context,'usecases.html')   

def getusercasestatus(request):
    if 'UseCaseName' in request.session:
        selected_use_case = request.session['UseCaseName']
    else:
        selected_use_case = 'Not Defined'

    if 'ModelVersion' in request.session:
        ModelVersion = request.session['ModelVersion']
    else:
        ModelVersion = 0

    if 'ModelStatus' in request.session:
        ModelStatus = request.session['ModelStatus']
    else:
        ModelStatus = 'Not Trained'
    return selected_use_case,ModelVersion,ModelStatus"
textSummarization.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import json
import time
import os
import subprocess
import base64
import sys
import re
from appbe.dataIngestion import getcommonfields
from appbe.dataIngestion import getusercasestatus
def startSummarization(request,DEFAULT_FILE_PATH,CONFIG_PATH,DATA_FILE_PATH):
    try:
        if request.FILES:
            Datapath = request.FILES['summarypath']
            ext = str(Datapath).split('.')[-1]
            filetimestamp = str(int(time.time()))
            if ext.lower() in ['txt','pdf','doc','docs']:
                dataFile = os.path.join(DATA_FILE_PATH,'AION_' + filetimestamp+'.'+ext)
            else:
                dataFile = os.path.join(DATA_FILE_PATH,'AION_' + filetimestamp)
            with open(dataFile, 'wb+') as destination:
                for chunk in Datapath.chunks():
                    destination.write(chunk)
            destination.close()
      
        configFile = os.path.join(DEFAULT_FILE_PATH,'aion_textSummerization.json')
        filetimestamp = str(int(time.time()))
        config_json_filename = os.path.join(CONFIG_PATH, 'AION_' + filetimestamp + '.json')    
        f = open(configFile)
        data = json.load(f)
        f.close()
        data['basic']['dataLocation'] = dataFile
        type = request.POST.get('type')
        model = request.POST.get('model')
        slength = request.POST.get('length')
        types = data['basic']['analysisAproach']['textSummarization']
        for x in list(types.keys()):
           data['basic']['analysisAproach']['textSummarization'][x] = 'False'
        data['basic']['analysisAproach']['textSummarization'][type] = 'True'
        format = request.POST.get('format')
        algorithm = data['basic']['algorithms']['textSummarization']
        for x in list(algorithm.keys()):
           data['basic']['algorithms']['textSummarization'][x] = 'False'
        data['basic']['algorithms']['textSummarization'][model]='True'
        length = data['advance']['textSummarization']['summaryLength']
        for x in list(types.keys()):
           data['advance']['textSummarization']['summaryLength'][x] = 'False'  
        data['advance']['textSummarization']['summaryLength'][slength] = 'True'   
        with open(config_json_filename, ""w"") as outfile:
            json.dump(data, outfile)
        outfile.close()
        from bin.aion_text_summarizer import aion_textsummary
        outputStr = aion_textsummary(config_json_filename)
        #scriptPath = os.path.normpath(os.path.join(os.path.dirname(os.path.abspath(__file__)), '..','bin','aion_text_summarizer.py'))
        #outputStr = subprocess.check_output([sys.executable, scriptPath, config_json_filename])
        #outputStr = outputStr.decode('utf-8')
        #outputStr = re.search(r'Summary:(.*)', str(outputStr), re.IGNORECASE).group(1)
        predict_dict = json.loads(str(outputStr))
        summary = predict_dict['summary']
    except Exception as e:
        print(e)
        summary = str(e)
    context = getcommonfields()
    selected_use_case,ModelVersion,ModelStatus = getusercasestatus(request)
    context.update({'selected_use_case': selected_use_case,'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion})    
    context.update({'summary':summary})
    return context "
s3bucketsDB.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import sqlite3
from pathlib import Path
import json
import os
import rsa
import boto3   #usnish
import pandas as pd
import time
class sqlite_db():

	def __init__(self, location, database_file=None):
		if not isinstance(location, Path):
			location = Path(location)
		if database_file:
			self.database_name = database_file
		else:
			self.database_name = location.stem
		db_file = str(location/self.database_name)
		self.conn = sqlite3.connect(db_file)
		self.cursor = self.conn.cursor()

	def table_exists(self, name):
		query = f""SELECT name FROM sqlite_master WHERE type='table' AND name='{name}';""
		listOfTables = self.cursor.execute(query).fetchall()
		return len(listOfTables) > 0

	def read_data(self, table_name):
		query = f""SELECT * FROM {table_name}""
		row = self.cursor.execute(query).fetchall()
		return list(row)
		#return pd.read_sql_query(f""SELECT * FROM {table_name}"", self.conn)

	def create_table(self,name, columns, dtypes):
		query = f'CREATE TABLE IF NOT EXISTS {name} ('
		
		for column, data_type in zip(columns, dtypes):
			query += f""'{column}'	TEXT,""
		query = query[:-1]
		query += ');'
		self.conn.execute(query)
		return True
	def delete_record(self,table_name,col_name, col_value):
		try:
			query = f""DELETE FROM {table_name} WHERE {col_name}='{col_value}'""
			self.conn.execute(query)
			self.conn.commit()
			return 'success'
		except Exception as e :
			print(str(e))
			print(""Deletion Failed"")
			return 'error'
			
	
	def get_data(self,table_name,col_name,col_value):
		
		query = f""SELECT * FROM {table_name} WHERE {col_name}='{col_value}'""
		row = self.cursor.execute(query).fetchone()
		if(row == None):
			return []
		return list(row)
	
	def write_data(self,data, table_name):
		if not self.table_exists(table_name):
			self.create_table(table_name, data.columns, data.dtypes)
		tuple_data = list(data.itertuples(index=False, name=None))
		insert_query = f'INSERT INTO {table_name} VALUES('
		for i in range(len(data.columns)):
			insert_query += '?,'
		insert_query = insert_query[:-1] + ')'
		self.cursor.executemany(insert_query, tuple_data)
		self.conn.commit()
		return True
		
	def close(self):
		self.conn.close()

def add_new_s3bucket(request):

	try:
		from appbe.dataPath import DATA_DIR
		file_path = os.path.join(DATA_DIR,'sqlite')
		sqlite_obj = sqlite_db(file_path,'config.db')
		
		if request.POST[""aionreferencename""] =='' or request.POST[""s3bucketname""] == '' or request.POST[""awsaccesskey""] == '' :
			return 'error' 
		pkeydata='''-----BEGIN RSA PUBLIC KEY-----
	MIIBCgKCAQEAxIHM1FphEMMwViUrG0b2Bqf8tOxbhUWlnmjgFt5A25qbY1AfnrMv
	fVx8+7iCcZ/3TY9Jv2I584SOc1tvsgESCke/t6+o/u2esPBsnDFzV62l3Zvw0m4e
	wQeKlFC8EoOblyIXRbZdelSJinzlr9lOiKuid/xPvXHou6jxF1A2W7a89A2PM4Re
	n0W9YkjB7dRGW1sSrpruHdVJvgHhGZFZ7sCTue0jVOnc5sT3Tq5saLfEDqHyKxlq
	i/mcThmcTfisRIYFH5pyt/Ysr4VVP924QlcoqPOyg3RMCS3G0VjstSoVwNhxWrs/
	lujDuCnpxvWzNpq21OWmF66GXxwiq+6W0wIDAQAB
	-----END RSA PUBLIC KEY-----'''

		pubkey = rsa.PublicKey.load_pkcs1(pkeydata)
		awssecretaccesskey = rsa.encrypt(request.POST[""awssecretaccesskey""].encode(), pubkey)
		newdata = {}
		newdata['Name'] = [request.POST[""aionreferencename""]]
		newdata['AWSAccessKeyID'] = [request.POST[""awsaccesskey""]]
		newdata['AWSSecretAccessKey'] = [str(awssecretaccesskey)]
		newdata['S3BucketName'] = [request.POST[""s3bucketname""]]
		name = request.POST[""aionreferencename""]
		
		if sqlite_obj.table_exists(""s3bucket""):
			if(len(sqlite_obj.get_data(""s3bucket"",""Name"",name)) > 0):
				return 'error1'
		sqlite_obj.write_data(pd.DataFrame.from_dict(newdata),'s3bucket')
		
	except Exception as e:
		print(e)
		return 'error'

def get_s3_bucket():
	try:
		from appbe.dataPath import DATA_DIR
		file_path = os.path.join(DATA_DIR,'sqlite')
		sqlite_obj = sqlite_db(file_path,'config.db')
		temp_data = sqlite_obj.read_data('s3bucket')
		
		data = []
		for x in temp_data:
			data_dict = {}
			data_dict['Name'] = x[0]
			data_dict['AWSAccessKeyID'] = x[1]
			data_dict['AWSSecretAccessKey'] = x[2]
			data_dict['S3BucketName'] = x[3]
			data.append(data_dict)
	except Exception as e:
		print(e)
		data = []
	return data
def remove_s3_bucket(name):
	from appbe.dataPath import DATA_DIR
	file_path = os.path.join(DATA_DIR,'sqlite')
	sqlite_obj = sqlite_db(file_path,'config.db')
	return sqlite_obj.delete_record('s3bucket','Name',name)
	

def read_s3_bucket(name,filename,DATA_FILE_PATH):
	privkey = '''-----BEGIN RSA PRIVATE KEY-----
MIIEqQIBAAKCAQEAxIHM1FphEMMwViUrG0b2Bqf8tOxbhUWlnmjgFt5A25qbY1Af
nrMvfVx8+7iCcZ/3TY9Jv2I584SOc1tvsgESCke/t6+o/u2esPBsnDFzV62l3Zvw
0m4ewQeKlFC8EoOblyIXRbZdelSJinzlr9lOiKuid/xPvXHou6jxF1A2W7a89A2P
M4Ren0W9YkjB7dRGW1sSrpruHdVJvgHhGZFZ7sCTue0jVOnc5sT3Tq5saLfEDqHy
Kxlqi/mcThmcTfisRIYFH5pyt/Ysr4VVP924QlcoqPOyg3RMCS3G0VjstSoVwNhx
Wrs/lujDuCnpxvWzNpq21OWmF66GXxwiq+6W0wIDAQABAoIBAC/VbNfQPEqJSO3f
VFPqfR73q2MbGdgiMQOTgeDvLxiF1QdizJ+j/I5mgiIAMviXuOpPU+NbdMHbZZWd
D15kNlD8UCXVg6yyiOuHStjmjK4uHe8I86E1nxTb0hbyZCWZlbk/WizlDHInu+dT
KdIZcq2AIidU6tAxtwA0ingHaRSoXDlSGwOTEigNqmWOKnDTVg0SMscoHOD7siXF
DHm1/lkvD3uvcZk6c7fGxC8SgNX2dj6n/Nbuy0Em+bJ0Ya5wq4HFdLJn3EHZYORF
ODUDYoGaSxeXqYsGg/KHJBc8J7xW9FdN9fGbHfw1YplrmiGL3daATtArjMmAh0EQ
H8Sj7+ECgYkA3oWMCHi+4t8txRPkg1Fwt8dcqYhGtqpAus3NESVurAdi0ZPqEJcQ
4cUbflwQPhX0TOaBlkgzdP8DMdcW/4RalxHsAh5N8ezx/97PQMb3Bht0WsQUBeYJ
xLV7T2astjTRWactGCG7dwTaUYRtU3FqL6//3CysmA12B5EMX0udNBOTKwmaYKww
AwJ5AOISS7f12Q0fgTEVY0H8Zu5hHXNOA7DN92BUzf99iPx+H+codLet4Ut4Eh0C
cFmjA3TC78oirp5mOOQmYxwaFaxlZ7Rs60dlPFrhz0rsHYPK1yUOWRr3RcXWSR13
r+kn+f+8k7nItfGi7shdcQW+adm/EqPfwTHM8QKBiQCIPEMrvKFBzVn8Wt2A+I+G
NOyqbuC8XSgcNnvij4RelncN0P1xAsw3LbJTfpIDMPXNTyLvm2zFqIuQLBvMfH/q
FfLkqSEXiPXwrb0975K1joGCQKHxqpE4edPxHO+I7nVt6khVifF4QORZHDbC66ET
aTHA3ykcPsGQiGGGxoiMpZ9orgxyO3l5Anh92jmU26RNjfBZ5tIu9dhHdID0o8Wi
M8c3NX7IcJZGGeCgywDPEFmPrfRHeggZnopaAfuDx/L182pQeJ5MEqlmI72rz8bb
JByJa5P+3ZtAtzc2RdqNDIMnM7fYU7z2S279U3nZv0aqkk3j9UDqNaqvsZMq73GZ
y8ECgYgoeJDi+YyVtqgzXyDTLv6MNWKna9LQZlbkRLcpg6ELRnb5F/dL/eB/D0Sx
QpUFi8ZqBWL+A/TvgrCrTSIrfk71CKv6h1CGAS02dXorYro86KBLbJ0yp1T/WJUj
rHrGHczglvoB+5stY/EpquNpyca03GcutgIi9P2IsTIuFdnUgjc7t96WEQwL
-----END RSA PRIVATE KEY-----'''
	try:
		from appbe.dataPath import DATA_DIR
		file_path = os.path.join(DATA_DIR,'sqlite')    
		sqlite_obj = sqlite_db(file_path,'config.db')
		data = sqlite_obj.get_data(""s3bucket"",'Name',name)
	except:
		data = []
	awssecretaccesskey = ''
	found = False
	
	if len(data)!=0:
		aws_access_key_id = data[1]
		awssecretaccesskey = data[2]
		bucketName = data[3]
		found = True
			
	if found:
		privkey = rsa.PrivateKey.load_pkcs1(privkey,'PEM')
		awssecretaccesskey =  eval(awssecretaccesskey)
		awssecretaccesskey = rsa.decrypt(awssecretaccesskey, privkey)
		awssecretaccesskey = awssecretaccesskey.decode('utf-8')
		#awssecretaccesskey = 'SGcyJavYEQPwTbOg1ikqThT+Op/ZNsk7UkRCpt9g'#rsa.decrypt(awssecretaccesskey, privkey)
		client_s3 = boto3.client('s3', aws_access_key_id=aws_access_key_id, aws_secret_access_key=str(awssecretaccesskey))
		#print(bucketName,filename)
		try:		
			response = client_s3.get_object(Bucket=bucketName, Key=filename)
			df = pd.read_csv(response['Body'])
		except Exception as e:
			print(str(e))#usnish
			return 'Error',str(e), pd.DataFrame()
			
			#return 'Error', pd.DataFrame()
		return 'Success','',df
	return 'Error',""Please check bucket configuration"", pd.DataFrame()"
sqliteUtility.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
from pathlib import Path
import sqlite3
class sqlite_db():

    def __init__(self, location, database_file=None):
        if not isinstance(location, Path):
            location = Path(location)
        if database_file:
            self.database_name = database_file
        else:
            self.database_name = location.stem
        db_file = str(location / self.database_name)
        self.conn = sqlite3.connect(db_file)
        self.cursor = self.conn.cursor()

    def table_exists(self, name):
        query = f""SELECT name FROM sqlite_master WHERE type='table' AND name='{name}';""
        listOfTables = self.cursor.execute(query).fetchall()
        return len(listOfTables) > 0

    def read_data(self, table_name, condition = None):
        if condition:
            query = f""SELECT * FROM {table_name} WHERE ""+condition
        else:
            query = f""SELECT * FROM {table_name}""
        row = self.cursor.execute(query).fetchall()
        return list(row)
    
    def column_names(self, table_name):
        query = f""SELECT * FROM {table_name}""
        row = self.cursor.execute(query).fetchall()
        column_names = list(map(lambda x:x[0],self.cursor.description))
        return column_names
    # return pd.read_sql_query(f""SELECT * FROM {table_name}"", self.conn)

    def create_table(self, name, columns, dtypes):
        query = f'CREATE TABLE IF NOT EXISTS {name} ('

        for column, data_type in zip(columns, dtypes):
            query += f""'{column}'	TEXT,""
        query = query[:-1]
        query += ');'
        self.conn.execute(query)
        return True

    def delete_record(self, table_name, col_name, col_value):
        try:
            query = f""DELETE FROM {table_name} WHERE {col_name}='{col_value}'""
            self.conn.execute(query)
            self.conn.commit()
            return 'success'
        except Exception as e:
            print(str(e))
            print(""Deletion Failed"")
            return 'error'
    def drop_table(self,table_name):
        query = f""DROP TABLE {table_name}""
        self.cursor.execute(query)
        print(""Table dropped... "")

        # Commit your changes in the database
        self.conn.commit()
    def get_data(self, table_name, col_name, col_value):
        query = f""SELECT * FROM {table_name} WHERE {col_name}='{col_value}'""
        row = self.cursor.execute(query).fetchone()
        if (row == None):
            return []
        return list(row)

    def execute_query(self,query):
        self.cursor.execute(query)
        self.conn.commit()

    def write_data(self, data, table_name):
        if not self.table_exists(table_name):
            self.create_table(table_name, data.columns, data.dtypes)
        tuple_data = list(data.itertuples(index=False, name=None))
        insert_query = f'INSERT INTO {table_name} VALUES('
        for i in range(len(data.columns)):
            insert_query += '?,'
        insert_query = insert_query[:-1] + ')'
        self.cursor.executemany(insert_query, tuple_data)
        self.conn.commit()
        return True
        
    def update_dict_data(self,data:dict,condition,table_name):
        if not data:
            return
        if not table_name:
            raise ValueError('Database table name is not provided')
        updates  = ''
        #TODO validation of keys
        for i,kv in enumerate(data.items()):
            if i:
                updates += ','
            updates += f'""{kv[0]}""=""{kv[1]}""'
        if condition == '':
            update_query = f'UPDATE {table_name} SET {updates}'
        else:
            update_query = f'UPDATE {table_name} SET {updates} WHERE {condition}'
        self.cursor.execute(update_query)
        self.conn.commit()
        
    def update_data(self,updates,condition,table_name):
        if condition == '':
            update_query = f'UPDATE {table_name} SET {updates}'
        else:
            update_query = f'UPDATE {table_name} SET {updates} WHERE {condition}'
        self.cursor.execute(update_query)
        self.conn.commit()

    def close(self):
        self.conn.close()"
prediction.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import logging

from appbe.dataIngestion import getcommonfields
from appbe.dataIngestion import getusercasestatus
from appbe import service_url
import json
from appbe.dataIngestion import delimitedsetting
import os,sys
import pandas as pd
from django.http import HttpResponse
import time

from appbe.dataPath import LOG_LOCATION
from appbe.log_ut import logg
def get_instance_id(modelID):
    from appbe.sqliteUtility import sqlite_db
    from appbe.dataPath import DATA_DIR
    file_path = os.path.join(DATA_DIR,'sqlite')
    sqlite_obj = sqlite_db(file_path,'config.db')
    if sqlite_obj.table_exists(""LLMTuning""):
        data = sqlite_obj.get_data('LLMTuning','usecaseid',modelID)
        print(data)
        if len(data) > 0:
            return (data[3]+' instance '+data[2])
        else:
            return 'Instance ID not available'
    else:
        return 'Instance ID not available'

def get_instance(modelID):
    from appbe.sqliteUtility import sqlite_db
    from appbe.dataPath import DATA_DIR
    file_path = os.path.join(DATA_DIR,'sqlite')
    sqlite_obj = sqlite_db(file_path,'config.db')
    if sqlite_obj.table_exists(""LLMTuning""):
        data = sqlite_obj.get_data('LLMTuning','usecaseid',modelID)
        if len(data) > 0:
            return (data[3],data[2],data[5],data[6])
        else:
            return '','','',''
    else:
        return '','','',''
def getprompt(promptfeature,contextFeature,responseFeature,promptFriendlyName,responseFriendlyName,data):
    if contextFeature != '':
        promptData = data[promptfeature].replace('\n','')
        inputData = data[contextFeature].replace('\n','')
        prompt = (
            f""Below is an {promptFriendlyName} that describes a task, paired with an Input that provides further context. ""
            f""Write a {responseFriendlyName} that appropriately completes the request.\n\n""
            f""### {promptFriendlyName}:\n{promptData}\n\n### Input:\n{inputData}\n\n### {responseFriendlyName}:\n"")
        
    else:
        promptData = data[promptfeature].replace('\n','')        
        prompt=(
        f""Below is an {promptFriendlyName} that describes a task. ""
            f""Write a {responseFriendlyName} that appropriately completes the request.\n\n""
            f""### {promptFriendlyName}:\n{promptData}\n\n### {responseFriendlyName}:\n"")
    return prompt    
        
def getDataInstance(problem_type,mlmodels,configSettingsJson):
    log = logging.getLogger('log_ux')
    delimiters,textqualifier = delimitedsetting(configSettingsJson['basic']['fileSettings']['delimiters'],configSettingsJson['basic']['fileSettings']['textqualifier']) 
    if problem_type == 'timeSeriesForecasting': #task 11997
        inputFieldsDict = {'noofforecasts': 10}
    elif problem_type == 'recommenderSystem' and mlmodels =='ItemRating':
        inputFieldsDict = {""uid"": 1, ""iid"": 31, ""rating"": 0}
    elif problem_type == 'stateTransition':  
        inputFeatures = configSettingsJson['basic']['trainingFeatures']
        targetFeature = configSettingsJson['basic']['targetFeature']
        inputFeaturesList = inputFeatures.split(',')
        inputFieldsDict = {inputFeatures:'session',targetFeature:'Activity'}
    else:
        inputFeatures = configSettingsJson['basic']['trainingFeatures']
        targetFeature = configSettingsJson['basic']['targetFeature']
        inputFeaturesList = inputFeatures.split(',')
        if targetFeature in inputFeaturesList:
            inputFeaturesList.remove(targetFeature)
        if problem_type == 'survivalAnalysis':
            inputFeaturesList.insert(0,configSettingsJson['basic']['dateTimeFeature'])
        dataFilePath = str(configSettingsJson['basic']['dataLocation'])
        if os.path.isfile(dataFilePath):
            df = pd.read_csv(dataFilePath,encoding='utf8',nrows=2,sep=delimiters,quotechar=textqualifier,encoding_errors= 'replace')
            try:
                singleInstanceData = df.loc[0, inputFeaturesList]
            except:
                singleInstanceData = pd.Series(0, index =inputFeaturesList) 
            inputFieldsDict = singleInstanceData.to_dict()
        else:
            inputFieldsDict =  {""File"":""EnterFileContent""}						
    inputFields = []
    inputFields.append(inputFieldsDict)
    return inputFields
def createInstanceFeatures(configSettingsJson,problem_type,mlmodels,usecaseid,version,ser_url):
    delimiters,textqualifier = delimitedsetting(configSettingsJson['basic']['fileSettings']['delimiters'],configSettingsJson['basic']['fileSettings']['textqualifier']) 
    inputFeatures = configSettingsJson['basic']['trainingFeatures']
    targetFeature = configSettingsJson['basic']['targetFeature']
    if inputFeatures != '':
        inputFeaturesList = inputFeatures.split(',')
    else:
        inputFeaturesList = []
    if targetFeature in inputFeaturesList:
        inputFeaturesList.remove(targetFeature)             
    if configSettingsJson['basic']['contextFeature'] != '':
        inputFeaturesList.append(configSettingsJson['basic']['contextFeature'])    
    if problem_type == 'llmFineTuning':
        inputFeaturesList.append('Temperature')
        inputFeaturesList.append('Max Tokens')
    if problem_type in ['survivalAnalysis','anomalyDetection', 'timeSeriesAnomalyDetection']: #task 11997
        if configSettingsJson['basic']['dateTimeFeature'] != '' and configSettingsJson['basic']['dateTimeFeature'] != 'na':
            inputFeaturesList.insert(0,configSettingsJson['basic']['dateTimeFeature'])    
    dataFilePath = str(configSettingsJson['basic']['dataLocation'])
    if problem_type == 'timeSeriesForecasting': #task 11997
        inputFieldsDict = {'noofforecasts': 10}
    elif problem_type == 'recommenderSystem' and mlmodels=='ItemRating':
        inputFieldsDict = {""uid"": 1, ""numberOfRecommendation"":10}    
    elif problem_type == 'stateTransition':  
        inputFeatures = configSettingsJson['basic']['trainingFeatures']
        targetFeature = configSettingsJson['basic']['targetFeature']
        if inputFeatures != '':
            inputFeaturesList = inputFeatures.split(',')
        else:
            inputFeaturesList = []
        inputFieldsDict = {inputFeatures:'session',targetFeature:'Activity'}
    elif problem_type != 'llmFineTuning':
        if os.path.isfile(dataFilePath):
            df = pd.read_csv(dataFilePath,encoding='utf8',nrows=2,sep=delimiters,quotechar=textqualifier,skipinitialspace = True,encoding_errors= 'replace')
            try:
                inputFieldsDict = df.to_dict(orient='index')[0]
            except:
                inputFieldsDict = pd.Series(0, index =inputFeaturesList).to_dict()
        else:
            inputFieldsDict =  {""File"":""EnterFileContent""}                      
    else:
        inputFieldsDict = pd.Series('', index =inputFeaturesList).to_dict()
        inputFieldsDict['Temperature'] = '0.1'
        hypervisor,instanceid,region,image = get_instance(usecaseid+'_'+str(version))
        if hypervisor.lower() == 'AWS':
            inputFieldsDict['Max Tokens'] = '1024'
        else:
            inputFieldsDict['Max Tokens'] = '4096'
    inputFields = []
    inputFields.append(inputFieldsDict)
    if problem_type == 'llmFineTuning':
        ser_url = get_instance_id(usecaseid+'_'+str(version))
    elif problem_type == 'stateTransition': 
        
        ser_url = ser_url+'pattern_anomaly_predict?usecaseid='+usecaseid+'&version='+str(version)
    else:
        
        ser_url = ser_url+'predict?usecaseid='+usecaseid+'&version='+str(version) 
    return inputFields,ser_url 
def singleInstancePredict(request, Existusecases, usecasedetails):
    log = logging.getLogger('log_ux')
    modelType=''
    context = getcommonfields()
    submittype = request.POST.get('predictsubmit')
    selected_use_case,ModelVersion,ModelStatus = getusercasestatus(request) 
    t1 = time.time()
    try:
        try:
            model = Existusecases.objects.get(ModelName=request.session['ModelName'],
                                          Version=request.session['ModelVersion'])
            output_train_json_filename = str(model.TrainOuputLocation)
            f = open(output_train_json_filename, ""r+"")
            training_output = f.read()
            f.close()
            training_output = json.loads(training_output)
            featureused = training_output['data']['featuresused']
        except:
            featureused = []
        from appbe.telemetry import UpdateTelemetry
        UpdateTelemetry(request.session['usecaseid']+'-'+str(request.session['ModelVersion']),'Prediction','Yes')
            
        usecasename = request.session['usecaseid'].replace("" "", ""_"")
        context.update({'usecasename':usecasename})
        updatedConfigFile = request.session['config_json']
        f = open(updatedConfigFile, ""r"", encoding = ""utf-8"")
        configSettings = f.read()
        f.close()
        configSettingsJson = json.loads(configSettings)           
        inputFeatures = configSettingsJson['basic']['trainingFeatures']
        targetFeature = configSettingsJson['basic']['targetFeature']
        if inputFeatures != '':
            inputFeaturesList = inputFeatures.split(',')
        else:
            inputFeaturesList = []
        if targetFeature in inputFeaturesList:
            inputFeaturesList.remove(targetFeature)             
        if configSettingsJson['basic']['contextFeature'] != '':
            inputFeaturesList.append(configSettingsJson['basic']['contextFeature'])

        problemtypes = configSettingsJson['basic']['analysisType'] 
        problem_type = ''
        modelSize = ''
        for k in problemtypes.keys():
            if configSettingsJson['basic']['analysisType'][k] == 'True':
                problem_type = k
                break
        if problem_type == 'llmFineTuning':
            inputFeaturesList.append('Temperature')
            inputFeaturesList.append('Max Tokens')
        mlmodels =''
        algorihtms = configSettingsJson['basic']['algorithms'][problem_type]
        for k in algorihtms.keys():
            if configSettingsJson['basic']['algorithms'][problem_type][k] == 'True':
                if mlmodels != '':
                    mlmodels += ', ' 
                mlmodels += k
                
        if problem_type == 'llmFineTuning':
            ser_url = get_instance_id(usecasename+'_'+str(request.session['ModelVersion']))
            if 'modelSize' in configSettingsJson['basic']:
                selectedModelSize = configSettingsJson['basic']['modelSize']['llmFineTuning'][mlmodels]
                for k in selectedModelSize.keys():
                    if configSettingsJson['basic']['modelSize']['llmFineTuning'][mlmodels][k] == 'True':
                        modelSize = k
                        break

        elif problem_type == 'stateTransition': 
            ser_url = service_url.read_service_url_params(request)
            ser_url = ser_url+'pattern_anomaly_predict?usecaseid='+usecasename+'&version='+str(request.session['ModelVersion'])
        else:
            ser_url = service_url.read_service_url_params(request)
            ser_url = ser_url+'predict?usecaseid='+usecasename+'&version='+str(request.session['ModelVersion']) 
        if submittype.lower() == 'predict':
            inputFieldsDict = {}
            if problem_type == 'timeSeriesForecasting': #task 11997
                inputFieldsDict['noofforecasts'] = int(request.POST.get('noofforecasts'))
            elif problem_type == 'stateTransition':
                inputFeatures = configSettingsJson['basic']['trainingFeatures']
                targetFeature = configSettingsJson['basic']['targetFeature']
                sessionid = request.POST.get('SessionID')
                activity = request.POST.get(targetFeature)      
                inputFieldsDict[inputFeatures] = request.POST.get(inputFeatures)
                inputFieldsDict[targetFeature] = request.POST.get(targetFeature)
            
            elif problem_type == 'recommenderSystem' and mlmodels == 'ItemRating':
                inputFieldsDict['uid'] = request.POST.get('uid')
                inputFieldsDict['numberOfRecommendation'] = int(request.POST.get('numberOfRecommendation')) #Task 11190
            else:
                if problem_type in ['survivalAnalysis','anomalyDetection', 'timeSeriesAnomalyDetection']: #task 11997
                    if configSettingsJson['basic']['dateTimeFeature'] != '' and configSettingsJson['basic']['dateTimeFeature'] != 'na':
                        inputFeaturesList.insert(0,configSettingsJson['basic']['dateTimeFeature'])
             
                for feature in inputFeaturesList:
                    inputFieldsDict[feature] = request.POST.get(feature)
                if problem_type.lower() not in ['contextualsearch','similarityidentification']:
                    for key, value in inputFieldsDict.items():
                        if value == 'nan':
                            inputFieldsDict[key] = ''

                        if value == '':
                            if key in featureused:
                                context.update({'tab': 'predict','ser_url':ser_url, 'error': ' Error : Mandatory field(s) are empty', 'selected': 'prediction', 'selected_use_case': selected_use_case, 'ModelStatus': ModelStatus,'ModelVersion': ModelVersion})
                                return context
            inputFieldsJson = json.dumps(inputFieldsDict)        
            if problem_type == 'llmFineTuning':
                modelType = request.POST.get('modelTypeforInferencing')

                x =  inputFieldsDict.keys()
                from appbe.dataPath import DATA_DIR
                prompt = inputFieldsDict[configSettingsJson['basic']['trainingFeatures']]
                promptobj = {'prompt':prompt}
                if configSettingsJson['basic']['contextFeature'] != '':
                    inputData = inputFieldsDict[configSettingsJson['basic']['contextFeature']]
                    promptobj.update({'input':inputData})
                filetimestamp = str(int(time.time()))
                file_path = os.path.join(DATA_DIR,'logs',filetimestamp+'.json')
                f= open(file_path,""w"",encoding=""utf-8"")
                #print(promptobj)
                json.dump(promptobj,f)
                f.close()
                from llm.llm_inference import LLM_predict
                cloudconfig = os.path.normpath(os.path.join(os.path.dirname(os.path.abspath(__file__)), '..','config','compute_conf.json'))
                hypervisor,instanceid,region,image = get_instance(usecasename+'_'+str(request.session['ModelVersion']))
                if hypervisor and instanceid:
                    if modelSize != '':
                        mlmodels = mlmodels+'-'+modelSize
                    cachepath = os.path.join(DATA_DIR,'sqlite','cachePrompt.db')
                    import sqlite3
                    conn = sqlite3.connect(cachepath)
                    from llm.llm_cache import CachePrompt
                    cachepromptObj = CachePrompt(conn)
                    searchFlag,result = cachepromptObj.selectFromCache(prompt,usecasename+'_'+str(request.session['ModelVersion']),modelType,temperature=inputFieldsDict['Temperature'],max_token=inputFieldsDict['Max Tokens'])
                    
                    if searchFlag:
                        buf = LLM_predict(cloudconfig,instanceid,file_path,hypervisor,mlmodels,usecasename+'_'+str(request.session['ModelVersion']),region,image,inputFieldsDict['Temperature'],inputFieldsDict['Max Tokens'],modelType)
                        import re
                        outputStr = buf.split('ModelOutput:')[1]
                        cachepromptObj.insertRecord(prompt,outputStr,usecasename+'_'+str(request.session['ModelVersion']),modelType,temperature=inputFieldsDict['Temperature'],max_token=inputFieldsDict['Max Tokens'])
                    else:
                        outputStr = result
                    if configSettingsJson['basic']['folderSettings']['fileType'].lower() != 'llm_document':
                        outputStr = outputStr.split('### '+configSettingsJson['basic']['preprocessing']['llmFineTuning']['friendlyNames']['response']+':')[1]
                    singlePredictionResults = []
                    singlePredictionsummary=""""
                    Results={}
                    Results['Response'] = outputStr
                    singlePredictionResults.append(Results)
                else:
                    context.update(
                        {'tab': 'tabconfigure', 'error': 'Prediction Error: Instance ID not found ', 'selected': 'prediction',
                         'selected_use_case': selected_use_case, 'ModelStatus': ModelStatus,
                         'ModelVersion': ModelVersion,'mlmodels':mlmodels})
                    log.info('Predict Instance :' + str(selected_use_case) + ' : ' + str(
                        ModelVersion) + ' : ' + '0 ' + 'sec' + ' : ' + 'Error : Prediction Error, Instance ID not found')
                    return context
            else:
                try:
                    import requests            
                    #response = requests.post(ser_url,auth=(aion_service_username,aion_service_password),data=inputFieldsJson,headers={""Content-Type"":""application/json"",})
                    response = requests.post(ser_url,data=inputFieldsJson,headers={""Content-Type"":""application/json"",})
                    if response.status_code != 200:
                        outputStr=response.content
                        context.update({'tab': 'tabconfigure', 'error': outputStr.decode('utf-8'), 'selected': 'prediction'})
                        log.info('Predict Instance : '+str(selected_use_case) + ' : ' + str(ModelVersion) + ' : '+'0 '+'sec'+' : '+'Error : '+str(outputStr.decode('utf-8')))
                        return context                    
                except Exception as inst:
                    if 'Failed to establish a new connection' in str(inst):
                        context.update({'tab': 'tabconfigure', 'error': 'AION service need to be started', 'selected': 'prediction', 'selected_use_case': selected_use_case, 'ModelStatus': ModelStatus,'ModelVersion': ModelVersion})
                        log.info('Predict Instance :'+str(selected_use_case) + ' : ' + str(ModelVersion) + ' : '+'0'+' sec'+' : '+'Error : AION service need to be started, '+str(inst))
                        return context
                    else:
                        context.update({'tab': 'tabconfigure', 'error': 'Prediction Error '+str(inst),'selected': 'prediction', 'selected_use_case': selected_use_case, 'ModelStatus': ModelStatus,'ModelVersion': ModelVersion})
                        log.info('Predict Instance :'+str(selected_use_case) + ' : ' + str(ModelVersion) + ' : '+'0 '+'sec'+' : '+'Error : Prediction Error, '+str(inst))
                        return context   
                outputStr=response.content    
                outputStr = outputStr.decode('utf-8','ignore')
                outputStr = outputStr.strip()
                predict_dict = json.loads(str(outputStr))
                #print(predict_dict)
                singlePredictionsummary=""""            
                if (predict_dict['status'] == 'SUCCESS'):
                    data = predict_dict['data']
                    singlePredictionResults = []
                    Results = {}
                    if problem_type == 'multiModalLearning':
                        data = data[0]
                        Results['prediction'] = data['predict']
                        singlePredictionResults.append(Results)

                    if problem_type == 'textSummarization':
                        data = data[0]
                        Results['msg'] = predict_dict['msg']
                        singlePredictionResults.append(Results)
                        Results['prediction'] = predict_dict['data']
                        singlePredictionResults.append(Results)
                        Results1 = {}
                        Results1['prediction'] = predict_dict['data']
                        print(""prdata------------"",predict_dict['data'])
                        singlePredictionsummary=predict_dict['data']
                        print(""singlePredictionsummary"",singlePredictionsummary)
                        t2 = time.time()                    
                    
                    elif problem_type == 'multiLabelPrediction':
                        prediction = ''
                        for x in data:
                            for y in x:
                                if 'predict' in y:
                                    if prediction != '':
                                        prediction += ','
                                    prediction += str(y)+':'+str(x[y])
                        Results['prediction'] = prediction
                        singlePredictionResults.append(Results)
                    elif problem_type == 'timeSeriesForecasting': #task 11997
                        Results['prediction'] = json.dumps(data)
                        singlePredictionResults.append(Results)
                    elif problem_type == 'stateTransition':
                        if str(data['Anomaly']) == 'False':
                            Results['prediction'] = 'No Anomaly'
                        else:
                            Results['prediction'] = str(data['Remarks'])
                        singlePredictionResults.append(Results)
                    elif problem_type.lower() in ['similarityidentification','contextualsearch']:
                        data = data[0]
                        prediction = data['prediction']
                        i = 1
                        for x in prediction:
                            te = ''
                            for y in x:
                                info = (str(x[y])[:50] + '...') if len(str(x[y])) > 50 else str(x[y])
                                te += y+': '+info+'\n\n'
                            Results[i] = te
                            i = i+1
                        singlePredictionResults.append(Results)
                    else:
                        data = data[0]
                        if 'prediction' in data:
                            Results['prediction'] = data['prediction']

                        if 'probability' in data:
                            Results['probability'] = data['probability']
                        if 'remarks' in data:
                            Results['remarks'] = json.loads(data['remarks'])
                        singlePredictionResults.append(Results)
                    t2 = time.time()
                    log.info('Predict Instance : '+str(selected_use_case) + ' : ' + str(ModelVersion) + ' : '+str(round(t2-t1))+' sec'+' : '+'Success')

                else:
                    context.update({'tab': 'tabconfigure', 'error': 'Prediction Error '+str(predict_dict['message']), 'selected': 'prediction','selected_use_case': selected_use_case, 'ModelStatus': ModelStatus,'ModelVersion': ModelVersion})
                    log.info('Predict Instance : '+str(selected_use_case) + ' : ' + str(ModelVersion) + ' : '+'0 '+'sec'+' : '+'Error : Prediction Error')
                    return context
            inputFields = []
            inputFields.append(inputFieldsDict)
            ##Below added by sjayaram for llm langkit evaluation metrics Task:17109
            prompt_response_results = ''
            if problem_type == 'llmFineTuning':
                try:
                    response_msg = outputStr
                    prompt_msg = prompt
                except:
                    response_msg = ''
                    prompt_msg = ''
                
                from appbe.evaluate_prompt import evaluate_prompt_response_inputs
                final_output_json,prompt_response_results = evaluate_prompt_response_inputs(prompt_msg,response_msg)
            #ser_url = service_url.read_service_url_params(request)
            #ser_url = ser_url+'predict?usecaseid='+usecasename+'&version='+str(ModelVersion)
            context.update({'tab': 'predict','mlmodels':mlmodels,'fineTunedModelType':modelType,'ser_url':ser_url, 'inputFields': inputFields,'singlePredictionResults': singlePredictionResults,'singlePredictionsummary':singlePredictionsummary,'selected_use_case': selected_use_case, 'ModelStatus': ModelStatus,'ModelVersion': ModelVersion, 'selected': 'prediction',
            'prompt_response_results':prompt_response_results})
            return context
        elif submittype.lower() == 'script':
            scriptdata=""'''\n""
            scriptdata+=""* =============================================================================\n""
            scriptdata+=""* COPYRIGHT NOTICE\n""
            scriptdata+=""* =============================================================================\n""
            scriptdata+=""* @ Copyright HCL Technologies Ltd. 2021, 2022, 2023\n""
            scriptdata+=""* Proprietary and confidential. All information contained herein is, and\n""
            scriptdata+=""* remains the property of HCL Technologies Limited. Copying or reproducing the\n""            
            scriptdata+=""* contents of this file, via any medium is strictly prohibited unless prior\n""
            scriptdata+=""* written permission is obtained from HCL Technologies Limited.\n""            
            scriptdata+=""'''\n""            
            scriptdata+='import sys\n'
            scriptdata+='import json\n'
            scriptdata+='import requests\n'
            scriptdata+='import pandas as pd\n'
            scriptdata+='from pandas import json_normalize\n'
            scriptdata+='ser_url =""'+ser_url+'""\n\n'
            scriptdata+=""def predict(data):\n""
            scriptdata+=""    if data.endswith('.tsv'):\n""
            scriptdata+=""        df=pd.read_csv(data,encoding='utf-8',encoding_errors= 'replace',sep='\\t')\n""
            scriptdata+=""    else:\n""
            scriptdata+=""        df=pd.read_csv(data,encoding='utf-8',encoding_errors= 'replace')\n""
            scriptdata+='    features = ""'+"","".join([feature for feature in inputFeaturesList])+'""\n'
            scriptdata+=""    features = features.split(',')\n""
            scriptdata+=""    df = df[features]\n""            
            scriptdata+=""    data = df.to_json(orient='records')\n""
            scriptdata+=""    try:\n""
            scriptdata+='        response = requests.post(ser_url,data=data,headers={""Content-Type"":""application/json"",})\n'
            scriptdata+=""        if response.status_code == 200:\n""                
            scriptdata+=""            outputStr=response.content\n""            
            scriptdata+=""            outputStr = outputStr.decode('utf-8')\n""            
            scriptdata+=""            outputStr = outputStr.strip()\n""
            scriptdata+=""            predict_dict = json.loads(str(outputStr))\n""            
            scriptdata+=""            print(predict_dict)\n""
            scriptdata+=""    except Exception as e:\n""
            scriptdata+='        print(e)\n'
            scriptdata+='\nif __name__ == ""__main__"":\n'
            scriptdata+='    predict(sys.argv[1])'
            response = HttpResponse()
            response['content_type'] = 'text/plain'
            response['Content-Disposition'] = 'attachment; filename=prediction.py'
            response.write(scriptdata)
            return response

    except Exception as inst:
        print(inst)
        exc_type, exc_obj, exc_tb = sys.exc_info()
        fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
        print(str(exc_type) + ' ' + str(fname) + ' ' + str(exc_tb.tb_lineno))
        context.update({'tab': 'tabconfigure', 'error': 'Failed To perform prediction','selected_use_case': selected_use_case, 'ModelStatus': ModelStatus,'ModelVersion': ModelVersion, 'selected': 'prediction'})
        log.info('Predict Instance :' + str(selected_use_case) + ' : ' + str(ModelVersion) + ' : ' + ' 0 ' + 'sec' + ' : ' + 'Error : Failed To perform prediction, '+ str(inst))
        return context        
        
       "
flconfig.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import os.path
import time
import subprocess
import sys
from appbe.aion_config import kafka_setting
from appbe.aion_config import running_setting
from appbe import installPackage
from appbe import compute
from appbe.models import getusercasestatus
import json
import pandas as pd
from os.path import expanduser
import ntpath
import shutil
import platform
from pathlib import Path
home = expanduser(""~"")
if platform.system() == 'Windows':
    LOG_FILE_PATH = os.path.join(home,'AppData','Local','HCLT','AION','logs')
else:
    LOG_FILE_PATH = os.path.join(home,'HCLT','AION','logs')

def convert(obj):
    if isinstance(obj, bool):
        return str(obj).capitalize()
    if isinstance(obj, (list, tuple)):
        return [convert(item) for item in obj]
    if isinstance(obj, dict):
        return {convert(key):convert(value) for key, value in obj.items()}
    return obj
	
def fl_command(request,Existusecases,usecasedetails):
    command = request.POST.get('flsubmit')
    print(command)
    #kafkaSetting = kafka_setting()
    ruuningSetting = running_setting()
    computeinfrastructure = compute.readComputeConfig()
    modelID = request.POST.get('modelID')
    p = Existusecases.objects.get(id=modelID)
    usecasename = p.ModelName.UsecaseName
    runningStatus,pid,ip,port = installPackage.checkModelServiceRunning(usecasename)
    installationStatus,modelName,modelVersion=installPackage.checkInstalledPackge(usecasename)
    usecasedetail = usecasedetails.objects.get(id=p.ModelName.id)
    usecase = usecasedetails.objects.all()
    models = Existusecases.objects.filter(ModelName=usecasedetail,Status='SUCCESS')
    for model in models:
        model.scoringCreteria = 'NA'
        model.score = 'NA'
        model.deploymodel = 'NA'
        if os.path.isdir(str(model.DeployPath)):
            modelPath = os.path.join(str(model.DeployPath),'etc','output.json')
            try:	
                with open(modelPath) as file:
                    outputconfig = json.load(file)
                file.close()
                if outputconfig['status'] == 'SUCCESS':
                    model.scoringCreteria = outputconfig['data']['ScoreType']
                    model.score = outputconfig['data']['BestScore']
                    model.deploymodel = outputconfig['data']['BestModel']
                    model.modelType = outputconfig['data']['ModelType']
                    model.featuresused = eval(outputconfig['data']['featuresused'])
                    model.targetFeature = outputconfig['data']['targetFeature']
                    model.modelParams = outputconfig['data']['params']
                    model.dataPath =  os.path.join(str(model.DeployPath),'data', 'postprocesseddata.csv.gz')					
                    model.maacsupport = 'True'
                    model.flserversupport = 'False'
                    supportedmodels = [""Logistic Regression"",""Neural Network"",""Linear Regression""]
                    if model.deploymodel in supportedmodels:
                        model.flserversupport = 'True'
                    else:
                        model.flserversupport = 'False'
                    supportedmodels = [""Logistic Regression"",
                        ""Naive Bayes"",""Decision Tree"",""Support Vector Machine"",""K Nearest Neighbors"",""Gradient Boosting"",""Random Forest"",""Linear Regression"",""Lasso"",""Ridge"",""Extreme Gradient Boosting (XGBoost)"",""Light Gradient Boosting (LightGBM)"",""Categorical Boosting (CatBoost)""]
                    if model.deploymodel in supportedmodels:
                        model.maacsupport = 'True'
                    else:
                        model.maacsupport = 'False'                          
                    supportedmodels = [""Extreme Gradient Boosting (XGBoost)""]
                    if model.deploymodel in supportedmodels:
                        model.encryptionsupport = 'True'
                    else:
                        model.encryptionsupport = 'False'	                 
            except Exception as e:    
                pass	
    flserver = os.path.join(str(p.DeployPath),'publish','FedLearning')
    if command == 'startServer':
        flservicefile = os.path.join(flserver,'fedServer','aionfls.py')
        confilefile =  	os.path.join(flserver,'fedServer','config.json')
        if platform.system() == 'Windows':
            outputStr = subprocess.Popen([sys.executable, flservicefile,confilefile],creationflags = subprocess.CREATE_NEW_CONSOLE)
        else:
            outputStr = subprocess.Popen([sys.executable, flservicefile,confilefile]) 
        Status = 'SUCCESS'
        Msg = 'Federated Learning Server Started'			
    if command == 'saveflconfig':	
        #print(command)
        fedserverPath = os.path.normpath(os.path.join(os.path.dirname(os.path.abspath(__file__)), '..','utilities','fedServer'))
        shutil.rmtree(flserver, ignore_errors=True)		
        Path(flserver).mkdir(parents=True, exist_ok=True)	
        flcopypath = os.path.join(flserver,'fedServer')		
        shutil.copytree(fedserverPath,flcopypath)
        fedserverDataPath = os.path.join(flcopypath,'data')
        shutil.copy2(request.POST.get('flserver_datalocation'),fedserverDataPath) 		
        flcon = {}
        AlgorithmNames={'Logistic Regression':'LogisticRegression','Neural Network':'deeplearning','Linear Regression':'LinearRegression'}		 
        flcon['server_IP'] = request.POST.get('flserver_ipaddress')
        flcon['server_port'] = request.POST.get('flserver_port')
        flcon['model_name'] = AlgorithmNames[request.POST.get('flserver_model')]
        flcon['version'] = request.POST.get('flserver_Version')
        flcon['model_hyperparams'] = convert(eval(request.POST.get('flserver_params')))
        dataLocation = request.POST.get('flserver_datalocation')
        dataPath,datafile = ntpath.split(dataLocation)
        flcon['data_location'] = 'data/'+datafile
        flcon['selected_feature'] = "","".join([model for model in eval(request.POST.get('flserver_trainingfeatures'))])
        flcon['target_feature'] = request.POST.get('flserver_targetfeature')	
        flcon['problem_type'] = request.POST.get('flserver_modelType')		
        flcon['min_available_clients'] = request.POST.get('flserver_noofclient')
        flcon['min_fit_clients'] = 2
        flcon['fl_round'] = request.POST.get('flserver_trainround')
        flcon['evaluation_required'] = request.POST.get('flserver_evaluation')
        flcon['model_store'] = """"
        flconfigfile = os.path.join(flcopypath,'config.json')
        flconjson = json.dumps(flcon)
        f = open(flconfigfile, ""w+"")
        f.seek(0)
        f.write(flconjson)
        f.truncate()
        f.close()
        nouc = 0
        Status = 'Success'
        Msg = 'Federated Learning Server Configured'	
    if command =='startClient':
        flconfigfile = os.path.join(str(model.DeployPath),'publish','FedLearning','fedServer','config.json')
        if os.path.isfile(flconfigfile):
            with open(flconfigfile) as file:
                flconfig = json.load(file)
            file.close()			
        numberofclient =  flconfig['min_available_clients']
        for x in range(int(numberofclient)): 
            flclientdirectory = os.path.join(str(model.DeployPath),'publish','FedLearning','fedClient_'+str(x+1))		  
            flclientpath =  os.path.join(str(model.DeployPath),'publish','FedLearning','fedClient_'+str(x+1),'fedClient.bat')
            if platform.system() == 'Windows':
                outputStr = subprocess.Popen([flclientpath],creationflags = subprocess.CREATE_NEW_CONSOLE,cwd=flclientdirectory)
            else:
                outputStr = subprocess.Popen([flclientpath],cwd=flclientdirectory) 
        Status = 'SUCCESS'
        Msg = 'Federated Learning Client Started'            
    if command == 'generateClient':
        flconfigfile = os.path.join(str(model.DeployPath),'publish','FedLearning','fedServer','config.json')
        if os.path.isfile(flconfigfile):
            with open(flconfigfile) as file:
                flconfig = json.load(file)
            file.close()			
        numberofclient =  flconfig['min_available_clients']
        trainingDataLocation = os.path.join(str(p.DeployPath),'data','postprocesseddata.csv.gz')	
        from utils.file_ops import read_df_compressed
        status,df = read_df_compressed(trainingDataLocation,encoding='utf8')
        for x in range(int(numberofclient)):
            flclientpath =  os.path.join(str(model.DeployPath),'publish','FedLearning','fedClient_'+str(x+1))
            logPath = os.path.join(flclientpath,'logs')
            modelsPath = os.path.join(flclientpath,'models')
            Path(flclientpath).mkdir(parents=True, exist_ok=True)			
            Path(logPath).mkdir(parents=True, exist_ok=True)			
            Path(modelsPath).mkdir(parents=True, exist_ok=True)	
            flclientor = os.path.normpath(os.path.join(os.path.dirname(os.path.abspath(__file__)), '..','utilities','fedClient','aionflc.py'))
            shutil.copy2(flclientor,flclientpath)
            flclientor = os.path.normpath(os.path.join(os.path.dirname(os.path.abspath(__file__)), '..','utilities','fedClient','utils.py')) 
            shutil.copy2(flclientor,flclientpath)
            flclientor = os.path.normpath(os.path.join(os.path.dirname(os.path.abspath(__file__)), '..','utilities','fedClient','dl_model.py')) 
            shutil.copy2(flclientor,flclientpath)
            subset = df.sample(frac=0.8)
            dataPath = os.path.join(flclientpath,'data')
            Path(dataPath).mkdir(parents=True, exist_ok=True)			
            datafile = os.path.join(dataPath,'data.dat')
            subset.to_csv(datafile, index=False)	
            flclient = {}
            flclient['server_IP'] = flconfig['server_IP']
            flclient['server_port'] = flconfig['server_port']
            flclient['model_name'] = flconfig['model_name']
            flclient['problem_type'] = flconfig['problem_type']
            flclient['version'] = flconfig['version']
            flclient['model_hyperparams'] = flconfig['model_hyperparams']
            flclient['data_location'] = 'data\data.dat'
            flclient['selected_feature'] = flconfig['selected_feature']
            flclient['target_feature'] = flconfig['target_feature']
            flclient['train_size'] = 80
            #flclient['deploy_location'] = flconfig['deploy_location']
            flclient['num_records_per_round'] = request.POST.get('flserver_recordperround')
            flclient['wait_time'] = request.POST.get('flserver_roundtime')
            flclient['model_overwrite'] = request.POST.get('model_overwritelabel')			
            configPath = os.path.join(flclientpath,'config')
            Path(configPath).mkdir(parents=True, exist_ok=True)			
            configFile = os.path.join(configPath,'config.json')
            flconjson = json.dumps(flclient)
            f = open(configFile, ""w+"")
            f.seek(0)
            f.write(flconjson)
            f.truncate()
            f.close()
            locate_python = sys.exec_prefix
            bathfilePath = os.path.join(flclientpath,'fedClient.bat')			
            batfilecontent='''
@ECHO OFF

GOTO weiter
:setenv
SET ""Path={python_path}\;%Path%;""
GOTO :EOF

:weiter
IF ""%1"" EQU ""setenv"" (
    ECHO.
    ECHO Setting environment for AION Federated Learning Client.
	CALL :setenv
	python %CD%\\aionflc.py %CD%\config\config.json
	
) ELSE (
    SETLOCAL EnableDelayedExpansion
	
	TITLE ION Federated Learning Client
	
    PROMPT %username%@%computername%$S$P$_#$S
	
	IF EXIST aion.config (FOR /F ""delims="" %%A IN (aion.config) DO SET ""%%A"")
	START """" /B %COMSPEC% /K ""%~f0"" setenv
)
'''.format(python_path=str(locate_python))
            f = open(bathfilePath, ""w"",encoding=""utf-8"")
            f.write(str(batfilecontent))
            f.close()
			
        Status = 'Success'
        Msg = 'Federated Learning Client Code Generated'	
    nouc = 0
    #selected_use_case,ModelVersion,ModelStatus = getusercasestatus(request)
    from appbe.pages import get_usecase_page        
    status,context,action = get_usecase_page(request,usecasedetails,Existusecases)        
    context['Status'] = Status 
    context['Msg'] = Msg
    return(context)   	"
evaluate_prompt.py,"from langkit import textstat
from whylogs.experimental.core.udf_schema import udf_schema
import pandas as pd
import whylogs as why
from langkit import light_metrics
from whylogs.experimental.core.udf_schema import udf_schema
from whylogs.experimental.core.udf_schema import register_dataset_udf
import whylogs as why
import json
from sentence_transformers import SentenceTransformer, util
from langkit import lang_config, response_column


def evaluate_prompt_metrics(prompt_msg: any):
    """""" Evaluate prompt only information.""""""
    text_schema = udf_schema()
    llm_schema = light_metrics.init()
    df = pd.DataFrame({
        ""prompt"": [
            prompt_msg
        ]})
    results = why.log(df, schema=udf_schema())  # .profile()
    view = results.view()

    automated_readability_index_prompt = view.get_column(""prompt.automated_readability_index"").to_summary_dict()
    automated_readability_index_prompt_mean = automated_readability_index_prompt['distribution/mean']
    arip_m = lambda x:1 if x < 1 else (14 if x > 14 else x)
    automated_readability_index_prompt_mean = arip_m(automated_readability_index_prompt_mean)
    automated_readability_index_prompt_value = get_readability_index_range_value(automated_readability_index_prompt_mean)

    flesch_reading_ease_prompt = view.get_column(""prompt.flesch_reading_ease"").to_summary_dict()
    flesch_reading_ease_prompt_mean = flesch_reading_ease_prompt['distribution/mean']
    frep_m = lambda x:1 if x < 1 else (100 if x > 100 else x)
    flesch_reading_ease_prompt_mean = frep_m(flesch_reading_ease_prompt_mean)
    flesch_reading_ease_prompt_value = get_flesch_reading_ease_prompt_value(flesch_reading_ease_prompt_mean)

    prompt_results = {'prompt_readability_score': str(automated_readability_index_prompt_mean),
                      'prompt_readability_value': automated_readability_index_prompt_value,

                      'prompt_reading_ease': str(flesch_reading_ease_prompt_mean),
                      'prompt_reading_ease_value': flesch_reading_ease_prompt_value}
                      
    prompt_results_json = json.dumps(prompt_results, indent=4)
    return prompt_results_json,prompt_results


model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
@register_dataset_udf([""prompt"", ""response""], ""response.relevance_to_prompt"")
def similarity_MiniLM_L6_v2(text):
  x = text[""prompt""]
  y = text[""response""]
  embedding_1 = model.encode(x, convert_to_tensor=True)
  embedding_2 = model.encode(y, convert_to_tensor=True)
  similarity = util.pytorch_cos_sim(embedding_1, embedding_2)
  result = similarity.item()
  return result


def get_readability_index_range_value(readability_value):
    if readability_value <= 1:
        ## Grade level Kindergarden to fourth grade
        return ""Kindergarten""
    elif 1 < readability_value <= 2:
        ## Grade level Kindergarden to fourth grade
        return ""First Grade""
    elif 2 < readability_value <= 3:
        ## Grade level Fifth grade to Ninth grade
        return ""Second Grade""
    elif 3 < readability_value <= 4:
        ## Grade level Fifth grade to Ninth grade
        return ""Third Grade""
    elif 4 < readability_value <= 5:
        ## Grade level Fifth grade to Ninth grade
        return ""Fourth Grade""
    elif 5 < readability_value <= 6:
        ## Grade level Fifth grade to Ninth grade
        return ""Fifth Grade""
    elif 6 < readability_value <= 7:
        ## Grade level Fifth grade to Ninth grade
        return ""Sixth Grade""
    elif 7 < readability_value <= 8:
        ## Grade level Fifth grade to Ninth grade
        return ""Seventh Grade""
    elif 8 < readability_value <= 9:
        ## Grade level Fifth grade to Ninth grade
        return ""Eighth Grade""
    elif 9 < readability_value <=10:
        ## Grade level Fifth grade to Ninth grade
        return ""Ninth Grade""
    elif 10 < readability_value <=11:
        ## Grade level Fifth grade to Ninth grade
        return ""Tenth Grade""
    elif 11 < readability_value <=12:
        ## Grade level Fifth grade to Ninth grade
        return ""Eleventh Grade""
    elif 12 < readability_value <= 13:
        ## Grade level Fifth grade to Ninth grade
        return ""Twelfth Grade""
    elif readability_value > 13:
        ## Grade level Fifth grade to Ninth grade
        return ""College Grade""
    else:
        return ""College Grade""

def get_flesch_reading_ease_prompt_value(readability_value):
    """""" Get flesch readability score range approximation""""""
    if readability_value <= 29:
        return ""Very Confusing""
    elif 29 < readability_value <= 49:
        return ""Difficult""
    elif 49 < readability_value <= 59:
        return ""Fairly Difficult""
    elif 59 < readability_value <= 69:
        return ""Standard""
    elif 69 < readability_value <= 79:
        return ""Fairly Easy""
    elif 79 < readability_value <= 89:
        return ""Easy""
    elif 89 < readability_value <= 100:
        return ""Very Easy""
    else:
        return ""Very Easy""

def get_relevence_to_response_value(similarity_score):
    """""" To findout relevence to response results based on similarity score.""""""
    if similarity_score <=0.3:
        return ""Low""
    elif 0.3 < similarity_score <= 0.5:
        return ""Average""
    elif 0.5 < similarity_score <= 0.8:
        return ""Good""
    elif similarity_score > 0.8:
        return ""High""



def evaluate_prompt_response_inputs (prompt_msg:any, response_msg:any)->str:
    """""" Predict the text quality, text relevence for both prompt and response messages.""""""
    df = pd.DataFrame({
        ""prompt"": [prompt_msg],
        ""response"": [response_msg]})
    results = why.log(df, schema=udf_schema())
    view = results.view()

    automated_readability_index_prompt = view.get_column(""prompt.automated_readability_index"").to_summary_dict()
    automated_readability_index_prompt_mean = automated_readability_index_prompt['distribution/mean']
    arip_m = lambda x:1 if x < 1 else (14 if x > 14 else x)
    automated_readability_index_prompt_mean = arip_m(automated_readability_index_prompt_mean)
    automated_readability_index_prompt_value = get_readability_index_range_value(automated_readability_index_prompt_mean)

    flesch_reading_ease_prompt = view.get_column(""prompt.flesch_reading_ease"").to_summary_dict()
    flesch_reading_ease_prompt_mean = flesch_reading_ease_prompt['distribution/mean']
    frep_m = lambda x:1 if x < 1 else (100 if x > 100 else x)
    flesch_reading_ease_prompt_mean = frep_m(flesch_reading_ease_prompt_mean)
    flesch_reading_ease_prompt_value = get_flesch_reading_ease_prompt_value(flesch_reading_ease_prompt_mean)

    automated_readability_index_response = view.get_column(""response.automated_readability_index"").to_summary_dict()
    automated_readability_index_response_mean = automated_readability_index_response['distribution/mean']
    arir_m = lambda x:1 if x < 1 else (14 if x > 14 else x)
    automated_readability_index_response_mean = arir_m(automated_readability_index_response_mean)
    automated_readability_index_response_value = get_readability_index_range_value(automated_readability_index_response_mean)

    flesch_reading_ease_response = view.get_column(""response.flesch_reading_ease"").to_summary_dict()
    flesch_reading_ease_response_mean = flesch_reading_ease_response['distribution/mean']
    frer_m = lambda x:1 if x < 1 else (100 if x > 100 else x)
    flesch_reading_ease_response_mean = frer_m(flesch_reading_ease_response_mean)
    flesch_reading_ease_response_value = get_flesch_reading_ease_prompt_value(flesch_reading_ease_response_mean)

    relevance_to_response = view.get_column(""response.relevance_to_prompt"").to_summary_dict()
    relevance_to_response_mean = relevance_to_response['distribution/mean']
    r2r_m = lambda x:0 if x < 0 else (1 if x > 1 else x)
    relevance_to_response_mean = r2r_m(relevance_to_response_mean)
    relevance_to_response_value = get_relevence_to_response_value(relevance_to_response_mean)

    sentence_count_response = view.get_column(""response.sentence_count"").to_summary_dict()
    sentence_count_response_mean = sentence_count_response['distribution/mean']
    word_count_response = view.get_column(""response.lexicon_count"").to_summary_dict()
    word_count_response_mean = word_count_response['distribution/mean']
    prompt_response_results = {'prompt_readability_score': str(automated_readability_index_prompt_mean),
                      'prompt_readability_value': automated_readability_index_prompt_value,

                      'prompt_reading_ease': str(flesch_reading_ease_prompt_mean),
                      'prompt_reading_ease_value': flesch_reading_ease_prompt_value,

                      'response_readability': str(automated_readability_index_response_mean),
                      'response_readability_value': str(automated_readability_index_response_value),

                      'response_reading_ease': str(flesch_reading_ease_response_mean),
                      'response_reading_ease_value': str(flesch_reading_ease_response_value),

                      'response_sentence_count': str(sentence_count_response_mean),
                      'response_word_count_response': str(word_count_response_mean),

                      'relevance_to_response': str(relevance_to_response_mean),
                      'relevance_to_response_value': relevance_to_response_value
                      }
    final_output_json = json.dumps(prompt_response_results, indent=4)
    return final_output_json,prompt_response_results



if __name__ == ""__main__"":
    ##Test only prompt message information
    option = 'predict'
    if option == 'evaluate':
        prompt_only_response_msg = ""A large language model is an advanced artificial intelligence (AI) system designed to process, understand, and generate human-like text based on massive amounts of data. These models are typically built using deep learning techniques, such as neural networks, and are trained on extensive datasets that include text from a broad range, such as books and websites, for natural language processing.Fine-tuning a large language model involves adjusting and adapting a pre-trained model to perform specific tasks or to cater to a particular domain more effectively. The process usually entails training the model further on a smaller, targeted dataset that is relevant to the desired task or subject matter.Few-shot learning (FSL) can be considered as a meta-learning problem where the model learns how to learn to solve the given problem. In this approach, the model is provided with a very limited number of examples (i.e., “few shots”) from the new task, and it uses this information to adapt and perform well on that task. Adapter Training: Adapter training is a method that involves training lightweight modules that are plugged into the pre-trained model, allowing for fine-tuning on a specific task without affecting the original model’s performance on other tasks.Multi-task Learning: Multi-task learning is a method where the pre-trained model is fine-tuned on multiple tasks simultaneously. This approach enables the model to learn and leverage the shared representations across different tasks, leading to better generalization and performance. Task-specific Fine-tuning: Task-specific fine-tuning is a method where the pre-trained model is fine-tuned on a specific task or domain using a task-specific dataset. This method requires more data and time than transfer learning but can result in higher performance on the specific task. Sequential Fine-tuning: Sequential fine-tuning is a method where a pre-trained model is fine-tuned on multiple related tasks or domains sequentially. This allows the model to learn more nuanced and complex language patterns across different tasks, leading to better generalization and performance.A noteworthy avenue of research within LLM fine-tuning explores strategies to reduce the expenses associated with updating model parameters. This endeavor is the essence of parameter-efficient fine-tuning (PEFT), a collection of techniques aiming to curtail the number of parameters requiring adjustments.Various PEFT techniques exist, and one prominent example is a low-rank adaptation (LoRA), a technique gaining popularity among open-source language models.""
        prompt_res = evaluate_prompt_metrics(prompt_only_response_msg)
    elif option == 'predict':
        prompt_msg = ""What is AION?""
        response_msg = ""AION (Artificial Intelligence ONline) is an open -source software platform for building, deploying and operating the entire lifecycle of AI applications. It supports various use cases such as predictive analytics , machine learning and deep learning .    Key features:   1. Data Ingestion : Supports multiple data sources like text files, excel sheet, database etc.""
        evaluation_metrics_json = evaluate_prompt_response_inputs(prompt_msg,response_msg)
        print(""evaluation_metrics_json: \n"",evaluation_metrics_json)"
aionpipeline.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import kfp
import kfp.dsl as dsl
import json
from pathlib import Path


class aionpipeline():
    
    containerRegistry = str()
    containerLabel = str()
    containerSecret = str()
    
    pipelineName = 'AION MLOps Pipeline {0}'
    exeCmd = 'python'
    codeFile = 'aionCode.py'
    mntPoint = '/aion'
    inputArg = '-i'
    msIP = '0.0.0.0'
    port = '8094'
    cachingStrategy = 'P0D'
    
    deafultVolume = '1Gi'
    volName = 'aion-pvc'
    volMode = 'ReadWriteMany'
    fileExt = '.tar.gz'
    fileName = 'aion_mlops_pipeline_{0}'
    
    containerMM = 'modelmonitoring'
    containerDI = 'dataingestion'
    containerDT = 'datatransformation'
    containerFE = 'featureengineering'
    containerMR = 'modelregistry'
    containerMS = 'modelserving'
    containerImage = '{0}/{1}:{2}'
    
    models = {}
    nameSeprator = '-'
    modelsLiteral = 'models'
    modelNameLiteral = 'modelname'
    msTemplate = '{""apiVersion"": ""v1"", ""kind"": ""Pod"", ""metadata"": {""name"": ""{{workflow.name}}-{0}""}, ""spec"": {""containers"": [{""name"": ""{0}"", ""image"": ""{1}"", ""command"": [""python""], ""args"": [""aionCode.py"", ""-ip"", ""{2}"", ""-pn"", ""{3}""],""volumeMounts"": [{""name"": ""aion-pvc"", ""mountPath"": ""{4}""}], ""ports"": [{""name"": ""http"", ""containerPort"": {3}, ""protocol"": ""TCP""}]}], ""imagePullSecrets"": [{""name"": ""{5}""}], ""volumes"": [{""name"": ""aion-pvc"", ""persistentVolumeClaim"": {""claimName"": ""{{workflow.name}}-{6}""}}]}}'
    
    def __init__(self, models, containerRegistry, containerLabel, containerSecret=str()):
        self.models = models
        self.containerRegistry = containerRegistry
        self.containerLabel = containerLabel
        self.containerSecret = containerSecret

       
    @dsl.pipeline(
      name=pipelineName.format(containerLabel),
      description=pipelineName.format(containerLabel),
    )
    def aion_mlops(self, inputUri=str(), volSize=deafultVolume):
        vop = dsl.VolumeOp(
          name=self.volName + self.nameSeprator + self.containerLabel,
          resource_name=self.volName,
          modes=[self.volMode],
          size=volSize
        )
    
        mm = dsl.ContainerOp(
            name=self.containerMM,
            image=self.containerImage.format(self.containerRegistry,self.containerMM,self.containerLabel),
            command=self.exeCmd,
            arguments=[
                self.codeFile,
                self.inputArg,
                inputUri,
            ],
            pvolumes={self.mntPoint: vop.volume}
        )
        mm.execution_options.caching_strategy.max_cache_staleness = self.cachingStrategy
        
        di = dsl.ContainerOp(
            name=self.containerDI,
            image=self.containerImage.format(self.containerRegistry,self.containerDI,self.containerLabel),
            command=self.exeCmd,
            arguments=[
                self.codeFile,
            ],
            pvolumes={self.mntPoint: mm.pvolume}
        )
        di.execution_options.caching_strategy.max_cache_staleness = self.cachingStrategy
        
        dt = dsl.ContainerOp(
            name=self.containerDT,
            image=self.containerImage.format(self.containerRegistry,self.containerDT,self.containerLabel),
            command=self.exeCmd,
            arguments=[
                self.codeFile,
            ],
            pvolumes={self.mntPoint: di.pvolume}
        )
        dt.execution_options.caching_strategy.max_cache_staleness = self.cachingStrategy
        
        fe = dsl.ContainerOp(
            name=self.containerFE,
            image=self.containerImage.format(self.containerRegistry,self.containerFE,self.containerLabel),
            command=self.exeCmd,
            arguments=[
                self.codeFile,
            ],
            pvolumes={self.mntPoint: dt.pvolume}
        )
        fe.execution_options.caching_strategy.max_cache_staleness = self.cachingStrategy
    
        
        dictMT = {}
        listMTOps = []
    
        for model in self.models[self.modelsLiteral]:
            modelName = model[self.modelNameLiteral]
            mt=dsl.ContainerOp(
                name=modelName,
                image=self.containerImage.format(self.containerRegistry,modelName,self.containerLabel),
                command=self.exeCmd,
                arguments=[
                    self.codeFile,
                ],
                pvolumes={self.mntPoint: fe.pvolume})
            mt.execution_options.caching_strategy.max_cache_staleness = self.cachingStrategy
            listMTOps.append(mt)
            dictMT[self.mntPoint]=mt.pvolume
    
    
        mr = dsl.ContainerOp(
            name=self.containerMR,
            image=self.containerImage.format(self.containerRegistry,self.containerMR,self.containerLabel),
            command=self.exeCmd,
            arguments=[
                self.codeFile,
            ],
            pvolumes=dictMT
        ).after(*tuple(listMTOps))
    
        mr.execution_options.caching_strategy.max_cache_staleness = self.cachingStrategy
        
        msJson = self.msTemplate.replace(str({0}),self.containerMS).replace(str({1}),self.containerImage.format(self.containerRegistry,self.containerMS,self.containerLabel)).replace(str({2}),self.msIP).replace(str({3}),self.port).replace(str({4}),self.mntPoint).replace(str({5}),self.containerSecret).replace(str({6}),self.volName)
        ms = dsl.ResourceOp(
            name=self.containerMS + self.nameSeprator + self.containerLabel,
            k8s_resource=json.loads(msJson),
        )    
        ms.after(mr)
        
        
    def compilepl(self, targetPath=str()):
        filePath = self.fileName.format(self.containerLabel.lower()) + self.fileExt
        if targetPath != str():
            filePath = Path(targetPath, filePath)
        kfp.compiler.Compiler().compile(self.aion_mlops, str(filePath))

    
    def executepl(self, kfhost=str()):
        client = kfp.Client(kfhost)
        client.create_run_from_pipeline_func(self.aion_mlops,arguments={})
"
telemetry.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import requests
import json
import os
from datetime import datetime
import socket
import getmac
from appbe.sqliteUtility import sqlite_db
import pandas as pd
from appbe.dataPath import DATA_DIR
def TelemetryCreateSyncState(state):
    try:
        newdata = {}
        file_path = os.path.join(DATA_DIR, 'sqlite')
        sqlite_obj = sqlite_db(file_path, 'telemetry.db')
        now = datetime.now()
        SyncingTime = int(datetime.timestamp(now))
        newdata.update({'ID':['1'],'state':[state],'syncingTime':[SyncingTime]})
        sqlite_obj.write_data(pd.DataFrame.from_dict(newdata),'syncState') 
    except Exception as e:
        print(e)
        pass

def TelemetryUpdateSyncState(state):
    try:
        newdata = {}
        file_path = os.path.join(DATA_DIR, 'sqlite')
        sqlite_obj = sqlite_db(file_path, 'telemetry.db')
        now = datetime.now()
        SyncingTime = int(datetime.timestamp(now))
        updated_data = '""state""=""'+state+'"",""syncingTime""=""'+str(SyncingTime)+'""'
        sqlite_obj.update_data(updated_data,'ID=""1""','syncState')
    except Exception as e:
        print(e)
        pass
def checkTelemtry():
    import subprocess
    import sys
    scriptPath = os.path.normpath(os.path.join(os.path.dirname(os.path.abspath(__file__)), '..','aion.py'))
    if os.path.exists(scriptPath):
        outputStr = subprocess.Popen([sys.executable,scriptPath,'-m','pushtelemetry'])
                        
def SyncTelemetry():
    try:
        newdata = {}
        file_path = os.path.join(DATA_DIR, 'sqlite')
        sqlite_obj = sqlite_db(file_path, 'telemetry.db')
        if sqlite_obj.table_exists('syncState'):
            data = sqlite_obj.read_data('syncState')[0]
            param_keys = ['ID','state','syncingTime']
            sync_data = dict((x,y) for x,y in zip(param_keys,data))
            #print(sync_data['state'],sync_data['syncingTime'])
            if sync_data['state'].lower() != 'syncing':
                sync_time = sync_data['syncingTime']
                now = datetime.now()
                currTime = datetime.timestamp(now)
                diffTime = int(float(currTime)) - int(float(sync_time))
                #print(diffTime)
                if int(diffTime) > 86400:
                    TelemetryUpdateSyncState('Syncing')
                    SendTelemetryUpdate(sync_time)    
                    TelemetryUpdateSyncState('Done')
        else:
            TelemetryCreateSyncState('Initialize')
    except Exception as e:
        print(e)
        pass
        
            
def UseCaseCreated(Usecase):
    try:
        file_path = os.path.join(DATA_DIR, 'sqlite')
        sqlite_obj = sqlite_db(file_path, 'telemetry.db')
        newdata = {}
        now = datetime.now()
        ID = datetime.timestamp(now)
        record_date = int(datetime.timestamp(now))
        computername = socket.getfqdn()
        macaddress = getmac.get_mac_address()
        try:
            user = os.getlogin()
        except:
            user = 'NA'
        newdata.update({'ID':[str(int(ID))],'RecordDate': [record_date],'Usecase': [Usecase],'Operation':['Created'],'User':[str(user)],'HostName' :[computername],'MACAddress':[macaddress],'ProblemType':[''],'Algorithms':[''],'EDA':['No'],'Prediction':['No'],'MLaC':['No'],'Drift':['No'],'TrustedAI':['No']})
        sqlite_obj.write_data(pd.DataFrame.from_dict(newdata),'logs') 
    except Exception as e:
        print(e)
        pass
def UpdateTelemetry(Usecase,operation,value):
    try:
        file_path = os.path.join(DATA_DIR, 'sqlite')
        sqlite_obj = sqlite_db(file_path, 'telemetry.db')   
        data = sqlite_obj.read_data('logs','Usecase=""'+Usecase+'""')
        #print(data)
        if sqlite_obj.table_exists('logs'):        
            updated_data = operation+'=""'+value+'""'
            now = datetime.now()
            ID = datetime.timestamp(now)
            record_date = int(datetime.timestamp(now))
            updated_data += ',""RecordDate""=""'+str(record_date)+'""'
            sqlite_obj.update_data(updated_data,'Usecase=""'+Usecase+'""','logs')
    except Exception as e:
        print(e)
        pass 
def SendTelemetryUpdate(sync_time):
    file_path = os.path.join(DATA_DIR, 'sqlite')
    sqlite_obj = sqlite_db(file_path, 'telemetry.db')            
    if sqlite_obj.table_exists('logs'):
        ddata = sqlite_obj.read_data(""logs"",""RecordDate >= '""+str(sync_time)+""'"")
        #print(ddata)
        keys = sqlite_obj.column_names('logs')
        for data in ddata:
            now = datetime.now()
            ID = datetime.timestamp(now)
            item = {}
            item['ID'] = str(int(ID))
            item['RecordID'] = data[ keys.index('ID')]
            item['RecordDate'] = data[ keys.index('RecordDate')]
            item['Usecase'] = data[ keys.index('Usecase')]
            item['Operation'] = data[ keys.index('Operation')]
            item['User'] = data[ keys.index('User')]
            item['HostName'] = data[ keys.index('HostName')]
            item['MACAddress'] = data[ keys.index('MACAddress')]
            item['Algorithms'] = data[ keys.index('Algorithms')]
            item['ProblemType'] = data[ keys.index('ProblemType')]
            item['EDA'] = data[ keys.index('EDA')]
            item['Prediction'] = data[ keys.index('Prediction')]
            item['MLaC'] = data[ keys.index('MLaC')]
            item['Drift'] = data[ keys.index('Drift')]
            item['TrustedAI'] = data[ keys.index('TrustedAI')]
            url = 'https://l5m119j6v9.execute-api.ap-south-1.amazonaws.com/default/aion_telemetry'
            record = {}
            record['TableName'] = 'AION_LOGS'
            record['Item'] = item
            record = json.dumps(record)
            #print(record)
            try:
                response = requests.post(url, data=record,headers={""x-api-key"":""Obzt8ijfOT3dgBYma9JCt1tE3W6tzHaV8rVuQdMK"",""Content-Type"":""application/json"",})
            except Exception as e:
                print(e)
    
def telemetry_data(operation,Usecase,data):
    now = datetime.now()
    ID = datetime.timestamp(now)
    record_date = now.strftime(""%y-%m-%d %H:%M:%S"")
    computername = socket.getfqdn()
    macaddress = getmac.get_mac_address()
    try:
        user = os.getlogin()
    except:
        user = 'NA'    
    item = {}
    item['ID'] = str(int(ID))
    item['record_date'] = record_date
    item['UseCase'] = Usecase
    item['operation'] = operation
    item['remarks'] = data
    item['user'] = str(user)
    item['hostname'] = computername
    item['macaddress'] = macaddress
    url = 'https://l5m119j6v9.execute-api.ap-south-1.amazonaws.com/default/aion_telemetry'
    record = {}
    record['TableName'] = 'AION_OPERATION'
    record['Item'] = item
    record = json.dumps(record)
    
    try:
        response = requests.post(url, data=record,headers={""x-api-key"":""Obzt8ijfOT3dgBYma9JCt1tE3W6tzHaV8rVuQdMK"",""Content-Type"":""application/json"",})
        check_telemetry_file()
    except Exception as inst:
   
        filename = os.path.join(os.path.dirname(os.path.abspath(__file__)),'telemetry.txt')    
        f=open(filename, ""a+"")
        f.write(record+'\n')
        f.close()
        
def check_telemetry_file():
    file_path = os.path.join(os.path.dirname(os.path.abspath(__file__)),'telemetry.txt')
    if(os.path.isfile(file_path)):
        f = open(file_path, 'r')
        url = 'https://l5m119j6v9.execute-api.ap-south-1.amazonaws.com/default/aion_telemetry'
        file_content = f.read()
        f.close()
        matched_lines = file_content.split('\n')
        write_lines = []
        for record in matched_lines:
            try:
                response = requests.post(url, data=record,headers={""x-api-key"":""Obzt8ijfOT3dgBYma9JCt1tE3W6tzHaV8rVuQdMK"",""Content-Type"":""application/json"",})
            except:
                write_lines.append(record)
        f = open(file_path, ""a"")
        f.seek(0)
        f.truncate()
        for record in write_lines:
            f.write(record+'\n')
        f.close()
                  
        
    else:
        return True"
xplain.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import json
import os
import pandas as pd
import numpy as np
import subprocess
import sys
import re
import plotly.graph_objects as go
import plotly.figure_factory as ff
def global_explain(request):
    try:	
        selected_use_case = request.session['UseCaseName']
        ModelVersion = request.session['ModelVersion']
        ModelStatus = request.session['ModelStatus']
        updatedConfigFile = request.session['config_json']
        f = open(updatedConfigFile, ""r"")
        configSettings = f.read()
        f.close()	
        configSettingsJson = json.loads(configSettings)
        problemType = 'classification'
        for key in configSettingsJson['basic']['analysisType']:
            if configSettingsJson['basic']['analysisType'][key] == 'True':
                problemType = key
                break
        if problemType.lower() != 'classification' and problemType.lower() != 'regression':
            return 'Problem Type Error','Explainable AI only available for classification and regression problem','NA','NA','NA','NA',0,0,'NA','NA','NA','NA',0,'NA','NA',0,'NA','NA','NA','NA','NA','NA'
        
        displaypath = os.path.join( request.session['deploypath'],'etc','display.json')
        with open(displaypath) as file:
            config = json.load(file)
        file.close()
        inputFeatures = configSettingsJson['basic']['trainingFeatures']
        targetFeature = configSettingsJson['basic']['targetFeature']
        inputFeatures = inputFeatures.split(',')
        if targetFeature in inputFeatures:
            inputFeatures.remove(targetFeature)
            
        dataFilePath = str(configSettingsJson['basic']['dataLocation'])
        from utils.file_ops import read_df_compressed
        status,df = read_df_compressed(config['postprocessedData'],encoding='utf8',nrows=10)
        #print(df)        
        df.rename(columns=lambda x: x.strip(), inplace=True)        
        df = df[inputFeatures]
        #print(df)
        singleInstanceData = df.loc[5, inputFeatures]
        inputFieldsDict = singleInstanceData.to_dict()
        inputFields = []
        inputFields.append(inputFieldsDict)
        
        if 'nrows' in config:
            nrows = config['nrows']
        else:
            nrows = 'Not Available'
            
        if 'ncols' in config:
            ncols = config['ncols']
        else:
            ncols = 'Not Available'
            
        if 'targetFeature' in config:
            targetFeature = config['targetFeature']
        else:
            targetFeature = ''

        labelMaps = config['labelMaps']
        modelfeatures = config['modelFeatures']
        mfcount = len(modelfeatures)
        df_proprocessed = pd.read_csv(dataFilePath)
        if 'targetFeature' != '':
            target_classes = df_proprocessed[targetFeature].unique()
            numberofclasses = len(target_classes)
        else:
            target_classes = []
            numberofclasses = 'Not Available'   
        dataPoints = df_proprocessed.shape[0]	
        df_proprocessed = df_proprocessed.head(5)
        df_proprocessed = df_proprocessed.to_json(orient=""records"")
        df_proprocessed = json.loads(df_proprocessed)
        expainableAIPath = os.path.join(request.session['deploypath'],'aion_xai.py') 
        outputStr = subprocess.check_output([sys.executable,expainableAIPath,'global']) 		
        outputStr = outputStr.decode('utf-8')
        outputStr = re.search(r'aion_ai_explanation:(.*)',str(outputStr), re.IGNORECASE).group(1)
        outputStr = outputStr.strip()
        ale_json = json.loads(str(outputStr))
        ale_json = ale_json['data']
        ale_view = ale_json['data']
        sentences = ale_json['sentences']
        scoreMessage = ''	
        feature_importance = ale_json['feature_importance']
        dfimp = pd.DataFrame.from_dict(feature_importance)
        dfimp = dfimp.sort_values(by=['values'],ascending=False).reset_index()
        yaxis_data = dfimp['values'].tolist()
        xaxis_data = dfimp['labels'].tolist()
        cfig = go.Figure()
        cfig.add_trace(go.Bar(x=xaxis_data,y=yaxis_data,name='Feature Importance'))			
        cfig.update_layout(barmode='stack',xaxis_title='Features')			
        bargraph = cfig.to_html(full_html=False, default_height=450,default_width=1000)
        dftoprecords = dfimp.head(2)
        topTwoFeatures = dfimp['labels'].tolist()
        topFeaturesMsg = []
        for i in range(0,len(dfimp)):
            value = round(dfimp.loc[i, ""values""],2)*100
            value = round(value,2)
            tvalue = str(dfimp.loc[i, ""labels""])+' contributing to '+ str(value)+'%'
            topFeaturesMsg.append(tvalue)
        most_influencedfeature = ale_json['most_influencedfeature']
        interceppoint = ale_json['interceptionpoint']
        anchorjson =  ale_json['anchorjson']		
        return 'Success','Success',ale_view,sentences,bargraph,inputFields,nrows,ncols,targetFeature,dataPoints,target_classes,df_proprocessed,numberofclasses,modelfeatures,problemType,mfcount,topTwoFeatures,topFeaturesMsg,most_influencedfeature,interceppoint,anchorjson,labelMaps
    except Exception as Inst:
        print(Inst)	
        return 'Error','Exception: '+str(Inst),'NA','NA','NA','NA',0,0,'NA','NA','NA','NA',0,'NA','NA',0,'NA','NA','NA','NA','NA','NA'"
codeclonedetection_sklearn.py,"# -*- coding: utf-8 -*-

import os
# import glob
from glob import glob
import ast
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.feature_extraction.text import HashingVectorizer
from sklearn.metrics.pairwise import cosine_similarity
import numpy as np
import pandas as pd
import json
import time
import logging
from datetime import datetime

"""""" Code clone detection based on user input files. """"""
class codeCloneDetectionSklearn:
    """""" Detect code clones based on sklearn text vectorizer modules.
    Input params: files_dir: python files folder,
                   deply_dir: logs,resultant dataframe stored location.
                   chunk_size: max size split for the input text or code function.
    return values: report_dict which contains clone type, path and clones. """"""
    def __init__(self,files_dir,deploy_dir, chunk_size):
        self.files_dir = files_dir
        self.deploy_dir = deploy_dir
        self.chunk_size = chunk_size
        try:
            self.ccdreportpath = os.path.join(self.deploy_dir, ""codeCloneReport"")
            os.makedirs(self.ccdreportpath, exist_ok = True)
        except OSError as error:
            print(""Directory 'codeCloneReport' cann't be created.Error msg: "",error)
            
        try:            
            current_datetime = datetime.now().strftime(""%Y-%m-%d_%H-%M-%S"")
            str_current_datetime = str(current_datetime)
            log_file_name = 'codeclonelog_sklearn'+f""_{str_current_datetime}""+"".log""
            logpath = os.path.join(self.ccdreportpath,log_file_name)
            logging.basicConfig(level=logging.INFO,filename=logpath,filemode='w',format='%(message)s')
            self.log = logging.getLogger()
        except Exception as e:
            print(""code clone log object creation error."",e)
        pass
    
    def get_function_names(self,filename):
        """""" Get the function names from python files """"""
        try:
            with open(filename, 'r') as file:
                content = file.read()
            tree = ast.parse(content)
            function_names = []
    
            for node in ast.walk(tree):
                if isinstance(node, ast.FunctionDef):
                    function_names.append(node.name)
        except Exception as e:
            self.log.info(""function name read error: ""+str(e))

        return function_names
    
    def get_function_code(self,filename, function_name):
        """""" To get the function codes """"""
        try:
            with open(filename, 'r') as file:
                content = file.read()
            tree = ast.parse(content)
            function_code = """"
    
            for node in ast.walk(tree):
                if isinstance(node, ast.FunctionDef) and node.name == function_name:
                    function_code = ast.unparse(node)
        except Exception as e:
            self.log.info(""function name read error: ""+str(e))

        return function_code
    
    def get_python_files(self,root_dir):
        """""" Walk thru the directory user given, get all py files. """"""
        try:
            
            code_files = [y for x in os.walk(root_dir) for y in glob(os.path.join(x[0], '*.py'))]
        except Exception as e:
            self.log.info(""Python file read error: ""+str(e))
        return code_files
    
    def chunk_functions(self,function_code, chunk_size):
        """""" Check the function size based on chunk size. """"""
        try:
            if (len(function_code) > 20):
                chunks = [function_code[i:i + chunk_size] for i in range(0, len(function_code), chunk_size)]
            else:
                chunks = list((function_code,))
        except Exception as e:
            self.log.info(""function chunk based on chunk_size error: ""+str(e))
        total_tokens = round(len(function_code)/4)
        return chunks,total_tokens
    
    def get_clone(self):
        """""" Main code clone detection function using sklearn tfidf_vectorizer and cosine_similarity.
        return values:report_dict which contains total_clones, """"""
        try:
            
            start_time = time.time()            
            chunk_size = int(self.chunk_size)
            ccdreportpath = os.path.join(self.deploy_dir, ""codeCloneReport"")            
            python_files = self.get_python_files(self.files_dir)
            total_files = len(python_files)
            # print('python_files: \n',python_files)
            function_codes = []
            function_n = []
            file_name=[]
            # files_info=[]
            total_tokens_used = []
            for file in python_files:                
                function_names = self.get_function_names(file)
                for i,function_name in enumerate(function_names):
                    file_name.append(file)
                    function_n.append(function_name)            
                    function_code = self.get_function_code(file, function_name)
                    chunks,total_tokens = self.chunk_functions(function_code, chunk_size)
                    total_tokens_used.append(total_tokens)
                    function_codes.extend(chunks)
            total_functions = len(function_n)
            files_info=list(zip(file_name, function_n,function_codes))
            tfidf_vectorizer = TfidfVectorizer()
            ## we can use other vectorizer models also.
            # tfidf_vectorizer = HashingVectorizer()
            tfidf_matrix = tfidf_vectorizer.fit_transform(function_codes)        
            similarity_matrix = cosine_similarity(tfidf_matrix)
            #Uncomment if you want to send two different code clonne blocks at a time for similarity comparison
            # similarity_matrix = cosine_similarity(tfidf_matrix, tfidf_matrix)            
            clone_d = dict()            
            total_clones = 0
            final_report=list()
            #getting funtion and next function for comparison
            for i in range(len(similarity_matrix)):
                for j in range(i + 1, len(similarity_matrix)):                    
                    if(similarity_matrix[i, j] >= 0.90 and similarity_matrix[i, j] <= 0.95):                        
                        clone_d.update({f'codeclone_{total_clones+1}':{f'function{i}':{'clone_fun_name':function_n[i],'clone1_path':files_info[i][0]},f'function{j}':{'clone_fun_name':function_n[j],'clone1_path':files_info[j][0]},'cloneType':'parametricClone'}})
                        report_json = json.dumps(clone_d, indent = 4)                       
                        total_clones=total_clones+1
                    elif(similarity_matrix[i, j] > 0.95):                        
                        clone_d.update({f'codeclone_{total_clones+1}':{f'function{i}':{'clone_fun_name':function_n[i],'clone_path':files_info[i][0]},f'function{j}':{'clone_fun_name':function_n[j],'clone_path':files_info[j][0]
                                                                                                                                                                   },'cloneType':'exactClone'}})
                        report_json = json.dumps(clone_d, indent = 4) 
                        final_report.append(clone_d)
                        total_clones=total_clones+1
                    elif(similarity_matrix[i, j] > 0.80 and similarity_matrix[i, j] < 0.90):                        
                          clone_d.update({f'codeclone_{total_clones+1}':{f'function{i}':{'clone_fun_name':function_n[i],'clone_path':files_info[i][0]},f'function{j}':{'clone_fun_name':function_n[j],'clone_path':files_info[j][0]
                                                                                                                                                                    },'cloneType':'NearMissClones'}})
                          report_json = json.dumps(clone_d, indent = 4) 
                          final_report.append(clone_d)
                          total_clones=total_clones+1
                    else:
                        ##add other conditionas in future
                        pass
            ## To get clone type
            clone_type = [list(item.values())[2] for item in list(clone_d.values())]
            report_str = json.dumps(final_report)
            json_l=json.loads(report_str)            
            json_keys = list(json_l[0].keys())
            json_values = list(json_l[0].values())
            end_time = time.time()
            total_time_taken = end_time - start_time
            
            # self.log.info(""ccd_report: \n""+str(ccd_report))
            f_df=pd.DataFrame(list(zip(json_keys, json_values,clone_type)),
                columns =['Clone', 'CloneDetails','CloneType'])
            codeclonereport_file = os.path.join(self.ccdreportpath,'clone_detection_report_sklearn.csv')            
            f_df.to_csv(codeclonereport_file, index=False)
            ccd_report = f_df.to_markdown(tablefmt='psql')
            self.log.info(""total_clones: \n""+str(total_clones))
            exact_clone_count = f_df['CloneType'].str.count(""exactClone"").sum()
            parametric_clone_count = f_df['CloneType'].str.count(""parametricClone"").sum()
            nearmiss_clone_count = f_df['CloneType'].str.count(""NearMissClones"").sum()
            total_tokens = sum(total_tokens_used)
            # nearmiss_clone_count =0
            self.log.info(""exact_clone_count: \n""+str(exact_clone_count))
            self.log.info(""parametric_clone_count: \n""+str(parametric_clone_count))
            self.log.info(""nearmiss_clone_count: \n""+str(nearmiss_clone_count))
            self.log.info(""Total tokens used: \n""+str(total_tokens))
            self.log.info(""Total time taken to excute code clone detction: \t""+str(total_time_taken))
            clone_info=""1. Exact clone: Two code fragments similar to each other with little transformation in comments, layout, or whitespaces,\
                2. Parameterized clone: Changes made in names of variables, keywords, identifiers, or bypassing parameter during function call in code fragments and less similarity threshold (0.90-0.95), result in this clone,\
                3. Near-miss clone: Near-miss clone are clones detected with less similarity threshold.""
            clone_count = {""Exact Clone"":exact_clone_count,""Parametric Clone"":parametric_clone_count,""Nearmiss Clone"":nearmiss_clone_count}
            report_str = f""""""Code_directory: {self.files_dir}
            Files: {total_files}
            Functions: {total_functions}
            
            Total_code_clones_detected: {total_clones}
            Tokens used: {total_tokens}
            
            Three_types_of_clone:
            1. Exact clone: Two code fragments similar to each other with little transformation in comments, layout, or whitespaces.
            2. Parameterized clone: Changes made in names of variables, keywords, identifiers, or bypassing parameter during function call in code fragments and less similarity threshold (0.90-0.95), result in this clone.
            3. Near-miss clone: Near-miss clone are clones detected with less similarity threshold.
            
            Code_clones_count_by_clone_type:
            {clone_count}
            
            Clone_functions:
            {ccd_report}
            
            total_time_taken: {total_time_taken}
            """"""
            codeclonereport_txt = os.path.join(self.ccdreportpath,'code_clone_report.txt')
            with open(codeclonereport_txt, ""w"") as f:
                f.write(report_str)
            report_dict = {""clone_info"":clone_info,""total_clones"":total_clones,'total_files':total_files,""exact_clone_count"":exact_clone_count,'total_functions':total_functions,""total_tokens"":total_tokens, ""parametric_clone_count"":parametric_clone_count,""nearmiss_clone_count"":nearmiss_clone_count,""result_df"":f_df }
            self.log.info(""ccd_report: \n""+str(ccd_report))
            # print(""report_dict:\n\n"",report_dict)
            # end_time = time.time()
            # total_time = (end_time - start_time) 
            
            return report_dict
        except Exception as e:
            self.log.info(""Clone detection function error. error msg: ""+str(e))
            # import traceback
            # print(""traceback error: \n"",traceback.print_exc())
            
if __name__ == ""__main__"":
    print(""code clone detection started...."")
    ##Use this for standalone fn debuging."
exploratory_Analysis.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''

import plotly.figure_factory as ff
from plotly.subplots import make_subplots
import plotly.graph_objects as go
from wordcloud import WordCloud, STOPWORDS
import pandas as pd
import numpy as np
from appbe import distribution
import io
import urllib
import os
import sys
import base64
from appbe import help_Text as ht
import math
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
from natsort import natsorted
from sklearn.cluster import KMeans
import json
from facets_overview.generic_feature_statistics_generator import GenericFeatureStatisticsGenerator

from appbe.aion_config import eda_setting
from dython.nominal import associations
def calculateNumberofCluster(featureData):
    Sum_of_squared_distances = []
    K = range(1, 15)
    for k in K:
        km = KMeans(n_clusters=k)
        km = km.fit(featureData)
        Sum_of_squared_distances.append(km.inertia_)
    x1, y1 = 1, Sum_of_squared_distances[0]
    x2, y2 = 15, Sum_of_squared_distances[len(Sum_of_squared_distances) - 1]
    distances = []
    for inertia in range(len(Sum_of_squared_distances)):
        x0 = inertia + 2
        y0 = Sum_of_squared_distances[inertia]
        numerator = abs((y2 - y1) * x0 - (x2 - x1) * y0 + x2 * y1 - y2 * x1)
        denominator = math.sqrt((y2 - y1) ** 2 + (x2 - x1) ** 2)
        distances.append(numerator / denominator)
        n_clusters = distances.index(max(distances)) + 2
    #print(n_clusters)
    return (n_clusters)

def get_eda(request):
    hopkins_val = ''
    hopkins_tip = ''
    if request.session['datatype'] == 'Normal':        
        from appbe.eda import ux_eda
        
        # EDA Subsampling changes
        # ----------------------------                
        edasampleSize = request.POST.get('SubsampleSize')
        edasampleSize = str(int(edasampleSize)/100)
        
        sampleFile = str(request.session['datalocation'])
        repText = sampleFile[sampleFile.find('sub_'):sampleFile.find('_sampled_') + 9]
        if len(repText) == 30:
            dataLocation = sampleFile.replace(repText,"""")
        else:
            dataLocation = sampleFile
        
        eda_obj = ux_eda(dataLocation,request.session['delimiter'],request.session['textqualifier'])
        
        df0 = eda_obj.getdata()
        
        if os.path.isfile(dataLocation):
            if(len(edasampleSize) > 0): 
                df0 = df0.sample(frac = float(edasampleSize))                
                
                #EDA Performance change
                # ----------------------------
                dflength = len(df0)                     
                # sample_size = int(eda_setting())
                # if dflength >= sample_size:
                    # eda_obj.subsampleData(sample_size)
                # else:
                eda_obj.subsampleData(dflength)
                # ----------------------------
                
                TrainSampleSelected = request.POST.get('TrainSampleSize')
                if(TrainSampleSelected == 'EDASize'):
                    from pathlib import Path
                    filePath = Path(dataLocation)
                    
                    import datetime
                    timestamp = datetime.datetime.now().replace(microsecond=0).isoformat()
                    timestamp = str(timestamp.replace("":"",""""))
                    
                    sub_sampledFile = filePath.parent/(""sub_"" + timestamp + ""_sampled_""+filePath.name)
                    # sub_sampledFile = filePath.parent/(usename + ""_sub_sampled_""+filePath.name)
                    
                    df0.to_csv(sub_sampledFile,index=False,)
                    request.session['datalocation'] = str(sub_sampledFile)
                    records = df0.shape[0]
                    request.session['NoOfRecords'] = records
                
        edaFeatures = request.POST.getlist('InputFeatures')
        request.session['edaFeatures'] = edaFeatures

        if(len(edaFeatures) > 0):
            eda_obj.subsetFeatures(edaFeatures)
        # ----------------------------   
        
        features,dateFeature,seqFeature,constantFeature,textFeature,targetFeature,numericCatFeatures,numericFeature,catfeatures = eda_obj.getFeatures()
        
        request.session['edanumericCatFeatures'] = numericCatFeatures
        request.session['edatextFeature'] = textFeature
        
        categoricalfeatures = catfeatures
        numericfeaturecount = eda_obj.getNumericFeatureCount()
        cluster_details = []
        dataCharts = []
        # correlated_features=[]
        pca_details = []
        
        if numericfeaturecount > 1:
            try:

                cluster_details,hopkins_val = eda_obj.getClusterDetails()
                if hopkins_val!='':
                    if float(hopkins_val) <0.3:
                        hopkins_tip = ht.hopkins_tip[0]
                    elif float(hopkins_val)>0.7:
                        hopkins_tip = ht.hopkins_tip[2]
                    else:
                        hopkins_tip = ht.hopkins_tip[1]
                else:
                    hopkins_tip = ''
            except Exception as e:
                print(""========================""+str(e))
                pass
                
            try:
                pca_map = eda_obj.getPCATop10Features()
                pca_details = pca_map
                yaxis_data = pca_map.tolist()
                xaxis_data = pca_map.index.values.tolist()
                import plotly.graph_objects as go
                cfig = go.Figure()
                cfig.add_trace(go.Bar(x=xaxis_data, y=yaxis_data, name='Feature Importance'))
                cfig.update_layout(barmode='stack', xaxis_title='Features',yaxis_title='Explained Variance Ratio')
                bargraph = cfig.to_html(full_html=False, default_height=450, default_width=1000)
                dataCharts.append(bargraph)
            except:
                pass
            df = eda_obj.getdata()

            # try:
                # top5highcorr = eda_obj.getHighlyCorrelatedFeatures(5)
                # correlated_features = getHighlyCorrelatedFeatureCharts(df,top5highcorr)    
            # except:
                # pass
            
        else:
            df = eda_obj.getdata()
        
        # # EDA Subsampling changes
        # # ----------------------------
        # if os.path.isfile(dataLocation):
            # if dflength < 10000:
                # if(len(edasampleSize) > 0):
                    # df = df.sample(frac = float(edasampleSize))
        # ----------------------------
        
        if len(textFeature) > 0:
            commonfeatures = eda_obj.getTopTextFeatures(10)
            # comment_words = eda_obj.word_token()
        del eda_obj
        
        wordcloudpic = ''
        showtextFeature = False
        if len(textFeature) > 0:
            showtextFeature = True
            # try:      
                # stopwords = set(STOPWORDS)
                # wordcloud = WordCloud(width=800, height=800, background_color='white', stopwords=stopwords,
                          # min_font_size=10).generate(comment_words)
                # try:
                    # plt.clf()
                # except:
                    # pass
                # plt.imshow(wordcloud, interpolation='bilinear')
                # plt.axis(""off"")
                # plt.tight_layout(pad=0)
                # image = io.BytesIO()
                # plt.savefig(image, format='png')
                # image.seek(0)
                # string = base64.b64encode(image.read())
                # wordcloudpic = 'data:image/png;base64,' + urllib.parse.quote(string)   
            # except:
                # pass            
                
            xaxis_data = commonfeatures['most_common_words'].tolist()
            yaxis_data = commonfeatures['freq'].tolist()
            import plotly.graph_objects as go
            cfig = go.Figure()
            cfig.add_trace(go.Bar(x=xaxis_data, y=yaxis_data, name='Feature Importance'))
            cfig.update_layout(barmode='stack', xaxis_title='Features',yaxis_title='Count')
            bargraph = cfig.to_html(full_html=False, default_height=450, default_width=1000)
            dataCharts.append(bargraph)
        
        df_top = df.head(10)        
        df_json = df_top.to_json(orient=""records"")
        
        df_json = json.loads(df_json) 
        # if len(df) > 10000:
            # df1 = df.sample(n=10000, random_state=1)
        # else:
            # df1 = df
        df1 = df    
        
        data_deep_json = df_top.to_json(orient='records')   #df1.to_json(orient='records')
        
        try:
            gfsg = GenericFeatureStatisticsGenerator()
            proto = gfsg.ProtoFromDataFrames([{'name': 'train', 'table': df1}])        
            protostr = base64.b64encode(proto.SerializeToString()).decode(""utf-8"")                              
        except Exception as e:
            protostr=''
            print('protostr '+str(e))
        try:            
            correlationgraph = getCorrelationMatrix(df)            
        except Exception as e:
            print(e)
        try:
            dataDrift = 'onRequest' #getDriftDistribution(numericCatFeatures, df[numericCatFeatures])
            
        except Exception as e:
            dataDrift = ''      
            print(e)        
        
        selected_use_case = request.session['UseCaseName']
        ModelVersion = request.session['ModelVersion']
        ModelStatus = request.session['ModelStatus']
        statusmsg = 'Successfully Done'
        
        DF_list = list()
                
        des1 = df.describe(include='all').T
        des1['missing count %'] = df.isnull().mean() * 100
        des1['zero count %'] = df.isin([0]).mean() * 100
        data =  list(df.columns.values)
        des1.insert(0, 'Features', data)
        
        des1 = des1.to_json(orient=""records"")
        pca_df=pd.DataFrame()
        #print(pca_details)        
        
        # if pca_details.empty:
        if len(pca_details) > 0:
            pca_df = pd.DataFrame({'Feature':pca_details.index, 'Explained Variance Ratio':pca_details.values}).round(4)

            pca_df = pca_df.to_json(orient=""records"")
        if len(df.columns) > 25:
            df3 = df[df.columns[0:24]]
        else:
            df3 = df.copy()
        #cor_mat = abs(df3.corr())
        #cor_mat = cor_mat.round(2)
        try:
            if len(df3.columns) > 25:
                df3 = df3[df3.columns[0:24]]
            cor_mat= associations(df3,compute_only=True)
            cor_mat=cor_mat['corr']        
            #cor_mat = df3.corr()
            cor_mat = cor_mat.astype(float).round(2)
        except Exception as e:
            print(""creating correlation mat issue: \n"",e)
            pass

        data =  list(cor_mat.index)
        cor_mat.insert(0, 'Features', data)
        cor_mat =  cor_mat.to_json(orient=""records"")       
        cluster_df = pd.DataFrame.from_dict(cluster_details)       
        cluster_df = cluster_df.to_json(orient=""records"")
        #textFeature = json.dumps(textFeature)
        # 2.2 patch changes
        #-------------------------------------------------
        request.session['edaRecords'] = df.shape[0]
        print(textFeature)
        context = {'data_deep_json': data_deep_json, 'sampleFile':sampleFile,'protostr': protostr, 'data': df_json,  'oneda': True, 
                      'dataCharts': dataCharts,'dataDrift': dataDrift, 'drift_tip': ht.drift_tip,'des1':des1,'cluster_df':cluster_df,'hopkins_val':hopkins_val,
                       'pca_df':pca_df,'cor_mat':cor_mat,'correlationgraph': correlationgraph, 'centroids':cluster_details, 'wordcloudpic': wordcloudpic, 'showtextFeature': showtextFeature, 'textFeature': textFeature,
                       # 'featurepairgraph': correlated_features,
                       'data_overview_tip': ht.data_overview_tip,'timeseries_analysis_tip':ht.timeseries_analysis_tip, 'feature_importance_tip': ht.feature_importance_tip,'hopkins_tip':hopkins_tip,
                       'correlation_analysis_tip': ht.correlation_analysis_tip,
                       'exploratory_analysis_tip': ht.exploratory_analysis_tip, 'data_deep_drive_tip': ht.data_deep_drive_tip,'status_msg': statusmsg,'selected_use_case': selected_use_case,
                       'pair_graph_tip':ht.pair_graph_tip, 'fair_metrics_tip':ht.fair_metrics_tip, 'categoricalfeatures':categoricalfeatures, 'numericCatFeatures':numericCatFeatures,
                       'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion,'selected': 'modeltraning',
                       'currentstate': request.session['currentstate'], 'finalstate': request.session['finalstate'],'exploratory':True,'NumericFeatureList':numericFeature,'dateFeature':dateFeature,'targetFeature':targetFeature}
        return(context)





# EDA Visualization changes
# ----------------------------
def get_edaGraph(request):
    if request.session['datatype'] == 'Normal':
        from appbe.eda import ux_eda
        
        df_temp = dict(request.GET).get('features[]')
        graphType = request.GET.get('graphType')    
        d3_url = request.GET.get('d3_url')
        mpld3_url = request.GET.get('mpld3_url')
                
        dataLocation = request.session['datalocation']
        eda_obj = ux_eda(dataLocation)        
        
        
        # 2.2 patch changes
        #-------------------------------------------------
        edaRecords = request.session['edaRecords']
        #df = df.sample(n=int(edaRecords), random_state=1)
        eda_obj.subsampleData(edaRecords)
                
        
        eda_obj.subsetFeatures(df_temp)        
        features,dateFeature,seqFeature,constantFeature,textFeature,targetFeature,numericCatFeatures,numericFeature, catfeatures = eda_obj.getFeatures()        
        numericfeaturecount = eda_obj.getNumericFeatureCount()                
        correlated_features=[]        
        
        df = eda_obj.getdata()
        if numericfeaturecount > 1:
            try:
                if graphType == 'Default':
                    top5highcorr = eda_obj.getHighlyCorrelatedFeatures(5)
                    correlated_features = getHighlyCorrelatedFeatureCharts(df,top5highcorr)
                    
                else:
                    correlated_features = getFeatureCharts(df,graphType,d3_url,mpld3_url)
            except:
                pass
            
        return correlated_features
# ----------------------------


# ---------------------- 12686:Data Distribution related Changes S T A R T ----------------------
def get_DataDistribution(request):
    selectedFeature = request.GET.get('selected_feature')
    
    _featureItem = []
    _featureItem.append(selectedFeature)
    
    from appbe.eda import ux_eda
    dataLocation = request.session['datalocation']
    eda_obj = ux_eda(dataLocation)
    df = eda_obj.getdata()
    
    numericCatFeatures = request.session['edanumericCatFeatures']
    textFeature = request.session['edatextFeature']
    # features,dateFeature,seqFeature,constantFeature,textFeature,targetFeature,numericCatFeatures,numericFeature,catfeatures = eda_obj.getFeatures()
    dataDrift = ''
        
    if selectedFeature in numericCatFeatures:
        dataDrift = getDriftDistribution(_featureItem, df[numericCatFeatures])
        
    elif selectedFeature in textFeature:
        try:
            comment_words = eda_obj.word_token_for_feature(selectedFeature, df[_featureItem])
            stopwords = set(STOPWORDS)
            wordcloud = WordCloud(width=800, height=800, background_color='white', stopwords=stopwords,
                      min_font_size=10).generate(comment_words)
            try:
                plt.clf()
            except:
                pass
            plt.imshow(wordcloud, interpolation='bilinear')
            plt.axis(""off"")
            plt.tight_layout(pad=0)
            image = io.BytesIO()
            plt.savefig(image, format='png')
            image.seek(0)
            string = base64.b64encode(image.read())
            # wordcloudpic = 'data:image/png;base64,' + urllib.parse.quote(string)
            dataDrift =  urllib.parse.quote(string)
            
        except:
            dataDrift = ''
    
    del eda_obj  
    return dataDrift
# -------------------------------------------- E N D  --------------------------------------------
    

def get_DeepDiveData(request):
    if request.session['datatype'] == 'Normal':
        from appbe.eda import ux_eda
        dataLocation = request.session['datalocation']
        eda_obj = ux_eda(dataLocation)
        
        edaRecords = request.session['edaRecords']
        edaFeatures = request.session['edaFeatures']
                
        eda_obj.subsampleData(edaRecords)
        eda_obj.subsetFeatures(edaFeatures) 
        
        df = eda_obj.getdata()
        data_deep_json = df.to_json(orient='records')
        
        return (data_deep_json) 



# Fairness Metrics changes
# ----------------------------
def get_fairmetrics(request):
    import mpld3    
    if request.session['datatype'] == 'Normal':
        from appbe.eda import ux_eda        
        
        df_temp = dict(request.GET).get('features[]')
        
        d3_url = request.GET.get('d3_url')
        mpld3_url = request.GET.get('mpld3_url')
        global metricvalue
        metricvalue = request.GET.get('metricvalue')
            
        dataLocation = request.session['datalocation']
        # dataLocation =  'C:\\MyFolder\\AION\\AION Datasets\\AIF360\\database.csv'
        
        eda_obj = ux_eda(dataLocation, optimize=1)                  
        features,dateFeature,seqFeature,constantFeature,textFeature,targetFeature,numericCatFeatures,numericFeature,catfeatures = eda_obj.getFeatures()
        
        # data = eda_obj.getdata()
        data = pd.read_csv(dataLocation, na_values=['Unknown', ' '])        
        features_toEncode = features
        
        from sklearn.preprocessing import MinMaxScaler, LabelEncoder
        data_encoded = data.copy()
        categorical_names = {}
        encoders = {}
                
        # Use Label Encoder for categorical columns (including target column)
        for feature in features_toEncode:
            le = LabelEncoder()
            le.fit(data_encoded[feature])            
            data_encoded[feature] = le.transform(data_encoded[feature])            
            categorical_names[feature] = le.classes_
            encoders[feature] = le
        
        data_perp = data_encoded
        
        protected_feature = df_temp[0]     #'Victim Race' 
        target_feature = df_temp[1]        #'Perpetrator Sex'

        # ------Theil index----- Task->13843
        from aif360.sklearn.metrics import generalized_entropy_index
        Ti_List = []
        for items in categorical_names[protected_feature]:
            df = data[data[protected_feature]==items]
            le = LabelEncoder()
            le.fit(df[target_feature])            
            df[target_feature] = le.transform(df[target_feature])
            tf = generalized_entropy_index(df[target_feature], alpha = 1)
            tf = round(tf, 4)
            Ti_List.append(tf)    
        global Thi_idx
        Thi_idx = Ti_List
        
        #claas_size = categorical_names[protected_feature].size
        new_list = [item for item in categorical_names[protected_feature] if not(pd.isnull(item)) == True]
        claas_size = len(new_list)
        
        if claas_size > 10:
            return 'HeavyFeature'
                       
        metrics = fair_metrics(categorical_names, data_perp, protected_feature, target_feature, claas_size)                       
        figure = plot_fair_metrics(metrics)        
        html_graph = mpld3.fig_to_html(figure,d3_url=d3_url,mpld3_url=mpld3_url)  
        
        return html_graph


def fair_metrics(categorical_names, data_perp, protected_feature, target_feature, claas_size):
    import aif360
    from aif360.datasets import StandardDataset
    from aif360.metrics import BinaryLabelDatasetMetric
    cols = [metricvalue]
    obj_fairness = [[0]]  
    fair_metrics = pd.DataFrame(data=obj_fairness, index=['objective'], columns=cols)
    
    for indx in range(claas_size):
        priv_group = categorical_names[protected_feature][indx]
        privileged_class = np.where(categorical_names[protected_feature] == priv_group)[0]

        data_orig = StandardDataset(data_perp, 
                                    label_name=target_feature, 
                                    favorable_classes=[1], 
                                    protected_attribute_names=[protected_feature], 
                                    privileged_classes=[privileged_class])

        dataset_pred = data_orig
        attr = dataset_pred.protected_attribute_names[0]
        idx = dataset_pred.protected_attribute_names.index(attr)
        privileged_groups =  [{attr:dataset_pred.privileged_protected_attributes[idx][0]}] 

        unprivileged_size = dataset_pred.unprivileged_protected_attributes[0].size
        unprivileged_groups = []
        for idx2 in range(unprivileged_size):   
              unprivileged_groups.extend([{attr:dataset_pred.unprivileged_protected_attributes[idx][idx2]}])

        metric_pred = BinaryLabelDatasetMetric(dataset_pred,
                                                    unprivileged_groups=unprivileged_groups,
                                                    privileged_groups=privileged_groups)
        if metricvalue == ""Theil Index"":
            row = pd.DataFrame([Thi_idx[indx]],
                        columns  = cols ,
                        index = [priv_group])
        elif metricvalue == ""Disparate Impact"":
            row = pd.DataFrame([[metric_pred.disparate_impact()]],
                        columns  = cols ,
                        index = [priv_group])
        elif metricvalue == ""Statistical Parity Difference"":
            row = pd.DataFrame([[metric_pred.mean_difference()]],
                        columns  = cols ,
                        index = [priv_group])                       
        #fair_metrics = fair_metrics.append(row)
        fair_metrics = pd.concat([fair_metrics,row])

    return fair_metrics
  
  

def plot_fair_metrics(fair_metrics):
    import matplotlib.patches as patches
    plt.style.use('default')
    
    import seaborn as sns    
    fig, ax = plt.subplots(figsize=(10,4), ncols=1, nrows=1)

    plt.subplots_adjust(
        left    =  0.125, 
        bottom  =  0.1, 
        right   =  0.9, 
        top     =  0.9, 
        wspace  =  .5, 
        hspace  =  1.1
    )

    y_title_margin = 1.2

    plt.suptitle(""Fairness metrics"", y = 1.09, fontsize=20)
    sns.set(style=""dark"")

    cols = fair_metrics.columns.values
    obj = fair_metrics.loc['objective']
    if metricvalue == ""Theil Index"":
        size_rect = [0.5]
        rect = [-0.1]
        bottom = [-0.1]
        top = [2]
        bound = [[-0.1,0.1]]
    elif metricvalue == ""Disparate Impact"":
        size_rect = [0.4]
        rect = [0.8]
        bottom = [0]
        top = [2]
        bound = [[-0.1,0.1]]
    elif metricvalue == ""Statistical Parity Difference"":
        size_rect = [0.2]
        rect = [-0.1]
        bottom = [-1]
        top = [1]
        bound = [[-0.1,0.1]]
    
    #display(Markdown(""### Check bias metrics :""))
    #display(Markdown(""A model can be considered bias if just one of these five metrics show that this model is biased.""))
    
    for attr in fair_metrics.index[0:len(fair_metrics)].values:
        #display(Markdown(""#### For the %s attribute :""%attr))
        check = [bound[i][0] < fair_metrics.loc[attr][i] < bound[i][1] for i in range(0,1)]      
        #display(Markdown(""With default thresholds, bias against unprivileged group detected in **%d** out of 5 metrics""%(5 - sum(check))))   
    for i in range(0,1):
        plt.subplot(1, 1, i+1)        
        xx = fair_metrics.index[1:len(fair_metrics)].values.tolist()
        yy = fair_metrics.iloc[1:len(fair_metrics)][cols[i]].values.tolist()
      
        palette = sns.color_palette('husl', len(xx))  
        ax = sns.pointplot(x=fair_metrics.index[1:len(fair_metrics)], y=yy, palette=palette, hue=xx)
        
        index = 0
        for p in zip(ax.get_xticks(), yy):
            if (p[1] > 2.0):
                _color = palette.as_hex()[index]   
                _val = 'Outlier(' + str(round(p[1],3)) + ')'
                ax.text(p[0]-0.5, 0.02, _val, color=_color)
            else:
                ax.text(p[0], p[1]+0.05, round(p[1],3), color='k') 
            index = index + 1
            
        plt.ylim(bottom[i], top[i])
        plt.setp(ax.patches, linewidth=0)              
        ax.get_xaxis().set_visible(False)
                
        ax.legend(loc='right', bbox_to_anchor=(1, 0.8), ncol=1)        
        ax.add_patch(patches.Rectangle((-5,rect[i]), 10, size_rect[i], alpha=0.3, facecolor=""green"", linewidth=1, linestyle='solid'))
        # plt.axhline(obj[i], color='black', alpha=0.3)              
        
        plt.title(cols[i], fontname=""Times New Roman"", size=20,fontweight=""bold"")
        ax.set_ylabel('')    
        ax.set_xlabel('')    
            
    return fig
# ----------------------------


def getDriftDistribution(feature, dataframe, newdataframe=pd.DataFrame()):
    try:
        import numpy as np
        import pandas as pd
        import seaborn as sns
        import matplotlib.pyplot as plt
        import scipy
        from scipy import stats
        from scipy.stats import norm
        import matplotlib.gridspec as gridspec
        import math
        import io, base64, urllib
        np.seterr(divide='ignore', invalid='ignore')
        from appbe.eda import ux_eda
        eda_obj = ux_eda()
        try:    
            plt.clf()
        except:
            pass
        plt.rcParams.update({'figure.max_open_warning': 0})
        sns.set(color_codes=True)
        pandasNumericDtypes = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64']
        if len(feature) > 4:
            numneroffeatures = len(feature)
            plt.figure(figsize=(10, numneroffeatures*2))
        else:
            plt.figure(figsize=(10,5))
        
        for i in enumerate(feature):
            
            dataType = dataframe[i[1]].dtypes
            if dataType not in pandasNumericDtypes:
                dataframe[i[1]] = pd.Categorical(dataframe[i[1]])
                dataframe[i[1]] = dataframe[i[1]].cat.codes
                dataframe[i[1]] = dataframe[i[1]].astype(int)
                dataframe[i[1]] = dataframe[i[1]].fillna(dataframe[i[1]].mode()[0])
            else:
                dataframe[i[1]] = dataframe[i[1]].fillna(dataframe[i[1]].mean())
            
            plt.subplots_adjust(hspace=0.5, wspace=0.7, top=1)
            plt.subplot(math.ceil((len(feature) / 2)), 2, i[0] + 1)
            
            distname, sse = eda_obj.DistributionFinder(dataframe[i[1]])
            try:
                ax = sns.distplot(dataframe[i[1]], label=distname)
                
                ax.legend(loc='best')
                if newdataframe.empty == False:
                    dataType = newdataframe[i[1]].dtypes
                    if dataType not in pandasNumericDtypes:
                        newdataframe[i[1]] = pd.Categorical(newdataframe[i[1]])
                        newdataframe[i[1]] = newdataframe[i[1]].cat.codes
                        newdataframe[i[1]] = newdataframe[i[1]].astype(int)
                        newdataframe[i[1]] = newdataframe[i[1]].fillna(newdataframe[i[1]].mode()[0])
                    else:
                        newdataframe[i[1]] = newdataframe[i[1]].fillna(newdataframe[i[1]].mean())
                    distname, sse = distribution.DistributionFinder(newdataframe[i[1]])
                    ax = sns.distplot(newdataframe[i[1]], label=distname)
                    ax.legend(loc='best')
            except Exception as e:
                print(e)
                exc_type, exc_obj, exc_tb = sys.exc_info()
                fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
                print(str(exc_type) + ' ' + str(fname) + ' ' + str(exc_tb.tb_lineno))
                pass
        buf = io.BytesIO()
        plt.savefig(buf, format='png')
        buf.seek(0)
        string = base64.b64encode(buf.read())
        uri = urllib.parse.quote(string)
        return uri
    except Exception as e:
        print(e)
        exc_type, exc_obj, exc_tb = sys.exc_info()
        fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
        print(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))
    
def getCategoryWordCloud(df):
    labels = df.Label.unique()
    df_output = pd.DataFrame()
    tcolumns=['text']   
    for label in labels:
        df2 = df[df['Label'] == label]  
        df2 = df2.reset_index()
        
        wordcloud,df_text = getWordCloud(df2,tcolumns)
        newrow = {'Label':label,'wordCloud':wordcloud}  
        df_output = df_output.append(newrow,ignore_index=True)
    return(df_output)       
def getHighlyCorrelatedFeatureCharts(df, df_top):
    numOfRows = df.shape[0]
    cratio = 0.01
    if (numOfRows < 1000):
        cratio = 0.2
    elif (numOfRows < 10000):
        cratio = 0.1
    elif (numOfRows < 100000):
        cratio = 0.01
    barcolor = [""red"", ""green"", ""blue"", ""goldenrod"", ""magenta""]
    ffig = make_subplots(rows=2, cols=3)
    height = 800
    rowno = 1
    colno = 1
    featureCharts = []
    try:
        for index, row in df_top.iterrows():
            feature1 = row['FEATURE_1']
            feature2 = row['FEATURE_2']
            df_temp = df[[feature1, feature2]]
            feature1data = df_temp[feature1]
            feature2data = df_temp[feature2]
            nUnique = len(feature1data.unique().tolist())
            if nUnique / numOfRows >= cratio:
                feature1type = 'Continous'
            else:
                feature1type = 'Category'
            nUnique = len(feature2data.unique().tolist())
            if nUnique / numOfRows >= cratio:
                feature2type = 'Continous'
            else:
                feature2type = 'Category'

            charttype = 0
            if feature1type == 'Continous' and feature2type == 'Continous':
                df_temp[feature1] = pd.qcut(df_temp[feature1], q=8, duplicates='drop',precision=0)
                df_temp[feature1] = df_temp[feature1].astype(str).str.strip('()[]')
                feature1type = 'Category'
                xaxis = feature1
                yaxis = feature2
                charttype = 1
            if feature1type == 'Category' and feature2type == 'Continous':
                xaxis = feature1
                yaxis = feature2
                charttype = 1

            
            if feature1type == 'Continous' and feature2type == 'Category':
                xaxis = feature1        #xaxis = feature2
                yaxis = feature2        #yaxis = feature1
                charttype = 1

            if feature1type == 'Category' and feature2type == 'Category':
                if (len(feature1data.unique().tolist()) < len(feature2data.unique().tolist())):
                    xaxis = feature1    #xaxis = feature2
                    yaxis = feature2    #yaxis = feature1
                else:
                    xaxis = feature1
                    yaxis = feature2

                if (len(df_temp[xaxis].unique().tolist()) > 5):
                    df_temp[xaxis] = pd.qcut(df_temp[xaxis], q=5, duplicates='drop',precision=0)
                    df_temp[xaxis] = df_temp[xaxis].astype(str).str.strip('()[]')

                if (len(df_temp[yaxis].unique().tolist()) > 5):
                    df_temp[yaxis] = pd.qcut(df_temp[yaxis], q=3, duplicates='drop',precision=0)
                    df_temp[yaxis] = df_temp[yaxis].astype(str).str.strip('()[]')
                charttype = 2
                # if feature1type == 'Category' and feature2type == 'Category':
            if charttype == 2:
                uniqueclasses = df_temp[yaxis].unique().tolist()
                cfig = go.Figure()
                i = 1
                for x in uniqueclasses:
                    df_temp3 = df_temp.loc[df_temp[yaxis] == x]
                    df_temp2 = df_temp3.groupby(xaxis, as_index=False)[yaxis].count()
                    if df_temp2[xaxis].dtypes == ""object"":
                        df_temp2 = df_temp2.set_index(xaxis).reindex(
                            natsorted(df_temp2[xaxis].tolist(), key=lambda y: y.lower())).reset_index()

                    xaxis_data = df_temp2[xaxis].tolist()
                    
                    yaxis_data = df_temp2[yaxis].tolist()
                    
                    cfig.add_trace(go.Bar(x=xaxis_data, y=yaxis_data, name=x, marker_color=barcolor[i]))
                    i = i + 1
                    if i == 5:
                        break
                cfig.update_layout(barmode='stack', xaxis_title=xaxis, yaxis_title=yaxis)
                bargraph = cfig.to_html(full_html=False, default_height=450, default_width=400)
                featureCharts.append(bargraph)

            if charttype == 1:
                df_temp2 = df_temp.groupby(xaxis, as_index=False)[yaxis].mean()
                if df_temp2[xaxis].dtypes == ""object"":
                    df_temp2 = df_temp2.set_index(xaxis).reindex(
                        natsorted(df_temp2[xaxis].tolist(), key=lambda y: y.lower())).reset_index()

                xaxis_data = df_temp2[xaxis].tolist()
                yaxis_data = df_temp2[yaxis].tolist()
                
                cfig = go.Figure()
                cfig.add_trace(go.Bar(x=xaxis_data, y=yaxis_data, name='Primary Product', marker_color='blue'))
                cfig.update_layout(xaxis_title=xaxis, yaxis_title=yaxis)
                bargraph = cfig.to_html(full_html=False, default_height=450, default_width=400)
                featureCharts.append(bargraph)
                colno += 1
                if colno > 3:
                    colno = 1
                    rowno += 1
    except Exception  as e:
        print(e)
    return (featureCharts)


# EDA Visualization changes
# ----------------------------
def getFeatureCharts(df, graphType, d3_url,mpld3_url):    
    featureCharts = []
    feature1 = df.columns[0]
    feature2 = df.columns[1]

    import seaborn as sns
    import mpld3
    fig, ax = plt.subplots(figsize=[10,5])
        
    if graphType == 'marker':
        df.plot(ax=ax, marker='o')
        # df[['age','education-num']].plot(ax=ax, marker='o')        

    if graphType == 'area':
        df.plot(ax=ax, kind =""area"")
        # df[['education-num','age']].plot(ax=ax, kind =""area"")      # UIprb

    if graphType == 'hexbin':
        df.plot.hexbin(ax=ax, x=feature1, y=feature2, gridsize=2)

    if graphType == 'boxplot':
        plt.boxplot(df)

    if graphType == 'scatter':
        ax.scatter(df[feature1], df[feature2])        
    
    if graphType == 'regplot':
        ax = sns.regplot(x= feature1, y=feature2, data= df, fit_reg = False, scatter_kws={""alpha"": 0.5})
    
    if graphType == 'lineplot':
        ax = sns.lineplot(x= feature1, y=feature2, data= df)       
    
    if graphType == 'barplot':
        ax = sns.barplot(x= feature1, y=feature2, data= df)
        # ax = sns.barplot(x= 'age', y='fnlwgt', data= df)      #Start_prb        
    
    ax.legend()
    ax.set_xlabel(feature1)
    ax.set_ylabel(feature2)
    #print(d3_url)
    #print(mpld3_url)
    html_graph = mpld3.fig_to_html(fig,d3_url=d3_url,mpld3_url=mpld3_url)    
    
    if graphType == 'kde':
        ax = sns.pairplot(df, kind=""kde"", height=4, x_vars=feature1,y_vars = feature2)
        # ax = sns.pairplot(df[['age','fnlwgt']], kind=""kde"")
        html_graph = mpld3.fig_to_html(ax.fig)
    
    if graphType == 'relplot':
        sns.set(style =""darkgrid"")
        ax = sns.relplot(x =feature1, y =feature2, data = df)
        html_graph = mpld3.fig_to_html(ax.fig)
    
    
        
    featureCharts.append(html_graph)        
    return (featureCharts)
# ----------------------------




def MostCommonWords(stopwords, inputCorpus, num_of_words=10):
    try:
        from collections import Counter
        new = inputCorpus.str.split()
        new = new.values.tolist()
        corpus = [word for i in new for word in i if word not in stopwords]
        counter = Counter(corpus)
        most = counter.most_common()
        x, y = [], []
        for word, count in most[: num_of_words + 1]:
            x.append(word)
            y.append(count)
        return pd.DataFrame([x, y], index=['most_common_words', 'freq']).T
    except:
        print(""exception"", sys.exc_info())
        return False

def removeFeature(df):
    featuresList = df.columns.values.tolist()
    modelFeatures = featuresList.copy()
    datetimeFeatures = []
    sequenceFeatures = []
    unimportantFeatures = []
    featuresRatio = {}
    for i in featuresList:
        check = match_date_format(df[i])
        if check == True:
            modelFeatures.remove(i)
            continue   
        seq_check = check_seq_feature(df[i])
        if seq_check == True:
            modelFeatures.remove(i)
            continue
        ratio = check_category(df[i])
        if ratio != 0:
            featuresRatio[i] = ratio
        else:
            modelFeatures.remove(i)
    return featuresList, modelFeatures

def check_category(data):
    total_record = len(data)
    nUnique = len(data.unique().tolist())
    if nUnique == 1:
        return 0
    ratio = nUnique / total_record
    return (ratio)

def check_seq_feature(data):
    if data.dtypes in ['int16', 'int32', 'int64', 'float16', 'float32', 'float64']:
        total_record = data.count()
        count = (data - data.shift() == 1).sum()
        if ((total_record - count) == 1):
            return True
    return False

def match_date_format(data):
    data = data.astype(str)
    beforecheckcount = (data.count()*80)/100
    #####YYYY-MM-DD HH:MM:SS####
    check1 = data[data.str.match(
        r'(^\d\d\d\d-(0?[1-9]|1[0-2])-(0?[1-9]|[12][0-9]|3[01]) (00|0?[0-9]|1[0-9]|2[0-4]):([0-9]|[0-5][0-9]):([0-9]|[0-5][0-9])$)') == True]
    aftercheckcount = check1.count()
    if (beforecheckcount <= aftercheckcount):
        return True
        #####MM/DD/YYYY HH:MM####
    check2 = data[data.str.match(
        r'(^(0?[1-9]|1[0-2])/(0?[1-9]|[12][0-9]|3[01])/(\d\d\d\d) (00|0?[0-9]|1[0-9]|2[0-4]):([0-9]|[0-5][0-9])$)') == True]
    aftercheckcount = check2.count()
    if (beforecheckcount <= aftercheckcount):
        return True

    #####DD-MM-YYYY HH:MM####
    check2 = data[data.str.match(
        r'(^(0?[1-9]|[12][0-9]|3[01])-(0?[1-9]|1[0-2])-(\d\d\d\d) (00|0?[0-9]|1[0-9]|2[0-4]):([0-9]|[0-5][0-9])$)') == True]
    aftercheckcount = check2.count()
    if (beforecheckcount <= aftercheckcount):
        return True

    #####YYYY/MM/DD####
    check2 = data[data.str.match(r'(^\d\d\d\d/(0?[1-9]|1[0-2])/(0?[1-9]|[12][0-9]|3[01])$)') == True]
    aftercheckcount = check2.count()
    if (beforecheckcount <= aftercheckcount):
        return True
    #####MM/DD/YYYY####
    check2 = data[data.str.match(r'(^(0?[1-9]|1[0-2])/(0?[1-9]|[12][0-9]|3[01])/(\d\d\d\d)$)') == True]
    aftercheckcount = check2.count()
    if (beforecheckcount <= aftercheckcount):
        return True
    return False

def check_text_features(df, modelFeatures):
    aionNumericDtypes = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64']
    textFeature = []
    for i in enumerate(modelFeatures):
        dataType = df[i[1]].dtypes
        numOfRows = df.shape[0]
        if dataType not in aionNumericDtypes:
            if dataType != 'bool':
                nUnique = len(df[i[1]].unique().tolist())
                textnumbericratio = 0.01
                if (numOfRows < 1000):
                    textnumbericratio = 0.2
                elif (numOfRows < 10000):
                    textnumbericratio = 0.1
                elif (numOfRows < 100000):
                    textnumbericratio = 0.01
                if nUnique / numOfRows >= textnumbericratio:
                    textFeature.append(i[1])
    return (textFeature)

def getWordCloud(df, text_columns):
    df_text = pd.DataFrame()
    stopwords = set(STOPWORDS)
    if (len(text_columns) > 1):
        df_text['combined'] = df[text_columns].apply(lambda row: ' '.join(row.values.astype(str)), axis=1)
        features = ['combined']
    else:
        df_text[['combined']] = df[text_columns]
        features = ['combined']
    df_text[features[0]] = df_text[features[0]].fillna(""NA"")
    textCorpus = df_text[features[0]]
    from text import TextProcessing
    tp = TextProcessing.TextProcessing()
    preprocessed_text = tp.transform(textCorpus)
    df_text['combined'] = preprocessed_text
    df_text_list = df_text.values.tolist()
    comment_words = """"
    for val in df_text_list:
        val = str(val)
        tokens = val.split()
        for i in range(len(tokens)):
            tokens[i] = tokens[i].lower()

        comment_words += "" "".join(tokens) + "" ""
    wordcloud = WordCloud(stopwords=stopwords).generate(comment_words)
    try:
        plt.clf()
    except:
        pass
    try:
        plt.imshow(wordcloud, interpolation='bilinear')
        plt.axis(""off"")
        plt.tight_layout(pad=0)
        image = io.BytesIO()
        plt.savefig(image, format='png')
        image.seek(0)
        string = base64.b64encode(image.read())
        image_64 = 'data:image/png;base64,' + urllib.parse.quote(string)
    except Exception as inst:
        print(inst)
        exc_type, exc_obj, exc_tb = sys.exc_info()
        fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
        print(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))
        image_64=''
    return (image_64, df_text)

def getTopTextFeatures(df_text):
    stopwords = set(STOPWORDS)
    commonfeatures = MostCommonWords(stopwords, df_text['combined'])
    xaxis_data = commonfeatures['most_common_words'].tolist()
    yaxis_data = commonfeatures['freq'].tolist()
    import plotly.graph_objects as go
    cfig = go.Figure()
    cfig.add_trace(go.Bar(x=xaxis_data, y=yaxis_data, name='Feature Importance'))
    cfig.update_layout(barmode='stack', xaxis_title='Features')
    bargraph = cfig.to_html(full_html=False, default_height=450, default_width=1000)
    return (bargraph)



def getPCATop10Features(df, modelFeatures):
    aionNumericDtypes = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64']
    categorial_features = []
    for i in enumerate(modelFeatures):
        dataType = df[i[1]].dtypes
        if dataType not in aionNumericDtypes:
            categorial_features.append(i[1])
            df[i[1]] = pd.Categorical(df[i[1]])
            df[i[1]] = df[i[1]].cat.codes
            df[i[1]] = df[i[1]].astype(int)
            df[i[1]] = df[i[1]].fillna(df[i[1]].mode()[0])
        else:
            df[i[1]] = df[i[1]].fillna(df[i[1]].mean())
            from sklearn.decomposition import PCA
    pca = PCA(n_components=2).fit(df)
    map = pd.DataFrame(pca.components_, columns=modelFeatures)
    map = map.diff(axis=0).abs()
    map = map.iloc[1]
    map = map.sort_values(ascending=False).head(10)
    yaxis_data = map.tolist()
    xaxis_data = map.index.values.tolist()
    import plotly.graph_objects as go
    cfig = go.Figure()
    cfig.add_trace(go.Bar(x=xaxis_data, y=yaxis_data, name='Feature Importance'))
    cfig.update_layout(barmode='stack', xaxis_title='Features')
    bargraph = cfig.to_html(full_html=False, default_height=450, default_width=1000)
    
    
    return (bargraph)

def getCorrelationMatrix(df):
    try:
        #from dython.nominal import associations
        if len(df.columns) > 25:
            df3 = df[df.columns[0:24]]
        else:
            df3 = df.copy()
        cor_mat= associations(df3,compute_only=True)
        cor_mat=cor_mat['corr']        
        #cor_mat = df3.corr()
        cor_mat = cor_mat.astype(float).round(2)
        #print(cor_mat)
        z = cor_mat.values.tolist()
        fig = ff.create_annotated_heatmap(z, x=cor_mat.columns.tolist(), y=cor_mat.index.tolist(), annotation_text=z,
                                          colorscale='Blues')
        fig.layout.yaxis.automargin = True
        correlationgraph = fig.to_html(full_html=True, default_height=450, default_width=1000)
    except Exception as e:
        print(e)
        correlationgraph = ''
    return (correlationgraph)
"
publish.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
from appbe.data_io import sqlite_db
from os.path import expanduser
import platform
import pandas as pd
import os
from appbe.dataPath import DATA_DIR
PUBLISH_PATH = os.path.join(DATA_DIR,'publish')	
DEPLOY_DATABASE_PATH = os.path.join(DATA_DIR,'sqlite')        

def chech_publish_info(usecasename):
    version = 0
    status = 'Not Published'
    inputDriftStatus = 'No Drift'
    MODEL_DEPLOY_DATABASE_PATH = os.path.join(PUBLISH_PATH,usecasename,'database')    
    sqlite_dbObj = sqlite_db(DEPLOY_DATABASE_PATH,'deploy.db')   
    if sqlite_dbObj.table_exists('publish'): 
        data = sqlite_dbObj.read('publish',""usecase = '""+usecasename+""' and status = 'Published'"")
        if data.shape[0] > 0:
            model_sqlite_dbObj = sqlite_db(MODEL_DEPLOY_DATABASE_PATH,'deploy.db')
            version = data['version'].iloc[0]
            status = 'Published'
            if model_sqlite_dbObj.table_exists('monitoring'):
                data = model_sqlite_dbObj.read('monitoring',""version = '""+str(version)+""'"")
                if data.shape[0] > 0:   
                    msg = data['Msg'].iloc[-1]
                    if 'Affected Columns' in msg:
                        inputDriftStatus = 'Input Drift Found'
    return version,status,inputDriftStatus

def check_input_data(usecasename):
    MODEL_DEPLOY_DATABASE_PATH = os.path.join(PUBLISH_PATH,usecasename,'database')    
    sqlite_dbObj = sqlite_db(DEPLOY_DATABASE_PATH,'deploy.db')      
    data = pd.DataFrame()
    if sqlite_dbObj.table_exists('publish'): 
        dataa = sqlite_dbObj.read('publish',""usecase = '""+usecasename+""' and status = 'Published'"")
        if dataa.shape[0] > 0:       
            modelsqlite_dbObj = sqlite_db(MODEL_DEPLOY_DATABASE_PATH,'deploy.db')
            if modelsqlite_dbObj.table_exists('prodData'):
                data = modelsqlite_dbObj.read('prodData')
    return data
        "
mlstyles.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import os
from os.path import expanduser
import platform
import json
import subprocess
import re
import sys
import pandas as pd
from django.http import HttpResponse
from appbe.dataPath import DATA_DIR
Usecaselocation = os.path.join(DATA_DIR,'Usecases')
def mlstyles(request):
    try:
        from appbe.aion_config import settings
        usecasetab = settings()    
        selectid = request.GET['usecaseid']
        configFile = os.path.join(Usecaselocation, 'usecases.json')
        f = open(configFile, ""r"")
        configSettings = f.read()
        f.close()
        configSettingsJson = json.loads(configSettings)
        #usecase = configSettingsJson['usecaselist']
        desciption=""""
        usecasename=""""
        found = False
        for v_id in configSettingsJson['verticallist']:
            for p_id in v_id['usecaselist']:
                usecaseid = p_id.get('usecaseid')
                if str(usecaseid) == str(selectid) :
          
                    usecasename = p_id.get('usecasename')
                    desciption = p_id.get('desciption')
                    usecaseid = p_id.get('usecaseid')
                    iconname = p_id.get('iconname')
                    prediction_input = p_id.get('prediction_input')				
                    outputtype = p_id.get('outputtype')
                    smalldescription = p_id.get('smalldescription')   				
                    trainingFeatures = p_id.get('trainingFeatures','None')                   
                    if trainingFeatures != 'None':
                        trainingFeatures = trainingFeatures.split(',')
                    found = True
                    break   
            if found == True:
                break
        #print(usecaseid,selectid)                
        context ={'usecasename':usecasename,'desciption':desciption,'prediction_input':prediction_input,'usecaseid':usecaseid,'trainingFeatures':trainingFeatures,'iconname':iconname,'smalldescription':smalldescription,'outputtype':outputtype,'usecasetab':usecasetab}
        return context
    except Exception as inst:
        print(inst) 
        context = { 'error3':'error3','error1': ""No UseCases to show""}
        return context 
def getusecasedetails(selectid):
    configFile = os.path.join(Usecaselocation, 'usecases.json')
    f = open(configFile, ""r"")
    configSettings = f.read()
    f.close()
    configSettingsJson = json.loads(configSettings)
    #usecase = configSettingsJson['usecaselist']
    desciption=""""
    usecasename=""""
    found = False
    for v_id in configSettingsJson['verticallist']:
        for p_id in v_id['usecaselist']:     
            usecaseid = p_id.get('usecaseid')
            
            if str(usecaseid) == str(selectid) :
                usecasename = p_id.get('usecasename')
                desciption = p_id.get('desciption')
                usecaseid = p_id.get('usecaseid')
                modelConfig = p_id.get('modelConfig')
                folder = p_id.get('folder')
                prediction = p_id.get('prediction')
                prediction_input = p_id.get('prediction_input')
                ai_modeldata = p_id.get('modeldata')
                outputtype = p_id.get('outputtype')
                smalldescription = p_id.get('smalldescription')            
                prediction_template = p_id.get('prediction_template')			
                trainingFeatures = p_id.get('trainingFeatures','None')                
                if trainingFeatures != 'None':
                    trainingFeatures = trainingFeatures.split(',')                
                found = True                
                break
        if found == True:
            break
    #print(usecasename)
    return(usecasename,desciption,usecaseid,modelConfig,folder,prediction,prediction_input,ai_modeldata,outputtype,smalldescription,prediction_template,trainingFeatures)
            
            
def mlpredict(request):
    selectid=request.POST.get('usecaseid')
    mlpredict =request.POST.get('mlpredict')
    usecasename,desciption,usecaseid,modelConfig,folder,prediction,prediction_input,ai_modeldata,outputtype,smalldescription,prediction_template,trainingFeatures = getusecasedetails(selectid)
    from appbe.aion_config import settings
    usecasetab = settings()
    usecasename = usecasename
    desciption = desciption
    input=''
    for x in prediction_input:
        if input != '':
            input += ','			
        input = request.POST.get(x['name'])
    
    if mlpredict in ['prediction','predictsingle']:
        if mlpredict == 'prediction':
            dataFile = request.POST.get('predictfilePath')
            
            if(os.path.isfile(dataFile) == False) or dataFile=="""":
                context = {'usecaseid':selectid ,'dataFile':dataFile,'usecasename':usecasename,'desciption':desciption , 'error1': 'Please enter a valid csv filepath','usecasetab':usecasetab}
                return context, mlpredict
        else:
            inputFieldsDict = {}
            for feature in trainingFeatures:
                inputFieldsDict[feature] = request.POST.get(feature)         
            dataFile = json.dumps(inputFieldsDict)    
        try:
            predictionScriptPath= os.path.join(Usecaselocation,folder,'model',prediction)
            # predictionScriptPath = os.path.join(predictionscript, 'aion_prediction.py')
            
            outputStr = subprocess.check_output([sys.executable, predictionScriptPath, dataFile,input])
            
            outputStr = outputStr.decode('utf-8')
            outputStr = re.search(r'predictions:(.*)', str(outputStr), re.IGNORECASE).group(1)
            outputStr = outputStr.strip()
            predict_dict = json.loads(outputStr)
            #print(predict_dict)
            heading =''
            timetaken=''
            print(predict_dict)
            if (predict_dict['status'] == 'SUCCESS'):
                predictionResults = predict_dict['data']
                #print(predictionResults)
                if 'heading' in predict_dict:
                    heading = predict_dict['heading']
                if 'Time' in predict_dict:				
                    timetaken = round(predict_dict['Time'],2)
                if outputtype.lower() in ['similarityidentification','contextualsearch']:
                    data = predictionResults[0]
                    predictionResults= []
                    Results={}
                    prediction = data['prediction']
                    i = 1
                    for x in prediction:
                        te = ''
                        for y in x:
                            info = (str(x[y])[:100] + '...') if len(str(x[y])) > 100 else str(x[y])
                            te += y+': '+info+'\n\n'
                        Results[i] = te
                        i = i+1
                    
                    predictionResults.append(Results)

            else:
                context = {'usecaseid':selectid ,'dataFile':dataFile,'prediction_input':prediction_input,'usecasename':usecasename,'desciption':desciption , 'error': 'Failed To perform prediction','usecasetab':usecasetab}
                return context, mlpredict
            print(heading)
            context = {'usecasename':usecasename,'desciption':desciption,'prediction_input':prediction_input,'usecaseid':selectid ,'dataFile':dataFile,'predictionResults': predictionResults,'outputtype':outputtype,'heading':heading,'timetaken':timetaken,'usecasetab':usecasetab,'trainingFeatures':trainingFeatures}
            return  context, mlpredict
        except Exception as inst:
            print(inst)
            context = { 'usecaseid':selectid ,'dataFile':dataFile,'usecasename':usecasename,'desciption':desciption ,'errorp': 'Failed To perform prediction','usecasetab':usecasetab}
            return context, mlpredict
    if mlpredict == 'download_predict':
        # predictionResults = 'C:\\DataSets\\Classification\\bug_severity_class.csv'
        try:
            csvdata= os.path.join(Usecaselocation,folder,'Data',prediction_template)
            if os.path.isfile(csvdata) and os.path.exists(csvdata):
                df = pd.read_csv(csvdata,encoding='utf8',encoding_errors= 'replace')
                downloadFileName = usecasename.replace("" "", ""_"") + '_predict.csv'
                response = HttpResponse(content_type='text/csv')
                response['Content-Disposition'] = 'attachment; filename='+downloadFileName
                df.to_csv(response, index=False)
                return response,mlpredict
            else:
                context = {'usecaseid':selectid ,'dataFile':dataFile,'usecasename':usecasename,'desciption':desciption, 'error': 'File not found','usecasetab':usecasetab}
                return context, mlpredict 
				
        except Exception as inst:
           
            context = { 'usecaseid':selectid ,'usecasename':usecasename,'desciption':desciption, 'error3':'error3','error1': 'Failed To Download','usecasetab':usecasetab}
            return context, mltrain 
def process(data):
    cleaned_data = {""verticallist"":[]}
    for vertical in data['verticallist']:
        updated_list = []
        for usecase in vertical['usecaselist']:
            if usecase['prediction'] and usecase['prediction'] != ""Not Implemented"":
                updated_list.append(usecase)
        if updated_list:
            cleaned_data['verticallist'].append({'id':vertical['id'],'name':vertical['name'],'usecaselist':updated_list})
    return cleaned_data
    
def Aiusecases(request,selectedoption='Implemented'):
    try:
        from appbe.aion_config import settings
        usecasetab = settings() 
        configFile = os.path.join(Usecaselocation, 'usecases.json')
        f = open(configFile, ""r"")
        configSettings = f.read()
        f.close()
        configSettingsJson = json.loads(configSettings)
        
       
        
        if selectedoption == 'Implemented':
            configSettingsJson = process(configSettingsJson)
        usecasedetails = configSettingsJson['verticallist']
        context ={'desciption1':usecasedetails,'selected':'AIusecases','usecasetab':usecasetab}
        return context
    except Exception as e:
        print(e)
        context ={'error':""No Usecases to Show"",'selected':'AIusecases','usecasetab':usecasetab}
        return context

def mltrain(request):
    from appbe.aion_config import settings
    usecasetab = settings()
    selectid =request.POST.get('usecaseid1')
    mltrain =request.POST.get('mltrain')

    usecasename,desciption,usecaseid,modelConfig,folder,prediction,prediction_input,ai_modeldata,outputtype,smalldescription,prediction_template,trainingFeatures = getusecasedetails(selectid)
    usecasename = usecasename
    desciption = desciption
       
    if mltrain == 'training':
        dataFile = request.POST.get('trainfilePath')
        if(os.path.isfile(dataFile) == False) or dataFile=="""":
            context = {'usecaseid':selectid ,'datatrainFile':dataFile,'usecasename':usecasename,'desciption':desciption ,'error3':'error3','error1': 'Please enter a valid csv filepath'}
            return context, mltrain 
        try:
            scriptPath = os.path.join(Usecaselocation,folder,'config','aion_train.py')
            print(scriptPath,dataFile)
            outputStr = subprocess.check_output([sys.executable, scriptPath, dataFile])

            outputStr = outputStr.decode('utf-8')
            outputStr = re.search(r'aion_learner_status:(.*)', str(outputStr), re.IGNORECASE).group(1)
            outputStr = outputStr.strip()
            
            
            train = json.loads(outputStr)
            status = train['status']
            DeployLocation = train['data']['deployLocation']
            ModelType = train['data']['ModelType']
            BestModel = train['data']['BestModel']
            BestScore = train['data']['BestScore']
            ScoreType = train['data']['ScoreType']
            FeaturesUsed = train['data']['featuresused']
            
            context={'result':train,'usecaseid':selectid ,'datatrainFile':dataFile,'usecasename':usecasename,'desciption':desciption,'status':status,'DeployLocation':DeployLocation,'ModelType':ModelType,'BestModel':BestModel,'BestScore':BestScore,'ScoreType':ScoreType,'FeaturesUsed':FeaturesUsed,'result':'result','usecasetab':usecasetab}
            return context,mltrain 
        except Exception as inst:
           
            context = {'usecaseid':selectid ,'datatrainFile':dataFile,'usecasename':usecasename,'desciption':desciption, 'errort': 'Failed To perform Training','usecasetab':usecasetab}
            return context, mltrain  
            
    if mltrain == 'download_train':

        try:
            csvdata= os.path.join(Usecaselocation,folder,'data',ai_modeldata)
            #print(csvdata)			
            if os.path.isfile(csvdata) and os.path.exists(csvdata):
                df = pd.read_csv(csvdata,encoding='utf8',encoding_errors= 'replace')
                downloadFileName = usecasename.replace("" "", ""_"") + '_training.csv'
                response = HttpResponse(content_type='text/csv')
                response['Content-Disposition'] = 'attachment; filename='+downloadFileName
                df.to_csv(response, index=False)
                return response,mltrain
            else:
                context = {'usecaseid':selectid ,'datatrainFile':dataFile,'usecasename':usecasename,'desciption':desciption, 'error': 'File not found','usecasetab':usecasetab}
                return context, mltrain  
        except Exception as inst:
           
            context = { 'usecaseid':selectid ,'usecasename':usecasename,'desciption':desciption, 'error3':'error3','error1': 'Failed To Download','usecasetab':usecasetab}
            return context, mltrain      
"
log_ut.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import time
from pathlib import Path
import logging
from datetime import datetime as dt


class logg():
    from appbe.dataPath import LOG_LOCATION
    def __init__(self, LOG_LOCATION):
        self.log_location = LOG_LOCATION

    def create_log(self,version):
        log_file_path = Path(self.log_location)
        log_file_path.mkdir(parents=True, exist_ok=True)
        time_stamp = dt.fromtimestamp(time.time()).strftime('%Y-%m-%d-%H-%M-%S')        
        fileName='log_ux_'+time_stamp+'.log'
        filehandler = logging.FileHandler(log_file_path/fileName, 'a','utf-8')
        formatter = logging.Formatter('%(asctime)s %(message)s')
        filehandler.setFormatter(formatter)
        log = logging.getLogger('log_ux')
        log.propagate = False 
        for hdlr in log.handlers[:]:  # remove the existing file handlers
            if isinstance(hdlr,logging.FileHandler):
                log.removeHandler(hdlr)
        log.addHandler(filehandler)
        log.setLevel(logging.INFO)
        log.info('********** AION_'+str(version)+' **********')
        return log"
hopkinsStat.py,"from typing import Union

import numpy as np
import pandas as pd
from sklearn.neighbors import BallTree


def hopkins(data_frame: Union[np.ndarray, pd.DataFrame], sampling_size: int) -> float:
    if type(data_frame) == np.ndarray:
        data_frame = pd.DataFrame(data_frame)

    data_frame_sample = sample_observation_from_dataset(data_frame, sampling_size)

    sample_distances_to_nearest_neighbours = get_distance_sample_to_nearest_neighbours(
        data_frame, data_frame_sample
    )

    uniformly_selected_observations_df = simulate_df_with_same_variation(
        data_frame, sampling_size
    )

    df_distances_to_nearest_neighbours = get_nearest_sample(
        data_frame, uniformly_selected_observations_df
    )

    x = sum(sample_distances_to_nearest_neighbours)
    y = sum(df_distances_to_nearest_neighbours)

    if x + y == 0:
        raise Exception(""The denominator of the hopkins statistics is null"")

    return x / (x + y)[0]


def get_nearest_sample(df: pd.DataFrame, uniformly_selected_observations: pd.DataFrame):
    tree = BallTree(df, leaf_size=2)
    dist, _ = tree.query(uniformly_selected_observations, k=1)
    uniformly_df_distances_to_nearest_neighbours = dist
    return uniformly_df_distances_to_nearest_neighbours


def simulate_df_with_same_variation(
    df: pd.DataFrame, sampling_size: int
) -> pd.DataFrame:
    max_data_frame = df.max()
    min_data_frame = df.min()
    uniformly_selected_values_0 = np.random.uniform(
        min_data_frame[0], max_data_frame[0], sampling_size
    )
    uniformly_selected_values_1 = np.random.uniform(
        min_data_frame[1], max_data_frame[1], sampling_size
    )
    uniformly_selected_observations = np.column_stack(
        (uniformly_selected_values_0, uniformly_selected_values_1)
    )
    if len(max_data_frame) >= 2:
        for i in range(2, len(max_data_frame)):
            uniformly_selected_values_i = np.random.uniform(
                min_data_frame[i], max_data_frame[i], sampling_size
            )
            to_stack = (uniformly_selected_observations, uniformly_selected_values_i)
            uniformly_selected_observations = np.column_stack(to_stack)
    uniformly_selected_observations_df = pd.DataFrame(uniformly_selected_observations)
    return uniformly_selected_observations_df


def get_distance_sample_to_nearest_neighbours(df: pd.DataFrame, data_frame_sample):
    tree = BallTree(df, leaf_size=2)
    dist, _ = tree.query(data_frame_sample, k=2)
    data_frame_sample_distances_to_nearest_neighbours = dist[:, 1]
    return data_frame_sample_distances_to_nearest_neighbours


def sample_observation_from_dataset(df, sampling_size: int):
    if sampling_size > df.shape[0]:
        raise Exception(""The number of sample of sample is bigger than the shape of D"")
    data_frame_sample = df.sample(n=sampling_size)
    return data_frame_sample
"
basic_Config.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
from appbe import exploratory_Analysis as ea
import pandas as pd
from appbe.checkConfiguration import start_check
import json
import os
import ast
import time
import numpy as np
from appfe.modelTraining.models import usecasedetails
from appfe.modelTraining.models import Existusecases
# from modelTraining.models import view
from appbe.aion_config import kafka_setting
from appbe.aion_config import running_setting
from appbe.s3buckets import get_s3_bucket
from appbe.gcsbuckets import get_gcs_bucket
from appbe import help_Text as ht

def is_value_na( value):
    if isinstance( value, str):
        return value.strip().lower() in ['','na','none']
    return not value

def set_ts_preprocessing(request,configSettingsJson):   #Task 13052 Timeseries Preprocessing

    interpolationType = request.POST.get('interpolationType')
    ts_config = configSettingsJson['basic']['preprocessing']['timeSeriesForecasting']
    for key in ts_config['interpolation']:
        configSettingsJson['basic']['preprocessing']['timeSeriesForecasting']['interpolation'][
                key] = 'False'
    if interpolationType != 'na':
        configSettingsJson['basic']['preprocessing']['timeSeriesForecasting']['interpolation'][
            interpolationType] = 'True'
    ts_config['rollingWindow'] = request.POST.get('rollingWindow')
    if ts_config['rollingWindow'] == 'True':
        ts_config['rollingWindowSize'] = request.POST.get('rollWindowsize')

    aggregation = request.POST.get('aaggregationType')
    for key in ts_config['aggregation']['type']:
        ts_config['aggregation']['type'][key]='False'
    if is_value_na(aggregation) == False:
        ts_config['aggregation']['type'][aggregation] = 'True'
        granularityType = request.POST.get('unitType')
        granularitySize = request.POST.get('garnularitysize')
        for key in ts_config['aggregation']['granularity']['unit']:
            ts_config['aggregation']['granularity']['unit'][key] = 'False'
        ts_config['aggregation']['granularity']['unit'][granularityType]='True'
        ts_config['aggregation']['granularity']['size'] = granularitySize
    configSettingsJson['basic']['preprocessing']['timeSeriesForecasting']= ts_config
    return configSettingsJson

def update_granularity(configSettingsJson,datapath=None):
    try:
        from AION.appbe.utils import set_true_option
        import pandas as pd
        from pathlib import Path
        MINUTES = 60
        if not is_value_na(configSettingsJson['basic']['dateTimeFeature']):
            if not datapath:
                datapath = configSettingsJson['basic']['dataLocation']
            if Path( datapath).exists():
                df = pd.read_csv(datapath, nrows=2)
                if isinstance( configSettingsJson['basic']['dateTimeFeature'], list):
                    datetime_feature = configSettingsJson['basic']['dateTimeFeature'][0]
                else:
                    datetime_feature = configSettingsJson['basic']['dateTimeFeature']
                datetime = pd.to_datetime(df[ datetime_feature])
                if len(datetime) > 1:
                    time_delta = (datetime[1] - datetime[0]).total_seconds()
                    granularity_unit = configSettingsJson['basic']['preprocessing']['timeSeriesForecasting']['aggregation']['granularity']['unit']
                    if time_delta < (1 * MINUTES):
                        set_true_option(granularity_unit, key='second')
                    elif time_delta < (60 * MINUTES):
                        set_true_option(granularity_unit, key='minute')
                    elif time_delta < (24 * 60 * MINUTES):
                        set_true_option(granularity_unit, key='hour')
                    elif time_delta < (7 * 24 * 60 * MINUTES):
                        set_true_option(granularity_unit, key='day')
                    elif time_delta < (30 * 24 * 60 * MINUTES):
                        set_true_option(granularity_unit, key='week')
                    elif time_delta < (365 * 24 * 60 * MINUTES):
                        set_true_option(granularity_unit, key='month')
                    else:
                        set_true_option(granularity_unit, key='year')
        return configSettingsJson
    except Exception as e:
        print(f'\nIgnoring error during granularity unit conversion\n:{str(e)}')
        return configSettingsJson

def save(request):

    try:
        status = 'pass'
        msg = """"
        DEPLOY_LOCATION = request.session['deploylocation']
        if request.method == 'POST':
            submittype = request.POST.get('BasicSubmit')
            if submittype != 'BasicDefault':
                filterjson = 'NA'
                timegroupingjson = 'NA'
                groupingjson = 'NA'
                if request.POST.get('filters') != '':
                    filterjson = str(json.loads(request.POST.get('filters')))
                if request.POST.get('timegroup') != '':
                    timegroupingjson = str(json.loads(request.POST.get('timegroup')))
                if request.POST.get('idgroup') != '':
                    groupingjson = str(json.loads(request.POST.get('idgroup')))
                    
                configFile = request.session['config_json']
                f = open(configFile, ""r"")
                configSettings = f.read()
                f.close()
                configSettingsJson = json.loads(configSettings)
                temp = {}    
                # Retraing settings changes
                # -------- S T A R T --------
                prbType = request.POST.get('ProblemType')
                if prbType is None:
                    prbType = request.POST.get('tempProblemType')
                # temp['ProblemType'] = request.POST.get('ProblemType')
                # request.session['Problem'] = request.POST.get('ProblemType')
                temp['ProblemType'] = prbType
                request.session['Problem'] = request.POST.get('ProblemType')
                # ---------------------------
                
                
                temp['ModelName'] = request.session['usecaseid']
                temp['Version'] = str(request.session['ModelVersion'])
                temp['InputFeatures'] = request.POST.getlist('IncInputFeatures')
                temp['dataLocation'] = str(request.session['datalocation'])
                onlinelearning=request.POST.get('onlineLearning',None)               
                if (onlinelearning is not None):                
                    if onlinelearning.lower() == 'onlinelearning':
                        configSettingsJson['basic']['onlineLearning'] = 'True'
                    if onlinelearning.lower() ==  'distributedlearning':
                        configSettingsJson['basic']['distributedLearning'] = 'True'                        
                    temp['InputFeatures'] = request.POST.getlist('IncInputFeatures')
                    temp['TargetFeatures'] = request.POST.getlist('TargetFeatures')
                    temp['DateTimeFeatures'] = ''
                    temp['IndexFeatures'] = ''
                    for x in configSettingsJson['advance']['profiler']['normalization'].keys():
                        configSettingsJson['advance']['profiler']['normalization'][x] = 'False'
                    configSettingsJson['advance']['profiler']['normalization']['standardScaler'] = 'True'
                    for x in configSettingsJson['advance']['profiler']['numericalFillMethod'].keys():
                        configSettingsJson['advance']['profiler']['numericalFillMethod'][x] = 'False'    
                    configSettingsJson['advance']['profiler']['numericalFillMethod']['Mean'] = 'True'
                    if onlinelearning.lower() ==  'distributedlearning':
                        for x in configSettingsJson['advance']['profiler']['categoricalFillMethod'].keys():
                            configSettingsJson['advance']['profiler']['categoricalFillMethod'][x] = 'False'    
                        configSettingsJson['advance']['profiler']['categoricalFillMethod']['MostFrequent'] = 'True'
                        for x in configSettingsJson['advance']['profiler']['categoryEncoding'].keys():
                            configSettingsJson['advance']['profiler']['categoryEncoding'][x] = 'False'    
                        configSettingsJson['advance']['profiler']['categoryEncoding']['OneHotEncoding'] = 'True'
                        configSettingsJson['advance']['profiler']['normalization']['standardScaler'] = 'False'
                        for x in configSettingsJson['advance']['selector']['featureEngineering'].keys():
                            if x != 'numberofComponents':
                                configSettingsJson['advance']['selector']['featureEngineering'][x] = 'False'
                elif prbType == 'llmFineTuning':
                    if configSettingsJson['basic']['preprocessing']['llmFineTuning']['unstructuredData'] == 'False':
                        temp['InputFeatures'] = request.POST.getlist('IncInputFeatures')
                        temp['TargetFeatures'] = request.POST.getlist('TargetFeatures')
                        contextFeatures = request.POST.getlist('contextFeatures')
                        configSettingsJson['basic']['contextFeature'] = "","".join([model for model in contextFeatures])
                        temp['DateTimeFeatures'] = ''
                        temp['IndexFeatures'] = ''                    
                        if request.POST.get('promptfriendlyname') != '':
                            configSettingsJson['basic']['preprocessing']['llmFineTuning']['friendlyNames']['prompt'] = request.POST.get('promptfriendlyname')
                        else:
                            configSettingsJson['basic']['preprocessing']['llmFineTuning']['friendlyNames']['prompt'] = 'Instruction'
                        if request.POST.get('responsefriendlyname') != '':
                            configSettingsJson['basic']['preprocessing']['llmFineTuning']['friendlyNames']['response'] = request.POST.get('responsefriendlyname')
                        else:
                            configSettingsJson['basic']['preprocessing']['llmFineTuning']['friendlyNames']['response'] = ''
                    else:
                        if request.session['datatype'] == 'LLM_Document':
                            for x in configSettingsJson['basic']['preprocessing']['llmFineTuning']['document'].keys():  
                                configSettingsJson['basic']['preprocessing']['llmFineTuning']['document'][x] = 'False'
                            configSettingsJson['basic']['preprocessing']['llmFineTuning']['document'][request.POST.get('dataPreprocessing')] = 'True'
                        if request.session['datatype'] == 'LLM_Code':
                            for x in configSettingsJson['basic']['preprocessing']['llmFineTuning']['objective'].keys():
                                configSettingsJson['basic']['preprocessing']['llmFineTuning']['objective'][x] = 'False'
                            configSettingsJson['basic']['preprocessing']['llmFineTuning']['objective'][request.POST.get('llmObjective')] = 'True'
                            
                            for x in configSettingsJson['basic']['preprocessing']['llmFineTuning']['code'].keys():
                                configSettingsJson['basic']['preprocessing']['llmFineTuning']['code'][x] = 'False'
                            configSettingsJson['basic']['preprocessing']['llmFineTuning']['code'][request.POST.get('dataPreprocessing')] = 'True'
                        
                else:
                    configSettingsJson['basic']['onlineLearning'] = 'False'
                    configSettingsJson['basic']['distributedLearning'] = 'False'
                    temp['InputFeatures'] = request.POST.getlist('InputFeatures')
                    temp['TargetFeatures'] = request.POST.getlist('TargetFeatures')
                    temp['DateTimeFeatures'] = request.POST.getlist('DateTimeFeatures')
                    temp['IndexFeatures'] = request.POST.getlist('IndexFeatures')
                if (configSettingsJson['basic']['algorithms']['timeSeriesAnomalyDetection']['AutoEncoder'] ==  'True'):#task 11997
                    
                    if (request.POST.get('analysis')  == 'MultiVariate'):
                        configSettingsJson['basic']['analysisApproach']['timeSeriesAnomalyDetection']['AutoEncoder']['multiVariate'] =  'True'    #task 11997
                           
                        configSettingsJson['basic']['analysisApproach']['timeSeriesAnomalyDetection']['AutoEncoder']['uniVariate'] =  'False' #task 11997
                    else:
                        #print(configSettingsJson)
                        configSettingsJson['basic']['analysisApproach']['timeSeriesAnomalyDetection']['AutoEncoder']['uniVariate'] =  'True'    
                        configSettingsJson['basic']['analysisApproach']['timeSeriesAnomalyDetection']['AutoEncoder']['multiVariate'] =  'False' #task 11997

                
                temp['UserID'] = ''
                temp['ItemID'] = ''
                temp['rating'] = ''
                
                temp['secondDocFeature'] = ''
                temp['firstDocFeature'] = ''
                temp['invoiceNoFeature'] = ''
                temp['itemFeature'] = ''
                model = ''
                
                if temp['ProblemType'].lower() == 'recommendersystem':
                    model = request.POST.get('MachineLearningModels')
                    
                    if model == 'ItemRating':
                        temp['ProblemType'] = 'RecommenderSystem'
                        temp['MachineLearningModels'] = ['ItemRating']
                        temp['DeepLearningModels'] = ''
                        temp['UserID'] = request.POST.get('UserID')
                        temp['ItemID'] = request.POST.get('ItemID')
                        temp['rating'] = request.POST.get('rating')
                        temp['InputFeatures'] = []
                        temp['InputFeatures'].append(temp['UserID'])
                        temp['InputFeatures'].append(temp['ItemID'])
                        temp['InputFeatures'].append(temp['rating'])
                    if model == 'TextSimilarity-Siamese':
                        temp['ProblemType'] = 'recommenderSystem'
                        temp['MachineLearningModels'] = ['TextSimilarity-Siamese']
                        temp['secondDocFeature'] = request.POST.get('secondDocFeature')
                        temp['firstDocFeature'] = request.POST.get('firstDocFeature')
                        temp['InputFeatures'] = []
                        temp['InputFeatures'].append(temp['secondDocFeature'])
                        temp['InputFeatures'].append(temp['firstDocFeature'])
                    if model == 'AssociationRules-Apriori':
                        temp['ProblemType'] = 'recommenderSystem'
                        temp['DeepLearningModels'] = ''
                        temp['MachineLearningModels'] = ['AssociationRules-Apriori']
                        temp['invoiceNoFeature'] = request.POST.get('associationRuleInvoiceNo')
                        temp['itemFeature'] = request.POST.get('associationRuleItem')
                        temp['InputFeatures'] = []
                        temp['InputFeatures'].append(temp['invoiceNoFeature'])
                        temp['InputFeatures'].append(temp['itemFeature'])  
                
                temp['ScoringCriteria'] = request.POST.get('ScoringCriteria')

                if temp['ProblemType'].lower() not in ['recommendersystem','textsimilarity','associationrules','llmfinetuning']:
                    temp['MachineLearningModels'] = request.POST.getlist('MachineLearningModels')
                    temp['DeepLearningModels'] = request.POST.getlist('SelectDeepLearningModels')
                elif temp['ProblemType'].lower() == 'llmfinetuning':
                    temp['MachineLearningModels'] = request.POST.getlist('MachineLearningModels')
                    model = temp['MachineLearningModels'][0]
                    supportedModelsSize = configSettingsJson['basic']['modelSize'][temp['ProblemType']][model]
                    selectedModelSize = request.POST.get('modelSize')
                    for x in supportedModelsSize.keys():
                        configSettingsJson['basic']['modelSize'][temp['ProblemType']][model][x] = 'False'
                    configSettingsJson['basic']['modelSize'][temp['ProblemType']][model][selectedModelSize] = 'True'

                temp['noofforecasts'] = request.POST.get('noofforecasts')
                temp['inlierLabels'] = request.POST.get('inlierLabels')
                #temp['filterExpression'] = request.POST.get('filterExpression')
                if temp['ProblemType'].lower() in ['clustering','topicmodelling','similarityidentification','contextualsearch']:
                    temp['TargetFeatures'] = ''
                configSettingsJson['basic']['modelName'] = temp['ModelName']
                configSettingsJson['basic']['modelVersion'] = temp['Version']
                configSettingsJson['basic']['dataLocation'] = str(temp['dataLocation'])
                configSettingsJson['basic']['deployLocation'] = DEPLOY_LOCATION     
                if configSettingsJson['basic']['preprocessing']['llmFineTuning']['unstructuredData'] == 'False':
                    configSettingsJson['basic']['trainingFeatures'] = "","".join([model for model in temp['InputFeatures']])
                    configSettingsJson['basic']['dateTimeFeature'] = "","".join([model for model in temp['DateTimeFeatures']])
                    configSettingsJson['basic']['targetFeature'] = "","".join([model for model in temp['TargetFeatures']])
                    configSettingsJson['basic']['indexFeature'] = "","".join([model for model in temp['IndexFeatures']])

                if filterjson == 'NA':
                    configSettingsJson['basic']['filter'] = 'NA'
                else:
                    configSettingsJson['basic']['filter'] = eval(filterjson)
                
                if timegroupingjson == 'NA':
                    configSettingsJson['basic']['timegrouper'] = 'NA'
                else:
                    configSettingsJson['basic']['timegrouper'] = eval(timegroupingjson)
                    
                if groupingjson == 'NA':
                    configSettingsJson['basic']['group'] = 'NA'
                else:
                    configSettingsJson['basic']['group'] = eval(groupingjson)

                problemtyp = configSettingsJson['basic']['analysisType']
                
                for i in list(problemtyp.keys()):
                    configSettingsJson['basic']['analysisType'][i]='False'
                    
                algorithm = configSettingsJson['basic']['algorithms']
                for i in list(algorithm.keys()):
                    for x in list(configSettingsJson['basic']['algorithms'][i].keys()):
                            if x not in ['textSimilarityConfig','itemRatingConfig','associationRulesConfig','textSummarization']:
                                configSettingsJson['basic']['algorithms'][i][x] = 'False'
                
                configSettingsJson['basic']['analysisType'][temp['ProblemType'][0].lower() + temp['ProblemType'][1:]] = 'True'
                
                # configSettingsJson['basic']['problem_type'] = temp['ProblemType']
                scoring = configSettingsJson['basic']['scoringCriteria']
                for i in list(scoring.keys()):
                    for x in list(configSettingsJson['basic']['scoringCriteria'][i].keys()):
                            configSettingsJson['basic']['scoringCriteria'][i][x] = 'False'
                if temp['ProblemType'].lower() in [""classification"",""regression"",""survivalanalysis"",""similarityidentification"",""timeseriesforecasting"",""contextualsearch""]: #task 11997
                    configSettingsJson['basic']['scoringCriteria'][temp['ProblemType'][0].lower() + temp['ProblemType'][1:]][temp['ScoringCriteria']] = 'True'                
                # configSettingsJson['basic']['problem_type'] = temp['ProblemType']
                # configSettingsJson['basic']['scoringCriteria'] = temp['ScoringCriteria']
                configSettingsJson['basic']['noofforecasts'] = temp['noofforecasts']
                configSettingsJson['basic']['inlierLabels'] = temp['inlierLabels']
                #configSettingsJson['basic']['filterExpression'] = temp['filterExpression']
                configSettingsJson['basic']['algorithms']['recommenderSystem']['itemRatingConfig']['userID'] = temp['UserID']
                configSettingsJson['basic']['algorithms']['recommenderSystem']['itemRatingConfig']['itemID'] = temp['ItemID']
                configSettingsJson['basic']['algorithms']['recommenderSystem']['itemRatingConfig']['rating'] = temp['rating']
                configSettingsJson['basic']['algorithms']['recommenderSystem']['textSimilarityConfig']['baseFeature'] = temp['firstDocFeature']
                configSettingsJson['basic']['algorithms']['recommenderSystem']['textSimilarityConfig']['comparisonFeature'] = temp['secondDocFeature']
                configSettingsJson['basic']['algorithms']['recommenderSystem']['associationRulesConfig']['invoiceNoFeature'] = temp['invoiceNoFeature']
                configSettingsJson['basic']['algorithms']['recommenderSystem']['associationRulesConfig']['itemFeature'] = temp['itemFeature']               
                for x in temp['MachineLearningModels']:
                    
                    if temp['ProblemType'].lower() =='associationrules' or temp['ProblemType'].lower() == 'textsimilarity':
                        temp['ProblemType'] = 'recommenderSystem'
                    if request.POST.get('SearchType') != 'NAS' and request.POST.get('SearchType') != 'GoogleModelSearch'and request.POST.get('SearchType') != 'AutoGluon':
                        configSettingsJson['basic']['algorithms'][temp['ProblemType'][0].lower() + temp['ProblemType'][1:]][x] = 'True'              
                    
                #for y in temp['DeepLearningModels']:
                #    configSettingsJson['basic']['algorithms'][temp['ProblemType'][0].lower() + temp['ProblemType'][1:]][y] = 'True'
                    
                configSettingsJson['basic']['output']['profilerStage'] = 'True'
                configSettingsJson['basic']['output']['selectorStage'] = 'True'
                for key in configSettingsJson['advance']['profiler']['textConversionMethod']:        
                    configSettingsJson['advance']['profiler']['textConversionMethod'][key] = 'False'
                if temp['ProblemType'].lower() != 'topicmodelling':            
                    configSettingsJson['advance']['profiler']['textConversionMethod']['TF_IDF'] ='True'
                else:
                    configSettingsJson['advance']['profiler']['textConversionMethod']['CountVectors'] ='True'
                #print('============================')
                #print(temp['ProblemType'].lower())    
                #print('============================')
                if temp['ProblemType'].lower() == 'textsummarization':
                    configSettingsJson['basic']['algorithms']['textSummarization']['Text Summarization'] = 'True'
                    configSettingsJson['basic']['textSummarization']['KeyWords'] = str(request.POST.get('addKeywordsForSummarization'))
                    configSettingsJson['basic']['textSummarization']['pathForKeywordFile'] = str(request.POST.get('DataFilePath'))
                    
                if temp['ProblemType'].lower() not in ['recommendersystem','textsummarization','llmfinetuning']:

                    if configSettingsJson['basic']['onlineLearning'] != 'True' and configSettingsJson['basic']['distributedLearning'] != 'True':
                        jsonarr =request.POST.get('jsonarr')
                    
                        res = ast.literal_eval(jsonarr)
                        for x in res:
                            if x['type'].lower() == 'text':
                                configSettingsJson['advance']['selector']['featureSelection']['allFeatures'] = 'False'
                                configSettingsJson['advance']['selector']['featureSelection']['statisticalBased'] = 'True'
                                configSettingsJson['advance']['selector']['featureSelection']['modelBased'] = 'False'
                        if len(request.POST.get('traindfeatures').split(',')) > 30:
                            configSettingsJson['advance']['selector']['featureSelection']['allFeatures'] = 'False'
                            configSettingsJson['advance']['selector']['featureSelection']['statisticalBased'] = 'True'
                            configSettingsJson['advance']['selector']['featureSelection']['modelBased'] = 'False'
                        
                        configSettingsJson['advance']['profiler']['featureDict'] = res
                        
                        configSettingsJson['basic']['indexFeature'] = request.POST.get('indexfeatures')
                        configSettingsJson['basic']['trainingFeatures'] = request.POST.get('traindfeatures')
                        configSettingsJson['basic']['dateTimeFeature'] = request.POST.get('datefeatures')				
                    
                if request.POST.get('SearchType') == 'GoogleModelSearch':
                    configSettingsJson['basic']['algorithms'][temp['ProblemType'][0].lower() + temp['ProblemType'][1:]]['GoogleModelSearch_DNN'] = 'True'
                configSettingsJson['basic']['output']['profilerStage']= 'True'
               
                #---------- Time series Changes Task 13052 -----------------

                if temp['ProblemType'].lower() == 'timeseriesforecasting':
                    configSettingsJson = set_ts_preprocessing(request,configSettingsJson)
                status,msg= start_check(configSettingsJson)
                updatedConfigSettings = json.dumps(configSettingsJson)
                updatedConfigFile = request.session['config_json']
                with open(updatedConfigFile, ""w"") as fpWrite:
                    fpWrite.write(updatedConfigSettings)
                fpWrite.close()
                request.session['ModelStatus'] = 'Not Trained'
                selected_use_case = request.session['UseCaseName']
                ModelVersion = request.session['ModelVersion']
                ModelStatus = request.session['ModelStatus']
                request.session['currentstate'] = 1
                from appbe.telemetry import UpdateTelemetry
                UpdateTelemetry(request.session['usecaseid']+'-'+str(request.session['ModelVersion']),'ProblemType',prbType)    
                UpdateTelemetry(request.session['usecaseid']+'-'+str(request.session['ModelVersion']),'Operation','Configured')  
                context = {'tab': 'configure', 'temp': temp,'advconfig': configSettingsJson,
                            'basic_status_msg': 'Configuration Done',
                           'selected_use_case': selected_use_case, 'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion,
                           'currentstate': request.session['currentstate'], 'selected': 'modeltraning','training':True,'basic_help':ht.basic_help}
                
                # return render(request, 'basicconfig.html', context)
            if submittype == 'BasicDefault':
                
                temp = {}
                temp['ModelName'] = request.session['UseCaseName']
                temp['Version'] = request.session['ModelVersion']

                dataLocation = str(request.session['datalocation'])
                df = pd.read_csv(dataLocation, encoding='latin1')
                featuresList = df.columns.values.tolist()
                datetimeFeatures = []
                sequenceFeatures = []
                unimportantFeatures = []
                featuresRatio = {}
                for i in featuresList:
                    check = ea.match_date_format(df[i])
                    if check == True:
                        datetimeFeatures.append(i)
                    unimportantFeatures.append(i)
                    seq_check = ea.check_seq_feature(df[i])
                    if seq_check == True:
                        sequenceFeatures.append(i)
                    unimportantFeatures.append(i)
                    ratio = ea.check_category(df[i])
                    if ratio != 0:
                        featuresRatio[i] = ratio
                    else:
                        unimportantFeatures.append(i)

                targetFeature = min(featuresRatio, key=featuresRatio.get)
                unimportantFeatures.append(targetFeature)
                config = {}
                config['modelName'] = request.session['UseCaseName']
                config['modelVersion'] = request.session['ModelVersion']
                config['datetimeFeatures'] = datetimeFeatures
                config['sequenceFeatures'] = sequenceFeatures
                config['FeaturesList'] = featuresList
                config['unimportantFeatures'] = unimportantFeatures
                config['targetFeature'] = targetFeature
                request.session['currentstate'] = 1
                context = {'tab': 'configure', 'temp': temp, 'config': config,
                           'currentstate': request.session['currentstate'], 'selected': 'modeltraning'}
    except Exception as e:
        print(e)
        import sys
        exc_type, exc_obj, exc_tb = sys.exc_info()
        fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
        print(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))
    return status,msg,context

def openbasicconf(request):
    # 10012:Decision Threshold related Changes
    data_is_under_RAM_threshold = True

    updatedConfigFile = request.session['config_json']
    f = open(updatedConfigFile, ""r+"")
    configSettingsData = f.read()
    configSettingsJson = json.loads(configSettingsData)
    temp = {}
    # temp['ModelName'] = request.session['UseCaseName']
    # temp['Version'] = request.session['ModelVersion']
    if request.session['datatype'] == 'Video' or request.session['datatype'] == 'Image' or request.session['datatype'] == 'Document':
        folderLocation = str(request.session['datalocation'])
        dataFile = os.path.join(folderLocation, request.session['csvfullpath'])
    else:
        dataFile = str(request.session['datalocation'])
        # -------------------------------- 10012:Decision Threshold related Changes S T A R T -------------------------------
        from appbe.dataIngestion import checkRAMThreshold
        data_is_under_RAM_threshold = checkRAMThreshold(request.session['datalocation'])
        # ------------------------------------------------------ E N D  ------------------------------------------------------

    # Retraing settings changes
    # -------- S T A R T --------
    IsReTrainingCase = False
    if request.session['IsRetraining'] == 'Yes':
        IsReTrainingCase = True
    IsSameFeatures = True
    # ---------------------------
    
        
    featuresList = configSettingsJson['basic']['featureList']
    unimportantFeatures = []
    modelfeatures = configSettingsJson['basic']['trainingFeatures']
    for x in featuresList:
        if x not in modelfeatures:
            unimportantFeatures.append(x)
    config = {}
    config['ModelName'] = request.session['usecaseid']
    config['Version'] = request.session['ModelVersion']
    config['datetimeFeatures'] = configSettingsJson['basic']['dateTimeFeature']  # .split("","")
    if configSettingsJson['basic']['indexFeature']:
        config['sequenceFeatures'] = configSettingsJson['basic']['indexFeature']  # .split("","")
    config['FeaturesList'] = featuresList
    config['unimportantFeatures'] = unimportantFeatures
    config['targetFeature'] = configSettingsJson['basic']['targetFeature'].split("","")
    problemtypes = configSettingsJson['basic']['analysisType'] 
    onlineLearning = configSettingsJson['basic']['onlineLearning'] 
    problem_type = """"
    for k in problemtypes.keys():
        if configSettingsJson['basic']['analysisType'][k] == 'True':
            problem_type = k
            break
    #print('123',problem_type)
    config['ProblemType'] = problem_type
    # config['ProblemType'] = configSettingsJson['basic']['problem_type']
    
    scoring = configSettingsJson['basic']['scoringCriteria']    
    scoringCriteria = """"
    for k in scoring.keys():
        if configSettingsJson['basic']['scoringCriteria'][k] == 'True':
            scoringCriteria = k
            break
    config['ScoringCriteria'] = scoringCriteria

    # config['ProblemType'] = configSettingsJson['basic']['problem_type']
    # config['ScoringCriteria'] = configSettingsJson['basic']['scoringCriteria']

    selected_use_case = request.session['UseCaseName']
    ModelVersion = request.session['ModelVersion']
    ModelStatus = request.session['ModelStatus']
    if 'NoOfRecords' in request.session:
        records = request.session['NoOfRecords']
    else:
        records = 'NA'
    if request.session['finalstate'] <= 1:
        request.session['finalstate'] = 1
    request.session['currentstate'] = 1
    # dataFile = str(request.session['datalocation'])
    # df = pd.read_csv(dataFile,encoding='utf8')
    if 'NoOfRecords' in request.session:
        noofforecast = 20
    else:
        noofforecast = 20
    config['noofforecasts'] = noofforecast
    if 'numericFeature' in request.session:
        numericFeature = request.session['numericFeature']
    else:
        numericFeature = ''

    problemType = 'classification'
    for key in configSettingsJson['basic']['analysisType']:
        if configSettingsJson['basic']['analysisType'][key] == 'True':
            problemType = key
            break
    scoringCreteria = 'NA'
    if problemType in ['classification','regression','survivalAnalysis','timeSeriesForecasting']: #task 11997
        for key in configSettingsJson['basic']['scoringCriteria'][problemType]:
            if configSettingsJson['basic']['scoringCriteria'][problemType][key] == 'True':
                scoringCreteria = key
                break
    selectAlgo = """"
    if problemType in ['classification','regression','timeSeriesForecasting',
    'timeSeriesAnomalyDetection',
    'recommenderSystem','clustering','anomalyDetection','topicModelling','survivalAnalysis','videoForecasting','imageClassification','objectDetection','stateTransition','llmFineTuning']: #task 11997
        for key in configSettingsJson['basic']['algorithms'][problemType]:
            if configSettingsJson['basic']['algorithms'][problemType][key] == 'True':
                if selectAlgo != """":
                    selectAlgo += ','
                selectAlgo += key 
    modelSize = ''
    if problemType == 'llmFineTuning':
        for key in configSettingsJson['basic']['modelSize']['llmFineTuning'][selectAlgo].keys():
            if configSettingsJson['basic']['modelSize']['llmFineTuning'][selectAlgo][key] == 'True':
                modelSize = key
                break
        
    
    featuresdict = [feature['feature'] for feature in configSettingsJson['advance']['profiler']['featureDict']]
    context = {'tab': 'tabconfigure','modelSize':modelSize,'featuresdict':featuresdict, 'configsettings': configSettingsJson, 'temp': temp, 'config': config,'numericFeature':numericFeature,'onlineLearning':onlineLearning,
               'noOfRecords': records, 'selected_use_case': selected_use_case, 'ModelStatus': ModelStatus,'problemType':problemType,'scoringCreteria':scoringCreteria,'selectAlgo':selectAlgo,
               'ModelVersion': ModelVersion, 'currentstate': request.session['currentstate'],
               'finalstate': request.session['finalstate'], 'selected': 'modeltraning','IsSameFeatures':IsSameFeatures,'IsReTrainingCase':IsReTrainingCase,'basic_help':ht.basic_help
               
               # 10012:Decision Threshold related changes
               , 'DLCheckpoint':data_is_under_RAM_threshold}
    return context

def gotoconf(request):
    selected_use_case = request.session['UseCaseName']
    ModelVersion = request.session['ModelVersion']
    ModelStatus = request.session['ModelStatus']
    try:
        # 10012:Decision Threshold related Changes
        data_is_under_RAM_threshold = True
        
        ModelName = usecasedetails.objects.get(id=request.session['ModelName'])
        Version = request.session['ModelVersion']
        import os

        if request.session['datatype'] in ['Video', 'Image','Document','Object']:
            folderLocation = str(request.session['datalocation'])
            dataFile = os.path.join(folderLocation, request.session['csvfullpath'])
        else:
            dataFile = str(request.session['datalocation'])
            # -------------------------------- 10012:Decision Threshold related Changes S T A R T -------------------------------
            from appbe.dataIngestion import checkRAMThreshold
            data_is_under_RAM_threshold = checkRAMThreshold(request.session['datalocation'])
            # ------------------------------------------------------ E N D  ------------------------------------------------------
        if request.session['datatype'] not in ['LLM_Document','LLM_Code']:    
            from appbe.eda import ux_eda
            if 'delimiter' not in request.session:
                request.session['delimiter'] = ','
            if  'textqualifier' not in request.session:
                request.session['textqualifier'] = '""'
            eda_obj = ux_eda(dataFile,request.session['delimiter'],request.session['textqualifier'],optimize=1)
            featuresList,datetimeFeatures,sequenceFeatures,constantFeature,textFeature,targetFeature,numericCatFeatures,numericFeature,catFeatures = eda_obj.getFeatures()  
        else:
            featuresList = []
            featuresList.append('Instruction')
            datetimeFeatures=[]
            sequenceFeatures=[]
            constantFeature=[]
            textFeature=[]
            targetFeature='Response'
            numericCatFeatures = []
            numericFeature=[]
            catFeatures=[]
        featuresListJson = []
        for x in featuresList:
            featureOperation={}    
            featureOperation['feature'] = x
            if x in datetimeFeatures:
                featureOperation['type'] = 'date'
                featureOperation['fillMethod'] = 'na'
                featureOperation['categoryEncoding'] = 'na'                    
            elif x in textFeature:
                featureOperation['type'] = 'text'
                featureOperation['fillMethod'] = 'na'            
                featureOperation['categoryEncoding'] = 'na'
            elif x in sequenceFeatures:
                featureOperation['type'] = 'index'
                featureOperation['fillMethod'] = 'median'
                featureOperation['categoryEncoding'] = 'na'
            elif (x in catFeatures) or (x in constantFeature):
                featureOperation['type'] = 'categorical'
                featureOperation['fillMethod'] = 'mode'
                featureOperation['categoryEncoding'] = 'targetEncoding'
            else:
                featureOperation['type'] = 'numerical'
                featureOperation['fillMethod'] = 'medium'
                featureOperation['categoryEncoding'] = 'na'         
            featureOperation['outlierDetection'] = 'disable'        
            featureOperation['outlierOperation'] = 'nochange'
            featureOperation['normalizer'] = 'none'
            featuresListJson.append(featureOperation)        
           
        request.session['numericFeature'] = numericFeature
        records = 0
        import os
        if os.path.isfile(dataFile):
            for chunk in pd.read_csv(dataFile, chunksize=20000,encoding=""utf-8"",encoding_errors= 'replace'):
                records = records+len(chunk)
        request.session['NoOfRecords'] = records
        
        filetimestamp = str(int(time.time()))
        CONFIG_FILE_PATH = request.session['configfilepath']
        config_json_filename = os.path.join(CONFIG_FILE_PATH, 'AION_' + filetimestamp + '.json')
        outputfile = os.path.join(CONFIG_FILE_PATH, 'AION_OUTPUT_' + filetimestamp + '.json')
        request.session['outputfilepath'] = str(outputfile)
        modelname = request.session['usecaseid']
        modelname = modelname.replace("" "", ""_"")
        DEPLOY_LOCATION = request.session['deploylocation']
        request.session['logfilepath'] = os.path.join(DEPLOY_LOCATION, modelname,str(Version),'log','model_training_logs.log')
        request.session['config_json'] = config_json_filename
        #request.session['ModelVersion'] = Version
        request.session['ModelStatus'] = 'Not Trained'

        
        
        # p = Existusecases(DataFilePath=dataFile, DeployPath=DEPLOY_LOCATION, Status='Not Trained',
                          # ConfigPath=config_json_filename, Version=Version, ModelName=ModelName,
                          # TrainOuputLocation=outputfile)
        # p.save()
        
        # from AION_UX import telemetry
        # telemetry.telemetry_data('UseCaseCreated',modelname+'_'+str(Version),'UseCaseCreated')
        # request.session['modelid'] = p.id
        
        
        temp = {}
        temp['ModelName'] = request.session['usecaseid']
        temp['Version'] = request.session['ModelVersion']
        '''
        featuresList = features #df.columns.values.tolist()
        datetimeFeatures = 
        
        datetimeFeatures = []
        sequenceFeatures = []
        unimportantFeatures = []
        featuresRatio = {}
        for i in featuresList:
            check = ea.match_date_format(df[i])
            if check == True:
                datetimeFeatures.append(i)
                unimportantFeatures.append(i)
            seq_check = ea.check_seq_feature(df[i])
            if seq_check == True:
                sequenceFeatures.append(i)
                unimportantFeatures.append(i)
            ratio = ea.check_category(df[i])
            if ratio != 0:
                featuresRatio[i] = ratio
            else:
                unimportantFeatures.append(i)
        targetFeature = min(featuresRatio, key=featuresRatio.get)
        unimportantFeatures.append(targetFeature)
        '''
        unimportantFeatures = list(datetimeFeatures)
        unimportantFeatures.extend(sequenceFeatures)
        #unimportantFeatures = list(set(unimportantFeatures) + set(sequenceFeatures))
        unimportantFeatures.append(targetFeature)
        
        config = {}
        noofforecast = 20
        config['ModelName'] = request.session['usecaseid']
        config['Version'] = request.session['ModelVersion']
        config['datetimeFeatures'] = datetimeFeatures
        config['sequenceFeatures'] = sequenceFeatures
        config['FeaturesList'] = featuresList
        config['unimportantFeatures'] = unimportantFeatures
        config['targetFeature'] = targetFeature
        config['noofforecasts'] = noofforecast
        DEFAULT_FILE_PATH = request.session['defaultfilepath']
            
        # Retraing settings changes
        # -------- S T A R T --------
        
        IsReTrainingCase = False
        if request.session['IsRetraining'] == 'Yes':
            id = request.session['ModelName']
            p = usecasedetails.objects.get(id=id)
            model = Existusecases.objects.filter(ModelName=p)
            
            indexVal = model.count() - 1
            configFile = str(model[indexVal].ConfigPath)
            # configFile = str(model[0].ConfigPath)
            
            # request.session['IsRetraining'] = 'No'
            IsReTrainingCase = True
        # ---------------------------
        
        else:
            configFile = os.path.join(DEFAULT_FILE_PATH, 'aion_config.json')
            
        f = open(configFile, ""r"")
        configSettings = f.read()
        f.close()
        configSettingsJson = json.loads(configSettings)

        # Retraing settings changes
        # -------- S T A R T --------
        pickDefaultSettings = False
        IsSameFeatures = False
        if 'featureList' not in configSettingsJson['basic']:
            pickDefaultSettings = True
            IsSameFeatures = True
        else:
            if configSettingsJson['basic']['featureList'] == featuresList:
                pickDefaultSettings = False
                IsSameFeatures = True
            else:
                pickDefaultSettings = True

        if pickDefaultSettings:
        # ---------------------------
        
            configSettingsJson['basic']['featureList'] = featuresList
            configSettingsJson['basic']['dateTimeFeature'] = "","".join([feature for feature in datetimeFeatures])
            configSettingsJson['basic']['indexFeature'] = sequenceFeatures
            trainingFeatures = list(set(featuresList) - set(unimportantFeatures))
            configSettingsJson['basic']['trainingFeatures'] = "","".join([feature for feature in trainingFeatures])
            configSettingsJson['basic']['targetFeature'] = targetFeature
            
            if request.session['datatype'].lower() in ['video','image','object','document','llm_document','llm_code']:
                for x in configSettingsJson['basic']['analysisType'].keys():
                    configSettingsJson['basic']['analysisType'][x] = 'False'
                configSettingsJson['basic']['folderSettings']['fileType'] = request.session['datatype']
                configSettingsJson['basic']['folderSettings']['labelDataFile'] = request.session['csvfullpath']
                configSettingsJson['basic']['folderSettings']['fileExtension'] = request.session['fileExtension']
            if  request.session['datatype'] in ['LLM_Document','LLM_Code']:
                configSettingsJson['basic']['analysisType']['llmFineTuning'] = 'True'
                configSettingsJson['basic']['preprocessing']['llmFineTuning']['friendlyNames']['prompt']='Instruction'
                configSettingsJson['basic']['preprocessing']['llmFineTuning']['friendlyNames']['response']='Response'
                configSettingsJson['basic']['preprocessing']['llmFineTuning']['unstructuredData'] = 'True'
                
            elif request.session['datatype'] == 'Video':
                configSettingsJson['basic']['analysisType']['videoForecasting'] = 'True'
            elif request.session['datatype'] == 'Image':
                configSettingsJson['basic']['analysisType']['imageClassification'] = 'True'
            elif request.session['datatype'] == 'Object':
                configSettingsJson['basic']['analysisType']['objectDetection'] = 'True'
            elif request.session['datatype'].lower() == 'document':
                df = pd.read_csv(dataFile, encoding='utf8',sep=request.session['delimiter'],quotechar=request.session['textqualifier'],nrows=100)
                noOfEmotyLevels = 0
                shape = df.shape
                if shape[1] == 2:
                    noOfEmotyLevels = df['Label'].isnull().sum()
                #print(noOfEmotyLevels)
                if noOfEmotyLevels == 100:
                    configSettingsJson['basic']['analysisType']['topicModelling'] = 'True'		
                else:
                    configSettingsJson['basic']['analysisType']['classification'] = 'True'
            else:             
                if 'uploadfiletype' in request.session:
                    configSettingsJson['basic']['folderSettings']['fileType'] = request.session['uploadfiletype']        	
                    configSettingsJson['basic']['folderSettings']['labelDataFile'] = request.session['uploadLocation']	
            try:
                if isinstance(datetimeFeatures, list):
                    if len(datetimeFeatures) != 0:
                        configSettingsJson = update_granularity(configSettingsJson,datapath=dataFile)
                elif isinstance(datetimeFeatures, str):
                    if datetimeFeatures != '':
                        configSettingsJson = update_granularity(configSettingsJson,datapath=dataFile)
            except:
                pass
        # Retraing settings changes
        # -------- S T A R T --------

        tot_count=len(numericCatFeatures)
        #task 11997
        if (tot_count > 1):
            configSettingsJson['basic']['analysisApproach']['timeSeriesAnomalyDetection']['AutoEncoder']['multiVariate'] = 'True'
            configSettingsJson['basic']['analysisApproach']['timeSeriesAnomalyDetection']['AutoEncoder']['uniVariate'] = 'False'
        else:
            configSettingsJson['basic']['analysisApproach']['timeSeriesAnomalyDetection']['AutoEncoder']['uniVariate'] =  'True'    
            configSettingsJson['basic']['analysisApproach']['timeSeriesAnomalyDetection']['AutoEncoder']['multiVariate'] =  'False'    
        if 'delimiter' in request.session:    
            configSettingsJson['basic']['fileSettings']['delimiters'] = request.session['delimiter']
        else:
            configSettingsJson['basic']['fileSettings']['delimiters'] = ','
        if 'textqualifier' in request.session:
            configSettingsJson['basic']['fileSettings']['textqualifier'] = request.session['textqualifier']
        else:
            request.session['textqualifier'] = '""'

        configSettingsJson['advance']['profiler']['featureDict'] = featuresListJson     
        configSettingsJson['basic']['onlineLearning'] = 'False'
        configSettingsJson['basic']['dataLocation'] = request.session['datalocation']
        configSettingsJson['basic']['noOfRecords'] = request.session['NoOfRecords']
        onlineLearning = configSettingsJson['basic']['onlineLearning']
        updatedConfigSettings = json.dumps(configSettingsJson)
        with open(config_json_filename, ""w"") as fpWrite:
            fpWrite.write(updatedConfigSettings)
        fpWrite.close()

        '''
        p = Existusecases(DataFilePath=dataFile, DeployPath=DEPLOY_LOCATION, Status='Not Trained',
                          ConfigPath=config_json_filename, Version=Version, ModelName=ModelName,
                          TrainOuputLocation=outputfile)
        p.save()
        '''
        p = Existusecases.objects.get(ModelName=ModelName,Version=Version)
        p.DataFilePath = dataFile
        p.DeployPath = DEPLOY_LOCATION
        p.ConfigPath = config_json_filename    
        p.TrainOuputLocation = outputfile 
        p.save()    
        #from appbe import telemetry
        #telemetry.telemetry_data('UseCaseCreated',modelname+'_'+str(Version),'UseCaseCreated')
        request.session['modelid'] = p.id
        # ---------------------------

        from appbe.compute import selectedInfratructure
        infra = selectedInfratructure()
        if infra.lower() in ['aws','gcp']:
            problemType = 'llmFineTuning'
        else:
            problemType = 'classification'
        #print(problemType)
        for key in configSettingsJson['basic']['analysisType']:
            if configSettingsJson['basic']['analysisType'][key] == 'True':
                problemType = key
                break
        scoringCreteria = 'NA'
        if problemType in ['classification','regression','survivalAnalysis','timeSeriesForecasting']: #task 11997
            for key in configSettingsJson['basic']['scoringCriteria'][problemType]:
                if configSettingsJson['basic']['scoringCriteria'][problemType][key] == 'True':
                    scoringCreteria = key
                    break
        selectAlgo = """"
        if problemType in ['classification','regression','timeSeriesForecasting','timeSeriesAnomalyDetection',
        'recommenderSystem','clustering','anomalyDetection','topicModelling','survivalAnalysis','videoForecasting','imageClassification','objectDetection','stateTransition','llmFineTuning']: #task 11997
            for key in configSettingsJson['basic']['algorithms'][problemType]:
                if configSettingsJson['basic']['algorithms'][problemType][key] == 'True':
                    if selectAlgo != """":
                        selectAlgo += ','
                    selectAlgo += key
            modelSize = ''
        if problemType == 'llmFineTuning':
            for key in configSettingsJson['basic']['modelSize']['llmFineTuning'][selectAlgo].keys():
                if configSettingsJson['basic']['modelSize']['llmFineTuning'][selectAlgo][key] == 'True':
                    modelSize = key
                    break
                
        movenext = True
        request.session['finalstate'] = 1
        request.session['currentstate'] = 1
        context = {'tab': 'tabconfigure','modelSize':modelSize,'tot_count':tot_count, 'temp': temp, 'configsettings': configSettingsJson, 'config': config,'numericFeature':numericFeature,'onlineLearning':onlineLearning,
                   'noOfRecords': records, 'selected_use_case': selected_use_case,'problemType':problemType,'scoringCreteria':scoringCreteria,'selectAlgo':selectAlgo,'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion, 'movenext': movenext,
                   'currentstate': request.session['currentstate'], 'finalstate': request.session['finalstate'],
                   'selected': 'modeltraning','advance':True,'basic_help':ht.basic_help
                   # Retraing settings changes
                   ,'IsSameFeatures':IsSameFeatures,'IsReTrainingCase':IsReTrainingCase
                   
                   # 10012:Decision Threshold related
                   ,'DLCheckpoint':data_is_under_RAM_threshold}
        return context
    except UnicodeDecodeError as e:
        print(e)
        context = {'tab': 'tabconfigure','selected_use_case': selected_use_case,'ModelVersion': ModelVersion,'ModelStatus': ModelStatus,'selected': 'modeltraning','error': 'File Reading Error: '+str(e)}
        return context
    except Exception as e:
        print(e)
        import sys,os
        exc_type, exc_obj, exc_tb = sys.exc_info()
        fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
        print(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))
        context = {'tab': 'tabconfigure','selected_use_case': selected_use_case,'ModelVersion': ModelVersion,'ModelStatus': ModelStatus,'selected': 'modeltraning','error': 'Config Error: '+str(e)}
        return context"
advance_Config.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import pandas as pd
import json
import os,sys
from appbe import help_Text as ht

def save(request):
    from appbe.dataPath import DEFAULT_FILE_PATH
    
    if request.method == 'POST':
        submittype = request.POST.get('AdvanceSubmit')
        if submittype != 'AdvanceDefault':
            configFile = request.session['config_json']
            f = open(configFile, ""r+"")
            configSettingsData = f.read()
            configSettings = json.loads(configSettingsData)
            try:
                if configSettings['basic']['analysisType']['llmFineTuning'].lower() == 'false':
                    numericselectedmethod = request.POST.get('numericfillmethod')
                    for x in list(configSettings['advance']['profiler']['numericalFillMethod'].keys()):
                        configSettings['advance']['profiler']['numericalFillMethod'][x] = 'False'
                    configSettings['advance']['profiler']['numericalFillMethod'][numericselectedmethod] = 'True'
                
                    categoricalselectedmethod = request.POST.get('categorialfillmethod')
                    for x in list(configSettings['advance']['profiler']['categoricalFillMethod'].keys()):
                        configSettings['advance']['profiler']['categoricalFillMethod'][x] = 'False'
                    configSettings['advance']['profiler']['categoricalFillMethod'][categoricalselectedmethod] = 'True'

                    categoryEncodingMethod = request.POST.get('categoryencoding')
                    for x in list(configSettings['advance']['profiler']['categoryEncoding'].keys()):
                        configSettings['advance']['profiler']['categoryEncoding'][x] = 'False'
                    configSettings['advance']['profiler']['categoryEncoding'][categoryEncodingMethod] = 'True'
                
                    outlierDetection = request.POST.get('outlierDetection')
                
                    for x in list(configSettings['advance']['profiler']['outlierDetection'].keys()):
                        configSettings['advance']['profiler']['outlierDetection'][x] = 'False'
                    if outlierDetection != 'Disable':
                        configSettings['advance']['profiler']['outlierDetection'][outlierDetection] = 'True'
                
                    #configSettings['advance']['profiler']['outlierDetectionStatus'] = request.POST.get('AnamolyDetectionStatus')
                    #configSettings['advance']['profiler']['outlierDetectionMethod'] = request.POST.get('AnaTreatmentMethod')
                    configSettings['advance']['profiler']['misValueRatio'] = request.POST.get('MisValueRatio')
                    #configSettings['advance']['profiler']['categoricalToNumeric'] = request.POST.get('CategoricalToNumeric')
                    configSettings['advance']['profiler']['numericFeatureRatio'] = request.POST.get('NumFeatureRatio')
                    configSettings['advance']['profiler']['categoryMaxLabel'] = request.POST.get('CatMaxLabels')
                    configSettings['advance']['selector']['categoryMaxLabel'] = request.POST.get('CatMaxLabels')
                    normalizationtypes = configSettings['advance']['profiler']['normalization']
                    for k in normalizationtypes.keys():
                        configSettings['advance']['profiler']['normalization'][k] = 'False'
                    if request.POST.get('NormalizationMethod').lower() != 'none':
                        configSettings['advance']['profiler']['normalization'][request.POST.get('NormalizationMethod')] = 'True'
                    #configSettings['advance']['profiler']['normalizationMethod'] = request.POST.get('NormalizationMethod')
                    configSettings['advance']['profiler']['removeDuplicate'] = request.POST.get('removeDuplicate')
                    # ---------------------------------------------- Debiasing Changes ----------------------------------------------
                    configSettings['advance']['profiler']['deBiasing']['FeatureName'] = request.POST.get('InputFeature')
                    configSettings['advance']['profiler']['deBiasing']['ClassName'] = request.POST.get('InputClass')
                    configSettings['advance']['profiler']['deBiasing']['Algorithm'] = request.POST.get('InputAlgorithm')
                    configSettings['advance']['profiler']['deBiasing']['TargetFeature'] = configSettings['basic']['targetFeature']
                # ----------------------------------------------                   ----------------------------------------------
                problemtypes = configSettings['basic']['analysisType'] 
                problem_type = """"
                for k in problemtypes.keys():
                    if configSettings['basic']['analysisType'][k] == 'True':
                        problem_type = k
                        break 
                if configSettings['basic']['analysisType']['llmFineTuning'].lower() == 'false' and configSettings['basic']['onlineLearning'].lower() == 'false' and configSettings['basic']['distributedLearning'].lower() == 'false':
                    configSettings['advance']['profiler']['textCleaning']['removeNoise'] = request.POST.get('noiseStatus')
                    
                    # -------------------------------- 12301:Remove Noise Config related Changes S T A R T --------------------------------
                    if request.POST.get('noiseStatus') == 'True':
                        configSettings['advance']['profiler']['textCleaning']['removeNoiseConfig']['decodeHTML'] = request.POST.get('DecodeHTML')
                        configSettings['advance']['profiler']['textCleaning']['removeNoiseConfig']['removeHyperLinks'] = request.POST.get('removeHyperlinks')
                        configSettings['advance']['profiler']['textCleaning']['removeNoiseConfig']['removeMentions'] = request.POST.get('RemoveMentions')
                        configSettings['advance']['profiler']['textCleaning']['removeNoiseConfig']['removeHashtags'] = request.POST.get('removeHashtags')
                        configSettings['advance']['profiler']['textCleaning']['removeNoiseConfig']['removeEmoji'] = request.POST.get('removeEmoji')
                        configSettings['advance']['profiler']['textCleaning']['removeNoiseConfig']['unicodeToAscii'] = request.POST.get('unicodeToAscii')
                        configSettings['advance']['profiler']['textCleaning']['removeNoiseConfig']['removeNonAscii'] = request.POST.get('removeNonAscii')
                    else:
                        configSettings['advance']['profiler']['textCleaning']['removeNoiseConfig']['decodeHTML'] = ""False""
                        configSettings['advance']['profiler']['textCleaning']['removeNoiseConfig']['removeHyperLinks'] = ""False""
                        configSettings['advance']['profiler']['textCleaning']['removeNoiseConfig']['removeMentions'] = ""False""
                        configSettings['advance']['profiler']['textCleaning']['removeNoiseConfig']['removeHashtags'] = ""False""
                        configSettings['advance']['profiler']['textCleaning']['removeNoiseConfig']['removeEmoji'] = ""False""
                        configSettings['advance']['profiler']['textCleaning']['removeNoiseConfig']['unicodeToAscii'] = ""False""
                        configSettings['advance']['profiler']['textCleaning']['removeNoiseConfig']['removeNonAscii'] = ""False""
                    # ---------------------------------------------------------------- E N D  ----------------------------------------------------------------
                    
                    configSettings['advance']['profiler']['textCleaning']['expandContractions'] = request.POST.get(
                        'expandContractions')
                    configSettings['advance']['profiler']['textCleaning']['normalize'] = request.POST.get('normalize')
                    if (request.POST.get('normalizeMethod') == 'Lemmatization'):
                        configSettings['advance']['profiler']['textCleaning']['normalizeMethod']['lemmatization'] = ""True""
                        configSettings['advance']['profiler']['textCleaning']['normalizeMethod']['stemming'] = ""False""
                    else:
                        configSettings['advance']['profiler']['textCleaning']['normalizeMethod']['stemming'] = ""True""
                        configSettings['advance']['profiler']['textCleaning']['normalizeMethod']['lemmatization'] = ""False""

                    configSettings['advance']['profiler']['textCleaning']['replaceAcronym'] = request.POST.get('replaceAcronym')
                    if request.POST.get('acronymDict') != '' and request.POST.get('acronymDict') != 'None':
                        configSettings['advance']['profiler']['textCleaning']['acronymConfig']['acronymDict'] = eval(request.POST.get(
                        'acronymDict'))
                    configSettings['advance']['profiler']['textCleaning']['correctSpelling'] = request.POST.get(
                        'correctSpelling')
                    configSettings['advance']['profiler']['textCleaning']['removeStopwords'] = request.POST.get(
                        'removeStopwords')
                    if (request.POST.get('ExtendOrReplace') == 'NA'):
                        configSettings['advance']['profiler']['textCleaning']['stopWordsConfig']['extend'] = ""False""
                        configSettings['advance']['profiler']['textCleaning']['stopWordsConfig']['replace'] = ""False""
                    elif (request.POST.get('ExtendOrReplace') == 'Extend'):
                        configSettings['advance']['profiler']['textCleaning']['stopWordsConfig']['extend'] = ""True""
                        configSettings['advance']['profiler']['textCleaning']['stopWordsConfig']['replace'] = ""False""
                    else:
                        configSettings['advance']['profiler']['textCleaning']['stopWordsConfig']['extend'] = ""False""
                        configSettings['advance']['profiler']['textCleaning']['stopWordsConfig']['replace'] = ""True""

                    configSettings['advance']['profiler']['textCleaning']['stopWordsConfig'][
                        'stopwordsList'] = request.POST.get('stopwordsList')
                    configSettings['advance']['profiler']['textCleaning']['removePunctuation'] = request.POST.get(
                        'removePunctuation')
                    configSettings['advance']['profiler']['textCleaning']['removePunctuationConfig'][
                        'removePuncWithinTokens'] = request.POST.get('removePuncWithinTokens')
                    configSettings['advance']['profiler']['textCleaning']['removeNumericTokens'] = request.POST.get(
                        'removeNumericTokens')
                    configSettings['advance']['profiler']['textCleaning']['removeNumericConfig'][
                        'removeNumeric_IncludeSpecialCharacters'] = request.POST.get('removeNumeric_IncludeSpecialCharacters')

                    if (request.POST.get('tokenizationLib') == 'nltk'):
                        configSettings['advance']['profiler']['textCleaning']['libConfig']['tokenizationLib']['nltk'] = ""True""
                        configSettings['advance']['profiler']['textCleaning']['libConfig']['tokenizationLib'][
                            'textblob'] = ""False""
                        configSettings['advance']['profiler']['textCleaning']['libConfig']['tokenizationLib']['spacy'] = ""False""
                        configSettings['advance']['profiler']['textCleaning']['libConfig']['tokenizationLib']['keras'] = ""False""
                        configSettings['advance']['profiler']['textCleaning']['libConfig']['tokenizationLib'][
                            'gensim'] = ""False""
                    elif (request.POST.get('tokenizationLib') == 'textblob'):
                        configSettings['advance']['profiler']['textCleaning']['libConfig']['tokenizationLib']['nltk'] = ""False""
                        configSettings['advance']['profiler']['textCleaning']['libConfig']['tokenizationLib'][
                            'textblob'] = ""True""
                        configSettings['advance']['profiler']['textCleaning']['libConfig']['tokenizationLib']['spacy'] = ""False""
                        configSettings['advance']['profiler']['textCleaning']['libConfig']['tokenizationLib']['keras'] = ""False""
                        configSettings['advance']['profiler']['textCleaning']['libConfig']['tokenizationLib'][
                            'gensim'] = ""False""
                    elif (request.POST.get('tokenizationLib') == 'spacy'):
                        configSettings['advance']['profiler']['textCleaning']['libConfig']['tokenizationLib']['nltk'] = ""False""
                        configSettings['advance']['profiler']['textCleaning']['libConfig']['tokenizationLib'][
                            'textblob'] = ""False""
                        configSettings['advance']['profiler']['textCleaning']['libConfig']['tokenizationLib']['spacy'] = ""True""
                        configSettings['advance']['profiler']['textCleaning']['libConfig']['tokenizationLib']['keras'] = ""False""
                        configSettings['advance']['profiler']['textCleaning']['libConfig']['tokenizationLib'][
                            'gensim'] = ""False""
                    elif (request.POST.get('tokenizationLib') == 'keras'):
                        configSettings['advance']['profiler']['textCleaning']['libConfig']['tokenizationLib']['nltk'] = ""False""
                        configSettings['advance']['profiler']['textCleaning']['libConfig']['tokenizationLib'][
                            'textblob'] = ""False""
                        configSettings['advance']['profiler']['textCleaning']['libConfig']['tokenizationLib']['spacy'] = ""False""
                        configSettings['advance']['profiler']['textCleaning']['libConfig']['tokenizationLib']['keras'] = ""True""
                        configSettings['advance']['profiler']['textCleaning']['libConfig']['tokenizationLib'][
                            'gensim'] = ""False""

                    else:
                        configSettings['advance']['profiler']['textCleaning']['libConfig']['tokenizationLib']['nltk'] = ""False""
                        configSettings['advance']['profiler']['textCleaning']['libConfig']['tokenizationLib'][
                            'textblob'] = ""False""
                        configSettings['advance']['profiler']['textCleaning']['libConfig']['tokenizationLib']['spacy'] = ""False""
                        configSettings['advance']['profiler']['textCleaning']['libConfig']['tokenizationLib']['keras'] = ""False""
                        configSettings['advance']['profiler']['textCleaning']['libConfig']['tokenizationLib']['gensim'] = ""True""

                    if (request.POST.get('lemmatizationLib') == 'nltk'):
                        configSettings['advance']['profiler']['textCleaning']['libConfig']['lemmatizationLib']['nltk'] = ""True""
                        configSettings['advance']['profiler']['textCleaning']['libConfig']['lemmatizationLib'][
                            'textblob'] = ""False""
                        configSettings['advance']['profiler']['textCleaning']['libConfig']['lemmatizationLib'][
                            'spacy'] = ""False""

                    elif (request.POST.get('lemmatizationLib') == 'textblob'):
                        configSettings['advance']['profiler']['textCleaning']['libConfig']['lemmatizationLib']['nltk'] = ""False""
                        configSettings['advance']['profiler']['textCleaning']['libConfig']['lemmatizationLib'][
                            'textblob'] = ""True""
                        configSettings['advance']['profiler']['textCleaning']['libConfig']['lemmatizationLib'][
                            'spacy'] = ""False""

                    else:
                        configSettings['advance']['profiler']['textCleaning']['libConfig']['lemmatizationLib']['nltk'] = ""False""
                        configSettings['advance']['profiler']['textCleaning']['libConfig']['lemmatizationLib'][
                            'textblob'] = ""False""
                        configSettings['advance']['profiler']['textCleaning']['libConfig']['lemmatizationLib']['spacy'] = ""True""

                    if (request.POST.get('stopwordsRemovalLib') == 'nltk'):
                        configSettings['advance']['profiler']['textCleaning']['libConfig']['stopwordsRemovalLib'][
                            'nltk'] = ""True""
                        configSettings['advance']['profiler']['textCleaning']['libConfig']['stopwordsRemovalLib'][
                            'gensim'] = ""False""
                        configSettings['advance']['profiler']['textCleaning']['libConfig']['stopwordsRemovalLib'][
                            'spacy'] = ""False""

                    elif (request.POST.get('stopwordsRemovalLib') == 'gensim'):
                        configSettings['advance']['profiler']['textCleaning']['libConfig']['stopwordsRemovalLib'][
                            'nltk'] = ""False""
                        configSettings['advance']['profiler']['textCleaning']['libConfig']['stopwordsRemovalLib'][
                            'gensim'] = ""True""
                        configSettings['advance']['profiler']['textCleaning']['libConfig']['stopwordsRemovalLib'][
                            'spacy'] = ""False""

                    else:
                        configSettings['advance']['profiler']['textCleaning']['libConfig']['stopwordsRemovalLib'][
                            'nltk'] = ""False""
                        configSettings['advance']['profiler']['textCleaning']['libConfig']['stopwordsRemovalLib'][
                            'gensim'] = ""False""
                        configSettings['advance']['profiler']['textCleaning']['libConfig']['stopwordsRemovalLib'][
                            'spacy'] = ""True""
                    configSettings['advance']['profiler']['textFeatureExtraction']['n_grams'] = request.POST.get('n_grams')
                    configSettings['advance']['profiler']['textFeatureExtraction']['n_grams_config'][
                        'min_n'] = int(request.POST.get('range_min_n'))
                    configSettings['advance']['profiler']['textFeatureExtraction']['n_grams_config'][
                        'max_n'] = int(request.POST.get('range_max_n'))
                    configSettings['advance']['profiler']['textFeatureExtraction']['pos_tags'] = request.POST.get('pos_tags')
        
                    if (request.POST.get('pos_tags_lib') == 'nltk'):
                        configSettings['advance']['profiler']['textFeatureExtraction']['pos_tags_lib']['nltk'] = ""True""
                        configSettings['advance']['profiler']['textFeatureExtraction']['pos_tags_lib']['textblob'] = ""False""
                        configSettings['advance']['profiler']['textFeatureExtraction']['pos_tags_lib']['spacy'] = ""False""

                    elif (request.POST.get('pos_tags_lib') == 'textblob'):
                        configSettings['advance']['profiler']['textFeatureExtraction']['pos_tags_lib']['nltk'] = ""False""
                        configSettings['advance']['profiler']['textFeatureExtraction']['pos_tags_lib']['textblob'] = ""True""
                        configSettings['advance']['profiler']['textFeatureExtraction']['pos_tags_lib']['spacy'] = ""False""

                    else:
                        configSettings['advance']['profiler']['textFeatureExtraction']['pos_tags_lib']['nltk'] = ""False""
                        configSettings['advance']['profiler']['textFeatureExtraction']['pos_tags_lib']['textblob'] = ""False""
                        configSettings['advance']['profiler']['textFeatureExtraction']['pos_tags_lib']['spacy'] = ""True""
                    textconvertionmethods = configSettings['advance']['profiler']['textConversionMethod']
                    for k in textconvertionmethods.keys():
                        configSettings['advance']['profiler']['textConversionMethod'][k] = 'False'
                    if problem_type.lower() not in  ['similarityidentification','contextualsearch']:
                        configSettings['advance']['profiler']['textConversionMethod'][request.POST.get('textConvertionMethod')] = 'True'    
                    if 'embeddingSize' in configSettings['advance']['profiler']:
                        glove = configSettings['advance']['profiler']['embeddingSize']['Glove']
                        for k in glove.keys():
                            configSettings['advance']['profiler']['embeddingSize']['Glove'][k] = 'False'
                        configSettings['advance']['profiler']['embeddingSize']['Glove'][request.POST.get('txtglovedimensions')] = 'True'
                        fastText = configSettings['advance']['profiler']['embeddingSize']['FastText']
                        for k in fastText.keys():
                            configSettings['advance']['profiler']['embeddingSize']['FastText'][k] = 'False'
                        configSettings['advance']['profiler']['embeddingSize']['FastText'][request.POST.get('txtFastTextdimensions')] = 'True'
                        if 'LatentSemanticAnalysis' in configSettings['advance']['profiler']['embeddingSize']:
                            LatentSemanticAnalysis = configSettings['advance']['profiler']['embeddingSize']['LatentSemanticAnalysis']
                            for k in LatentSemanticAnalysis.keys():
                                configSettings['advance']['profiler']['embeddingSize']['LatentSemanticAnalysis'][k] = 'False'
                            configSettings['advance']['profiler']['embeddingSize']['LatentSemanticAnalysis'][request.POST.get('txttfidfdimensions')] = 'True'
                            if 'TF_IDF' in configSettings['advance']['profiler']['embeddingSize']:
                                configSettings['advance']['profiler']['embeddingSize']['TF_IDF']['maxFeatures'] = request.POST.get('tfidfmaxfeatures')
                        if 'CountVectors' in configSettings['advance']['profiler']['embeddingSize']:
                            configSettings['advance']['profiler']['embeddingSize']['CountVectors']['maxFeatures'] = request.POST.get('cvmaxfeatures')
                if problem_type.lower() == 'imageclassification':
                    configSettings['advance']['image_config']['img_width'] = int(request.POST.get('img_width'))
                    configSettings['advance']['image_config']['img_height'] = int(request.POST.get('img_height'))
                    configSettings['advance']['image_config']['img_channel'] = int(request.POST.get('img_channel'))
                    configSettings['advance']['image_config']['lr'] = float(request.POST.get('lr'))
                    configSettings['advance']['image_config']['epochs'] = int(request.POST.get('epochs'))
                    configSettings['advance']['image_config']['test_split_ratio'] = float(request.POST.get('test_split_ratio'))
                if problem_type.lower() == ""llmfinetuning"":
                    configSettings = llmadvancesettings(configSettings,request)

                if problem_type.lower() == 'objectdetection' or problem_type.lower() == 'imageclassification':
                    configSettings['advance']['ImageAugmentation']['Enable'] = request.POST.get('advance_ImageAugmentation_Enable')
                    configSettings['advance']['ImageAugmentation']['KeepAugmentedImages'] = request.POST.get('advance_ImageAugmentation_keepAugmentedImages')
                    configSettings['advance']['ImageAugmentation']['Noise']['Blur'] = request.POST.get('advance_ImageAugmentation_Noise_Blur')
                    configSettings['advance']['ImageAugmentation']['Noise']['Brightness'] = request.POST.get('advance_ImageAugmentation_Noise_Brightness')
                    configSettings['advance']['ImageAugmentation']['Noise']['Contrast'] = request.POST.get('advance_ImageAugmentation_Noise_Contrast')
                    configSettings['advance']['ImageAugmentation']['Transformation']['Flip'] = request.POST.get('advance_ImageAugmentation_Transformation_Flip')
                    configSettings['advance']['ImageAugmentation']['Transformation']['Rotate'] = request.POST.get('advance_ImageAugmentation_Transformation_Rotate')
                    configSettings['advance']['ImageAugmentation']['Transformation']['Shift'] = request.POST.get('advance_ImageAugmentation_Transformation_Shift')
                    configSettings['advance']['ImageAugmentation']['Transformation']['Crop'] = request.POST.get('advance_ImageAugmentation_Transformation_Crop')
                    configSettings['advance']['ImageAugmentation']['configuration']['Blur']['noOfImages'] = request.POST.get('noofblurimages')
                    configSettings['advance']['ImageAugmentation']['configuration']['Blur']['limit'] = request.POST.get('limitblurimage')
                    configSettings['advance']['ImageAugmentation']['configuration']['Brightness']['noOfImages'] = request.POST.get('noofbrightnessimages')
                    configSettings['advance']['ImageAugmentation']['configuration']['Brightness']['limit'] = request.POST.get('limitbrightnessimage')
                    configSettings['advance']['ImageAugmentation']['configuration']['Contrast']['noOfImages'] = request.POST.get('noofcontrastimages')
                    configSettings['advance']['ImageAugmentation']['configuration']['Contrast']['limit'] = request.POST.get('limitcontrastimage')
                    configSettings['advance']['ImageAugmentation']['configuration']['Flip']['noOfImages'] = request.POST.get('noofflipimages')
                    configSettings['advance']['ImageAugmentation']['configuration']['Rotate']['noOfImages'] = request.POST.get('noofrotateimages')
                    configSettings['advance']['ImageAugmentation']['configuration']['Shift']['noOfImages'] = request.POST.get('noofshiftimages')
                    configSettings['advance']['ImageAugmentation']['configuration']['Crop']['noOfImages'] = request.POST.get('noofcropimages')					
					
                configSettings['advance']['selector']['selectionMethod']['featureSelection'] = 'False'
                configSettings['advance']['selector']['selectionMethod']['featureEngineering'] = 'False'
                configSettings['advance']['selector']['featureSelection']['allFeatures'] = 'False'
                configSettings['advance']['selector']['featureSelection']['statisticalBased'] = 'False'
                configSettings['advance']['selector']['featureSelection']['modelBased'] = 'False'
                if(request.POST.get('selectionMethod') == 'FeatureSelection'):
                    configSettings['advance']['selector']['selectionMethod']['featureSelection'] = 'True'
                else:
                    configSettings['advance']['selector']['selectionMethod']['featureEngineering'] = 'True'
                if request.POST.get('allFeatures'):
                    configSettings['advance']['selector']['featureSelection']['allFeatures'] = request.POST.get('allFeatures')
                if request.POST.get('statisticalBased'):
                    configSettings['advance']['selector']['featureSelection']['statisticalBased'] = request.POST.get('statisticalBased')
                if request.POST.get('modelBased'):
                    configSettings['advance']['selector']['featureSelection']['modelBased'] = request.POST.get('modelBased')
                
                dimentionalityreductionmethod = request.POST.get('dimentionalityreductionmethod')
                for x in list(configSettings['advance']['selector']['featureEngineering'].keys()):
                    if x != 'numberofComponents':
                        configSettings['advance']['selector']['featureEngineering'][x] = 'False'
                configSettings['advance']['selector']['featureEngineering'][dimentionalityreductionmethod] = 'True'
                
                
                configSettings['advance']['selector']['featureEngineering']['numberofComponents'] = request.POST.get('numberofComponents')
                #configSettings['advance']['selector']['categoricalFeatureRatio'] = request.POST.get('CatFeatureRatio')
                configSettings['advance']['selector']['statisticalConfig']['correlationThresholdFeatures'] = request.POST.get('correlationThresholdFeatures')
                configSettings['advance']['selector']['statisticalConfig']['correlationThresholdTarget'] = request.POST.get('correlationThresholdTarget')                
                configSettings['advance']['selector']['statisticalConfig']['pValueThresholdFeatures'] = request.POST.get('pValueThresholdFeatures')
                configSettings['advance']['selector']['statisticalConfig']['pValueThresholdTarget'] = request.POST.get('pValueThresholdTarget')                
                configSettings['advance']['selector']['statisticalConfig']['varianceThreshold'] = request.POST.get('VarianceThreshold')
                
                
                
                
                if problem_type.lower() == 'recommendersystem':
                    configSettings['advance']['recommenderparam']['svd_params']= eval(request.POST.get('svd_params'))
                    configSettings['advance']['associationrule']['modelParams']['apriori'] = eval(request.POST.get('apriori'))
                    configSettings['advance']['textSimilarityConfig'] = eval(request.POST.get('textsimilarity'))
                if configSettings['basic']['distributedLearning'].lower() == 'true':
                    configSettings['advance']['distributedlearner_config']['modelParams']['classifierModelParams']['Distributed Extreme Gradient Boosting (XGBoost)'] = eval(request.POST.get('classDistributedXGBoost'))
                    configSettings['advance']['distributedlearner_config']['modelParams']['classifierModelParams']['Distributed Light Gradient Boosting (LightGBM)'] = eval(request.POST.get('classDistributedLightGBM'))
                    configSettings['advance']['distributedlearner_config']['modelParams']['classifierModelParams']['Distributed Extreme Gradient Boosting (XGBoost)'] = eval(request.POST.get('DistributedXGBoostreg'))
                    configSettings['advance']['distributedlearner_config']['modelParams']['classifierModelParams']['Distributed Light Gradient Boosting (LightGBM)'] = eval(request.POST.get('DistributedLightGBMreg'))                    
                if configSettings['basic']['onlineLearning'].lower() != 'true' and configSettings['basic']['distributedLearning'].lower() != 'true':     
                    if (problem_type.lower() == 'classification') or (problem_type.lower() == 'regression') or (problem_type.lower() == 'clustering') or (problem_type.lower() == 'topicmodelling'):
                    
                        if problem_type.lower() == 'classification' and configSettings['basic']['algorithms']['classification']['Logistic Regression'] == 'True': 
                            configSettings['advance']['mllearner_config']['modelParams']['classifierModelParams']['Logistic Regression'] = eval(request.POST.get('classification_LogisticRegression'))
                        if problem_type.lower() == 'classification' and configSettings['basic']['algorithms']['classification']['Naive Bayes'] == 'True': 
                            configSettings['advance']['mllearner_config']['modelParams']['classifierModelParams']['Naive Bayes'] = eval(request.POST.get('classification_GaussianNB'))
                        if problem_type.lower() == 'classification' and configSettings['basic']['algorithms']['classification']['Support Vector Machine'] == 'True':     
                            configSettings['advance']['mllearner_config']['modelParams']['classifierModelParams']['Support Vector Machine'] = eval(request.POST.get('classification_SVC'))
                        if problem_type.lower() == 'classification' and configSettings['basic']['algorithms']['classification']['K Nearest Neighbors'] == 'True':
                            configSettings['advance']['mllearner_config']['modelParams']['classifierModelParams']['K Nearest Neighbors'] = eval(request.POST.get('classification_KNeighborsClassifier'))
                        if problem_type.lower() == 'classification' and configSettings['basic']['algorithms']['classification']['Decision Tree'] == 'True':
                            configSettings['advance']['mllearner_config']['modelParams']['classifierModelParams']['Decision Tree'] = eval(request.POST.get('classification_DecisionTreeClassifier'))
                        if problem_type.lower() == 'classification' and configSettings['basic']['algorithms']['classification']['Random Forest'] == 'True':
                            configSettings['advance']['mllearner_config']['modelParams']['classifierModelParams']['Random Forest'] = eval(request.POST.get('classification_RandomForestClassifier'))
                        if problem_type.lower() == 'classification' and configSettings['basic']['algorithms']['classification']['Gradient Boosting'] == 'True':
                            configSettings['advance']['mllearner_config']['modelParams']['classifierModelParams']['Gradient Boosting'] = eval(request.POST.get('classification_GradientBoostingClassifier'))
                        if problem_type.lower() == 'classification' and configSettings['basic']['algorithms']['classification']['Extreme Gradient Boosting (XGBoost)'] == 'True':
                            configSettings['advance']['mllearner_config']['modelParams']['classifierModelParams']['Extreme Gradient Boosting (XGBoost)'] = eval(request.POST.get('classification_ExtremeGradientBoostingClassifier'))
                        if problem_type.lower() == 'classification' and configSettings['basic']['algorithms']['classification']['Light Gradient Boosting (LightGBM)'] == 'True':
                            configSettings['advance']['mllearner_config']['modelParams']['classifierModelParams']['Light Gradient Boosting (LightGBM)'] = eval(request.POST.get('classification_LightGradientBoostingClassifier'))
                        if problem_type.lower() == 'classification' and configSettings['basic']['algorithms']['classification']['Categorical Boosting (CatBoost)'] == 'True':
                            configSettings['advance']['mllearner_config']['modelParams']['classifierModelParams']['Categorical Boosting (CatBoost)'] = eval(request.POST.get('classification_CategoricalBoostingClassifier'))
                        
                        if problem_type.lower() == 'regression' and configSettings['basic']['algorithms']['regression']['Linear Regression'] == 'True': 
                            configSettings['advance']['mllearner_config']['modelParams']['regressorModelParams']['Linear Regression'] = eval(request.POST.get('regression_LinearRegression'))
                        if problem_type.lower() == 'regression' and configSettings['basic']['algorithms']['regression']['Lasso'] == 'True':     
                            configSettings['advance']['mllearner_config']['modelParams']['regressorModelParams']['Lasso'] = eval(request.POST.get('regression_Lasso'))
                        if problem_type.lower() == 'regression' and configSettings['basic']['algorithms']['regression']['Ridge'] == 'True':         
                            configSettings['advance']['mllearner_config']['modelParams']['regressorModelParams']['Ridge'] = eval(request.POST.get('regression_Ridge'))
                        
                        if problem_type.lower() == 'topicmodelling' and configSettings['basic']['algorithms']['topicModelling']['LDA'] == 'True':
                            configSettings['advance']['mllearner_config']['modelParams']['topicModellingParams']['LDA']= eval(request.POST.get('topicmodeling_lda'))

                        if problem_type.lower() == 'clustering' and configSettings['basic']['algorithms']['clustering']['KMeans'] == 'True':                            
                            configSettings['advance']['mllearner_config']['modelParams']['clusteringModelParams']['KMeans']= eval(request.POST.get('cluster_kmeans'))
                        if problem_type.lower() == 'clustering' and configSettings['basic']['algorithms']['clustering']['DBSCAN'] == 'True':                            
                            configSettings['advance']['mllearner_config']['modelParams']['clusteringModelParams']['DBSCAN']= eval(request.POST.get('cluster_DBSCAN'))
                    
                        if problem_type.lower() == 'regression' and configSettings['basic']['algorithms']['regression']['Decision Tree'] == 'True':
                            configSettings['advance']['mllearner_config']['modelParams']['regressorModelParams']['Decision Tree'] = eval(request.POST.get('regression_DecisionTreeRegressor'))
                        if problem_type.lower() == 'regression' and configSettings['basic']['algorithms']['regression']['Random Forest'] == 'True':    
                            configSettings['advance']['mllearner_config']['modelParams']['regressorModelParams']['Random Forest'] = eval(request.POST.get('regression_RandomForestRegressor'))
                        if problem_type.lower() == 'regression' and configSettings['basic']['algorithms']['regression']['Extreme Gradient Boosting (XGBoost)'] == 'True':        
                            configSettings['advance']['mllearner_config']['modelParams']['regressorModelParams']['Extreme Gradient Boosting (XGBoost)'] = eval(request.POST.get('regression_XGBoostRegressor'))
                        if problem_type.lower() == 'regression' and configSettings['basic']['algorithms']['regression']['Light Gradient Boosting (LightGBM)'] == 'True':
                            configSettings['advance']['mllearner_config']['modelParams']['regressorModelParams']['Light Gradient Boosting (LightGBM)'] = eval(request.POST.get('regression_LightGBMRegressor'))
                        if problem_type.lower() == 'regression' and configSettings['basic']['algorithms']['regression']['Categorical Boosting (CatBoost)'] == 'True':
                            configSettings['advance']['mllearner_config']['modelParams']['regressorModelParams']['Categorical Boosting (CatBoost)'] = eval(request.POST.get('regression_CatBoostRegressor'))
                        configSettings['advance']['mllearner_config']['modelparamsfile'] = request.POST.get('ModelParamFile')
                        configSettings['advance']['mllearner_config']['optimizationMethod'] = request.POST.get('OptimizationMethod')
                        configSettings['advance']['mllearner_config']['optimizationHyperParameter'][
                        'iterations'] = request.POST.get('iterations')
                        configSettings['advance']['mllearner_config']['optimizationHyperParameter'][
                        'trainTestCVSplit'] = request.POST.get('trainTestCVSplit')
                        configSettings['advance']['mllearner_config']['thresholdTunning'] = request.POST.get('thresholdTunning')
                        configSettings['advance']['mllearner_config']['Stacking (Ensemble)'] = request.POST.get('EnsembleStacking')
                        configSettings['advance']['mllearner_config']['Voting (Ensemble)'] = request.POST.get('EnsembleVoting')
                        
                        configSettings['advance']['mllearner_config']['modelParams']['classifierModelParams']['Bagging (Ensemble)']['Logistic Regression']['enable'] = request.POST.get('ensemple_bagging_lr_enable')
                        if configSettings['advance']['mllearner_config']['modelParams']['classifierModelParams']['Bagging (Ensemble)']['Logistic Regression']['enable'] == 'True':
                            configSettings['advance']['mllearner_config']['modelParams']['classifierModelParams']['Bagging (Ensemble)']['Logistic Regression']['param'] = eval(request.POST.get('classi_ensemple_bagging_lr_param'))
                        configSettings['advance']['mllearner_config']['modelParams']['classifierModelParams']['Bagging (Ensemble)']['Naive Bayes']['enable'] = request.POST.get('ensemple_bagging_naivebayes_enable')
                        if configSettings['advance']['mllearner_config']['modelParams']['classifierModelParams']['Bagging (Ensemble)']['Naive Bayes']['enable'] == 'True':
                            configSettings['advance']['mllearner_config']['modelParams']['classifierModelParams']['Bagging (Ensemble)']['Naive Bayes']['param'] = eval(request.POST.get('classi_ensemple_bagging_naivebayes_param'))
                        configSettings['advance']['mllearner_config']['modelParams']['classifierModelParams']['Bagging (Ensemble)']['Support Vector Machine']['enable'] = request.POST.get('ensemple_bagging_svm_enable')
                        if configSettings['advance']['mllearner_config']['modelParams']['classifierModelParams']['Bagging (Ensemble)']['Support Vector Machine']['enable'] == 'True':
                            configSettings['advance']['mllearner_config']['modelParams']['classifierModelParams']['Bagging (Ensemble)']['Support Vector Machine']['param'] = eval(request.POST.get('classi_ensemple_bagging_svm_param'))
                        configSettings['advance']['mllearner_config']['modelParams']['classifierModelParams']['Bagging (Ensemble)']['K Nearest Neighbors']['enable'] = request.POST.get('ensemple_bagging_knn_enable')
                        if configSettings['advance']['mllearner_config']['modelParams']['classifierModelParams']['Bagging (Ensemble)']['K Nearest Neighbors']['enable'] == 'True':
                            configSettings['advance']['mllearner_config']['modelParams']['classifierModelParams']['Bagging (Ensemble)']['K Nearest Neighbors']['param'] = eval(request.POST.get('classi_ensemple_bagging_knn_param'))                    
                        configSettings['advance']['mllearner_config']['modelParams']['classifierModelParams']['Bagging (Ensemble)']['Decision Tree']['enable'] = request.POST.get('ensemple_bagging_dt_enable')
                        if configSettings['advance']['mllearner_config']['modelParams']['classifierModelParams']['Bagging (Ensemble)']['Decision Tree']['enable'] == 'True':
                            configSettings['advance']['mllearner_config']['modelParams']['classifierModelParams']['Bagging (Ensemble)']['Decision Tree']['param'] = eval(request.POST.get('classi_ensemple_bagging_dt_param'))                    
                        configSettings['advance']['mllearner_config']['modelParams']['classifierModelParams']['Bagging (Ensemble)']['Random Forest']['enable'] = request.POST.get('ensemple_bagging_rf_enable')
                        if configSettings['advance']['mllearner_config']['modelParams']['classifierModelParams']['Bagging (Ensemble)']['Random Forest']['enable'] == 'True':
                            configSettings['advance']['mllearner_config']['modelParams']['classifierModelParams']['Bagging (Ensemble)']['Random Forest']['param'] = eval(request.POST.get('classi_ensemple_bagging_rf_param'))
                        configSettings['advance']['mllearner_config']['modelParams']['regressorModelParams']['Bagging (Ensemble)']['Linear Regression']['enable'] = request.POST.get('ensemple_bagging_lir_enable')
                        if configSettings['advance']['mllearner_config']['modelParams']['regressorModelParams']['Bagging (Ensemble)']['Linear Regression']['enable'] == 'True':
                            configSettings['advance']['mllearner_config']['modelParams']['regressorModelParams']['Bagging (Ensemble)']['Linear Regression']['param'] = eval(request.POST.get('reg_ensemple_bagging_lir_param'))
                        configSettings['advance']['mllearner_config']['modelParams']['regressorModelParams']['Bagging (Ensemble)']['Decision Tree']['enable'] = request.POST.get('ensemple_bagging_dit_enable')
                        if configSettings['advance']['mllearner_config']['modelParams']['regressorModelParams']['Bagging (Ensemble)']['Decision Tree']['enable'] == 'True':
                            configSettings['advance']['mllearner_config']['modelParams']['regressorModelParams']['Bagging (Ensemble)']['Decision Tree']['param'] = eval(request.POST.get('reg_ensemple_bagging_dit_param'))
                        configSettings['advance']['mllearner_config']['modelParams']['regressorModelParams']['Bagging (Ensemble)']['Ridge']['enable'] = request.POST.get('ensemple_bagging_ridge_enable')
                        if configSettings['advance']['mllearner_config']['modelParams']['regressorModelParams']['Bagging (Ensemble)']['Ridge']['enable'] == 'True':
                            configSettings['advance']['mllearner_config']['modelParams']['regressorModelParams']['Bagging (Ensemble)']['Ridge']['param'] = eval(request.POST.get('reg_ensemple_bagging_ridge_param'))
                        if problem_type.lower() == 'classification':
                            if configSettings['advance']['mllearner_config']['Stacking (Ensemble)'] == 'True':
                                configSettings['advance']['mllearner_config']['modelParams']['classifierModelParams']['Stacking (Ensemble)'] = eval(request.POST.get('ensamblestackingClassifierparams'))
                        if problem_type.lower() == 'regression':
                            if configSettings['advance']['mllearner_config']['Stacking (Ensemble)'] == 'True':
                                configSettings['advance']['mllearner_config']['modelParams']['regressorModelParams']['Stacking (Ensemble)'] = eval(request.POST.get('ensamblestackingRegressorparams'))
                    configSettings['basic']['filterExpression'] = request.POST.get('filterExpression')
                    #configSettings['advance']['mllearner_config']['trainPercentage'] = request.POST.get('trainPercentage')
                    
                    if (problem_type.lower() == 'classification') or (problem_type.lower() == 'regression'):
                        configSettings['advance']['modelEvaluation']['smcStrategy'] = request.POST.get('smcStrategy')
                        configSettings['advance']['modelEvaluation']['smcMaxDepth'] = request.POST.get('smcMaxDepth')
                        configSettings['advance']['modelEvaluation']['smcCondition'] = request.POST.get('smcCondition')
                        configSettings['advance']['modelEvaluation']['miCondition'] = request.POST.get('miCondition')
                        if problem_type.lower() == 'classification' and configSettings['basic']['algorithms']['classification']['Neural Network'] == 'True':
                            configSettings['advance']['dllearner_config']['modelParams']['classifierModelParams']['Neural Network'] = eval(
                            request.POST.get('dl_classification_SNN'))
                        if problem_type.lower() == 'classification' and configSettings['basic']['algorithms']['classification']['Recurrent Neural Network'] == 'True':    
                            configSettings['advance']['dllearner_config']['modelParams']['classifierModelParams']['Recurrent Neural Network'] = eval(
                            request.POST.get('dl_classification_RNN'))
                        if problem_type.lower() == 'classification' and configSettings['basic']['algorithms']['classification']['Recurrent Neural Network (GRU)'] == 'True':
                            configSettings['advance']['dllearner_config']['modelParams']['classifierModelParams']['Recurrent Neural Network (GRU)'] = eval(
                            request.POST.get('dl_classification_GRURNN'))
                        if problem_type.lower() == 'classification' and configSettings['basic']['algorithms']['classification']['Recurrent Neural Network (LSTM)'] == 'True':
                            configSettings['advance']['dllearner_config']['modelParams']['classifierModelParams']['Recurrent Neural Network (LSTM)'] = eval(
                            request.POST.get('dl_classification_LSTMRNN'))
                        if problem_type.lower() == 'classification' and configSettings['basic']['algorithms']['classification']['Convolutional Neural Network (1D)'] == 'True':
                            configSettings['advance']['dllearner_config']['modelParams']['classifierModelParams']['Convolutional Neural Network (1D)'] = eval(
                            request.POST.get('dl_classification_CNN'))
                        if problem_type.lower() == 'classification' and configSettings['basic']['algorithms']['classification'].get('Neural Architecture Search') == 'True':
                            configSettings['advance']['dllearner_config']['modelParams']['classifierModelParams']['Neural Architecture Search'] = eval(
                            request.POST.get('dl_classification_NAS'))
                        
                        if problem_type.lower() == 'regression' and configSettings['basic']['algorithms']['regression']['Neural Network'] == 'True':
                            configSettings['advance']['dllearner_config']['modelParams']['regressorModelParams']['Neural Network'] = eval(
                            request.POST.get('dl_regression_SNN'))
                        if problem_type.lower() == 'regression' and configSettings['basic']['algorithms']['regression']['Recurrent Neural Network'] == 'True':
                            configSettings['advance']['dllearner_config']['modelParams']['regressorModelParams']['Recurrent Neural Network'] = eval(
                            request.POST.get('dl_regression_RNN'))
                        if problem_type.lower() == 'regression' and configSettings['basic']['algorithms']['regression']['Recurrent Neural Network (GRU)'] == 'True':    
                            configSettings['advance']['dllearner_config']['modelParams']['regressorModelParams']['Recurrent Neural Network (GRU)'] = eval(
                            request.POST.get('dl_regression_GRURNN'))
                        if problem_type.lower() == 'regression' and configSettings['basic']['algorithms']['regression']['Recurrent Neural Network (LSTM)'] == 'True':    
                            configSettings['advance']['dllearner_config']['modelParams']['regressorModelParams']['Recurrent Neural Network (LSTM)'] = eval(
                            request.POST.get('dl_regression_LSTMRNN'))
                        if problem_type.lower() == 'regression' and configSettings['basic']['algorithms']['regression']['Convolutional Neural Network (1D)'] == 'True':    
                            configSettings['advance']['dllearner_config']['modelParams']['regressorModelParams']['Convolutional Neural Network (1D)'] = eval(
                            request.POST.get('dl_regression_CNN'))
                        if problem_type.lower() == 'regression' and configSettings['basic']['algorithms']['regression'].get('Neural Architecture Search') == 'True':      
                            configSettings['advance']['dllearner_config']['modelParams']['regressorModelParams']['Neural Architecture Search'] = eval(
                            request.POST.get('dl_regression_NAS'))
                        #configSettings['advance']['dllearner_config']['optimizationMethod'] = request.POST.get('DLOptimizationMethod')
                else:
                    if problem_type.lower() == 'classification' and configSettings['basic']['algorithms']['classification']['Online Logistic Regression'] == 'True': 
                        configSettings['advance']['onlinelearner_config']['modelParams']['classifierModelParams']['Online Logistic Regression'] = eval(request.POST.get('OnlineLogisticRegression'))
                    if problem_type.lower() == 'classification' and configSettings['basic']['algorithms']['classification']['Online Decision Tree Classifier'] == 'True':    
                        configSettings['advance']['onlinelearner_config']['modelParams']['classifierModelParams']['Online Decision Tree Classifier'] = eval(request.POST.get('OnlineDecisionTreeClassifier'))
                    if problem_type.lower() == 'classification' and configSettings['basic']['algorithms']['classification']['Online Softmax Regression'] == 'True':
                        configSettings['advance']['onlinelearner_config']['modelParams']['classifierModelParams']['Online Softmax Regression'] = eval(request.POST.get('OnlineSoftmaxRegression'))
                    if problem_type.lower() == 'classification' and configSettings['basic']['algorithms']['classification']['Online KNN Classifier'] == 'True':
                        configSettings['advance']['onlinelearner_config']['modelParams']['classifierModelParams']['Online KNN Classifier'] = eval(request.POST.get('OnlineKNNClassifier'))                    
                    if problem_type.lower() == 'regression' and configSettings['basic']['algorithms']['regression']['Online Linear Regression'] == 'True': 
                        configSettings['advance']['onlinelearner_config']['modelParams']['regressorModelParams']['Online Linear Regression'] = eval(request.POST.get('OnlineLinearRegression'))
                    if problem_type.lower() == 'regression' and configSettings['basic']['algorithms']['regression']['Online Decision Tree Regressor'] == 'True':
                        configSettings['advance']['onlinelearner_config']['modelParams']['regressorModelParams']['Online Decision Tree Regressor'] = eval(request.POST.get('OnlineDecisionTreeRegressor'))                
                    if problem_type.lower() == 'regression' and configSettings['basic']['algorithms']['regression']['Online KNN Regressor'] == 'True':
                        configSettings['advance']['onlinelearner_config']['modelParams']['regressorModelParams']['Online KNN Regressor'] = eval(request.POST.get('OnlineKNNRegressor'))                    
                    configSettings['advance']['profiler']['targetEncodingParams'] = eval(request.POST.get('targetEncodingParams'))                 
                    configSettings['advance']['profiler']['outlierDetectionParams'] = eval(request.POST.get('outlierDetectionParams'))
                    
                if problem_type.lower() == 'objectdetection':
                    configSettings['advance']['objectDetection']['pretrainedModel']= request.POST.get('objectdetectionpretrainedmodel')
                    configSettings['advance']['objectDetection']['n_epoch'] = int(request.POST.get('objectDetection_n_epoch'))
                    configSettings['advance']['objectDetection']['batch_size'] = int(request.POST.get('objectDetection_batch_size'))
                        
                if problem_type.lower() == 'timeseriesforecasting': #task 11997    #task 13052

                    configSettings['advance']['timeSeriesForecasting']['fix_seasonality'] = request.POST.get('seasionality')  # task 13052
                    configSettings['advance']['timeSeriesForecasting']['fix_stationarity'] =request.POST.get('stationarity')  # task 13052
                    configSettings['advance']['timeSeriesForecasting']['modelParams']['ARIMA'] = eval(request.POST.get('ARIMA')) #task 11997
                    configSettings['advance']['timeSeriesForecasting']['modelParams']['FBPROPHET'] = eval(request.POST.get('FBPROPHET')) #task 11997
                    configSettings['advance']['timeSeriesForecasting']['modelParams']['LSTM'] = eval(request.POST.get('TSLSTM')) #task 11997
                    configSettings['advance']['timeSeriesForecasting']['modelParams']['Encoder_Decoder_LSTM_MVI_UVO'] = eval(request.POST.get('TSLSTMencoderdecoder'))
                    configSettings['advance']['timeSeriesForecasting']['modelParams']['MLP'] = eval(request.POST.get('TSMLP')) #task 11997

                if problem_type.lower() == 'timeseriesanomalydetection':
                    configSettings['advance']['timeSeriesAnomalyDetection']['modelParams']['AutoEncoder'] = eval(request.POST.get('autoEncoderAD')) #task 11997
                    configSettings['advance']['timeSeriesAnomalyDetection']['modelParams']['DBScan'] = eval(request.POST.get('dbscanAD')) #task 13316
                if problem_type.lower() == 'anomalydetection':
                    configSettings['advance']['anomalyDetection']['modelParams']['IsolationForest'] = eval(request.POST.get('IsolationForest'))
                    configSettings['advance']['anomalyDetection']['modelParams']['oneclassSVM'] = eval(request.POST.get('oneclassSVM'))
                    configSettings['advance']['anomalyDetection']['modelParams']['DBScan'] = eval(request.POST.get('DBScanAD'))					



                updatedConfigSettingsJson = json.dumps(configSettings)
                f.seek(0)
                f.write(updatedConfigSettingsJson)
                f.truncate()
                f.close()
                errormsg = 'NA'    
                request.session['ModelStatus'] = 'Not Trained'                
            except Exception as e:
                import sys
                exc_type, exc_obj, exc_tb = sys.exc_info()
                fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
                print(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))            
                errormsg = 'Input value error'
                print(e)
                
            if 'NoOfRecords' in request.session:
                records = request.session['NoOfRecords']
            else:
                records = 'NA'
            if request.session['datatype'] in ['Video', 'Image','Document']:
                folderLocation = str(request.session['datalocation'])
                dataFilePath = os.path.join(folderLocation, request.session['csvfullpath'])
            else:
                dataFilePath = str(request.session['datalocation'])
            # dataFilePath = configSettings['basic']['dataLocation']
            #df = pd.read_csv(dataFilePath, encoding='latin1')
            featuresList = configSettings['basic']['featureList']

            config = {}
            config['modelName'] = configSettings['basic']['modelName']
            config['modelVersion'] = configSettings['basic']['modelVersion']
            config['datetimeFeatures'] = configSettings['basic']['dateTimeFeature']
            config['sequenceFeatures'] = configSettings['basic']['indexFeature']
            config['FeaturesList'] = featuresList
            config['unimportantFeatures'] = list(set(featuresList) - set(configSettings['basic']['trainingFeatures']))
            config['targetFeature'] = configSettings['basic']['targetFeature']
            scoring = configSettings['basic']['scoringCriteria']    
            scoringCriteria = """"
            for k in scoring.keys():
                if configSettings['basic']['scoringCriteria'][k] == 'True':
                    scoringCriteria = k
                    break
            config['scoringCriteria'] = scoringCriteria

            temp = {}
            temp['ModelName'] = configSettings['basic']['modelName']
            temp['Version'] = configSettings['basic']['modelVersion']
            selected_use_case = request.session['UseCaseName']
            ModelVersion = request.session['ModelVersion']
            ModelStatus = request.session['ModelStatus']
            context = {'tab': 'advconfig', 'config': config, 'temp': temp, 'advconfig': configSettings,
                       'noOfRecords': records, 'advance_status_msg': 'Configuration Done',
                       'selected_use_case': selected_use_case, 'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion,'errormsg':errormsg,
                       'currentstate': request.session['currentstate'], 'finalstate': request.session['finalstate'],
                       'selected': 'modeltraining'}
            return context
        elif submittype == 'AdvanceDefault':
            try:
                MachineLearningModels = []
                configFile = os.path.join(DEFAULT_FILE_PATH, 'aion_config.json')
                f = open(configFile, ""r"")
                configSettings = f.read()
                f.close()
                updatedConfigFile = request.session['config_json']
                f = open(updatedConfigFile, ""r+"")
                configSettingsData = f.read()
                updateconfigSettingsJson = json.loads(configSettingsData)
                configSettingsJson = json.loads(configSettings)
                temp = {}
                temp['ModelName'] = request.session['UseCaseName']
                temp['Version'] = request.session['ModelVersion']
                config = {}
                config['modelName'] = request.session['UseCaseName']
                config['modelVersion'] = request.session['ModelVersion']
                config['datetimeFeatures'] = updateconfigSettingsJson['basic']['dateTimeFeature']
                config['sequenceFeatures'] = updateconfigSettingsJson['basic']['indexFeature']
                config['FeaturesList'] = updateconfigSettingsJson['basic']['trainingFeatures']
                config['unimportantFeatures'] = ''
                config['targetFeature'] = updateconfigSettingsJson['basic']['targetFeature']
                problemtypes = updateconfigSettingsJson['basic']['analysisType']    
                problem_type = """"
                for k in problemtypes.keys():
                    if updateconfigSettingsJson['basic']['analysisType'][k] == 'True':
                        problem_type = k
                        break
                selectAlgo = """"
                if problem_type in ['classification','regression','timeSeriesForecasting',
                'timeSeriesAnomalyDetection',
                'recommenderSystem','clustering','anomalyDetection','topicModelling','survivalAnalysis','videoForecasting','imageClassification','objectDetection','stateTransition']: #task 11997
                    for key in updateconfigSettingsJson['basic']['algorithms'][problem_type]:
                        if updateconfigSettingsJson['basic']['algorithms'][problem_type][key] == 'True':
                            if selectAlgo != """":
                                selectAlgo += ','
                            selectAlgo += key 
                            if problem_type not in ['classification','regression']:
                                break
                for key in updateconfigSettingsJson['basic']['algorithms'][problem_type]:
                    if updateconfigSettingsJson['basic']['algorithms'][problem_type][key] == 'True':                
                        MachineLearningModels.append(key)
                if problem_type == 'objectDetection':
                    from AION import pretrainedModels
                    ptmObj = pretrainedModels()
                    obModels = ptmObj.get_info(selectAlgo)
                else:
                    obModels = {}
        
                problemType = problem_type
                selected_use_case = request.session['UseCaseName']
                ModelVersion = request.session['ModelVersion']
                ModelStatus = request.session['ModelStatus']
                request.session['currentstate'] = 2
                if request.session['finalstate'] <= 2:
                    request.session['finalstate'] = 2
                outlierDetection = 'False'
                updateconfigSettingsJson['advance'] = configSettingsJson['advance']
                for x in list(updateconfigSettingsJson['advance']['profiler']['outlierDetection'].keys()):
                    if updateconfigSettingsJson['advance']['profiler']['outlierDetection'][x] == 'True':
                        outlierDetection = 'True'
                if outlierDetection == 'False':
                    updateconfigSettingsJson['advance']['profiler']['outlierDetection']['Disable'] = 'True'        
                else:
                    updateconfigSettingsJson['advance']['profiler']['outlierDetection']['Disable'] = 'False'
                updateconfigSettingsJson = advanceConfigfields(updateconfigSettingsJson)
                #print(configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['ExtremeGradientBoostingClassifier'])
                updateconfigSettingsJson['advance']['profiler']['normalizationMethod'] = 'None'
                normalizationtypes = updateconfigSettingsJson['advance']['profiler']['normalization']
                for k in normalizationtypes.keys():
                    if updateconfigSettingsJson['advance']['profiler']['normalization'][k] == 'True':
                        updateconfigSettingsJson['advance']['profiler']['normalizationMethod'] = k
                        break

                
                #---------------- default Hypermarameter changes--- ----------Usnish--------------
                hyperparamFile = os.path.normpath(os.path.join(os.path.dirname(os.path.abspath(__file__)), '..','config', 'hyperparam_config.json'))
                with open(hyperparamFile) as json_file:
                    hyperparamConfig = json.load(json_file)
                context = {'tab': 'advconfig','temp': temp,'advconfig': updateconfigSettingsJson,
                            'config': config, 'selected_use_case': selected_use_case,'MachineLearningModels':MachineLearningModels,
                   'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion,""obModels"":obModels,""problemType"":problemType,
                   'currentstate': request.session['currentstate'], 'finalstate': request.session['finalstate'],
                   'selected': 'modeltraning','advance_help':ht.advance_help,'hyperparamConfig':hyperparamConfig}
                return context
            except Exception as e:
                print(e)
def llmadvancesettings(configSettings,request):
    algo = ''
    for x in list(configSettings['basic']['algorithms']['llmFineTuning'].keys()):
        if configSettings['basic']['algorithms']['llmFineTuning'][x] == 'True':
            algo = x
    
    if algo == 'LLaMA-2':
        configSettings['advance']['llmFineTuning']['modelParams']['LLaMA-2']['fineTuningMethod'] = request.POST.get('llama2fullfinemethod')
        configSettings['advance']['llmFineTuning']['modelParams']['LLaMA-2']['epochs'] = request.POST.get('llama2epochs')
        configSettings['advance']['llmFineTuning']['modelParams']['LLaMA-2']['learning_rate'] = request.POST.get('llama2learningrate')
        if request.POST.get('llama2fullfinemethod') != 'Full Fine-Tuning':
            configSettings['advance']['llmFineTuning']['modelParams']['LLaMA-2']['lora_rank'] = request.POST.get('llama2lorarank')
            configSettings['advance']['llmFineTuning']['modelParams']['LLaMA-2']['lora_alpha'] = request.POST.get('llama2loraalpha')
    if algo == 'LLaMA-2-Chat':
        configSettings['advance']['llmFineTuning']['modelParams']['LLaMA-2-Chat']['fineTuningMethod'] = request.POST.get('llama2chatfullfinemethod')
        configSettings['advance']['llmFineTuning']['modelParams']['LLaMA-2-Chat']['epochs'] = request.POST.get('llmllama2chatepochs')
        configSettings['advance']['llmFineTuning']['modelParams']['LLaMA-2-Chat']['learning_rate'] = request.POST.get('llama2chatlearningrate')
        if request.POST.get('llama2chatfullfinemethod') != 'Full Fine-Tuning':
            configSettings['advance']['llmFineTuning']['modelParams']['LLaMA-2-Chat']['lora_rank'] = request.POST.get('llama2chatlorarank')
            configSettings['advance']['llmFineTuning']['modelParams']['LLaMA-2-Chat']['lora_alpha'] = request.POST.get('llama2chatloraalpha')
    if algo == 'CodeLLaMA-2':
        configSettings['advance']['llmFineTuning']['modelParams']['CodeLLaMA-2']['fineTuningMethod'] = request.POST.get('CodeLLaMA2fullfinemethod')
        configSettings['advance']['llmFineTuning']['modelParams']['CodeLLaMA-2']['epochs'] = request.POST.get('CodeLLaMA2epochs')
        configSettings['advance']['llmFineTuning']['modelParams']['CodeLLaMA-2']['learning_rate'] = request.POST.get('CodeLLaMA2learningrate')
        if request.POST.get('CodeLLaMA2fullfinemethod') != 'Full Fine-Tuning':
            configSettings['advance']['llmFineTuning']['modelParams']['CodeLLaMA-2']['lora_rank'] = request.POST.get('CodeLLaMA2lorarank')
            configSettings['advance']['llmFineTuning']['modelParams']['CodeLLaMA-2']['lora_alpha'] = request.POST.get('CodeLLaMA2loraalpha') 
    if algo == 'Falcon':
        configSettings['advance']['llmFineTuning']['modelParams']['Falcon']['fullFineTuning'] = request.POST.get('falconfullfinetuning')
        configSettings['advance']['llmFineTuning']['modelParams']['Falcon']['epochs'] = request.POST.get('falconepochs')
        configSettings['advance']['llmFineTuning']['modelParams']['Falcon']['learning_rate'] = request.POST.get('falconlearningrate')
        configSettings['advance']['llmFineTuning']['modelParams']['Falcon']['lora_rank'] = request.POST.get('falconlorarank')
        configSettings['advance']['llmFineTuning']['modelParams']['Falcon']['lora_alpha'] = request.POST.get('falconloraalpha')
    
        
    
        
    return configSettings

def advanceConfigfields(configSettingsJson):
    try:
        configSettingsJson['advance']['mllearner_config']['EnsembleStacking'] = \
        configSettingsJson['advance']['mllearner_config']['Stacking (Ensemble)']
        configSettingsJson['advance']['mllearner_config']['EnsembleVoting'] = \
        configSettingsJson['advance']['mllearner_config']['Voting (Ensemble)']
        configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams'][
            'LogisticRegression'] = \
        configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['Logistic Regression']
        configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['GaussianNB'] = \
        configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['Naive Bayes']
        configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['SVC'] = \
        configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams'][
            'Support Vector Machine']
        configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams'][
            'KNeighborsClassifier'] = \
        configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['K Nearest Neighbors']
        configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams'][
            'DecisionTreeClassifier'] = \
        configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['Decision Tree']
        configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams'][
            'RandomForestClassifier'] = \
        configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['Random Forest']
        configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams'][
            'GradientBoostingClassifier'] = \
        configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['Gradient Boosting']
        configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams'][
            'ExtremeGradientBoostingClassifier'] = \
        configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams'][
            'Extreme Gradient Boosting (XGBoost)']
        configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams'][
            'LightGradientBoostingClassifier'] = \
        configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams'][
            'Light Gradient Boosting (LightGBM)']
        configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams'][
            'CategoricalBoostingClassifier'] = \
        configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams'][
            'Categorical Boosting (CatBoost)']
        configSettingsJson['advance']['dllearner_config']['modelParams']['classifierModelParams']['SNN'] = \
        configSettingsJson['advance']['dllearner_config']['modelParams']['classifierModelParams']['Neural Network']
        configSettingsJson['advance']['dllearner_config']['modelParams']['classifierModelParams']['SimpleRNN'] = \
        configSettingsJson['advance']['dllearner_config']['modelParams']['classifierModelParams'][
            'Recurrent Neural Network']
        configSettingsJson['advance']['dllearner_config']['modelParams']['classifierModelParams']['GRURNN'] = \
        configSettingsJson['advance']['dllearner_config']['modelParams']['classifierModelParams'][
            'Recurrent Neural Network (GRU)']
        configSettingsJson['advance']['dllearner_config']['modelParams']['classifierModelParams']['LSTMRNN'] = \
        configSettingsJson['advance']['dllearner_config']['modelParams']['classifierModelParams'][
            'Recurrent Neural Network (LSTM)']
        configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['EnsembleBagging'] = \
        configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['Bagging (Ensemble)']
        configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['EnsembleStacking'] = \
        configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['Stacking (Ensemble)']
        configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['EnsembleBagging'][
            'LogisticRegression'] = \
        configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['EnsembleBagging'][
            'Logistic Regression']
        configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['EnsembleBagging'][
            'NaiveBayes'] = \
        configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['EnsembleBagging'][
            'Naive Bayes']
        configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['EnsembleBagging'][
            'SVM'] = \
        configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['EnsembleBagging'][
            'Support Vector Machine']
        configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['EnsembleBagging'][
            'KNN'] = \
        configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['EnsembleBagging'][
            'K Nearest Neighbors']
        configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['EnsembleBagging'][
            'DecisionTree'] = \
        configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['EnsembleBagging'][
            'Decision Tree']
        configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['EnsembleBagging'][
            'RandomForest'] = \
        configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['EnsembleBagging'][
            'Random Forest']
        configSettingsJson['advance']['dllearner_config']['modelParams']['regressorModelParams']['SimpleRNN'] = \
        configSettingsJson['advance']['dllearner_config']['modelParams']['regressorModelParams'][
            'Recurrent Neural Network']
        configSettingsJson['advance']['dllearner_config']['modelParams']['regressorModelParams']['GRURNN'] = \
        configSettingsJson['advance']['dllearner_config']['modelParams']['regressorModelParams'][
            'Recurrent Neural Network (GRU)']
        configSettingsJson['advance']['dllearner_config']['modelParams']['regressorModelParams']['LSTMRNN'] = \
        configSettingsJson['advance']['dllearner_config']['modelParams']['regressorModelParams'][
            'Recurrent Neural Network (LSTM)']

        configSettingsJson['advance']['rllearner_config']['modelParams']['classifierModelParams']['DQN'] = \
        configSettingsJson['advance']['rllearner_config']['modelParams']['classifierModelParams']['Deep Q Network']
        configSettingsJson['advance']['rllearner_config']['modelParams']['classifierModelParams']['DDQN'] = \
        configSettingsJson['advance']['rllearner_config']['modelParams']['classifierModelParams'][
            'Dueling Deep Q Network']
        configSettingsJson['advance']['rllearner_config']['modelParams']['regressorModelParams']['DQN'] = \
        configSettingsJson['advance']['rllearner_config']['modelParams']['regressorModelParams']['Deep Q Network']
        configSettingsJson['advance']['rllearner_config']['modelParams']['regressorModelParams']['DDQN'] = \
        configSettingsJson['advance']['rllearner_config']['modelParams']['regressorModelParams'][
            'Dueling Deep Q Network']

        configSettingsJson['advance']['dllearner_config']['modelParams']['classifierModelParams']['CNN'] = \
        configSettingsJson['advance']['dllearner_config']['modelParams']['classifierModelParams'][
            'Convolutional Neural Network (1D)']
        configSettingsJson['advance']['mllearner_config']['modelParams']['regressorModelParams']['LinearRegression'] = \
        configSettingsJson['advance']['mllearner_config']['modelParams']['regressorModelParams']['Linear Regression']
        configSettingsJson['advance']['mllearner_config']['modelParams']['regressorModelParams'][
            'DecisionTreeRegressor'] = \
        configSettingsJson['advance']['mllearner_config']['modelParams']['regressorModelParams']['Decision Tree']
        configSettingsJson['advance']['mllearner_config']['modelParams']['regressorModelParams'][
            'RandomForestRegressor'] = \
        configSettingsJson['advance']['mllearner_config']['modelParams']['regressorModelParams']['Random Forest']
        configSettingsJson['advance']['mllearner_config']['modelParams']['regressorModelParams']['XGBoostRegressor'] = \
        configSettingsJson['advance']['mllearner_config']['modelParams']['regressorModelParams'][
            'Extreme Gradient Boosting (XGBoost)']
        configSettingsJson['advance']['mllearner_config']['modelParams']['regressorModelParams']['LightGBMRegressor'] = \
        configSettingsJson['advance']['mllearner_config']['modelParams']['regressorModelParams'][
            'Light Gradient Boosting (LightGBM)']
        configSettingsJson['advance']['mllearner_config']['modelParams']['regressorModelParams']['CatBoostRegressor'] = \
        configSettingsJson['advance']['mllearner_config']['modelParams']['regressorModelParams'][
            'Categorical Boosting (CatBoost)']

        configSettingsJson['advance']['mllearner_config']['modelParams']['regressorModelParams']['EnsembleStacking'] = \
        configSettingsJson['advance']['mllearner_config']['modelParams']['regressorModelParams']['Stacking (Ensemble)']
        configSettingsJson['advance']['mllearner_config']['modelParams']['regressorModelParams']['EnsembleBagging'] = \
        configSettingsJson['advance']['mllearner_config']['modelParams']['regressorModelParams']['Bagging (Ensemble)']
        configSettingsJson['advance']['mllearner_config']['modelParams']['regressorModelParams']['EnsembleBagging'][
            'LinearRegression'] = \
        configSettingsJson['advance']['mllearner_config']['modelParams']['regressorModelParams']['EnsembleBagging'][
            'Linear Regression']
        configSettingsJson['advance']['mllearner_config']['modelParams']['regressorModelParams']['EnsembleBagging'][
            'DecisionTree'] = \
        configSettingsJson['advance']['mllearner_config']['modelParams']['regressorModelParams']['EnsembleBagging'][
            'Decision Tree']

        configSettingsJson['advance']['dllearner_config']['modelParams']['regressorModelParams']['NAS'] = \
        configSettingsJson['advance']['dllearner_config']['modelParams']['regressorModelParams'][
            'Neural Architecture Search']
        configSettingsJson['advance']['dllearner_config']['modelParams']['classifierModelParams']['NAS'] = \
        configSettingsJson['advance']['dllearner_config']['modelParams']['classifierModelParams'][
            'Neural Architecture Search']
        configSettingsJson['advance']['dllearner_config']['modelParams']['regressorModelParams']['SNN'] = \
        configSettingsJson['advance']['dllearner_config']['modelParams']['regressorModelParams']['Neural Network']
        configSettingsJson['advance']['dllearner_config']['modelParams']['regressorModelParams']['SimpleRNN'] = \
        configSettingsJson['advance']['dllearner_config']['modelParams']['regressorModelParams'][
            'Recurrent Neural Network']
        configSettingsJson['advance']['dllearner_config']['modelParams']['regressorModelParams']['GRURNN'] = \
        configSettingsJson['advance']['dllearner_config']['modelParams']['regressorModelParams'][
            'Recurrent Neural Network (GRU)']
        configSettingsJson['advance']['dllearner_config']['modelParams']['regressorModelParams']['LSTMRNN'] = \
        configSettingsJson['advance']['dllearner_config']['modelParams']['regressorModelParams'][
            'Recurrent Neural Network (LSTM)']
        configSettingsJson['advance']['dllearner_config']['modelParams']['regressorModelParams']['CNN'] = \
        configSettingsJson['advance']['dllearner_config']['modelParams']['regressorModelParams'][
            'Convolutional Neural Network (1D)']

        configSettingsJson['advance']['onlinelearner_config']['modelParams']['classifierModelParams'][
            'OnlineLogisticRegression'] = \
        configSettingsJson['advance']['onlinelearner_config']['modelParams']['classifierModelParams'][
            'Online Logistic Regression']
        configSettingsJson['advance']['onlinelearner_config']['modelParams']['classifierModelParams'][
            'OnlineDecisionTreeClassifier'] = \
        configSettingsJson['advance']['onlinelearner_config']['modelParams']['classifierModelParams'][
            'Online Decision Tree Classifier']
        configSettingsJson['advance']['onlinelearner_config']['modelParams']['classifierModelParams'][
            'OnlineSoftmaxRegression'] = \
        configSettingsJson['advance']['onlinelearner_config']['modelParams']['classifierModelParams'][
            'Online Softmax Regression']
        configSettingsJson['advance']['onlinelearner_config']['modelParams']['classifierModelParams'][
            'OnlineKNNClassifier'] = \
        configSettingsJson['advance']['onlinelearner_config']['modelParams']['classifierModelParams'][
            'Online KNN Classifier']

        configSettingsJson['advance']['onlinelearner_config']['modelParams']['regressorModelParams'][
            'OnlineLinearRegression'] = \
        configSettingsJson['advance']['onlinelearner_config']['modelParams']['regressorModelParams'][
            'Online Linear Regression']
        configSettingsJson['advance']['onlinelearner_config']['modelParams']['regressorModelParams'][
            'OnlineDecisionTreeRegressor'] = \
        configSettingsJson['advance']['onlinelearner_config']['modelParams']['regressorModelParams'][
            'Online Decision Tree Regressor']
        configSettingsJson['advance']['onlinelearner_config']['modelParams']['regressorModelParams'][
            'OnlineKNNRegressor'] = \
        configSettingsJson['advance']['onlinelearner_config']['modelParams']['regressorModelParams'][
            'Online KNN Regressor']

        configSettingsJson['advance']['profiler']['textConversionMethod']['LatentSemanticAnalysis'] = \
        configSettingsJson['advance']['profiler']['textConversionMethod']['LatentSemanticAnalysis']
        configSettingsJson['advance']['profiler']['embeddingSize']['LatentSemanticAnalysis'] = \
        configSettingsJson['advance']['profiler']['embeddingSize']['LatentSemanticAnalysis']
        if 'llmFineTuning' in configSettingsJson['advance']:
            configSettingsJson['basic']['algorithms']['llmFineTuning']['LLaMA2'] = \
            configSettingsJson['basic']['algorithms']['llmFineTuning']['LLaMA-2']
            configSettingsJson['basic']['algorithms']['llmFineTuning']['LLaMA2Chat'] = \
            configSettingsJson['basic']['algorithms']['llmFineTuning']['LLaMA-2-Chat']
            configSettingsJson['basic']['algorithms']['llmFineTuning']['CodeLLaMA2'] = \
            configSettingsJson['basic']['algorithms']['llmFineTuning']['CodeLLaMA-2']

            configSettingsJson['advance']['llmFineTuning']['modelParams']['LLaMA2'] = \
            configSettingsJson['advance']['llmFineTuning']['modelParams']['LLaMA-2']
            configSettingsJson['advance']['llmFineTuning']['modelParams']['LLaMA2Chat'] = \
            configSettingsJson['advance']['llmFineTuning']['modelParams']['LLaMA-2-Chat']
            configSettingsJson['advance']['llmFineTuning']['modelParams']['CodeLLaMA2'] = \
            configSettingsJson['advance']['llmFineTuning']['modelParams']['CodeLLaMA-2']

            configSettingsJson['basic']['modelSize']['llmFineTuning']['LLaMA2'] = \
                configSettingsJson['basic']['modelSize']['llmFineTuning']['LLaMA-2']
            configSettingsJson['basic']['modelSize']['llmFineTuning']['LLaMA2Chat'] = \
                configSettingsJson['basic']['modelSize']['llmFineTuning']['LLaMA-2-Chat']
            configSettingsJson['basic']['modelSize']['llmFineTuning']['CodeLLaMA2'] = \
                configSettingsJson['basic']['modelSize']['llmFineTuning']['CodeLLaMA-2']

        if 'distributedlearner_config' in configSettingsJson['advance']:
            configSettingsJson['advance']['distributedlearner_config']['modelParams']['classifierModelParams'][
                'DistributedXGBoost'] = \
            configSettingsJson['advance']['distributedlearner_config']['modelParams']['classifierModelParams'][
                'Distributed Extreme Gradient Boosting (XGBoost)']
            configSettingsJson['advance']['distributedlearner_config']['modelParams']['classifierModelParams'][
                'DistributedLightGBM'] = \
            configSettingsJson['advance']['distributedlearner_config']['modelParams']['classifierModelParams'][
                'Distributed Light Gradient Boosting (LightGBM)']

            configSettingsJson['advance']['distributedlearner_config']['modelParams']['regressorModelParams'][
                'DistributedXGBoost'] = \
            configSettingsJson['advance']['distributedlearner_config']['modelParams']['regressorModelParams'][
                'Distributed Extreme Gradient Boosting (XGBoost)']
            configSettingsJson['advance']['distributedlearner_config']['modelParams']['regressorModelParams'][
                'DistributedLightGBM'] = \
            configSettingsJson['advance']['distributedlearner_config']['modelParams']['regressorModelParams'][
                'Distributed Light Gradient Boosting (LightGBM)']

        problem_type = """"
        problemtypes = configSettingsJson['basic']['analysisType'] 
        for k in problemtypes.keys():
            if configSettingsJson['basic']['analysisType'][k] == 'True':
                problem_type = k
                break    
        deepLearning = 'False'                
        machineLearning = 'False'
        reinforcementLearning = 'False'
        selectAlgo = """"
        if problem_type.lower() in ['classification','regression']:
            for key in configSettingsJson['basic']['algorithms'][problem_type]:
                if configSettingsJson['basic']['algorithms'][problem_type][key] == 'True':
                    if key in ['Neural Network','Convolutional Neural Network (1D)','Recurrent Neural Network','Recurrent Neural Network (GRU)','Recurrent Neural Network (LSTM)','Neural Architecture Search']:
                        deepLearning = 'True'
                    if key in ['Logistic Regression','Naive Bayes','Decision Tree','Random Forest','Support Vector Machine','K Nearest Neighbors','Gradient Boosting','Extreme Gradient Boosting (XGBoost)','Light Gradient Boosting (LightGBM)','Categorical Boosting (CatBoost)','Linear Regression','Lasso','Ridge','Decision Tree','Random Forest','Bagging (Ensemble)']:   
                        machineLearning = 'True'
                    if key in ['Deep Q Network','Dueling Deep Q Network']:
                        reinforcementLearning = 'True'
        elif problem_type.lower() in ['clustering','topicmodelling']:#clustering(Bug 12611)
            machineLearning = 'True'                    
        configSettingsJson['basic']['deepLearning'] = deepLearning
        configSettingsJson['basic']['machineLearning'] = machineLearning
        configSettingsJson['basic']['reinforcementLearning'] = reinforcementLearning
    except Exception as e:
        print(e)
    return (configSettingsJson)
    
def basicconfignex(request):
    #pemfilename = os.path.normpath(os.path.join(os.path.dirname(os.path.abspath(__file__)),'..','modelTraining','static','key','AION_GPU.pem'))
    try:
        updatedConfigFile = request.session['config_json']
        f = open(updatedConfigFile, ""r+"")
        configSettingsData = f.read()
        configSettingsJson = json.loads(configSettingsData)
        #---------------- default Hypermarameter changes-------------Usnish--------------
        hyperparamFile = os.path.normpath(os.path.join(os.path.dirname(os.path.abspath(__file__)), '..','config', 'hyperparam_config.json'))
        with open(hyperparamFile) as json_file:
            hyperparamConfig = json.load(json_file)
        #---------------- default Hypermarameter changes end-------------Usnish--------------
        # ------------------ Debiasing Changes ------------------
        categorical_features = []
        class_list = []
        MachineLearningModels = []
        check_traget = configSettingsJson['basic']['targetFeature']
        selectedDebiasingFeature = 'None'
        selectedDebiasingClass = 'None'
        selectedDebiasingAlgorithm = ''
        problemtypes = configSettingsJson['basic']['analysisType']
        problem_type = """"
        for k in problemtypes.keys():
            if configSettingsJson['basic']['analysisType'][k] == 'True':
                problem_type = k
                break
        if request.method == 'GET':
            for key in configSettingsJson['basic']['algorithms'][problem_type]:
                if configSettingsJson['basic']['algorithms'][problem_type][key] == 'True':
                    MachineLearningModels.append(key)
        else:
            MachineLearningModels = request.POST.getlist('MachineLearningModels')
        if problem_type.lower() in ['classification','regression']:
            if check_traget != '':
                try:
                    if 'deBiasing' in configSettingsJson['advance']['profiler']:
                        deBiasing = configSettingsJson['advance']['profiler']['deBiasing']
                        selectedDebiasingFeature = deBiasing.get('FeatureName','None')
                        selectedDebiasingClass = deBiasing.get('ClassName','None')
                        selectedDebiasingAlgorithm = deBiasing.get('Algorithm','')

                    if selectedDebiasingFeature != 'None':
                        df = pd.read_csv(configSettingsJson['basic']['dataLocation'],encoding='utf8',encoding_errors= 'replace')
                        classeslist = []
                        classeslist = df[selectedDebiasingFeature].unique().tolist()
                        for item in classeslist:
                            class_list.append(item)
                    else:
                        class_list.append('None')
                except:
                   pass
            feature_dict = configSettingsJson['advance']['profiler']['featureDict']
            for feature_config in feature_dict:
                if feature_config.get('type', '') == 'categorical' and feature_config['feature'] != check_traget:
                    categorical_features.append(feature_config['feature'])
        # ------------------                   ------------------
        #print(categorical_features)
        temp = {}
        temp['ModelName'] = request.session['UseCaseName']
        temp['Version'] = request.session['ModelVersion']
        config = {}
        config['modelName'] = request.session['UseCaseName']
        config['modelVersion'] = request.session['ModelVersion']
        config['datetimeFeatures'] = configSettingsJson['basic']['dateTimeFeature']
        config['sequenceFeatures'] = configSettingsJson['basic']['indexFeature']
        config['FeaturesList'] = configSettingsJson['basic']['trainingFeatures']
        config['unimportantFeatures'] = ''
        config['targetFeature'] = configSettingsJson['basic']['targetFeature']

        deepLearning = 'False'                
        machineLearning = 'False'
        reinforcementLearning = 'False'
        selectAlgo = """"
        print(problem_type)
        if problem_type.lower() in ['classification','regression']:
            for key in configSettingsJson['basic']['algorithms'][problem_type]:
                if configSettingsJson['basic']['algorithms'][problem_type][key] == 'True':
                    if key in ['Neural Network','Convolutional Neural Network (1D)','Recurrent Neural Network','Recurrent Neural Network (GRU)','Recurrent Neural Network (LSTM)','Neural Architecture Search']:
                        deepLearning = 'True'
                    if key in ['Logistic Regression','Naive Bayes','Decision Tree','Random Forest','Support Vector Machine','K Nearest Neighbors','Gradient Boosting','Extreme Gradient Boosting (XGBoost)','Light Gradient Boosting (LightGBM)','Categorical Boosting (CatBoost)','Linear Regression','Lasso','Ridge','Decision Tree','Random Forest','Bagging (Ensemble)']:   
                        machineLearning = 'True'
                    if key in ['Deep Q Network','Dueling Deep Q Network']:
                        reinforcementLearning = 'True'
        elif problem_type.lower() in ['clustering','topicmodelling']:#clustering(Bug 12611)
            machineLearning = 'True'  
        configSettingsJson['basic']['deepLearning'] = deepLearning
        configSettingsJson['basic']['machineLearning'] = machineLearning
        configSettingsJson['basic']['reinforcementLearning'] = reinforcementLearning
        if problem_type in ['classification','regression','timeSeriesForecasting',
        'timeSeriesAnomalyDetection',
        'recommenderSystem','clustering','anomalyDetection','topicModelling','survivalAnalysis','videoForecasting','imageClassification','objectDetection','stateTransition']: #task 11997
            for key in configSettingsJson['basic']['algorithms'][problem_type]:
                if configSettingsJson['basic']['algorithms'][problem_type][key] == 'True':
                    if selectAlgo != """":
                        selectAlgo += ','
                    selectAlgo += key 
                    if problem_type not in ['classification','regression']:
                        break
        if problem_type == 'objectDetection':
            from AION import pretrainedModels
            ptmObj = pretrainedModels()
            obModels = ptmObj.get_info(selectAlgo)
        else:
            obModels = {}
        
        problemType = problem_type
        
        selected_use_case = request.session['UseCaseName']
        ModelVersion = request.session['ModelVersion']
        ModelStatus = request.session['ModelStatus']
        request.session['currentstate'] = 2
        
        #configSettingsJson['advance']['remoteTraining']['ssh']['keyFilePath'] = pemfilename
        if request.session['finalstate'] <= 2:
            request.session['finalstate'] = 2
        outlierDetection = 'False'
        for x in list(configSettingsJson['advance']['profiler']['outlierDetection'].keys()):
            if configSettingsJson['advance']['profiler']['outlierDetection'][x] == 'True':
                outlierDetection = 'True'
        if outlierDetection == 'False':
            configSettingsJson['advance']['profiler']['outlierDetection']['Disable'] = 'True'        
        else:
            configSettingsJson['advance']['profiler']['outlierDetection']['Disable'] = 'False'
            
        if 'distributedLearning' not in configSettingsJson['basic']:
            configSettingsJson['basic']['distributedLearning'] = 'False'
        configSettingsJson['advance']['mllearner_config']['EnsembleStacking']=configSettingsJson['advance']['mllearner_config']['Stacking (Ensemble)']
        configSettingsJson['advance']['mllearner_config']['EnsembleVoting']=configSettingsJson['advance']['mllearner_config']['Voting (Ensemble)']
        configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['LogisticRegression'] = configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['Logistic Regression']
        configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['GaussianNB'] = configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['Naive Bayes']
        configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['SVC'] = configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['Support Vector Machine']
        configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['KNeighborsClassifier'] = configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['K Nearest Neighbors']
        configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['DecisionTreeClassifier'] = configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['Decision Tree']
        configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['RandomForestClassifier'] = configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['Random Forest']
        configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['GradientBoostingClassifier'] = configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['Gradient Boosting']
        configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['ExtremeGradientBoostingClassifier'] = configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['Extreme Gradient Boosting (XGBoost)']
        configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['LightGradientBoostingClassifier'] = configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['Light Gradient Boosting (LightGBM)']
        configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['CategoricalBoostingClassifier'] = configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['Categorical Boosting (CatBoost)']
        configSettingsJson['advance']['dllearner_config']['modelParams']['classifierModelParams']['SNN'] = configSettingsJson['advance']['dllearner_config']['modelParams']['classifierModelParams']['Neural Network']
        configSettingsJson['advance']['dllearner_config']['modelParams']['classifierModelParams']['SimpleRNN'] = configSettingsJson['advance']['dllearner_config']['modelParams']['classifierModelParams']['Recurrent Neural Network']
        configSettingsJson['advance']['dllearner_config']['modelParams']['classifierModelParams']['GRURNN'] = configSettingsJson['advance']['dllearner_config']['modelParams']['classifierModelParams']['Recurrent Neural Network (GRU)']
        configSettingsJson['advance']['dllearner_config']['modelParams']['classifierModelParams']['LSTMRNN'] = configSettingsJson['advance']['dllearner_config']['modelParams']['classifierModelParams']['Recurrent Neural Network (LSTM)']
        configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['EnsembleBagging']=configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['Bagging (Ensemble)']
        configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['EnsembleStacking']=configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['Stacking (Ensemble)']
        configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['EnsembleBagging']['LogisticRegression'] = configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['EnsembleBagging']['Logistic Regression']
        configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['EnsembleBagging']['NaiveBayes'] = configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['EnsembleBagging']['Naive Bayes']
        configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['EnsembleBagging']['SVM'] = configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['EnsembleBagging']['Support Vector Machine']	
        configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['EnsembleBagging']['KNN'] = configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['EnsembleBagging']['K Nearest Neighbors']		
        configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['EnsembleBagging']['DecisionTree'] = configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['EnsembleBagging']['Decision Tree']
        configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['EnsembleBagging']['RandomForest'] = configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['EnsembleBagging']['Random Forest']	
        configSettingsJson['advance']['dllearner_config']['modelParams']['regressorModelParams']['SimpleRNN'] = configSettingsJson['advance']['dllearner_config']['modelParams']['regressorModelParams']['Recurrent Neural Network']
        configSettingsJson['advance']['dllearner_config']['modelParams']['regressorModelParams']['GRURNN'] = configSettingsJson['advance']['dllearner_config']['modelParams']['regressorModelParams']['Recurrent Neural Network (GRU)']
        configSettingsJson['advance']['dllearner_config']['modelParams']['regressorModelParams']['LSTMRNN'] = configSettingsJson['advance']['dllearner_config']['modelParams']['regressorModelParams']['Recurrent Neural Network (LSTM)']
        
        configSettingsJson['advance']['rllearner_config']['modelParams']['classifierModelParams']['DQN'] = configSettingsJson['advance']['rllearner_config']['modelParams']['classifierModelParams']['Deep Q Network']
        configSettingsJson['advance']['rllearner_config']['modelParams']['classifierModelParams']['DDQN'] = configSettingsJson['advance']['rllearner_config']['modelParams']['classifierModelParams']['Dueling Deep Q Network']
        configSettingsJson['advance']['rllearner_config']['modelParams']['regressorModelParams']['DQN'] = configSettingsJson['advance']['rllearner_config']['modelParams']['regressorModelParams']['Deep Q Network']
        configSettingsJson['advance']['rllearner_config']['modelParams']['regressorModelParams']['DDQN'] = configSettingsJson['advance']['rllearner_config']['modelParams']['regressorModelParams']['Dueling Deep Q Network']
        
        configSettingsJson['advance']['dllearner_config']['modelParams']['classifierModelParams']['CNN'] = configSettingsJson['advance']['dllearner_config']['modelParams']['classifierModelParams']['Convolutional Neural Network (1D)']
        configSettingsJson['advance']['mllearner_config']['modelParams']['regressorModelParams']['LinearRegression'] = configSettingsJson['advance']['mllearner_config']['modelParams']['regressorModelParams']['Linear Regression']
        configSettingsJson['advance']['mllearner_config']['modelParams']['regressorModelParams']['DecisionTreeRegressor'] = configSettingsJson['advance']['mllearner_config']['modelParams']['regressorModelParams']['Decision Tree']
        configSettingsJson['advance']['mllearner_config']['modelParams']['regressorModelParams']['RandomForestRegressor'] = configSettingsJson['advance']['mllearner_config']['modelParams']['regressorModelParams']['Random Forest']
        configSettingsJson['advance']['mllearner_config']['modelParams']['regressorModelParams']['XGBoostRegressor'] = configSettingsJson['advance']['mllearner_config']['modelParams']['regressorModelParams']['Extreme Gradient Boosting (XGBoost)']
        configSettingsJson['advance']['mllearner_config']['modelParams']['regressorModelParams']['LightGBMRegressor'] = configSettingsJson['advance']['mllearner_config']['modelParams']['regressorModelParams']['Light Gradient Boosting (LightGBM)']
        configSettingsJson['advance']['mllearner_config']['modelParams']['regressorModelParams']['CatBoostRegressor'] = configSettingsJson['advance']['mllearner_config']['modelParams']['regressorModelParams']['Categorical Boosting (CatBoost)']
        
        configSettingsJson['advance']['mllearner_config']['modelParams']['regressorModelParams']['EnsembleStacking']=configSettingsJson['advance']['mllearner_config']['modelParams']['regressorModelParams']['Stacking (Ensemble)']
        configSettingsJson['advance']['mllearner_config']['modelParams']['regressorModelParams']['EnsembleBagging']=configSettingsJson['advance']['mllearner_config']['modelParams']['regressorModelParams']['Bagging (Ensemble)']
        configSettingsJson['advance']['mllearner_config']['modelParams']['regressorModelParams']['EnsembleBagging']['LinearRegression'] = configSettingsJson['advance']['mllearner_config']['modelParams']['regressorModelParams']['EnsembleBagging']['Linear Regression']
        configSettingsJson['advance']['mllearner_config']['modelParams']['regressorModelParams']['EnsembleBagging']['DecisionTree'] = configSettingsJson['advance']['mllearner_config']['modelParams']['regressorModelParams']['EnsembleBagging']['Decision Tree']
        
        
        configSettingsJson['advance']['dllearner_config']['modelParams']['regressorModelParams']['NAS'] = configSettingsJson['advance']['dllearner_config']['modelParams']['regressorModelParams'].get('Neural Architecture Search')
        configSettingsJson['advance']['dllearner_config']['modelParams']['classifierModelParams']['NAS'] = configSettingsJson['advance']['dllearner_config']['modelParams']['classifierModelParams'].get('Neural Architecture Search')
        configSettingsJson['advance']['dllearner_config']['modelParams']['regressorModelParams']['SNN'] = configSettingsJson['advance']['dllearner_config']['modelParams']['regressorModelParams']['Neural Network']
        configSettingsJson['advance']['dllearner_config']['modelParams']['regressorModelParams']['SimpleRNN'] = configSettingsJson['advance']['dllearner_config']['modelParams']['regressorModelParams']['Recurrent Neural Network']
        configSettingsJson['advance']['dllearner_config']['modelParams']['regressorModelParams']['GRURNN'] = configSettingsJson['advance']['dllearner_config']['modelParams']['regressorModelParams']['Recurrent Neural Network (GRU)']
        configSettingsJson['advance']['dllearner_config']['modelParams']['regressorModelParams']['LSTMRNN'] = configSettingsJson['advance']['dllearner_config']['modelParams']['regressorModelParams']['Recurrent Neural Network (LSTM)']
        configSettingsJson['advance']['dllearner_config']['modelParams']['regressorModelParams']['CNN'] = configSettingsJson['advance']['dllearner_config']['modelParams']['regressorModelParams']['Convolutional Neural Network (1D)']

        configSettingsJson['advance']['onlinelearner_config']['modelParams']['classifierModelParams']['OnlineLogisticRegression'] = configSettingsJson['advance']['onlinelearner_config']['modelParams']['classifierModelParams']['Online Logistic Regression']
        configSettingsJson['advance']['onlinelearner_config']['modelParams']['classifierModelParams']['OnlineDecisionTreeClassifier'] = configSettingsJson['advance']['onlinelearner_config']['modelParams']['classifierModelParams']['Online Decision Tree Classifier']
        configSettingsJson['advance']['onlinelearner_config']['modelParams']['classifierModelParams']['OnlineSoftmaxRegression'] = configSettingsJson['advance']['onlinelearner_config']['modelParams']['classifierModelParams']['Online Softmax Regression']
        configSettingsJson['advance']['onlinelearner_config']['modelParams']['classifierModelParams']['OnlineKNNClassifier'] = configSettingsJson['advance']['onlinelearner_config']['modelParams']['classifierModelParams']['Online KNN Classifier']        

        configSettingsJson['advance']['onlinelearner_config']['modelParams']['regressorModelParams']['OnlineLinearRegression'] = configSettingsJson['advance']['onlinelearner_config']['modelParams']['regressorModelParams']['Online Linear Regression']
        configSettingsJson['advance']['onlinelearner_config']['modelParams']['regressorModelParams']['OnlineDecisionTreeRegressor'] = configSettingsJson['advance']['onlinelearner_config']['modelParams']['regressorModelParams']['Online Decision Tree Regressor']
        configSettingsJson['advance']['onlinelearner_config']['modelParams']['regressorModelParams']['OnlineKNNRegressor'] = configSettingsJson['advance']['onlinelearner_config']['modelParams']['regressorModelParams']['Online KNN Regressor']        

        configSettingsJson['advance']['profiler']['textConversionMethod']['LatentSemanticAnalysis'] = configSettingsJson['advance']['profiler']['textConversionMethod']['LatentSemanticAnalysis']
        configSettingsJson['advance']['profiler']['embeddingSize']['LatentSemanticAnalysis'] = configSettingsJson['advance']['profiler']['embeddingSize']['LatentSemanticAnalysis']
        if 'llmFineTuning' in configSettingsJson['advance']:
            configSettingsJson['basic']['algorithms']['llmFineTuning']['LLaMA2'] = configSettingsJson['basic']['algorithms']['llmFineTuning']['LLaMA-2']
            configSettingsJson['basic']['algorithms']['llmFineTuning']['LLaMA2Chat'] = configSettingsJson['basic']['algorithms']['llmFineTuning']['LLaMA-2-Chat']
            configSettingsJson['basic']['algorithms']['llmFineTuning']['CodeLLaMA2'] = configSettingsJson['basic']['algorithms']['llmFineTuning']['CodeLLaMA-2']

            configSettingsJson['advance']['llmFineTuning']['modelParams']['LLaMA2'] = configSettingsJson['advance']['llmFineTuning']['modelParams']['LLaMA-2']
            configSettingsJson['advance']['llmFineTuning']['modelParams']['LLaMA2Chat'] = configSettingsJson['advance']['llmFineTuning']['modelParams']['LLaMA-2-Chat']
            configSettingsJson['advance']['llmFineTuning']['modelParams']['CodeLLaMA2'] = configSettingsJson['advance']['llmFineTuning']['modelParams']['CodeLLaMA-2']

            configSettingsJson['basic']['modelSize']['llmFineTuning']['LLaMA2'] = \
            configSettingsJson['basic']['modelSize']['llmFineTuning']['LLaMA-2']
            configSettingsJson['basic']['modelSize']['llmFineTuning']['LLaMA2Chat'] = \
            configSettingsJson['basic']['modelSize']['llmFineTuning']['LLaMA-2-Chat']
            configSettingsJson['basic']['modelSize']['llmFineTuning']['CodeLLaMA2'] = \
            configSettingsJson['basic']['modelSize']['llmFineTuning']['CodeLLaMA-2']

        if 'distributedlearner_config' in configSettingsJson['advance']:
            configSettingsJson['advance']['distributedlearner_config']['modelParams']['classifierModelParams']['DistributedXGBoost'] = configSettingsJson['advance']['distributedlearner_config']['modelParams']['classifierModelParams']['Distributed Extreme Gradient Boosting (XGBoost)']
            configSettingsJson['advance']['distributedlearner_config']['modelParams']['classifierModelParams']['DistributedLightGBM'] = configSettingsJson['advance']['distributedlearner_config']['modelParams']['classifierModelParams']['Distributed Light Gradient Boosting (LightGBM)']
        
            configSettingsJson['advance']['distributedlearner_config']['modelParams']['regressorModelParams']['DistributedXGBoost'] = configSettingsJson['advance']['distributedlearner_config']['modelParams']['regressorModelParams']['Distributed Extreme Gradient Boosting (XGBoost)']
            configSettingsJson['advance']['distributedlearner_config']['modelParams']['regressorModelParams']['DistributedLightGBM'] = configSettingsJson['advance']['distributedlearner_config']['modelParams']['regressorModelParams']['Distributed Light Gradient Boosting (LightGBM)']
        
        
        configSettingsJson['advance']['profiler']['normalizationMethod'] = 'None'
        normalizationtypes = configSettingsJson['advance']['profiler']['normalization']
        for k in normalizationtypes.keys():
            if configSettingsJson['advance']['profiler']['normalization'][k] == 'True':
                configSettingsJson['advance']['profiler']['normalizationMethod'] = k
                break
        context = {'temp': temp, 'advconfig': configSettingsJson, 'MachineLearningModels':MachineLearningModels,'hyperparamConfig':hyperparamConfig,'config': config, 'selected_use_case': selected_use_case,
                    'categorical_features': categorical_features, 'selectedDebiasingFeature': selectedDebiasingFeature, 'selectedDebiasingAlgorithm': selectedDebiasingAlgorithm, 'Class_list': class_list, 'selectedDebiasingClass': selectedDebiasingClass, #Debiasing Changes
                   'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion,""obModels"":obModels,""problemType"":problemType,
                   'currentstate': request.session['currentstate'], 'finalstate': request.session['finalstate'],
                   'selected': 'modeltraning','advance_help':ht.advance_help}
        return context
    except Exception as e:
        print(e)
        exc_type, exc_obj, exc_tb = sys.exc_info()
        fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
        print(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))
        context={'erroradvance':'Fail to load advance config Json file'}
        return context


"
aionpipelinets.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import kfp
import kfp.dsl as dsl
import json
from pathlib import Path


class aionpipelinets():
    
    containerRegistry = str()
    containerLabel = str()
    containerSecret = str()
    
    pipelineName = 'AION MLOps Pipeline {0}'
    exeCmd = 'python'
    codeFile = 'aionCode.py'
    mntPoint = '/aion'
    inputArg = '-i'
    msIP = '0.0.0.0'
    port = '8094'
    cachingStrategy = 'P0D'
    
    deafultVolume = '2Gi'
    volName = 'aion-pvc'
    volMode = 'ReadWriteMany'
    fileExt = '.tar.gz'
    fileName = 'aion_mlops_pipeline_{0}'
    
    containerMM = 'modelmonitoring'
    containerDI = 'dataingestion'
    containerDT = 'datatransformation'
    containerFE = 'featureengineering'
    containerMR = 'modelregistry'
    containerMS = 'modelserving'
    containerImage = '{0}/{1}:{2}'
    
    models = {}
    nameSeprator = '-'
    modelsLiteral = 'models'
    modelNameLiteral = 'modelname'
    msTemplate = '{""apiVersion"": ""v1"", ""kind"": ""Pod"", ""metadata"": {""name"": ""{{workflow.name}}-{0}""}, ""spec"": {""containers"": [{""name"": ""{0}"", ""image"": ""{1}"", ""command"": [""python""], ""args"": [""aionCode.py"", ""-ip"", ""{2}"", ""-pn"", ""{3}""],""volumeMounts"": [{""name"": ""aion-pvc"", ""mountPath"": ""{4}""}], ""ports"": [{""name"": ""http"", ""containerPort"": {3}, ""protocol"": ""TCP""}]}], ""imagePullSecrets"": [{""name"": ""{5}""}], ""volumes"": [{""name"": ""aion-pvc"", ""persistentVolumeClaim"": {""claimName"": ""{{workflow.name}}-{6}""}}]}}'
    
    def __init__(self, models, containerRegistry, containerLabel, containerSecret=str()):
        self.models = models
        self.containerRegistry = containerRegistry
        self.containerLabel = containerLabel
        self.containerSecret = containerSecret        
       
    @dsl.pipeline(
      name=pipelineName.format(containerLabel),
      description=pipelineName.format(containerLabel),
    )
    def aion_mlops(self, inputUri=str(), volSize=deafultVolume):
        vop = dsl.VolumeOp(
          name=self.volName + self.nameSeprator + self.containerLabel,
          resource_name=self.volName,
          modes=[self.volMode],
          size=volSize
        )
    
        mm = dsl.ContainerOp(
            name=self.containerMM,
            image=self.containerImage.format(self.containerRegistry,self.containerMM,self.containerLabel),
            command=self.exeCmd,
            arguments=[
                self.codeFile,
                self.inputArg,
                inputUri,
            ],
            pvolumes={self.mntPoint: vop.volume}
        )
        mm.execution_options.caching_strategy.max_cache_staleness = self.cachingStrategy
        
        di = dsl.ContainerOp(
            name=self.containerDI,
            image=self.containerImage.format(self.containerRegistry,self.containerDI,self.containerLabel),
            command=self.exeCmd,
            arguments=[
                self.codeFile,
            ],
            pvolumes={self.mntPoint: mm.pvolume}
        )
        di.execution_options.caching_strategy.max_cache_staleness = self.cachingStrategy
        
        dt = dsl.ContainerOp(
            name=self.containerDT,
            image=self.containerImage.format(self.containerRegistry,self.containerDT,self.containerLabel),
            command=self.exeCmd,
            arguments=[
                self.codeFile,
            ],
            pvolumes={self.mntPoint: di.pvolume}
        )
        dt.execution_options.caching_strategy.max_cache_staleness = self.cachingStrategy
        
        fe = dsl.ContainerOp(
            name=self.containerFE,
            image=self.containerImage.format(self.containerRegistry,self.containerFE,self.containerLabel),
            command=self.exeCmd,
            arguments=[
                self.codeFile,
            ],
            pvolumes={self.mntPoint: dt.pvolume}
        )
        fe.execution_options.caching_strategy.max_cache_staleness = self.cachingStrategy
    
        
        dictMT = {}
        listMTOps = []
    
        for model in self.models[self.modelsLiteral]:
            modelName = model[self.modelNameLiteral]
            mt=dsl.ContainerOp(
                name=modelName,
                image=self.containerImage.format(self.containerRegistry,modelName,self.containerLabel),
                command=self.exeCmd,
                arguments=[
                    self.codeFile,
                ],
                pvolumes={self.mntPoint: fe.pvolume})
            mt.execution_options.caching_strategy.max_cache_staleness = self.cachingStrategy
            listMTOps.append(mt)
            dictMT[self.mntPoint]=mt.pvolume
    
    
        mr = dsl.ContainerOp(
            name=self.containerMR,
            image=self.containerImage.format(self.containerRegistry,self.containerMR,self.containerLabel),
            command=self.exeCmd,
            arguments=[
                self.codeFile,
            ],
            pvolumes=dictMT
        ).after(*tuple(listMTOps))
    
        mr.execution_options.caching_strategy.max_cache_staleness = self.cachingStrategy
        
        msJson = self.msTemplate.replace(str({0}),self.containerMS).replace(str({1}),self.containerImage.format(self.containerRegistry,self.containerMS,self.containerLabel)).replace(str({2}),self.msIP).replace(str({3}),self.port).replace(str({4}),self.mntPoint).replace(str({5}),self.containerSecret).replace(str({6}),self.volName)
        ms = dsl.ResourceOp(
            name=self.containerMS + self.nameSeprator + self.containerLabel,
            k8s_resource=json.loads(msJson),
        )    
        ms.after(mr)
        
        
    def compilepl(self, targetPath=str()):
        filePath = self.fileName.format(self.containerLabel.lower()) + self.fileExt
        if targetPath != str():
            filePath = Path(targetPath, filePath)
        kfp.compiler.Compiler().compile(self.aion_mlops, str(filePath))

    
    def executepl(self, kfhost=str()):
        client = kfp.Client(kfhost)
        client.create_run_from_pipeline_func(self.aion_mlops,arguments={})
"
llm_textdatalabelling.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import os
import pandas as pd
import requests
import re

import json
import sys
import time

from appbe.aion_config import get_llm_data
from appbe.dataPath import LOG_LOCATION
from appbe.log_ut import logg
import logging

import openai
import tiktoken

openai.api_key = ''
openai.api_base = '' 
openai.api_type = ''
openai.api_version = '' 
deployment_name=""Text-Datvinci-03""


def generateLabelPerRecord(OrgData):
    OrgData['LabelFromGPT'] = OrgData['Head_Description'].apply(lambda x: \
              generate_gpt3_response\
                
                (""I am giving you the title and short description \
                in the format [Title:Description], \
                give me the related low level topics in one word in the \
                format[Topic: your primary topic] along with top 5 important keywords in the \
                format[Keywords: keywords]'{}' "".format(x)))

    #Cleaning the output as it is from ChatGPT
    OrgData['temp1'] = OrgData['LabelFromGPT'].apply(lambda x: (x.split('Topic:')[1]).replace(']',''))
    OrgData['LabelFromGPT'] = OrgData['temp1'].apply(lambda x: (x.split('Keywords:')[0]).replace(']','').rstrip())
    OrgData['Keywords'] = OrgData['temp1'].apply(lambda x: (x.split('Keywords:')[1]).replace(']',''))
    OrgData = OrgData.drop(['temp1','Head_Description'], axis=1)
    return OrgData


def generateLabelForChunkedRecords(OrgData):
    import io
    # OrgData = OrgData.head(120)
    
    Head_Description = {""Head_Description"": [] }
    Head_Description2 = {""Head_Description"": [] }
    Head_Description['Head_Description'] = OrgData['Head_Description']
    
    strt_ind = 0
    brk_ind = 0
    # encoding = tiktoken.get_encoding('p50k_base')
    encoding = tiktoken.encoding_for_model(""text-davinci-003"")
    
    chunks = []
    _cur_token_count = 0
    _chunk_token_count = 0
    
    for ind in Head_Description['Head_Description'].index:
        tokenized_text = encoding.encode(Head_Description['Head_Description'][ind])
        _cur_token_count = len(tokenized_text)
        
        if _cur_token_count >= 600:
            OrgData['Head_Description'][ind] = OrgData['Head_Description'][ind][:1000]
        upto_ind = ind + 1
        
        
        Head_Description2['Head_Description'] = OrgData['Head_Description'][brk_ind:ind]
        _chunk_token_count = encoding.encode(Head_Description2['Head_Description'].to_string())
        if len(_chunk_token_count) >= 1200:
            brk_ind = ind
            # print(brk_ind)
            chunks.append(ind-1)
    
    
    _start_count = 0
    if len(chunks) == 0:
        output = generate_gpt3_response(""I am giving you datatable of text records \
                        for each record give me the related low level topics in one word as a data column called  Topic\
                        and important top five keywords  as a data column called  Keywords. \
                        Provide me record number as Record and these two data columns as datatable for each record in the given datatable and number of records should be equivalent to the number of records in the given datatable of text records. '{}' "".format(Head_Description['Head_Description']))
        
        out = io.StringIO(output[2:])
        df = pd.read_csv(out, sep='\t')
        
    else:
        chunks.append(len(Head_Description['Head_Description']))
        
        for ind_val in chunks:
            _cur_ind_val = ind_val
            _recordsSent = 0
            
            Head_Description = {""Head_Description"": [] }
            
            if _start_count == 0:
                Head_Description['Head_Description'] = OrgData['Head_Description'][strt_ind:_cur_ind_val].to_string()
                _recordsSent = len(OrgData['Head_Description'][strt_ind:_cur_ind_val])
            else:
                Head_Description['Head_Description'] = OrgData['Head_Description'][_pre_ind_val:_cur_ind_val].to_string()
                _recordsSent = len(OrgData['Head_Description'][_pre_ind_val:_cur_ind_val])
            
            _pre_ind_val = ind_val
            
            
            # if _start_count <= 5:
            output = generate_gpt3_response(""I am giving you datatable of text records \
                        for each record give me the related low level topics in one word as a data column called  Topic\
                        and important top five keywords  as a data column called  Keywords. \
                        Provide me record number as Record and these two data columns as datatable for each record in the given datatable and number of records should be equivalent to the number of records in the given datatable of text records. '{}' "".format(Head_Description['Head_Description']))
            
            
            out = io.StringIO(output[2:])
            
            if _start_count == 0:
                df = pd.read_csv(out, sep='\t')
            else:
                df_tmp = pd.read_csv(out, sep='\t')
                
                if len(df_tmp) > _recordsSent:
                        df_tmp = df_tmp.head(_recordsSent)
                
                # df = df.append(df_tmp, ignore_index=True)
                df = pd.concat([df, df_tmp], ignore_index=True)
            
            _start_count += 1
            
    OrgData['LabelFromGPT'] = df['Topic']
    OrgData['Keywords'] = df['Keywords']
    OrgData = OrgData.drop(['Head_Description'], axis=1)
    return OrgData
    


# Text Data Labelling using LLM related changes
# --------------------------------------------------------
def generateTextLabel(request, DATA_FILE_PATH):
    log = logging.getLogger('log_ux')
    
    key,url,api_type,api_version = get_llm_data()
    openai.api_key = key
    openai.api_base = url
    openai.api_type = api_type
    openai.api_version = api_version
    
    try:
        features = request.POST.getlist('InputFeatures')
        datapath = request.session['textdatapath']
        OrgData = pd.read_csv(datapath)
        
        # OrgData = OrgData.head(2000)
        OrgData.fillna("""", inplace = True)
        
        OrgData['Head_Description'] = OrgData[features[0]]
        if (len(features) > 1):
            for indx in range(len(features)):
                if (indx > 0):
                    OrgData['Head_Description'] = OrgData['Head_Description'] + "" ""+ OrgData[features[indx]]
        
        
        # OrgData = generateLabelPerRecord(OrgData)
        OrgData = generateLabelForChunkedRecords(OrgData)
    
        df = OrgData
        
        filetimestamp = str(int(time.time()))
        datasetName = 'AION_TextLabelled' + filetimestamp+'.csv'
        dataFile = os.path.join(DATA_FILE_PATH,datasetName)
        df.to_csv(dataFile)
        request.session['texttopicdatapath'] = dataFile
        
        df_json = df.to_json(orient=""records"")
        df_json = json.loads(df_json)



        from appbe.dataPath import DATA_DIR
        from appbe.sqliteUtility import sqlite_db
        file_path = os.path.join(DATA_DIR, 'sqlite')
        sqlite_obj = sqlite_db(file_path, 'config.db')
        newdata = {}
        newdata['datapath'] = [dataFile]
        newdata['datasetname'] = [datasetName]
        sqlite_obj.write_data(pd.DataFrame.from_dict(newdata), 'dataingest')


        ################################################

        context = {'data_topic':df_json, 'selected':'DataOperations'}
        return context
        
    except Exception as e:
        print(e)
        exc_type, exc_obj, exc_tb = sys.exc_info()
        
        errormsg = str(e)
        
        if 'Invalid URL' in errormsg or 'No connection adapters' in errormsg or 'invalid subscription key' in errormsg:
            errormsg = 'Access denied due to invalid subscription key or wrong API endpoint. Please go to settings and make sure to provide a valid key for an active subscription and use a correct regional API endpoint for your resource.'
            
        if 'Max retries exceeded with url' in errormsg:
            errormsg = 'Please make sure you have good internet connection and access to API endpoint for your resource.'
            
        fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
        print(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))
        
        context = {'error': 'Failed to communicate LLM','LLM' : 'openAI', 'selected':'DataOperations', 'errormessage':errormsg}
        log.info('generateTextLabel -- Error : Failed to generate Text-Label.. '+str(e))
        log.info('Details : '+ str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))
        return context


#function to return the queried response
def generate_gpt3_response(user_text, print_output=False):
    """"""
    Query OpenAI GPT-3 for the specific key and get back a response
    :type user_text: str the user's text to query for
    :type print_output: boolean whether or not to print the raw output JSON
    """"""
    time.sleep(2)
    
    completions = openai.Completion.create(
        # engine='Text-Datvinci-03',  # Determines the quality, speed, and cost.     engine='text-davinci-003',
        engine=deployment_name,  # Determines the quality, speed, and cost.     engine='text-davinci-003',
        
        temperature=0,            # Level of creativity in the response
        prompt=user_text,           # What the user typed in
        max_tokens=2000,            # Maximum tokens in the prompt AND response
        n=1,                        # The number of completions to generate
        stop=None,                  # An optional setting to control response generation
    )

    # Displaying the output can be helpful if things go wrong
    if print_output:
        print(completions)

    # Return the first choice's text
    # print(completions.choices[0].text)
    return completions.choices[0].text
    
# --------------------------------------------------------"
gcsbuckets.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import json
import os
import rsa
import boto3   #usnish
import pandas as pd
import time
def add_new_GCSBucket(request):
	try:
		file_path = os.path.abspath(os.path.join(os.path.dirname(__file__),'..','..','config','gcsbuckets.conf'))
		with open(file_path, 'r') as f:
			data = json.load(f)
		f.close()		
		if data == '':
			data = []		
	except:
		data = []
	print(request.POST[""aionreferencename""])		
	print(request.POST[""serviceaccountkey""])
	print(request.POST[""bucketname""])
	if request.POST[""aionreferencename""] =='' or request.POST[""serviceaccountkey""] == '' or request.POST[""bucketname""] == '' :
		
		return 'error'
	newdata = {}

            
	newdata['Name'] = request.POST[""aionreferencename""]
	newdata['GCSServiceAccountKey'] = request.POST[""serviceaccountkey""]
	newdata['GCSbucketname'] = request.POST[""bucketname""]
	data.append(newdata)
	with open(file_path, 'w') as f:
		json.dump(data, f)
	f.close()
	return 'success'

def get_gcs_bucket():
	try:
		file_path = os.path.abspath(os.path.join(os.path.dirname(__file__),'..','..','config','gcsbuckets.conf'))
		with open(file_path, 'r') as f:
			data = json.load(f)
	except:
		data = []
	return data
def read_gcs_bucket(name,filename,DATA_FILE_PATH):
	try:
		file_path = os.path.abspath(os.path.join(os.path.dirname(__file__),'..','..','config','gcsbuckets.conf'))
		with open(file_path, 'r') as f:
			data = json.load(f)
	except:
		data = []
	found = False
	print(data)
	for x in data:
		if x['Name'] == name:
			GCSServiceAccountKey = x['GCSServiceAccountKey']
			GCSbucketname = x['GCSbucketname']
			found = True
			break		
	print(found)
	print(name)
	try:
		if found:
			import io 
			from google.cloud import storage	
			storage_client = storage.Client.from_service_account_json(GCSServiceAccountKey)
			print(GCSServiceAccountKey)
			print(GCSbucketname)
			bucket = storage_client.get_bucket(GCSbucketname)
			blob = bucket.blob(filename)		
			data = blob.download_as_string()
			df = pd.read_csv(io.BytesIO(data), encoding = 'utf-8', sep = ',',encoding_errors= 'replace')
			return 'Success',df
	except Exception as e:
		print(e)
	return 'Error', pd.DataFrame()"
installPackage.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import os
import platform
import shutil
import subprocess
import sys
import glob
from pathlib import Path
import json
from django.http import FileResponse
from django.http import HttpResponse
from importlib.metadata import version
COMMON_PACKAGES = ""'setuptools >=62.3.0','pandas==1.5.3','numpy==1.24.2','joblib==1.2.0','Cython==0.29.33','scipy==1.10.1',' scikit-learn==1.2.1','word2number==1.1','category_encoders==2.6.0'""
DL_COMMON_PACKAGE = ""'tensorflow==2.11.0'""
TEXT_PACKAGES = ""'spacy==3.5.0','nltk==3.8.1','textblob==0.15.3','demoji==1.1.0','bs4==0.0.1','text-unidecode==1.3','pyspellchecker==0.6.2','contractions==0.1.73','protobuf==3.19.6','lxml'""


def createPackagePackage(request,id,version,usecasedetails,Existusecases):
    from appbe.pages import get_usecase_page
    #print('2')
    usecasedetail = usecasedetails.objects.get(id=id)
    models = Existusecases.objects.filter(ModelName=usecasedetail,Status='SUCCESS',Version=version)
    modelid = models[0].id 
    p = Existusecases.objects.get(id=modelid)
    deploymentfolder = str(p.DeployPath)
    modelname = p.ModelName.usecaseid
    version = p.Version
    deployed_code = 'AION'
    dockerimage = os.path.join(deploymentfolder,'publish','docker_image')
    dockersetup = os.path.join(deploymentfolder,'publish','docker_setup')
    tempPath = os.path.join(os.path.dirname(os.path.abspath(__file__)),'temp_'+modelname+'_'+str(version))
    try:
        shutil.rmtree(tempPath,ignore_errors=True)
    except:
        pass
        
    shutil.copytree(deploymentfolder,tempPath)    
    shutil.rmtree(os.path.join(tempPath,'publish'), ignore_errors=True)
    try:
        Path(os.path.join(deploymentfolder,'publish')).mkdir(parents=True, exist_ok=True)
        os.mkdir(dockersetup) 
    except:
        shutil.rmtree(dockersetup,ignore_errors=True)
        os.mkdir(dockersetup) 
    try:
        os.mkdir(dockerimage) 
    except:
        shutil.rmtree(dockerimage,ignore_errors=True)
        os.mkdir(dockerimage) 
    shutil.copytree(tempPath, os.path.join(dockersetup,deployed_code))
    shutil.rmtree(tempPath)
    
    docker_setup = os.path.join(dockersetup,'AION')

    try:
        os.mkdir(dockerimage) 
    except:
        pass
    requirementfilename = os.path.join(dockersetup,'requirements.txt')
    installfilename = os.path.join(dockersetup,'install.py')
    dockerfile = os.path.join(dockersetup,'Dockerfile')
    dockerdata='FROM python:3.10-slim-buster'
    dockerdata+='\n'
    dockerdata+='WORKDIR /app'
    dockerdata+='\n'
    dockerdata+='COPY AION AION'
    dockerdata+='\n'
    dockerdata+='''RUN apt-get update \
 && apt-get install -y build-essential manpages-dev \
 && apt-get install -y libgomp1 \ 
 && python -m pip install --no-cache-dir -r AION/requirements.txt
'''
    f = open(dockerfile, ""w"")
    f.write(str(dockerdata))
    f.close()  
    try:
        try:
            import docker
            client = docker.from_env()
            client.containers.list()
        except: 
            status,context,action = get_usecase_page(request,usecasedetails,Existusecases)        
            context['Status'] = 'Error'
            context['Msg'] = 'Docker should be installed and running on your machine. To build the docker image manually, the setup script is available at the following location:    \\n'+dockersetup.replace('\\', '/')               
            return context
        command = 'docker pull python:3.10-slim-buster'
        os.system(command); 
        subprocess.check_call([""docker"", ""build"", ""-t"",modelname.lower()+"":""+str(version),"".""], cwd=dockersetup)  
        subprocess.check_call([""docker"", ""save"", ""-o"",modelname.lower()+""_""+str(version)+"".tar"",modelname.lower()+"":""+str(version)], cwd=dockersetup)  
        dockerfilepath = os.path.join(dockersetup,modelname.lower()+""_""+str(version)+"".tar"")		
        shutil.copyfile(dockerfilepath, os.path.join(dockerimage,modelname.lower()+""_""+str(version)+"".tar""))  
        shutil.rmtree(dockersetup)
        msg = 'Done'
        Status = 'SUCCESS'        
    except Exception as e:
        msg = 'Error in docker images creation. To build manually docker image setup available in following location: '+dockersetup.replace('\\', '\\\\')
        Status = 'Fail'                
    status,context,action = get_usecase_page(request,usecasedetails,Existusecases)        
    context['Status'] = Status
    context['Msg'] = msg    
    return context
       
def downloadPackage(request,id,version,usecasedetails,Existusecases):
    try:
        if 'downloadstatus' in request.session:
            if request.session['downloadstatus'] == 'Downloading':
                return HttpResponse(json.dumps(""Error Creating Package""), content_type=""application/error"")            
        request.session['downloadstatus'] = 'Downloading'        
        usecasedetail = usecasedetails.objects.get(id=id)
        models = Existusecases.objects.filter(ModelName=usecasedetail,Status='SUCCESS',Version=version)
        modelid = models[0].id 
        p = Existusecases.objects.get(id=modelid)
        deployPath = str(p.DeployPath)
        if os.path.isdir(os.path.join(deployPath,'publish','package')):
            for f in os.listdir(os.path.join(deployPath,'publish','package')):
                if f.endswith('whl'):
                    os.remove(os.path.join(deployPath,'publish','package',f))
        usecasename = p.ModelName.usecaseid
        Version = p.Version
        deployed_code = usecasename
        targetname = usecasename+'_'+str(Version)
        whl_dir_name = 'WHEEL_'+usecasename+'_'+str(Version)
        deployLocation = os.path.join (deployPath,'..',whl_dir_name)
        try:
            os.makedirs(deployLocation)
        except OSError as e:
            shutil.rmtree(deployLocation)
            os.makedirs(deployLocation)
        shutil.copytree(deployPath,os.path.join(deployLocation,deployed_code))
        initstring = 'import os'
        initstring += '\n'
        initstring += 'import sys'
        initstring += '\n'
        initstring += 'sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__))))'
        filename = os.path.join(deployLocation,deployed_code,'__init__.py')
        f = open(filename, ""w"")
        f.write(str(initstring))
        f.close() 
        textdata=0
        learner_type = 'ml'
        requirementfile = os.path.join(deployPath,'requirements.txt')
        install_requires = ''
        if os.path.exists(requirementfile): 
            fileobj = open(requirementfile, 'r')
            requirePackages = fileobj.readlines()
            fileobj.close()    
            for package in requirePackages:
                if install_requires != '':
                    install_requires = install_requires+','
                install_requires = install_requires+'\''+package.strip()+'\''    
        setup_string = 'from setuptools import setup,find_packages'
        setup_string += '\n'
        setup_string += 'setup(name=\''+deployed_code+'\','
        setup_string += '\n'
        setup_string += 'version=\'1\','
        setup_string += '\n'
        setup_string += 'packages = find_packages(),'
        setup_string += '\n'
        setup_string += 'install_requires = ['+install_requires+'],'    
        setup_string += '\n'
        setup_string += 'package_data={""'+deployed_code+'.pytransform"":[""*.*""],""'+deployed_code+'"":[""*.sav"",""*.json""],"""":[""*"",""*/*"",""*/*/*""]}'
        setup_string += '\n'
        setup_string += ')'
        filename = os.path.join(deployLocation,'setup.py')
        f = open(filename, ""w"")
        f.write(str(setup_string))
        f.close()
        
        subprocess.check_call([sys.executable, ""setup.py"", ""bdist_wheel""], cwd=deployLocation)
        shutil.copytree(os.path.join(deployLocation,'dist'),os.path.join(deployPath,'publish','package'),dirs_exist_ok=True)
        shutil.rmtree(deployLocation)
        if os.path.isdir(os.path.join(deployPath,'publish','package')):
            for f in os.listdir(os.path.join(deployPath,'publish','package')):
                if f.endswith('whl'):
                    package = f
        zip_file = open(os.path.join(deployPath,'publish','package',package), 'rb')
        request.session['downloadstatus'] = 'Done'       
        return FileResponse(zip_file)
    except Exception as e:
        print(e)
        request.session['downloadstatus'] = 'Done'
        return HttpResponse(json.dumps(""Error Creating Package""), content_type=""application/error"")
def installPackage(model,version,deployedPath):
    deployedPath = os.path.join(deployedPath,'publish','package')
    whlfilename='na'
    if os.path.isdir(deployedPath):
        for file in os.listdir(deployedPath):
            if file.endswith("".whl""):
                whlfilename = os.path.join(deployedPath,file)
        if whlfilename != 'na':
            subprocess.check_call([sys.executable, ""-m"", ""pip"", ""uninstall"",""-y"",model])
            subprocess.check_call([sys.executable, ""-m"", ""pip"", ""install"",""--no-dependencies"",whlfilename])
            status,pid,ip,port = checkModelServiceRunning(model)
            if status == 'Running':
                stopService(pid)
                startService(model,ip,port)
            return('Success')
    else:
        return('Installation Package not Found')
def getMIDFromUseCaseVersion(id,version,usecasedetails,Existusecases):
    usecasedetail = usecasedetails.objects.get(id=id)
    models = Existusecases.objects.filter(ModelName=usecasedetail,Status='SUCCESS',Version=version)
    return(models[0].id)

def stopService(pid):
    import psutil
    p = psutil.Process(int(pid))
    p.terminate()
    
def checkModelServiceRunning(package_name):
    from os.path import expanduser
    home = expanduser(""~"")
    if platform.system() == 'Windows':
        modelServices = os.path.join(home,'AppData','Local','HCLT','AION','services')
    else:
        modelServices = os.path.join(home,'HCLT','AION','target','services') 
    filename = package_name+'_service.py'
    modelservicefile = os.path.join(modelServices,filename)
    status = 'Not Initialized'
    ip = ''
    port = ''
    pid = ''
    if os.path.exists(modelservicefile):
        status = 'Not Running'
        import psutil
        for proc in psutil.process_iter():
            pinfo = proc.as_dict(attrs=['pid', 'name', 'cmdline','connections'])
            if 'python' in pinfo['name']:
                if filename in pinfo['cmdline'][1]:
                    status = 'Running'
                    pid = pinfo['pid']
                    for x in pinfo['connections']:
                        ip = x.laddr.ip
                        port = x.laddr.port
                        
                    
    return(status,pid,ip,port)
def startService(package_name,ip,portNo):
    file_path = os.path.abspath(os.path.join(os.path.dirname(__file__),'..','..','bin','model_service.py'))
    from os.path import expanduser
    home = expanduser(""~"")
    if platform.system() == 'Windows':
        modelServices = os.path.join(home,'AppData','Local','HCLT','AION','services')
    else:
        modelServices = os.path.join(home,'HCLT','AION','target','services')
    if not os.path.isdir(modelServices):
        os.makedirs(modelServices)
    filename = package_name+'_service.py'
    modelservicefile = os.path.join(modelServices,filename)
    status = 'File Not Exist'
    if os.path.exists(modelservicefile):
        status = 'File Exist'
        r = ([line.split() for line in subprocess.check_output(""tasklist"").splitlines()])
        for i in range(len(r)):
            if filename in r[i]:    
                status = 'Running'
    if status == 'File Not Exist':
        shutil.copy(file_path,modelservicefile)
        with open(modelservicefile, 'r+') as file:
            content = file.read()
            file.seek(0, 0)
            line = 'from '+package_name+' import aion_performance'
            file.write(line+""\n"")
            line = 'from '+package_name+' import aion_drift'
            file.write(line+ ""\n"")
            line    = 'from '+package_name+' import featureslist'
            file.write(line+ ""\n"")
            line = 'from '+package_name+' import aion_prediction'
            file.write(line+ ""\n"")
            file.write(content)
            file.close()
            status = 'File Exist'
    if status == 'File Exist':   
        command = ""python ""+modelservicefile+' '+str(portNo)+' '+str(ip)
        os.system('start cmd /c ""'+command+'""')
        
    
def checkInstalledPackge(package_name):
    import importlib.util
    spec = importlib.util.find_spec(package_name)
    if spec is None:
        return('Not Installed','','')
    else:
        if len(spec.submodule_search_locations) > 0:
            displaypath = os.path.join(spec.submodule_search_locations[0],'etc','display.json') 
            with open(displaypath) as file:
                config = json.load(file)
            file.close()
            if 'usecasename' in config:
                modelName = config['usecasename']
            else:
                modelName = 'NA'
            
            if 'version' in config:
                version = config['version']
            else:
                version = 'NA'
            return('Installed',modelName,version)"
leaderboard.py,"import pandas as pd
import numpy as np
def get_leaderboard(file_content):
    matched_lines = [line.replace('Model:-', '') for line in file_content.split('\n') if ""Model:-"" in line]
    df = pd.DataFrame(columns = ['Model', 'Iterations', 'Score (%)', 'Score Type', 'Best Score (%)'])
    import re
    try:
        for line in matched_lines:
            if 'Model Name::' in line:
                MODEL = line.split('::')
                model = MODEL[1]
            if 'ScoringType::' in line:
                S = line.split('::')
                #SC = ScorTyp[1]
                if 'make_scorer'in line:
                    ST = line.split('make_scorer')
                    ScorTyp = ST[1]
                    df['Score Type'] = np.where(df['Model'] == model, ScorTyp,df['Score Type'])
            if 'Validation Score::' in line:
                BS = line.split('::')
                BestSc = round(float(BS[1]), 4)*100
                BestSc = abs(BestSc)
                df['Best Score (%)'] = np.where(df['Model'] == model, BestSc, df['Best Score (%)'])
            if 'Iteration::' in line:
                l = line.split('::')
                word = re.findall(r'\[(.*?)\]', l[1])
                if ';, score=' in line:
                    sc = line.split('score=')
                    SCR = sc[1].split(' ')
                    Score = round(float(SCR[0]), 4)*100
                    Score = abs(Score)
                    # df = df.concat({'Model': model, 'Iterations': word,'Score (%)': Scor,'Score Type': '', 'Best Score (%)': 0}, ignore_index=True)
                    newdf = pd.DataFrame([{'Model': model, 'Iterations': word,'Score (%)': Score,'Score Type': '', 'Best Score (%)': 0}])
                    df = pd.concat([df,newdf],axis=0, ignore_index=True)

        LIST = []
        for i in range(int(len(df['Score (%)'])/5)):
            l = (sum(df['Score (%)'][5*i:5*(i+1)])/5)
            #LIST.concat(l)
            LIST.append(l)
        for i in range(len(LIST)):
            df['Score (%)'][5*i:5*(i+1)]=LIST[i]

        CL = [line.replace('------->Type of Model :classification', 'Model :classification') for line in file_content.split('\n') if ""------->Type of Model :classification"" in line]
        for l in CL:
            if 'Model :classification' in l:     
                df = df.sort_values(by = ['Best Score (%)'], ascending=False)
        RE = [line.replace('------->Type of Model :regression', 'Model :regression') for line in file_content.split('\n') if ""------->Type of Model :regression"" in line]                
        for l in RE:    
            if 'Model :regression' in l:     
                df = df.sort_values(by = ['Best Score (%)'])
    except Exception as e:
        print(e)
    return df
    
if __name__ == ""__main__"":
    file_path = r""C:\Users\richard.mochahari\AppData\Local\Programs\HCLTech\AION\data\target\AI0335\1\log\model_training_logs.log""
    my_file = open(file_path, 'r')
    file_content = my_file.read()
    my_file.close()
    print(get_leaderboard(file_content))"
publishDataBase.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''"
encryptedPackage.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import os.path
import time
import subprocess
import sys
from appbe.aion_config import kafka_setting
from appbe.aion_config import running_setting
from appbe import installPackage
from appbe import compute
from appbe.models import getusercasestatus
import json
import pandas as pd
import ntpath
import shutil
import platform
from pathlib import Path
from appbe.dataPath import DATA_DIR
LOG_FILE_PATH = os.path.join(DATA_DIR,'logs')
def encrptpackage_command(request,Existusecases,usecasedetails):
    command = request.POST.get('encryptedsubmit')
    
    kafkaSetting = kafka_setting()
    ruuningSetting = running_setting()
    computeinfrastructure = compute.readComputeConfig()
    modelID = request.POST.get('modelID')
    p = Existusecases.objects.get(id=modelID)
    usecasename = p.ModelName.UsecaseName
    usecaseid = p.ModelName.usecaseid
    runningStatus,pid,ip,port = installPackage.checkModelServiceRunning(usecasename)
    installationStatus,modelName,modelVersion=installPackage.checkInstalledPackge(usecasename)
    try:
        tacking_url =request.get_host()
    except Exception as e:
        tacking_url = '127.0.0.1'    
        
    usecasedetail = usecasedetails.objects.get(id=p.ModelName.id)
    usecase = usecasedetails.objects.all()
    models = Existusecases.objects.filter(ModelName=usecasedetail,Status='SUCCESS')
    for model in models:
        model.scoringCreteria = 'NA'
        model.score = 'NA'
        model.deploymodel = 'NA'
        if os.path.isdir(str(model.DeployPath)):
            modelPath = os.path.join(str(model.DeployPath),'etc','output.json')
            try:    
                with open(modelPath) as file:
                    outputconfig = json.load(file)
                file.close()
                if outputconfig['status'] == 'SUCCESS':
                    model.scoringCreteria = outputconfig['data']['ScoreType']
                    model.score = outputconfig['data']['BestScore']
                    model.deploymodel = outputconfig['data']['BestModel']
                    model.modelType = outputconfig['data']['ModelType']                 
                    model.maacsupport = 'True'
                    model.flserversupport = 'False'
                    supportedmodels = [""Logistic Regression"",""Neural Network"",""Linear Regression""]
                    if model.deploymodel in supportedmodels:
                        model.flserversupport = 'True'
                    else:
                        model.flserversupport = 'False' 
                    supportedmodels = [""Logistic Regression"",
                        ""Naive Bayes"",""Decision Tree"",""Support Vector Machine"",""K Nearest Neighbors"",""Gradient Boosting"",""Random Forest"",""Linear Regression"",""Lasso"",""Ridge"",""Extreme Gradient Boosting (XGBoost)"",""Light Gradient Boosting (LightGBM)"",""Categorical Boosting (CatBoost)""]
                    if model.deploymodel in supportedmodels:
                        model.maacsupport = 'True'
                    else:
                        model.maacsupport = 'False'                          
                    supportedmodels = [""Extreme Gradient Boosting (XGBoost)""]
                    if model.deploymodel in supportedmodels:
                        model.encryptionsupport = 'True'
                    else:
                        model.encryptionsupport = 'False'                        
            except Exception as e:    
                pass    
    
    if command.lower() == 'secureclient':
        try:
            encryptedclient = os.path.join(str(p.DeployPath),'publish','SecureClient')
            shutil.rmtree(encryptedclient, ignore_errors=True)
            logPath = os.path.join(encryptedclient,'logs')
            scriptPath = os.path.join(encryptedclient,'script')
            modelPath = os.path.join(encryptedclient,'model')
            Path(modelPath).mkdir(parents=True, exist_ok=True)          
            Path(encryptedclient).mkdir(parents=True, exist_ok=True)
            Path(logPath).mkdir(parents=True, exist_ok=True)            
            Path(scriptPath).mkdir(parents=True, exist_ok=True)
            encryptedclientOrg = os.path.normpath(os.path.join(os.path.dirname(os.path.abspath(__file__)), '..','utilities','encryptedPackage'))        
            modelProfiler = os.path.normpath(os.path.join(str(p.DeployPath),'script','inputprofiler.py'))
            modelselector = os.path.normpath(os.path.join(str(p.DeployPath),'aion_predict.py'))
            preprocessmodel = os.path.normpath(os.path.join(str(p.DeployPath),'model','preprocess_pipe.pkl'))
            # shutil.copy2(modelProfiler,scriptPath)
            # shutil.copy2(modelselector,scriptPath)
            ## For bug 15975
            if os.path.exists(modelProfiler):
                shutil.copy2(modelProfiler,scriptPath)
            if os.path.exists(modelselector):
                shutil.copy2(modelselector,scriptPath)
            if os.path.exists(preprocessmodel):
                shutil.copy2(preprocessmodel,modelPath)
            if model.modelType.lower() == 'classification':
                try:
                    opfile = os.path.normpath(os.path.join(encryptedclientOrg,'Readme.txt'))     
                    shutil.copy2(opfile,encryptedclient)
                    opfile = os.path.normpath(os.path.join(encryptedclientOrg,'requirements.txt'))     
                    shutil.copy2(opfile,encryptedclient)
                except:
                    #failed to copy readme,requirements.txt files
                    pass
                opfile = os.path.normpath(os.path.join(encryptedclientOrg,'client','heMulticlass.py'))     
                shutil.copy2(opfile,scriptPath)
                opfile = os.path.normpath(os.path.join(encryptedclientOrg,'client','aion_hemulticlient.py'))     
                shutil.copy2(opfile,encryptedclient)
                os.rename(os.path.join(encryptedclient,'aion_hemulticlient.py'),os.path.join(encryptedclient,'aion_sclient.py'))
            elif model.modelType.lower() == 'regression':
                try:
                    opfile = os.path.normpath(os.path.join(encryptedclientOrg,'Readme.txt'))     
                    shutil.copy2(opfile,encryptedclient)
                    opfile = os.path.normpath(os.path.join(encryptedclientOrg,'requirements.txt'))     
                    shutil.copy2(opfile,encryptedclient)
                except Exception as e:
                    print(e)
                    #failed to copy readme,requirements.txt files
                    pass
                opfile = os.path.normpath(os.path.join(encryptedclientOrg,'client','heRegression.py'))     
                shutil.copy2(opfile,scriptPath)
                opfile = os.path.normpath(os.path.join(encryptedclientOrg,'client','aion_heregressionclient.py'))     
                shutil.copy2(opfile,encryptedclient)
                os.rename(os.path.join(encryptedclient,'aion_hemulticlient.py'),os.path.join(encryptedclient,'aion_sclient.py'))        
        except Exception as e:
            Status = 'Error'
            Msg = 'Secure client error: Check log file for more details'                
        Status = 'SUCCESS'
        Msg = 'Secure Client Code Generated at '+encryptedclient
        path= encryptedclient #Task 9981
    elif command.lower() == 'secureserver':
        try:
            configPath = os.path.join(str(p.DeployPath),'etc','secure_config.json')
            modelpath = usecasename+'_'+str(p.Version)+'.sav'
            config = {'model_name':modelpath}
            with open(configPath, ""w"") as outfile:
                json.dump(config, outfile)
            encryptedclientOrg = os.path.normpath(os.path.join(os.path.dirname(os.path.abspath(__file__)), '..','utilities','encryptedPackage'))            
            if model.modelType.lower() == 'classification':
                opfile = os.path.normpath(os.path.join(encryptedclientOrg,'server','heMulticlass.py'))     
                shutil.copy2(opfile,str(p.DeployPath))
                try:
                    os.remove(os.path.join(str(p.DeployPath),'aion_spredict.py'))
                except OSError:
                    pass
                os.rename(os.path.join(str(p.DeployPath),'heMulticlass.py'),os.path.join(str(p.DeployPath),'aion_spredict.py'))
            Status = 'SUCCESS'
            Msg = 'Secure rest end point enabled http://'+str(tacking_url)+'/api/spredict?usecaseid='+usecaseid+'&version='+str(p.Version)
        except Exception as e:
            Status = 'Error'
            Msg = 'Secure rest end point error: Check log file for more details'
    nouc = 0
    from appbe.pages import get_usecase_page        
    status,context,action = get_usecase_page(request,usecasedetails,Existusecases)        
    context['Status'] = Status 
    context['Msg'] = Msg
    if  command.lower() == 'secureclient': #Task 9981
        context['path'] = path
    '''
    selected_use_case,ModelVersion,ModelStatus = getusercasestatus(request)
    context = {'tab': 'upload','nouc':nouc,'usecasedetail': usecase, 'models': models, 'selected_use_case': selected_use_case,
                   'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion, 'selected': 'usecase','computeinfrastructure':computeinfrastructure,'installationStatus':installationStatus,'modelName':modelName,'modelVersion':modelVersion,'usecasename':usecasename,'pid':pid,'ip':ip,'port':port,'usecaseid':p.ModelName.id,'Status':Status,'Msg':Msg}
    '''
    return(context)

def download_sclient(request,context):    #Task 9981
    import os
    from django.http import HttpResponse, Http404
    try:
        file_name = 'SecureClient_'+request.POST.get('modelsignature')
        path = context['path']
        file_path = shutil.make_archive(file_name, 'zip', path)
        if os.path.exists(file_path):
            with open(file_path, 'rb') as fh:
                response = HttpResponse(fh.read(),content_type='application/x-zip-compressed')
                response['Content-Disposition'] = 'inline; filename=' + os.path.basename(file_path)
            os.remove(file_path)
        return response
    except:
        raise Http404"
labels.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import os
from pathlib import Path
def label_filename(request):
	filename = 'LabeledData.csv'
	labelPath = os.path.join(request.session['datalocation'],'AION','Labels')
	Path(labelPath).mkdir(parents=True, exist_ok=True)
	filePath = os.path.join(labelPath,filename)
	return filePath
"
checkConfiguration.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import json

import pandas as pd


def get_true_option(d, default_value=None):
	if isinstance(d, dict):
		for k, v in d.items():
			if (isinstance(v, str) and v.lower() == 'true') or (isinstance(v, bool) and v == True):
				return k
	return default_value


def get_true_options(d):
	options = []
	if isinstance(d, dict):
		for k, v in d.items():
			if (isinstance(v, str) and v.lower() == 'true') or (isinstance(v, bool) and v == True):
				options.append(k)
	return options

def check_datetime(config):
	dateTime = config['basic']['dateTimeFeature']
	if dateTime == '' or dateTime.lower()=='na':
		return False
	return True

def check_dtype(d):
	flag= 1
	for item in d:
		if item[""type""].lower() != ""text"" and item[""type""].lower() != ""index"":
			flag = 0
			break
	return flag

def check_text(d): #task 12627
	flag= 0
	for item in d:
		if item[""type""].lower() == ""text"":
			flag = 1
			break
	return flag

def check_labelencoding(ftr_dict_list, target_ftr):
	for ftr_dict in ftr_dict_list:
		if ftr_dict['feature']!=target_ftr and ftr_dict['type'].lower()=='categorical' and ftr_dict['categoryEncoding'].lower()!='labelencoding':
			return False
	return True

class timeseries():

	def __init__(self,config):
		self.config=config
		if self.config['basic']['analysisType']['timeSeriesForecasting'].lower()=='true': #task 11997
			self.problemType = 'timeSeriesForecasting'
		elif self.config['basic']['analysisType']['timeSeriesAnomalyDetection'].lower()=='true':
			self.problemType = 'timeSeriesAnomalyDetection' #task 11997

	def validate_basic_config(self,status='pass',msg=None):
		#task 12627
		date_time_status = check_datetime(self.config)
		text_status = check_text(self.config['advance']['profiler']['featureDict'])
		if not date_time_status and text_status:
			msg = 'For time series problem,\\n* One feature should be in datetime format\\n* Text feature not supported '
			return 'error', msg
		elif not date_time_status:
			msg = 'For time series problem, one feature should be in datetime format'
			return 'error', msg
		elif text_status:
			msg = 'For time series problem, text feature not supported '
			return 'error', msg
		selected_algos = get_true_options(self.config['basic']['algorithms'][self.problemType]) #task 11997
		if isinstance(self.config['basic']['targetFeature'],str):
			targetFeature = list(self.config['basic']['targetFeature'].split(','))
		if self.problemType=='timeSeriesForecasting': #task 11997
			if len(targetFeature) > 1:
				if 'ARIMA' in selected_algos:
					status = 'error'
					msg = ""ARIMA is not supported for multilabel (target) feature""
					return status, msg
				if ""FBPROPHET"" in selected_algos:
					status = 'error'
					msg = ""FBPROPHET is not supported for multiLabel (target) feature""
					return status, msg
				if 'MLP' in selected_algos:
					status = 'error'
					msg = ""MLP is not supported for multiLabel (target) feature""
					return status, msg
			if len(targetFeature) == 1 and 'VAR' in selected_algos:
				status = 'error'
				msg = ""VAR is not supported for singleLabel (target) feature""
				return status, msg
		elif self.problemType=='timeSeriesAnomalyDetection': #task 11997
			anomChecker = anomaly(self.config)
			status, msg = anomChecker.validate_basic_config()
		return status, msg


class anomaly():
 
	def __init__(self,config):
		self.config = config
		if self.config['basic']['analysisType']['anomalyDetection'].lower()=='true': #task 11997
			self.problemType = 'anomalyDetection'
		elif self.config['basic']['analysisType']['timeSeriesAnomalyDetection'].lower()=='true': #task 11997
			self.problemType = 'timeSeriesAnomalyDetection'

	def validate_basic_config(self,status='pass',msg=None):
		#task 12627
		date_time_status = check_datetime(self.config)
		targetFeature = self.config['basic']['targetFeature']
		if self.problemType=='anomalyDetection' and date_time_status:
			status = 'error'
			msg = 'Date feature detected. For anomaly detection on time series change problem type to Time Series Anomaly Detection or drop Date feature'
			return status, msg
		if targetFeature.lower()!= 'na' and targetFeature!= """" and self.config['basic']['inlierLabels'] == '':
			status = 'error'
			msg = 'Please provide inlier label in case of supervised anomaly detection'
		return status, msg

class survival():

	def __init__(self,config):
		self.config = config
		self.problemType= 'survivalAnalysis'

	def validate_basic_config(self):
		dateTimeStatus = check_datetime(self.config)
		labelencoding_status = check_labelencoding(self.config['advance']['profiler']['featureDict'], self.config['basic']['targetFeature'])
		if not dateTimeStatus and not labelencoding_status:
			msg = 'For survival analysis problem,\\n* One feature should be in datetime format\\n* Encoding of categorical features should be of label encoding '
			return 'error', msg  
		elif not dateTimeStatus:
			msg = 'One feature should be in datetime format for survival analysis problem. Please select it from model feature'
			return 'error', msg
		elif not labelencoding_status:
			msg = 'Categorical features are expected to be label encoded for survival analysis problem. Please select it from feature encoding'
			return 'error', msg
		else:
			return 'pass', "" ""

class associationrule():

	def __init__(self,config):
		self.config=config

	def validate_basic_config(self,status='pass', msg=None):
		if self.config['basic']['algorithms']['recommenderSystem']['associationRulesConfig']['invoiceNoFeature'].lower() == '' or self.config['basic']['algorithms']['recommenderSystem']['associationRulesConfig']['invoiceNoFeature'].lower() == 'na' or self.config['basic']['algorithms']['recommenderSystem']['associationRulesConfig']['itemFeature'].lower() == '' or self.config['basic']['algorithms']['recommenderSystem']['associationRulesConfig']['itemFeature'].lower() == 'na':
			return ""error"",""Make sure to configure invoice feature and item feature""
		elif self.config['basic']['algorithms']['recommenderSystem']['associationRulesConfig']['invoiceNoFeature'] == self.config['basic']['algorithms']['recommenderSystem']['associationRulesConfig']['itemFeature']:
			return ""error"",""Make sure to invoice feature and item feature is configure correctly""    
		else:
			return ""pass"", "" ""   

class itemrating():   #task 6081

	def __init__(self,config):
		self.config = config

	def validate_basic_config(self):
		data_loc = self.config['basic']['dataLocation']
		data_length = len(pd.read_csv(data_loc))
		if data_length >= 1000000:
			return 'error', ""Recommender System can handle data up to 1 million records. Please try with a smaller dataset.""
		else:
			return ""pass"","" ""


class documentsimilarity():

	def __init__(self,config):
		self.config=config

	def validate_basic_config(self,status='pass', msg=None):
		flag = check_dtype(self.config['advance']['profiler']['featureDict'])
		if flag == 1:
			return ""pass"", "" ""
		else:
			msg=""Make sure to change the feature type from Categorical to Text and drop Numerical features for document similarity""
			return ""error"", msg




def validate(config):
	try:
		problem_type = get_true_option(config['basic']['analysisType'])
		status = 'pass'
		msg = ''
		if 'timeseries' in problem_type.lower(): #task 11997
			obj = timeseries(config)
		elif problem_type.lower() == 'survivalanalysis':
			obj = survival(config)
		elif problem_type.lower() == 'anomalydetection':
			obj = anomaly(config)
		elif problem_type.lower() in ['similarityidentification','contextualsearch']:
			obj = documentsimilarity(config)
		elif problem_type.lower() == 'recommendersystem':
			if config['basic']['algorithms']['recommenderSystem']['AssociationRules-Apriori'].lower() == 'true':
				obj = associationrule(config)  
			elif config['basic']['algorithms']['recommenderSystem']['ItemRating'].lower() == 'true':    #task 6081
				obj = itemrating(config)
			else:
				return 'pass',"""" 
		else:
			return 'pass',""""
		status,msg= obj.validate_basic_config()
		print(status, msg, 'io')
		return(status,msg)
	except Exception as e:
		print(e)


def start_check(config):
 return validate(config)



"
service_url.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import os,sys
def read_service_url_params(request):
    hosturl =request.get_host()
    url='http://'+hosturl+'/api/'   
    return url

def read_monitoring_service_url_params(request):
    hosturl =request.get_host()
    file_path = os.path.abspath(os.path.join(os.path.dirname(__file__),'..','config','aion.config'))
    file = open(file_path, ""r"")
    data = file.read()
    file.close()
    service_url = '127.0.0.1'
    service_port='60050'
    for line in data.splitlines():
        if 'aion_service_url=' in line:
            service_url= line.split('=',1)[1]
        if 'aion_service_port=' in line:
            service_port= line.split('=',1)[1]
    url='http://'+hosturl+'/api/'   
    return url

def read_performance_service_url_params(request):
    hosturl =request.get_host()
    file_path = os.path.abspath(os.path.join(os.path.dirname(__file__),'..','config','aion.config'))
    file = open(file_path, ""r"")
    data = file.read()
    file.close()
    service_url = '127.0.0.1'
    service_port='60050'
    for line in data.splitlines():
        if 'aion_service_url=' in line:
            service_url= line.split('=',1)[1]
        if 'aion_service_port=' in line:
            service_port= line.split('=',1)[1]
    url='http://'+hosturl+'/api/'   
    return url
    
def read_pattern_anomaly_url_params(request):
    hosturl =request.get_host()
    file_path = os.path.abspath(os.path.join(os.path.dirname(__file__),'..','config','aion.config'))
    file = open(file_path, ""r"")
    data = file.read()
    file.close()
    service_url = '127.0.0.1'
    service_port='60050'
    for line in data.splitlines():
        if 'aion_service_url=' in line:
            service_url= line.split('=',1)[1]
        if 'aion_service_port=' in line:
            service_port= line.split('=',1)[1]
    url='http://'+hosturl+'/api/pattern_anomaly_predict/'   
    return url

def read_pattern_anomaly_setting_url_params(request):
    hosturl =request.get_host()
    file_path = os.path.abspath(os.path.join(os.path.dirname(__file__),'..','config','aion.config'))
    file = open(file_path, ""r"")
    data = file.read()
    file.close()
    service_url = '127.0.0.1'
    service_port='60050'
    for line in data.splitlines():
        if 'aion_service_url=' in line:
            service_url= line.split('=',1)[1]
        if 'aion_service_port=' in line:
            service_port= line.split('=',1)[1]
    url='http://'+hosturl+'/api/pattern_anomaly_settings/'   
    return url"
data_io.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
#Standard Library modules
import sqlite3
import pandas as pd 
from pathlib import Path
class sqlite_writer():
    def __init__(self, target_path):
        self.target_path = Path(target_path)
        database_file = self.target_path.stem + '.db'
        self.db = sqlite_db(self.target_path, database_file)

    def file_exists(self, file):
        if file:
            return self.db.table_exists(file)
        else:
            return False

    def read(self, file):
        return self.db.read(file)
        
    def write(self, data, file):
        self.db.write(data, file)

    def close(self):
        self.db.close()

class sqlite_db():

    def __init__(self, location, database_file=None):
        if not isinstance(location, Path):
            location = Path(location)
        if database_file:
            self.database_name = database_file
        else:
            self.database_name = location.stem + '.db'
        db_file = str(location/self.database_name)          
        self.conn = sqlite3.connect(db_file)
        self.cursor = self.conn.cursor()
        self.tables = []

    def table_exists(self, name):
        if name in self.tables:
            return True
        elif name:
            query = f""SELECT name FROM sqlite_master WHERE type='table' AND name='{name}';""
            listOfTables = self.cursor.execute(query).fetchall()
            if len(listOfTables) > 0 :
                self.tables.append(name)
                return True
        return False

    def read(self, table_name,condition=''):
        if condition == '':
            return pd.read_sql_query(f""SELECT * FROM {table_name}"", self.conn)
        else:
            return pd.read_sql_query(f""SELECT * FROM {table_name} WHERE {condition}"", self.conn)

    def create_table(self,name, columns, dtypes):
        query = f'CREATE TABLE IF NOT EXISTS {name} ('
        
        for column, data_type in zip(columns, dtypes):
            query += f""'{column}'   TEXT,""
        query = query[:-1]
        query += ');'
        self.conn.execute(query)
        return True
    def update(self,table_name,updates,condition):
        update_query = f'UPDATE {table_name} SET {updates} WHERE {condition}'
        self.cursor.execute(update_query)
        self.conn.commit()
        return True        
    def write(self,data, table_name):
        if not self.table_exists(table_name):
            self.create_table(table_name, data.columns, data.dtypes)
        tuple_data = list(data.itertuples(index=False, name=None))
        insert_query = f'INSERT INTO {table_name} VALUES('
        for i in range(len(data.columns)):
            insert_query += '?,'
        insert_query = insert_query[:-1] + ')'
        self.cursor.executemany(insert_query, tuple_data)
        self.conn.commit()
        return True
        
    def delete(self, name):
        pass
        
    def close(self):
        self.conn.close()
"
help_Text.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''

# def exploratorory_help():
#
#
#
#     return (data_overview_tip, feature_importance_tip, correlation_analysis_tip, exploratory_analysis_tip, data_deep_drive_tip, drift_tip)

drift_tip = 'A data distribution represents a list of all of the possible values of each of the variables as provided in the data. Based on how the data values are distributed, it can be mapped to some well-known distribution curves so that the nature of the distribution can be shown.'

data_overview_tip = 'Data Overview give users a quick understanding of the distribution of values across the features and provides summary statistics of the features. It helps to uncover several uncommon and common issues such as unexpected feature values, missing feature values and data skew.'

timeseries_analysis_tip = ""Time Series Analysis provides information about the stationarity and seasonality of each of the features in the ingested data.""

feature_importance_tip = 'Feature Importance provides a features and grades the features on a scale of relative importance'

correlation_analysis_tip = 'Correlation Analysis provides the strength of relationships among various features. Values range from 0 (least correlation) to 1 (highest correlation). A high correlation means that two or more variables have a strong relationship with each other, while a weak correlation means that the variables are hardly related.'

exploratory_analysis_tip = 'This provides an unsupervised clustering view of the data and provides insights on how the data is distributed. It helps profile the attributes of different clusters and gives insight into underlying patterns of different clusters and find similarities in the data points.'

data_deep_drive_tip = 'Data Deep Dive provides an interactive interface for exploring the relationship between data points across all the different features of a dataset. Each individual item in the visualization represents a data point. Data can be grouped and binned in multiple dimensions based on their feature values.'

pair_graph_tip = 'It is used to present the correlations between two selected features.'

fair_metrics_tip = 'It provides interface to detect the bias in data associated with a sensitive or protected attribute and used for training.'

hopkins_tip =['Since the value is in between (0.0, 0.3), it indicates that the data has a high tendency to cluster.','Since the value is around 0.5, it indicates that the data distriution is random.','Since the value is in between (0.7, 0.99), it indicates that the data is regularly spaced.']

basic_help={'RowFiltering':'You can easily filter rows based on whether the column match a condition or not'}
advance_help = {'NumericFillMethod':'This is used to handle the null values present in the numerical dataset.','NumericFillMethod_Median':'Replace with middle value of the data set. Efficient and not affected by outliers.','NumericFillMethod_Mean':'Replace with average value of the columns. Affected by outliers.','NumericFillMethod_Max':'Replace all nulls with maximum value in the column.','NumericFillMethod_KNN':'This implements KNN algorithm to replace the null','NumericFillMethod_Zero':'Replace the null with 0 value','NumericFillMethod_Drop':'To remove all the null values in the dataset','NumericFillMethod_Min':'Replace all null with minimum value present in the column','CategoricalFillMethod':'This is used to handle the null values present in the categorical dataset.','CategoricalFillMethod_Mode':'Replace with most common values in the dataset. Suggested for categorical columns.','CategoricalFillMethod_Zero':'Replace the null with 0 value.','CategoricalFillMethod_KNN':'This implements KNN algorithm to replace the null','CategoricalFillMethod_Drop':'To remove all the null values in the dataset.','OutlierDetection':'An unusual data point that differs significantly from other data points.','OutlierDetection_IQR':'Identifying the outliers with interquatile range by dividing the data into quartiles.','OutlierDetection_Zscore':'If the z score of a data point is more than 3, it indicates that the data point is an outlier.','OutlierDetection_Isolation':'Randomly sub-sampled data is processed in a tree structure based on randomly selected features.','MissValueRatio':'Permitted Missing Value Ratio i.e., Number of missing values by total number of obervation. If the number of  missing value in a columns is more than ratio than the columns will be assumped as empty column','NumericFeatureRatio':'In case column is mix of number and text value. If the number of numeric columns to number of rows ratio is greator than the value mentioned it is assumed as numeric columns and remaining rows which have text values will be removed','NormalStandard':'Standardize features by removing the mean and scaling to unit variance.','NormalMinMax':'This scales and translates each feature individually such that it is in the given range on the training set, e.g. between zero and one.','NormalLogNormal':'When a feature does not follow a linear distributio, that helps minimize skewness and map any distribution to a normal one as close as possible.','RemoveNoise':'Used to remove the noise present in the text data. Noise like special characters, unicode, emojis, hyperlinks,hashtags, html parameters etc.','ExpandContractions':'Contractions are words or combinations of words that are shortened by dropping letters and replacing them by an apostrophe.','Normalize':'Normalization is the process of converting a token into its base form. In the normalization process, the inflectional form of a word is removed so that the base form can be obtained.','Lemmatization':'It is a more effective option than stemming because it converts the word into its root word, rather than just stripping the suffices.','Stemming':'It refers to the removal of suffices, like ing,ly,s etc. by a simple rule-based approach.','NGrams':'The combination of multiple words used together.','PosTags':'The process of classifying words into their parts of speech and labeling them accordingly is known as part-of-speech tagging, or simply POS-tagging.','FeatureSelection':'Feature selection is for filtering irrelevant or redundant features from your dataset. The key difference between feature selection and extraction is that feature selection keeps a subset of the original features while feature extraction creates brand new ones.','FeatureEngineering':'Feature extraction is for creating a new, smaller set of features that stills captures most of the useful information. Again, feature selection keeps a subset of the original features while feature extraction creates new ones.','PCA':'Principle Component Analysis (PCA) is a common feature extraction method in data science. Technically, PCA finds the eigenvectors of a covariance matrix with the highest eigenvalues and then uses those to project the data into a new subspace of equal or less dimensions.','StatisticalBased':'Features are selected on the basis of statistics measures. This method does not depend on the learning algorithm and chooses the features as a pre-processing step. The filter method filters out the irrelevant feature and redundant columns from the model by using different metrics through ranking.','ModelBased':'Different tree-based methods of feature selection help us with feature importance to provide a way of selecting features. Here, feature importance specifies which feature has more importance in model building or has a great impact on the target variable.','CorrelationThreshold':'Correlation Threshold for Statistican Based Feature Selection. Correlation relation analysis done on input features vs target feature and features having correlation value grather then threshold picks for training','PValue':'P Value again for Statistical Based Feature Selection','Variance':'For Feature Selection, features should have higher variance from threshold.','Normalization':'The goal of normalization is to change the values of numeric columns in the dataset to use a common scale , without distoring differences  in the ranges of values or losing information.','SVD':'The singular value decomposition (SVD) provides another way to factorize a matrix, into singular vectors and singular values. The SVD allows us to discover some of the same kind of information as the eigendecomposition.','ReplaceAcro':'Replace any abrivations into its full form Eg:{""DM"":""DirectMessage""}',
'Factoranalysis':' This algorithm creates factors from the observed variables to represent the common variance i.e. variance due to correlation among the observed variables.','ICA':'ICA stands for Independent Components Analysis and it is a linear dimension reduction method, which transforms the dataset into columns of independent components.','optimizationmethod':'Optimization is the process where we train the model iteratively that results in a maximum and minimum function evaluation.','Random':'Random search is a method in which random combinations of hyperparameters are selected and used to train a model. The best random hyperparameter combinations are used. Random search bears some similarity to grid search.','Grid':'Grid search is essentially an optimization algorithm which lets to select the best parameters for your optimization problemfrom a list of parameter options that provided, hence automating the trial-and-error method.','Bays':'Bayesian optimisation in turn takes into account past evaluations when choosing the hyperparameter set to evaluate next. This approach typically requires less iterations to get to the optimal set of hyperparameter values.','Stopwords':'Stop words are commonly eliminated which are commonly used that they carry very little useful information. They are passed in a list [""Stopword1"",""Stopword2""]','Tokenization':'It is essentially splitting a phrase, sentence, paragraph, or an entire text document into smaller units, such as individual words or terms. Choose the library for tokenization','Lemma':'In lemmatization, the transformation uses a dictionary to map different variants of a word back to its root format.','Stopwords1':'Stop words are commonly eliminated which are commonly used that they carry very little useful information.Select from the below library to remove them',
'Genetic':'The genetic algorithm repeatedly modifies a population of individual solutions. At each step, the genetic algorithm selects individuals at random from the current population to be parents and uses them to produce the children for the next generation. Over successive generations, the population evolves toward an optimal solution.','CV':'Cross-validation is a resampling procedure used to evaluate machine learning models on a limited data sample. The procedure has a single parameter called k that refers to the number of groups that a given data sample is to be split into.','Ensemble':'Ensemble learning is a general meta approach to machine learning that seeks better predictive performance by combining the predictions from multiple models.','EnsembleStatus':'Enable or disable according to the preference','TargetEncoding':'Target encoding is the process of replacing a categorical value with the mean of the target variable','OneHotEndoding':'Encode categorical features as a one-hot numeric array.','LabelEncoding':'Encode target labels with value between 0 and n_classes-1.','SMCStrategy':'A most_frequent model - The default. In regression the prediction is equal to the mean value, in classification the prediction is equal to the most common value.\n A uniform model - In regression, selects a random value from the y range. In classification, selects one of the labels by random.\n A stratified model - Draws the prediction from the distribution of the labels in the train.\n A tree model - Trains a simple decision tree with a given depth. The depth can be customized using the max_depth parameter.','SMCGain':'The gain is calculated as:\ngain = (model score - simple score)/(perfect score - simple score)','SMCTreeDepth':'the max depth of the tree (used only if simple model type is tree).','MIcondition':'Measure model average inference time (in seconds) per sample'}"
create_dummy_dataset.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import random
import string
from sklearn import datasets
import pandas as pd
import names # pip install names
import time
import numpy as np
import argparse
import json
import os
import platform
import time
import sys
from appbe.dataPath import CONFIG_FILE_PATH

def randStr(chars = 'XYZABCDE', N=2):
    return ''.join(random.choice(chars) for _ in range(N))

def load_json_config(file):

    with open(file, 'r') as openfile:    

        json_object = json.load(openfile)

        for key, value in json_object.items():
            print(key, value)

    return json_object
    
    
def gen_data_classification(number_samples=10000, number_numerical_features=25,
                            file_name='file_class.csv', number_categorical_features=2,
                            number_text_features=2,
                            missing_proportion=0.1,
                            number_informative=20, number_class=2,
                            weights=[0.5,0.5], shift=0.0,
                            value_range_dict={0:(1, 2)}):

    # TO-DO: need to add min max vlinear/non-linear
    try:
        features, output = datasets.make_classification(
            n_samples=number_samples,
            n_features=number_numerical_features,
            n_informative=number_informative,
            n_classes=number_class,
            weights = weights,  # 20% of the targets will be 0, 80% will be 1. default is 50/50
            shift=shift,

            )

        columns = []

        # Numerical Features
        for i in range(number_numerical_features):
            columns.append('Feature_' + str(i))

        features = pd.DataFrame(features, columns=columns)

        # Setting min max value for features
        for col_name in features.columns:
            for key, value in value_range_dict.items():
                if (str(features.columns.get_loc(col_name)) == key):
                    for item in features[col_name].values:
                        if item < value[0]:
                            features.loc[features[col_name] == item,
                                         col_name] = random.uniform(value[0],value[1])
                        if item > value[1]:
                            features.loc[features[col_name] == item,
                                         col_name] = random.uniform(value[0],value[1])

        df_list = []
        df_list.append(features)

        # Add Categorical Features
        for j in range(number_categorical_features):
            categorical_feature1_list = []
            number_categories_per_feature = random.randint(2, 5)
            for i in range(number_categories_per_feature):
                categorical_feature1_list.append(randStr(N=3))
            print(""Categories of Categorical Feature "" + str(j) + "": "", categorical_feature1_list)
            categorical_feature1 = []
            for k in range(number_samples):
                categorical_feature1.append(random.choice(categorical_feature1_list))

            categorical_feature1 = pd.DataFrame(categorical_feature1, columns=['Categorical'+str(j)])
            df_list.append(categorical_feature1)

        # Add Text Features
        for l in range(number_text_features):
            text_feature = []
            for k in range(number_samples):
                text_feature.append(names.get_full_name())
                # text_feature.append(r.get_random_word())
            text_feature = pd.DataFrame(text_feature, columns=['Name'+str(l)])
            # text_feature = pd.DataFrame(text_feature, columns=['Word' + str(l)])
            df_list.append(text_feature)

        output = pd.DataFrame(output, columns=['Target'])
        df_list.append(output)
        df_final = pd.concat(df_list, axis=1)

        for col in df_final.columns:
            # df_final.loc[df_final.sample(frac=0.1).index, col] = np.NaN
           df_final.loc[df_final[col].sample(frac=missing_proportion).index, col] = np.NaN
        # Check to see proportion of NaN values:
        # df.isnull().sum() / len(df)

        df_final.to_csv(file_name)
        return True
    except Exception as e:
        print(e)
        return False

def gen_data_regression(
                        number_samples=10000, number_numerical_features=25,
                        file_name='file_regress.csv', number_categorical_features=2,
                        number_text_features=2,
                        missing_proportion=0.1,
                        number_informative=10,
                        number_target=1, bias=0.0, noise=0.0,
                        value_range_dict={1:(5, 10)}
                        ):
    try:
        features, output = datasets.make_regression(
            n_samples=number_samples,
            n_features=number_numerical_features,
            n_informative=number_informative,
            n_targets=number_target,
            bias=bias,
            noise=noise,

            )

        columns = []
        for i in range(number_numerical_features):
            columns.append('Feature_' + str(i))
        features = pd.DataFrame(features, columns=columns)

        for col_name in features.columns:
            for key, value in value_range_dict.items():
                if (str(features.columns.get_loc(col_name)) == key):
                    for item in features[col_name].values:
                        if item < value[0]:
                            features.loc[features[col_name] == item,
                                         col_name] = random.uniform(value[0],value[1])
                        if item > value[1]:
                            features.loc[features[col_name] == item,
                                         col_name] = random.uniform(value[0],value[1])

        df_list = []
        df_list.append(features)

        for j in range(number_categorical_features):
            categorical_feature1_list = []
            number_categories_per_feature = random.randint(2, 5)
            for i in range(number_categories_per_feature):
                categorical_feature1_list.append(randStr(N=3))
            print(""Categories of Categorical Feature "" + str(j) + "": "", categorical_feature1_list)
            categorical_feature1 = []
            for k in range(number_samples):
                categorical_feature1.append(random.choice(categorical_feature1_list))

            categorical_feature1 = pd.DataFrame(categorical_feature1, columns=['Categorical' + str(j)])
            df_list.append(categorical_feature1)

        for l in range(number_text_features):
            text_feature = []
            for k in range(number_samples):
                text_feature.append(names.get_full_name())
            text_feature = pd.DataFrame(text_feature, columns=['Name'+str(l)])
            df_list.append(text_feature)

        output = pd.DataFrame(output, columns=['Target'])
        df_list.append(output)
        df_final = pd.concat(df_list, axis=1)

        for col in df_final.columns:
            # df_final.loc[df_final.sample(frac=0.1).index, col] = np.NaN
           df_final.loc[df_final[col].sample(frac=missing_proportion).index, col] = np.NaN
        # Check to see proportion of NaN values:
        # df.isnull().sum() / len(df)
        df_final.to_csv(file_name)
        return True
    except Exception as e:
        print(e)
        return False

def gen_data_series(univariate=""True"",
                    start_time='2000-01-01 00:00',
                    end_time='2022-12-31 00:00',
                    number_samples=10000, number_numerical_features=25,
                    file_name='file_regress.csv', number_categorical_features=2,
                    # number_text_features=2,
                    missing_proportion=0.1,
                    number_informative=10,
                    number_target=1, bias=0.0, noise=0.0,
                    value_range_dict={1:(5, 10)}
                    ):
    try:
        if univariate == ""True"":
            number_numerical_features = 1
            number_categorical_features = 0

        features, output = datasets.make_regression(
            n_samples=number_samples,
            n_features=number_numerical_features,
            n_informative=number_informative,
            n_targets=number_target,
            bias=bias,
            noise=noise,
            )

        columns = []

        # Numerical Features
        for i in range(number_numerical_features):
            columns.append('Feature_' + str(i))

        features = pd.DataFrame(features, columns=columns)

        # Setting min max value for features
        for col_name in features.columns:
            for key, value in value_range_dict.items():
                if (str(features.columns.get_loc(col_name)) == key):
                    for item in features[col_name].values:
                        if item < value[0]:
                            features.loc[features[col_name] == item,
                                         col_name] = random.uniform(value[0],value[1])
                        if item > value[1]:
                            features.loc[features[col_name] == item,
                                         col_name] = random.uniform(value[0],value[1])

        df_list = []
        df_list.append(features)

        # Add Categorical Features
        for j in range(number_categorical_features):
            categorical_feature1_list = []
            number_categories_per_feature = random.randint(2, 5)
            for i in range(number_categories_per_feature):
                categorical_feature1_list.append(randStr(N=3))
            print(""Categories of Categorical Feature "" + str(j) + "": "", categorical_feature1_list)
            categorical_feature1 = []
            for k in range(number_samples):
                categorical_feature1.append(random.choice(categorical_feature1_list))

            categorical_feature1 = pd.DataFrame(categorical_feature1, columns=['Categorical'+str(j)])
            df_list.append(categorical_feature1)

        # df2['date'] = pd.date_range(start='1890-01-01', freq=""sec"",periods=len(df2))
        time_feature = pd.date_range(start=start_time, end=end_time, periods=number_samples) #freq=""1sec""
        time_feature = pd.DataFrame(time_feature, columns=['Date'])
        # df_list.append(time_feature)
        df_list.insert(0, time_feature)
        output = pd.DataFrame(output, columns=['Feature_' + str(number_numerical_features)])
        if univariate != ""True"":
            df_list.append(output)
        df_final = pd.concat(df_list, axis=1)

        for col in df_final.columns:
            # df_final.loc[df_final.sample(frac=0.1).index, col] = np.NaN
           df_final.loc[df_final[col].sample(frac=missing_proportion).index, col] = np.NaN

        # Check to see proportion of NaN values:
        # df.isnull().sum() / len(df)

        df_final.to_csv(file_name)
        return True
    except Exception as e:
        print(e)
        return False

def data_generated_csv():

    datajson = os.path.join(CONFIG_FILE_PATH, 'data_generated.json')
    with open(datajson, 'r+') as f:
        dictionary = json.load(f)
# f.close()


    if dictionary.get('problemType') == 'classification':
        number_samples = dictionary.get(""number_samples"")
        number_numerical_features = dictionary.get(""number_numerical_features"")
        number_categorical_features = dictionary.get(""number_categorical_features"")
        number_text_features = dictionary.get(""number_text_features"")
        missing_proportion = dictionary.get(""missing_proportion"")
        number_informative = dictionary.get(""number_informative"")
        number_class = dictionary.get(""number_class"")
        weights = dictionary.get(""weights"")
        shift = dictionary.get(""shift"")
        data_path = dictionary.get(""data_path"")
        value_range_dict = dictionary.get(""value_range_dict"")

        gen_data_classification(number_samples=number_samples, 
                                number_numerical_features=number_numerical_features,
                                file_name=data_path,
                                number_categorical_features=number_categorical_features,
                                number_text_features=number_text_features,
                                missing_proportion=missing_proportion,
                                number_informative=number_informative,
                                number_class=number_class, weights=weights,
                                shift=shift, value_range_dict=value_range_dict)

    elif dictionary.get('problemType') == 'regression':
        number_samples = dictionary.get(""number_samples"")
        number_numerical_features = dictionary.get(""number_numerical_features"")
        number_categorical_features = dictionary.get(""number_categorical_features"")
        number_text_features = dictionary.get(""number_text_features"")
        missing_proportion = dictionary.get(""missing_proportion"")
        number_informative = dictionary.get(""number_informative"")
        number_target = dictionary.get(""number_target"")
        bias = dictionary.get(""bias"")
        noise = dictionary.get(""noise"")
        data_path = dictionary.get(""data_path"")
        value_range_dict = dictionary.get(""value_range_dict"")

        gen_data_regression(number_samples=number_samples,
                            number_numerical_features=number_numerical_features,
                            file_name=data_path,
                            number_categorical_features=number_categorical_features,
                            number_text_features=number_text_features,
                            missing_proportion=missing_proportion,
                            number_informative=number_informative,
                            number_target=number_target, bias=bias,
                            noise=noise, value_range_dict=value_range_dict)
                            
    elif dictionary.get('problemType') == 'timeseriesforecasting': #task 11997
        data_path = dictionary.get(""data_path"")
        is_univariate = dictionary.get(""univariate"")
        number_samples = dictionary.get(""number_samples"")
        number_numerical_features = dictionary.get(""number_numerical_features"")
        number_categorical_features = dictionary.get(""number_categorical_features"")
        missing_proportion = dictionary.get(""missing_proportion"")
        number_informative = dictionary.get(""number_informative"")
        number_target = dictionary.get(""number_target"")
        bias = dictionary.get(""bias"")
        noise = dictionary.get(""noise"")
        value_range_dict = dictionary.get(""value_range_dict"")
        gen_data_series(univariate=is_univariate,
                number_samples=number_samples, 
                number_numerical_features=number_numerical_features,
                file_name=data_path, 
                number_categorical_features=number_categorical_features,
                # number_text_features=2,
                missing_proportion=missing_proportion,
                number_informative=number_informative,
                number_target=number_target, bias=bias, 
                noise=noise,
                value_range_dict=value_range_dict)


if __name__ == ""__main__"":
    data_generated_csv()
"
gcsbucketsDB.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import sqlite3
from pathlib import Path
import json
import os
import rsa
import boto3   #usnish
import pandas as pd
import time
import sqlite3

class sqlite_db():

	def __init__(self, location, database_file=None):
		if not isinstance(location, Path):
			location = Path(location)
		if database_file:
			self.database_name = database_file
		else:
			self.database_name = location.stem
		db_file = str(location/self.database_name)
		self.conn = sqlite3.connect(db_file)
		self.cursor = self.conn.cursor()

	def table_exists(self, name):
		query = f""SELECT name FROM sqlite_master WHERE type='table' AND name='{name}';""
		listOfTables = self.cursor.execute(query).fetchall()
		return len(listOfTables) > 0

	def read_data(self, table_name):
		query = f""SELECT * FROM {table_name}""
		row = self.cursor.execute(query).fetchall()
		return list(row)
		#return pd.read_sql_query(f""SELECT * FROM {table_name}"", self.conn)

	def create_table(self,name, columns, dtypes):
		query = f'CREATE TABLE IF NOT EXISTS {name} ('
		
		for column, data_type in zip(columns, dtypes):
			query += f""'{column}'	TEXT,""
		query = query[:-1]
		query += ');'
		self.conn.execute(query)
		return True
	def delete_record(self,table_name,col_name, col_value):
		try:
			query = f""DELETE FROM {table_name} WHERE {col_name}='{col_value}'""
			self.conn.execute(query)
			self.conn.commit()
			return 'success'
		except Exception as e :
			print(str(e))
			print(""Deletion Failed"")
			return 'error'
	
	def get_data(self,table_name,col_name,col_value):
		query = f""SELECT * FROM {table_name} WHERE {col_name}='{col_value}'""
		row = self.cursor.execute(query).fetchone()
		if(row == None):
			return []
		return list(row)
	
	def write_data(self,data, table_name):
		if not self.table_exists(table_name):
			self.create_table(table_name, data.columns, data.dtypes)
		tuple_data = list(data.itertuples(index=False, name=None))
		insert_query = f'INSERT INTO {table_name} VALUES('
		for i in range(len(data.columns)):
			insert_query += '?,'
		insert_query = insert_query[:-1] + ')'
		self.cursor.executemany(insert_query, tuple_data)
		self.conn.commit()
		return True
		
	def close(self):
		self.conn.close()

def add_new_GCSBucket(request):
	try:
		from appbe.dataPath import DATA_DIR
		file_path = os.path.join(DATA_DIR,'sqlite')
		sqlite_obj = sqlite_db(file_path,'config.db')
		
		print(request.POST[""aionreferencename""])		
		print(request.POST[""serviceaccountkey""])
		print(request.POST[""bucketname""])
		if request.POST[""aionreferencename""] =='' or request.POST[""serviceaccountkey""] == '' or request.POST[""bucketname""] == '' :
			
			return 'error'
		newdata = {}	   
		newdata['Name'] = [request.POST[""aionreferencename""]]
		newdata['GCSServiceAccountKey'] = [request.POST[""serviceaccountkey""]]
		newdata['GCSbucketname'] = [request.POST[""bucketname""]]
		name = request.POST[""aionreferencename""]
		if sqlite_obj.table_exists(""gcsbucket""):        
			if(len(sqlite_obj.get_data(""gcsbucket"",'Name',name))>0):
				return 'error1'            
		sqlite_obj.write_data(pd.DataFrame.from_dict(newdata),'gcsbucket')
	except:
		return 'error'

def get_gcs_bucket():
	try:
		from appbe.dataPath import DATA_DIR
		file_path = os.path.join(DATA_DIR,'sqlite')
		sqlite_obj = sqlite_db(file_path,'config.db')
		temp_data = sqlite_obj.read_data('gcsbucket')
		data = []
		for x in temp_data:
			data_dict = {}
			data_dict['Name'] = x[0]
			data_dict['GCSServiceAccountKey'] = x[1]
			data_dict['GCSbucketname'] = x[2]
			data.append(data_dict)	
	except Exception as e:
		print(e)
		data = []
	return data

def read_gcs_bucket(name,filename,DATA_FILE_PATH):
	try:
		from appbe.dataPath import DATA_DIR
		file_path = os.path.join(DATA_DIR,'sqlite')
		sqlite_obj = sqlite_db(file_path,'config.db')
		data = sqlite_obj.get_data(""gcsbucket"",'Name',name)
	except:
		data = []
	found = False
	if len(data)!=0:
		GCSServiceAccountKey = data[1]
		GCSbucketname = data[2]
		found = True		
	#print(found)
	#print(name)
	try:
		if found:
			import io 
			from google.cloud import storage	
			
			#print(GCSServiceAccountKey)
			#print(GCSbucketname)
			try:
				storage_client = storage.Client.from_service_account_json(GCSServiceAccountKey)
				bucket = storage_client.get_bucket(GCSbucketname)
				blob = bucket.blob(filename)		
				data = blob.download_as_string()
				df = pd.read_csv(io.BytesIO(data), encoding = 'utf-8', sep = ',',encoding_errors= 'replace')
			except Exception as e:
				return ""Error"",str(e), pd.DataFrame()
			return 'Success',"""",df
	except Exception as e:
		print(e)
		return 'Error',""Please check bucket configuration"",pd.DataFrame()

def remove_gcs_bucket(name):
	from appbe.dataPath import DATA_DIR
	file_path = os.path.join(DATA_DIR,'sqlite')
	sqlite_obj = sqlite_db(file_path,'config.db')
	return sqlite_obj.delete_record('gcsbucket','Name',name)
		
	"
dataIngestion.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import os
import pandas as pd
import requests
from io import StringIO

import json
import time
import shutil
import sys
from appbe import compute
from appbe.aion_config import kafka_setting
from appbe.aion_config import running_setting
from appbe.s3bucketsDB import get_s3_bucket
from appbe.gcsbucketsDB import get_gcs_bucket
from appbe.azureStorageDB import get_azureStorage
from appbe.aion_config import eda_setting
from appbe.s3bucketsDB import read_s3_bucket
from appbe.gcsbucketsDB import read_gcs_bucket
from appbe.azureStorageDB import read_azureStorage
from appbe.validatecsv import csv_validator

import time

from appbe.dataPath import LOG_LOCATION
from appbe.dataPath import DATA_FILE_PATH
from appbe.log_ut import logg
import logging

def langchain_splittext(filename):
    try:
        from langchain.document_loaders import PyPDFLoader
        from langchain.text_splitter import RecursiveCharacterTextSplitter 
        loader = PyPDFLoader(filename)
        pages = loader.load()    
        text_splitter = RecursiveCharacterTextSplitter(chunk_size=500,chunk_overlap=50)
        texts = text_splitter.split_documents(pages)    
        return(texts)
    except Exception as e:
        print(e)
        
def pd_lanfchain_textsplitter(datalocation,data):
    try:
        document=[]
        for i in range(len(data)):
            filename = os.path.join(datalocation,data.loc[i,""File""])
            out = langchain_splittext(filename)
            for doc in out:
                print(doc.page_content)
                document.append(doc.page_content)
        my_data = pd.DataFrame({'instruction': document}) 
        n = 1
        my_data[""response""] = my_data[""instruction""].tolist()[n:] + my_data[""instruction""].tolist()[:n]
        filetimestamp = str(int(time.time()))
        filename = os.path.join(DATA_FILE_PATH, 'LLMTuning_' + filetimestamp+'.csv')
        my_data.to_csv(filename,index=False)
        return(filename)
    except Exception as e:
        print(e)
def getimpfeatures(dataFile, numberoffeatures,delimiter,textqualifier):
    imp_features = []
    if numberoffeatures > 20:
        try:
            from appbe.eda import ux_eda
            eda_obj = ux_eda(dataFile,delimiter,textqualifier,optimize=1)            
            if eda_obj.getNumericFeatureCount() >= 2:
                pca_map = eda_obj.getPCATop10Features()
                imp_features = pca_map.index.values.tolist()
        except Exception as e:
            print(e)
            pass
    return imp_features

def pdf2text(inpFileName):
    try:
        from pypdf import PdfReader
        reader = PdfReader(inpFileName)
        number_of_pages = len(reader.pages)
        text=""""
        OrgTextOutputForFile=""""                
        for i in range(number_of_pages) :
            page = reader.pages[i]
            text1 = page.extract_text()
            text=text+text1
        import nltk
        tokens = nltk.sent_tokenize(text)
        for sentence in tokens:
            sentence=sentence.replace(""\n"", "" "")        
            if   len(sentence.split()) < 4  :
                continue
            if   len(str(sentence.split(',')).split()) < 8  :
                continue
            if   any(chr.isdigit() for chr in sentence)  :
                continue
            OrgTextOutputForFile= OrgTextOutputForFile+str(sentence.strip())
        #print(""\n\n\n\nOrgTextOutputForFile------------->\n\n\n"",OrgTextOutputForFile)
        return (OrgTextOutputForFile)        
    except Exception as e:
        print(""Encountered exception.  {0}"".format(e))
        
def getcommonfields():
    computeinfrastructure = compute.readComputeConfig()
    from appbe.aion_config import settings
    usecasetab = settings()    
    kafkaSetting = kafka_setting()
    ruuningSetting = running_setting()
    context = {'s3buckets':get_s3_bucket(),'gcsbuckets':get_gcs_bucket(),'computeinfrastructure':computeinfrastructure,'kafkaSetting':kafkaSetting,'ruuningSetting':ruuningSetting,'usecasetab':usecasetab,'azurestorage':get_azureStorage()}
    return context

def getusercasestatus(request):
    if 'UseCaseName' in request.session:
        selected_use_case = request.session['UseCaseName']
    else:
        selected_use_case = 'Not Defined'

    if 'ModelVersion' in request.session:
        ModelVersion = request.session['ModelVersion']
    else:
        ModelVersion = 0

    if 'ModelStatus' in request.session:
        ModelStatus = request.session['ModelStatus']
    else:
        ModelStatus = 'Not Trained'
    return selected_use_case,ModelVersion,ModelStatus
    
def delimitedsetting(delimiter='',textqualifier='',other=''):
    if delimiter != '':
        if delimiter.lower() == 'tab' or delimiter.lower() == '\t':
            delimiter = '\t'
        elif delimiter.lower() == 'semicolon' or delimiter.lower() == ';':
            delimiter = ';'
        elif delimiter.lower() == 'comma' or delimiter.lower() == ',':
            delimiter = ','
        elif delimiter.lower() == 'space' or delimiter.lower() == ' ':
            delimiter = ' '
        elif delimiter.lower() == 'other' or other.lower() != '':
            if other != '':
                delimiter = other
            else:
                delimiter = ','
        elif delimiter != '':
            delimiter = delimiter
        else:
            delimiter = ','
    else:
        delimiter = ','
    if textqualifier == '':
        textqualifier = '""'
    return delimiter,textqualifier

def multipleZipExtraction(data,DATA_FILE_PATH):
    from zipfile import ZipFile
    try:
        import glob
        filetimestamp = str(int(time.time()))
        extracted_data = os.path.join(DATA_FILE_PATH, 'extracted_' + filetimestamp)
        os.mkdir(extracted_data)
        with ZipFile(data, 'r') as zObject:
            zObject.extractall(extracted_data)
            csv_files = glob.glob(r'{}\*.{}'.format(extracted_data,'csv'))
            df_csv_append = pd.DataFrame()
            for file in csv_files:
                df = pd.read_csv(file)
                df_csv_append = df_csv_append.append(df, ignore_index=True)
                for f in os.listdir(extracted_data):
                    os.remove(os.path.join(extracted_data, f))
                    #os.mkdir(extracted_data)
                    combined_data = os.path.join(extracted_data,filetimestamp+'.csv')
                    df_csv_append.to_csv(combined_data)
                return combined_data
    except Exception as e:
        if os.path.exists(extracted_data):
            shutil.rmtree(extracted_data)
        #print (e)
        return ''



def tarFileExtraction(data,DATA_FILE_PATH):
    try:
        import tarfile
        filetimestamp = str(int(time.time()))
        extracted_data = os.path.join(DATA_FILE_PATH, 'extracted_' + filetimestamp)
        os.mkdir(extracted_data)
        if data.endswith('tar'):
            file = tarfile.open(data)
            file.extractall(extracted_data)
            file.close()
	 
            for f in os.listdir(extracted_data):
                if f.endswith('csv') or f.endswith('tsv'):
                    dataFile = os.path.join(extracted_data,f)
            return dataFile
    except Exception as e:
        if os.path.exists(extracted_data):
            shutil.rmtree(extracted_data)
        print (e)
        return ''
# ------  changes for the bug 10379 starts---------------- By Usnish ------
def checkRamAfterLoading(dataPath):
    import psutil
    availableRam = psutil.virtual_memory()[1]/1e9
    filesize = os.path.getsize(dataPath)/1e9
    return availableRam < 2*filesize
def checkRamBeforeLoading(dataPath):
    import psutil
    filesize = os.path.getsize(dataPath)/1e9
    totalRam = psutil.virtual_memory()[0] / 1e9
    if( filesize > 0.8 * totalRam):
        return ""File size is larger than the 80% of Total RAM.""
    return """"
# ------  changes for the bug 10379 ends---------------- By Usnish ------


# ---------- 10012:Decision Threshold related Changes S T A R T ----------
# This method is used to check If  ->  
# 80% of available RAM size is greater than ingested data (or not). 
def checkRAMThreshold(dataPath):
    import psutil
    availableRam = psutil.virtual_memory()[1]/1e9
    filesize = os.path.getsize(dataPath)/1e9
    return (0.8 * availableRam) > filesize
# ---------------------- E N D ----------------------


# Text Data Labelling using LLM related changes
# --------------------------------------------------------
def ingestTextData(request, DATA_FILE_PATH):
    log = logging.getLogger('log_ux')
    try:
        Datapath = request.FILES['DataFilePath']
        from appbe.eda import ux_eda
        
        ext = str(Datapath).split('.')[-1]
        request.session['uploadfiletype'] = 'Local'
        request.session['datatype'] = 'Normal'
        filetimestamp = str(int(time.time()))
        if ext.lower() in ['csv','tsv','tar','zip','avro','parquet']:
            dataFile = os.path.join(DATA_FILE_PATH,'AION_' + filetimestamp+'.'+ext)
        else:
            dataFile = os.path.join(DATA_FILE_PATH,'AION_' + filetimestamp)
        with open(dataFile, 'wb+') as destination:
            for chunk in Datapath.chunks():
                destination.write(chunk)
        destination.close()
        dataPath = dataFile
                            
        request.session['textdatapath'] = dataPath
        
        # import pdb
        # pdb.set_trace()
        
        # check_df = pd.read_csv(dataPath)
        eda_obj = ux_eda(dataPath)
        check_df = eda_obj.getdata()
        
        df_top = check_df.head(10)
        df_json = df_top.to_json(orient=""records"")
        df_json = json.loads(df_json)
        
        # featuresList = check_df.columns.tolist()
        features,dateFeature,seqFeature,constantFeature,textFeature,targetFeature,numericCatFeatures,numericFeature,catfeatures = eda_obj.getFeatures()
        
        noTextFeature = False
        if len(textFeature) == 0: 
            noTextFeature = True
            
        context = {'raw_data':df_json, 'featuresList':textFeature, 'selected':'DataOperations', 'noTextFeature':noTextFeature}
        
        return context
        
    except Exception as e:
        print(e)
        exc_type, exc_obj, exc_tb = sys.exc_info()
        fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
        print(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))
        
        context = {'error': 'Failed to read data','emptycsv' : 'emptycsv'}
        log.info('Text Data Ingestion -- Error : Failed to read data, '+str(e))
        log.info('Details : '+ str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))
        return context
# ---------------------- E N D ---------------------------



def ingestDataFromFile(request,DATA_FILE_PATH):
    log = logging.getLogger('log_ux')
    delimiter,textqualifier = delimitedsetting(request.POST.get('delimiters'),request.POST.get('qualifier'),request.POST.get('delimiters_custom_value'))
    request.session['delimiter'] = delimiter
    request.session['textqualifier'] = textqualifier
    context = getcommonfields()
    selected_use_case,ModelVersion,ModelStatus = getusercasestatus(request)
    context.update({'selected_use_case': selected_use_case,'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion,})
    try:
        t1 = time.time()
        request.session['uploadfiletype'] = ''
        request.session['uploadLocation'] = ''
        data_is_large = False
        check_df = pd.DataFrame()
        if request.method == 'POST':
            if 'ModelVersion' in request.session:
                ModelVersion = request.session['ModelVersion']
            else:
                ModelVersion = 0
            if 'ModelName' not in request.session:
                movenext = False
                request.session['currentstate'] = 0
                context.update({'tab': 'tabconfigure', 'error': 'Please Create/Select the Use Case First', 'movenext': movenext,'currentstate': request.session['currentstate']})
                log.info('Data Ingestion : ' + str(selected_use_case) + ' : ' + str(
                    ModelVersion) + ' : ' + '0 ' + 'sec' + ' : ' + 'Error : Please Create/Select the Use Case First')
                return context
            else:
                type = request.POST.get(""optradio"")  
                if type == ""s3Bucket"":
                    try:
                        request.session['uploadfiletype'] = 'S3Bucket'						
                        bucketname = request.POST.get('s3bucketname')
                        fileName = request.POST.get('s3file')
                        if fileName != '':
                            status,msg,check_df = read_s3_bucket(bucketname,fileName,DATA_FILE_PATH)
                            if status == 'Success':
                                filetimestamp = str(int(time.time()))
                                dataFile = os.path.join(DATA_FILE_PATH, 'AION_' + filetimestamp+'.csv')
                                check_df.to_csv(dataFile, index=False)
                                request.session['datalocation'] = dataFile
                           
                            else :
                                request.session['currentstate'] = 0               #usnish
                                context.update({'error': str(msg),'ModelVersion': ModelVersion,'emptycsv' : 'emptycsv'})
                                log.info('Data Ingestion : ' + str(selected_use_case) + ' : ' + str(
                                    ModelVersion) + ' : ' + '0' + 'sec' + ' : ' + 'Error : ' + str(msg))
                                return context
                                    
                        else:                       #usnish
                            request.session['currentstate'] = 0
                            context.update({'error': 'Please provide a file name','ModelVersion': ModelVersion,'emptycsv' : 'emptycsv'})
                            log.info('Data Ingestion : ' + str(selected_use_case) + ' : ' + str(
                                    ModelVersion) + ' : ' + '0 ' + 'sec' + ' : ' + 'Error : Please provide a file name')
                            return context
                    except Exception as e:
                        request.session['currentstate'] = 0
                        context.update({'error': str(e),'ModelVersion': ModelVersion,'emptycsv' : 'emptycsv'})
                        log.info('Data Ingestion : ' + str(selected_use_case) + ' : ' + str(
                                    ModelVersion) + ' : ' + '0 ' + 'sec' + ' : ' + 'Error : '+ str(e))
                        return context
                        '''request.session['datalocation'] = ""S3""'''
                
                
                # -------------------------------- Graviton-Integration Changes S T A R T --------------------------------                
                elif type == ""graviton"":
                    try:
                        dataServiceId = request.POST.get('dataservice')
                        metadataId = request.POST.get('metadata')
                        data = []
                        from appbe.aion_config import get_graviton_data
                        graviton_url,graviton_userid = get_graviton_data()
                        gravitonURL = graviton_url
                        gravitonUserId = graviton_userid
        
                        # url = 'https://xenius.azurewebsites.net/api/getdata?userid=1&dataserviceid='+str(dataserviceId) +'&metadataid=' +str(metadataId)
                        url = gravitonURL + 'getdata?userid=' + gravitonUserId +'&dataserviceid='+str(dataServiceId) +'&metadataid=' +str(metadataId)
                        print(url)
                        response = requests.get(url)
                        statuscode = response.status_code
                        if statuscode == 200:
                            json_dictionary = json.loads(response.content)
                            data = json_dictionary['result']
                        
                        firstElement = next(iter(data[0].keys()))
                        check_df = pd.DataFrame.from_dict(data[0][firstElement])
                        
                        filetimestamp = str(int(time.time()))
                        dataFile = os.path.join(DATA_FILE_PATH, 'AION_' + filetimestamp+'.csv')
                        check_df.to_csv(dataFile, index=False)
                        
                        request.session['uploadfiletype'] = 'Graviton'
                        request.session['datalocation'] = str(dataFile)
                    except Exception as e:
                        print(e)
                        request.session['currentstate'] = 0
                        context.update({'error':'Check log file for more details','ModelVersion': ModelVersion,'emptycsv' : 'emptycsv'})
                        log.info('Data Ingestion : ' + str(selected_use_case) + ' : ' + str(ModelVersion) + ' : ' + '0 ' + 'sec' + ' : ' + 'Error :'+str(e))
                        return context
                # ------------------------------------------------ E N D -------------------------------------------------
                
                elif type == ""azurestorage"":							
                    try:		
                        request.session['uploadfiletype'] = 'AzureStorage'						
                        azurename = request.POST.get('azurename')
                        directoryname = request.POST.get('azuredirectory')
                        if directoryname != '':
                               
                            status,msg,check_df = read_azureStorage(azurename,directoryname,DATA_FILE_PATH)
                            if status == 'Success':
                                filetimestamp = str(int(time.time()))
                                dataFile = os.path.join(DATA_FILE_PATH, 'AION_' + filetimestamp+'.csv')
                                check_df.to_csv(dataFile, index=False)
                                '''request.session['datalocation'] = ""S3""'''
                                request.session['datalocation'] = dataFile
                            else :
                                request.session['currentstate'] = 0               #usnish
                                context.update({'error': str(msg),'ModelVersion': ModelVersion,'emptycsv' : 'emptycsv'})
                                log.info('Data Ingestion : ' + str(selected_use_case) + ' : ' + str(
                                    ModelVersion) + ' : ' + '0 ' + 'sec' + ' : ' + 'Error : ' +str(msg))

                                return context   
                            
                        else:                                       #usnish
                            request.session['currentstate'] = 0
                            context.update({'error': 'Please provide a file name','ModelVersion': ModelVersion,'emptycsv' : 'emptycsv'})
                            log.info('Data Ingestion : ' + str(selected_use_case) + ' : ' + str(
                                    ModelVersion) + ' : ' + '0 ' + 'sec' + ' : ' + 'Error : Please provide a file name')
                            return context
                    except Exception as e:
                        print(e)
                        request.session['currentstate'] = 0
                        context.update({'error': 'File does not exist','ModelVersion': ModelVersion,'emptycsv' : 'emptycsv'})
                        log.info('Data Ingestion : ' + str(selected_use_case) + ' : ' + str(
                                    ModelVersion) + ' : ' + '0 ' + 'sec' + ' : ' + 'Error : File does not exist, '+str(e))
                        return context
                elif type == ""googleBucket"":
                    try:		
                        request.session['uploadfiletype'] = 'GCPBucket'						
                        bucketname = request.POST.get('gcpbucketname')
                        fileName = request.POST.get('file1')
                        if fileName != '':
                        
                            status,msg,check_df = read_gcs_bucket(bucketname,fileName,DATA_FILE_PATH)
                            if status == 'Success':
                                filetimestamp = str(int(time.time()))
                                dataFile = os.path.join(DATA_FILE_PATH, 'AION_' + filetimestamp+'.csv')
                                check_df.to_csv(dataFile, index=False)
                                '''request.session['datalocation'] = ""S3""'''
                                request.session['datalocation'] = dataFile
                            else :
                                request.session['currentstate'] = 0               #usnish
                                context.update({'error': str(msg),'ModelVersion': ModelVersion,'emptycsv' : 'emptycsv'})
                                log.info('Data Ingestion : ' + str(selected_use_case) + ' : ' + str(
                                    ModelVersion) + ' : ' + '0 ' + 'sec' + ' : ' + 'Error : '+str(msg))
                                return context  
                        else:                                       #usnish
                            request.session['currentstate'] = 0
                            context.update({'error': 'Please provide a file name','ModelVersion': ModelVersion,'emptycsv' : 'emptycsv'})
                            log.info('Data Ingestion : ' + str(selected_use_case) + ' : ' + str(
                                ModelVersion) + ' : ' + '0 ' + 'sec' + ' : ' + 'Error : Please provide a file name')
                            return context
                    except Exception as e:
                        request.session['currentstate'] = 0
                        context.update({'error': 'File does not exist','ModelVersion': ModelVersion,'emptycsv' : 'emptycsv'})
                        log.info('Data Ingestion : ' + str(selected_use_case) + ' : ' + str(
                            ModelVersion) + ' : ' + '0 ' + 'sec' + ' : ' + 'Error : File does not exist, ' + str(e))
                        return context
                elif type == ""url"":
                    try:
                        request.session['uploadfiletype'] = 'URL'  						
                        url_text = request.POST.get('urlpathinput')
                        log.info('Data ingesttion from URL..')
                        request.session['uploadLocation'] = url_text
                        url = url_text
                        check_df = pd.read_csv(url)
                        filetimestamp = str(int(time.time()))
                        dataFile = os.path.join(DATA_FILE_PATH, 'AION_' + filetimestamp+'.csv')
                        check_df.to_csv(dataFile,index=False)	
                        request.session['datalocation'] = dataFile                          
                    except Exception as e:
                        request.session['currentstate'] = 0
                        e = str(e)
                        print(e)
                        if e.find(""tokenizing"")!=-1:
                            error = ""This is not an open source URL to access data""
                            context.update({'error': error, 'ModelVersion': ModelVersion, 'emptycsv': 'emptycsv'})
                        elif e.find(""connection"")!=-1:
                            error = ""Can not access the URL through HCL network, please try with other network""
                            context.update({'error': error, 'ModelVersion': ModelVersion, 'emptycsv': 'emptycsv'})
                        else:
                            error = 'Please provide a correct URL'
                            context.update({'error': error,'ModelVersion': ModelVersion,'emptycsv' : 'emptycsv'})
                        log.info('Data Ingestion : ' + str(selected_use_case) + ' : ' + str(
                            ModelVersion) + ' : ' + '0' + ' sec' + ' : ' + 'Error : '+error + ', '+str(e))
                        return context
                elif type == ""nifi"":
                    try:
                        request.session['uploadfiletype'] = 'Nifi'  						
                        log.info('Data ingesttion from Nifi..')  						
                        url_text = request.POST.get('nifiurlpathinput')
                        request.session['uploadLocation'] = url_text
                        response = requests.get(url_text)
                        csv_str = response.content.decode('utf-8')
                        check_df = pd.read_csv(StringIO(csv_str))
                        filetimestamp = str(int(time.time()))
                        dataFile = os.path.join(DATA_FILE_PATH, 'AION_' + filetimestamp+'.csv')
                        check_df.to_csv(dataFile,index=False)	
                        request.session['datalocation'] = dataFile
                    except requests.exceptions.ConnectionError:
                        request.session['currentstate'] = 0
                        context.update({'error': 'Connection Error','ModelVersion': ModelVersion,'emptycsv' : 'emptycsv'})
                        log.info('Data Ingestion : ' + str(selected_use_case) + ' : ' + str(ModelVersion) + ' : ' + '0' + ' sec' + ' : ' + 'Error:Connection Error')
                        return context    
                    except Exception as e:
                        print(e)
                        request.session['currentstate'] = 0
                        e = str(e)
                        context.update({'error': e,'ModelVersion': ModelVersion,'emptycsv' : 'emptycsv'})
                        log.info('Data Ingestion : ' + str(selected_use_case) + ' : ' + str(ModelVersion) + ' : ' + '0' + ' sec' + ' : ' + 'Error : '+str(e))
                        return context

                elif type == ""tblaiondata"":
                    try:
                        dataset  = request.POST.get('datasetname')
                        print('dataset',dataset)
                        from appbe.dataPath import DATA_DIR
                        from appbe.sqliteUtility import sqlite_db
                        file_path = os.path.join(DATA_DIR,'sqlite')
                        sqlite_obj = sqlite_db(file_path,'config.db')
                        temp_data = sqlite_obj.read_data('dataingest')

                        dataFile = ''
                        for x in temp_data:
                            if x[1] == dataset:
                                    dataFile = x[0]
                        check_df = pd.read_csv(dataFile)
                        request.session['datalocation'] = dataFile
                    except Exception as e:
                        request.session['currentstate'] = 0
                        context.update({'error': 'Failed to read data','ModelVersion': ModelVersion,'emptycsv' : 'emptycsv'})
                        log.info('Data Ingestion : ' + str(selected_use_case) + ' : ' + str(
                            ModelVersion) + ' : ' + '0 ' + 'sec' + ' : ' + 'Error : File does not exist, ' + str(e))
                        return context

                else:
                    if request.FILES:
                        Datapath = request.FILES['DataFilePath']
                        if Datapath.size > 31457280:
                            context.update({'tab': 'tabconfigure','error': 'Upload limit is 30 MB only, use local file option for larger file','currentstate': request.session['currentstate'], 'ModelVersion': ModelVersion})
                            log.info('Data Ingestion : ' + str(selected_use_case) + ' : ' + str(ModelVersion) + ' : ' + '0' + ' sec' + ' : ' + 'Error : Upload limit is 30 MB only, use local file option for larger file')
                            return context
                        ext = str(Datapath).split('.')[-1]
                        request.session['uploadfiletype'] = 'Local'					
                        request.session['datatype'] = 'Normal'
                        filetimestamp = str(int(time.time()))
                        if ext.lower() in ['csv','tsv','tar','zip','avro','parquet']:
                            dataFile = os.path.join(DATA_FILE_PATH,'AION_' + filetimestamp+'.'+ext)
                        else:
                            dataFile = os.path.join(DATA_FILE_PATH,'AION_' + filetimestamp)
                        with open(dataFile, 'wb+') as destination:
                            for chunk in Datapath.chunks():
                                destination.write(chunk)
                        destination.close()
                        dataPath = dataFile
                    else:
                        dataPath = request.POST.get('localfilePath')
                        #print(os.path.getsize(dataPath))
                    
                    # 10012:Decision Threshold related Changes - S T A R T
                        #removed few lines related to the check to not allow data to be ingested
                    # E N D
                    
                  
                    if request.POST.get('optfiletype') == 'avro':
                        try:
                            import pandavro as pdx     
                            if os.path.isdir(dataPath):
                                for f in os.listdir(dataPath):
                                    if f.endswith('avro'):
                                        processed_df = pdx.read_avro(f)
                                    if not df.empty:
                                        df = df.append(processed_df, ignore_index=True)
                                    else:
                                        df = pd.DataFrame(processed_df)
                            elif os.path.isfile(dataPath): 
                                import pandavro as pdx
                                df = pdx.read_avro(dataPath)
                            filetimestamp = str(int(time.time()))
                            dataFile = os.path.join(DATA_FILE_PATH, 'AION_' + filetimestamp+'.csv')
                            df.to_csv(dataFile, index=False)
                            request.session['datalocation'] = str(dataFile)
                        except Exception as e:
                            print(e)
                            
                    elif request.POST.get('optfiletype') == 'parquet':
                        if os.path.isdir(dataPath):
                            for f in os.listdir(dataPath):
                                if f.endswith('parquet'):
                                    processed_df = pd.read_parquet(f, engine='pyarrow')
                                if not df.empty:
                                    df = df.append(processed_df, ignore_index=True)
                                else:
                                    df = pd.DataFrame(processed_df)
                        elif os.path.isfile(dataPath):    
                            df = pd.read_parquet(dataPath, engine='pyarrow')
                        filetimestamp = str(int(time.time()))
                        dataFile = os.path.join(DATA_FILE_PATH, 'AION_' + filetimestamp+'.csv')
                        df.to_csv(dataFile, index=False)
                        request.session['datalocation'] = str(dataFile)
                    elif request.POST.get('optfiletype') == 'dilimeted':
                        
                        if os.path.isdir(dataPath): 
                            for f in os.listdir(dataPath):
                                if f.endswith('csv') or f.endswith('tsv'):
                                    processed_df = pd.read_csv(dataFile, encoding='utf8',sep=delimiter,quotechar=textqualifier,skipinitialspace = True,encoding_errors= 'replace')
                                    if not df.empty:
                                        df = df.append(processed_df, ignore_index=True)
                                    else:
                                        df = pd.DataFrame(processed_df)                                
                            filetimestamp = str(int(time.time()))
                            dataFile = os.path.join(DATA_FILE_PATH, 'AION_' + filetimestamp+'.csv')
                            df.to_csv(dataFile, index=False,sep=delimiter,quotechar=textqualifier)
                            request.session['datalocation'] = str(dataFile)
                        else:
                            dataFile = dataPath
                    request.session['uploadfiletype'] = 'Local'
                    request.session['datatype'] = 'Normal'
                        
                    FileReadingstatus = True
                    request.session['currentstate'] = 0
                        
                    if dataPath.endswith('tar'):
                        dataFile = tarFileExtraction(dataPath,DATA_FILE_PATH)      

                    if dataPath.endswith('zip'):
                        dataFile = multipleZipExtraction(dataPath,DATA_FILE_PATH)                   
                            
                    if dataFile == '':
                        FileReadingstatus = False
                        msg = 'Please provide a file name'                            
                    elif dataFile.endswith("".xls"") or dataFile.endswith("".xlsx""):
                        FileReadingstatus = False
                        msg = 'Please provide a dilimited file'                            
                    elif not os.path.isfile(dataFile):
                        FileReadingstatus = False
                        msg = 'File does not exist'  
                    else:
                        check_df = pd.DataFrame();
                        try:
                            try:

                                cvobj = csv_validator()
                                valid_header, validrows, rownumbers = cvobj.validate_header(dataFile,delimiter,textqualifier)
                                request.session['datalocation'] = str(dataFile)
                                if not validrows:                                
                                    FileReadingstatus = False
                                    msg = 'Data Format issue'
                                else:
                                    if valid_header:
                                        check_df = pd.read_csv(dataFile, encoding='utf8',sep=delimiter,quotechar=textqualifier,skipinitialspace = True,nrows=100,encoding_errors= 'replace')
                                        request.session['datalocation'] = str(dataFile)
                                    else:
                                        check_df = pd.read_csv(dataFile, header=None, encoding='utf8', prefix='X',sep=delimiter,quotechar=textqualifier,skipinitialspace = True,encoding_errors= 'replace')
                                        filetimestamp = str(int(time.time()))
                                        dataFile = os.path.join(DATA_FILE_PATH, 'AION_' + filetimestamp+'.csv')
                                        check_df.to_csv(dataFile, index=False)
                                        request.session['datalocation'] = str(dataFile)
                            except Exception as e:
                                print(e)
                                check_df = pd.read_csv(dataFile, encoding='utf8',sep=delimiter,quotechar=textqualifier,skipinitialspace = True,nrows=100)
                                request.session['datalocation'] = str(dataFile)
                                log.info('Data Ingestion : ' + str(selected_use_case) + ' : ' + str(ModelVersion) + ' : ' + '0 ' + 'sec' + ' : ' + 'Error : '+str(e))
                        except UnicodeDecodeError:
                            FileReadingstatus = False
                            msg = 'Only utf8 file encoding supported'
                            log.info('Data Ingestion : ' + str(selected_use_case) + ' : ' + str(ModelVersion) + ' : ' + '0' + ' sec' + ' : ' + 'Error:'+msg)
                        except pd.errors.EmptyDataError:
                            FileReadingstatus = False
                            msg = 'File is empty'
                            log.info('Data Ingestion : ' + str(selected_use_case) + ' : ' + str(ModelVersion) + ' : ' + '0 ' + 'sec' + ' : ' + 'Error:'+msg)
                        except pd.errors.ParserError:					
                            FileReadingstatus = False
                            msg = 'File Parsng Error'
                            log.info('Data Ingestion : ' + str(selected_use_case) + ' : ' + str(ModelVersion) + ' : ' + '0 ' + 'sec' + ' : ' + 'Error : '+msg)
                        except FileNotFoundError:
                            FileReadingstatus = False
                            msg = 'File does not exist'
                            request.session['currentstate'] = 0
                            log.info('Data Ingestion : ' + str(selected_use_case) + ' : ' + str(ModelVersion) + ' : ' + '0 ' + 'sec' + ' : ' + 'Error : '+msg)
                        except Exception as e:
                            msg = 'File Read Error'
                            FileReadingstatus = False
                            print(e)
                            log.info('Data Ingestion : ' + str(selected_use_case) + ' : ' + str(
                                ModelVersion) + ' : ' + '0 ' + 'sec' + ' : ' + 'Error : ' + msg+', '+str(e))
                          
                        if check_df.empty and FileReadingstatus:
                            FileReadingstatus = False
                            msg = 'Date file is empty'
               
                    if not FileReadingstatus:
                        context.update({'tab': 'tabconfigure','error': msg,'currentstate': request.session['currentstate'], 'ModelVersion': ModelVersion})
                        log.info('Data Ingestion : ' + str(selected_use_case) + ' : ' + str(ModelVersion) + ' : ' + '0' + ' sec' + ' : ' + 'Error : '+msg)
                        return context
                
                
                # -------------------------------- 10012:Decision Threshold related Changes S T A R T -------------------------------
                data_is_under_RAM_threshold = checkRAMThreshold(request.session['datalocation']) 
                msg = """"
                if data_is_under_RAM_threshold == False:
                    msg = ""AION will not be able to train on data set provided as it is bigger than available RAM, Please choose distributed learning for further processing.""
                # ------------------------------------------------------ E N D  ------------------------------------------------------
                   
                    
                check_df.rename(columns=lambda x: x.strip(), inplace=True)        
                featuresList = check_df.columns.tolist()
                numberoffeatures = len(featuresList)                               
                imp_features = getimpfeatures(dataFile,numberoffeatures,delimiter,textqualifier)
                samplePercentage = 100
                samplePercentval = 0
                showRecommended = False
                sample_size = int(eda_setting())            
                
                dflength = len(check_df)
                if dflength > sample_size:
                    samplePercentage = round(float((sample_size/dflength) * 100),2)
                    samplePercentval = samplePercentage / 100
                    showRecommended = True
                df_top = check_df.head(10)
                df_json = df_top.to_json(orient=""records"")
                df_json = json.loads(df_json)
                statusmsg = 'Data File Uploaded Successfully '
                request.session['currentstate'] = 0
                request.session['finalstate'] = 0
                request.session['datatype'] = 'Normal'

                records = check_df.shape[0]
                request.session['NoOfRecords'] = records    
                statusmsg = 'Data File Uploaded Successfully'
                t2 = time.time()
                log.info('Data Ingestion : ' + str(selected_use_case) + ' : ' + str(ModelVersion) + ' : ' + str(
                    round(t2 - t1)) + ' sec' + ' : ' + 'Success')
                # EDA Subsampling changes
                context.update({'range':range(1,101),'samplePercentage':samplePercentage, 'samplePercentval':samplePercentval, 'showRecommended':showRecommended,'featuresList': featuresList,'tab': 'tabconfigure', 'data': df_json, 'status_msg': statusmsg,
                            'selected': 'modeltraning','imp_features':imp_features,'numberoffeatures':numberoffeatures,
                           'currentstate': request.session['currentstate'], 'finalstate': request.session['finalstate'],
                           'exploratory': False})
                if msg!="""":
                    context.update({'data_size_alert': msg})
                return context
    except Exception as e:
        print(e)
        exc_type, exc_obj, exc_tb = sys.exc_info()
        fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
        print(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))
        request.session['currentstate'] = 0
        context.update({'error': 'Failed to read data','emptycsv' : 'emptycsv'})
        log.info('Data Ingestion : ' + str(selected_use_case) + ' : ' + str(ModelVersion) + ' : ' + '0' + ' sec' + ' : ' + 'Error : Failed to read data, '+str(e))
        log.info('Details : '+ str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))
        return context

"
llm_generateQnA.py,"import os
import re
import json
import time
import sys
import tiktoken
import openai
import requests
from appbe.aion_config import get_llm_data
import logging
import pdfplumber
from docx import Document

openai.api_key = ''
openai.api_base = '' 
openai.api_type = ''
openai.api_version = ''

deployment_name=""GPT-35-Turbo""
model_name='gpt-3.5-turbo'

set_tokens_limit = 500
set_tokens_limit_offline = 400
set_prompt=""You are an expert user generating questions and answers. You will be passed a page extracted from a documentation. Generate a numbered list of questions as Q. and equivelant answer as A. for every question based *solely* on the given text.""


# QnA Generator using LLM related changes
# --------------------------------------------------------
def ingestDataForQA(request, DATA_FILE_PATH):
    log = logging.getLogger('log_ux')

    try:
        Datapath = request.FILES['DataFileQnA']
        from appbe.eda import ux_eda
        
        ext = str(Datapath).split('.')[-1]
        request.session['uploadfiletype'] = 'Local'
        request.session['datatype'] = 'Normal'
        filetimestamp = str(int(time.time()))
        if ext.lower() in ['txt','pdf','docx']:
            dataFile = os.path.join(DATA_FILE_PATH,'AION_' + filetimestamp+'.'+ext)
        else:
            dataFile = os.path.join(DATA_FILE_PATH,'AION_' + filetimestamp)
        with open(dataFile, 'wb+') as destination:
            for chunk in Datapath.chunks():
                destination.write(chunk)
        destination.close()
        dataPath = dataFile
        request.session['textdatapathQA'] = dataPath
        
        llm_choice = request.POST.get(""llm_choice"")
        _result = ''
        
        
        # if llm_choice == 'Haystack':
            # _result = generateQA_Haystack(request, DATA_FILE_PATH)
        if llm_choice == 'Offline':
            _result = generateQA_Offline(request, DATA_FILE_PATH)
        else:
            _result = generateQA_OpenAI(request, DATA_FILE_PATH)
        
        return _result
        
    except Exception as e:
        print(e)
        exc_type, exc_obj, exc_tb = sys.exc_info()
        fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
        print(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))
        
        context = {'error': 'Failed to read data','emptytxt' : 'emptytxt'}
        log.info('Text Data Ingestion -- Error : Failed to read data, '+str(e))
        log.info('Details : '+ str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))
        return context
# ---------------------- E N D ---------------------------



def generateQA_OpenAI(request, DATA_FILE_PATH):
    
    log = logging.getLogger('log_ux')
    try:
        file_path = request.session['textdatapathQA']

        # Read the file content
        if file_path.endswith('.pdf'):
            pdf_file=pdfplumber.open(file_path)
            file_content = "" "".join([x.extract_text() for x in pdf_file.pages])
        elif file_path.endswith('.docx'):
            doc_file=Document(file_path)
            file_content = ""  \n"".join([x.text for x in doc_file.paragraphs])
        else:
            with open(file_path, ""r"", encoding=""utf-8"",errors = ""ignore"") as file:
                file_content = file.read()
            
        text = file_content.strip()
        #text = text.strip()
        
        extracted_QnA = []
        chunk_counter = 0
        
        num_tokens_text = count_tokens_text(text)
        if num_tokens_text > set_tokens_limit:
            for sub_text in split_text(text):
                chunk_counter = chunk_counter + 1
                _result = extract_questions_from_splittedtext(sub_text)
                print(f""Currently executed chunk no is - {chunk_counter}."")
                extracted_QnA.extend(_result)
            
        else:
            _prompt = set_prompt
            msg = [ {""role"": ""system"", ""content"": _prompt},
                {""role"": ""user"", ""content"": text} ]
                
            extracted_QnA = run_model(msg)
        
        quesCount = len(extracted_QnA)
        context = {'extracted_QnA':extracted_QnA, 'quesCount':quesCount}
        
        filetimestamp = str(int(time.time()))
        output_filepath = os.path.join(DATA_FILE_PATH,'AION_QnA' + filetimestamp+'.txt')
        
        # Save the extracted questions as a JSON file
        with open(output_filepath, 'w') as output_file:
            json.dump(extracted_QnA, output_file, indent=4)
            print(f""QnAs have been saved to {output_filepath}."")
        request.session['QnAfilepath'] = output_filepath
        
        return context
        
    except Exception as e:
        print(e)
        exc_type, exc_obj, exc_tb = sys.exc_info()
        errormsg = str(e)
        
        if 'Invalid URL' in errormsg or 'No connection adapters' in errormsg or 'invalid subscription key' in errormsg:
            errormsg = 'Access denied due to invalid subscription key or wrong API endpoint. Please go to settings and make sure to provide a valid key for an active subscription and use a correct regional API endpoint for your resource.'
        if 'The API type provided in invalid' in errormsg:
            errormsg = ""The API type provided is invalid. Please select one of the supported API types:'azure', 'azure_ad' or 'open_ai'""
            
        if 'Max retries exceeded with url' in errormsg:
            errormsg = 'Please make sure you have good internet connection and access to API endpoint for your resource.'
            
        fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
        print(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))
        
        context = {'error': 'Failed to generate QnA List using openAI','LLM' : 'openAI', 'selected':'DataOperations', 'errormessage':errormsg}
        log.info('generateQA_OpenAI -- Error : Failed to generate QnA List using openAI.. '+str(e))
        log.info('Details : '+ str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))
        return context


def run_model(msg):
    key,url,api_type,api_version = get_llm_data()
    openai.api_key = key
    openai.api_base = url
    openai.api_type = api_type
    openai.api_version = api_version
    
    completions = openai.ChatCompletion.create(engine=deployment_name, temperature=0.0, max_tokens=2000, n=1, stop=None, messages=msg)
    # return completions.choices[0].message.content
    
    
    _questionList = completions.choices[0].message.content
    question_pattern = re.compile(r""^Q\s*\d+\.\s*(.+)$"", re.MULTILINE)
    questions = question_pattern.findall(_questionList)
    
    answer_pattern = re.compile(r""^A\s*\d+\.\s*(.+)$"", re.MULTILINE)
    answers = answer_pattern.findall(_questionList)
    
    if (len(questions) > 0) and (not re.search(r""[.!?)]$"", questions[-1].strip())):
        print(f""WARNING: Popping incomplete question: '{questions[-1]}'"")
        questions.pop()
    
    extracted_QnA = []
    for question, answer in zip(questions, answers):
        extracted_QnA.append({'question': question, 'answer': answer})
        
    return extracted_QnA
    

def count_tokens_text(text):
    import tiktoken
    model_type = model_name
    encoding = tiktoken.encoding_for_model(model_type)
    
    encoded_text = encoding.encode(text)
    return len(encoded_text)


def extract_questions_from_splittedtext(text):
    _prompt = set_prompt
    msg = [ {""role"": ""system"", ""content"": _prompt},
        {""role"": ""user"", ""content"": text} ]
        
    _ques_ans_List = run_model(msg)
    return _ques_ans_List


def split_text(text):
    lines = text.split('\n')
    current_section = ''
    sections = []
    _lastsection = 0
    for line in lines:
        num_tokens_text = count_tokens_text(''.join([current_section,line]))
       
        if num_tokens_text < set_tokens_limit:
            current_section = ''.join([current_section,line])
        else:
            sections.append(current_section)
            current_section = line
            _lastsection = 1
            
    if _lastsection == 1:
        sections.append(current_section)
    
    return sections
    


# --------------------------------------------------------------------------------- #

def generateQA_Haystack(request, DATA_FILE_PATH):
    file_path = request.session['textdatapathQA']

    # Read the file content
    with open(file_path, ""r"", encoding=""utf-8"") as file:
        file_content = file.read()
    
    text = file_content.strip()
    text = text.strip()
    docs = []
    
    num_tokens_text = count_tokens_text(text)
    if num_tokens_text > set_tokens_limit:
        for sub_text in split_text(text):
            docs.append({""content"": sub_text})
    else:
        docs = [{""content"": text}]
    
    from pprint import pprint
    from tqdm.auto import tqdm
    from haystack.nodes import QuestionGenerator, BM25Retriever, FARMReader
    
    # from haystack.document_stores import ElasticsearchDocumentStore
    from haystack.document_stores import InMemoryDocumentStore
    # from haystack.document_stores import PineconeDocumentStore
    
    from haystack.pipelines import (
        QuestionGenerationPipeline,
        RetrieverQuestionGenerationPipeline,
        QuestionAnswerGenerationPipeline,
    )
    
    
    from haystack.utils import print_questions
    
    document_store = InMemoryDocumentStore(use_bm25=True)
    document_store.write_documents(docs)
    
    question_generator = QuestionGenerator()
    
    # reader = FARMReader(""deepset/roberta-base-squad2"")
    # reader.save(""my_local_roberta_model"")
    reader_local = FARMReader(model_name_or_path=""my_local_roberta_model_1"")
    
    qag_pipeline = QuestionAnswerGenerationPipeline(question_generator, reader_local)
    
    extracted_QnA = []
    for idx, document in enumerate(tqdm(document_store)):
        print(f""\n * Generating questions and answers for document {idx}: {document.content[:100]}...\n"")
        result = qag_pipeline.run(documents=[document])
        print_questions(result)
        
        answers = []
        questions = result['queries']
        answerList = result[""answers""]
        
        for _answers in answerList:
            for answer in _answers:
                ans = answer.answer
                answers.append(ans)
        
        for question, answer in zip(questions, answers):
            extracted_QnA.append({'question': question, 'answer': answer})

    quesCount = len(extracted_QnA)
    context = {'extracted_QnA':extracted_QnA, 'quesCount':quesCount}
    
    filetimestamp = str(int(time.time()))
    output_filepath = os.path.join(DATA_FILE_PATH,'AION_QnA' + filetimestamp+'.txt')
    
    # Save the extracted questions as a JSON file
    with open(output_filepath, 'w') as output_file:
        json.dump(extracted_QnA, output_file, indent=4)
        print(f""QnAs have been saved to {output_filepath}."")
    request.session['QnAfilepath'] = output_filepath
        
    return context
    


# --------------------------------------------------------------------------------- #
    
def generateQA_Offline(request, DATA_FILE_PATH):

    log = logging.getLogger('log_ux')
    try:
        file_path = request.session['textdatapathQA']
        
        if file_path.endswith('.pdf'):
            pdf_file=pdfplumber.open(file_path)
            file_content = "" "".join([x.extract_text() for x in pdf_file.pages])
        elif file_path.endswith('.docx'):
            doc_file=Document(file_path)
            file_content = ""  \n"".join([x.text for x in doc_file.paragraphs])
        else:
            with open(file_path, ""r"", encoding=""utf-8"",errors = ""ignore"") as file:
                file_content = file.read()
        
        

        # # Read the file content
        # with open(file_path, ""r"", encoding=""utf-8"") as file:
        #     file_content = file.read()
        
        text = file_content.strip()
        # text = text.strip()
        docs = []
    
        # num_tokens_text = count_tokens_text(text)
        # if num_tokens_text > set_tokens_limit:
            # for sub_text in split_text(text):
                # docs.append(sub_text)
        # else:
            # docs.append(text)
    
    
        model_name = ""valhalla/t5-base-qg-hl"" 
        num_tokens_text = count_tokens_text_offline(text, model_name)
        if num_tokens_text > set_tokens_limit_offline:
            for sub_text in split_text_for_Offline(text, model_name):
                docs.append(sub_text)
        else:
            docs.append(text)


        from question_generation.pipelines import pipeline
        extracted_QnA = []
        extracted_QnAList = []
        
        
        nlp = pipeline(""question-generation"", model = model_name)
        # nlp = pipeline(""question-generation"", model=""valhalla/t5-base-e2e-qg"") 
        # nlp = pipeline(""e2e-qg"", model=""valhalla/t5-base-qg-hl"")
        # nlp = pipeline(""multitask-qa-qg"", model=""valhalla/t5-base-qa-qg-hl"")
        
        for _text in docs:
            res = nlp(_text)
            print(res)
            extracted_QnAList.extend(res)
        
        for _record in extracted_QnAList:
            extracted_QnA.append({'question': _record['question'], 'answer': _record['answer'].replace('<pad>', '')})
        
        quesCount = len(extracted_QnA)
        context = {'extracted_QnA':extracted_QnA, 'quesCount':quesCount}
        
        filetimestamp = str(int(time.time()))
        output_filepath = os.path.join(DATA_FILE_PATH,'AION_QnA' + filetimestamp+'.txt')
        
        # Save the extracted questions as a JSON file
        with open(output_filepath, 'w') as output_file:
            json.dump(extracted_QnA, output_file, indent=4)
            print(f""T5 based QnAs have been saved to {output_filepath}."")
        request.session['QnAfilepath'] = output_filepath
        
        return context
    
    except Exception as e:
        print(e)
        exc_type, exc_obj, exc_tb = sys.exc_info()
        errormsg = str(e)
            
        fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
        print(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))
        
        context = {'error': 'Failed to generate QnA List using T5','LLM' : 'T5', 'selected':'DataOperations', 'errormessage':errormsg}
        log.info('generateQA_Offline -- Error : Failed to generate QnA List using T5.. '+str(e))
        log.info('Details : '+ str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))
        return context
        

def split_text_for_Offline(text, model_name):
    lines = text.split('\n')
    current_section = ''
    sections = []
    _lastsection = 0
    
    for line in lines:
        num_tokens = count_tokens_text_offline(''.join([current_section,line]), model_name)
       
        if num_tokens < set_tokens_limit_offline:
            current_section = ''.join([current_section,line])
        else:
            sections.append(current_section)
            current_section = line
            _lastsection = 1
            
    if _lastsection == 1:
        sections.append(current_section)
    
    return sections
    
    
def count_tokens_text_offline(text, model_name):
    from transformers import AutoTokenizer
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    
    inputs = tokenizer(text, return_tensors=""pt"")
    input_ids = inputs[""input_ids""]
    _token_count = len(input_ids[0])
    
    return _token_count
    "
onlineLearning.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import os
import platform
import shutil
import subprocess
import sys
import time
import glob
import re
from appbe.pages import get_usecase_page
import json
from django.http import FileResponse
def startIncrementallearning(request,usecasedetails,Existusecases,DATA_FILE_PATH):
    try:
        modelid = request.POST.get('modelid')
        #incfilepath = request.POST.get('incfilepath')
        Datapath = request.FILES['incfilepath']
        filetimestamp = str(int(time.time()))
        dataFile = os.path.join(DATA_FILE_PATH,'AION_' + filetimestamp+'.csv')
        with open(dataFile, 'wb+') as destination:
            for chunk in Datapath.chunks():
                destination.write(chunk)
                # destination.close()#bugfix 11656
        incfilepath = dataFile
        p = Existusecases.objects.get(id=modelid)
        deployPath = str(p.DeployPath)
        scriptPath = os.path.abspath(os.path.join(deployPath,'aion_inclearning.py'))
        request.session['IsRetraining'] = 'No'       
        if not os.path.exists(scriptPath):
            status,context,action = get_usecase_page(request,usecasedetails,Existusecases)
            context['Msg'] = 'Incremental/Online learning not supported for this model.For online training select Online Training in basic configuration page and provide with training'
        else:
        
            outputStr = subprocess.check_output([sys.executable, scriptPath, incfilepath]) 
            outputStr = outputStr.decode('utf-8')
            outputStr = re.search(r'aion_learner_status:(.*)', str(outputStr), re.IGNORECASE).group(1)
            outputStr = outputStr.strip()
            decoded_data = json.loads(outputStr)
            status,context,action = get_usecase_page(request,usecasedetails,Existusecases)            
            if decoded_data['status'] == 'SUCCESS':
                msg = decoded_data['Msg']
                context['Status'] = 'SUCCESS'
                context['Msg'] = msg
            else:
                msg = decoded_data['Msg']
                context['Status'] = 'SUCCESS'
                context['Msg'] = msg
    except Exception as e:
        print(e)
        try:
            status,context,action = get_usecase_page(request,usecasedetails,Existusecases)
        except Exception as msg:
            context['errorMsg'] = msg
    return action,context
    "
llmTesting.py,"import os
import openai
from langchain.llms import AzureOpenAI
from sentence_transformers.SentenceTransformer import SentenceTransformer
import time
import datetime
import pandas as pd
import sys
import subprocess
import importlib
from appbe.aion_config import get_llm_data
from appbe.dataPath import DATA_FILE_PATH

remote_data_dir = ""/home/aion/data/storage/llm_testing_data""
remote_data_processeddata_dir = '/home/aion/data/storage/processed_data'
remote_config_dir = '/home/aion/data/config'
sh_file_path = '/home/aion/llm/sbin/llm_testing.sh'





prompt_command = '/home/aion/llm/sbin/llm_testing.sh'

PRE_CONTEXT = ""Answer the following question in a concise manner.\n""
DEFAULT_PARAMS = {
    'OPENAI_API_TYPE' : ""azure"",
    'OPENAI_API_BASE' : """",
    'OPENAI_API_KEY' : """",
    'OPENAI_API_VERSION' : ""2023-03-15-preview""
}
faq=""""

def getAMIDetails(config,selectedAMI):
    y = {}
    for x in config:
        print(x)
        if x['id'] == selectedAMI:
            return x
    return y
class test_LLM():

    def __init__(self, 
            deployment_name='Text-Datvinci-03', params=DEFAULT_PARAMS, transformer=None, 
            sentence_txfr_model='sentence-transformers/paraphrase-mpnet-base-v2'):
        self.deployment_name=deployment_name
        self.set_params( params)
        self.transformer = transformer
        self.sentence_txfr_model = sentence_txfr_model
    def fiddlerAuditorCheck(self):
        status = importlib.util.find_spec('auditor')
        if not status:
            subprocess.check_call([sys.executable, ""-m"", ""pip"",""uninstall"", ""-q"",""-y"",""notebook""])
            subprocess.check_call([sys.executable, ""-m"", ""pip"", ""install"",""-q"", ""notebook==6.4.5"" ])
            subprocess.check_call([sys.executable, ""-m"", ""pip"", ""install"",""-q"",""fiddler-auditor==0.0.2""])
            subprocess.check_call([sys.executable, ""-m"", ""pip"", ""install"",""-q"",""notebook==7.0.2""])
            status = importlib.util.find_spec('auditor')
        return status
            
              
				
    def set_params(self, params={}):
        valid_params = ['OPENAI_API_TYPE','OPENAI_API_KEY','OPENAI_API_BASE','OPENAI_API_VERSION']
        for key, value in params.items():
            if 'OPENAI_API_TYPE' == key:
                openai.api_type = value
                os.environ['OPENAI_API_TYPE'] = openai.api_type
            elif 'OPENAI_API_KEY' == key:
                openai.api_key = value
                os.environ['OPENAI_API_KEY'] = openai.api_key
            elif 'OPENAI_API_BASE' == key:
                openai.api_base = value
                os.environ['OPENAI_API_BASE'] = openai.api_base
            elif key in valid_params:
                os.environ[key] = value
                                
    def run(self,modelName, temperature, similarity_threshold, perturbations_per_sample, prompts, reference_generation,pre_context=PRE_CONTEXT):
             
        
        if not self.fiddlerAuditorCheck():
            raise ValueError('Fiddler-auditor is not instlled ""python -m pip install fiddler-auditor==0.0.2""')
        
        openai_llm = AzureOpenAI(deployment_name=self.deployment_name, temperature=temperature, openai_api_key=openai.api_key)
        from auditor.perturbations import Paraphrase
        from auditor.evaluation.expected_behavior import SimilarGeneration
        from auditor.evaluation.evaluate import LLMEval

        

        # For Azure OpenAI, it might be the case the api_version for chat completion
        # is different from the base model so we need to set that parameter as well.
        if self.transformer:
            azure_perturber = self.transformer
        else:
            azure_perturber = Paraphrase(
                model=""GPT-35-Turbo"",
                api_version=""2023-03-15-preview"",
                num_perturbations=perturbations_per_sample,
            )
        sent_xfmer = SentenceTransformer(self.sentence_txfr_model)
        similar_generation = SimilarGeneration(
            similarity_model=sent_xfmer,
            similarity_threshold=similarity_threshold,)
        llm_eval = LLMEval(
            llm=openai_llm,
            expected_behavior=similar_generation,
            transformation=azure_perturber,)
        test_result = llm_eval.evaluate_prompt_correctness(
            prompt=prompts,
            pre_context=pre_context,
            reference_generation=reference_generation,
            perturbations_per_sample=perturbations_per_sample
        )
        return test_result
        
    def runmultiple(self,modelName, temperature, similarity_threshold, perturbations_per_sample, prompts, reference_generation,pre_context=PRE_CONTEXT,faq=faq):
        
        
        if not self.fiddlerAuditorCheck():
            raise ValueError('Fiddler-auditor is not instlled ""python -m pip install fiddler-auditor==0.0.2""')
        
        from auditor.evaluation.expected_behavior import SimilarGeneration
        from auditor.evaluation.evaluate import LLMEval
        openai_llm = AzureOpenAI(deployment_name=self.deployment_name, temperature=temperature, openai_api_key=openai.api_key)
        from auditor.perturbations import Paraphrase

        # For Azure OpenAI, it might be the case the api_version for chat completion
        # is different from the base model so we need to set that parameter as well.
        if self.transformer:
            azure_perturber = self.transformer
        else:
            azure_perturber = Paraphrase(
                model=""GPT-35-Turbo"",
                api_version=""2023-03-15-preview"",
                num_perturbations=perturbations_per_sample,
            )
        sent_xfmer = SentenceTransformer(self.sentence_txfr_model)
        similar_generation = SimilarGeneration(
            similarity_model=sent_xfmer,
            similarity_threshold=similarity_threshold,)
        llm_eval = LLMEval(
            llm=openai_llm,
            expected_behavior=similar_generation,
            transformation=azure_perturber,)
        rows = faq.shape[0]
        prompts = list(faq['Question'])
        listofDf = []

        for i in range(rows):
            test_result = llm_eval.evaluate_prompt_robustness(
            prompt=prompts[i],
            pre_context=pre_context,
            )

            try:
                now = datetime.datetime.now().strftime(""%H%M%S"")
                name = str(i)+str(now)+'.html'
                test_result.save(name)
                df_iter=pd.read_html(name)
                df_actual = df_iter[0]
                listofDf.append(df_actual)
            except:
                pass
          
        perturbatedDF = pd.concat(listofDf)

        return perturbatedDF

    def run_offline_model(self, usecasename,modelName, temperature, similarity_threshold, perturbations_per_sample, reference_generation, prompts,isfinetuned):
        from appbe.compute import readComputeConfig
        from appbe.prediction import get_instance
        cloud_infra = readComputeConfig()
        
        dataFile = os.path.join(DATA_FILE_PATH, 'prompt.csv')
        remoteFile = os.path.join(remote_data_dir, 'prompt.csv')
        if not reference_generation:
            reference_generation = ''
        prompt = pd.DataFrame([{'prompts':prompts, 'reference_generation':reference_generation}])
        prompt.to_csv(dataFile, index=False)
        
        
        
        hypervisor, instanceid, region, image = get_instance(usecasename)
        key, url, api_type, api_version = get_llm_data()
        if hypervisor == 'AWS':
            aws_access_key_id = cloud_infra['awsCredentials']['accessKey']
            aws_secret_key = cloud_infra['awsCredentials']['secretAccessKey']
            currentDirectory = os.path.dirname(os.path.abspath(__file__))
            LLM_DIR = os.path.normpath(os.path.join(currentDirectory, '..', 'llm'))

            if image != '' and image != 'NA':
                amiDetails = getAMIDetails(cloud_infra['AWS_EC2']['amis'], image)
            else:
                amiDetails = getAMIDetails(cloud_infra['AWS_EC2']['instances'], instanceid)
            if region == '' or region == 'NA':
                region = amiDetails['regionName']
            from llm.aws_instance_api import start_instance
            # print(aws_access_key_id, aws_secret_key, instanceid, region)
            status, msg, ip = start_instance(aws_access_key_id, aws_secret_key, instanceid, region)
            
            
            if status.lower() == 'success':

                pem_file = os.path.join(LLM_DIR, amiDetails['ssh']['keyFilePath'])
                username = amiDetails['ssh']['userName']
                
                # cope file to server for sinfle prompt
                from AION.llm.ssh_command import copy_files_to_server
                copy_files_to_server(ip,pem_file,dataFile,'',username,'',remote_data_dir,remote_config_dir)
                if isfinetuned:
                    command = prompt_command + ' ' + usecasename + ' ' + str(modelName) \
                          + ' ' + str(temperature) + ' ' + str(similarity_threshold) + ' ' \
                          + str(perturbations_per_sample) + \
                          ' '+ str(key) + \
                          ' '+ str(url) + \
                          ' '+ str(api_type) + \
                          ' '+ str(api_version)+ \
                          ' '+ str(""single"") 
                else:          
                    command = prompt_command + ' ' + 'BaseModel' + ' ' + str(modelName) \
                          + ' ' + str(temperature) + ' ' + str(similarity_threshold) + ' ' \
                          + str(perturbations_per_sample) + \
                          ' '+ str(key) + \
                          ' '+ str(url) + \
                          ' '+ str(api_type) + \
                          ' '+ str(api_version)+ \
                          ' '+ str(""single"")             
                
                
                
                from llm.ssh_command import run_ssh_cmd
                
                buf = run_ssh_cmd(ip, pem_file, username, '', '', command)
                print(buf)
                return buf
    def run_multiple_offline_model(self, usecasename,modelName, temperature, similarity_threshold, perturbations_per_sample, faq,isfinetuned):
        dataFile = os.path.join(DATA_FILE_PATH, 'prompt.csv')
        remoteFile = os.path.join(remote_data_dir, 'prompt.csv')
        faq.to_csv(dataFile, index=False)
        print(""This is done"")
        from appbe.compute import readComputeConfig
        from appbe.prediction import get_instance
        cloud_infra = readComputeConfig()
        hypervisor, instanceid, region, image = get_instance(usecasename)
        key, url, api_type, api_version = get_llm_data()
        if hypervisor == 'AWS':
            aws_access_key_id = cloud_infra['awsCredentials']['accessKey']
            aws_secret_key = cloud_infra['awsCredentials']['secretAccessKey']
            currentDirectory = os.path.dirname(os.path.abspath(__file__))
            LLM_DIR = os.path.normpath(os.path.join(currentDirectory, '..', 'llm'))

            if image != '' and image != 'NA':
                amiDetails = getAMIDetails(cloud_infra['AWS_EC2']['amis'], image)
            else:
                amiDetails = getAMIDetails(cloud_infra['AWS_EC2']['instances'], instanceid)
            if region == '' or region == 'NA':
                region = amiDetails['regionName']
            from llm.aws_instance_api import start_instance
            # print(aws_access_key_id, aws_secret_key, instanceid, region)
            status, msg, ip = start_instance(aws_access_key_id, aws_secret_key, instanceid, region)
            
            
            if status.lower() == 'success':

                pem_file = os.path.join(LLM_DIR, amiDetails['ssh']['keyFilePath'])
                username = amiDetails['ssh']['userName']
                
                #print(ip,pem_file,promptfile,'',username,'',remote_data_dir,remote_config_dir)
                
                from AION.llm.ssh_command import copy_files_to_server
                copy_files_to_server(ip,pem_file,dataFile,'',username,'',remote_data_dir,remote_config_dir)
                
                if isfinetuned:
                    command = prompt_command + ' ' + usecasename + ' ' + str(modelName) \
                          + ' ' + str(temperature) + ' ' + str(similarity_threshold) + ' ' \
                          + str(perturbations_per_sample) + \
                          ' '+ str(key) + \
                          ' '+ str(url) + \
                          ' '+ str(api_type) + \
                          ' '+ str(api_version)+ \
                          ' '+ str(""multiple"")
                
                else:
                    command = prompt_command + ' ' + 'BaseModel' + ' ' + str(modelName) \
                          + ' ' + str(temperature) + ' ' + str(similarity_threshold) + ' ' \
                          + str(perturbations_per_sample) + \
                          ' '+ str(key) + \
                          ' '+ str(url) + \
                          ' '+ str(api_type) + \
                          ' '+ str(api_version)+ \
                          ' '+ str(""multiple"")
                          
                
                from llm.ssh_command import run_ssh_cmd
                
                buf = run_ssh_cmd(ip, pem_file, username, '', '', command)
                print(buf)
                return buf
"
train_output.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import os
import time
import subprocess
import sys
import json
import pandas as pd
def getDataSetRecordsCount(datalocation):
	try:
		records = 0
		if os.path.isfile(datalocation):    
			for chunk in pd.read_csv(datalocation, chunksize=20000):
				records = records+len(chunk)    
		if records == 0:
			records = 'NA'    
	except Exception as e:
		print(e)    
		records = 'NA'
	return records        
def get_train_model_details(deploy_location,request):
	updatedConfigFile = request.session['config_json']
	f = open(updatedConfigFile, ""r"")
	configSettings = f.read()
	f.close()
	usename = request.session['usecaseid'].replace("" "", ""_"")
	outputfile = os.path.join(deploy_location,usename,str(request.session['ModelVersion']),'etc','output.json')	
	if os.path.isfile(outputfile):
		f1 = open(outputfile, ""r+"", encoding=""utf-8"")
		outputStr = f1.read()
		f1.close()	
		resultJsonObj = json.loads(outputStr)
		trainingStatus = resultJsonObj['status']
		if trainingStatus.lower() == 'success':
			details = 	resultJsonObj['data']
			modelType = details['ModelType']
			bestModel = details['BestModel']
			return trainingStatus,modelType,bestModel
		else:
			return trainingStatus,'NA','NA'
	else:
		return 'Not Trained','NA','NA'"
generate_json_config.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import json
import os
import platform
import time
import sys
from os.path import expanduser
from pathlib import Path
import ast
import pandas as pd
from appbe.dataPath import CONFIG_FILE_PATH
def generate_json_config(request): 
    from appbe.create_dummy_dataset import gen_data_classification
    from appbe.create_dummy_dataset import gen_data_regression
    from appbe.create_dummy_dataset import gen_data_series
    try:
        problem_type = request.POST.get('ProblemType')
        datadict1 = request.POST.get('rangedict')
        datadict = eval(datadict1)


        if request.POST.get('univariate') == ""True"":
            features = request.POST.get('features')
            features = '1'
            catfeatures = request.POST.get('catfeatures')
            catfeatures = '0'
            informative = request.POST.get('informative')
            informative = '1'
        elif request.POST.get('univariate') == ""False"":
            features = request.POST.get('features')
            catfeatures = request.POST.get('catfeatures')
            informative = request.POST.get('informative')
        data_path = request.POST.get('dataypath')
        number_informative = int(request.POST.get('informative'))
        number_numerical_features = int(request.POST.get('features'))
        if os.path.isdir(data_path):
            raise Exception('Incorrect path. Please include filename. Eg: C:/AION/data.csv')
        if os.path.isfile(data_path):
            raise ValueError('The file ({}) exists.'.format(os.path.basename(data_path))) 
        if number_informative > number_numerical_features:
            raise ValueError('The No. numerical features ({}) must larger than No. informative features ({}).'.format(number_numerical_features, number_informative))
        
        if problem_type == 'classification':
            status = gen_data_classification(int(request.POST.get('samples')),int(request.POST.get('features')),request.POST.get('dataypath'),int(request.POST.get('catfeatures')),int(request.POST.get('txtfeatures')),float(request.POST.get('proportion')),int(request.POST.get('informative')),int(request.POST.get('class')),[float(val) for val in request.POST.get('weights').split("","")],float(request.POST.get('shift')),datadict)
        elif problem_type == 'regression':
            status = gen_data_regression(int(request.POST.get('samples')),int(request.POST.get('features')),request.POST.get('dataypath'),int(request.POST.get('catfeatures')),int(request.POST.get('txtfeatures')),float(request.POST.get('proportion')),int(request.POST.get('informative')),int(request.POST.get('target')),float(request.POST.get('bias')),float(request.POST.get('noise')),datadict)

        elif problem_type == 'timeseriesforecasting': #task 11997
            status = gen_data_series(request.POST.get('univariate'),request.POST.get('starttime'),request.POST.get('endtime'),int(request.POST.get('samples')),int(features),request.POST.get('dataypath'),int(catfeatures),float(request.POST.get('proportion')),int(informative),int(request.POST.get('target')),float(request.POST.get('bias')),float(request.POST.get('noise')),datadict)
        else:
            raise Exception(""Unsupperted Problem Type."")
        if status:
            from appbe.dataPath import DATA_DIR
            from appbe.sqliteUtility import sqlite_db
            file_path = os.path.join(DATA_DIR,'sqlite')
            sqlite_obj = sqlite_db(file_path,'config.db')
            if request.POST[""dataypath""] =='' or request.POST[""dataset""] == '':
                return 'error'
            newdata = {}
            newdata['datapath'] = [request.POST.get('dataypath')]
            newdata['datasetname'] = [request.POST.get('dataset')]
            sqlite_obj.write_data(pd.DataFrame.from_dict(newdata),'dataingest')
        else:
            raise Exception(""Data Genration failed."")
    except Exception as e:
        print(e)
        raise Exception(str(e))
if __name__ == ""__main__"":
    generate_json_config('classification')
    generate_json_config('regression')
    generate_json_config('timeseriesforecasting') #task 11997"
training.py,"import json
import os
import sys
import re
import numpy as np


def check_unsupported_col(config):   #bugId14444
    unsupported_chars = '[]<>#{}@&'
    try:
        featureList = config['basic']['featureList']
        return any([x in y for x in unsupported_chars for y in featureList])
    except Exception as e:
        print(str(e))
        return False

def check_granularity(configSettingsJson,datapath=None):
    try:
        from AION.appbe.utils import get_true_option
        import pandas as pd
        from pathlib import Path
        seconds_per_unit = {'second':1,'minute':60,'hour':60 * 60,'day':24 * 60 * 60,'week':7 * 24 * 60 * 60,'month':30 * 24 * 60 * 60,'year':365 * 24 * 60 * 60}
        if not get_true_option(configSettingsJson['basic']['preprocessing']['timeSeriesForecasting']['aggregation']['type']):
            return ''
        if isinstance( configSettingsJson['basic']['dateTimeFeature'], list):
            datetime_feature = configSettingsJson['basic']['dateTimeFeature'][0]
        else:
            datetime_feature = configSettingsJson['basic']['dateTimeFeature']
        if get_true_option(configSettingsJson['basic']['analysisType']) == 'timeSeriesForecasting' and datetime_feature:
            if not datapath:
                datapath = configSettingsJson['basic']['dataLocation']
            if Path( datapath).exists():
                df = pd.read_csv(datapath, nrows=2)
                datetime = pd.to_datetime(df[ datetime_feature])
                if len(datetime) > 1:
                    source_time_delta = (datetime[1] - datetime[0]).total_seconds()
                    granularity_unit = get_true_option(configSettingsJson['basic']['preprocessing']['timeSeriesForecasting']['aggregation']['granularity']['unit'])
                    size = int(configSettingsJson['basic']['preprocessing']['timeSeriesForecasting']['aggregation']['granularity']['size'])
                    target_time_delta = size * seconds_per_unit[granularity_unit]
                    amplify = int(source_time_delta / target_time_delta)
                    if amplify > 20:
                        return f'Current Granularity setting will amplify the data approx {amplify} times. Depending on your system configuration, this may cause Memory error'
                    
        return ''
    except Exception as e:
        return ''

def getStatusCount(matched_lines,total_steps):
    stepsdone = 0
    leaner = True
    #print(matched_lines)
    for line in matched_lines:
        if 'AION feature transformation completed' in line:
            stepsdone = stepsdone + 1
        elif 'AION feature engineering completed' in line:
            stepsdone = stepsdone + 1
        elif 'AION Association Rule completed' in line:
            stepsdone = stepsdone + 1
        elif 'AION Image Classification completed' in line:
            stepsdone = stepsdone + 1        
        elif 'AION Association Rule completed' in line:
            stepsdone = stepsdone + 1
        elif 'AION State Transition completed' in line:
            stepsdone = stepsdone + 1
        elif 'AION SurvivalAnalysis completed' in line:
            stepsdone = stepsdone + 1
        elif 'AION Recommender completed' in line:
            stepsdone = stepsdone + 1
        elif 'AION Gluon Stop' in line:
            stepsdone = stepsdone + 1
        elif 'AION Evaluation Stop' in line:
            stepsdone = stepsdone + 1
        elif 'AION Object Detection completed' in line:
            stepsdone = stepsdone + 1
        elif ('training completed' in line) and leaner:
            stepsdone = stepsdone + 1
            leaner = False
        elif 'Prediction Service completed' in line:
            stepsdone = stepsdone + 1
        elif 'AION TimeSeries Forecasting started' in line: #task 11997
            stepsdone = stepsdone + 1    
        elif 'Distributed Learning Completed' in line:
            stepsdone = stepsdone + 4    
        elif 'AION Batch Deployment completed' in line:
            stepsdone = stepsdone + 2            
    match_lines = []
    for line in matched_lines:
        count = len(line)-len(line.lstrip())
        uline = line.split('...')
        uline = uline[1]
        if count == 0:
            uline = '|... <span style=""border: 1px solid black; line-height:2; padding: 2px"">'+uline+'</span>'
        elif count == 8 or count == 1:
            uline = '        |... <span style=""border: 1px dashed darkblue; line-height:2; padding: 2px"">'+uline+'</span>'
        elif count == 16 or count == 2:
            uline = '                |... <span style=""border: 1px dotted darkgray; line-height:2; padding: 2px"">'+uline+'</span>'
        elif count == 32 or count == 3:
            uline = '                        |... <span style=""border: 1px dotted lightgray ; line-height:2; padding: 2px"">'+uline+'</span>'            
        else:
            uline = line    
        match_lines.append(uline)                   
    stepline = '<b>Stage: ' + str(stepsdone) + '/' + str(total_steps) + ' Complete</b>'
    match_lines.insert(0, stepline)
    #print(match_lines)
    output = ""\n"".join([status_text for status_text in match_lines])
    output = ""<pre>{}</pre>"".format(output)
    #print(output)
    return(output)

def calculate_total_interations(config):
    try:
        noOfIterations = 0
        problemtypes = config['basic']['analysisType'] 
        problem_type = """"
        for key in problemtypes:
            if config['basic']['analysisType'][key] == 'True':
                problem_type = key
                break
        if problem_type.lower() in ['classification','regression']:            
            algorithms = config['basic']['algorithms'][problem_type]
            for key in algorithms:
                if config['basic']['algorithms'][problem_type][key] == 'True':
                    if key not in ['Neural Network','Convolutional Neural Network (1D)','Recurrent Neural Network','Recurrent Neural Network (GRU)','Recurrent Neural Network (LSTM)','Deep Q Network','Dueling Deep Q Network']:
                        if problem_type.lower() == 'classification':
                            configparam = config['advance']['mllearner_config']['modelParams']['classifierModelParams'][key]
                        else:
                            configparam = config['advance']['mllearner_config']['modelParams']['regressorModelParams'][key]
                        param = paramDefine(configparam,config['advance']['mllearner_config']['optimizationMethod'])
                        interationsum = 1
                        for x in param.values():
                            interationsum = interationsum*len(x)
                        if config['advance']['mllearner_config']['optimizationMethod'].lower() == 'random':
                            if interationsum > int(config['advance']['mllearner_config']['optimizationHyperParameter']['iterations']):
                                interationsum = int(config['advance']['mllearner_config']['optimizationHyperParameter']['iterations'])
                        noOfIterations = noOfIterations+interationsum
                    else:
                        if key in ['Neural Network','Convolutional Neural Network (1D)','Recurrent Neural Network','Recurrent Neural Network (GRU)','Recurrent Neural Network (LSTM)']:
                            if problem_type.lower() == 'classification':
                                configparam = config['advance']['dllearner_config']['modelParams']['classifierModelParams'][key]
                            else:
                                configparam = config['advance']['dllearner_config']['modelParams']['regressorModelParams'][key]
                            interationsum = 1
                            for j in list(configparam.keys()):
                                if isinstance(configparam[j],(list,dict,tuple,str)):
                                    x = configparam[j].split(',')
                                    interationsum = interationsum*len(x)
                            noOfIterations = noOfIterations+interationsum
                        elif key in ['Deep Q Network','Dueling Deep Q Network']:
                            if problem_type.lower() == 'classification':                        
                                configparam = config['advance']['rllearner_config']['modelParams']['classifierModelParams'][key]                            
                                interationsum = 1
                                for j in list(configparam.keys()):
                                    if isinstance(configparam[j],(list,dict,tuple,str)):
                                        x = configparam[j].split(',')
                                        interationsum = interationsum*len(x)
                                noOfIterations = noOfIterations+interationsum                                
        elif problem_type.lower() in ['llmfinetuning']:            
            algorithms = config['basic']['algorithms'][problem_type]
            for key in algorithms:
                if config['basic']['algorithms'][problem_type][key] == 'True':
                    noOfIterations = configparam = config['advance']['llmFineTuning']['modelParams'][key]['epochs']
                    break
        else:
            noOfIterations= 'NA'
    except Exception as e:
        print(e)
        noOfIterations = 'NA'
        pass
    return(noOfIterations)
def paramDefine(paramSpace, method):
		paramDict = {}
		for j in list(paramSpace.keys()):
			inp = paramSpace[j]
			try:
				isLog = False
				isLin = False
				isRan = False
				isList = False
				isString = False
				try:
					# check if functions are given as input and reassign paramspace
					v = paramSpace[j]
					if 'logspace' in paramSpace[j]:
						paramSpace[j] = v[v.find(""("") + 1:v.find("")"")].replace("" "", """")
						isLog = True
					elif 'linspace' in paramSpace[j]:
						paramSpace[j] = v[v.find(""("") + 1:v.find("")"")].replace("" "", """")
						isLin = True
					elif 'range' in paramSpace[j]:
						paramSpace[j] = v[v.find(""("") + 1:v.find("")"")].replace("" "", """")
						isRan = True
					elif 'list' in paramSpace[j]:
						paramSpace[j] = v[v.find(""("") + 1:v.find("")"")].replace("" "", """")
						isList = True
					elif '[' and ']' in paramSpace[j]:
						paramSpace[j] = v.split('[')[1].split(']')[0].replace("" "", """")
						isList = True
					x = paramSpace[j].split(',')
				except:
					x = paramSpace[j]
				str_arg = paramSpace[j]

				# check if arguments are string
				try:
					test = eval(x[0])
				except:
					isString = True

				if isString:
					paramDict.update({j: hp.choice(j, x)} if method == 'bayesopt' else {j: x})
				else:
					res = eval(str_arg)
					if isLin:
						y = eval('np.linspace' + str(res))
						paramDict.update({j: hp.uniform(j, eval(x[0]), eval(x[1]))} if method == 'bayesopt' else {j: y})
					elif isLog:
						y = eval('np.logspace' + str(res))
						paramDict.update(
							{j: hp.uniform(j, 10 ** eval(x[0]), 10 ** eval(x[1]))} if method == 'bayesopt' else {j: y})
					elif isRan:
						y = eval('np.arange' + str(res))
						paramDict.update({j: hp.choice(j, y)} if method == 'bayesopt' else {j: y})
					# check datatype of argument
					elif isinstance(eval(x[0]), bool):
						y = list(map(lambda i: eval(i), x))
						paramDict.update({j: hp.choice(j, eval(str(y)))} if method == 'bayesopt' else {j: y})
					elif isinstance(eval(x[0]), float):
						res = eval(str_arg)
						if len(str_arg.split(',')) == 3 and not isList:
							y = eval('np.linspace' + str(res))
							#print(y)
							paramDict.update({j: hp.uniform(j, eval(x[0]), eval(x[1]))} if method == 'bayesopt' else {j: y})
						else:
							y = list(res) if isinstance(res, tuple) else [res]
							paramDict.update({j: hp.choice(j, y)} if method == 'bayesopt' else {j: y})
					else:
						res = eval(str_arg)
						if len(str_arg.split(',')) == 3 and not isList:
							y = eval('np.linspace' +str(res)) if eval(x[2]) >= eval(x[1]) else eval('np.arange'+str(res))
						else:
							y = list(res) if isinstance(res, tuple) else [res]
						paramDict.update({j: hp.choice(j, y)} if method == 'bayesopt' else {j: y})
			except Exception as inst:
				print(inst)
		return paramDict
        
def calculate_total_activities(config):
    req_step = 0
    problemtypes = config['basic']['analysisType'] 
    problem_type = """"
    for key in problemtypes:
        if config['basic']['analysisType'][key] == 'True':
            problem_type = key
            break
    Modelproblem = problem_type
    if Modelproblem.lower() in ['classification','regression','clustering','anomalydetection','topicmodelling']: 
        req_step = req_step+4
    if Modelproblem.lower() in ['timeseriesforecasting','imageclassification','objectdetection','multilabelprediction','similarityidentification','contextualsearch']:    #task 11997
        req_step = req_step+2    
    if Modelproblem.lower() in ['survivalanalysis']:
        req_step = req_step+3    
    if Modelproblem.lower() in ['recommendersystem']: 
        if config['basic']['algorithms']['recommenderSystem']['ItemRating'] == 'True':
            req_step = req_step+3   
        if config['basic']['algorithms']['recommenderSystem']['AssociationRules-Apriori'] == 'True':
            req_step = req_step+1
    if Modelproblem.lower() in ['statetransition']:
        req_step = req_step+1
    return (req_step)
def getModelStatus(Existusecases,modelid):
    model = Existusecases.objects.get(id=modelid)
    return(model.Status)	
def changeModelStatus(Existusecases,modelid,status,problemType,deployPath):
    model = Existusecases.objects.get(id=modelid)
    model.Status = status
    model.ProblemType = problemType
    model.DeployPath = deployPath
    model.save()
def checkversionrunningstatus(modelid,usecasedetails,Existusecases):
    modelx = Existusecases.objects.get(id=modelid)
    ConfigPath = str(modelx.ConfigPath)
    status = 'Running'
    try:
        if os.path.exists(ConfigPath):
            with open(ConfigPath, 'r') as json_file:
                data = json.load(json_file)
            json_file.close()
            deployPath = str(data['basic']['deployLocation'])
            modelName = data['basic']['modelName']
            modelVersion = data['basic']['modelVersion']       
            modelName = modelName.replace("" "", ""_"")
            logfile = os.path.join(deployPath,modelName,str(modelVersion),'log','model_training_logs.log')
            print(logfile)
            if os.path.exists(logfile):
                with open(logfile) as f:
                    contents = f.read()
                f.close()
                contents = re.search(r'aion_learner_status:(.*)', str(contents), re.IGNORECASE).group(1)
                contents = contents.strip()
                print(contents)
                if contents != '':
                    resultJsonObj = json.loads(contents)
                    odataFile = str(modelx.TrainOuputLocation)
                    with open(odataFile, 'w') as json_file:
                        json.dump(resultJsonObj, json_file)
                    json_file.close()
                    modelx.Status = resultJsonObj['status']
                    status = modelx.Status
                    if resultJsonObj['status'] == 'SUCCESS':    
                        modelx.DeployPath = str(resultJsonObj['data']['deployLocation'])
                        if resultJsonObj['data']['ModelType'] in ['clustering','anomalydetection']:
                            modelx.ProblemType = 'unsupervised'
                        else:
                            modelx.ProblemType = 'supervised'
                    modelx.save()        
    except Exception as e:
        pass
    return status
def updateLLM_Model_training_logs(deployPath,modelName,modelVersion,model,configPath):
    from appbe.prediction import get_instance
    hypervisor,instanceid,region,image = get_instance(modelName+'_'+str(modelVersion))
    from llm.llm_tuning import llm_logs
    cloudconfig = os.path.normpath(os.path.join(os.path.dirname(os.path.abspath(__file__)), '..','config','compute_conf.json'))
    llm_logs(configPath,cloudconfig,instanceid,hypervisor,model)
    
def checkModelUnderTraining(request,usecasedetails,Existusecases):
    try:
        models = Existusecases.objects.filter(Status='Running')
        for model in models:
            ConfigPath = str(model.ConfigPath)
            try:
                if os.path.exists(ConfigPath):
                    with open(ConfigPath, 'r') as json_file:
                        data = json.load(json_file)
                    json_file.close()
                    deployPath = str(data['basic']['deployLocation'])
                    modelName = data['basic']['modelName']
                    modelVersion = data['basic']['modelVersion']       
                    modelName = modelName.replace("" "", ""_"")
                    if data['basic']['analysisType']['llmFineTuning'] == 'True':
                        mlmodels =''
                        algorihtms = data['basic']['algorithms']['llmFineTuning']
                        for k in algorihtms.keys():
                            if data['basic']['algorithms']['llmFineTuning'][k] == 'True':
                                if mlmodels != '':
                                    mlmodels += ', ' 
                                mlmodels += k
                        
                        updateLLM_Model_training_logs(deployPath,modelName,modelVersion,mlmodels,ConfigPath)
                    logfile = os.path.join(deployPath,modelName,str(modelVersion),'log','model_training_logs.log')
                    if os.path.exists(logfile):
                        with open(logfile,encoding=""utf-8"") as f:
                            contents = f.read()
                        f.close()
                        contents = re.search(r'aion_learner_status:(.*)', str(contents), re.IGNORECASE).group(1)
                        contents = contents.strip()
                        if contents != '':
                            resultJsonObj = json.loads(contents)
                            odataFile = str(model.TrainOuputLocation)
                            with open(odataFile, 'w') as json_file:
                                json.dump(resultJsonObj, json_file)
                            json_file.close()
                            modelx = Existusecases.objects.get(id=model.id)
                            modelx.Status = resultJsonObj['status']
                            if resultJsonObj['status'] == 'SUCCESS':
                                modelx.DeployPath = str(resultJsonObj['data']['deployLocation'])
                                if resultJsonObj['data']['ModelType'] in ['clustering','anomalydetection']:
                                    modelx.ProblemType = 'unsupervised'
                                else:
                                    modelx.ProblemType = 'supervised'
                            modelx.save()
            except Exception as e:
                print(ConfigPath)
                print(e)
                exc_type, exc_obj, exc_tb = sys.exc_info()
                fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
                print(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))
                pass
    except Exception as e:
        print(e)
          "
codeclonedetection.py,"# -*- coding: utf-8 -*-
import os
import glob, os
import pandas as pd
from openai.embeddings_utils import cosine_similarity
import numpy as np
from openai.embeddings_utils import get_embedding
import tiktoken
import openai
import importlib.util 
from sklearn.preprocessing import StandardScaler
import numpy as np
from sklearn.cluster import DBSCAN
from sklearn import metrics
import time
from tqdm import tqdm
import concurrent.futures
from openai.error import RateLimitError, Timeout
try:
    import chromadb
    from chromadb.api.types import Documents, Embeddings
except:
    #Looks no chromadb installed,just proceed to use csv embedd
    pass

from openai.embeddings_utils import get_embedding
import json
from openai.embeddings_utils import cosine_similarity
from langchain.schema import Document
from langchain.vectorstores import Chroma
import warnings
import logging
warnings.simplefilter(action='ignore', category=FutureWarning)

""""""Code clone detection parent class, based on user input data,the class will detect similar code snippets in the python file """"""
class CodeCloneDetection:
    #Constructor for base inputs
    def __init__(self,rootdir,openai_baseurl, openai_key,openai_api_type,openai_api_version,embedd_storage_path,generativeai_embedding_engine,generativeai_embedding_model,generativeai_chat_model,generativeai_deploymentId):
            self.rootdir=rootdir
            self.embedd_storage_path=embedd_storage_path
            self.openai_baseurl=openai_baseurl
            self.openai_key=openai_key
            self.openai_api_type=openai_api_type
            self.openai_api_version=openai_api_version
            self.ccdreportpath = os.path.join(self.embedd_storage_path, ""codeCloneReport"")
            self.generativeai_chat_model=generativeai_chat_model
            self.generativeai_embedding_engine = generativeai_embedding_engine
            self.generativeai_embedding_model = generativeai_embedding_model
            self.generativeai_deploymentId = generativeai_deploymentId
            try:
                os.makedirs(self.ccdreportpath, exist_ok = True)
            except OSError as error:
                print(""Directory 'codeclonedetection' can not be created"",self.ccdreportpath)
                
            try:
                self.logpath = os.path.join(self.ccdreportpath,'codeclonelog.log')
                logging.basicConfig(level=logging.INFO,filename=self.logpath,filemode='w',format='%(message)s')
                self.log = logging.getLogger()
            except Exception as e:
                print(""code clone log object creation error."",e)
        
    def get_function_name(self,code):
        """"""
        Extract function name from a line beginning with ""def ""
        """"""
        assert code.startswith(""def "")
        return code[len(""def ""): code.index(""("")]
    
    def get_until_no_space(self,all_lines, i) -> str:
        """"""
        Get all lines until a line outside the function definition is found.
        """"""
        ret = [all_lines[i]]
        for j in range(i + 1, i + 10000):
            if j < len(all_lines):
                if len(all_lines[j]) == 0 or all_lines[j][0] in ["" "", ""\t"", "")""]:
                    ret.append(all_lines[j])
                else:
                    break
        return ""\n"".join(ret)
    
    def chunk_functions(self,function_code, chunk_size):
        """""" To chunk input for gpt models because max token per model is 4090 """"""
        try:
            # chunk_size = 1900
            chunks = [function_code[i:i + chunk_size] for i in range(0, len(function_code), chunk_size)]
        except Exception as e:
            self.log.info('Error in chunking input prompt data.')
        return chunks
    
    def get_functions(self,filepath):
        """"""
        Get all functions in a Python file.
        """"""
        try:
            whole_code = open(filepath).read().replace(""\r"", ""\n"")
            all_lines = whole_code.split(""\n"")
            for i, l in enumerate(all_lines):
                if l.startswith(""def ""):
                    code = self.get_until_no_space(all_lines, i)
                    function_name = self.get_function_name(code)
                    yield {""code"": code, ""function_name"": function_name, ""filepath"": filepath}
        except Exception as e:
            self.log.info(""Error in getting function from file. Error message: \n""+str(e))
                
    def get_clone_function_details(self):
        """""" To get available functions from python files """"""
        try:
            code_root=self.rootdir
            from glob import glob
            code_files = [y for x in os.walk(code_root) for y in glob(os.path.join(x[0], '*.py'))]
            if code_files:
                all_funcs = []
                total_locs = 0
                for code_file in code_files:
                    with open(code_file) as f:
                        total_locs += len(f.readlines())
                
                    funcs = list(self.get_functions(code_file))
                    for func in funcs:
                        all_funcs.append(func)
                return all_funcs,code_root,code_files,total_locs
            else:
                self.log.info(""no python files available in the dir:""+str(code_root))
                return {""pythondiles_error"":""No python files are found.""}
        except Exception as e:
            print(""Error in reading the functions from the given directory. Error message: \n"",e)
            self.log.info(""Error in reading the functions from the given directory. Error message: \n""+str(e))
            

    
    def getOpenAICredentials(self):
        """""" To set openai credential using user input """"""
        #Currently only support openai
        try:
            package_name = 'openai'
            lib_name = importlib.util.find_spec(package_name)
            if lib_name is None:
                return ""openai_pkg_check_failed""            
            else:
                
                embedding_model_lib ='openai'
                # 
                if isinstance(self.openai_baseurl,str) and isinstance(self.openai_key,str) and isinstance(self.openai_api_type,str):
                    os.environ['OPENAI_API_TYPE'] = self.openai_api_type
                    os.environ['OPENAI_API_BASE'] = self.openai_baseurl
                    # os.environ['OPENAI_API_VERSION'] = '2023-05-15' 
                    # os.environ['OPENAI_API_VERSION'] = ""2022-12-01""
                    os.environ['OPENAI_API_VERSION'] = self.openai_api_version
                    os.environ['OPENAI_API_KEY'] = self.openai_key
                
                if (embedding_model_lib.lower()=='openai'):
                    try:
                        openai.api_type=os.getenv('OPENAI_API_TYPE')
                        openai.api_base = os.getenv('OPENAI_API_BASE')                    
                        openai.api_key = os.getenv('OPENAI_API_KEY')
                        openai.api_version = os.getenv('OPENAI_API_VERSION')
                        
                        
                    except Exception as e:
                        self.log.info(""Unable to get openai credentials,please provide proper credentials.""+str(e))
                        return {""error_msg"":""openai_environment_error""} 
        except Exception as e:
            print(""Openai credential set and get function error. Error message: \n"",e)
            
        return openai.api_type,openai.api_base,openai.api_key,openai.api_version
            
            
        
    def get_embedding_local(self,model: str, text: str) -> list[float]:
        """""" To get embedding data for single user given prompt text""""""
        try:
            response = openai.Embedding.create(
                input=text,
                engine=self.generativeai_embedding_engine)
        except Exception as e:
            self.log.info(""openai embedding creation error.""+str(e))
        
        return result['data'][0]['embedding']    
    
    

    def get_embeddings_pyfiles(self,all_funcs):
        """""" To get embedding for python functions  """"""
        
        try:
            import tiktoken
            openai_api_type,openai_api_base,openai_api_key,openai_api_version = self.getOpenAICredentials()
            encoding = tiktoken.encoding_for_model(""text-embedding-ada-002"")
            df = pd.DataFrame(all_funcs)
            df[""tokens""] = df[""code""].apply(lambda c: len(encoding.encode(c)))
            embedding_cost = df[""tokens""].sum() * (0.0004/1000)            
            EMBEDDING_FILEPATH=self.ccdreportpath+'\code_embeddings.csv'
            self.log.info(""embedding storage location: ""+str(EMBEDDING_FILEPATH))
            vdb_status = self.get_vdb_status('chromadb')
            ##Currently chromadb not integrated
            vdb_status = False
            if not vdb_status:
                df['code_embedding'] = df['code'].apply(lambda x: get_embedding(x, engine=self.generativeai_embedding_engine))
                df['filepath'] = df['filepath'].apply(lambda x: x.replace(self.rootdir, """"))
                df.to_csv(EMBEDDING_FILEPATH, index=False)
           
            else:
                df = self.chromadb_embedding(df)
            
            """""" Please uncomment below,  currently assumption is each run we create embedd based on python files dir """"""
            import numpy as np
            df = pd.read_csv(EMBEDDING_FILEPATH)
            df[""code_embedding""] = df[""code_embedding""].apply(eval).apply(np.array)
        except Exception as e:
            self.log.info(""Error in get_embeddings_pyfiles for embedding conversion process. Error Message: ""+str(e))
            raise Exception(""Error in get_embeddings_pyfiles for embedding conversion process."")
        
        return df,embedding_cost
        
    
    def search_functions_vectordb(df,db, code_query, n=3, pprint=True, n_lines=7):
        """""" Search function for user query (prompt content), used for vector database embedding query option. """"""
        try:
            docs = db.similarity_search_with_score(code_query )[:n]
            docs = [{""similarities"":score, ""code"": d.page_content, **d.metadata} for d,score in docs]
            res = pd.DataFrame(docs).drop(""_additional"", axis=1)
            ##Uncomment for debug
            # if pprint:
                # for r in res.iterrows():
                    # print(r[1].filepath+"" : ""+r[1].function_name + ""  score="" + str(round(r[1].similarities, 3)))
                    # print(""\n"".join(r[1].code.split(""\n"")[:n_lines]))
                    # print('-'*70)
        except Exception as e:
            self.log.info(""Error in search_functions_vectordb to get similarity information based on user query. Error Message: ""+str(e))
            raise Exception(""Error in search_functions_csv to get similarity information based on user query."")
    
        return res
    
    def search_functions_csv(self,df, code_query, n=3, pprint=True, n_lines=7):
        """""" Search function for user query (prompt content), used for csv embedding query option. """"""
        try:
            embedding = get_embedding(code_query, engine=self.generativeai_embedding_engine)
            df['similarities'] = df.code_embedding.apply(lambda x: cosine_similarity(x, embedding))        
            res = df.sort_values('similarities', ascending=False)
            ## uncomment for debug purpose
            # if pprint:
                # for r in res.iterrows():
                    # print(r[1].filepath+"" : ""+r[1].function_name + ""  score="" + str(round(r[1].similarities, 3)))
                    # print(""\n"".join(r[1].code.split(""\n"")[:n_lines]))
                    # print('-'*70)
        except Exception as e:
            self.log.info(""Error in search_functions_functions_csv to get similarity information based on user query. Error Message: ""+str(e))
            raise Exception(""Error in search_functions_csv to get similarity information based on user query."")
        return res
    
    def get_prediction(self,prompt_data):
        """""" To get prediction for given user data """"""
        try:
            all_funcs,code_root,code_files,total_locs=self.get_clone_function_details()
            if not isinstance(all_funcs,type(None)):
                df,embedding_cost=self.get_embeddings_pyfiles(all_funcs)
                res = self.search_functions_csv(df, prompt_data, n=3)
                return res
            else:
                return dict({""error"":""Empty_root_directory""})
        except Exception as e:
            self.log.info(""Error in get prediction for user prompt information. Error Message: ""+str(e))
            raise Exception(""Error in get prediction for user prompt information. ."")
        
    def get_vdb_status(self,vdb_name):
        """""" To check chromadb python package installed or not""""""
        try:
            vdb_name = 'chromadb'
            vdb_status=False
            lib_name = importlib.util.find_spec(vdb_name)
            if lib_name is None:                
                vdb_status=False                
            else:
                vdb_status=True
                ## Processing the files and create a embedding and save it using csv.
        except Exception as e:
            self.log.info(""Error in checking chromadb installed or not. Error Message: ""+str(e))
            raise Exception(""Error in checking chromadb installed or not. ."")
        ## Currently vector db (chromadb) not implemented, so vdb_status is set as False
        vdb_status = False
        return vdb_status
    
    
    def create_chroma_db(self,documents, name):
        """""" Craete chromadb instance (persistant) """"""
        #get openai status
        openai_api_type,openai_api_base,openai_api_key,openai_api_version = self.getOpenAICredentials()
        # openai_api_type,openai_api_base,openai_api_key = self.getOpenAICredentials()
        try:
            from langchain.embeddings.openai import OpenAIEmbeddings
            embed_function = OpenAIEmbeddings(deployment=self.generativeai_embedding_engine, chunk_size=1)
        except:
            from chromadb.utils import embedding_functions
            embed_function = embedding_functions.OpenAIEmbeddingFunction(
                api_key=openai.api_key,
                api_base=openai.api_base,
                api_type = openai.api_type,
                model_name=self.generativeai_embedding_model
            )
        
        try:
            # chroma_client = chromadb.Client()
            persist_directory = self.embedd_storage_path
            
            chroma_client = chromadb.Client(
                Settings(
                    persist_directory=persist_directory,
                    chroma_db_impl=""duckdb+parquet"",
                )
            )
            # Start from scratch
            chroma_client.reset()
            chroma_client.persist()        
            
            try:
                embed_function = OpenAIEmbeddings(deployment=self.generativeai_embedding_engine, chunk_size=1)
            except:
                embed_function = OpenAIEmbeddings()
            db = Chroma.from_documents(documents, embed_function, persist_directory=persist_directory)
            db.persist()
        except Exception as e:
            self.log.info(""Error in chromadb based embeding creation. Error Message: ""+str(e))
            raise Exception(""Error in chromadb based embeding creation."")
        return db,chroma_client
    
    def chromadb_embedding(self,df):        
        """""" Base chromadb embedding creation and storage function, it calls above create_chroma_db() to create db.
        """"""
        try:
            documents = df.apply(lambda x: Document(page_content= x[""code""], metadata= {""function_name"": x[""function_name""], ""filepath"": x[""filepath""]}), axis=1)
            #setup the chromadb
            db,chroma_client = self.create_chroma_db(documents,collection_name)
            try:
                chromadb_df=pd.DataFrame(db)
            except:
                db_json = db.get(include=['embeddings', 'documents', 'metadatas'])
                chromadb_df = pd.read_json(db_json)
            self.log.info(""chromadb_df records (top ~5 records):  ""+str(chromadb_df.head(5)))
        except Exception as e:
            self.log.info(""chromadb embedding error. Error message:  ""+str(e))

        return chromadb_df
        
    def num_tokens_from_string(self, string: str) -> int:
        """""" Get number of tokens of text using tiktokens lib.""""""
        encoding = tiktoken.encoding_for_model(""text-embedding-ada-002"")
        num_tokens = len(encoding.encode(string))
        return num_tokens
 
    def validate_code_clone_with_explanation(self,code1, code2, verbose=False):
        """""" Validate clone detection code snippet and get explanation from openai chat model (gpt-3.5-turbo) """"""
        ## Openai using 4 chars as 1 token, same method here followed. Here,we dont need to call tiktoken lib to save cost.
        if (len(code1)/4 >1900):
            chunk = self.chunk_functions(code1, 1900)
            code1 = chunk[0]
            print(""In side , len of code1\n"",len(code1))
            
        if (len(code2)/4 >1900):
            chunk = self.chunk_functions(code2, 1900)
            code2 = chunk[0]
            print(""In side , len of code2\n"",len(code2))
        try:
            SYS_ROLE = ""You are a Senior Code Reviewer, who helps in Code review and integration using code clone detection approach.""
            openai_api_type,openai_api_base,openai_api_key,openai_api_version = self.getOpenAICredentials()
            # openai_api_type,openai_api_base,openai_api_key = self.getOpenAICredentials()
            prompt = f""""""Given two code snippets, find if they are clones or not with suitable explaination.
        
        Four types of clone:
        
        1. Exact clone: Two code fragments similar to each other with little transformation in comments, layout, or whitespaces.
        2. Parameterized clone: Changes made in names of variables, keywords, identifiers, or bypassing parameter during function call in code fragments, result in this clone.
        3. Near-miss clone: Near-miss clone occurs by adding, deleting statements in code fragments of type 2 clones.
        4. Semantic clone: The code snippets have different syntax but with alike functionality results in this clone.
        
        Use JSON object format with following keys:
        
        IsClone: (True, False) wheather two code snippets are clone or not.
        CloneType: (Exact clone, Parameterized clone, Never-miss clone, Semantic clone) Choose appropriate clone type or ""None"".
        Explanation: A short explanation for the above answer.
        
        ### Code Snippets:
        
        ## Code 1:
        {code1}
        
        ## Code 2:
        {code2}
        
        ### Answer(Valid JSON object):
        """"""
           
            response = openai.ChatCompletion.create(deployment_id=self.generativeai_deploymentId,
                                                    messages=[{""role"": ""system"", ""content"": SYS_ROLE},
                                                              {""role"": ""user"", ""content"": prompt},],
                                                    temperature = 0,max_tokens = 3900,request_timeout=90)
    
            
                
            text = response['choices'][0]['message']['content']
            if verbose:
                self.log.info(""validate_code_clone_with_explanation, text:  ""+str(text))
        except Exception as e:
            print("" validate_code_clone_with_explanation: \n"",e)
            response = ""OpenAI Model Connection""
            if e.code == ""invalid_request"" and ""token limit"" in e.message.lower():
                # Implement your logic to reduce the length of messages or split them into smaller parts
                # Modify messages or take appropriate action
                self.log.info(""Given function is too large and exceeds openai chat model token limit,please review the source file function length.  ""+str(e))
            
        return response
    
    def validate_code_clone_with_explanation_davinci(self,code1, code2, verbose=False):
        """""" Validate clone detection code snippet and get explanation from openai chat model (davinci) """"""
        if (len(code1)/4 >1900):
            chunk = self.chunk_functions(code1, 1900)
            code1 = chunk[0]            
        if (len(code2)/4 >1900):
            chunk = self.chunk_functions(code2, 1900)
            code2 = chunk[0]
            
        try:
            SYS_ROLE = ""You are a Senior Code Reviewer, who helps in Code review and integration. Detecting code clone in the repository.""
            openai_api_type,openai_api_base,openai_api_key,openai_api_version = self.getOpenAICredentials()
            # openai_api_type,openai_api_base,openai_api_key = self.getOpenAICredentials()
            prompt = f""""""Given two code snippets, find if they are clones or not with suitable explaination.
        
        Four types of clone:
        
        1. Exact clone: Two code fragments similar to each other with little transformation in comments, layout, or whitespaces.
        2. Parameterized clone: Changes made in names of variables, keywords, identifiers, or bypassing parameter during function call in code fragments, result in this clone.
        3. Near-miss clone: Near-miss clone occurs by adding, deleting statements in code fragments of type 2 clones.
        4. Semantic clone: The code snippets have different syntax but with alike functionality results in this clone.
        
        Use JSON object format with following keys:
        
        IsClone: (True, False) wheather two code snippets are clone or not.
        CloneType: (Exact clone, Parameterized clone, Never-miss clone, Semantic clone) Choose appropriate clone type or ""None"".
        Explanation: A short explanation for the above answer.
        
        ### Code Snippets:
        
        ## Code 1:
        {code1}
        
        ## Code 2:
        {code2}
        
        ### Answer(Valid JSON object):
        """"""
            # response = openai.Completion.create(engine='Text-Datvinci-03', prompt=prompt, temperature=0, max_tokens=1166)
            response = openai.Completion.create(engine=self.generativeai_chat_model, prompt=prompt, temperature=0, max_tokens=3900)
            text = response.choices[0][""text""]
            if verbose:
                self.log.info(""validate_code_clone_with_explanation, text (chatmodel response)  ""+str(text))
        except Exception as e:
            response = ""OpenAI Model Connection Error""
            if e.code == ""invalid_request"" and ""token limit"" in e.message.lower():
                # Implement your logic to reduce the length of messages or split them into smaller parts
                # Modify messages or take appropriate action
                self.log.info(""Given function is too large and exceeds openai chat model token limit,please review the source file function length. Error msg: ""+str(e))
            
        return response
        
        
        


## For dbscan based clone detction from python files, we use CodeCloneDetection parent class. (Using inheritance)
class CodeCloneDetectionFiles(CodeCloneDetection):
    """"""For dbscan based clone detction from python files, we use CodeCloneDetection 
        parent class. (Using inheritance)    
    """"""
    def __init__(self,root_dir,openai_baseurl, openai_key,openai_api_type,openai_api_version,embedd_storage_path,generativeai_embedding_engine,generativeai_embedding_model,generativeai_chat_model,generativeai_deploymentId):
        super().__init__(root_dir,openai_baseurl, openai_key,openai_api_type,openai_api_version,embedd_storage_path,generativeai_embedding_engine,generativeai_embedding_model,generativeai_chat_model,generativeai_deploymentId)
    def get_embedd_fns(self):
        """""" To get embedd vector, using parent class methods""""""
        try:
            ## Processing the files and create a embedding and save it using csv.
            vdb_status = super().get_vdb_status('chromadb')
            self.log.info(""<------- AION Code Clone Detection started ... ------>\n "")
            if not vdb_status:
                openai_api_type,openai_api_base,openai_api_key,openai_api_version = super().getOpenAICredentials()
                # openai_api_type,openai_api_base,openai_api_key = self.getOpenAICredentials()
                all_funcs,code_root,code_files,total_locs = super().get_clone_function_details()
                if (openai.api_key or openai_api_key):
                    if not isinstance(all_funcs,type(None)):
                        embedded_df,embedding_cost=super().get_embeddings_pyfiles(all_funcs)
                else:
                    return status
        except Exception as e:
            # print(""Error in getting embedding vector using openai. Error message: "",e)
            self.log.info(""Error in getting embedding vector using openai. Error message: ""+str(e))
            raise Exception(""Error in getting embedding vector using openai."")
        return embedded_df,embedding_cost
    

            
    def dbscan_clone_detection(self,df):
        """""" DBScan based code clone similarity detection (for functions in given dir """"""
        try:
            vdb_status = super().get_vdb_status('chromadb')
            if not vdb_status:
                X = np.array(list(df.code_embedding.values))
            else:
                X = np.array(list(df.embeddings.values))
            #X = StandardScaler().fit_transform(X)
            db = DBSCAN(eps=0.2, min_samples=2).fit(X)
            labels = db.labels_
            # Number of clusters in labels, ignoring noise if present.
            n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0)
            n_noise_ = list(labels).count(-1)
            df[""cluster""] = labels
            cluster_result = []
            for i in range(n_clusters_):
                cluster_df = df.loc[df['cluster'] == i]
                # with open(""{}/cluster_{}.txt"".format(self.ccdreportpath,i), ""w"") as f:
                for index, row in cluster_df.iterrows():
                        cluster_result.append({""cluster_id"": i,""filepath"": row.filepath,""function_name"": row.function_name,""code"": row.code })
                        # f.write(f""Source File: {row.filepath}, Function Name: {row.function_name}"")
                        #f.write(f""\n{row.code}\n\n{'-'*80}\n\n"")
              
            cluster_result_df = pd.DataFrame(cluster_result)
            codeclonereport_df = os.path.join(self.ccdreportpath,'cluster_result.csv')            
            cluster_result_df.to_csv(codeclonereport_df, index=False)
            return cluster_result_df
        except Exception as e:
            self.log.info(""Error in dbscan based similar code clone clustering. Error Message: ""+str(e))
            raise Exception(""Error in dbscan based similar code clone clustering."")
      
    def make_pairs(self,data_list:list):
        try:
            if len(data_list) <=1:
                return []
            
            return [(data_list[0], d) for d in data_list[1:]] + self.make_pairs(data_list[1:])
        except Exception as e:
            self.log.info(""Error in make pairs function, error message: ""+str(e))
            raise Exception(""Error in clone code mapping."")
        
    def code_clone_check_with_retry(self,code1,code2, retry_interval=1):
            """""" Call chat models for code clone detection with retry mechanism. """"""
            try:
                # res = super().validate_code_clone_with_explanation(code1,code2)
                ##sj
                if (self.generativeai_embedding_model.lower() =='text-embedding-ada-002' and self.generativeai_chat_model.lower() == 'text-datvinci-03'):
                    res = super().validate_code_clone_with_explanation_davinci(code1,code2)
                    return res
                elif (self.generativeai_embedding_model.lower() =='text-embedding-ada-002' and self.generativeai_chat_model.lower() == 'gpt-3.5-turbo'):
                    res = super().validate_code_clone_with_explanation(code1,code2)
                    return res
                
            except (RateLimitError, Timeout)  as e:
                self.log.info(""Calling chat model issue in code clone check function, error message: ""+str(e))
                time.sleep(retry_interval)
                return self.code_clone_check_with_retry(code1, code2)
            
    def res_formater(self,inp):
        """""" Function to format gpt-3.5 or text-davinci-003 response body.  """"""
        try:
            line = inp.replace('{','')
            line = line.replace('}','')
            line = line.replace('""','')
            end=line.split(',')
            d1={}
            l2=[]
            for  l in end:
                l=l.split(',')
                for i in  l:                
                    l1=i.split("":"")
                    l2.append(l1)
            import pandas as pd
            df=pd.DataFrame(l2)
            df=df.T
            df.columns = df.iloc[0]
            df = df[1:]
            df.columns = df.columns.str.replace('[#,@,&,\']', '')
            # df.to_csv('test1.csv', index=False)
            response=df.iloc[0]
            fl=response.to_list()
            clone_status=fl[0]
            clone_type=fl[1]
            result=fl[2]
        except Exception as e:
            self.log.info(""chat model response formatter error. Error message: ""+str(e))
        return clone_status,clone_type,result

    
    def getcloneresult_modelspecific(self,code_clone_check_tasks,embedding_cost):
        """""" get the clone type and associated information from chat model response data. """"""
        try:
            max_workers = min(len(code_clone_check_tasks), 100)
            all_funcs,code_root,code_files,total_locs = super().get_clone_function_details()
            if (self.generativeai_chat_model.lower() == 'text-datvinci-03'):
                self.log.info(""<--- Text-Datvinci-03 chat model based code clone detection. --->"")
                code_clone_result = []
                for task in code_clone_check_tasks:
                    response=self.code_clone_check_with_retry(task[0][""code""], task[1][""code""])
                with concurrent.futures.ThreadPoolExecutor(max_workers= max_workers) as executor:
                    llm_requests = {
                        executor.submit(self.code_clone_check_with_retry, task[0][""code""], task[1][""code""]): task for task in code_clone_check_tasks
                    }
                   
                    with tqdm(total= len(llm_requests)) as progress:
                        for future in concurrent.futures.as_completed(llm_requests):
                            task = llm_requests[future]
                            try:
                                res = future.result()
                                try:
                                    my_openai_obj1 = res[""choices""][0][""text""]
                                    clone_status,clone_type,result = self.res_formater(my_openai_obj1)
                                    model_value=res['model']
                                    total_tokens_value=res['usage']['total_tokens']
                                    
                                    code_clone_result.append({""task"": task,
                                                             ""result"":result,
                                                            ""IsClone"": clone_status,
                                                            ""CloneType"": clone_type,
                                                            ""model"":model_value,
                                                            ""total_tokens"":total_tokens_value})
                                except Exception as e:
                                    self.log.info(""getCloneReport, code_clone_result.append error:  ""+str(e))
                            except Exception as exc:
                                self.log.info(""getCloneReport error (text davinci chat model):  ""+str(exc))
                            progress.update()
                ## Please uncomment below part if you need to check chat model response body.
                #codeclonecheckresult_json = os.path.join(self.ccdreportpath,'code_clone_chatmodel_responsebody.json')
                #with open(codeclonecheckresult_json, ""w+"") as fp:
                    #json.dump(code_clone_result, fp, indent=2)
                
                code_clone_result_json=json.dumps(code_clone_result)
                clone_report=pd.read_json(code_clone_result_json)
                cr_totaltokens = clone_report['total_tokens']
                total_amt = (cr_totaltokens).sum() * (0.002/1000)
                clone_report[""function1""] = clone_report[""task""].apply(lambda x: x[0][""filepath""] + "" -> "" + x[0][""function_name""])
                clone_report[""function2""] = clone_report[""task""].apply(lambda x: x[1][""filepath""] + "" -> "" + x[1][""function_name""])
                # clone_report[""clone_type""] = clone_report[""result""].apply(lambda x: x[""CloneType""])
                clone_report[""clone_type""] = clone_report[""CloneType""]
                
                code_dir = code_root
                total_files = len(code_files)
                total_locs = total_locs
                total_functions = len(all_funcs)
                total_tokens = clone_report['total_tokens'].sum()
                total_cost= embedding_cost + clone_report['total_tokens'].sum() * (0.002/1000)
                total_clones = len(clone_report[clone_report.clone_type != ""None""])
                code_clone_count_by_df = clone_report[clone_report.clone_type != ""None""].groupby(""clone_type"").agg(Count=('clone_type', 'count')).to_markdown(tablefmt='psql')
                clone_functions = clone_report[[""function1"", ""function2"", ""clone_type""]][clone_report.clone_type != ""None""].sort_values(""function1"").to_markdown(tablefmt='psql', index=False)
                code_clone_count_dict = clone_report[clone_report.clone_type != ""None""].groupby(""clone_type"").agg(Count=('clone_type', 'count'))
                clone_function_dict = clone_report[[""function1"", ""function2"", ""clone_type""]][clone_report.clone_type != ""None""].sort_values(""function1"")
                ##Final report on code clone detection
                report_str = f""""""Code_directory: {code_dir}
                Files: {total_files}
                LOCs: {total_locs}
                Functions: {total_functions}
                
                Total_code_clones_detected: {total_clones}
                Tokens used: {total_tokens}
                Total cost(embedding + clone check): {total_cost}
                
                Four_types_of_clone:
                1. Exact clone: Two code fragments similar to each other with little transformation in comments, layout, or whitespaces.
                2. Parameterized clone: Changes made in names of variables, keywords, identifiers, or bypassing parameter during function call in code fragments, result in this clone.
                3. Near-miss clone: Near-miss clone occurs by adding, deleting statements in code fragments of type 2 clones.
                4. Semantic clone: The code snippets have different syntax but with alike functionality results in this clone.
                
                Code_clones_count_by_clone_type:
                {code_clone_count_by_df}
                
                Clone_functions:
                {clone_functions}
                """"""
                codeclonereport_txt = os.path.join(self.ccdreportpath,'code_clone_report.txt')
                with open(codeclonereport_txt, ""w"") as f:
                    f.write(report_str)
                
                report_dict=dict({""Code_directory"":code_dir,""total_files"":total_files,
                                  ""total_locs"":total_locs,""total_functions"":total_functions,""total_clones"":total_clones,
                                  ""total_tokens"":total_tokens,""total_cost"":total_cost,
                                  ""Code_clones_count_by_clone_type"":code_clone_count_dict,""clone_functions"":clone_function_dict})
            ## report for chat model is gpt 3.5 turbo    
            elif (self.generativeai_chat_model.lower() == 'gpt-3.5-turbo'):
                try:
                    self.log.info(""<--- gpt-3.5-turbo chat model based code clone detection. --->"")
                    code_clone_result = []
                    for task in code_clone_check_tasks:
                        response=self.code_clone_check_with_retry(task[0][""code""], task[1][""code""])
                    with concurrent.futures.ThreadPoolExecutor(max_workers= max_workers) as executor:
                        llm_requests = {
                            executor.submit(self.code_clone_check_with_retry, task[0][""code""], task[1][""code""]): task for task in code_clone_check_tasks
                        }
                    
                        with tqdm(total= len(llm_requests)) as progress:
                            for future in concurrent.futures.as_completed(llm_requests):
                                task = llm_requests[future]
                                try:
                                    res = future.result()
                                    my_openai_obj1 = res[""choices""][0][""message""]['content']
                                    clone_status,clone_type,result = self.res_formater(my_openai_obj1)
                                    # result = json.loads(res['choices'][0]['message']['content'])
                                    total_tokens = res[""usage""][""total_tokens""]                                
                                    code_clone_result.append({""task"": task,
                                                            ""result"":result ,
                                                            ""CloneType"": clone_type,
                                                            ""total_tokens"": total_tokens})
                                except Exception as exc:
                                    self.log.info(""gpt 3.5 chat model  error:  ""+str(exc))
                    
                                progress.update()
                except Exception as e:
                    print(""In gpt3.5,getcloneresult_modelspecific fn exception : \n"",e)
                    import traceback
                    print(""traceback, In gpt3.5,getcloneresult_modelspecific fn exception \n"",traceback.print_exc())
                ## Please uncomment below part if you need to check chat model response body.
                #codeclonecheckresult_json = os.path.join(self.ccdreportpath,'code_clone_chatmodel_responsebody.json')
                #with open(codeclonecheckresult_json, ""w+"") as fp:
                    #json.dump(code_clone_result, fp, indent=2)
                try:
                    code_clone_result_json=json.dumps(code_clone_result)
                    clone_report = pd.read_json(code_clone_result_json)
                    codeclone_total_amt = clone_report[""total_tokens""].sum() * (0.002/1000)
                    clone_report[""function1""] = clone_report[""task""].apply(lambda x: x[0][""filepath""] + "" -> "" + x[0][""function_name""])
                    clone_report[""function2""] = clone_report[""task""].apply(lambda x: x[1][""filepath""] + "" -> "" + x[1][""function_name""])
                    # clone_report[""clone_type""] = clone_report[""result""].apply(lambda x: x[""CloneType""])
                    clone_report[""clone_type""] = clone_report[""CloneType""]
                    code_dir = code_root
                    total_files = len(code_files)
                    total_locs = total_locs
                    total_functions = len(all_funcs)                
                    total_tokens = clone_report[""total_tokens""].sum()
                except Exception as e:
                    self.log.info(""Error in getting clone report:  ""+str(e))
                total_cost= embedding_cost + clone_report[""total_tokens""].sum() * (0.002/1000)
                total_clones = len(clone_report[clone_report.clone_type != ""None""])
                code_clone_count_by_df = clone_report[clone_report.clone_type != ""None""].groupby(""clone_type"").agg(Count=('clone_type', 'count')).to_markdown(tablefmt='psql')
                clone_functions = clone_report[[""function1"", ""function2"", ""clone_type""]][clone_report.clone_type != ""None""].sort_values(""function1"").to_markdown(tablefmt='psql', index=False)
                code_clone_count_dict = clone_report[clone_report.clone_type != ""None""].groupby(""clone_type"").agg(Count=('clone_type', 'count'))
                clone_function_dict = clone_report[[""function1"", ""function2"", ""clone_type""]][clone_report.clone_type != ""None""].sort_values(""function1"")
                report_str = f""""""Code_directory: {code_dir}
                Files: {total_files}
                LOCs: {total_locs}
                Functions: {total_functions}
                
                Total code clones detected: {total_clones}
                Tokens used: {total_tokens}
                Total cost(embedding + clone check): {total_cost}
                
                Four types of clone:
                1. Exact clone: Two code fragments similar to each other with little transformation in comments, layout, or whitespaces.
                2. Parameterized clone: Changes made in names of variables, keywords, identifiers, or bypassing parameter during function call in code fragments, result in this clone.
                3. Near-miss clone: Near-miss clone occurs by adding, deleting statements in code fragments of type 2 clones.
                4. Semantic clone: The code snippets have different syntax but with alike functionality results in this clone.
                5. None: Not a clone, discard this one.
                
                Code_clones_count_by_clone_type:
                {code_clone_count_by_df}
                
                Clone_functions:
                {clone_functions}
                """"""                
                codeclonereport_txt = os.path.join(self.ccdreportpath,'code_clone_report.txt')
                with open(codeclonereport_txt, ""w"") as f:
                    f.write(report_str)
                
                report_dict=dict({""Code_directory"":code_dir,""total_files"":total_files,
                                  ""total_locs"":total_locs,""total_functions"":total_functions,""total_clones"":total_clones,
                                  ""total_tokens"":total_tokens,""total_cost"":total_cost,
                                  ""Code_clones_count_by_clone_type"":code_clone_count_dict,""clone_functions"":clone_function_dict}) 
            
        except Exception as e:
            self.log.info(""Error in clone type and information retrival process .Error message:  ""+str(e))
            
        return code_clone_result,report_str,report_dict
        
          
    def getCloneReport(self):
        """""" To get the clone report from the given python directory """"""
        try:
            self.log.info(""To get clone report, we are calling embedding and chat model."")
            import time
            vdb_status = super().get_vdb_status('chromadb')
            start_time = time.time()
            # self.log.info(""code clone detection start time.""+str(start_time))
            if not vdb_status:
                embedded_df,embedding_cost = self.get_embedd_fns()          
                cluster_df = self.dbscan_clone_detection(embedded_df)
                cluster_df_group = cluster_df.groupby(""cluster_id"")
                len_cluster_df_group = len(cluster_df_group)
                code_clone_check_tasks = []
                for name, group in cluster_df_group:
                    res = self.make_pairs(group.to_dict(orient=""records""))
                    code_clone_check_tasks += res
                
                #For text-embedding-ada-002 and gpt 3.5 chat model
                code_clone_result,report_str,report_dict = self.getcloneresult_modelspecific(code_clone_check_tasks,embedding_cost)                
                end_time = time.time()
                total_time_taken = end_time - start_time
                self.log.info(""Total time taken for code clone detction: ""+str(total_time_taken))                
                self.log.info(""<------------- Final code clone report: -------------------> \n""+str(report_str))
                report_df = pd.DataFrame.from_dict(report_dict, orient=""index"").reset_index()
                report_df.columns = ['ccd_properties', 'Values']
                report_df=report_df.T
                codecloneresult_df = os.path.join(self.ccdreportpath,'code_clone_report_df.csv')                
                report_df.to_csv(codecloneresult_df)
                return report_str,report_dict,report_df,json.dumps(report_str)
            else:
                #Below code indended for vector db.
                all_funcs,code_root,code_files,total_locs = super().get_clone_function_details()
                df = pd.DataFrame(all_funcs)
                df['filepath'] = df['filepath'].apply(lambda x: x.replace(code_root, """"))
                chromadb_df=super().chromadb_embedding(df)
                df = self.dbscan_clone_detection(chromadb_df)
                cluster_df_group = cluster_df.groupby(""cluster_id"")
                len_cluster_df_group = len(cluster_df_group)
                code_clone_check_tasks = []
                for name, group in cluster_df_group:
                    res = self.make_pairs(group.to_dict(orient=""records""))
                    code_clone_check_tasks += res
                code_clone_result = []
                max_workers = min(len(code_clone_check_tasks), 100)
                with concurrent.futures.ThreadPoolExecutor(max_workers= max_workers) as executor:
                    llm_requests = {
                        executor.submit(self.code_clone_check_with_retry, task[0][""code""], task[1][""code""]): task for task in code_clone_check_tasks
                    }
                
                    with tqdm(total= len(llm_requests)) as progress:
                        for future in concurrent.futures.as_completed(llm_requests):
                            task = llm_requests[future]
                            try:
                                res = future.result()
                                code_clone_result.append({""task"": task,
                                                        ""result"": json.loads(res['choices'][0]['message']['content']),
                                                        ""total_tokens"": res[""usage""][""total_tokens""]})
                
                            except Exception as exc:
                                print('%r generated an exception: %s' % (task, exc))
                
                            progress.update()
                with open(""code_clone_check_result.json"", ""w+"") as fp:
                    json.dump(code_clone_result, fp, indent=2)
                
                code_clone_result_json=json.dumps(code_clone_result)
                clone_report=pd.read_json(code_clone_result_json)
                total_amt = clone_report[""total_tokens""].sum() * (0.002/1000)
                clone_report[""function1""] = clone_report[""task""].apply(lambda x: x[0][""filepath""] + "" -> "" + x[0][""function_name""])
                clone_report[""function2""] = clone_report[""task""].apply(lambda x: x[1][""filepath""] + "" -> "" + x[1][""function_name""])
                clone_report[""clone_type""] = clone_report[""result""].apply(lambda x: x[""CloneType""])
                all_funcs,code_root,code_files,total_locs = super().get_clone_function_details()
                
                code_dir = code_root
                total_files = len(code_files)
                total_locs = total_locs
                total_functions = len(all_funcs)
                total_tokens = clone_report[""total_tokens""].sum()
                # total_cost= embedding_cost + clone_report[""total_tokens""].sum() * (0.002/1000)
                total_clones = len(clone_report[clone_report.clone_type != ""None""])
                code_clone_count_by_df = clone_report[clone_report.clone_type != ""None""].groupby(""clone_type"").agg(Count=('clone_type', 'count')).to_markdown(tablefmt='psql')
                clone_functions = clone_report[[""function1"", ""function2"", ""clone_type""]][clone_report.clone_type != ""None""].sort_values(""function1"").to_markdown(tablefmt='psql', index=False) 
                code_clone_count_dict  = clone_report[clone_report.clone_type != ""None""].groupby(""clone_type"").agg(Count=('clone_type', 'count'))
                clone_function_dict = clone_report[[""function1"", ""function2"", ""clone_type""]][clone_report.clone_type != ""None""].sort_values(""function1"")
                
                ##Final report on code clone detection
                report_str = f""""""Code_directory: {code_dir}
                Files: {total_files}
                LOCs: {total_locs}
                Functions: {total_functions}
                
                Total code clones detected: {total_clones}
                Tokens used: {total_tokens}
                
                Four types of clone:
                1. Exact clone: Two code fragments similar to each other with little transformation in comments, layout, or whitespaces.
                2. Parameterized clone: Changes made in names of variables, keywords, identifiers, or bypassing parameter during function call in code fragments, result in this clone.
                3. Near-miss clone: Near-miss clone occurs by adding, deleting statements in code fragments of type 2 clones.
                4. Semantic clone: The code snippets have different syntax but with alike functionality results in this clone.
                
                Code_clones_count_by_clone_type:
                {code_clone_count_by_df}
                
                Clone_functions:
                {clone_functions}
                """"""
                with open(""code_clone_report.txt"", ""w"") as f:
                    f.write(report_str)
                
                # print(report_str)
                self.log.info(""<------------- Final code clone report: -------------------> \n""+str(report_str))
                self.log.info(""<------------- clone_functions code clone report: -------------------> \n""+str(clone_functions))
                report_dict=dict({""Code_directory"":code_dir,""total_files"":total_files,
                                  ""total_locs"":total_locs,""total_functions"":total_functions,""total_clones"":total_clones,
                                  ""total_tokens"":total_tokens,
                                  ""Code_clones_count_by_clone_type"":code_clone_count_dict,""clone_functions"": clone_function_dict})

                  
                report_df= pd.DataFrame([report_dict.keys(), report_dict.values()]).T
                report_df.columns = [""Code_directory"", ""total_files"",""total_locs"",""total_functions"",""total_clones"",""total_tokens"",""Code_clones_count_by_clone_type"",""clone_functions""]
                report_df.to_csv(""code_clone_report_df.csv"")
                return report_str,report_dict,report_df,json.dumps(report_str)
        except Exception as e:
            self.log.info(""Error in clone detection function call. Error Message: \n""+str(e))
            raise Exception(""Error in clone detection function."")

#For testing and code instance privacy     
if __name__=='__main__':
    ## For testing purpose.Uncomment n use.
    root_directory = r""C:\AION_Works\Anomaly_Detection\anomalydetectionpackage\code_clone_testing_pyfiles\code_clone_testing_pyfiles_large""
    embedd_storage_path = r""C:\AION_Works\ccddir""
    generativeai_credentials={'openai_baseurl':"""",
                              'openai_key':"""",
                              'openai_api_type':"""",
                              'openai_api_version':"""",
                              'generativeai_embedding_engine':"""",
                              'generativeai_embedding_model':"""",
                              'generativeai_chat_model':"""",
                              'generativeai_deploymentId':""""}
    openai_baseurl = generativeai_credentials['openai_baseurl']
    openai_key = generativeai_credentials['openai_key']
    openai_api_type = generativeai_credentials['openai_api_type']
    openai_api_version = generativeai_credentials['openai_api_version']
    generativeai_embedding_engine = generativeai_credentials['generativeai_embedding_engine']
    generativeai_embedding_model = generativeai_credentials['generativeai_embedding_model']
    generativeai_chat_model = generativeai_credentials['generativeai_chat_model']
    generativeai_deploymentId = generativeai_credentials['generativeai_deploymentId']
    codeclonedetection_obj = CodeCloneDetectionFiles(root_directory,openai_baseurl, openai_key,openai_api_type,openai_api_version,embedd_storage_path,generativeai_embedding_engine,generativeai_embedding_model,generativeai_chat_model,generativeai_deploymentId)
    report_str,report_dict,report_json = codeclonedetection_obj.getCloneReport()
    print(""End of code clone detection....\n"")
        
"
azureStorageDB.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import sqlite3
from pathlib import Path
import json
import os
import rsa
import boto3   #usnish
import pandas as pd
import time

import sqlite3

class sqlite_db():

	def __init__(self, location, database_file=None):
		if not isinstance(location, Path):
			location = Path(location)
		if database_file:
			self.database_name = database_file
		else:
			self.database_name = location.stem
		db_file = str(location/self.database_name)
		self.conn = sqlite3.connect(db_file)
		self.cursor = self.conn.cursor()

	def table_exists(self, name):
		query = f""SELECT name FROM sqlite_master WHERE type='table' AND name='{name}';""
		listOfTables = self.cursor.execute(query).fetchall()
		return len(listOfTables) > 0

	def read_data(self, table_name):
		query = f""SELECT * FROM {table_name}""
		row = self.cursor.execute(query).fetchall()
		return list(row)
		#return pd.read_sql_query(f""SELECT * FROM {table_name}"", self.conn)

	def create_table(self,name, columns, dtypes):
		query = f'CREATE TABLE IF NOT EXISTS {name} ('
		
		for column, data_type in zip(columns, dtypes):
			query += f""'{column}'	TEXT,""
		query = query[:-1]
		query += ');'
		self.conn.execute(query)
		return True
	def delete_record(self,table_name,col_name, col_value):
		try:
			query = f""DELETE FROM {table_name} WHERE {col_name}='{col_value}'""
			self.conn.execute(query)
			self.conn.commit()
			return 'success'
		except Exception as e :
			print(str(e))
			print(""Deletion Failed"")
			return 'error'
	
	def get_data(self,table_name,col_name,col_value):
		query = f""SELECT * FROM {table_name} WHERE {col_name}='{col_value}'""
		row = self.cursor.execute(query).fetchone()
		if(row == None):
			return []
		return list(row)
	
	def write_data(self,data, table_name):
		if not self.table_exists(table_name):
			self.create_table(table_name, data.columns, data.dtypes)
		tuple_data = list(data.itertuples(index=False, name=None))
		insert_query = f'INSERT INTO {table_name} VALUES('
		for i in range(len(data.columns)):
			insert_query += '?,'
		insert_query = insert_query[:-1] + ')'
		self.cursor.executemany(insert_query, tuple_data)
		self.conn.commit()
		return True
		
	def close(self):
		self.conn.close()


def add_new_azureStorage(request):
	try:
		from appbe.dataPath import DATA_DIR
		file_path = os.path.join(DATA_DIR,'sqlite')
		sqlite_obj = sqlite_db(file_path,'config.db')	
		if request.POST[""azurename""] =='' or request.POST[""azureaccountkey""] == '' or request.POST[""containername""] == '' :
			return 'error'
		newdata = {}		   
		newdata['azurename'] = [request.POST[""azurename""]]
		newdata['azureaccountkey'] = [request.POST[""azureaccountkey""]]
		newdata['containername'] = [request.POST[""containername""]]
		name = request.POST[""azurename""]
		if sqlite_obj.table_exists(""azurebucket""):		
			if(len(sqlite_obj.get_data('azurebucket','azurename',name))>0):
				return 'error1'            
		sqlite_obj.write_data(pd.DataFrame.from_dict(newdata),'azurebucket')
	
	except:
		return 'error'

def get_azureStorage():
	try:
		from appbe.dataPath import DATA_DIR
		file_path = os.path.join(DATA_DIR,'sqlite')
		sqlite_obj = sqlite_db(file_path,'config.db')	
		temp_data = sqlite_obj.read_data('azurebucket')
		data = []
		for x in temp_data:
			data_dict = {}
			data_dict['azurename'] = x[0]
			data_dict['azureaccountkey'] = x[1]
			data_dict['containername'] = x[2]
			data.append(data_dict)	
	except Exception as e:
		print(e)
		data = []
	return data
def read_azureStorage(name,directoryname,DATA_FILE_PATH):
	try:
		from appbe.dataPath import DATA_DIR
		file_path = os.path.join(DATA_DIR,'sqlite')
		sqlite_obj = sqlite_db(file_path,'config.db')
		data = sqlite_obj.get_data('azurebucket','azurename',name)
	except:
		data = []
	found = False
	
	if len(data)!=0:
		storage_account_name = str(data[0])
		storage_account_key = str(data[1])
		azure_container_name = data[2]
		found = True
				
	try:
		if found:
			root_dir = str(directoryname)
			from azure.storage.filedatalake import DataLakeServiceClient
			import io
			import pandavro as pdx
			from detect_delimiter import detect			
			try:
				service_client = DataLakeServiceClient(account_url=""{}://{}.dfs.core.windows.net"".format(""https"", storage_account_name), credential=storage_account_key)
				print(azure_container_name)
				file_system_client = service_client.get_file_system_client(azure_container_name)
				print(root_dir)
				file_paths = file_system_client.get_paths(path=root_dir)				
				main_df = pd.DataFrame()
				for path in file_paths:
					if not path.is_directory:
						file_client = file_system_client.get_file_client(path.name)
						file_ext = os.path.basename(path.name).split('.', 1)[1]
						if file_ext in [""csv"", ""tsv""]:
							with open(csv_local, ""wb"") as my_file:
								download = file_client.download_file()
								download.readinto(my_file)
							with open(csv_local, 'r') as file:
								data = file.read()
							row_delimiter = detect(text=data, default=None, whitelist=[',', ';', ':', '|', '\t'])
							processed_df = pd.read_csv(csv_local, sep=row_delimiter)
						if file_ext == ""parquet"":
							download = file_client.download_file()
							stream = io.BytesIO()
							download.readinto(stream)
							processed_df = pd.read_parquet(stream, engine='pyarrow')
						if file_ext == ""avro"": 
							with open(avro_local, ""wb"") as my_file:
								download = file_client.download_file()
								download.readinto(my_file)
							processed_df = pdx.read_avro(avro_local)
						if not main_df.empty:
							main_df = main_df.append(processed_df, ignore_index=True)
						else:
							main_df = pd.DataFrame(processed_df)
			except Exception as e:
				
				msg = str(e).split(""."")[0]
				print(msg)
				return 'Error',str(msg), pd.DataFrame()
			return ""Success"","""",main_df
	except:
		return 'Error',""Please check bucket configuration"", pd.DataFrame()

def remove_azure_bucket(name):
	from appbe.dataPath import DATA_DIR
	file_path = os.path.join(DATA_DIR,'sqlite')
	sqlite_obj = sqlite_db(file_path,'config.db')
	return sqlite_obj.delete_record('azurebucket','azurename',name)"
labelling_utils.py,"import json
import os
import random
import time
from avro.datafile import DataFileReader
from avro.io import DatumReader
from pyarrow.parquet import ParquetFile
from snorkel.labeling.model import LabelModel
from snorkel.labeling import PandasLFApplier, LFAnalysis
import pandas as pd
import pandavro as pdx
import pyarrow as pa
import numpy as np
import platform
from os.path import expanduser

home = expanduser(""~"")
if platform.system() == 'Windows':

    DATA_FILE_PATH = os.path.join(home,'AppData','Local','Programs','HCLTech','AION','data','storage')
else:
    DATA_FILE_PATH = os.path.join(home,'HCLT','AION','data')




def get_join(condition):
    if condition[""join""] == 'and':
        return ""&""
    elif condition[""join""] == 'or':
        return ""|""
    else:
        return """"


def create_labelling_function(rule_list, label_list):
    lfs_main_func = 'def lfs_list_create():\n'
    lfs_main_func += '\tfrom snorkel.labeling import labeling_function\n'
    lfs_main_func += '\timport numpy as np\n'
    lfs_main_func += '\timport json\n'
    lfs_main_func += '\tABSTAIN = -1\n'
    lfs_main_func += '\tlabels = json.loads(json.dumps(' + json.dumps(label_list) + '))\n'
    lfs_list = '\tlfs_list=['
    for rule in rule_list:
        lfs_list += 'lf_' + rule[""rule_name""] + ','
        lfs = '\t@labeling_function()\n'
        lfs += '\tdef lf_' + rule[""rule_name""] + '(data):\n'
        lfs += '\t\treturn np.where('
        for condition in rule[""conditions""]:
            if ""string"" in condition[""sel_datatype""]:
                if condition[""sel_condition""] in [""=="", ""!=""]:
                    cond_statement = '(data[""' + condition[""sel_column""] + '""]' + condition[
                        ""sel_condition""] + '(""' + str(condition[""input_value""]) + '""))' + get_join(condition)
                else:
                    cond_statement = '(data[""' + condition[""sel_column""] + '""].' + condition[
                        ""sel_condition""] + '(""' + str(condition[""input_value""]) + '""))' + get_join(condition)
            else:
                cond_statement = '(data[""' + condition[""sel_column""] + '""]' + condition[""sel_condition""] + \
                                 str(condition[""input_value""]) + ')' + get_join(condition)
            lfs += cond_statement
        lfs += ', labels.index(""' + rule[""label""] + '""), ABSTAIN)\n'
        lfs_main_func += lfs
    if lfs_list.endswith("",""):
        lfs_list = lfs_list.rstrip(lfs_list[-1])
        lfs_list += ']\n'
    else:
        lfs_list += ']\n'
    lfs_main_func += lfs_list
    lfs_main_func += '\treturn lfs_list\n'
    lfs_main_func += 'lfs_list_create()'
    f = open(os.path.join(DATA_FILE_PATH,  'lfs_list.txt'), 'w')
    f.write(lfs_main_func)
    f.close()
    return lfs_main_func


def label_dataset(rule_list, file_ext, label_list, not_satisfy_label):
    file_path = os.path.join(DATA_FILE_PATH,  ""uploaded_file."" + file_ext)
    if file_ext in [""csv"", ""tsv""]:
        df = pd.read_csv(file_path)
    elif file_ext == ""json"":
        df = pd.json_normalize(pd.read_json(file_path).to_dict(""records""))
    elif file_ext == ""avro"":
        reader = DataFileReader(open(file_path, ""rb""), DatumReader())
        schema = json.loads(reader.meta.get('avro.schema').decode('utf-8'))
        df = pdx.read_avro(file_path, schema=schema, na_dtypes=True)
    elif file_ext == ""parquet"":
        df = pd.read_parquet(file_path, engine=""pyarrow"")
    labelling_functions = create_labelling_function(rule_list, label_list)
    exec(labelling_functions)
    lfs = eval('lfs_list_create()')
    applier = PandasLFApplier(lfs)
    l_data = applier.apply(df)
    label_model = LabelModel(cardinality=len(label_list) + 1, verbose=True)
    label_model.fit(l_data, n_epochs=500, log_freq=50, seed=123)
    df[""label""] = label_model.predict(L=l_data, tie_break_policy=""abstain"")
    df.loc[df[""label""] == -1, ""label""] = not_satisfy_label
    for item in label_list:
        df.loc[df[""label""] == label_list.index(item), ""label""] = item
    if file_ext in [""csv"", ""tsv""]:
        df.to_csv(os.path.join(DATA_FILE_PATH,  ""result_file."" + file_ext), index=False)
    elif file_ext == ""parquet"":
        df.to_parquet(os.path.join(DATA_FILE_PATH,  ""result_file."" + file_ext),
                      engine=""pyarrow"", index=False)
    elif file_ext == ""avro"":
        pdx.to_avro(os.path.join(DATA_FILE_PATH,  ""result_file."" + file_ext), df)
    else:
        raise ValueError(""Invalid file format"")
    num_records = len(df.index)
    size_take = 100
    if num_records <= size_take:
        size_take = num_records
    display_df = df.sample(n=size_take)
    return display_df.to_html(classes='table table-striped text-left', justify='left', index=False)


def create_sample_function(rule, label_list, not_satisfy_label):
    lfs_main_func = 'def lf_rule_apply(data):\n'
    lfs_main_func += '\timport numpy as np\n'
    lfs_main_func += '\tABSTAIN = -1\n'
    lfs_main_func += '\tlabels = json.loads(json.dumps(' + json.dumps(label_list) + '))\n'
    lfs = '\treturn np.where('
    for condition in rule[""conditions""]:
        if ""string"" in condition[""sel_datatype""]:
            if condition[""sel_condition""] in [""=="", ""!=""]:
                cond_statement = '(data[""' + condition[""sel_column""] + '""]' + condition[""sel_condition""] + '(""' + str(
                    condition[""input_value""]) + '""))' + get_join(condition)
            else:
                cond_statement = '(data[""' + condition[""sel_column""] + '""].str.' + condition[
                    ""sel_condition""] + '(""' + str(condition[""input_value""]) + '""))' + get_join(condition)
                print(cond_statement)
        else:
            cond_statement = '(data[""' + condition[""sel_column""] + '""]' + condition[""sel_condition""] + \
                             str(condition[""input_value""]) + ')' + get_join(condition)
        lfs += cond_statement
    lfs += ', ""' + rule[""label""] + '"", ""' + not_satisfy_label + '"")\n'
    lfs_main_func += lfs
    return lfs_main_func


def get_sample_result_of_individual_rule(rule_json, file_ext, label_list, not_satisfy_label):
    file_path = os.path.join(DATA_FILE_PATH,  ""uploaded_file."" + file_ext)
    size_take = 100
    if file_ext in [""csv"", ""tsv""]:
        num_records = sum(1 for line in open(file_path)) - 1
        if num_records > size_take:
            skip = sorted(random.sample(range(1, num_records + 1), num_records - size_take))
        else:
            skip = 0
        df = pd.read_csv(file_path, skiprows=skip)
    elif file_path.endswith("".json""):
        df = pd.read_json(file_path)
        df = pd.json_normalize(df.to_dict(""records""))
    elif file_path.endswith("".avro""):
        reader = DataFileReader(open(file_path, ""rb""), DatumReader())
        schema = json.loads(reader.meta.get('avro.schema').decode('utf-8'))
        df = pdx.read_avro(file_path, schema=schema, na_dtypes=True)
    elif file_path.endswith("".parquet""):
        pf = ParquetFile(file_path)
        take_rows = next(pf.iter_batches(batch_size=size_take))
        df = pa.Table.from_batches([take_rows]).to_pandas()
        # file_content = pd.read_parquet(file_path, engine=""pyarrow"")
    else:
        raise ValueError(""Invalid file format"")

    rule_applier_func = create_sample_function(rule_json, label_list, not_satisfy_label)
    exec(rule_applier_func)
    df[rule_json[""rule_name""]] = eval('lf_rule_apply')(df)
    return df.to_html(classes='table table-striped text-left', justify='left', index=False)


def create_sample_function_ver2(rule_json, label_list, not_satisfy_label):
    lfs_main_func = 'def lf_rule_apply(data):\n'
    lfs_main_func += '\timport numpy as np\n'
    lfs_main_func += '\tABSTAIN = -1\n'
    lfs_main_func += '\tlabels = json.loads(json.dumps(' + json.dumps(label_list) + '))\n'
    counter = 0
    for condition in rule_json[""conditions""]:
        lfs_return = condition[""sel_label""]
        if counter > 0:
            lfs_return_condition = '\telif'
        else:
            lfs_return_condition = '\tif'
        for label_condition in condition[""label_condition""]:
            if label_condition[""sel_datatype""] == ""string"":
                if label_condition[""sel_condition""] == ""contains"":
                    lfs_return_condition += '((' + str(label_condition[""input_value""]) + ') in data[""' + \
                                            label_condition[""sel_column""] + '""])' + get_join(label_condition)
                elif label_condition[""sel_condition""] in [""=="", ""!=""]:
                    lfs_return_condition += '(data[""' + label_condition[""sel_column""] + '""]' + label_condition[
                        ""sel_condition""] + '(""' + str(
                        label_condition[""input_value""]) + '""))' + get_join(label_condition)
                else:
                    lfs_return_condition += '(data[""' + label_condition[""sel_column""] + '""].' + label_condition[
                        ""sel_condition""] + '(""' + str(label_condition[""input_value""]) + '""))' + get_join(
                        label_condition)
            else:
                lfs_return_condition += '(data[""' + label_condition[""sel_column""] + '""]' + label_condition[
                    ""sel_condition""] + str(label_condition[""input_value""]) + ')' + get_join(label_condition)
            if get_join(label_condition) == """":
                lfs_return_condition += "":\n""
                lfs_return_condition += '\t\treturn ""' + lfs_return + '""\n'
                lfs_main_func += lfs_return_condition
        counter += 1
    lfs_return_condition = '\n\telse:\n'
    lfs_return_condition += '\t\treturn ""' + not_satisfy_label + '""'
    lfs_main_func += lfs_return_condition
    return lfs_main_func


def get_sample_result_of_individual_rule_ver2(rule_json, file_ext, label_list, not_satisfy_label):
    file_path = os.path.join(DATA_FILE_PATH,  ""uploaded_file."" + file_ext)
    size_take = 100
    if file_ext in [""csv"", ""tsv""]:
        num_records = sum(1 for line in open(file_path)) - 1
        if num_records > size_take:
            skip = sorted(random.sample(range(1, num_records + 1), num_records - size_take))
        else:
            skip = 0
        df = pd.read_csv(file_path, skiprows=skip)
    elif file_path.endswith("".json""):
        df = pd.read_json(file_path)
        df = pd.json_normalize(df.to_dict(""records""))
    elif file_path.endswith("".avro""):
        reader = DataFileReader(open(file_path, ""rb""), DatumReader())
        schema = json.loads(reader.meta.get('avro.schema').decode('utf-8'))
        df = pdx.read_avro(file_path, schema=schema, na_dtypes=True)
    elif file_path.endswith("".parquet""):
        pf = ParquetFile(file_path)
        take_rows = next(pf.iter_batches(batch_size=size_take))
        df = pa.Table.from_batches([take_rows]).to_pandas()
        # file_content = pd.read_parquet(file_path, engine=""pyarrow"")
    else:
        raise ValueError(""Invalid file format"")

    rule_applier_func = create_sample_function_ver2(rule_json, label_list, not_satisfy_label)
    exec(rule_applier_func)
    df[rule_json[""rule_name""]] = df.apply(eval('lf_rule_apply'), axis=1)
    return df.to_html(classes='table table-striped text-left', justify='left', index=False)


def create_labelling_function_ver2(rule_list, label_list):
    lfs_main_func = 'def lfs_list_create():\n'
    lfs_main_func += '\tfrom snorkel.labeling import labeling_function\n'
    lfs_main_func += '\timport numpy as np\n'
    lfs_main_func += '\timport json\n'
    lfs_main_func += '\tABSTAIN = -1\n'
    lfs_main_func += '\tlabels = json.loads(json.dumps(' + json.dumps(label_list) + '))\n'
    lfs_list = '\tlfs_list=['
    for rule in rule_list:
        lfs_list += 'lf_' + rule[""rule_name""] + ','
        lfs = '\t@labeling_function()\n'
        lfs += '\tdef lf_' + rule[""rule_name""] + '(data):\n'
        counter = 0
        for condition in rule[""conditions""]:
            lfs_return = 'labels.index(""' + condition[""sel_label""] + '"")'
            if counter > 0:
                lfs_return_condition = '\t\telif'
            else:
                lfs_return_condition = '\t\tif'
            for label_condition in condition[""label_condition""]:
                if label_condition[""sel_datatype""] == ""string"":
                    if label_condition[""sel_condition""] == ""contains"":
                        lfs_return_condition += '((' + str(label_condition[""input_value""]) + ') in data[""' + \
                                                label_condition[""sel_column""] + '""])' + get_join(label_condition)
                    elif label_condition[""sel_condition""] in [""=="", ""!=""]:
                        lfs_return_condition += '(data[""' + label_condition[""sel_column""] + '""]' + label_condition[
                            ""sel_condition""] + '(""' + str(
                            label_condition[""input_value""]) + '""))' + get_join(label_condition)
                    else:
                        lfs_return_condition += '(data[""' + label_condition[""sel_column""] + '""].' + label_condition[
                            ""sel_condition""] + '(""' + str(label_condition[""input_value""]) + '""))' + get_join(
                            label_condition)
                else:
                    lfs_return_condition += '(data[""' + label_condition[""sel_column""] + '""]' + label_condition[
                        ""sel_condition""] + str(label_condition[""input_value""]) + ')' + get_join(label_condition)
                if get_join(label_condition) == """":
                    lfs_return_condition += "":\n""
                    lfs_return_condition += '\t\t\treturn ' + lfs_return + '\n'
                    lfs += lfs_return_condition
            counter += 1
        lfs_return_condition = '\n\t\telse:\n'
        lfs_return_condition += '\t\t\treturn ABSTAIN\n'
        lfs += lfs_return_condition
        lfs_main_func += lfs
    if lfs_list.endswith("",""):
        lfs_list = lfs_list.rstrip(lfs_list[-1])
        lfs_list += ']\n'
    else:
        lfs_list += ']\n'
    lfs_main_func += lfs_list
    lfs_main_func += '\treturn lfs_list\n'
    lfs_main_func += 'lfs_list_create()'
    # f = open(os.path.join(DATA_FILE_PATH,  'lfs_list.txt'), 'w')
    # f.write(lfs_main_func)
    # f.close()
    return lfs_main_func


def get_rule_name_list(rule_list):
    rule_name_list = []
    for rule in rule_list:
        rule_name_list.append(rule[""rule_name""])
    return rule_name_list


def label_dataset_ver2(request,rule_list, file_ext, label_list, not_satisfy_label, label_weightage, include_proba):
    file_path = os.path.join(DATA_FILE_PATH,  ""uploaded_file."" + file_ext)
    if file_ext in [""csv"", ""tsv""]:
        df = pd.read_csv(file_path)
    elif file_ext == ""json"":
        df = pd.json_normalize(pd.read_json(file_path).to_dict(""records""))
    elif file_ext == ""avro"":
        reader = DataFileReader(open(file_path, ""rb""), DatumReader())
        schema = json.loads(reader.meta.get('avro.schema').decode('utf-8'))
        df = pdx.read_avro(file_path, schema=schema, na_dtypes=True)
    elif file_ext == ""parquet"":
        df = pd.read_parquet(file_path, engine=""pyarrow"")
    labelling_functions = create_labelling_function_ver2(rule_list, label_list)
    exec(labelling_functions)
    lfs = eval('lfs_list_create()')
    applier = PandasLFApplier(lfs)
    l_data = applier.apply(df)
    label_model = LabelModel(cardinality=len(label_list), verbose=True)
    label_model.fit(l_data, n_epochs=500, log_freq=50, seed=123, class_balance=label_weightage)
    df[""label""] = label_model.predict(L=l_data, tie_break_policy=""abstain"")
    if include_proba:
        prediction_of_prob = label_model.predict_proba(L=l_data)
        for label in label_list:
            df[label + ""_prob""] = np.around(prediction_of_prob[:, label_list.index(label)], 2) * 100
    df.loc[df[""label""] == -1, ""label""] = not_satisfy_label


    filetimestamp = str(int(time.time()))
    datasetName = ""AION_labelled_""+filetimestamp + '.' + file_ext
    request.session['AION_labelled_Dataset'] = datasetName
    for item in label_list:
        df.loc[df[""label""] == label_list.index(item), ""label""] = item
    if file_ext in [""csv"", ""tsv""]:
        df.to_csv(os.path.join(DATA_FILE_PATH,  datasetName), index=False)
    elif file_ext == ""parquet"":
        df.to_parquet(os.path.join(DATA_FILE_PATH, datasetName),
                      engine=""pyarrow"", index=False)
    elif file_ext == ""avro"":
        pdx.to_avro(os.path.join(DATA_FILE_PATH,  datasetName), df)
    else:
        raise ValueError(""Invalid file format"")

    #### saving file to database
    from appbe.dataPath import DATA_DIR
    from appbe.sqliteUtility import sqlite_db
    file_path = os.path.join(DATA_DIR, 'sqlite')
    sqlite_obj = sqlite_db(file_path, 'config.db')
    newdata = {}
    newdata['datapath'] = [os.path.join(DATA_FILE_PATH,  datasetName)]
    newdata['datasetname'] = [datasetName]
    sqlite_obj.write_data(pd.DataFrame.from_dict(newdata), 'dataingest')


    num_records = len(df.index)
    size_take = 100
    if num_records <= size_take:
        size_take = num_records
    display_df = df.sample(n=size_take)
    weightage = np.around(label_model.get_weights(), 2)
    rule_name_list = get_rule_name_list(rule_list)
    analysis_df = LFAnalysis(l_data, lfs).lf_summary()
    analysis_df[""Rule""] = analysis_df.index
    analysis_df[""Rule""] = analysis_df[""Rule""].str.replace(""lf_"", """")
    analysis_df = analysis_df[[""Rule"", ""Polarity"", ""Coverage"", ""Overlaps"", ""Conflicts""]]
    weightage_dict = dict(zip(rule_name_list, weightage))
    analysis_json = analysis_df.to_dict(orient=""records"")
    for item in analysis_json:
        item[""Weightage""] = weightage_dict[item[""Rule""]]
    analysis_df = pd.json_normalize(analysis_json)
    # rules_weightage = []
    # for key in weightage_dict:
    #     rules_weightage.append({
    #         ""label"": key,
    #         ""y"": weightage_dict[key],
    #         ""legendText"": key
    #     })
    response = {
        # ""rule_name_list"": rule_name_list,
        # ""weightage_list"": list(weightage),
        ""analysis_df"": analysis_df.to_html(classes='table table-striped text-left', justify='left', index=False),
        ""result_html"": display_df.to_html(classes='table table-striped text-left', justify='left', index=False)
    }
    return response


def get_label_and_weightage(test_file_ext, marked_label_column,file_delim_test, custom_test_delim   ):
    file_path = os.path.join(DATA_FILE_PATH,  ""test_data_file."" + test_file_ext)
    if test_file_ext in [""csv"", ""tsv""]:
        df = pd.read_csv(file_path)
    elif test_file_ext == ""json"":
        df = pd.json_normalize(pd.read_json(file_path).to_dict(""records""))
    elif test_file_ext == ""avro"":
        reader = DataFileReader(open(file_path, ""rb""), DatumReader())
        schema = json.loads(reader.meta.get('avro.schema').decode('utf-8'))
        df = pdx.read_avro(file_path, schema=schema, na_dtypes=True)
    elif test_file_ext == ""parquet"":
        df = pd.read_parquet(file_path, engine=""pyarrow"")
    json_df = pd.DataFrame(df[marked_label_column].value_counts(normalize=True) * 100)
    json_dict = json.loads(json_df.to_json())
    label_with_weightage = []
    for k in json_dict[marked_label_column]:
        label_with_weightage.append(
            {""label_name"": k, ""label_weightage"": np.around(json_dict[marked_label_column][k], 2)})
    return label_with_weightage
"
s3buckets.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import json
import os
import rsa
import boto3   #usnish
import pandas as pd
import time
def add_new_bucket(request):

    try:
   
        file_path = os.path.abspath(os.path.join(os.path.dirname(__file__),'..','..','config','s3bucket.conf'))
        with open(file_path, 'r') as f:
            data = json.load(f)
    except:
        data = []	
	
    if request.POST[""aionreferencename""] =='' or request.POST[""s3bucketname""] == '' or request.POST[""awsaccesskey""] == '' :
        return 'error' 
    pkeydata='''-----BEGIN RSA PUBLIC KEY-----
MIIBCgKCAQEAxIHM1FphEMMwViUrG0b2Bqf8tOxbhUWlnmjgFt5A25qbY1AfnrMv
fVx8+7iCcZ/3TY9Jv2I584SOc1tvsgESCke/t6+o/u2esPBsnDFzV62l3Zvw0m4e
wQeKlFC8EoOblyIXRbZdelSJinzlr9lOiKuid/xPvXHou6jxF1A2W7a89A2PM4Re
n0W9YkjB7dRGW1sSrpruHdVJvgHhGZFZ7sCTue0jVOnc5sT3Tq5saLfEDqHyKxlq
i/mcThmcTfisRIYFH5pyt/Ysr4VVP924QlcoqPOyg3RMCS3G0VjstSoVwNhxWrs/
lujDuCnpxvWzNpq21OWmF66GXxwiq+6W0wIDAQAB
-----END RSA PUBLIC KEY-----'''

    pubkey = rsa.PublicKey.load_pkcs1(pkeydata)
    awssecretaccesskey = rsa.encrypt(request.POST[""awssecretaccesskey""].encode(), pubkey)
    print(awssecretaccesskey)
    newdata = {}
    newdata['Name'] = request.POST[""aionreferencename""]
    newdata['AWSAccessKeyID'] = request.POST[""awsaccesskey""]
    newdata['AWSSecretAccessKey'] = str(awssecretaccesskey)
    newdata['S3BucketName'] = request.POST[""s3bucketname""]
    data.append(newdata)
    with open(file_path, 'w') as f:
        json.dump(data, f)
    f.close()

def get_s3_bucket():
	try:
		file_path = os.path.abspath(os.path.join(os.path.dirname(__file__),'..','..','config','s3bucket.conf'))
		with open(file_path, 'r') as f:
			data = json.load(f)
	except:
		data = []
	return data
def read_s3_bucket(name,filename,DATA_FILE_PATH):
	privkey = '''-----BEGIN RSA PRIVATE KEY-----
MIIEqQIBAAKCAQEAxIHM1FphEMMwViUrG0b2Bqf8tOxbhUWlnmjgFt5A25qbY1Af
nrMvfVx8+7iCcZ/3TY9Jv2I584SOc1tvsgESCke/t6+o/u2esPBsnDFzV62l3Zvw
0m4ewQeKlFC8EoOblyIXRbZdelSJinzlr9lOiKuid/xPvXHou6jxF1A2W7a89A2P
M4Ren0W9YkjB7dRGW1sSrpruHdVJvgHhGZFZ7sCTue0jVOnc5sT3Tq5saLfEDqHy
Kxlqi/mcThmcTfisRIYFH5pyt/Ysr4VVP924QlcoqPOyg3RMCS3G0VjstSoVwNhx
Wrs/lujDuCnpxvWzNpq21OWmF66GXxwiq+6W0wIDAQABAoIBAC/VbNfQPEqJSO3f
VFPqfR73q2MbGdgiMQOTgeDvLxiF1QdizJ+j/I5mgiIAMviXuOpPU+NbdMHbZZWd
D15kNlD8UCXVg6yyiOuHStjmjK4uHe8I86E1nxTb0hbyZCWZlbk/WizlDHInu+dT
KdIZcq2AIidU6tAxtwA0ingHaRSoXDlSGwOTEigNqmWOKnDTVg0SMscoHOD7siXF
DHm1/lkvD3uvcZk6c7fGxC8SgNX2dj6n/Nbuy0Em+bJ0Ya5wq4HFdLJn3EHZYORF
ODUDYoGaSxeXqYsGg/KHJBc8J7xW9FdN9fGbHfw1YplrmiGL3daATtArjMmAh0EQ
H8Sj7+ECgYkA3oWMCHi+4t8txRPkg1Fwt8dcqYhGtqpAus3NESVurAdi0ZPqEJcQ
4cUbflwQPhX0TOaBlkgzdP8DMdcW/4RalxHsAh5N8ezx/97PQMb3Bht0WsQUBeYJ
xLV7T2astjTRWactGCG7dwTaUYRtU3FqL6//3CysmA12B5EMX0udNBOTKwmaYKww
AwJ5AOISS7f12Q0fgTEVY0H8Zu5hHXNOA7DN92BUzf99iPx+H+codLet4Ut4Eh0C
cFmjA3TC78oirp5mOOQmYxwaFaxlZ7Rs60dlPFrhz0rsHYPK1yUOWRr3RcXWSR13
r+kn+f+8k7nItfGi7shdcQW+adm/EqPfwTHM8QKBiQCIPEMrvKFBzVn8Wt2A+I+G
NOyqbuC8XSgcNnvij4RelncN0P1xAsw3LbJTfpIDMPXNTyLvm2zFqIuQLBvMfH/q
FfLkqSEXiPXwrb0975K1joGCQKHxqpE4edPxHO+I7nVt6khVifF4QORZHDbC66ET
aTHA3ykcPsGQiGGGxoiMpZ9orgxyO3l5Anh92jmU26RNjfBZ5tIu9dhHdID0o8Wi
M8c3NX7IcJZGGeCgywDPEFmPrfRHeggZnopaAfuDx/L182pQeJ5MEqlmI72rz8bb
JByJa5P+3ZtAtzc2RdqNDIMnM7fYU7z2S279U3nZv0aqkk3j9UDqNaqvsZMq73GZ
y8ECgYgoeJDi+YyVtqgzXyDTLv6MNWKna9LQZlbkRLcpg6ELRnb5F/dL/eB/D0Sx
QpUFi8ZqBWL+A/TvgrCrTSIrfk71CKv6h1CGAS02dXorYro86KBLbJ0yp1T/WJUj
rHrGHczglvoB+5stY/EpquNpyca03GcutgIi9P2IsTIuFdnUgjc7t96WEQwL
-----END RSA PRIVATE KEY-----'''
	try:
		file_path = os.path.abspath(os.path.join(os.path.dirname(__file__),'..','..','config','s3bucket.conf'))
		with open(file_path, 'r') as f:
			data = json.load(f)
	except:
		data = []
	awssecretaccesskey = ''
	found = False
	for x in data:
		if x['Name'] == name:
			awssecretaccesskey = x['AWSSecretAccessKey']
			aws_access_key_id = x['AWSAccessKeyID']
			bucketName = x['S3BucketName']
			found = True
			break		
	if found:
		privkey = rsa.PrivateKey.load_pkcs1(privkey,'PEM')
		awssecretaccesskey =  eval(awssecretaccesskey)
		awssecretaccesskey = rsa.decrypt(awssecretaccesskey, privkey)
		awssecretaccesskey = awssecretaccesskey.decode('utf-8')
		#awssecretaccesskey = 'SGcyJavYEQPwTbOg1ikqThT+Op/ZNsk7UkRCpt9g'#rsa.decrypt(awssecretaccesskey, privkey)
		client_s3 = boto3.client('s3', aws_access_key_id=aws_access_key_id, aws_secret_access_key=str(awssecretaccesskey))
		#print(bucketName,filename)
		try:        
			response = client_s3.get_object(Bucket=bucketName, Key=filename)
			df = pd.read_csv(response['Body'])
		except Exception as e:
			print(e)#usnish
			return 'Error', pd.DataFrame()
			
			#return 'Error', pd.DataFrame()
		return 'Success',df
	return 'Error', pd.DataFrame()"
alchemy.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import pyodbc as pyodbc
import pandas as pd
import json
import sqlalchemy as db
import pandas as pd
import urllib


def get_connection(request):
	dbType = request.session['dbType']
	connection_string = """"
	if dbType.lower()==""sqlite"":
		filepath = request.session['filepath']
		#table = request.session[""tablenamesql""]
		connection_string = ""sqlite:///""+str(filepath)
	elif dbType.lower() in [""postgresql"",""mysql"",""mssql""]:
		db_name = request.session['dbname'] 
		password = request.session['password'] 
		user = request.session['username'] 
		port = request.session['port'] 
		host = request.session['host']
		password=urllib.parse.quote_plus(password)
		if dbType.lower()==""postgresql"":
			connection_string = ""postgresql+psycopg2://"" + user + "":"" + password + ""@"" + host + "":"" + port + ""/"" + db_name
		if dbType.lower()==""mysql"":
			connection_string = ""mysql+pyodbc://"" + user + "":"" + password + ""@"" + host + "":"" + port + ""/"" + db_name
		if dbType.lower()==""mssql"":
			driver=request.session['driver']
			params = urllib.parse.quote_plus(
						'Driver=%s;' % driver +
						'Server=tcp:%s,' % host +
						'%s;' % port + 
						'Database=%s;' % db_name +
						'Uid=%s;' % user +
						'Pwd={%s};' % password +
						'Encrypt=yes;' +
						'TrustServerCertificate=no;' +
						'Connection Timeout=30;')

			connection_string = 'mssql+pyodbc:///?odbc_connect=' + params
	return connection_string
def list_tables(request):
	connection_string = get_connection(request)
	
	engine = db.create_engine(connection_string)
	connection = engine.connect()
	metadata = db.MetaData()
	metadata.reflect(engine)
	dt_list = []
	try:
		dt_list= list(metadata.tables.keys())
		print(dt_list)
		return dt_list
	except:
		print(""Something went wrong"")
		return dt_list

def list_tables_fields(request,table_list):
	connection_string = get_connection(request)
	engine = db.create_engine(connection_string)
	connection = engine.connect()
	metadata = db.MetaData()
	metadata.reflect(engine)
	table_field_obj = {}
	table_field_obj['data'] = []
	try:
		# filepath = request.session['filepath']
		#table = request.session[""tablenamesql""]
		
		table_list = json.loads(table_list)
		for table in table_list:
			tf_obj = {}
			tf_obj['TableName'] = str(table).strip()
			tf_obj['Fields']= []

			table = db.Table(table, metadata, autoload=True, autoload_with=engine)
			col = table.columns.keys()
			tempdata = []
			for x in col:
				my_list = {""column_name"": x,""is_select"":""false""}
				tempdata.append(my_list)
			
			tf_obj['Fields'] = tempdata
			table_field_obj['data'].append(tf_obj)
		return json.dumps(table_field_obj)
	except Exception as e:
		print(""Something went wrong ""+str(e))
		return table_field_obj

def get_data(connection_string,table):
	engine = db.create_engine(connection_string)
	connection = engine.connect()
	metadata = db.MetaData()
	metadata.reflect(engine)
	table = db.Table(table,metadata, autoload=True, autoload_with=engine)
	query = db.select([table])
	ResultProxy = connection.execute(query)
	ResultSet = ResultProxy.fetchall()
	col = table.columns.keys()
	return pd.DataFrame(ResultSet, columns=col)

def getDataFromSingleTable(request):
	
	dbType = request.session['dbType']
	if dbType.lower() == ""sqlite"":
		table = request.session[""tablenamesql""]
	else:
		table = request.session[""tablename""]
	connection_string = get_connection(request)
	df = get_data(connection_string,table)
	return df
	
def validatequery(request,table_details,join_details,where_details):
	resultdata = []
	try:
		table_details = json.loads(table_details)
		join_details = json.loads(join_details)
		where_details = json.loads(where_details)
		connection_string = get_connection(request)
		engine = db.create_engine(connection_string)
		connection = engine.connect()
		metadata = db.MetaData()
		metadata.reflect(engine)
		sel_col = []
		for item in table_details:
			table = item[""TableName""]
			table = db.Table(table, metadata, autoload=True, autoload_with=engine)
			for ele in item[""Fields""]:
				if str(ele[""is_select""]).lower() == 'true':
					sel_col.append(table.columns[ele[""column_name""]])
		
		join_condition = []
		where_clause = """"
		for item in join_details:
			table1 = item[""Table1Name""]
			table1 = db.Table(table1, metadata, autoload=True, autoload_with=engine)
			left_join = table1.columns[item[""Table1Field""]]
			table2 = item[""Table2Name""]
			table2 = db.Table(table2, metadata, autoload=True, autoload_with=engine)
			right_join = table2.columns[item[""Table2Field""]]
			join_condition = ""{left_join} {Condition}= {right_join}"".format(left_join=left_join,
							 Condition=item[""Condition""],right_join= right_join)
		'''dbType = request.session['dbType']
		if dbType.lower()==""sqlite"":
			for item in where_details:
				where_clause = ""{table}.'{column}'{condition}{value}"".format(table=item[""TableName""],column=str(item[""FieldName""]),condition=item[""Condition""],value=item[""CompareValue""])
			
		if dbType.lower()==""postgresql"":
			for item in where_details:
            
				where_clause = ""{table}.{column}{condition}{value}"".format(table=item[""TableName""],column=str(item[""FieldName""]),condition=item[""Condition""],value=item[""CompareValue""])
            
		'''
        
		if len(join_details)!=0:
			try:
				for item in where_details:
					where_clause = ""{table}.'{column}'{condition}{value}"".format(table=item[""TableName""],column=str(item[""FieldName""]),condition=item[""Condition""],value=item[""CompareValue""])
					
				query =db.select(sel_col).\
					select_from(table1.join(table2,db.text(join_condition))). \
					where(db.and_(db.text(where_clause)))
				ResultProxy = connection.execute(query)
				ResultSet = ResultProxy.fetchall()
			except:
				for item in where_details:
					where_clause = ""{table}.{column}{condition}{value}"".format(table=item[""TableName""],column=str(item[""FieldName""]),condition=item[""Condition""],value=item[""CompareValue""])
					
				query =db.select(sel_col).\
					select_from(table1.join(table2,db.text(join_condition))). \
					where(db.and_(db.text(where_clause)))
				ResultProxy = connection.execute(query)
				ResultSet = ResultProxy.fetchall()
            
		else:
			table = table_details[0][""TableName""]
			table = db.Table(table, metadata, autoload=True, autoload_with=engine)
			try:
				for item in where_details:
					where_clause = ""{table}.'{column}'{condition}{value}"".format(table=item[""TableName""],column=str(item[""FieldName""]),condition=item[""Condition""],value=item[""CompareValue""])
				query = db.select(sel_col). \
					select_from(table). \
					where(db.and_(db.text(where_clause)))
				ResultProxy = connection.execute(query)
				ResultSet = ResultProxy.fetchall()
			except:
				for item in where_details:
					where_clause = ""{table}.{column}{condition}{value}"".format(table=item[""TableName""],column=str(item[""FieldName""]),condition=item[""Condition""],value=item[""CompareValue""])
				query = db.select(sel_col). \
					select_from(table). \
					where(db.and_(db.text(where_clause)))
				ResultProxy = connection.execute(query)
				ResultSet = ResultProxy.fetchall()
		
		
		if len(ResultSet) > 0:
			data = pd.DataFrame(ResultSet)
			data.columns = ResultSet[0].keys()
			print(data)
			return data,""query exectuted successfully""
		else:
			return pd.DataFrame(),""No rows returned""
		
		# conn = get_connection(server_url,username_actian,password_actian,database_actian)
		# sql_text = query
		# cur = conn.cursor()
		# resultdata = simple_select(cur, query)
		# cur.close()
		#df = pd.DataFrame(resultdata)
		#print(df)

	except Exception as e:
		print(e)
		return pd.DataFrame(), str(e)	"
trainresult.py,"import json
import os
import pandas as pd
import urllib, base64   
def check_deepCheckPlots(deployedLocation):
    deepCheck = 'False'
    boostOverfit = 'False'
    boostOverfitCond = 'False'
    mi='False'
    miCond='False'
    smc = 'False'
    smsCond = 'False'
    boostOverfitFile= os.path.join(deployedLocation,'log','boosting_overfit.html')
    boostOverfitCondFile= os.path.join(deployedLocation,'log','boosting_overfit_condition.html')
    smcFile= os.path.join(deployedLocation,'log','smc.html')
    smcCondFile= os.path.join(deployedLocation,'log','smc_condition.html')
    miFile= os.path.join(deployedLocation,'log','mi.html')
    miConFile= os.path.join(deployedLocation,'log','mi_con.html')
    file_exists = os.path.exists(boostOverfitFile)
    if file_exists:
        deepCheck = 'True'
        boostOverfit = 'True'
    file_exists = os.path.exists(boostOverfitCondFile)
    if file_exists:
        deepCheck = 'True'
        boostOverfitCond = 'True'        
    file_exists = os.path.exists(miFile)
    if file_exists:
        deepCheck = 'True'
        mi = 'True'    
    file_exists = os.path.exists(miConFile)
    if file_exists:
        deepCheck = 'True'
        miCond = 'True'
    file_exists = os.path.exists(smcFile)
    if file_exists:
        deepCheck = 'True'
        smc = 'True'    
    file_exists = os.path.exists(smcCondFile)
    if file_exists:
        deepCheck = 'True'
        smsCond = 'True'
    output = {'deepCheck':deepCheck,'boostOverfit':boostOverfit,'boostOverfitCond':boostOverfitCond,'mi':mi,'miCond':miCond,'smc':smc,'smsCond':smsCond}
    return output
def FeaturesUsedForTraining(output_json):
    resultJsonObj = json.loads(output_json)        
    result = {}
    result['Status'] = resultJsonObj['status']
    result['ModelType'] = resultJsonObj['data']['ModelType']
    result['ScoreType'] = resultJsonObj['data']['ScoreType']
    result['FeaturesUsed'] = resultJsonObj['data']['featuresused']
    result['BestModel'] = resultJsonObj['data']['BestModel']
    return result   
def ParseResults(output_json):
    msg1 = 'Results...'
    resultJsonObj = json.loads(output_json)
    result = {}
    survical_images = []
    result['Status'] = resultJsonObj['status']
    result['ModelType'] = resultJsonObj['data']['ModelType']
    if 'vmDetails' in resultJsonObj['data']:
        result['DeployLocation'] = resultJsonObj['data']['vmDetails']
    else:
        result['DeployLocation'] = resultJsonObj['data']['deployLocation']
    result['BestModel'] = resultJsonObj['data']['BestModel']
    if str(resultJsonObj['data']['BestScore']) == ""NA"":
        result['BestScore'] = 'NA'
    else:
        result['BestScore'] = round(float(resultJsonObj['data']['BestScore']), 2)
    result['ScoreType'] = resultJsonObj['data']['ScoreType']
    result['FeaturesUsed'] = resultJsonObj['data']['featuresused']
    ##### Training Confusion Matrix
    result['problem_type'] = result['ModelType']    
    if result['ModelType'].lower() == 'timeseriesanomalydetection':
       result['problem_type'] = 'TimeSeriesAnomalydetection'
    if result['ModelType'] == 'classification' or result['ModelType'].lower() == 'distributed classification' or (result['ModelType'] == 'anomalydetection' and (result['BestScore']) != 0)  or result['ModelType'] == 'ImageClassification':
        bestmodel = resultJsonObj['data']['BestModel']
        if bestmodel.lower() == 'nas':
            modelSummary= os.path.join(result['DeployLocation'],'summary.txt')
            f = open(modelSummary, 'r')
            file_content = f.read()
            f.close()
            #print(file_content)
            result['modelSummary'] = file_content
        #task 11997
        if result['ModelType'].lower() == 'classification':
            result['problem_type'] = 'Classification'
        elif result['ModelType'].lower() == 'anomalydetection':
            result['problem_type'] = 'AnomalyDetection'
        elif result['ModelType'].lower() == 'imageclassification':
            result['problem_type'] = 'ImageClassification'
        elif result['ModelType'].lower() == 'distributed classification':
            result['problem_type'] =  'Distributed Classification'
        try:
            result['deepCheck'] = check_deepCheckPlots(result['DeployLocation'])
        except Exception as e:
            print(e)
            
        if 'ConfusionMatrix' in resultJsonObj['data']['trainmatrix']:
            TrainConfusionMatrix = resultJsonObj['data']['trainmatrix']['ConfusionMatrix']
            
            numLabels = len(TrainConfusionMatrix)
            TrainConfusionMatrixList = []
            for act_key, value in TrainConfusionMatrix.items():
                temp = {}
                temp['Label'] = act_key
                for pred_key, pred_value in value.items():
                    temp[pred_key] = pred_value
                TrainConfusionMatrixList.append(temp)
            result['TrainConfusionMatrix'] = TrainConfusionMatrixList

            TrainClassificationReport = resultJsonObj['data']['trainmatrix']['ClassificationReport']
            numRows = len(TrainClassificationReport)
            TrainClassificationReportList = []
            metrics_keys_list = []
            for key, value in TrainClassificationReport.items():
                temp = {}
                temp['Label'] = key
                if isinstance( value, dict):
                    for metricsKey, metricsValue in value.items():
                        temp[metricsKey] = round(metricsValue, 4)
                        if metricsKey not in metrics_keys_list:
                            metrics_keys_list.append( metricsKey)
                else:
                    if metrics_keys_list:
                        for key in metrics_keys_list:
                            temp[key] = round(value, 4)
                TrainClassificationReportList.append(temp)

            result['TrainClassificationReport'] = TrainClassificationReportList
            result['Train_ROC_AUC_SCORE'] = round(float(resultJsonObj['data']['trainmatrix']['ROC_AUC_SCORE']), 4)
        else:
            result['TrainClassificationReport'] = ''
            result['Train_ROC_AUC_SCORE']=''
        
        ##### Testing Confusion Matix
        if 'ConfusionMatrix' in resultJsonObj['data']['matrix']:
            ConfusionMatrix = resultJsonObj['data']['matrix']['ConfusionMatrix']
            numLabels = len(ConfusionMatrix)
            ConfusionMatrixList = []
            for act_key, value in ConfusionMatrix.items():
                temp = {}
                temp['Label'] = act_key
                for pred_key, pred_value in value.items():
                    temp[pred_key] = pred_value
                ConfusionMatrixList.append(temp)
            result['ConfusionMatrix'] = ConfusionMatrixList

            ClassificationReport = resultJsonObj['data']['matrix']['ClassificationReport']
            numRows = len(ClassificationReport)
            ClassificationReportList = []
            metrics_keys_list = []
            for key, value in ClassificationReport.items():
                temp = {}
                temp['Label'] = key
                if isinstance( value, dict):
                    for metricsKey, metricsValue in value.items():
                        temp[metricsKey] = round(metricsValue, 4)
                        if metricsKey not in metrics_keys_list:
                            metrics_keys_list.append( metricsKey)
                else:
                    if metrics_keys_list:
                        for key in metrics_keys_list:
                            temp[key] = round(value, 4)
                ClassificationReportList.append(temp)

            result['ClassificationReport'] = ClassificationReportList
            result['ROC_AUC_SCORE'] = round(float(resultJsonObj['data']['matrix']['ROC_AUC_SCORE']), 4)
    elif result['ModelType'] == 'similarityIdentification':
        result['problem_type'] = 'similarityIdentification'
    elif result['ModelType'] == 'contextualSearch':
        result['problem_type'] = 'contextualSearch'
    elif result['ModelType'] == 'MultiLabelPrediction':
        result['problem_type'] = 'MultiLabelPrediction'
        matrix = resultJsonObj['data']['matrix']
        training_matrix = []
        for x in matrix:
            fmatrix = {}
            fmatrix['feature'] = x
            performance = {}
            for y in matrix[x]:
                performance[y] = matrix[x][y]
            fmatrix['performance'] = performance
            training_matrix.append(fmatrix)
        testmatrix = resultJsonObj['data']['testmatrix']
        testing_matrix = []
        for x in testmatrix:
            fmatrix = {}
            fmatrix['feature'] = x
            performance = {}
            for y in testmatrix[x]:
                performance[y] = testmatrix[x][y]
            fmatrix['performance'] = performance
            testing_matrix.append(fmatrix)
        result['testing_matrix'] = testing_matrix
        result['training_matrix'] = training_matrix               
    elif result['ModelType'] == 'regression' or result['ModelType'].lower() == 'distributed regression':
        try:
            result['deepCheck'] = check_deepCheckPlots(result['DeployLocation'])
        except Exception as e:
            print(e)    
        try:
            result['problem_type'] = 'Regression'
            testing_matrix = {}
            if 'MAE' in  resultJsonObj['data']['matrix']:
                testing_matrix['MAE'] = float(resultJsonObj['data']['matrix'].get('MAE','0'))
                testing_matrix['R2Score'] = float(resultJsonObj['data']['matrix'].get('R2Score','0'))
                testing_matrix['MSE'] = float(resultJsonObj['data']['matrix'].get('MSE','0'))
                testing_matrix['MAPE'] = float(resultJsonObj['data']['matrix'].get('MAPE','0'))
                testing_matrix['RMSE'] = float(resultJsonObj['data']['matrix'].get('RMSE','0'))
                testing_matrix['NormalisedRMSEPercentage'] = float(resultJsonObj['data']['matrix'].get('Normalised RMSE(%)','0'))
            result['testing_matrix'] = testing_matrix
            training_matrix = {}
            training_matrix['MAE'] = float(resultJsonObj['data']['trainmatrix'].get('MAE','0'))
            training_matrix['R2Score'] = float(resultJsonObj['data']['trainmatrix'].get('R2Score','0'))
            training_matrix['MSE'] = float(resultJsonObj['data']['trainmatrix'].get('MSE','0'))
            training_matrix['MAPE'] = float(resultJsonObj['data']['trainmatrix'].get('MAPE','0'))
            training_matrix['RMSE'] = float(resultJsonObj['data']['trainmatrix'].get('RMSE','0'))
            training_matrix['NormalisedRMSEPercentage'] = float(resultJsonObj['data']['trainmatrix'].get('Normalised RMSE(%)','0'))
            result['training_matrix'] = training_matrix
        except Exception as e:
            print(e)
            
    elif result['ModelType'] == 'Text Similarity':
        result['problem_type'] = 'textsimilarity'
        testing_matrix = {}
        testing_matrix['Accuracy'] = float(resultJsonObj['data']['matrix']['Accuracy'])
        testing_matrix['ROC_AUC'] = float(resultJsonObj['data']['matrix']['ROC AUC'])
        result['testing_matrix'] = testing_matrix
        training_matrix = {}
        training_matrix['Accuracy'] = float(resultJsonObj['data']['trainmatrix']['Accuracy'])
        training_matrix['ROC_AUC'] = float(resultJsonObj['data']['trainmatrix']['ROC AUC'])
        result['training_matrix'] = training_matrix
    elif result['ModelType'] == 'RecommenderSystem': #taskid 11190
        result['problem_type'] = 'Recommender'
        testing_matrix = {}
        testing_matrix['RMSE'] = 'NA'
        result['testing_matrix'] = testing_matrix
        training_matrix = {}
        training_matrix['RMSE'] = 'NA'
        result['training_matrix'] = training_matrix
    elif result['ModelType'] == 'SurvivalAnalysis':
        result['problem_type'] = 'SurvivalAnalysis'
        survivalProbabilityjson = resultJsonObj['data']['survivalProbability']
        performanceimages = resultJsonObj['data']['imageLocation']
        start = '['
        end = ']'
        performanceimages = performanceimages[performanceimages.find(start) + len(start):performanceimages.rfind(end)]
        performanceimages = performanceimages.split(',')
        for imagefile in performanceimages:
            imagefile = imagefile.replace(""'"", """")
            string = base64.b64encode(open(imagefile, ""rb"").read())
            image_64 = 'data:image/png;base64,' + urllib.parse.quote(string)
        survical_images.append(image_64)
        result['survivalProbability'] = survivalProbabilityjson
    elif result['ModelType'] == 'StateTransition':
        result['problem_type'] = 'StateTransition'
        stateprobabilityfile = os.path.join(result['DeployLocation'],'stateTransitionProbability.csv')
        clusterfile = os.path.join(result['DeployLocation'],'stateClustering.csv')
        if(os.path.isfile(stateprobabilityfile)):
            df_prob = pd.read_csv(stateprobabilityfile)	
            df_prob = df_prob[['State','NextState','Probability']]
            result['probability'] = df_prob          
        if(os.path.isfile(clusterfile)):
            df_clus = pd.read_csv(clusterfile)	
            df_clus = df_clus[['clusterid','clusterlist']]
            result['cluster'] = df_clus         
    elif result['ModelType'].lower() == 'timeseriesforecasting': #task 11997
        result['problem_type'] = 'TimeSeriesForecasting'
        if result['BestModel'] == 'FBPROPHET':
            imagefile = os.path.join(result['DeployLocation'],'log','img','prophet_fig.png')
            string = base64.b64encode(open(imagefile, ""rb"").read())
            image_64 = 'data:image/png;base64,' + urllib.parse.quote(string)
            survical_images.append(image_64)
            testing_matrix = {}
            testing_matrix['MAE'] = float(resultJsonObj['data']['matrix']['MAE'])
            testing_matrix['MSE'] = float(resultJsonObj['data']['matrix']['MSE'])
            testing_matrix['R2'] = float(resultJsonObj['data']['matrix']['R2'])
            testing_matrix['RMSE'] = float(resultJsonObj['data']['matrix']['RMSE'])
            result['testing_matrix'] = testing_matrix
            forecastjson = resultJsonObj['data']['forecasts']
            result['forecast'] = forecastjson   
        if result['BestModel'] == 'VAR':
            '''
            FeaturesMatrix = resultJsonObj['data']['matrix']['FeaturesMatrix']
            mae = ''
            mse = ''
            mape = ''
            rmse = ''
            for x in FeaturesMatrix:
                if mae != '':
                    mae += ','
                if mse != '':
                    mse += ','
                if R2 != '':
                    R2 += ','
                if rmse != '':
                    rmse += ','
                featurename = x['Features']
                mae = mae + featurename + '=' + x['MAE']
                mse = mse + featurename + '=' + x['MSE']
                R2 = R2 + featurename + '=' + x['R2']
                rmse = rmse + featurename + '=' + x['RMSE']
            testing_matrix = {}
            testing_matrix['MAE'] = mae
            testing_matrix['MSE'] = mse
            testing_matrix['R2'] = R2
            testing_matrix['RMSE'] = rmse
            result['testing_matrix'] = testing_matrix
            forecastjson = resultJsonObj['data']['forecasts']
            result['forecast'] = forecastjson
            '''
            testing_matrix = {}
            testing_matrix['MAE'] = float(resultJsonObj['data']['matrix']['MAE'])
            testing_matrix['MSE'] = float(resultJsonObj['data']['matrix']['MSE'])
            testing_matrix['R2'] = float(resultJsonObj['data']['matrix']['R2'])
            testing_matrix['RMSE'] = float(resultJsonObj['data']['matrix']['RMSE'])
            result['testing_matrix'] = testing_matrix
            forecastjson = resultJsonObj['data']['forecasts']
            result['forecast'] = forecastjson
        elif result['BestModel'] == 'LSTM' or result['BestModel'] == 'MLP':
            testing_matrix = {}
            testing_matrix['MSE'] = float(resultJsonObj['data']['matrix']['MSE'])
            testing_matrix['RMSE'] = float(resultJsonObj['data']['matrix']['RMSE'])
            result['testing_matrix'] = testing_matrix
            forecastjson = resultJsonObj['data']['forecasts']
            result['forecast'] = forecastjson			
        else:
            testing_matrix = {}
            testing_matrix['MAE'] = float(resultJsonObj['data']['matrix']['MAE'])
            testing_matrix['MSE'] = float(resultJsonObj['data']['matrix']['MSE'])
            testing_matrix['R2'] = float(resultJsonObj['data']['matrix']['R2'])
            testing_matrix['RMSE'] = float(resultJsonObj['data']['matrix']['RMSE'])
            result['testing_matrix'] = testing_matrix
            forecastjson = resultJsonObj['data']['forecasts']
            result['forecast'] = forecastjson
    elif result['ModelType'] == 'topicmodelling':
        result['problem_type'] = 'TopicModelling'
        topics = resultJsonObj['topics']
        
        df_topic = []
        dataDict = {}
        for x in topics:
            dataDict = {}
            words = topics[x]
            print(words)
            word = ''
            for key in words:
                print(key)
                if word != '':
                    word = word+', '				
                word = word+key+'('+str(round(words[key],2))+')' 
            dataDict[""ID""] = x 
            dataDict[""Words""] = word
            df_topic.append(dataDict)
        result['topics'] = df_topic
    elif result['ModelType'].lower() == 'association rule':
        result['problem_type'] = 'AssociationRules'
        deploy_location = result['DeployLocation']
        freq_item_file = os.path.join(result['DeployLocation'],'frequentItems.csv') 
        if(os.path.isfile(freq_item_file)):        
            rules_file = os.path.join(result['DeployLocation'],'associationRules.csv')
            if(os.path.isfile(rules_file)):
                df_rules = pd.read_csv(rules_file)	
                df_rules = df_rules[['antecedents','consequents','support','confidence','lift']]
                #df_rules['antecedents'] = df_rules['antecedents']
                result['rules'] = df_rules
            else:
                result['error'] = 'There are no association found in frequent items above that threshold (minThreshold)'
        else:
            result['error'] = 'There are no frequent items above that threshold (minSupport), try by reducing the minSupport value'
    elif result['ModelType'] == 'clustering':
        result['problem_type'] = 'Clustering'
        testing_matrix = {}
        if 'SilHouette_Avg' in resultJsonObj['data']['matrix']:
            testing_matrix['SilHouette_Avg'] = round(float(resultJsonObj['data']['matrix']['SilHouette_Avg']),2)
        else:
            testing_matrix['SilHouette_Avg'] = 'NA'
        if 'DaviesBouldinScore' in resultJsonObj['data']['matrix']:
            testing_matrix['DaviesBouldinScore'] = round(float(resultJsonObj['data']['matrix']['DaviesBouldinScore']),2)
        else:
            testing_matrix['DaviesBouldinScore'] = 'NA'
        if 'CalinskiHarabazScore' in resultJsonObj['data']['matrix']:
            testing_matrix['CalinskiHarabazScore'] = round(float(resultJsonObj['data']['matrix']['CalinskiHarabazScore']),2)
        else:
            testing_matrix['CalinskiHarabazScore'] = 'NA'
        
        centroidpath = os.path.join(result['DeployLocation'],'centers.csv')
        if(os.path.isfile(centroidpath)):
            df_center = pd.read_csv(centroidpath)	
            df_center = df_center.rename(columns={""Unnamed: 0"": ""Cluster""})
            result['centerpoints'] = round(df_center,2)
        result['testing_matrix'] = testing_matrix
        training_matrix = {}
        if 'SilHouette_Avg' in resultJsonObj['data']['matrix']:
            training_matrix['SilHouette_Avg'] = round(float(resultJsonObj['data']['matrix']['SilHouette_Avg']),2)
            training_matrix['DaviesBouldinScore'] = round(float(resultJsonObj['data']['matrix']['DaviesBouldinScore']),2)
            training_matrix['CalinskiHarabazScore'] = round(float(resultJsonObj['data']['matrix']['CalinskiHarabazScore']),2)
        else:
            training_matrix['SilHouette_Avg'] = 'NA'
            training_matrix['DaviesBouldinScore'] = 'NA'
            training_matrix['CalinskiHarabazScore'] = 'NA'
            
        result['training_matrix'] = training_matrix
    #print(result)
    evaluatedModelsList = resultJsonObj['data']['EvaluatedModels']
    #print(evaluatedModelsList)
    for index in range(len(evaluatedModelsList)):
        if evaluatedModelsList[index]['Score'] == 'NA':
            evaluatedModelsList[index]['Score'] = 'NA'
        else:
            evaluatedModelsList[index]['Score'] = round(float(evaluatedModelsList[index]['Score']), 4)
    if result['ModelType'] == 'classification':
        evaluatedModelsList = sorted(evaluatedModelsList, key=lambda k: k['Score'],reverse=True) 
    else:
        evaluatedModelsList = sorted(evaluatedModelsList, key=lambda k: k['Score']) 
    result['EvaluatedModels'] = evaluatedModelsList
    result['LogFile'] = resultJsonObj['data']['LogFile']
    return result, survical_images"
compute.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import os,sys
import json

def getInstanceonGCP(image,instances):
    try:
        from appbe.sqliteUtility import sqlite_db    
        from appbe.dataPath import DATA_DIR
        file_path = os.path.join(DATA_DIR, 'sqlite')
        sqlite_obj = sqlite_db(file_path, 'config.db')
        if sqlite_obj.table_exists('LLMTuning'): 
            data = sqlite_obj.read_data('LLMTuning','image=""'+image['id']+'""')
            for values in data:
                instance = {}
                instance['type'] = 'instance'
                instance['id'] = values[2]
                instance['workLoad'] = image['workLoad']
                instance['machineImageProjectID'] = image['machineImageProjectID']
                instance['ssh'] = image['ssh']
                instance['machineConfiguration'] = image['machineConfiguration']
                instance['instanceType'] = image['instanceType']
                instances.append(instance)
    except Exception as e:
        print(e)
    return instances
    
def getInstanceonAWS(amiid,instances):
    try:
        from appbe.sqliteUtility import sqlite_db    
        from appbe.dataPath import DATA_DIR
        file_path = os.path.join(DATA_DIR, 'sqlite')
        sqlite_obj = sqlite_db(file_path, 'config.db')
        if sqlite_obj.table_exists('LLMTuning'): 
            data = sqlite_obj.read_data('LLMTuning','image=""'+amiid['id']+'""')
            for values in data:
                instance = {}
                instance['type'] = 'instance'
                instance['id'] = values[2]
                instance['workLoad'] = amiid['workLoad']
                instance['regionName'] = amiid['regionName']
                instance['ssh'] = amiid['ssh']
                instance['machineConfiguration'] = amiid['machineConfiguration']
                instance['instanceType'] = amiid['instanceType']
                instances.append(instance)
    except Exception as e:
        print(e)
    return instances
def updatelocalsetings(request):
    from appbe.sqliteUtility import sqlite_db
    from appbe.dataPath import DATA_DIR
    import pandas as pd
    file_path = os.path.join(DATA_DIR, 'sqlite')
    sqlite_obj = sqlite_db(file_path, 'config.db')
    if sqlite_obj.table_exists('computeInfrastructure'):    		
        updated_data = 'selectedInfrastructure=""Local""'
        sqlite_obj.update_data(updated_data,'','computeInfrastructure')
def updateToComputeSettings(infratructure):
    from appbe.sqliteUtility import sqlite_db
    from appbe.dataPath import DATA_DIR
    import pandas as pd
    file_path = os.path.join(DATA_DIR, 'sqlite')
    sqlite_obj = sqlite_db(file_path, 'config.db')
    if sqlite_obj.table_exists('computeInfrastructure'):    		
        updated_data = 'selectedInfrastructure=""'+infratructure+'""'
        sqlite_obj.update_data(updated_data,'','computeInfrastructure')
def updateGCPConfig(request):
    try:
        credentialsJson = request.POST.get('credentialsJson')
        projectID = request.POST.get('gcpProjectid')
        machineType = request.POST.get('gcpmachineType')
        selectedID = request.POST.get('gcpInstance')
        gcpZone = request.POST.get('gcpZone')
        workload = request.POST.get('gcpworkload')
        noOfInstance = request.POST.get('GCPnoofinstance')
        #print(credentialsJson,projectID,machineType,selectedID,gcpZone,workload,noOfInstance)
        if credentialsJson != '' and projectID != '':
            from appbe.sqliteUtility import sqlite_db
            from appbe.dataPath import DATA_DIR
            import pandas as pd
            file_path = os.path.join(DATA_DIR, 'sqlite')
            sqlite_obj = sqlite_db(file_path, 'config.db')
            if sqlite_obj.table_exists('gcpCredentials'):
                updated_data = 'credentialsJson=""'+credentialsJson+'"",projectID=""'+projectID+'"",machineType=""'+machineType+'"",selectedID=""'+selectedID+'"",regionName=""'+gcpZone+'"",noOfInstance=""'+str(noOfInstance)+'"",workload=""'+workload+'""'
                sqlite_obj.update_data(updated_data,'','gcpCredentials')
            else:
                newdata = {}
                newdata.update({'id':['1'],'credentialsJson': [credentialsJson],'projectID': [projectID],'machineType':[machineType],'selectedID':[selectedID],'regionName':[gcpZone],'noOfInstance':[noOfInstance],'workload':[workload]})                
                sqlite_obj.write_data(pd.DataFrame.from_dict(newdata),'gcpCredentials')
            return('success')
        else:
            return('error')    
    except Exception as e:
        print(e)
        return('error')    
def updateComputeConfig(request):
    try:
        AWSAccessKeyID = request.POST.get('AWSAccessKeyID')
        AWSSecretAccessKey = request.POST.get('AWSSecretAccessKey')
        workload = request.POST.get('workload')
        machineType = request.POST.get('machineType')
        selectedID = request.POST.get('amiInstance')
        regionName = request.POST.get('regionName')
        noOfInstance = request.POST.get('NoOfInstance')
        securitygroupid = request.POST.get('AWSSecuritygroupID')
        if AWSAccessKeyID != '' and AWSSecretAccessKey != '':
            from appbe.sqliteUtility import sqlite_db
            from appbe.dataPath import DATA_DIR
            import pandas as pd
            file_path = os.path.join(DATA_DIR, 'sqlite')
            sqlite_obj = sqlite_db(file_path, 'config.db')
            if sqlite_obj.table_exists('awsCredentials'):
                column_names = sqlite_obj.column_names('awsCredentials')
                if 'securitygroupid' not in column_names:
                    query = 'Alter Table awsCredentials ADD securitygroupid TEXT'
                    sqlite_obj.execute_query(query)
                updated_data = 'AWSAccessKeyID=""'+AWSAccessKeyID+'"",AWSSecretAccessKey=""'+AWSSecretAccessKey+'"",machineType=""'+machineType+'"",selectedID=""'+selectedID+'"",regionName=""'+regionName+'"",noOfInstance=""'+noOfInstance+'"",workload=""'+workload+'"",securitygroupid=""'+securitygroupid+'""'
                sqlite_obj.update_data(updated_data,'','awsCredentials')
            else:
                newdata = {}
                newdata.update({'id':['1'],'AWSAccessKeyID': [AWSAccessKeyID],'AWSSecretAccessKey': [AWSSecretAccessKey],'machineType':[machineType],'selectedID':[selectedID],'regionName':[regionName],'noOfInstance':[noOfInstance],'workload':[workload],'securitygroupid':[securitygroupid]})
                sqlite_obj.write_data(pd.DataFrame.from_dict(newdata),'awsCredentials')
            return('success')
        else:
            return('error')    
    except Exception as e:
        print(e)
        return('error')

def selectedInfratructure():
    from appbe.sqliteUtility import sqlite_db
    from appbe.dataPath import DATA_DIR
    file_path = os.path.join(DATA_DIR, 'sqlite')
    sqlite_obj = sqlite_db(file_path, 'config.db')
    selcInfra = 'Local'
    if sqlite_obj.table_exists('computeInfrastructure'):
        data = sqlite_obj.read_data('computeInfrastructure')
        for values in data:
            selcInfra = values[1]
    return selcInfra

def readComputeConfig():
    try:
        file_path = os.path.abspath(os.path.join(os.path.dirname(__file__),'..','config','compute_conf.json'))
        f = open(file_path, ""r"")
        configSettings = f.read()
        f.close()
        configSettingsJson = json.loads(configSettings)
        from appbe.sqliteUtility import sqlite_db
        from appbe.dataPath import DATA_DIR
        import pandas as pd
        file_path = os.path.join(DATA_DIR, 'sqlite')
        sqlite_obj = sqlite_db(file_path, 'config.db')
        selcInfra = 'Local'
        if sqlite_obj.table_exists('computeInfrastructure'):
            data = sqlite_obj.read_data('computeInfrastructure')
            for values in data:
                selcInfra = values[1]
                
        else:
            data = {}
            data.update({'id':['1'],'selectedInfrastructure': ['Local']})
            sqlite_obj.write_data(pd.DataFrame.from_dict(data),'computeInfrastructure')
        configSettingsJson['computeInfrastructure'] = selcInfra
        for ami in configSettingsJson['AWS_EC2']['amis']:
            configSettingsJson['AWS_EC2']['instances'] = getInstanceonAWS(ami,configSettingsJson['AWS_EC2']['instances'])
        for image in configSettingsJson['GCP']['machineImage']:
            configSettingsJson['GCP']['instances'] = getInstanceonGCP(image,configSettingsJson['GCP']['instances'])    
            
        AWSAccessKeyID = ''
        AWSSecretAccessKey = ''
        securitygroupid = ''
        machineType = 'AMI'
        selectedID = ''
        regionName = ''
        noofInfra = 1
        workLoad = 'LLM'
        if sqlite_obj.table_exists('awsCredentials'):
            column_names = sqlite_obj.column_names('awsCredentials')
            #print(column_names)
            if 'workload' not in column_names:
                query = 'Alter Table awsCredentials ADD workload TEXT'
                sqlite_obj.execute_query(query)
            if 'securitygroupid' not in column_names:
                query = 'Alter Table awsCredentials ADD securitygroupid TEXT'
                sqlite_obj.execute_query(query)        
            data = sqlite_obj.read_data('awsCredentials')
            for values in data:
                AWSAccessKeyID = values[1] 
                AWSSecretAccessKey = values[2]
                machineType = values[3]
                selectedID = values[4]
                regionName = values[5]
                noofInfra = values[6]
                workLoad = values[7]
                securitygroupid = values[8]
        selectedAWS = {}
        selectedAWS['accessKey'] = AWSAccessKeyID
        selectedAWS['secretAccessKey'] = AWSSecretAccessKey
        selectedAWS['machineType']=machineType
        selectedAWS['selectedID'] = selectedID
        selectedAWS['regionName'] = regionName
        selectedAWS['noOfInstance']=noofInfra
        selectedAWS['workLoad'] = workLoad
        selectedAWS['securitygroupid'] = securitygroupid
        configSettingsJson['awsCredentials'] = selectedAWS
        
        gcpCredentials=''
        projectID = ''
        selectedID = ''
        machineType = ''
        regionName = ''
        noOfInstance = 1
        workLoad = 'LLM'
        if sqlite_obj.table_exists('gcpCredentials'):
            column_names = sqlite_obj.column_names('gcpCredentials')
            if 'workload' not in column_names:
                query = 'Alter Table gcpCredentials ADD workload TEXT'
                sqlite_obj.execute_query(query)
            data = sqlite_obj.read_data('gcpCredentials')    
            for values in data:
                gcpCredentials = values[1] 
                projectID = values[2]
                machineType = values[3] 
                selectedID = values[4] 
                regionName = values[5] 
                noOfInstance = values[6]
                workLoad = values[7]
        selectedGCP = {}
        selectedGCP['gcpCredentials'] = gcpCredentials
        selectedGCP['selectedID'] = selectedID
        selectedGCP['projectID'] = projectID        
        selectedGCP['machineType'] = machineType
        selectedGCP['regionName'] = regionName        
        selectedGCP['noOfInstance'] = noOfInstance
        selectedAWS['workLoad'] = workLoad
        configSettingsJson['gcpCredentials'] = selectedGCP
        #print(configSettingsJson)
        return(configSettingsJson)
    except Exception as e:
        print(e)
        exc_type, exc_obj, exc_tb = sys.exc_info()
        fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
        print(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))"
validatecsv.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import csv
import logging
import pandas as pd


class csv_validator:

    def __init__(self):
        self.log = logging.getLogger('eion')

    def __text_header(self, filename, threshold=0.75):
        df = pd.read_csv(filename, header=None,nrows=1000)
        numeric_columns = df.dtypes[df.dtypes != object]
        if not len(numeric_columns):
            first_row_len = df.iloc[0].str.len()
            index = 0
            for c in df:
                if (df[c].map(len).mean() * threshold <= first_row_len[index]):
                    return False
                index += 1
            return True
        return False

    def validate_header(self, filename,delimiter,textqualifier,threshold=0.75):
        with open(filename, 'rt',encoding='utf-8') as csvfile:
            has_header = csv.Sniffer().has_header(csvfile.read(8192))
            csvfile.seek(0)
            if not has_header:
                has_header = self.__text_header(filename, threshold)
            reader = csv.reader(csvfile, delimiter=delimiter,quotechar=textqualifier)
            good_csv = True
            col_len = len(next(reader))
            bad_lines = []
            offset = 2  # +1 for first read and +1 for python index start at 0
            for index, row in enumerate(reader):
                if len(row) != col_len:
                    good_csv = False
                    if(index == 1 and has_header):
                        offset += 1
                    bad_lines.append(index + offset)
        return has_header, good_csv, bad_lines


if __name__ == '__main__':
    import sys
    val = csv_validator()
    print(val.validate_header(sys.argv[1]))
"
eda.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''

import math
import sys,os
import pandas as pd
from sklearn.cluster import KMeans
from sklearn.decomposition import PCA
import numpy as np
import scipy.stats as st
from sklearn.preprocessing import StandardScaler
from dython.nominal import associations
class ux_eda ():

    def __init__(self, dataPath=pd.DataFrame(),delimiter=',',textqualifier='""',optimize=None,):
        aionNumericDtypes = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64']
        self.dataFrame = pd.DataFrame()
    
        if isinstance(dataPath, pd.DataFrame):
            self.dataFrame = dataPath
            if optimize == 1:
                self.dataFrame = self.dataFrame.sample(n=1000, random_state=1)
        else:
            if optimize == 1:
                self.dataFrame = pd.read_csv(dataPath,nrows=1000,encoding='utf-8',sep=delimiter,quotechar=textqualifier,skipinitialspace = True,na_values=['-','?'],encoding_errors= 'replace')
            else:
                self.dataFrame = pd.read_csv(dataPath, encoding='utf-8',sep=delimiter,quotechar=textqualifier,skipinitialspace = True,na_values=['-','?'],encoding_errors= 'replace')
            self.dataFrame.rename(columns=lambda x: x.strip(), inplace=True)
         
        self.features = self.dataFrame.columns.tolist()
        self.indexFeature = []
        self.dateFeature = []
        self.categoricalFeature = []
        self.constantFeature = []
        self.textFeature = []
        self.numericFeature = []
        self.numericAndCatFeature = []      
             
        for feature, featureType in zip(self.features, self.dataFrame.dtypes):
            
            if self.__check_seq_feature(self.dataFrame[feature]):
                self.indexFeature.append(feature)
            elif self.__match_date_format(self.dataFrame[feature]):
                self.dateFeature.append(feature)
            elif self.__check_constant_features(self.dataFrame[feature]):
                self.constantFeature.append(feature)
            elif self.__check_category_features(self.dataFrame[feature]):
                self.categoricalFeature.append(feature)
            elif featureType == 'object':
                '''
                numOfRows = self.dataFrame.shape[0]         
                distinctCount = len(self.dataFrame[feature].unique())
                tempDff = self.dataFrame[feature]
                self.dataFrame[feature]=self.dataFrame[feature].apply(lambda x: self.testNum(x))
                tempDf = self.dataFrame[feature]
                tempDf = tempDf.dropna()
                numberOfNonNullVals = tempDf.count()
                numericRatio = 0.8
                if(numberOfNonNullVals > int(numOfRows * numericRatio)):
                    self.numericFeature.append(feature)                                 
                else:
                    self.dataFrame[feature] = tempDff
                '''
                self.textFeature.append(feature)
            elif featureType in aionNumericDtypes:
                self.numericFeature.append(feature)
#        self.dataFrame[self.categoricalFeature] = self.dataFrame[self.categoricalFeature].apply(lambda x: x.cat.codes)
        
        self.numericAndCatFeature = self.numericFeature + self.categoricalFeature


    # EDA Performance change
    # ----------------------------
    def subsampleData(self, subsampleData):
        self.dataFrame = self.dataFrame.sample(n=subsampleData, random_state=1)
        
    def get_features_datatype(self,v,num_list,cat_list,text_list):
        """""" To get exact datatype of the feature in Data Overview.""""""   
        if v in cat_list:
            return 'Categorical'
        elif v in num_list:    
            return 'Numerical'
        elif v in text_list:    
            return 'Text'
    
    def getCorrelationMatrix(self):
        try:
            if len(self.dataFrame.columns) > 25:
                df3 = df[self.dataFrame.columns[0:24]]
            else:
                df3 = self.dataFrame.copy()
            cor_mat= associations(self.dataFrame,compute_only=True)
            cor_mat=cor_mat['corr']        
            cor_mat = cor_mat.astype(float).round(2)
            cor_mat.replace(np.nan, 0, inplace=True)
            cor_mat.fillna('None',inplace=True)
            return cor_mat
        except Exception as e:
            print(e)
            correlationgraph = pd.DataFrame()
            return (correlationgraph)
    
    def dataDistribution(self):
        df_eda_actual = self.dataFrame.copy()
        des1 = df_eda_actual.describe(include='all').T
        des1['missing count %'] = df_eda_actual.isnull().mean() * 100
        des1['zero count %'] = df_eda_actual.isin([0]).mean() * 100
        dataColumns =  list(self.dataFrame.columns.values)
        des1.insert(0, 'Features', dataColumns)
        actual_df_numerical_features = df_eda_actual.select_dtypes(exclude='object')
        actual_df_categorical_features = df_eda_actual.select_dtypes(include='object')
        #For text features
        textFeature_df = df_eda_actual.filter(self.textFeature)
        actual_df_categorical_features = actual_df_categorical_features.drop(self.textFeature, axis=1) 
        for i in  des1['Features']:
            num_cols = actual_df_numerical_features.columns.to_list()
            cat_cols = actual_df_categorical_features.columns.to_list()
            text_cols = self.textFeature
            des1['Features Type'] = des1['Features'].apply(lambda x: self.get_features_datatype(x, num_cols,cat_cols,text_cols))
        curr_columns = des1.columns.to_list()
        curr_columns.remove('Features Type')
        insert_i = curr_columns.index('Features')+1
        curr_columns.insert(insert_i,'Features Type')
        des1 = des1[curr_columns]
        return des1
    # ----------------------------
    def subsetFeatures(self, edaFeatures):
        print(self.dataFrame.columns)
        self.dataFrame = self.dataFrame[edaFeatures]        
        self.features = edaFeatures
        
        self.indexFeature = []
        self.dateFeature = []
        self.categoricalFeature = []
        self.constantFeature = []
        self.textFeature = []
        self.numericFeature = []
        self.numericAndCatFeature = []
        print('abc')
        aionNumericDtypes = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64']
        
        for feature, featureType in zip(self.features, self.dataFrame.dtypes):
            if self.__check_seq_feature(self.dataFrame[feature]):
                self.indexFeature.append(feature)
            elif self.__match_date_format(self.dataFrame[feature]):
                self.dateFeature.append(feature)
            elif self.__check_constant_features(self.dataFrame[feature]):
                self.constantFeature.append(feature)
            elif self.__check_category_features(self.dataFrame[feature]):
                self.categoricalFeature.append(feature)
            elif featureType == 'object':
                '''
                numOfRows = self.dataFrame.shape[0]         
                distinctCount = len(self.dataFrame[feature].unique())
                tempDff = self.dataFrame[feature]
                self.dataFrame[feature]=self.dataFrame[feature].apply(lambda x: self.testNum(x))
                tempDf = self.dataFrame[feature]
                tempDf = tempDf.dropna()
                numberOfNonNullVals = tempDf.count()
                numericRatio = 0.8
                if(numberOfNonNullVals > int(numOfRows * numericRatio)):
                    self.numericFeature.append(feature)                                 
                else:
                    self.dataFrame[feature] = tempDff
                '''
                self.textFeature.append(feature)
            elif featureType in aionNumericDtypes:
                self.numericFeature.append(feature)
        print('def')
        self.numericAndCatFeature = self.numericFeature + self.categoricalFeature
    # ----------------------------

    def testNum(self,value):
        try:
            x=eval(value)
            return x
        except:
           return np.nan        
           
    def getFeatures(self):
        leastRatioFeature = self.__LeastfeatureRatio()
        return (self.features, self.dateFeature, self.indexFeature, self.constantFeature, self.textFeature, leastRatioFeature,self.numericAndCatFeature,self.numericFeature,self.categoricalFeature)
    def getNumericFeatureCount(self):
        return(len(self.numericAndCatFeature))
    def calculateNumberofCluster(self):
        df = self.dataFrame[self.numericFeature]
        return self.__NumberofCluster(df)
    def getTopTextFeatures(self,topn):
        df_text = pd.DataFrame()
        if (len(self.textFeature) > 1):
            df_text['combined'] = self.dataFrame[self.textFeature].apply(lambda row: ' '.join(row.values.astype(str)), axis=1)
            features = ['combined']
        else:
            df_text[['combined']] = self.dataFrame[self.textFeature]
            features = ['combined']
            
        df_text[features[0]] = df_text[features[0]].fillna(""NA"")
        textCorpus = df_text[features[0]]
        from text import eda
        texteda_obj = eda.ExploreTextData()
        df = texteda_obj.MostCommonWords(textCorpus,topn)
        return df    
        
    def __NumberofCluster(self, featureData):
        Sum_of_squared_distances = []
        K = range(1, 15)
        for k in K:
            km = KMeans(n_clusters=k)
            km = km.fit(featureData)
            Sum_of_squared_distances.append(km.inertia_)
        x1, y1 = 1, Sum_of_squared_distances[0]
        x2, y2 = 15, Sum_of_squared_distances[len(Sum_of_squared_distances) - 1]
        distances = []
        for inertia in range(len(Sum_of_squared_distances)):
            x0 = inertia + 2
            y0 = Sum_of_squared_distances[inertia]
            numerator = abs((y2 - y1) * x0 - (x2 - x1) * y0 + x2 * y1 - y2 * x1)
            denominator = math.sqrt((y2 - y1) ** 2 + (x2 - x1) ** 2)
            distances.append(numerator / denominator)
            n_clusters = distances.index(max(distances)) + 2
        return (n_clusters)
#13841 : TrustedAI: hopkins stat
    def getHopkinsVal(self,df):

        try:
            from appbe.hopkinsStat import hopkins
            from sklearn.preprocessing import StandardScaler,OneHotEncoder
            from sklearn.compose import ColumnTransformer
            from sklearn.pipeline import Pipeline
            from sklearn.impute import SimpleImputer
            numeric_transformer = Pipeline(
                steps=[(""imputer"", SimpleImputer(missing_values=np.nan,strategy=""mean"")),
                       (""standard_scaler"", StandardScaler())]
            )
            categorical_transformer = Pipeline(
                steps=[
                    (""imputer"", SimpleImputer(missing_values=np.nan,strategy=""most_frequent"")),
                    (""encoder"", OneHotEncoder(handle_unknown=""ignore""))
                ]
            )

            preprocessor = ColumnTransformer(
                transformers=[
                    (""num"", numeric_transformer, self.numericFeature),
                    (""cat"", categorical_transformer, self.categoricalFeature)
                ]
            )
            pipe = Pipeline([('scaler',preprocessor)])
            scaled_df = pipe.fit_transform(df)
            if type(scaled_df) != np.ndarray:
                scaled_df = scaled_df.toarray()
            score = round(hopkins(scaled_df,scaled_df.shape[0]),2)
            
            return str(score)
        except Exception as e:
            print(e)
            return ''

    def getClusterDetails(self):
        aionNumericDtypes = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64']
        df_clus = pd.get_dummies(self.dataFrame[self.numericAndCatFeature], prefix_sep='####')
        for i in df_clus.columns:
            dataType = df_clus[i].dtypes
            if dataType not in aionNumericDtypes:
                df_clus[i] = df_clus[i].fillna(df_clus[i].mode()[0])
            else:
                df_clus[i] = df_clus[i].fillna(df_clus[i].mean())

        n = self.__NumberofCluster(df_clus)
        n = n - 1
        kmeans = KMeans(n_clusters=n, init='k-means++', max_iter=10, n_init=10, random_state=0)
        # Fit and predict
        y_means = kmeans.fit_predict(df_clus)
        centroids = kmeans.cluster_centers_.squeeze()
        labels = kmeans.labels_
        features = df_clus.columns
        cluster_details = []
        for j in range(len(features)):
            cluster = {}
            feature = features[j]
            perflag = 0
            if '####' in feature:
                x = features[j].split('####')
                feature = x[0] + ' ' + x[1] + '(%)'
                perflag = 1
            else:
                feature = feature + '(AVG)'
            cluster['label'] = feature
            total_sum = 0
            if perflag == 1:
                for i in range(n):
                    centroid = centroids[i]
                    value = round(centroid[j], 2)
                    total_sum = total_sum + value

            for i in range(n):
                centroid = centroids[i]
                value = round(centroid[j], 2)
                if perflag == 1:
                    value = (value / total_sum) * 100
                    value = round(value, 2)
                cluster['Cluster ' + str(i + 1)] = value

            cluster_details.append(cluster)

        hopkins_val = self.getHopkinsVal(self.dataFrame,)
        return cluster_details,hopkins_val


    def getHighlyCorrelatedFeatures(self,noOfTop):
        df_corr = abs(self.dataFrame[self.numericAndCatFeature].corr()).stack().reset_index()
        df_corr.columns = ['FEATURE_1', 'FEATURE_2', 'CORRELATION']
        mask_dups = (df_corr[['FEATURE_1', 'FEATURE_2']].apply(frozenset, axis=1).duplicated()) | (
                df_corr['FEATURE_1'] == df_corr['FEATURE_2'])
                
        df_corr = df_corr[~mask_dups]
        df_corr = df_corr.sort_values(by='CORRELATION', ascending=False) 
        df_top = df_corr.head(n=noOfTop)
        return(df_top)
        
    # ---------------------- 12686:Data Distribution related Changes S T A R T ----------------------
    def word_token_for_feature(self, selectedFeature, dataframe):
        comment_words = """"
        try:
            df_text = pd.DataFrame()        
            df_text[[selectedFeature]] = dataframe
            features = [selectedFeature]
            
            df_text[features[0]] = df_text[features[0]].fillna(""NA"")
            textCorpus = df_text[features[0]]
            from text import TextProcessing
            tp = TextProcessing.TextProcessing()
            preprocessed_text = tp.transform(textCorpus)
            df_text[selectedFeature] = preprocessed_text
            df_text_list = df_text.values.tolist()
            
            for val in df_text_list:
                val = str(val)
                tokens = val.split()
                for i in range(len(tokens)):
                    tokens[i] = tokens[i].lower()
                comment_words += "" "".join(tokens) + "" ""
        except:
            comment_words = """"
            
        return comment_words
    # -------------------------------------------- E N D  --------------------------------------------
    
        
    def word_token(self):
        df_text = pd.DataFrame()
        if (len(self.textFeature) > 1):
            df_text['combined'] = self.dataFrame[self.textFeature].apply(lambda row: ' '.join(row.values.astype(str)), axis=1)
            features = ['combined']
        else:
            df_text[['combined']] = self.dataFrame[self.textFeature]
            features = ['combined']
        df_text[features[0]] = df_text[features[0]].fillna(""NA"")
        textCorpus = df_text[features[0]]
        from text import TextProcessing
        tp = TextProcessing.TextProcessing()
        preprocessed_text = tp.transform(textCorpus)
        df_text['combined'] = preprocessed_text
        df_text_list = df_text.values.tolist()
        comment_words = """"
        for val in df_text_list:
            val = str(val)
            tokens = val.split()
            for i in range(len(tokens)):
                tokens[i] = tokens[i].lower()
            comment_words += "" "".join(tokens) + "" ""
        if comment_words == """":
            comment_words = 'Not found any token'
        return comment_words
    def getdata(self):
        return self.dataFrame
        
    def getPCATop10Features(self):
        aionNumericDtypes = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64']
        df = self.dataFrame[self.numericAndCatFeature]
        for feature in self.numericAndCatFeature:
            if feature in self.categoricalFeature:
                df[feature] = pd.Categorical(df[feature])
                df[feature] = df[feature].cat.codes
                df[feature] = df[feature].fillna(df[feature].mode()[0])
            else:
                df[feature] = df[feature].fillna(df[feature].mean())
        pca = PCA(n_components=2).fit(StandardScaler().fit_transform(df))
        mapping = pd.DataFrame(pca.components_, columns=self.numericAndCatFeature)
        mapping = mapping.diff(axis=0).abs()
        mapping = mapping.iloc[1]
        mapping = mapping.sort_values(ascending=False).head(10)
        return mapping
        
    def getTopRows(self, rows=5):
        return self.dataFrame.head(rows)

    def __check_seq_feature(self, data):
        if data.dtypes in ['int16', 'int32', 'int64', 'float16', 'float32', 'float64']:
            total_record = data.count()
            count = (data - data.shift() == 1).sum()
            if ((total_record - count) == 1):
                return True
        return False

    def __match_date_format(self, data):
        try:
            ## Using regex lib, we are check if any col contains datetime format like yyyy-mm-dd or yyyy/mm/dd format. if it finds return true.
            import re
            u_data = data.to_string()
            date_find = (re.findall(r""[0-9]{1,4}[\_|\-|\/|\|][0-9]{1,2}[\_|\-|\/|\|][0-9]{1,4}"", u_data) or re.findall(r'\d{,2}\-[A-Za-z]{,9}\-\d{,4}', u_data) or re.findall(r""[0-9]{1,4}[\_|\-|\/|\|][0-9]{1,2}[\_|\-|\/|\|][0-9]{1,4}.\d"" , u_data) or re.findall(r""[0-9]{1,4}[\_|\-|\/|\|][A-Za-z]{,9}[\_|\-|\/|\|][0-9]{1,4}"", u_data))
            if (date_find):
                try:
                    data = pd.to_datetime(data, utc=True)
                    return True
                except Exception as e:
                    ##If not a datetime col, just pass to return false statement.
                    pass
        except Exception as e:
            data = data.astype(str)
            beforecheckcount = data.count()
            #####YYYY-MM-DD HH:MM:SS####
            check1 = data[data.str.match(
                r'(^\d\d\d\d-(0?[1-9]|1[0-2])-(0?[1-9]|[12][0-9]|3[01]) (00|0?[0-9]|1[0-9]|2[0-4]):([0-9]|[0-5][0-9]):([0-9]|[0-5][0-9])$)') == True]
            aftercheckcount = check1.count()
            if (beforecheckcount == aftercheckcount):
                return True
                #####MM/DD/YYYY HH:MM####
            check2 = data[data.str.match(
                r'(^(0?[1-9]|1[0-2])/(0?[1-9]|[12][0-9]|3[01])/(\d\d\d\d) (00|0?[0-9]|1[0-9]|2[0-4]):([0-9]|[0-5][0-9])$)') == True]
            aftercheckcount = check2.count()
            if (beforecheckcount == aftercheckcount):
                return True

            #####DD-MM-YYYY HH:MM####
            check2 = data[data.str.match(
                r'(^(0?[1-9]|[12][0-9]|3[01])-(0?[1-9]|1[0-2])-(\d\d\d\d) (00|0?[0-9]|1[0-9]|2[0-4]):([0-9]|[0-5][0-9])$)') == True]
            aftercheckcount = check2.count()
            if (beforecheckcount == aftercheckcount):
                return True

            #####YYYY/MM/DD####
            check2 = data[data.str.match(r'(^\d\d\d\d/(0?[1-9]|1[0-2])/(0?[1-9]|[12][0-9]|3[01])$)') == True]
            aftercheckcount = check2.count()
            if (beforecheckcount == aftercheckcount):
                return True
            #####MM/DD/YYYY####
            check2 = data[data.str.match(r'(^(0?[1-9]|1[0-2])/(0?[1-9]|[12][0-9]|3[01])/(\d\d\d\d)$)') == True]
            aftercheckcount = check2.count()
            if (beforecheckcount == aftercheckcount):
                return True
            #####YYYY-MM-DD HH:MM:SS.fff####
            check11 = data[data.str.match(
                r'(^\d\d\d\d-(0?[1-9]|1[0-2])-(0?[1-9]|[12][0-9]|3[01]) (00|0?[0-9]|1[0-9]|2[0-4]):([0-9]|[0-5][0-9]):([0-9]|[0-5][0-9])\.(\d{3})$)') == True]
            aftercheckcount = check11.count()
            if (beforecheckcount == aftercheckcount):
                return True        
         
        return False

    def __check_category_features(self, modelFeatures):
        aionNumericDtypes = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64']
        dataType = modelFeatures.dtypes
        numOfRows = len(modelFeatures)
        if dataType not in aionNumericDtypes:
            if dataType != 'bool':
                nUnique = len(modelFeatures.unique().tolist())
                if nUnique <= 30:
                    return True
        return False

    def __check_constant_features(self, modelFeatures):
        return len(modelFeatures.unique().tolist()) == 1

    def __featureRatio(self, modelFeatures):
        if len(modelFeatures):
            return len(modelFeatures.unique().tolist()) / len(modelFeatures)
        return 0
        
    def __LeastfeatureRatio(self):
        ratio = 1
        feat = """"
        for feature in (self.numericAndCatFeature + self.textFeature):
            r =  self.__featureRatio(self.dataFrame[feature])
            if r < ratio:
                ratio = r
                feat = feature
        return feat
    def getDistribution(self):
        aionNumericDtypes = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64']
        df = self.dataFrame[self.numericAndCatFeature]
        dist={}
        for feature in self.numericAndCatFeature:
            if feature in self.categoricalFeature:
                df[feature] = pd.Categorical(df[feature])
                df[feature] = df[feature].cat.codes
                df[feature] = df[feature].fillna(df[feature].mode()[0])
            else:
                df[feature] = df[feature].fillna(df[feature].mean())
            distributionname,sse =  self.DistributionFinder(df[feature])
            if distributionname == '':
                dist[feature] = 'Unknown'
            else:
                dist[feature] = distributionname
        return dist
        
    def DistributionFinder(self,data):
        try:
            distributionName = """"
            sse = 0.0
            KStestStatic = 0.0
            dataType = """"
            if (data.dtype == ""float64""):
                dataType = ""Continuous""
            elif (data.dtype == ""int""):
                dataType = ""Discrete""
            elif (data.dtype == ""int64""):
                dataType = ""Discrete""
            if (dataType == ""Discrete""):
                distributions = [st.bernoulli, st.binom, st.geom, st.nbinom, st.poisson]
                index, counts = np.unique(data.astype(int), return_counts=True)

                if (len(index) >= 2):
                    best_sse = np.inf
                    y1 = []
                    total = sum(counts)
                    mean = float(sum(index * counts)) / total
                    variance = float((sum(index ** 2 * counts) - total * mean ** 2)) / (total - 1)
                    dispersion = mean / float(variance)
                    theta = 1 / float(dispersion)
                    r = mean * (float(theta) / 1 - theta)
                    datamin = data.min()
                    datamax = data.max()
                    for j in counts:
                        y1.append(float(j) / total)

                    pmf1 = st.bernoulli.pmf(index, mean)
                    pmf2 = st.binom.pmf(index, len(index), p=mean / len(index))
                    pmf3 = st.geom.pmf(index, 1 / float(1 + mean))
                    pmf4 = st.nbinom.pmf(index, mean, r)
                    pmf5 = st.poisson.pmf(index, mean) 
                    
                    sse1 = np.sum(np.power(y1 - pmf1, 2.0))
                    sse2 = np.sum(np.power(y1 - pmf2, 2.0))
                    sse3 = np.sum(np.power(y1 - pmf3, 2.0))
                    sse4 = np.sum(np.power(y1 - pmf4, 2.0))
                    sse5 = np.sum(np.power(y1 - pmf5, 2.0))
                
                    sselist = [sse1, sse2, sse3, sse4, sse5]
                    best_distribution = 'NA'
                    for i in range(0, len(sselist)):
                        if best_sse > sselist[i] > 0:
                            best_distribution = distributions[i].name
                            best_sse = sselist[i]

                elif (len(index) == 1):
                    best_distribution = ""Constant Data-No Distribution""
                    best_sse = 0.0

                distributionName = best_distribution
                sse = best_sse

            elif (dataType == ""Continuous""):

                distributions = [st.uniform, st.expon, st.weibull_max, st.weibull_min, st.chi, st.norm, st.lognorm, st.t,
                                 st.gamma, st.beta]
                best_distribution = st.norm.name
                best_sse = np.inf
                datamin = data.min()
                datamax = data.max()
                nrange = datamax - datamin

                y, x = np.histogram(data.astype(float), bins='auto', density=True)
                x = (x + np.roll(x, -1))[:-1] / 2.0

                for distribution in distributions:
                    params = distribution.fit(data.astype(float))
                    arg = params[:-2]
                    loc = params[-2]
                    scale = params[-1]
                    pdf = distribution.pdf(x, loc=loc, scale=scale, *arg)
                    sse = np.sum(np.power(y - pdf, 2.0))
                    if (best_sse > sse > 0):
                        best_distribution = distribution.name
                        best_sse = sse
                distributionName = best_distribution
                sse = best_sse
        except:
            response = str(sys.exc_info()[0])
            message = 'Job has Failed' + response
            exc_type, exc_obj, exc_tb = sys.exc_info()
            fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
            print(str(exc_type) + ' ' + str(fname) + ' ' + str(exc_tb.tb_lineno))
            
        return distributionName, sse
"
stationarity_seasonality_check.py,"import pandas as pd
import numpy as np
from statsmodels.tsa.stattools import adfuller
from statsmodels.tsa.stattools import kpss
from statsmodels.tsa.seasonal import seasonal_decompose
import logging
import os
import warnings
warnings.filterwarnings('ignore')
## Main class to find out seassonality and stationary in timeseries data.
class StationarySeasonalityTest:
    def __init__(self,df,featurename,datetimefeature):
        self.df=df
        self.targetFeature=featurename
        self.datetimefeature=datetimefeature    
    
    ## to get the timeseries data stationary information
    def stationary_model(self,df,target_feature,stationary_check_method):        
        stationary_status=None
        if (stationary_check_method.lower()=='adfuller'):            
            stats_model=adfuller(df[target_feature])
            statistic, p_value, n_lags, num_bservations,critical_values,info_criterion_best=stats_model[0],stats_model[1],stats_model[2],stats_model[3],stats_model[4],stats_model[5]
            if (p_value>0.05):
                stationary_status=str(""Non-Stationary"")
            elif(p_value<0.05):
                stationary_status=str(""Stationary"")
                
        ##kpss is opposite to ADF in considering null hypothesis. In KPSS, if null hypothesis,then it is stationary as oppose to ADF.
        elif (stationary_check_method.lower()=='kpss'):
            from statsmodels.tsa.stattools import kpss
            stats_model = kpss(df[target_feature])
            statistic, p_value, n_lags, critical_values=stats_model[0],stats_model[1],stats_model[2],stats_model[3]
            
            ##In kpss, the stationary condition is opposite to Adafuller.
            if (p_value>0.05):
                stationary_status=str(""Stationary"")
                
            else:
                stationary_status=str(""Non-Stationary"")
                
        return stats_model,n_lags,p_value,stationary_status
    
    ## Get stationary details
    def stationary_check(self,target_feature,time_col,method):
        df=self.df        
        df[time_col]=pd.to_datetime(df[time_col])
        df=df.set_index(time_col)        
        try:
            stationary_check_method=method
        except:
            stationary_check_method='adfuller'
        if (len(target_feature) == 1):
            try:
                if isinstance(target_feature,list):
                    target_feature=''.join(target_feature)        
                elif isinstance(target_feature,int):
                    target_feature=str(target_feature)
                elif isinstance(target_feature,str):
                    pass
            except Exception as e:
                pass
            stationary_result={}
            stats_model,n_lags,p_value,stationary_status=self.stationary_model(df,target_feature,stationary_check_method)
            # stationary_result[target_feature]=stationary_status
            stationary_result[target_feature]=stationary_status
        elif(len(target_feature) > 1):
            stationary_result={}
            for col in df.columns:
                stats_model,n_lags,p_value,stationary_status=self.stationary_model(df,col,stationary_check_method)
                stationary_result[col]=stationary_status        
        else:
            pass
        stationary_val=None
        for v in stationary_result.values():
            stationary_val=v             
        stationary_combined_res=dict()
        c_dict=[k for k,v in stationary_result.items() if 'non-stationary' in v]
        if (len(c_dict)>=1):
            stationary_combined_res['dataframe_stationarity']='Non-Stationary'
        else:
            stationary_combined_res['dataframe_stationarity']='Stationary'
        
        return stats_model,n_lags,p_value,stationary_val,stationary_combined_res
    #Get seasonality by using seasonal_decompose lib.
    def seasonality_model(self,target_feature,df):
        seasonality_status=None
        try:
            try:
                stats_model = kpss(df[target_feature])
                statistic, p_value, n_lags, critical_values=stats_model[0],stats_model[1],stats_model[2],stats_model[3]
            except:
                n_lags=1
                pass
            try:
                df_target=self.df[target_feature]
                decompose_result_mult = seasonal_decompose(df_target,model='additive', extrapolate_trend='freq', period=n_lags)
            except Exception as e:
                ##If additive model (type of seasonal component) failed, use multiplicative
                decompose_result_mult = seasonal_decompose(df_target,model='multiplicative', extrapolate_trend='freq', period=1)
            trend = decompose_result_mult.trend
            observed=decompose_result_mult.observed
            seasonal = decompose_result_mult.seasonal
            residual = decompose_result_mult.resid
            try:
                if isinstance(df_target, pd.Series):
                    auto_correlation = df_target.autocorr(lag=n_lags)
                elif isinstance(df_target, pd.DataFrame):
                    df_target = df_target.squeeze()
                    auto_correlation = df_target.autocorr(lag=n_lags)
            except:
                pass
            if (seasonal.sum()==0):
                seasonality_status=""Non-Seasonal""
            else:
                seasonality_status=""Seasonal""

            # #Please use the below plot for GUI show (seasonality components)
            # decompose_result_mult.plot().savefig('seasonality_plot.png')
            df['observed'] = decompose_result_mult.observed
            df['residual'] = decompose_result_mult.resid
            df['seasonal'] = decompose_result_mult.seasonal
            df['trend'] = decompose_result_mult.trend
                        
        except Exception as e:
            print(""Seasonality function exception: \t"",e)
        return df,decompose_result_mult,seasonality_status

        
    ##Main function to check seasonlity in data
    def seasonal_check(self,target_feature,time_col,seasonal_model):
        df=self.df
        try:
            df[time_col]=pd.to_datetime(df[time_col])
        except Exception as e:
            pass
        df=df.set_index(time_col)
        
        if (len(target_feature)==1):
            try:
                if isinstance(target_feature,list):
                    target_feature=''.join(target_feature)        
                elif isinstance(target_feature,int):
                    target_feature=str(target_feature)
                elif isinstance(target_feature,str):
                    pass
            except Exception as e:
                ## Because of EDA, all log messages removed. (self.log.info )
                pass
            ## Seasonal component for individual feature based.
            seasonality_result=dict()
            df,decompose_result_mult,seasonality_status = self.seasonality_model(target_feature,df)
            # seasonality_result[target_feature]=seasonality_status
            
            seasonality_result['Feature: '+str(target_feature)]=seasonality_status
        elif(len(target_feature) > 1):
            seasonality_result=dict()
            for col in df.columns:
                df,decompose_result_mult,seasonality_status = self.seasonality_model(col,df)
                seasonality_result[col]=seasonality_status
        else:
            pass

        
        # ## Seasonal component for whole dataset
        seasonality_val=None
        for v in seasonality_result.values():
            seasonality_val=v 
        seasonality_combined_res=dict()
        c_dict=[k for k,v in seasonality_result.items() if 'non-seasonality' in v]
        if (len(c_dict)>=1):
            seasonality_combined_res['dataframe_seasonality']='No Seasonal elements'
        else:
            seasonality_combined_res['dataframe_seasonality']='contains seasonal elements.'
            
        return df,decompose_result_mult,seasonality_val,seasonality_combined_res
    
    #Main user defined caller for stationary and seasonality (SS) 
    def analysis(self,seasonality_status,stationarity_status):
        seasonal_model=""additive""
        time_col=self.datetimefeature
        stationary_method='adfuller'        
        if (isinstance(self.targetFeature,list)):
            target=self.targetFeature
            pass
        elif (isinstance(self.targetFeature,str)):
            target=list(self.targetFeature.split(','))
        if (stationarity_status.lower()==""true""):
            stats_model,n_lags,p_value,stationary_result,stationary_combined_res=self.stationary_check(target,time_col,stationary_method)
            return stationary_result
        if (seasonality_status.lower()==""true""):
            df,decompose_result_mult,seasonality_result,seasonality_combined_res=self.seasonal_check(target,time_col,seasonal_model)
            return seasonality_result
        
                    
#Main fn for standalone test purpose
if __name__=='__main__':
    print(""Inside seasonality-stationary test main function..."")
    print(""Below code used for standalone test purpose."")
 "
azureStorage.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import json
import os
import rsa
import boto3   #usnish
import pandas as pd
import time
def add_new_azureStorage(request):
	try:
		file_path = os.path.abspath(os.path.join(os.path.dirname(__file__),'..','..','config','azurestorage.conf'))
		with open(file_path, 'r') as f:
			data = json.load(f)
		f.close()		
		if data == '':
			data = []		
	except:
		data = []
	if request.POST[""azurename""] =='' or request.POST[""azureaccountkey""] == '' or request.POST[""containername""] == '' :
		return 'error'
	newdata = {}           
	newdata['azurename'] = request.POST[""azurename""]
	newdata['azureaccountkey'] = request.POST[""azureaccountkey""]
	newdata['containername'] = request.POST[""containername""]
	data.append(newdata)
	with open(file_path, 'w') as f:
		json.dump(data, f)
	f.close()
	return 'success'

def get_azureStorage():
	try:
		file_path = os.path.abspath(os.path.join(os.path.dirname(__file__),'..','..','config','azurestorage.conf'))
		with open(file_path, 'r') as f:
			data = json.load(f)
	except:
		data = []
	return data
def read_azureStorage(name,directoryname,DATA_FILE_PATH):
	try:
		file_path = os.path.abspath(os.path.join(os.path.dirname(__file__),'..','..','config','azurestorage.conf'))
		with open(file_path, 'r') as f:
			data = json.load(f)
	except:
		data = []
	found = False
	for x in data:
		if x['azurename'] == name:
			storage_account_name = str(x['azurename'])
			storage_account_key = str(x['azureaccountkey'])
			azure_container_name = x['containername']
			found = True
			break		
	try:
		if found:
			root_dir = str(directoryname)
			from azure.storage.filedatalake import DataLakeServiceClient
			import io
			import pandavro as pdx
			from detect_delimiter import detect			
			try:
				service_client = DataLakeServiceClient(account_url=""{}://{}.dfs.core.windows.net"".format(""https"", storage_account_name), credential=storage_account_key)
				print(azure_container_name)
				file_system_client = service_client.get_file_system_client(azure_container_name)
				print(root_dir)
				file_paths = file_system_client.get_paths(path=root_dir)				
				main_df = pd.DataFrame()
				for path in file_paths:
					if not path.is_directory:
						file_client = file_system_client.get_file_client(path.name)
						file_ext = os.path.basename(path.name).split('.', 1)[1]
						if file_ext in [""csv"", ""tsv""]:
							with open(csv_local, ""wb"") as my_file:
								download = file_client.download_file()
								download.readinto(my_file)
							with open(csv_local, 'r') as file:
								data = file.read()
							row_delimiter = detect(text=data, default=None, whitelist=[',', ';', ':', '|', '\t'])
							processed_df = pd.read_csv(csv_local, sep=row_delimiter)
						if file_ext == ""parquet"":
							download = file_client.download_file()
							stream = io.BytesIO()
							download.readinto(stream)
							processed_df = pd.read_parquet(stream, engine='pyarrow')
						if file_ext == ""avro"": 
							with open(avro_local, ""wb"") as my_file:
								download = file_client.download_file()
								download.readinto(my_file)
							processed_df = pdx.read_avro(avro_local)
						if not main_df.empty:
							main_df = main_df.append(processed_df, ignore_index=True)
						else:
							main_df = pd.DataFrame(processed_df)			
			except Exception as e:
				print(e)
			return 'Success',main_df
	except Exception as e:
		print(e)
	return 'Error', pd.DataFrame()"
utils.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
from typing import Tuple, Union, List
import numpy as np
from sklearn.linear_model import LogisticRegression
from sklearn.naive_bayes import GaussianNB
from sklearn.linear_model import SGDClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.tree import DecisionTreeClassifier
from flwr.common.logger import log
from logging import INFO

TRUE_FALSE_MAPPING = {'True':'False','true':'false',True:False,'y':'n','Y':'N','Yes':'No','yes':'no','YES':'NO'}
XY = Tuple[np.ndarray, np.ndarray]
Dataset = Tuple[XY, XY]
LogRegParams = Union[XY, Tuple[np.ndarray]]
XYList = List[XY]
modelUsed=None
modelname=None
def setmodelName(modelselected):
	try:
		modelname=str(modelselected)
		print(""setmodelName ,given modelname: \n"",modelname)
		if (modelname.lower() == 'logisticregression'):
			modelUsed=LogisticRegression()			
			return True
		elif (modelname.lower() == ""naivebayes""):            
			modelUsed = GaussianNB()
			return True
		elif (modelname.lower() == ""sgdclassifier""):
			#from sklearn.linear_model import SGDClassifier
			modelUsed=SGDClassifier()
			return True		
		elif (modelname.lower() == ""knn""):
			modelUsed = KNeighborsClassifier()
			return True
		elif (modelname.lower() == ""decisiontreeclassifier""):
			modelUsed = DecisionTreeClassifier()
			return True
		else:
			return False
	except Exception as e:
		log(INFO, ""set fl model name fn issue: "",e)

def get_model_parameters(model:modelUsed) -> LogRegParams:
    """"""Returns the paramters of a sklearn LogisticRegression model.""""""    
    model_name=model.__class__.__name__
    if model.fit_intercept:       
        params = (model.coef_, model.intercept_)
    else:
        params = (model.coef_,)
    
    return params


def set_model_params(
    model:modelUsed, params: LogRegParams
) -> modelUsed:
    """"""Sets the parameters of a sklean LogisticRegression model.""""""    
    model.coef_ = params[0]
    model_name=model.__class__.__name__
    try:
        if model.fit_intercept:
            model.intercept_ = params[1]
    except Exception as e:
        log(INFO, ""set_model_params fn issue: "",e)
        pass
    
    return model


def set_initial_params(model,no_classes,no_features):
    """"""Sets initial parameters as zeros Required since model params are
    uninitialized until model.fit is called.

    But server asks for initial parameters from clients at launch. Refer
    to sklearn.linear_model.LogisticRegression documentation for more
    information.
    """"""
      
    n_classes = no_classes 
    n_features = no_features
    model.classes_ = np.array([i for i in range(n_classes)])
    model.coef_ = np.zeros((n_classes, n_features))
    model_name=model.__class__.__name__
    try:
        if model.fit_intercept:
            model.intercept_ = np.zeros((n_classes,))
    except Exception as e:
        log(INFO, ""set_initial_params fn issue: "",e)
        pass



def shuffle(X: np.ndarray, y: np.ndarray) -> XY:
    """"""Shuffle X and y.""""""
    rng = np.random.default_rng()
    idx = rng.permutation(len(X))
    return X[idx], y[idx]


def partition(X: np.ndarray, y: np.ndarray, num_partitions: int) -> XYList:
    """"""Split X and y into a number of partitions.""""""
    return list(
        zip(np.array_split(X, num_partitions), np.array_split(y, num_partitions))
    )

def get_true_option(d, default_value=None):
    if isinstance(d, dict):
        for k,v in d.items():
            if v in TRUE_FALSE_MAPPING.keys():
                return k
    return default_value

def get_true_options( d):
    options = []
    if isinstance(d, dict):
        for k,v in d.items():
            if v in TRUE_FALSE_MAPPING.keys():
                options.append(k)
    return options

def set_true_option(d, key=None, value='True'):
    if key in d.keys():
        if value in TRUE_FALSE_MAPPING.keys():
            for k in d.keys():
                d[ k] = TRUE_FALSE_MAPPING[ value]
            d[key] = value
    return d
    

"
distribution.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import numpy as np
import os
import sys
import scipy.stats as st

def DistributionFinder(data):
    try:
        distributionName = """"
        sse = 0.0
        KStestStatic = 0.0
        dataType = """"
        if (data.dtype == ""float64""):
            dataType = ""Continuous""
        elif (data.dtype == ""int""):
            dataType = ""Discrete""
        elif (data.dtype == ""int64""):
            dataType = ""Discrete""
        if (dataType == ""Discrete""):
            distributions = [st.bernoulli, st.binom, st.geom, st.nbinom, st.poisson]
            index, counts = np.unique(data.astype(int), return_counts=True)

            if (len(index) >= 2):
                best_sse = np.inf
                y1 = []
                total = sum(counts)
                mean = float(sum(index * counts)) / total
                variance = float((sum(index ** 2 * counts) - total * mean ** 2)) / (total - 1)
                dispersion = mean / float(variance)
                theta = 1 / float(dispersion)
                r = mean * (float(theta) / 1 - theta)

                for j in counts:
                    y1.append(float(j) / total)

                pmf1 = st.bernoulli.pmf(index, mean)
                pmf2 = st.binom.pmf(index, len(index), p=mean / len(index))
                pmf3 = st.geom.pmf(index, 1 / float(1 + mean))
                pmf4 = st.nbinom.pmf(index, mean, r)
                pmf5 = st.poisson.pmf(index, mean)

                sse1 = np.sum(np.power(y1 - pmf1, 2.0))
                sse2 = np.sum(np.power(y1 - pmf2, 2.0))
                sse3 = np.sum(np.power(y1 - pmf3, 2.0))
                sse4 = np.sum(np.power(y1 - pmf4, 2.0))
                sse5 = np.sum(np.power(y1 - pmf5, 2.0))

                sselist = [sse1, sse2, sse3, sse4, sse5]
                best_distribution = 'NA'
                for i in range(0, len(sselist)):
                    if best_sse > sselist[i] > 0:
                        best_distribution = distributions[i].name
                        best_sse = sselist[i]

            elif (len(index) == 1):
                best_distribution = ""Constant Data-No Distribution""
                best_sse = 0.0

            distributionName = best_distribution
            sse = best_sse

        elif (dataType == ""Continuous""):

            distributions = [st.uniform, st.expon, st.weibull_max, st.weibull_min, st.chi, st.norm, st.lognorm, st.t,
                             st.gamma, st.beta]
            best_distribution = st.norm.name
            best_sse = np.inf
            datamin = data.min()
            datamax = data.max()
            nrange = datamax - datamin

            y, x = np.histogram(data.astype(float), bins='auto', density=True)
            x = (x + np.roll(x, -1))[:-1] / 2.0

            for distribution in distributions:
                params = distribution.fit(data.astype(float))
                arg = params[:-2]
                loc = params[-2]
                scale = params[-1]
                pdf = distribution.pdf(x, loc=loc, scale=scale, *arg)
                sse = np.sum(np.power(y - pdf, 2.0))
                if (best_sse > sse > 0):
                    best_distribution = distribution.name
                    best_sse = sse
            distributionName = best_distribution
            sse = best_sse
    except:
        response = str(sys.exc_info()[0])
        message = 'Job has Failed' + response
        exc_type, exc_obj, exc_tb = sys.exc_info()
        fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
        print(str(exc_type) + ' ' + str(fname) + ' ' + str(exc_tb.tb_lineno))
        print(message)
    return distributionName, sse"
pushrecords.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import socket
import os
import rsa
from os.path import expanduser
from pathlib import Path
import requests
import platform
from appbe.dataPath import DATA_DIR
import socket
import getmac
import subprocess
import sys
import json
from datetime import datetime
import binascii
computername = socket.getfqdn()
global_key = '''
-----BEGIN RSA PUBLIC KEY-----
MIIBCgKCAQEAzJcxqRiUpp7CzViyqNlYaeyceDh5y6Ib4SoxoyNkN3+k0q+cr1lb
k0KdWTtHIVqH1wsLYofYjpB7X2RN0KYTv8VfwmfQNrpFEbiRz4gcAeuxGCPgGaue
N1ttujQMWHWCcY+UH5Voh8YUfkW8P+T3zxvr1d30D+kVBJC59y/31JvTzr3Bw/T+
NYv6xiienYiEYtm9d5ATioEwZOXaQBrtVvRmqcod5A1h4kn1ZauLX2Ph8H4TAuit
NLtw6xUCJNumphP7xdU+ca6P6a6eaLprgKhvky+nz16u9/AC2AazRQHKWf8orS6b
fw16JDCRs0zU4mTQLCjkUUt0edOaRhUtcQIDAQAB
-----END RSA PUBLIC KEY-----
'''

quarter_key = '''
-----BEGIN RSA PUBLIC KEY-----
MIIBCgKCAQEAmKzOJxVEV9ulA+cjfxguAduLMD47OWjLcEAEmEuK8vR4O5f6e2h1
08NniGC+nkwqmM00U7JTVBkqnt9S/JgE3pAH2xwfWda2OvXNWisWmOQdqB0+XRHh
NXsIG3yRk/sMlDpe7MJIyM5ADSu01PLn9FZTfmMq7lEp32tAf71cuUE/dwuWSvEQ
WK2hn1L4D97O43XCd7FHtMSHfgtjdcCFgX9IRgWLKC8Bm3q5qcqF4v3cHuYTj3V9
njxPtRqPg6HJFiJrm9AX5bUEHAvbTcw4wAmsNTRQHPvVB+Lc+yGh5x8crhKjNB01
gdB5I3a4mPO7dKvadR6Mr28trr0Ff5t2HQIDAQAB
-----END RSA PUBLIC KEY-----
'''

halfYear_key='''
-----BEGIN RSA PUBLIC KEY-----
MIIBCgKCAQEAgrGNwl8CNYQmVxi8/GEgPjfL5aEmyPkDyaJb9h4hZDSZCeeKd7Rv
wwhuRTdBBfOp0bQ7QS7NYMg38Xlc3x85I9RnxdQdDKn2nRuvG0hG3wMBFy/DCSXF
tXbDjJkLijAhqcBNu8m+a2Gtn14ShC7TbcfY4iVXho3WFUrn0xq6S5ducqWCsLJh
R+TNImCaMICqfoAzEDGC3ojO5Hi3vJmmyK5CVp6bt4wLRATQjcp1ujGW4Uv4kEgp
7TR077c226v1KOdKdyZPHJzT1MKwZrG2Gdluk3/Y1apbwyGzYqFdTCOAB+mE73Dn
wFXURgDJQmaU2oxxaA13WRcELpnirm+aIwIDAQAB
-----END RSA PUBLIC KEY-----
'''
oneYear_key='''
-----BEGIN RSA PUBLIC KEY-----
MIIBCgKCAQEA3GLqn+vkKn3fTNH3Bbb3Lq60pCoe+mn0KPz74Bp7p5OkZAUe14pP
Tcf/UqdPwiENhSCseWtfZmfKDK8qYRHJ5xW02+AhHPPdiacS45X504/lGG3q/4SG
ZgaFhMDvX+IH/ZH+qqbU3dRQhXJCCrAVAa7MonzM6yPiVeS2SdpMkNg1VDR1oTLB
Pn+qSV6CnkK1cYtWCRQ23GH2Ru7fc09r7m8hVcifKJze84orpHC5FX0WScQuR8h/
fs1IbGkxTOxP8vplUj/cd4JjUxgd+w+8R4kcoPhdGZF5UGeZA8xMERzQLvh+4Ui0
KIvz5/iyKB/ozaeSG0OMwDAk3WDEnb1WqQIDAQAB
-----END RSA PUBLIC KEY-----
'''
full_key='''
-----BEGIN RSA PUBLIC KEY-----
MIIBCgKCAQEAhqfNMuYYLdVrePhkO9rU/qT6FgolzI0YyzIJ2OeJE+++JioYm6nn
ohQU32iiE0DZlCCLrHJXOOIAz2Op80goX0lxtngyxVUPsiB5CI77sAC7x6K3anJ0
elpnQCC0+xV2ZL5eIMNQHLe+X6wJl/HGWqkUlxKpWr4/kBEB4EisW60OePfhntIN
4OUJ7iEq+sDdOM5WazJIXeNV1cig4i6057GE3k5ITcQUmw17DZu2+dqkIscckaG+
t5SF7Qnvt4IY8IeQp2htx3yD+CJCV0u2uKwoSFMGJn3OWdaixC3+eojyMXmfAWtQ
Ee9NLNNaTCMIvQ8BeItJLQs2Htw3bZNMvwIDAQAB
-----END RSA PUBLIC KEY-----
'''
def validate_key_Pair(privatepath,publickey):
	with open(privatepath, 'rb') as privatefile:
		keydata = privatefile.read()
	privatefile.close()
	try:
		privkey = rsa.PrivateKey.load_pkcs1(keydata,'PEM')
		data = 'Validate Global License'
		signature = rsa.sign(data.encode('utf-8'), privkey, 'SHA-1')
		pubkey = rsa.PublicKey.load_pkcs1(publickey)
	except:
		return False
	try:
		rsa.verify(data.encode('utf-8'), signature, pubkey)
		return True
	except Exception as e:
		return False
		
def updateDRecord(licensepath):
	domain_license_path = os.path.join(DATA_DIR,'License','license_domain.lic')
	if(os.path.isfile(licensepath)):
		with open(licensepath, 'rb') as f:
			licensekey = f.read()
		f.close()
		with open(domain_license_path, 'wb') as f:
			f.write(licensekey)
		f.close()
		if(validate_key_Pair(domain_license_path,global_key)):
			return True,'Valid Domain License'
		else:
			return False,'Invalid Domain License'
	else:
		return False,'File Not Exists'

def generateLicenseKey(userKey):
    record = {'UserKey':userKey}
    record = json.dumps(record)
    status = 'Error'
    url = 'https://qw7e33htlk.execute-api.ap-south-1.amazonaws.com/default/aion_license'
    try:
        response = requests.post(url, data=record,headers={""x-api-key"":""3cQKRkKA4S57pYrkFp1Dd9jRXt4xnFoB9iqhAQRM"",""Content-Type"":""application/json"",})
        if response.status_code == 200:
            outputStr=response.content
            outputStr = outputStr.decode('utf-8','ignore')
            outputStr = outputStr.strip()
            license_dict = json.loads(str(outputStr))
            if license_dict['status'] == 'success':
                status = 'Success'
                licenseKey = license_dict['msg']
            else:
                status = 'Error'
                licenseKey = ''
        else:
            status = 'Error'
            licenseKey = ''
    except Exception as inst:
        print(inst)
        status = 'Error'
        licenseKey = ''
    msg = {'status':status,'key':userKey,'licenseKey':licenseKey,'link':''}    
    return msg
def updateRecord(licensepath):
	currentDirectory = os.path.dirname(os.path.abspath(__file__))
	license_path = os.path.join(currentDirectory,'..','lic','license.lic')    
	if(os.path.isfile(licensepath)):
		with open(licensepath, 'rb') as f:
			licensekey = f.read()
		f.close()
		with open(license_path, 'wb') as f:
			f.write(licensekey)
		f.close()
		status,msg = check_domain_license()
		if status:
			status,msg = getdaysfromstartdate()
			if status:
				status,msg = check_days_license(int(msg))
		return status,msg
	else:
		return False,'File Not Exists'
		
		
def check_domain_license():
	if 'CORP.HCL.IN' in computername:
		return True,'HCL Domain'
	else:
		return True,'HCL Domain'
			
def diff_month(d1, d2):
	return (d1.year - d2.year) * 12 + d1.month - d2.month


def getdaysfromstartdate():
	currentDirectory = os.path.dirname(os.path.abspath(__file__))
	startdatePath = os.path.join(currentDirectory,'..','lic','startdate.txt')    
	
	if(os.path.isfile(startdatePath)):
		with open(startdatePath, ""rb"") as fl:
			encrypted_message = fl.read()
		fl.close()

		privkey = '''-----BEGIN RSA PRIVATE KEY-----
MIIEqwIBAAKCAQEAm75ZwaepuxGJjU1Slk1+IUO2E49Hy8i9dym5FUaBRyTRH6R+
GTF1kcpd+1QinIZDMIdsmAc95Y8pTufxY30QxCkOhVASitSQWHS/IiWQHmsTJwdr
38lqZnQQloOt/iPlhcavbxu/yKFzwBmp+nM+ErDTnCBh6EGCGrw1xWF30T2IBpmp
WwMEoqZsFV69RzwQAw39KG1KCxi5uscrB62YPgUdlT2b4Yaa90egQhGLLVdnKvhP
ORiGT9omCH90Dkm1oMMQ0Y2JBLezgXa/bunSqtTBxEwzlwUAX2JJcanFYrzKy2OL
xzwNRlWUXilZ4R/1RHAgUdNyKbYxZqc24MApoQIDAQABAoIBAQCHZ/i7gNz10qqH
2qkqGlfF7gvYd6MRTwdDGlhbYgA17ZGP9EDaAIFabtpFEAJDmgvCnotQpkMvWcet
XcUmHW89TQDd8R8d6u9QqLggpQ3nFGsDbNViLMjAKLrfUb8tjOIZ7ANNE5ArjAuK
AgYhxJ48O9bPD+xvtLwip95PHxMMz1CF0vxrpCinvPdeC3HzcnLNZWN3ustbph/4
Tx8mrKDpAVIHVYVbY4CMtm7NbIBYdyR9Lokc4zBg/OTuLo+0QRVJ3GHAN6cGxTwY
vLwN9iBBHyn9WBp5NIOSoCdob7+ce8y+X8yHmVhwRCfcrYphzfFNfP7SPNzV1dLs
dFybn/h9AoGJALCOC7ss+PBXy5WrWVNRPzFO7KrJDl5q7s/gMk0PkB4i4XOKHDTl
MhHZXhxp84HwpphwNxPHvpFe3pVZwwoe8LH1neoodlLOF0Kuk3jENh6cMhKFvcZ+
gxaBxGSCOXF/U307mh0i4AafClhVjxtLgBW5iJSVA9Brc7ZqVwxlUP7aYGzReIE1
uEMCeQDh0vq8NteUlkM/wpNzrHHqgtEzePbTYa+QcTm4xhARHR/cO+E0/mZIfltw
3NVWCIalMia+aKnvRHqHy/cQfEo2Uv/h8oARWnbrvicMRTwYL0w2GrP0f+aG0RqQ
msLMzS3kp6szhM7C99reFxdlxJoWBKkp94psOksCgYkApB01zGRudkK17EcdvjPc
sMHzfoFryNpPaI23VChuR4UW2mZ797NAypSqRXE7OALxaOuOVuWqP8jW0C9i/Cps
hI+SnZHFAw2tU3+hd3Wz9NouNUd6c2MwCSDQ5LikGttHSTa49/JuGdmGLTxCzRVu
V0NiMPMfW4I2Sk8o4U3gbzWgwiYohLrhrwJ5ANun/7IB2lIykvk7B3g1nZzRYDIk
EFpuI3ppWA8NwOUUoj/zksycQ9tx5Pn0JCMKKgYXsS322ozc3B6o3AoSC5GpzDH4
UnAOwavvC0ZZNeoEX6ok8TP7EL3EOYW8s4zIa0KFgPac0Q0+T4tFhMG9qW+PWwhy
Oxeo3wKBiCQ8LEgmHnXZv3UZvwcikj6oCrPy8fnhp5RZl2DPPlaqf3vokE6W5oEo
LIKcWKvth3EU7HRKwYgaznj/Mw55aETx31R0FiXMG266B4V7QWPF/KuaR0GBsYfu
+edGXQCnLgooKlMtQLdL5mcLXHc9x/0Z0iYEejJtbjcGR87WylSNaCH3hH703iQ=
-----END RSA PRIVATE KEY-----
		'''
		privkey = rsa.PrivateKey.load_pkcs1(privkey,'PEM')
		decrypted_message = rsa.decrypt(encrypted_message, privkey)
		decrypted_message = decrypted_message.decode()
		import datetime
		start_time = datetime.datetime.strptime(decrypted_message, '%Y-%m-%d')
		
		current_date = datetime.datetime.today().strftime('%Y-%m-%d')
		current_date = datetime.datetime.strptime(current_date, '%Y-%m-%d')
		
		Months = diff_month(current_date,start_time)
		return True,Months
	else:
		return False,'Start Date Not Exists'
def check_days_license(months):
	currentDirectory = os.path.dirname(os.path.abspath(__file__))
	license_path = os.path.join(currentDirectory,'..','lic','license.lic')
	if(os.path.isfile(license_path)):
		if(validate_key_Pair(license_path,full_key)):	
			return True,'Valid License'
		elif(validate_key_Pair(license_path,oneYear_key)):
			if months <= 12:
				return True,'Valid License'
			else:
				return False,'License for AI.ON has expired. Please contact ERS Research for renewal.'
		elif(validate_key_Pair(license_path,halfYear_key)):
			if months <= 6:
				return True,'Valid License'
			else:
				return False,'License for AI.ON has expired. Please contact ERS Research for renewal.'
		elif(validate_key_Pair(license_path,quarter_key)):	
			if months <= 3:
				return True,'Valid License'
			else:
				return False,'License for AI.ON has expired. Please contact ERS Research for renewal.'
		else:
			return False,'Invalid License'
	else:
		return False,'License Not exists.Please contact ERS Research for renewal.'

def checklicense():
    import binascii
    license_path = os.path.join(DATA_DIR,'License','license.lic')
    if(os.path.isfile(license_path)):
        try:
            with open(license_path, 'r') as privatefile:
                license_key = privatefile.read()
            privatefile.close()
            encrypted_message = binascii.unhexlify(license_key.encode())
            privkey = '''-----BEGIN RSA PRIVATE KEY-----
    MIIEqQIBAAKCAQEAhqfNMuYYLdVrePhkO9rU/qT6FgolzI0YyzIJ2OeJE+++JioY
    m6nnohQU32iiE0DZlCCLrHJXOOIAz2Op80goX0lxtngyxVUPsiB5CI77sAC7x6K3
    anJ0elpnQCC0+xV2ZL5eIMNQHLe+X6wJl/HGWqkUlxKpWr4/kBEB4EisW60OePfh
    ntIN4OUJ7iEq+sDdOM5WazJIXeNV1cig4i6057GE3k5ITcQUmw17DZu2+dqkIscc
    kaG+t5SF7Qnvt4IY8IeQp2htx3yD+CJCV0u2uKwoSFMGJn3OWdaixC3+eojyMXmf
    AWtQEe9NLNNaTCMIvQ8BeItJLQs2Htw3bZNMvwIDAQABAoIBAGGmuRnrYaeDeWAO
    CmqZxRMyQybOjyDrRgq9rAR/zJoHp8b3ikcBDTkuBQELWVZLFj7k50XU2cono9zC
    cxI5xwVrNqrUOkV+7VYJVJzPTFkT/xnEt+zbOfstKmmIDpdzthtTLuHlomhhHA83
    rPFi5a0Dpynz35suEnm6ONxx4ICONa3xkQ51ALm8EEsdJ+qRQhi2HLTF/OVZMxSa
    A2DlFd4ChOEbYaN63xVCDxPXe9BfeHd/Rnim9x4xL9i2RL+mhARUy/ZP6LMHIPk7
    NxTrGr4TuE/ETg8FZ3cywSnwsMlcplXo8Ar+5ths2XKxbmH1TI/vuQV1r7r0IeqV
    F4W/xOkCgYkAiDQy7/WyJWuT+rQ+gOjSUumXgWE3HO+vJAsy05cTZFSs+nUE4ctn
    FnvbBIRuClSr3zhcTtjaEaVnZ2OmGfOoAq0cvaXSlxqEs2456WQBf9oPHnvJEV07
    AIqzo2EuDvGUh/bkFN3+djRRL9usNNplYA8jU3OQHGdeaS15ZikT+ZkQLXoHE0Oh
    vQJ5AP0W9Qouvc9jXRhjNNOWmgt+JiHw/oQts/LUWJ2T4UJ7wKAqGwsmgf0NbF2p
    aZ6AbMc7dHzCb52iLJRxlmlkJYzg449t0MgQVxTKQ5viIAdjkRBCIY2++GcYXb6k
    6tUnF0Vm2kpffYUb5Lx5JoUE6IhMP0mEv3jKKwKBiCmvoC9lCUL+q+m9JKwbldOe
    fqowcMfAa+AiNUohIORCLjbxfa8Fq+VrvtqhFXS/+WJ2Q3o2UHe6Ie24x+uFcVRw
    Wy2IBO4ORbMM91iBLRxORvZTeHSCDj7aNKS6Z3hXY9hBLglc8DaJSJfXKdt7RC+k
    MnGmGuM2l+Sk8FTeGaj4ucTRZjz1JBkCeQDhNSV1GyShv4xeoCCoy1FmOqmZ+EWy
    vqxqv1PfXHDM5SwCGZWY9XokAGbWbWLjvOmO27QLNEV34pCCwxSR0aCsXI2B2rk2
    3Xtvr5A7zRqtGIdEDWSoKjAGJSN9+mhQpglKI3zJQ3GBGdIPeEqzgSud5SNHu01a
    IaMCgYgyoxtqdWi90iE75/x+uIVGJRdHtWoL2dr8Ixu1bOMjKCR8gjneSRTqI1tA
    lbRH5K/jg6iccB/pQmBcIPIubF10Nv/ZQV760WK/h6ue2hOCaBLWT8EQEEfBfnp+
    9rfBfNQIQIkBFTfGIHXUUPb9sJgDP1boUxcqxr9bpKUrs1EMkUd+PrvpHIj2
    -----END RSA PRIVATE KEY-----
    '''
            privkey = rsa.PrivateKey.load_pkcs1(privkey,'PEM')
            decrypted_message = rsa.decrypt(encrypted_message, privkey)
            msg = decrypted_message.decode().split('####')
            product = msg[0]     
            computernameLicense = msg[1]
            computername = socket.getfqdn()
            licenseValid = False  
            if product.lower() == 'aion':
                if computernameLicense == computername:
                    uuidlicense = msg[3]
                    uuid = guid()
                    if uuidlicense == uuid:
                        current_date = datetime.now()
                        license_expiry_date = msg[5]
                        license_expiry_date = datetime.strptime(license_expiry_date,'%Y-%m-%d  %H:%M:%S')
                        if current_date > license_expiry_date:
                            return False,'License Expire'
                        else:    
                            return True,''
            return False,'License Error'
        except Exception as e:
            print(e)
            return False,'License Error'
    else:
        return False,'Generate License'
def generate_record_key(product,version):
    computername = socket.getfqdn()
    macaddress = getmac.get_mac_address()
    license_date = datetime.today().strftime('%Y-%m-%d %H:%M:%S')
    try:
        user = os.getlogin()
    except:
        user = 'NA'
    uuid = guid()
    msg = product+'###'+version+'###'+computername+'###'+macaddress+'###'+user+'###'+sys.platform+'###'+uuid+'###'+license_date
    pkeydata='''-----BEGIN RSA PUBLIC KEY-----
MIIBCgKCAQEAm75ZwaepuxGJjU1Slk1+IUO2E49Hy8i9dym5FUaBRyTRH6R+GTF1
kcpd+1QinIZDMIdsmAc95Y8pTufxY30QxCkOhVASitSQWHS/IiWQHmsTJwdr38lq
ZnQQloOt/iPlhcavbxu/yKFzwBmp+nM+ErDTnCBh6EGCGrw1xWF30T2IBpmpWwME
oqZsFV69RzwQAw39KG1KCxi5uscrB62YPgUdlT2b4Yaa90egQhGLLVdnKvhPORiG
T9omCH90Dkm1oMMQ0Y2JBLezgXa/bunSqtTBxEwzlwUAX2JJcanFYrzKy2OLxzwN
RlWUXilZ4R/1RHAgUdNyKbYxZqc24MApoQIDAQAB
-----END RSA PUBLIC KEY-----
'''
    pubkey = rsa.PublicKey.load_pkcs1(pkeydata)
    encrypted_message = rsa.encrypt(msg.encode(), pubkey)
    encrypted_message = binascii.hexlify(encrypted_message).decode()
    return(encrypted_message)

def run(cmd):
  try:
    return subprocess.run(cmd, shell=True, capture_output=True, check=True, encoding=""utf-8"").stdout.strip()
  except Exception as e:
    print(e)
    return None

def guid():
  if sys.platform == 'darwin':
    return run(
      ""ioreg -d2 -c IOPlatformExpertDevice | awk -F\\\"" '/IOPlatformUUID/{print $(NF-1)}'"",
    )

  if sys.platform == 'win32' or sys.platform == 'cygwin' or sys.platform == 'msys':
    return run('wmic csproduct get uuid').split('\n')[2].strip()

  if sys.platform.startswith('linux'):
    return run('cat /var/lib/dbus/machine-id') or \
           run('cat /etc/machine-id')

  if sys.platform.startswith('openbsd') or sys.platform.startswith('freebsd'):
    return run('cat /etc/hostid') or \
           run('kenv -q smbios.system.uuid')

           
def updateLicense(licensekey):
    license_folder = os.path.join(DATA_DIR,'License')
    license_folder = Path(license_folder)
    license_folder.mkdir(parents=True, exist_ok=True)
    license_file = license_folder/'license.lic'
    with open(license_file, ""w"") as fl:
        fl.write(licensekey)
    fl.close()

    
def enterRecord(version):
    validLicense,msg = checklicense()
    if not validLicense:
        key = generate_record_key('AION',version)
        msg = {'status':msg,'key':key,'licenseKey':'','link':''}
    return validLicense,msg
			"
__init__.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''"
uq_interface.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
#from sklearn.externals import joblib
import joblib
# import pyreadstat
# import sys
# import math
import time
import pandas as pd
import numpy as np
from sklearn.metrics import confusion_matrix
from sklearn.metrics import precision_score, recall_score, f1_score, accuracy_score
from sklearn.metrics import r2_score,mean_absolute_error,mean_squared_error
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report, confusion_matrix
from sklearn.svm import SVC
from sklearn.linear_model import LinearRegression
import argparse
import json
import os
import pathlib
from tensorflow.keras.models import load_model
# from tensorflow.keras import backend as K
import tensorflow as tf
# from sklearn.decomposition import LatentDirichletAllocation
from pathlib import Path
#from aionUQ import aionUQ
from uq_main import aionUQ						   
import os
from datetime import datetime
from sklearn.model_selection import train_test_split
parser = argparse.ArgumentParser()
parser.add_argument('savFile')
parser.add_argument('csvFile')
parser.add_argument('features')
parser.add_argument('target')
args = parser.parse_args()
from appbe.dataPath import DEPLOY_LOCATION

if ',' in args.features:
	args.features = [x.strip() for x in args.features.split(',')]
else:
	args.features = args.features.split("","")
models = args.savFile	
if Path(models).is_file():
# if Path(args.savFile.is_file()):
	model = joblib.load(args.savFile)
	# print(model.__class__.__name__)
	# print('class:',model.__class__)
	# print(type(model).__name__)

	# try:
		# print('Classess=',model.classes_)
		
	# except:
		# print(""Classess=N/A"")
		
	# print('params:',model.get_params())

	# try:
		# print('fea_imp =',model.feature_importances_)
		
	# except:
		# print(""fea_imp =N/A"")

	ProblemName = model.__class__.__name__
	Params = model.get_params()
	# print(""ProblemName: \n"",ProblemName)
	# print(""Params: \n"",Params)

	# print('ProblemName:',model.__doc__)
	# print(type(ProblemName))
	if ProblemName in  ['LogisticRegression','SGDClassifier','SVC','DecissionTreeClassifier','RandomForestClassifier','GaussianNB','KNeighboursClassifier','DecisionTreeClassifier','GradientBoostingClassifier']:
		Problemtype = 'Classification'
	else :
		Problemtype = 'Regression'
		
	if Problemtype == 'Classification':
		
		df = pd.read_csv(args.csvFile)
		object_cols = [col for col, col_type in df.dtypes.items() if col_type == 'object']		  
		df = df.drop(object_cols, axis=1)
		df = df.dropna(axis=1)
		df = df.reset_index(drop=True)		  
		modelfeatures = args.features
		# dfp = df[modelfeatures]
		tar = args.target
		# target = df[tar]		 
		y=df[tar]
		X = df.drop(tar, axis=1)
		#for dummy test,train values pass
		X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)
		uqObj=aionUQ(df,X,y,ProblemName,Params,model,modelfeatures,tar)
		#accuracy,uq_ece,output_jsonobject,model_confidence_per,model_uncertaitny_per=uqObj.uqMain_BBMClassification(X_train, X_test, y_train, y_test,""uqtest"")
		accuracy,uq_ece,output_jsonobject,model_confidence_per,model_uncertaitny_per=uqObj.uqMain_BBMClassification()																											 
		# print(""UQ Classification: \n"",output_jsonobject)
		print(accuracy,uq_ece,output_jsonobject,model_confidence_per,model_uncertaitny_per)
		print(""End of UQ Classification.\n"")

	else:

		df = pd.read_csv(args.csvFile)
		modelfeatures = args.features
		# print(""modelfeatures: \n"",modelfeatures)
		# print(""type modelfeatures: \n"",type(modelfeatures))
		dfp = df[modelfeatures]
		tar = args.target
		target = df[tar]
		#Not used, just dummy X,y split
		y=df[tar]		 
		X = df.drop(tar, axis=1)
		X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)
		uqObj=aionUQ(df,dfp,target,ProblemName,Params,model,modelfeatures,tar)
		total_picp_percentage,total_Uncertainty_percentage,uq_medium,uq_best,scoringCriteria,uq_jsonobject=uqObj.uqMain_BBMRegression()		
		print(total_picp_percentage,total_Uncertainty_percentage,uq_medium,uq_best,scoringCriteria,uq_jsonobject)
		print(""End of UQ reg\n"")

elif Path(models).is_dir():


	os.environ['TF_XLA_FLAGS'] = '--tf_xla_enable_xla_devices'
	os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
	model = load_model(models)
	ProblemName = model.__class__.__name__
	Problemtype = 'Classification'
	# print('class:',model.__class__)
	# print('class1',model.__class__.__name__)
	# print(model.summary())
	# print('ProblemName1:',model.get_config())
	


	 
	def Params(model: tf.keras.Model):
	  Params = []
	  model.Params(print_fn=lambda x: Params.append(x))
	  return '\n'.join(Params)
 

	
	df = pd.read_csv(args.csvFile)
	modelfeatures = args.features
	dfp = df[modelfeatures]
	tar = args.target
	target = df[tar]
	df3 = dfp.astype(np.float32)
	predic = model.predict(df3)
	if predic.shape[-1] > 1:
		predic = np.argmax(predic, axis=-1)
	else:
		predic = (predic > 0.5).astype(""int32"")
		
	matrixconfusion = pd.DataFrame(confusion_matrix(predic,target))
	matrixconfusion = matrixconfusion.to_json(orient='index')

	classificationreport = pd.DataFrame(classification_report(target,predic,output_dict=True)).transpose()
	classificationreport = round(classificationreport,2)
	classificationreport = classificationreport.to_json(orient='index')
	output = {}
	output[""Precision""] = ""%.3f"" % precision_score(target, predic,average='weighted')
	output[""Recall""] = ""%.3f"" % recall_score(target, predic,average='weighted')
	output[""Accuracy""] = ""%.3f"" % accuracy_score(target, predic)
	output[""ProblemName""] = ProblemName
	output[""Params""] =	Params
	output[""Problemtype""] =	 Problemtype
	output[""Confusionmatrix""] =	 matrixconfusion
	output[""classificationreport""] =  classificationreport
	print(json.dumps(output))
"
aionUQ.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''

import logging
logging.getLogger('tensorflow').disabled = True
import json
#from nltk.corpus import stopwords
from collections import Counter
from matplotlib import pyplot
import sys
import os
import json
import matplotlib.pyplot as plt
from uq360.algorithms.blackbox_metamodel import BlackboxMetamodelRegression
from uq360.algorithms.ucc_recalibration import UCCRecalibration
from sklearn import datasets
from sklearn.model_selection import train_test_split
import pandas as pd
from uq360.metrics.regression_metrics import compute_regression_metrics
import numpy as np
from sklearn.metrics import accuracy_score
from sklearn.metrics import precision_score
from sklearn.metrics import recall_score
from sklearn.metrics import f1_score
from sklearn.metrics import roc_curve
# from math import sqrt
from sklearn.metrics import r2_score,mean_squared_error, explained_variance_score,mean_absolute_error
# from uq360.metrics import picp, mpiw, compute_regression_metrics, plot_uncertainty_distribution, plot_uncertainty_by_feature, plot_picp_by_feature
from uq360.metrics import plot_uncertainty_by_feature, plot_picp_by_feature

#Added libs from MLTest
import sys
import time
from sklearn.metrics import confusion_matrix
from pathlib import Path
import logging
# import json

class aionUQ:
	# def __init__(self,uqdf,targetFeature,xtrain,ytrain,xtest,ytest,uqconfig_base,uqconfig_meta,deployLocation,saved_model):
	def __init__(self,df,dfp,target,ProblemName,Params,model,modelfeatures,targetfeature,deployLocation):
		# #printprint(""Inside aionUQ \n"")
		try:
			#print(""Inside aionUQ init\n "")
			self.data=df
			self.dfFeatures=dfp
			self.uqconfig_base=Params
			self.uqconfig_meta=Params
			self.targetFeature=targetfeature
			self.target=target
			self.selectedfeature=modelfeatures
			self.y=self.target
			self.X=self.dfFeatures
			self.log = logging.getLogger('eion')
			self.basemodel=model
			self.model_name=ProblemName
			self.Deployment = os.path.join(deployLocation,'log','UQ')
			os.makedirs(self.Deployment,exist_ok=True)
			self.uqgraphlocation = os.path.join(self.Deployment,'UQgraph')
			os.makedirs(self.uqgraphlocation,exist_ok=True)
		except Exception as e:
			self.log.info('<!------------- UQ model INIT Error ---------------> '+str(e))
			exc_type, exc_obj, exc_tb = sys.exc_info()
			fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
			self.log.info(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))
 
	def totalUncertainty(self,df,basemodel,model_params,xtrain, xtest, ytrain, ytest,aionstatus):
		from sklearn.model_selection import train_test_split
		# To get each class values and uncertainty
		if (aionstatus.lower() == 'aionuq'):
			X_train, X_test, y_train, y_test = xtrain, xtest, ytrain, ytest
			# y_val = y_train.append(y_test)
		else:
			# y_val = self.y
			df=self.data
			y=df[self.targetFeature]
			X = df.drop(self.targetFeature, axis=1)
			X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)
		key = 'criterion'
		#if key in model_params:
		try:
			#if model_params.has_key(key):
			if key in model_params:
				if (model_params['criterion']):						   
					uq_scoring_param=model_params.get('criterion')
				elif(model_params['criterion'] == None):
					uq_scoring_param='picp'
				else:
					uq_scoring_param='picp'
			else:
				uq_scoring_param='picp'
				pass
		except Exception as inst:
			uq_scoring_param='picp'
			
		
		# from sklearn.tree import DecisionTreeRegressor
		# from sklearn.linear_model import LinearRegression,Lasso,Ridge
		# from sklearn import linear_model
		# from sklearn.ensemble import RandomForestRegressor
		if uq_scoring_param in ['rmse', 'nll','auucc_gain','picp','mpiw','r2']:
			uq_scoring_param=uq_scoring_param
		else:
			uq_scoring_param='picp'
		uq_model = BlackboxMetamodelRegression(base_model=basemodel, meta_model=basemodel, base_config=model_params, meta_config=model_params)
		# this will fit both the base and the meta model  
		uqmodel_fit = uq_model.fit(X_train, y_train)
		y_hat, y_hat_lb, y_hat_ub = uq_model.predict(X_test)
		y_hat_total_mean=np.mean(y_hat)
		y_hat_lb_total_mean=np.mean(y_hat_lb)
		y_hat_ub_total_mean=np.mean(y_hat_ub) 
		mpiw_20_per=(y_hat_total_mean*20/100)
		mpiw_lower_range = y_hat_total_mean - mpiw_20_per
		mpiw_upper_range = y_hat_total_mean + mpiw_20_per
		from uq360.metrics import picp, mpiw
		observed_alphas_picp = picp(y_test, y_hat_lb, y_hat_ub)
		observed_widths_mpiw = mpiw(y_hat_lb, y_hat_ub)
		observed_alphas_picp=round(observed_alphas_picp,2)
		observed_widths_mpiw=round(observed_widths_mpiw,2)
		picp_percentage= round(observed_alphas_picp*100)
		Uncertainty_percentage=round(100-picp_percentage)
		self.log.info('Model total observed_widths_mpiw :  '+str(observed_widths_mpiw))
		self.log.info('Model mpiw_lower_range :	 '+str(mpiw_lower_range))
		self.log.info('Model mpiw_upper_range :	 '+str(mpiw_upper_range))
		self.log.info('Model total picp_percentage :  '+str(picp_percentage))
		return observed_alphas_picp,observed_widths_mpiw,picp_percentage,Uncertainty_percentage,mpiw_lower_range,mpiw_upper_range
		
	def display_results(self,X_test, y_test, y_mean, y_lower, y_upper):
		try:
			global x_feature,y_feature
			if (isinstance(self.selectedfeature, list) or isinstance(self.selectedfeature, tuple)):
				x_feature=''.join(map(str, self.selectedfeature))
			else:
				x_feature= str(self.selectedfeature)
			# self.selectedfeature=str(self.selectedfeature)
			X_test=np.squeeze(X_test)
			y_feature=str(self.targetFeature)
			pred_dict = {x_feature: X_test,
						 'y': y_test,
						 'y_mean': y_mean,
						 'y_upper': y_upper,
						 'y_lower': y_lower
						}
			pred_df = pd.DataFrame(data=pred_dict)
			pred_df_sorted = pred_df.sort_values(by=x_feature)
			plt.plot(pred_df_sorted[x_feature], pred_df_sorted['y'], 'o', label='Observed')
			plt.plot(pred_df_sorted[x_feature], pred_df_sorted['y_mean'], '-', lw=2, label='Predicted')
			plt.plot(pred_df_sorted[x_feature], pred_df_sorted['y_upper'], 'r--', lw=2, label='Upper Bound')
			plt.plot(pred_df_sorted[x_feature], pred_df_sorted['y_lower'], 'r--', lw=2, label='Lower Bound')
			plt.legend()
			plt.xlabel(x_feature)
			plt.ylabel(y_feature)
			plt.title('UQ Confidence Interval Plot.')
			# plt.savefig('uq_test_plt.png')
			if os.path.exists(str(self.uqgraphlocation)+'/uq_test_plt.png'):
				os.remove(str(self.uqgraphlocation)+'/uq_test_plt.png')
			plt.savefig(str(self.Deployment)+'/uq_test_plt.png')
			plt.savefig(str(self.uqgraphlocation)+'/uq_test_plt.png')
			plt.clf()
			plt.cla()
			plt.close()
			pltreg=plot_picp_by_feature(X_test, y_test,
					 y_lower, y_upper,
					 xlabel=x_feature)
			#pltreg.savefig('x.png')
			pltr=pltreg.figure
			if os.path.exists(str(self.uqgraphlocation)+'/picp_per_feature.png'):
				os.remove(str(self.uqgraphlocation)+'/picp_per_feature.png')
			pltr.savefig(str(self.Deployment)+'/picp_per_feature.png')
			pltr.savefig(str(self.uqgraphlocation)+'/picp_per_feature.png')
			plt.clf()
			plt.cla()
			plt.close()
		except Exception as e:
			# #print(""display exception: \n"",e)
			self.log.info('<!------------- UQ model Display Error ---------------> '+str(e))

	def classUncertainty(self,pred,score):
		try:
			outuq = {}
			classes = np.unique(pred)
			for c in classes:
				ids = pred == c
				class_score = score[ids]
				predc = 'Class_'+str(c)
				outuq[predc]=np.mean(class_score)
				x = np.mean(class_score)
				#Uncertaininty in percentage
				x=x*100								   
				self.log.info('----------------> Class '+str(c)+' Confidence Score '+str(round(x)))
			return outuq
		except Exception as e:
			# #print(""display exception: \n"",e)
			self.log.info('<!------------- UQ classUncertainty Error ---------------> '+str(e))
			exc_type, exc_obj, exc_tb = sys.exc_info()
			fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
			self.log.info(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))
		
	def uqMain_BBMClassification(self,x_train, x_test, y_train, y_test,aionstatus):
		try:
			# print(""Inside uqMain_BBMClassification\n"")
			# print(""lenth of x_train {}, x_test {}, y_train {}, y_test {}"".format(x_train, x_test, y_train, y_test))
			aionstatus = str(aionstatus)
			if (aionstatus.lower() == 'aionuq'):
				X_train, X_test, y_train, y_test = x_train, x_test, y_train, y_test
			else:
				X_train, X_test, y_train, y_test = train_test_split(self.X, self.y, test_size=0.3, random_state=0)	  
			from uq360.algorithms.blackbox_metamodel import BlackboxMetamodelClassification
			from uq360.metrics.classification_metrics import plot_reliability_diagram,area_under_risk_rejection_rate_curve,plot_risk_vs_rejection_rate,expected_calibration_error,compute_classification_metrics
			from sklearn.ensemble import GradientBoostingClassifier
			from sklearn.linear_model import LogisticRegression
			from sklearn.linear_model import SGDClassifier
			from sklearn.naive_bayes import GaussianNB
			from sklearn.tree import DecisionTreeClassifier
			from sklearn.ensemble import RandomForestClassifier
			from sklearn.svm import SVC
			from xgboost import XGBClassifier
			from lightgbm import LGBMClassifier
			from sklearn.neighbors import KNeighborsClassifier
		 
			base_modelname=__class__.__name__
			base_config = self.uqconfig_base
			meta_config = self.uqconfig_base
			model_name=self.basemodel.__class__.__name__
			#print(model_name)
			try:
				#geting used features
				model_used_features=self.basemodel.feature_names_in_
				self.log.info(""Base model used training features are (UQ Testing): \n""+str(model_used_features))
			except:
				pass
			model_params=self.basemodel.get_params()
			uq_scoring_param='accuracy'
			basemodel=None
			if (model_name == ""GradientBoostingClassifier""):
				basemodel=GradientBoostingClassifier
			elif (model_name == ""SGDClassifier""):
				basemodel=SGDClassifier
			elif (model_name == ""GaussianNB""):
				basemodel=GaussianNB
			elif (model_name == ""DecisionTreeClassifier""):
				basemodel=DecisionTreeClassifier
			elif(model_name == ""RandomForestClassifier""):
				basemodel=RandomForestClassifier
			elif (model_name == ""SVC""):
				basemodel=SVC
			elif(model_name == ""KNeighborsClassifier""):
				basemodel=KNeighborsClassifier
			elif(model_name.lower() == ""logisticregression""):
				basemodel=LogisticRegression
			elif(model_name == ""XGBClassifier""):
				basemodel=XGBClassifier
			elif(model_name == ""LGBMClassifier""):
				basemodel=LGBMClassifier
			else:
				basemodel=LogisticRegression
			
			calibrated_mdl=None
			if (model_name == ""SVC""):
				from sklearn.calibration import CalibratedClassifierCV
				basemodel=SVC(**model_params)
				calibrated_mdl = CalibratedClassifierCV(basemodel,method='sigmoid',cv=3)
				calibrated_mdl.fit(X_train, y_train)
				basepredict = calibrated_mdl.predict(X_test)
				predprob_base = calibrated_mdl.predict_proba(X_test)[:, :] 
			elif (model_name == ""SGDClassifier""):
				from sklearn.calibration import CalibratedClassifierCV
				basemodel=SGDClassifier(**model_params)
				calibrated_mdl = CalibratedClassifierCV(basemodel,method='sigmoid',cv=3)
				calibrated_mdl.fit(X_train, y_train)
				basepredict = calibrated_mdl.predict(X_test)
				predprob_base = calibrated_mdl.predict_proba(X_test)[:, :] 
			else:
				from sklearn.calibration import CalibratedClassifierCV
				base_mdl = basemodel(**model_params)
				calibrated_mdl = CalibratedClassifierCV(base_mdl,method='sigmoid',cv=3)
				basemodelfit = calibrated_mdl.fit(X_train, y_train)
				basepredict = calibrated_mdl.predict(X_test)		
				predprob_base=calibrated_mdl.predict_proba(X_test)[:, :]
				cal_model_params=calibrated_mdl.get_params()			
						
			acc_score_base=accuracy_score(y_test, basepredict)
			base_estimator_calibrate = cal_model_params['base_estimator']
			
			
			uq_model = BlackboxMetamodelClassification(base_model=self.basemodel, meta_model=basemodel, 
												base_config=model_params, meta_config=model_params)
			
			try:
				X_train=X_train[model_used_features]
				X_test=X_test[model_used_features]
			except:
				pass
			uqmodel_fit = uq_model.fit(X_train, y_train,base_is_prefitted=True,meta_train_data=(X_train, y_train))
			# uqmodel_fit = uq_model.fit(X_train, y_train)
			y_t_pred, y_t_score = uq_model.predict(X_test)
			acc_score=accuracy_score(y_test, y_t_pred)
			test_accuracy_perc=round(100*acc_score) 
			if(aionstatus == ""aionuq""):
				test_accuracy_perc=round(test_accuracy_perc,2)
				#uq_aurrrc not used for any aion gui configuration, so it initialized as 0. if we use area_under_risk_rejection_rate_curve(), it shows plot in cmd prompt,so code execution interuupted.so we make it 0.
				uq_aurrrc=0
				pass
			else:
				bbm_c_plot = plot_risk_vs_rejection_rate(
					y_true=y_test,
					y_prob=predprob_base,
					selection_scores=y_t_score,
					y_pred=y_t_pred,
					plot_label=['UQ_risk_vs_rejection'],
					risk_func=accuracy_score,
					num_bins = 10 )
				# This done by kiran, need to uncomment for GUI integration.
				# bbm_c_plot_sub = bbm_c_plot[4]
				bbm_c_plot_sub = bbm_c_plot
				if os.path.exists(str(self.uqgraphlocation)+'/plot_risk_vs_rejection_rate.png'):
					os.remove(str(self.uqgraphlocation)+'/plot_risk_vs_rejection_rate.png')
				# bbm_c_plot_sub.savefig(str(self.uqgraphlocation)+'/plot_risk_vs_rejection_rate.png')			 
				re_plot=plot_reliability_diagram(y_true=y_test,
								y_prob=predprob_base,
								y_pred=y_t_pred,
								plot_label=['UQModel reliability_diagram'],						   
								num_bins=10 )
				# This done by kiran, need to uncomment for GUI integration.
				# re_plot_sub = re_plot[4]
				re_plot_sub = re_plot
				if os.path.exists(str(self.uqgraphlocation)+'/plot_reliability_diagram.png'):
					os.remove(str(self.uqgraphlocation)+'/plot_reliability_diagram.png')
				# re_plot_sub.savefig(str(DEFAULT_FILE_PATH)+'/plot_reliability_diagram.png')	
				
				uq_aurrrc=area_under_risk_rejection_rate_curve( y_true=y_test,
							y_prob=predprob_base,
							y_pred=y_t_pred,
							selection_scores=y_t_score,
							attributes=None,
							risk_func=accuracy_score,subgroup_ids=None, return_counts=False,
							num_bins=10)
				uq_aurrrc=uq_aurrrc
			test_accuracy_perc=round(test_accuracy_perc)
			#metric_all=compute_classification_metrics(y_test, y_prob, option='all')
			metric_all=compute_classification_metrics(y_test, predprob_base, option='accuracy')
			#expected_calibration_error
			uq_ece=expected_calibration_error(y_test, y_prob=predprob_base,y_pred=basepredict, num_bins=10, return_counts=False)
			# uq_aurrrc=uq_aurrrc
			confidence_score=acc_score_base-uq_ece
			ece_confidence_score=round(confidence_score,2)
			# Model uncertainty using ECE score
			# model_uncertainty_ece = 1-ece_confidence_score
			#Uncertainty Using model inherent predict probability
		   
			mean_predprob_total=np.mean(y_t_score)
			model_confidence=mean_predprob_total
			model_uncertainty = 1-mean_predprob_total
			
			model_confidence = round(model_confidence,2)	 
			# To get each class values and uncertainty
			if (aionstatus.lower() == 'aionuq'):
				y_val = np.append(y_train,y_test)
			else:
				y_val = self.y				 
			self.log.info('------------------> Model Confidence Score '+str(model_confidence))
			outuq = self.classUncertainty(y_t_pred,y_t_score)
			
			# Another way to get conf score
			model_uncertainty_per=round((model_uncertainty*100),2)
			model_confidence_per=round((model_confidence*100),2)
			acc_score_per = round((acc_score*100),2)
			uq_ece_per=round((uq_ece*100),2)
			output={}
			recommendation = """"
			if (uq_ece > 0.5):
				# RED text
				recommendation = 'Model has high ece (expected calibration error) score compare to threshold (0.5),not good to be deploy. need to be add more input data across all feature ranges to train base model, also try with different classification algorithms/ensembling to reduce ECE (ECE~0).'
			else:
				# self.log.info('Model has good ECE score and accuracy, ready to deploy.\n.')
				if (uq_ece <= 0.1 and model_confidence >= 0.9):
					# Green Text
					recommendation = 'Model has best calibration score (near to 0) and good confidence score  , ready to deploy. '
				else:
					# Orange
					recommendation = 'Model has good ECE score (between 0.1-0.5), but less confidence score compare to threshold (90%). If user wants,model can be improve by adding more input data across all feature ranges and could be evaluate with different algorithms/ensembling. '
			#Adding each class uncertainty value
			classoutput = {}
			for k,v in outuq.items():
				classoutput[k]=(str(round((v*100),2)))
			output['classes'] = classoutput
			output['ModelConfidenceScore']=(str(model_confidence_per))
			output['ExpectedCalibrationError']=str(uq_ece_per)
			output['ModelUncertainty']=str(model_uncertainty_per)
			output['Recommendation']=recommendation
			# output['user_msg']='Please check the plot for more understanding of model uncertainty'
			#output['UQ_area_under_risk_rejection_rate_curve']=round(uq_aurrrc,4)
			output['Accuracy']=str(acc_score_per)
			output['Problem']= 'Classification'
			#self.log.info('Model Accuracy score in percentage :  '+str(test_accuracy_perc)+str(' %'))
			# #print(""Prediction mean for the given model:"",np.mean(y_hat),""\n"")
			#self.log.info(recommendation)
			#self.log.info(""Model_confidence_score: "" +str(confidence_score))
			#self.log.info(""Model_uncertainty: "" +str(round(model_uncertainty,2)))
			#self.log.info('Please check the plot for more understanding of model uncertainty.\n.')
			uq_jsonobject = json.dumps(output) 
			with open(str(self.Deployment)+""/uq_classification_log.json"", ""w"") as f:
				json.dump(output, f)
			return test_accuracy_perc,uq_ece,output,model_confidence_per,model_uncertainty_per
		except Exception as inst:
			self.log.info('\n < ---------- UQ Model Execution Failed Start--------->')
			self.log.info('\n<------Model Execution failed!!!.' + str(inst))
			exc_type, exc_obj, exc_tb = sys.exc_info()
			fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
			self.log.info(str(exc_type) + ' ' + str(fname) + ' ' + str(exc_tb.tb_lineno))
			self.log.info('\n < ---------- Model Execution Failed End --------->')	
	def aion_confidence_plot(self,df):
		df=df
		df = df.sort_values(by=self.selectedfeature)  
		best_values=df.Best_values.to_list()		
		best_upper=df.Best__upper.to_list()	 
		best_lower=df.Best__lower.to_list()
		Total_Upper_PI=df.Total_Upper_PI.to_list() 
		Total_Low_PI=df.Total_Low_PI.to_list()
		Obseved = df.Observed.to_list()

		plt.plot(df[x_feature], df['Observed'], 'o', label='Observed')
		plt.plot(df[x_feature], df['Best__upper'],'r--', lw=2, color='grey')
		plt.plot(df[x_feature], df['Best__lower'],'r--', lw=2, color='grey')
		plt.plot(df[x_feature], df['Best_values'], 'r--', lw=2, label='MeanPrediction',color='red')
		plt.fill_between(df[x_feature], Total_Upper_PI, Total_Low_PI, label='Good Confidence', color='lightblue', alpha=.5)
		plt.fill_between(df[x_feature],best_lower, best_upper,label='Best Confidence', color='orange', alpha=.5)
		plt.legend()
		plt.xlabel(self.selectedfeature)
		plt.ylabel(self.targetFeature)
		plt.title('UQ Best & Good Area Plot')
		if os.path.exists(str(self.uqgraphlocation)+'/uq_confidence_plt.png'):
			os.remove(str(self.uqgraphlocation)+'/uq_confidence_plt.png')
		plt.savefig(str(self.uqgraphlocation)+'/uq_confidence_plt.png')
		plt.savefig(str(self.Deployment)+'/uq_confidence_plt.png')


	def uqMain_BBMRegression(self,x_train, x_test, y_train, y_test,aionstatus):
		aionstatus = str(aionstatus)
		# if (aionstatus.lower() == 'aionuq'):
		#	  X_train, X_test, y_train, y_test = x_train, x_test, y_train, y_test
		#	  total_picp,total_mpiw,total_picp_percentage,total_Uncertainty_percentage,mpiw_lower_range,mpiw_upper_range = self.totalUncertainty(self.data,basemodel,model_params,x_train, x_test, y_train, y_test,aionstatus)
		# else:
		#	  X_train, X_test, y_train, y_test = train_test_split(self.X, self.y, test_size=0.3, random_state=0)	
		
		# modelName = """"
		self.log.info('<!------------- Inside BlackBox MetaModel Regression process. ---------------> ')
		try:
			from uq360.algorithms.blackbox_metamodel import BlackboxMetamodelRegression
			import pandas as pd
			base_modelname=__class__.__name__
			base_config = self.uqconfig_base
			meta_config = self.uqconfig_base
			model_name=self.basemodel.__class__.__name__
			model_params=self.basemodel.get_params()
			# #print(""model_params['criterion']: \n"",model_params['criterion'])
			key = 'criterion'
			#if key in model_params:
			try:
				#if model_params.has_key(key):
				if key in model_params:
					if (model_params['criterion']): 
						uq_scoring_param=model_params.get('criterion')
					elif(model_params['criterion'] == None):
						uq_scoring_param='picp'
					else:
						uq_scoring_param='picp'
				else:
					uq_scoring_param='picp'
					pass
			except Exception as inst:
				uq_scoring_param='picp'
			
			# modelname='sklearn.linear_model'+'.'+model_name
			# X_train, X_test, y_train, y_test = self.xtrain,self.xtest,self.ytrain,self.ytest
			#Geeting trained model name and to use the model in BlackboxMetamodelRegression
			from sklearn.tree import DecisionTreeRegressor
			from sklearn.linear_model import LinearRegression,Lasso,Ridge
			from sklearn.ensemble import RandomForestRegressor
			if (model_name == ""DecisionTreeRegressor""):
				basemodel=DecisionTreeRegressor
			elif (model_name == ""LinearRegression""):
				basemodel=LinearRegression
			elif (model_name == ""Lasso""):
				basemodel=Lasso
			elif (model_name == ""Ridge""):
				basemodel=Ridge
			elif(model_name == ""RandomForestRegressor""):
				basemodel=RandomForestRegressor
			else:
				basemodel=LinearRegression
				
			if (aionstatus.lower() == 'aionuq'):
				X_train, X_test, y_train, y_test = x_train, x_test, y_train, y_test
				total_picp,total_mpiw,total_picp_percentage,total_Uncertainty_percentage,mpiw_lower_range,mpiw_upper_range = self.totalUncertainty(self.data,basemodel,model_params,x_train, x_test, y_train, y_test,aionstatus)
			else:
				X_train, X_test, y_train, y_test = train_test_split(self.X, self.y, test_size=0.3, random_state=0)
				total_picp,total_mpiw,total_picp_percentage,total_Uncertainty_percentage,mpiw_lower_range,mpiw_upper_range = self.totalUncertainty(self.data,basemodel,model_params,None, None, None, None,aionstatus)
		
				
			
			if uq_scoring_param in ['rmse', 'nll','auucc_gain','picp','mpiw','r2']:
				uq_scoring_param=uq_scoring_param
			else:
				uq_scoring_param='picp'
				
			uq_model = BlackboxMetamodelRegression(base_model=basemodel, meta_model=basemodel, base_config=model_params, meta_config=model_params)
			# this will fit both the base and the meta model 
			uqmodel_fit = uq_model.fit(X_train, y_train)
			# #print(""X_train.shape: \n"",X_train.shape)
			y_hat, y_hat_lb, y_hat_ub = uq_model.predict(X_test) 
			from uq360.metrics import picp, mpiw
			observed_alphas_picp = picp(y_test, y_hat_lb, y_hat_ub)
			observed_widths_mpiw = mpiw(y_hat_lb, y_hat_ub)
			picp_percentage= round(observed_alphas_picp*100)
			Uncertainty_percentage=round(100-picp_percentage)
			self.log.info('<!------------- observed_picp: ---------------> '+str(observed_alphas_picp))
			self.log.info('<!------------- observed_widths_mpiw: ---------------> '+str(observed_widths_mpiw))
			# UQ metamodel regression have metrics as follows, “rmse”, “nll”, “auucc_gain”, “picp”, “mpiw”, “r2”
			#metric_all=compute_regression_metrics(y_test, y_hat,y_hat_lb, y_hat_ub,option='all',nll_fn=None) #nll - Gaussian negative log likelihood loss.
			metric_all=compute_regression_metrics(y_test, y_hat,y_hat_lb, y_hat_ub,option=uq_scoring_param,nll_fn=None)
			metric_used=''
			for k,v in metric_all.items():
				metric_used=str(round(v,2))
			self.log.info('<!------------- Metric used for regression UQ: ---------------> '+str(metric_all))
			# Determine the confidence level and recommentation to the tester
			# test_data=y_test
			observed_alphas_picp=round(observed_alphas_picp,2)
			observed_widths_mpiw=round(observed_widths_mpiw,2)
			#Calculate total uncertainty for all features
			# total_picp,total_mpiw,total_picp_percentage,total_Uncertainty_percentage = self.totalUncertainty(self.data)
			# df1=self.data
			total_picp,total_mpiw,total_picp_percentage,total_Uncertainty_percentage,mpiw_lower_range,mpiw_upper_range = self.totalUncertainty(self.data,basemodel,model_params,x_train, x_test, y_train, y_test,aionstatus)
			recommendation=""""
			output={}

			if (observed_alphas_picp >= 0.95 and total_picp >= 0.75):
				# Add GREEN text
				self.log.info('Model has good confidence for the selected feature, ready to deploy.\n.')
				recommendation = ""Model has good confidence score, ready to deploy.""
			elif ((observed_alphas_picp >= 0.50 and observed_alphas_picp <= 0.95)	and (total_picp >= 0.50)): 
				# Orange
				recommendation = ""Model has average confidence compare to threshold (95%), need to be add more input data across all feature ranges to train base model, also try with different regression algorithms/ensembling.""
				self.log.info('Model has average confidence score compare to threshold, need to be add more input data for training base model and again try with UQ .')
				
			else:
				# RED text
				recommendation = ""Model has less confidence compare to threshold (95%), need to be add more input data across all feature ranges to train base model, also try with different regression algorithms/ensembling.""
				self.log.info('Model has less confidence score compare to threshold, need to be add more input data for training base model and again try with UQ .')
			
			#Build uq json info dict
			output['ModelConfidenceScore']=(str(total_picp_percentage)+'%')
			output['ModelUncertainty']=(str(total_Uncertainty_percentage)+'%')
			output['SelectedFeatureConfidence']=(str(picp_percentage)+'%')
			output['SelectedFeatureUncertainty']=(str(Uncertainty_percentage)+'%')				  
			output['PredictionIntervalCoverageProbability']=observed_alphas_picp
			output['MeanPredictionIntervalWidth']=round(observed_widths_mpiw)
			output['DesirableMPIWRange: ']=(str(round(mpiw_lower_range))+str(' - ')+str(round(mpiw_upper_range)))
			output['Recommendation']=str(recommendation)
			output['Metric']=uq_scoring_param
			output['Score']=metric_used
			output['Problemtype']= 'Regression'
			self.log.info('Model confidence in percentage is:  '+str(picp_percentage)+str(' %'))
			self.log.info('Model Uncertainty is::  '+str(Uncertainty_percentage)+str(' %'))			   
			#self.log.info('Please check the plot for more understanding of model uncertainty.\n.')
			#self.display_results(X_test, y_test, y_mean=y_hat, y_lower=y_hat_lb, y_upper=y_hat_ub)
			uq_jsonobject = json.dumps(output)
			with open(str(self.Deployment)+""/uq_reg_log.json"", ""w"") as f:
				json.dump(output, f)
			#To get best and medium UQ range of values from total predict interval
			y_hat_m=y_hat.tolist()
			y_hat_lb=y_hat_lb.tolist()
			upper_bound=y_hat_ub.tolist()
			y_hat_ub=y_hat_ub.tolist()
			for x in y_hat_lb:
				y_hat_ub.append(x)			  
			total_pi=y_hat_ub			 
			medium_UQ_range = y_hat_ub
			best_UQ_range= y_hat.tolist()
			ymean_upper=[]
			ymean_lower=[]
			y_hat_m=y_hat.tolist()
			for i in y_hat_m:
				y_hat_m_range= (i*20/100)
				x=i+y_hat_m_range
				y=i-y_hat_m_range
				ymean_upper.append(x)
				ymean_lower.append(y)
			min_best_uq_dist=round(min(best_UQ_range))
			max_best_uq_dist=round(max(best_UQ_range)) 
			# initializing ranges
			list_medium=list(filter(lambda x:not(min_best_uq_dist<=x<=max_best_uq_dist), total_pi))
			list_best =	  y_hat_m 
			X_test = np.squeeze(X_test)
			'''
			uq_dict = {x_feature:X_test,'Observed':y_test,'Best_values': y_hat_m,
						   'Best__upper':ymean_upper,
						   'Best__lower':ymean_lower,
							 'Total_Low_PI': y_hat_lb,
							 'Total_Upper_PI': upper_bound,
										  }
			
			print(uq_dict)	  
			uq_pred_df = pd.DataFrame(data=uq_dict)
			uq_pred_df_sorted = uq_pred_df.sort_values(by='Best_values')
			uq_pred_df_sorted.to_csv(str(self.Deployment)+""/uq_pred_df.csv"",index = False)
			csv_path=str(self.Deployment)+""/uq_pred_df.csv""
			df=pd.read_csv(csv_path)
			self.log.info('uqMain() returns: observed_alphas_picp,observed_widths_mpiw,list_medium,list_best,metric_all.\n.')
			#Callconfidence olot fn only for UQTest interface
			
			if (aionstatus.lower() == 'aionuq'):
				#No need to showcase confidence plot for aion main
				pass
			else:
				self.aion_confidence_plot(df)
			'''
			return total_picp_percentage,total_Uncertainty_percentage,list_medium,list_best,metric_all,json.loads(uq_jsonobject)
			
		except Exception as inst:
			exc = {""status"":""FAIL"",""message"":str(inst).strip('""')}
			out_exc = json.dumps(exc)
			exc_type, exc_obj, exc_tb = sys.exc_info()
			fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
			self.log.info(str(exc_type) + ' ' + str(fname) + ' ' + str(exc_tb.tb_lineno))

					
		
	
	"
__init__.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''"
uq_main.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''

import logging
logging.getLogger('tensorflow').disabled = True
import json
#from nltk.corpus import stopwords
from collections import Counter
from matplotlib import pyplot
import sys
import os
import matplotlib.pyplot as plt
from uq360.algorithms.blackbox_metamodel import BlackboxMetamodelRegression
from sklearn import datasets
from sklearn.model_selection import train_test_split
import pandas as pd
from uq360.metrics.regression_metrics import compute_regression_metrics
import numpy as np
from sklearn.metrics import accuracy_score
from sklearn.metrics import precision_score
from sklearn.metrics import recall_score
from sklearn.metrics import f1_score
from sklearn.metrics import roc_curve
from sklearn.metrics import r2_score,mean_squared_error, explained_variance_score,mean_absolute_error
from uq360.metrics import plot_uncertainty_by_feature, plot_picp_by_feature
import sys
import time
from sklearn.metrics import confusion_matrix
from pathlib import Path
import logging
import logging.config
from os.path import expanduser
import platform
from sklearn.utils import shuffle

class aionUQ:
	# def __init__(self,uqdf,targetFeature,xtrain,ytrain,xtest,ytest,uqconfig_base,uqconfig_meta,deployLocation,saved_model):
	def __init__(self,df,dfp,target,ProblemName,Params,model,modelfeatures,targetfeature):
		try:
			self.data=df
			self.dfFeatures=dfp
			self.uqconfig_base=Params
			self.uqconfig_meta=Params
			self.targetFeature=targetfeature
			self.log = logging.getLogger('aionUQ')
			self.target=target
			self.selectedfeature=modelfeatures
			self.y=self.target
			self.X=self.dfFeatures
			from appbe.dataPath import DEPLOY_LOCATION
			self.Deployment = os.path.join(DEPLOY_LOCATION,('UQTEST_'+str(int(time.time()))))
			os.makedirs(self.Deployment,exist_ok=True)
			self.basemodel=model
			self.model_name=ProblemName			
			# self.X, self.y = shuffle(self.X, self.y)
			X_train, X_test, y_train, y_test = train_test_split(self.X, self.y, test_size=0.2, random_state=0)			  
			self.xtrain = X_train
			self.xtest = X_test
			self.ytrain = y_train
			self.ytest = y_test
			# self.deployLocation=deployLocation
			
			
		except Exception as e:
			# self.log.info('<!------------- UQ model INIT Error ---------------> '+str(e))
			exc_type, exc_obj, exc_tb = sys.exc_info()
			fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
			# self.log.info(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))
 
	def totalUncertainty(self,df,basemodel,model_params):
		try:
			# from sklearn.model_selection import train_test_split 
			# df=self.data
			# y=df[self.targetFeature]
			# X = df.drop(self.targetFeature, axis=1)
			if (isinstance(self.selectedfeature,list)):
				selectedfeature=[self.selectedfeature[0]]
				selectedfeature=' '.join(map(str,selectedfeature))
			if (isinstance(self.targetFeature,list)):
				targetFeature=[self.targetFeature[0]]
				targetFeature=' '.join(map(str,targetFeature))
			X = self.data[selectedfeature]
			y = self.data[targetFeature]
			X = X.values.reshape((-1,1))
			X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)
			key = 'criterion'
			#if key in model_params:
			try:
				#if model_params.has_key(key):
				if key in model_params:
					if (model_params['criterion']):						   
						uq_scoring_param=model_params.get('criterion')
					elif(model_params['criterion'] == None):
						uq_scoring_param='picp'
					else:
						uq_scoring_param='picp'
				else:
					uq_scoring_param='picp'
					pass
			except Exception as inst:
				uq_scoring_param='picp'
				
			# from sklearn.tree import DecisionTreeRegressor
			# from sklearn.linear_model import LinearRegression,Lasso,Ridge
			# from sklearn import linear_model
			# from sklearn.ensemble import RandomForestRegressor
			if uq_scoring_param in ['rmse', 'nll','auucc_gain','picp','mpiw','r2']:
				uq_scoring_param=uq_scoring_param
			else:
				uq_scoring_param='picp'
			uq_model = BlackboxMetamodelRegression(base_model=basemodel, meta_model=basemodel, base_config=model_params, meta_config=model_params)
			# this will fit both the base and the meta model  
			uqmodel_fit = uq_model.fit(X_train, y_train)
			y_hat, y_hat_lb, y_hat_ub = uq_model.predict(X_test)
			y_hat_total_mean=np.mean(y_hat)
			y_hat_lb_total_mean=np.mean(y_hat_lb)
			y_hat_ub_total_mean=np.mean(y_hat_ub) 
			mpiw_20_per=(y_hat_total_mean*20/100)
			mpiw_lower_range = y_hat_total_mean - mpiw_20_per
			mpiw_upper_range = y_hat_total_mean + mpiw_20_per
			from uq360.metrics import picp, mpiw
			observed_alphas_picp = picp(y_test, y_hat_lb, y_hat_ub)
			observed_widths_mpiw = mpiw(y_hat_lb, y_hat_ub)
			observed_alphas_picp=round(observed_alphas_picp,2)
			observed_widths_mpiw=round(observed_widths_mpiw,2)
			picp_percentage= round(observed_alphas_picp*100)
			Uncertainty_percentage=round(100-picp_percentage)
			# self.log.info('Model total observed_widths_mpiw :	 '+str(observed_widths_mpiw))
			# self.log.info('Model mpiw_lower_range :  '+str(mpiw_lower_range))
			# self.log.info('Model mpiw_upper_range :  '+str(mpiw_upper_range))
			# self.log.info('Model total picp_percentage :	'+str(picp_percentage))
		except Exception as e:
			print(""totalUncertainty fn error: \n"",e)

		return observed_alphas_picp,observed_widths_mpiw,picp_percentage,Uncertainty_percentage,mpiw_lower_range,mpiw_upper_range
		
	def display_results(self,X_test, y_test, y_mean, y_lower, y_upper):
		try:
			global x_feature,y_feature
			if (isinstance(self.selectedfeature, list) or isinstance(self.selectedfeature, tuple)):
				x_feature=','.join(map(str, self.selectedfeature))
			else:
				x_feature= str(self.selectedfeature)
			# self.selectedfeature=str(self.selectedfeature)
			
			X_test=np.squeeze(X_test)
			y_feature=str(self.targetFeature)
			pred_dict = {x_feature: X_test,
						 'y': y_test,
						 'y_mean': y_mean,
						 'y_upper': y_upper,
						 'y_lower': y_lower
						}
			pred_df = pd.DataFrame(data=pred_dict)
			x_feature1 = x_feature.split(',')
			pred_df_sorted = pred_df.sort_values(by=x_feature1)
			plt.plot(pred_df_sorted[x_feature1[0]], pred_df_sorted['y'], 'o', label='Observed')
			plt.plot(pred_df_sorted[x_feature1[0]], pred_df_sorted['y_mean'], '-', lw=2, label='Predicted')
			plt.plot(pred_df_sorted[x_feature1[0]], pred_df_sorted['y_upper'], 'r--', lw=2, label='Upper Bound')
			plt.plot(pred_df_sorted[x_feature1[0]], pred_df_sorted['y_lower'], 'r--', lw=2, label='Lower Bound')
			plt.legend()
			plt.xlabel(x_feature1[0])
			plt.ylabel(y_feature)
			plt.title('UQ Confidence Interval Plot.')
			# plt.savefig('uq_test_plt.png')
			'''
			if os.path.exists(str(DEFAULT_FILE_PATH)+'/uq_test_plt.png'):
				os.remove(str(DEFAULT_FILE_PATH)+'/uq_test_plt.png')
			'''
			plt.savefig(str(self.Deployment)+'/uq_test_plt.png')
			#plt.savefig(str(DEFAULT_FILE_PATH)+'/uq_test_plt.png')
			confidencePlot = os.path.join(self.Deployment,'picp_per_feature.png')
			plt.clf()
			plt.cla()
			plt.close()
			pltreg=plot_picp_by_feature(X_test, y_test,
					 y_lower, y_upper,
					 xlabel=x_feature)
			#pltreg.savefig('x.png')
			pltr=pltreg.figure
			'''
			if os.path.exists(str(DEFAULT_FILE_PATH)+'/picp_per_feature.png'):
				os.remove(str(DEFAULT_FILE_PATH)+'/picp_per_feature.png')
			'''
			pltr.savefig(str(self.Deployment)+'/picp_per_feature.png')
			picpPlot = os.path.join(self.Deployment,'picp_per_feature.png')
			#pltr.savefig(str(DEFAULT_FILE_PATH)+'/picp_per_feature.png')
			plt.clf()
			plt.cla()
			plt.close()
		except Exception as e:
			print(""display exception: \n"",e)
			# self.log.info('<!------------- UQ model Display Error ---------------> '+str(e))
		return confidencePlot,picpPlot

	def classUncertainty(self,predprob_base):
		# from collections import Counter
		predc=""Class_""
		classes = np.unique(self.y)
		total = len(self.y)
		list_predprob=[]		
		counter = Counter(self.y)
		#for loop for test class purpose
		for k,v in counter.items():
			n_samples = len(self.y[self.y==k])
			per = ((v/total) * 100)
			prob_c=predprob_base[:,int(k)]
			list_predprob.append(prob_c)
			# #print(""Class_{} : {}/{} percentage={}% \n"".format(k,n_samples,total,per ))		 
		outuq={}
		for k in classes:
			predc += str(k) 
			mean_predprob_class=np.mean(list_predprob[int(k)])
			uncertainty=1-mean_predprob_class
			predc+='_Uncertainty'
			outuq[predc]=uncertainty
			predc=""Class_""
		return outuq

		
	def uqMain_BBMClassification(self):
		# self.log.info('<!------------- Inside BlackBox MetaModel Classification process. ---------------> ')
		# import matplotlib.pyplot as plt
		try:
			from uq360.algorithms.blackbox_metamodel import BlackboxMetamodelClassification
		except:
			##In latest UQ360, library changed from BlackboxMetamodelClassification to MetamodelClassification.
			from uq360.algorithms.blackbox_metamodel import MetamodelClassification
		
		# from uq360.metrics.classification_metrics import area_under_risk_rejection_rate_curve,plot_risk_vs_rejection_rate,expected_calibration_error,compute_classification_metrics
		from uq360.metrics.classification_metrics import plot_reliability_diagram,area_under_risk_rejection_rate_curve,plot_risk_vs_rejection_rate,expected_calibration_error,compute_classification_metrics
		# from sklearn import datasets
		# from sklearn.model_selection import train_test_split
		# from sklearn.metrics import accuracy_score
		from sklearn.ensemble import GradientBoostingClassifier
		from sklearn.linear_model import LogisticRegression
		from sklearn.linear_model import SGDClassifier
		from sklearn.naive_bayes import GaussianNB
		from sklearn.tree import DecisionTreeClassifier
		from sklearn.ensemble import RandomForestClassifier
		from sklearn.svm import SVC
		from sklearn.neighbors import KNeighborsClassifier
		# from sklearn.linear_model import LogisticRegression
		
		# import pandas as pd
		base_modelname=__class__.__name__
		base_config = self.uqconfig_base
		meta_config = self.uqconfig_base
		model_name=self.basemodel.__class__.__name__
		model_params=self.basemodel.get_params()
		try:
			#geting used features
			model_used_features=self.basemodel.feature_names_in_
		except:
			pass
		X_train, X_test, y_train, y_test = self.xtrain,self.xtest,self.ytrain,self.ytest
		uq_scoring_param='accuracy'
		basemodel=None
		if (model_name == ""GradientBoostingClassifier""):
			basemodel=GradientBoostingClassifier
		elif (model_name == ""SGDClassifier""):
			basemodel=SGDClassifier
		elif (model_name == ""GaussianNB""):
			basemodel=GaussianNB
		elif (model_name == ""DecisionTreeClassifier""):
			basemodel=DecisionTreeClassifier
		elif(model_name == ""RandomForestClassifier""):
			basemodel=RandomForestClassifier
		elif (model_name == ""SVC""):
			basemodel=SVC
		elif(model_name == ""KNeighborsClassifier""):
			basemodel=KNeighborsClassifier
		elif(model_name == ""LogisticRegression""):
			basemodel=LogisticRegression
		else:
			basemodel=LogisticRegression
			
		try:
			try:
				##Removed meta_config because leave meta model config as default ml model params
				uq_model = BlackboxMetamodelClassification(base_model=self.basemodel, meta_model=basemodel,base_config=model_params)
			except:
				uq_model = BlackboxMetamodelClassification(base_model=self.basemodel, meta_model=basemodel,base_config=model_params, meta_config=model_params)
		except:
			##In latest version BlackboxMetamodelClassification name modified as MetamodelClassification
			try:
				##Removed meta_config because leave meta model config as default ml model params
				uq_model = MetamodelClassification(base_model=self.basemodel, meta_model=basemodel,base_config=model_params)
			except:
				uq_model = MetamodelClassification(base_model=self.basemodel, meta_model=basemodel,base_config=model_params, meta_config=model_params)
		
		# this will fit both the base and the meta model
		try:
			X_train=X_train[model_used_features]
			X_test=X_test[model_used_features]
		except:
			pass
			
		uqmodel_fit = uq_model.fit(X_train, y_train,base_is_prefitted=True,meta_train_data=(X_train, y_train))
		# uqmodel_fit = uq_model.fit(X_train, y_train)
		#Test data pred, score
		y_t_pred, y_t_score = uq_model.predict(X_test)
		#predict probability
		# uq_pred_prob=uq_model.predict_proba(X_test) 
		# predprob_base=basemodel.predict_proba(X_test)[:, :]
		#if (model_name == ""SVC"" or model_name == ""SGDClassifier""):
		# if model_name in ['SVC','SGDClassifier']:
		if (model_name == ""SVC""):
			from sklearn.calibration import CalibratedClassifierCV
			basemodel=SVC(**model_params)
			calibrated_svc = CalibratedClassifierCV(basemodel,method='sigmoid',cv=3)
			calibrated_svc.fit(X_train, y_train)
			basepredict = basemodel.predict(X_test)
			predprob_base = calibrated_svc.predict_proba(X_test)[:, :] 
		elif (model_name == ""SGDClassifier""):
			from sklearn.calibration import CalibratedClassifierCV
			basemodel=SGDClassifier(**model_params)
			calibrated_svc = CalibratedClassifierCV(basemodel,method='sigmoid',cv=3)
			calibrated_svc.fit(X_train, y_train)
			basepredict = basemodel.predict(X_test)
			predprob_base = calibrated_svc.predict_proba(X_test)[:, :] 
		else:
			base_mdl = basemodel(**model_params)
			basemodelfit = base_mdl.fit(X_train, y_train)
			basepredict = base_mdl.predict(X_test)		  
			predprob_base=base_mdl.predict_proba(X_test)[:, :]
			
		acc_score=accuracy_score(y_test, y_t_pred)
		test_accuracy_perc=round(100*acc_score)
 
		'''
		bbm_c_plot = plot_risk_vs_rejection_rate(
			y_true=y_test,
			y_prob=predprob_base,
			selection_scores=y_t_score,
			y_pred=y_t_pred,
			plot_label=['UQ_risk_vs_rejection'],
			risk_func=accuracy_score,
			num_bins = 10 )

		# This done by kiran, need to uncomment for GUI integration.
		try:
			bbm_c_plot_sub = bbm_c_plot[4]
			bbm_c_plot.savefig(str(self.Deployment)+'/plot_risk_vs_rejection_rate.png')				 
			riskPlot = os.path.join(self.Deployment,'plot_risk_vs_rejection_rate.png')
		except Exception as e:
			print(e)
			pass
			riskPlot = ''
		'''
		riskPlot = ''
		'''
		try:
			re_plot=plot_reliability_diagram(y_true=y_test,
						y_prob=predprob_base,
						y_pred=y_t_pred,
						plot_label=['UQModel reliability_diagram'],						   
						num_bins=10)
			# This done by kiran, need to uncomment for GUI integration.
			re_plot_sub = re_plot[4]
			# re_plot_sub = re_plot
			re_plot_sub.savefig(str(self.Deployment)+'/plot_reliability_diagram.png')	
			reliability_plot = os.path.join(self.Deployment,'plot_reliability_diagram.png')
		except Exception as e:
			print(e)
			pass
			reliability_plot = ''
		'''
		reliability_plot = ''
		uq_aurrrc=area_under_risk_rejection_rate_curve( y_true=y_test,
					y_prob=predprob_base,
					y_pred=y_t_pred,
					selection_scores=y_t_score,
					attributes=None,
					risk_func=accuracy_score,subgroup_ids=None, return_counts=False,
					num_bins=10)
		uq_aurrrc=uq_aurrrc
		test_accuracy_perc=round(test_accuracy_perc)
		
		#metric_all=compute_classification_metrics(y_test, y_prob, option='all')
		metric_all=compute_classification_metrics(y_test, predprob_base, option='accuracy')
		#expected_calibration_error
		uq_ece=expected_calibration_error(y_test, y_prob=predprob_base,y_pred=y_t_pred, num_bins=10, return_counts=False)
		uq_aurrrc=uq_aurrrc
		confidence_score=acc_score-uq_ece

		ece_confidence_score=round(confidence_score,2)
		# Model uncertainty using ECE score
		# model_uncertainty_ece = 1-ece_confidence_score
		# #print(""model_uncertainty1: \n"",model_uncertainty_ece)
		
		#Uncertainty Using model inherent predict probability
		mean_predprob_total=np.mean(predprob_base)
		model_uncertainty = 1-mean_predprob_total
		model_confidence=mean_predprob_total
		model_confidence = round(model_confidence,2)
		

		# To get each class values and uncertainty
		outuq = self.classUncertainty(predprob_base)
		# Another way to get conf score
		model_uncertainty_per=round((model_uncertainty*100),2)
		# model_confidence_per=round((model_confidence*100),2)
		model_confidence_per=round((ece_confidence_score*100),2)
		acc_score_per = round((acc_score*100),2)
		uq_ece_per=round((uq_ece*100),2)

		output={}
		recommendation = """"
	   
		if (uq_ece > 0.5):
			# RED text
			recommendation = 'Model has high ece (expected calibration error) score compare to threshold (50%),not good to deploy. Add more input data across all feature ranges to train base model, also try with different classification algorithms/ensembling to reduce ECE (ECE~0).'
			msg = 'Bad'
		else:
			# self.log.info('Model has good ECE score and accuracy, ready to deploy.\n.')

			if (uq_ece <= 0.1 and model_confidence >= 0.9):
				# Green Text
				recommendation = 'Model has best calibration score (near to 0) and good confidence score  , ready to deploy. '
				msg = 'Best'
			else:
				# Orange
				recommendation = 'Model has average confidence score (ideal is >90% confidence) and good ECE score (ideal is <10% error).Model can be improved by adding more training data across all feature ranges and re-training the model.'
				msg = 'Good'
		#Adding each class uncertainty value
		output['Problem']= 'Classification'
		output['recommend']= 'recommend'
		output['msg']= msg
		output['UQ_Area_Under_Risk_Rejection_Rate_Curve']=round(uq_aurrrc,4)
		
		output['Model_Total_Confidence']=(str(model_confidence_per)+str('%'))
		output['Expected_Calibration_Error']=(str(uq_ece_per)+str('%'))
		output['Model_Total_Uncertainty']=(str(model_uncertainty_per)+str('%'))
		# output['Risk Plot'] = str(riskPlot)
		# output['Reliability Plot'] = str(reliability_plot)
		for k,v in outuq.items():
			output[k]=(str(round((v*100),2))+str(' %'))
		output['Recommendation']=recommendation
		# output['user_msg']='Please check the plot for more understanding of model uncertainty'
		output['Metric_Accuracy_Score']=(str(acc_score_per)+str(' %'))	
		
		outputs = json.dumps(output) 
		
		with open(str(self.Deployment)+""/uq_classification_log.json"", ""w"") as f:
			json.dump(output, f)
		return test_accuracy_perc,uq_ece,outputs
	
	def aion_confidence_plot(self,df):
		try:
			global x_feature
			df=df
			df = df.sort_values(by=self.selectedfeature)		
			best_values=df.Best_values.to_list()		
			best_upper=df.Best__upper.to_list()		   
			best_lower=df.Best__lower.to_list()		   
			Total_Upper_PI=df.Total_Upper_PI.to_list()		  
			Total_Low_PI=df.Total_Low_PI.to_list()
			Obseved = df.Observed.to_list()
			x_feature1 = x_feature.split(',')
			plt.plot(df[x_feature1[0]], df['Observed'], 'o', label='Observed')
			plt.plot(df[x_feature1[0]], df['Best__upper'],'r--', lw=2, color='grey')
			plt.plot(df[x_feature1[0]], df['Best__lower'],'r--', lw=2, color='grey')
			plt.plot(df[x_feature1[0]], df['Best_values'], 'r--', lw=2, label='MeanPrediction',color='red')
			
			plt.fill_between(df[x_feature1[0]], Total_Upper_PI, Total_Low_PI, label='Good Confidence', color='lightblue', alpha=.5)
			plt.fill_between(df[x_feature1[0]],best_lower, best_upper,label='Best Confidence', color='orange', alpha=.5)
			plt.legend()
			plt.xlabel(x_feature1[0])
			plt.ylabel(self.targetFeature)
			plt.title('UQ Best & Good Area Plot')
			'''
			if os.path.exists(str(DEFAULT_FILE_PATH)+'/uq_confidence_plt.png'):
				os.remove(str(DEFAULT_FILE_PATH)+'/uq_confidence_plt.png')

			plt.savefig(str(DEFAULT_FILE_PATH)+'/uq_confidence_plt.png')
			'''
			plt.savefig(str(self.Deployment)+'/uq_confidence_plt.png')
			uq_confidence_plt = os.path.join(str(self.Deployment),'uq_confidence_plt.png')
		except Exception as inst:
			print('-----------dsdas->',inst)
			uq_confidence_plt = ''
		return uq_confidence_plt
	def uqMain_BBMRegression(self):
		# modelName = """"
		# self.log.info('<!------------- Inside BlockBox MetaModel Regression process. ---------------> ')
		try:
			
			from uq360.algorithms.blackbox_metamodel import BlackboxMetamodelRegression
			import pandas as pd
			base_modelname=__class__.__name__
			base_config = self.uqconfig_base
			meta_config = self.uqconfig_base
			model_name=self.basemodel.__class__.__name__
			model_params=self.basemodel.get_params()
			# #print(""model_params['criterion']: \n"",model_params['criterion'])
			key = 'criterion'
			#if key in model_params:
			try:
				#if model_params.has_key(key):
				if key in model_params:
					if (model_params['criterion']): 
						uq_scoring_param=model_params.get('criterion')
					elif(model_params['criterion'] == None):
						uq_scoring_param='picp'
					else:
						uq_scoring_param='picp'
				else:
					uq_scoring_param='picp'
					pass
			except Exception as inst:
				uq_scoring_param='picp'
			
			# modelname='sklearn.linear_model'+'.'+model_name
			# self.xtrain = self.xtrain.values.reshape((-1,1))
			# self.xtest = self.xtest.values.reshape((-1,1))
			if (isinstance(self.selectedfeature,list)):
				selectedfeature=[self.selectedfeature[0]]
				selectedfeature=' '.join(map(str,selectedfeature))
			if (isinstance(self.targetFeature,list)):
				targetFeature=[self.targetFeature[0]]
				targetFeature=' '.join(map(str,targetFeature))
		   
			X = self.data[selectedfeature]
			y = self.data[targetFeature]
			X = X.values.reshape((-1,1))
			X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)
			#Geeting trained model name and to use the model in BlackboxMetamodelRegression
			from sklearn.tree import DecisionTreeRegressor
			from sklearn.linear_model import LinearRegression,Lasso,Ridge
			from sklearn.ensemble import RandomForestRegressor
			if (model_name == ""DecisionTreeRegressor""):
				basemodel=DecisionTreeRegressor
			elif (model_name == ""LinearRegression""):
				basemodel=LinearRegression
			elif (model_name == ""Lasso""):
				basemodel=Lasso
			elif (model_name == ""Ridge""):
				basemodel=Ridge
			elif(model_name == ""RandomForestRegressor""):
				basemodel=RandomForestRegressor
			else:
				basemodel=LinearRegression
				
			if uq_scoring_param in ['rmse', 'nll','auucc_gain','picp','mpiw','r2']:
				if (uq_scoring_param.lower() == 'picp'):
					uq_scoring_param='prediction interval coverage probability score (picp)'
				else:
					uq_scoring_param=uq_scoring_param
			else:
				uq_scoring_param='prediction interval coverage probability score (picp)'
			uq_model = BlackboxMetamodelRegression(base_model=basemodel, meta_model=basemodel, base_config=model_params, meta_config=model_params)
			# this will fit both the base and the meta model 
			uqmodel_fit = uq_model.fit(X_train, y_train)			
			y_hat, y_hat_lb, y_hat_ub = uq_model.predict(X_test)
			from uq360.metrics import picp, mpiw
			observed_alphas_picp = picp(y_test, y_hat_lb, y_hat_ub)
			observed_widths_mpiw = mpiw(y_hat_lb, y_hat_ub)
			picp_percentage= round(observed_alphas_picp*100)
			Uncertainty_percentage=round(100-picp_percentage)
			# UQ metamodel regression have metrics as follows, “rmse”, “nll”, “auucc_gain”, “picp”, “mpiw”, “r2”
			metric_all=compute_regression_metrics(y_test, y_hat,y_hat_lb, y_hat_ub,option=uq_scoring_param,nll_fn=None)			
			metric_used=''
			for k,v in metric_all.items():				
				metric_used=str(round(v,2))
				
			# Determine the confidence level and recommentation to the tester
			# test_data=y_test
			observed_alphas_picp=round(observed_alphas_picp,2)
			observed_widths_mpiw=round(observed_widths_mpiw,2)
			#Calculate total uncertainty for all features
			# total_picp,total_mpiw,total_picp_percentage,total_Uncertainty_percentage = self.totalUncertainty(self.data)
			# df1=self.data
			total_picp,total_mpiw,total_picp_percentage,total_Uncertainty_percentage,mpiw_lower_range,mpiw_upper_range = self.totalUncertainty(self.data,basemodel,model_params)
			recommendation=""""
			observed_widths_mpiw = round((observed_widths_mpiw/1000000)*100)
			if observed_widths_mpiw > 100:
				observed_widths_mpiw = 100
			output={}

			if (observed_alphas_picp >= 0.90 and total_picp >= 0.75):
				# GREEN text
				recommendation = ""Model has good confidence and MPIW score, ready to deploy.""
				msg='Good'
			elif ((observed_alphas_picp >= 0.50 and observed_alphas_picp <= 0.90)	and (total_picp >= 0.50)): 
				# Orange
				recommendation = "" Model has average confidence compare to threshold (ideal is both model confidence and MPIW should be >90%) .Model can be improved by adding more training data across all feature ranges and re-training the model.""
				msg = 'Average'
				
			else:
				# RED text
				recommendation = ""Model has less confidence compare to threshold (ideal is both model confidence and MPIW should be >90%), need to be add more input data across all feature ranges and retrain base model, also try with different regression algorithms/ensembling.""
				msg = 'Bad'


			#Build uq json info dict
			output['Model_total_confidence']=(str(total_picp_percentage)+'%')
			output['Model_total_Uncertainty']=(str(total_Uncertainty_percentage)+'%')
			output['Selected_feature_confidence']=(str(picp_percentage)+'%')
			output['Selected_feature_Uncertainty']=(str(Uncertainty_percentage)+'%')				
			output['Prediction_Interval_Coverage_Probability']=observed_alphas_picp
			output['Mean_Prediction_Interval_Width']=str(observed_widths_mpiw)+'%'
			output['Desirable_MPIW_range']=(str(round(mpiw_lower_range))+str('	-  ')+str(round(mpiw_upper_range)))
			output['Recommendation']=str(recommendation)
			output['Metric_used']=uq_scoring_param
			output['Metric_value']=metric_used
			output['Problem']= 'Regression'
			output['recommend']= 'recommend'
			output['msg'] = msg
			
			with open(str(self.Deployment)+""/uq_reg_log.json"", ""w"") as f:
				json.dump(output, f)
			#To get best and medium UQ range of values from total predict interval
			y_hat_m=y_hat.tolist()
			y_hat_lb=y_hat_lb.tolist()
			upper_bound=y_hat_ub.tolist()
			y_hat_ub=y_hat_ub.tolist()
			for x in y_hat_lb:
				y_hat_ub.append(x)			  
			total_pi=y_hat_ub			 
			medium_UQ_range = y_hat_ub
			best_UQ_range= y_hat.tolist()
			ymean_upper=[]
			ymean_lower=[]
			y_hat_m=y_hat.tolist()
			for i in y_hat_m:
				y_hat_m_range= (i*20/100)
				x=i+y_hat_m_range
				y=i-y_hat_m_range
				ymean_upper.append(x)
				ymean_lower.append(y)
			

			min_best_uq_dist=round(min(best_UQ_range))
			max_best_uq_dist=round(max(best_UQ_range)) 
			# initializing ranges
			list_medium=list(filter(lambda x:not(min_best_uq_dist<=x<=max_best_uq_dist), total_pi))
			list_best =	  y_hat_m 
			'''
			print(X_test)
			print(X_test)
			X_test = np.squeeze(X_test)
			print(x_feature)
			'''
			uq_dict = pd.DataFrame(X_test)
			#print(uq_dict)
			uq_dict['Observed'] = y_test
			uq_dict['Best_values'] = y_hat_m
			uq_dict['Best__upper'] = ymean_upper
			uq_dict['Best__lower'] = ymean_lower
			uq_dict['Total_Low_PI'] = y_hat_lb
			uq_dict['Total_Upper_PI'] = upper_bound
			'''
			uq_dict = {x_feature:X_test,'Observed':y_test,'Best_values': y_hat_m,
						   'Best__upper':ymean_upper,
						   'Best__lower':ymean_lower,
							 'Total_Low_PI': y_hat_lb,
							 'Total_Upper_PI': upper_bound,
											}'''
			uq_pred_df = pd.DataFrame(data=uq_dict)
			uq_pred_df_sorted = uq_pred_df.sort_values(by='Best_values')
			uq_pred_df_sorted.to_csv(str(self.Deployment)+""/uq_pred_df.csv"",index = False)
			csv_path=str(self.Deployment)+""/uq_pred_df.csv""
			df=pd.read_csv(csv_path)
 
			# self.log.info('uqMain() returns: observed_alphas_picp,observed_widths_mpiw,list_medium,list_best,metric_all.\n.')
			# confidenceplot = self.aion_confidence_plot(df)
			# output['Confidence Plot']= confidenceplot
			uq_jsonobject = json.dumps(output)
			print(""UQ regression problem training completed...\n"")
			return observed_alphas_picp,observed_widths_mpiw,list_medium,list_best,metric_all,uq_jsonobject
			
		except Exception as inst:
			print('-------',inst)
			exc = {""status"":""FAIL"",""message"":str(inst).strip('""')}
			out_exc = json.dumps(exc)

					
		
	"
regression_metrics.py,"import numpy as np
from scipy.stats import norm
from sklearn.metrics import mean_squared_error, r2_score

from ..utils.misc import fitted_ucc_w_nullref


def picp(y_true, y_lower, y_upper):
    """"""
    Prediction Interval Coverage Probability (PICP). Computes the fraction of samples for which the grounds truth lies
    within predicted interval. Measures the prediction interval calibration for regression.

    Args:
        y_true: Ground truth
        y_lower: predicted lower bound
        y_upper: predicted upper bound

    Returns:
        float: the fraction of samples for which the grounds truth lies within predicted interval.
    """"""
    satisfies_upper_bound = y_true <= y_upper
    satisfies_lower_bound = y_true >= y_lower
    return np.mean(satisfies_upper_bound * satisfies_lower_bound)


def mpiw(y_lower, y_upper):
    """"""
    Mean Prediction Interval Width (MPIW). Computes the average width of the the prediction intervals. Measures the
    sharpness of intervals.

    Args:
        y_lower: predicted lower bound
        y_upper: predicted upper bound

    Returns:
        float: the average width the prediction interval across samples.
    """"""
    return np.mean(np.abs(y_lower - y_upper))


def auucc_gain(y_true, y_mean, y_lower, y_upper):
    """""" Computes the Area Under the Uncertainty Characteristics Curve (AUUCC) gain wrt to a null reference
    with constant band.

    Args:
        y_true: Ground truth
        y_mean: predicted mean
        y_lower: predicted lower bound
        y_upper: predicted upper bound

    Returns:
        float: AUUCC gain

    """"""
    u = fitted_ucc_w_nullref(y_true, y_mean, y_lower, y_upper)
    auucc = u.get_AUUCC()
    assert(isinstance(auucc, list) and len(auucc) == 2), ""Failed to calculate auucc gain""
    assert (not np.isclose(auucc[1], 0.)), ""Failed to calculate auucc gain""
    auucc_gain = (auucc[1]-auucc[0])/auucc[0]
    return auucc_gain


def negative_log_likelihood_Gaussian(y_true, y_mean, y_lower, y_upper):
    """""" Computes Gaussian negative_log_likelihood assuming symmetric band around the mean.

    Args:
        y_true: Ground truth
        y_mean: predicted mean
        y_lower: predicted lower bound
        y_upper: predicted upper bound

    Returns:
        float: nll

    """"""
    y_std = (y_upper - y_lower) / 4.0
    nll = np.mean(-norm.logpdf(y_true.squeeze(), loc=y_mean.squeeze(), scale=y_std.squeeze()))
    return nll


def compute_regression_metrics(y_true, y_mean, y_lower, y_upper, option=""all"", nll_fn=None):
    """"""
    Computes the metrics specified in the option which can be string or a list of strings. Default option `all` computes
    the [""rmse"", ""nll"", ""auucc_gain"", ""picp"", ""mpiw"", ""r2""] metrics.

    Args:
        y_true: Ground truth
        y_mean: predicted mean
        y_lower: predicted lower bound
        y_upper: predicted upper bound
        option: string or list of string contained the name of the metrics to be computed.
        nll_fn: function that evaluates NLL, if None, then computes Gaussian NLL using y_mean and y_lower.

    Returns:
        dict: dictionary containing the computed metrics.
    """"""

    assert y_true.shape == y_mean.shape, ""y_true shape: {}, y_mean shape: {}"".format(y_true.shape, y_mean.shape)
    assert y_true.shape == y_lower.shape, ""y_true shape: {}, y_mean shape: {}"".format(y_true.shape, y_lower.shape)
    assert y_true.shape == y_upper.shape, ""y_true shape: {}, y_mean shape: {}"".format(y_true.shape, y_upper.shape)

    results = {}
    if not isinstance(option, list):
        if option == ""all"":
            option_list = [""rmse"", ""nll"", ""auucc_gain"", ""picp"", ""mpiw"", ""r2""]
        else:
            option_list = [option]

    if ""rmse"" in option_list:
        results[""rmse""] = mean_squared_error(y_true, y_mean, squared=False)
    if ""nll"" in option_list:
        if nll_fn is None:
            nll = negative_log_likelihood_Gaussian(y_true, y_mean, y_lower, y_upper)
            results[""nll""] = nll
        else:
            results[""nll""] = np.mean(nll_fn(y_true))
    if ""auucc_gain"" in option_list:
        gain = auucc_gain(y_true, y_mean, y_lower, y_upper)
        results[""auucc_gain""] = gain
    if ""picp"" in option_list:
        results[""picp""] = picp(y_true, y_lower, y_upper)
    if ""mpiw"" in option_list:
        results[""mpiw""] = mpiw(y_lower, y_upper)
    if ""r2"" in option_list:
        results[""r2""] = r2_score(y_true, y_mean)

    return results


def _check_not_tuple_of_2_elements(obj, obj_name='obj'):
    """"""Check object is not tuple or does not have 2 elements.""""""
    if not isinstance(obj, tuple) or len(obj) != 2:
        raise TypeError('%s must be a tuple of 2 elements.' % obj_name)


def plot_uncertainty_distribution(dist, show_quantile_dots=False, qd_sample=20, qd_bins=7,
    ax=None, figsize=None, dpi=None,
    title='Predicted Distribution', xlims=None, xlabel='Prediction', ylabel='Density', **kwargs):
    """"""
    Plot the uncertainty distribution for a single distribution.

    Args:
        dist: scipy.stats._continuous_distns.
            A scipy distribution object.
        show_quantile_dots: boolean.
            Whether to show quantil dots on top of the density plot.
        qd_sample: int.
            Number of dots for the quantile dot plot.
        qd_bins: int.
            Number of bins for the quantile dot plot.
        ax: matplotlib.axes.Axes or None, optional (default=None).
            Target axes instance. If None, new figure and axes will be created.
        figsize: tuple of 2 elements or None, optional (default=None).
            Figure size.
        dpi : int or None, optional (default=None).
            Resolution of the figure.
        title : string or None, optional (default=Prediction Distribution)
            Axes title.
            If None, title is disabled.
        xlims : tuple of 2 elements or None, optional (default=None). Tuple passed to ``ax.xlim()``.
        xlabel : string or None, optional (default=Prediction)
            X-axis title label.
            If None, title is disabled.
        ylabel : string or None, optional (default=Density)
            Y-axis title label.
            If None, title is disabled.

    Returns:
        matplotlib.axes.Axes: ax : The plot with prediction distribution.
    """"""

    import matplotlib.pyplot as plt

    if ax is None:
        if figsize is not None:
            _check_not_tuple_of_2_elements(figsize, 'figsize')
        _, ax = plt.subplots(1, 1, figsize=figsize, dpi=dpi)

    x = np.linspace(dist.ppf(0.01), dist.ppf(0.99), 100)
    ax.plot(x, dist.pdf(x), **kwargs)

    if show_quantile_dots:
        from matplotlib.patches import Circle
        from matplotlib.collections import PatchCollection
        import matplotlib.ticker as ticker

        data = dist.rvs(size=10000)
        p_less_than_x = np.linspace(1 / qd_sample / 2, 1 - (1 / qd_sample / 2), qd_sample)
        x_ = np.percentile(data, p_less_than_x * 100)  # Inverce CDF (ppf)
        # Create bins
        hist = np.histogram(x_, bins=qd_bins)
        bins, edges = hist
        radius = (edges[1] - edges[0]) / 2

        ax2 = ax.twinx()
        patches = []
        max_y = 0
        for i in range(qd_bins):
            x_bin = (edges[i + 1] + edges[i]) / 2
            y_bins = [(i + 1) * (radius * 2) for i in range(bins[i])]

            max_y = max(y_bins) if max(y_bins) > max_y else max_y

            for _, y_bin in enumerate(y_bins):
                circle = Circle((x_bin, y_bin), radius)
                patches.append(circle)

        p = PatchCollection(patches, alpha=0.4)
        ax2.add_collection(p)

        # Axis tweek
        y_scale = (max_y + radius) / max(dist.pdf(x))
        ticks_y = ticker.FuncFormatter(lambda x, pos: '{0:g}'.format(x_ / y_scale))
        ax2.yaxis.set_major_formatter(ticks_y)
        ax2.set_yticklabels([])
        if xlims is not None:
            ax2.set_xlim(left=xlims[0], right=xlims[1])
        else:
            ax2.set_xlim([min(x_) - radius, max(x) + radius])
        ax2.set_ylim([0, max_y + radius])
        ax2.set_aspect(1)

    if title is not None:
        ax.set_title(title)
    if xlabel is not None:
        ax.set_xlabel(xlabel)
    if ylabel is not None:
        ax.set_ylabel(ylabel)
    
    return ax


def plot_picp_by_feature(x_test, y_test, y_test_pred_lower_total, y_test_pred_upper_total, num_bins=10,
                        ax=None, figsize=None, dpi=None, xlims=None, ylims=None, xscale=""linear"",
                                title=None, xlabel=None, ylabel=None):
    """"""
    Plot how prediction uncertainty varies across the entire range of a feature.

    Args:
        x_test: One dimensional ndarray.
            Feature column of the test dataset.
        y_test: One dimensional ndarray.
            Ground truth label of the test dataset.
        y_test_pred_lower_total: One dimensional ndarray.
            Lower bound of the total uncertainty range.
        y_test_pred_upper_total: One dimensional ndarray.
            Upper bound of the total uncertainty range.
        num_bins: int.
            Number of bins used to discritize x_test into equal-sample-sized bins.
        ax: matplotlib.axes.Axes or None, optional (default=None). Target axes instance. If None, new figure and axes will be created.
        figsize: tuple of 2 elements or None, optional (default=None). Figure size.
        dpi : int or None, optional (default=None). Resolution of the figure.
        xlims : tuple of 2 elements or None, optional (default=None). Tuple passed to ``ax.xlim()``.
        ylims: tuple of 2 elements or None, optional (default=None). Tuple passed to ``ax.ylim()``.
        xscale: Passed to ``ax.set_xscale()``.
        title : string or None, optional
            Axes title.
            If None, title is disabled.
        xlabel : string or None, optional
            X-axis title label.
            If None, title is disabled.
        ylabel : string or None, optional
            Y-axis title label.
            If None, title is disabled.

    Returns:
        matplotlib.axes.Axes: ax : The plot with PICP scores binned by a feature.

    """"""
    from scipy.stats.mstats import mquantiles
    import matplotlib.pyplot as plt

    if ax is None:
        if figsize is not None:
            _check_not_tuple_of_2_elements(figsize, 'figsize')
        _, ax = plt.subplots(1, 1, figsize=figsize, dpi=dpi)
    
    x_uniques_sorted = np.sort(np.unique(x_test))

    num_unique = len(x_uniques_sorted)
    sample_bin_ids = np.searchsorted(x_uniques_sorted, x_test)
    if len(x_uniques_sorted) > 10:  # bin the values
            q_bins = mquantiles(x_test, np.histogram_bin_edges([], bins=num_bins-1, range=(0.0, 1.0))[1:])
            q_sample_bin_ids = np.digitize(x_test, q_bins)
            picps = np.array([picp(y_test[q_sample_bin_ids==bin], y_test_pred_lower_total[q_sample_bin_ids==bin],
                                   y_test_pred_upper_total[q_sample_bin_ids==bin]) for bin in range(num_bins)])
            unique_sample_bin_ids = np.digitize(x_uniques_sorted, q_bins)
            picp_replicated = [len(x_uniques_sorted[unique_sample_bin_ids == bin]) * [picps[bin]] for bin in range(num_bins)]
            picp_replicated = np.array([item for sublist in picp_replicated for item in sublist])
    else:
        picps = np.array([picp(y_test[sample_bin_ids == bin], y_test_pred_lower_total[sample_bin_ids == bin],
                                y_test_pred_upper_total[sample_bin_ids == bin]) for bin in range(num_unique)])
        picp_replicated = picps

    ax.plot(x_uniques_sorted, picp_replicated, label='PICP')
    ax.axhline(0.95, linestyle='--', label='95%')
    ax.set_ylabel('PICP')

    ax.legend(loc='best')

    if title is None:
        title = 'Test data overall PICP: {:.2f} MPIW: {:.2f}'.format(
                    picp(y_test, 
                        y_test_pred_lower_total, 
                        y_test_pred_upper_total),
                    mpiw(y_test_pred_lower_total, 
                        y_test_pred_upper_total))    

    if xlims is not None:
        ax.set_xlim(left=xlims[0], right=xlims[1])

    if ylims is not None:
        ax.set_ylim(bottom=ylims[0], top=ylims[1])
                
    ax.set_title(title)
    if xlabel is not None:
        ax.set_xlabel(xlabel)
    if ylabel is not None:
        ax.set_ylabel(ylabel)
    if xscale is not None:
        ax.set_xscale(xscale)

    return ax


def plot_uncertainty_by_feature(x_test, y_test_pred_mean, y_test_pred_lower_total, y_test_pred_upper_total,
                                y_test_pred_lower_epistemic=None, y_test_pred_upper_epistemic=None,
                                ax=None, figsize=None, dpi=None, xlims=None, xscale=""linear"",
                                title=None, xlabel=None, ylabel=None):
    """"""
    Plot how prediction uncertainty varies across the entire range of a feature.

    Args:
        x_test: one dimensional ndarray.
            Feature column of the test dataset.
        y_test_pred_mean: One dimensional ndarray.
            Model prediction for the test dataset.
        y_test_pred_lower_total: One dimensional ndarray.
            Lower bound of the total uncertainty range.
        y_test_pred_upper_total: One dimensional ndarray.
            Upper bound of the total uncertainty range.
        y_test_pred_lower_epistemic: One dimensional ndarray.
            Lower bound of the epistemic uncertainty range.
        y_test_pred_upper_epistemic: One dimensional ndarray.
            Upper bound of the epistemic uncertainty range.
        ax: matplotlib.axes.Axes or None, optional (default=None). Target axes instance. If None, new figure and axes will be created.
        figsize: tuple of 2 elements or None, optional (default=None). Figure size.
        dpi : int or None, optional (default=None). Resolution of the figure.
        xlims : tuple of 2 elements or None, optional (default=None). Tuple passed to ``ax.xlim()``.
        xscale: Passed to ``ax.set_xscale()``.
        title : string or None, optional
            Axes title.
            If None, title is disabled.
        xlabel : string or None, optional
            X-axis title label.
            If None, title is disabled.
        ylabel : string or None, optional
            Y-axis title label.
            If None, title is disabled.

    Returns:
        matplotlib.axes.Axes: ax : The plot with model's uncertainty binned by a feature.

    """"""
    import matplotlib.pyplot as plt

    if ax is None:
        if figsize is not None:
            _check_not_tuple_of_2_elements(figsize, 'figsize')
        _, ax = plt.subplots(1, 1, figsize=figsize, dpi=dpi)

    x_uniques_sorted = np.sort(np.unique(x_test))

    y_pred_var = ((y_test_pred_upper_total - y_test_pred_lower_total) / 4.0)**2
    agg_y_std = np.array([np.sqrt(np.mean(y_pred_var[x_test==x])) for x in x_uniques_sorted])
    agg_y_mean = np.array([np.mean(y_test_pred_mean[x_test==x]) for x in x_uniques_sorted])

    ax.plot(x_uniques_sorted, agg_y_mean, '-b', lw=2, label='mean prediction')
    ax.fill_between(x_uniques_sorted,
                     agg_y_mean - 2.0 * agg_y_std,
                     agg_y_mean + 2.0 * agg_y_std,
                     alpha=0.3, label='total uncertainty')

    if y_test_pred_lower_epistemic is not None:
        y_pred_var_epistemic = ((y_test_pred_upper_epistemic - y_test_pred_lower_epistemic) / 4.0)**2
        agg_y_std_epistemic = np.array([np.sqrt(np.mean(y_pred_var_epistemic[x_test==x])) for x in x_uniques_sorted])
        ax.fill_between(x_uniques_sorted,
                         agg_y_mean - 2.0 * agg_y_std_epistemic,
                         agg_y_mean + 2.0 * agg_y_std_epistemic,
                         alpha=0.3, label='model uncertainty')

    ax.legend(loc='best')
            
    if xlims is not None:
        ax.set_xlim(left=xlims[0], right=xlims[1]) 

    if title is not None:
        ax.set_title(title)
    if xlabel is not None:
        ax.set_xlabel(xlabel)
    if ylabel is not None:
        ax.set_ylabel(ylabel)
    if xscale is not None:
        ax.set_xscale(xscale)

    return ax
"
classification_metrics.py,"import numpy as np
import pandas as pd
from scipy.stats import entropy
from sklearn.metrics import roc_auc_score, log_loss, accuracy_score


def entropy_based_uncertainty_decomposition(y_prob_samples):
    """""" Entropy based decomposition [2]_ of predictive uncertainty into aleatoric and epistemic components.

    References:
        .. [2] Depeweg, S., Hernandez-Lobato, J. M., Doshi-Velez, F., & Udluft, S. (2018, July). Decomposition of
            uncertainty in Bayesian deep learning for efficient and risk-sensitive learning. In International Conference
            on Machine Learning (pp. 1184-1193). PMLR.

    Args:
        y_prob_samples: list of array-like of shape (n_samples, n_classes) containing class prediction probabilities
            corresponding to samples from the model posterior.

    Returns:
        tuple:
            - total_uncertainty: entropy of the predictive distribution.
            - aleatoric_uncertainty: aleatoric component of the total_uncertainty.
            - epistemic_uncertainty: epistemic component of the total_uncertainty.

    """"""
    y_preds_samples_stacked = np.stack(y_prob_samples)
    preds_mean = np.mean(y_preds_samples_stacked, 0)

    total_uncertainty = entropy(preds_mean, axis=1)
    aleatoric_uncertainty = np.mean(
        np.concatenate([entropy(y_pred, axis=1).reshape(-1, 1) for y_pred in y_prob_samples], axis=1),
        axis=1)
    epistemic_uncertainty = total_uncertainty - aleatoric_uncertainty

    return total_uncertainty, aleatoric_uncertainty, epistemic_uncertainty


def multiclass_brier_score(y_true, y_prob):
    """"""Brier score for multi-class.

    Args:
        y_true: array-like of shape (n_samples,)
            ground truth labels.
        y_prob: array-like of shape (n_samples, n_classes).
            Probability scores from the base model.

    Returns:
        float: Brier score.

    """"""
    assert len(y_prob.shape) > 1, ""y_prob should be array-like of shape (n_samples, n_classes)""

    y_target = np.zeros_like(y_prob)
    y_target[:, y_true] = 1.0
    return np.mean(np.sum((y_target - y_prob) ** 2, axis=1))


def area_under_risk_rejection_rate_curve(y_true, y_prob, y_pred=None, selection_scores=None, risk_func=accuracy_score,
                                         attributes=None, num_bins=10, subgroup_ids=None,
                                         return_counts=False):
    """""" Computes risk vs rejection rate curve and the area under this curve. Similar to risk-coverage curves [3]_ where
    coverage instead of rejection rate is used.

    References:
        .. [3] Franc, Vojtech, and Daniel Prusa. ""On discriminative learning of prediction uncertainty.""
         In International Conference on Machine Learning, pp. 1963-1971. 2019.

    Args:
        y_true: array-like of shape (n_samples,)
            ground truth labels.
        y_prob: array-like of shape (n_samples, n_classes).
            Probability scores from the base model.
        y_pred: array-like of shape (n_samples,)
            predicted labels.
        selection_scores: scores corresponding to certainty in the predicted labels.
        risk_func: risk function under consideration.
        attributes: (optional) if risk function is a fairness metric also pass the protected attribute name.
        num_bins: number of bins.
        subgroup_ids: (optional) selectively compute risk on a subgroup of the samples specified by subgroup_ids.
        return_counts: set to True to return counts also.

    Returns:
        float or tuple:
            - aurrrc (float): area under risk rejection rate curve.
            - rejection_rates (list): rejection rates for each bin (returned only if return_counts is True).
            - selection_thresholds (list): selection threshold for each bin (returned only if return_counts is True).
            - risks (list): risk in each bin (returned only if return_counts is True).

    """"""

    if selection_scores is None:
        assert len(y_prob.shape) > 1, ""y_prob should be array-like of shape (n_samples, n_classes)""
        selection_scores = y_prob[np.arange(y_prob.shape[0]), np.argmax(y_prob, axis=1)]

    if y_pred is None:
        assert len(y_prob.shape) > 1, ""y_prob should be array-like of shape (n_samples, n_classes)""
        y_pred = np.argmax(y_prob, axis=1)

    order = np.argsort(selection_scores)[::-1]

    rejection_rates = []
    selection_thresholds = []
    risks = []
    for bin_id in range(num_bins):
        samples_in_bin = len(y_true) // num_bins
        selection_threshold = selection_scores[order[samples_in_bin * (bin_id+1)-1]]
        selection_thresholds.append(selection_threshold)
        ids = selection_scores >= selection_threshold
        if sum(ids) > 0:
            if attributes is None:
                if isinstance(y_true, pd.Series):
                    y_true_numpy = y_true.values
                else:
                    y_true_numpy = y_true
                if subgroup_ids is None:
                    risk_value = 1.0 - risk_func(y_true_numpy[ids], y_pred[ids])
                else:
                    if sum(subgroup_ids & ids) > 0:
                        risk_value = 1.0 - risk_func(y_true_numpy[subgroup_ids & ids], y_pred[subgroup_ids & ids])
                    else:
                        risk_value = 0.0
            else:
                risk_value = risk_func(y_true.iloc[ids], y_pred[ids], prot_attr=attributes)
        else:
            risk_value = 0.0
        risks.append(risk_value)
        rejection_rates.append(1.0 - 1.0 * sum(ids) / len(y_true))

    aurrrc = np.nanmean(risks)

    if not return_counts:
        return aurrrc
    else:
        return aurrrc, rejection_rates, selection_thresholds, risks


def expected_calibration_error(y_true, y_prob, y_pred=None, num_bins=10, return_counts=False):
    """""" Computes the reliability curve and the  expected calibration error [1]_ .

    References:
        .. [1] Chuan Guo, Geoff Pleiss, Yu Sun, Kilian Q. Weinberger; Proceedings of the 34th International Conference
         on Machine Learning, PMLR 70:1321-1330, 2017.

    Args:
        y_true: array-like of shape (n_samples,)
            ground truth labels.
        y_prob: array-like of shape (n_samples, n_classes).
            Probability scores from the base model.
        y_pred: array-like of shape (n_samples,)
            predicted labels.
        num_bins: number of bins.
        return_counts: set to True to return counts also.

    Returns:
        float or tuple:
            - ece (float): expected calibration error.
            - confidences_in_bins: average confidence in each bin (returned only if return_counts is True).
            - accuracies_in_bins: accuracy in each bin (returned only if return_counts is True).
            - frac_samples_in_bins: fraction of samples in each bin (returned only if return_counts is True).

    """"""

    assert len(y_prob.shape) > 1, ""y_prob should be array-like of shape (n_samples, n_classes)""
    num_samples, num_classes = y_prob.shape
    top_scores = np.max(y_prob, axis=1)

    if y_pred is None:
        y_pred = np.argmax(y_prob, axis=1)

    if num_classes == 2:
        bins_edges = np.histogram_bin_edges([], bins=num_bins, range=(0.5, 1.0))
    else:
        bins_edges = np.histogram_bin_edges([], bins=num_bins, range=(0.0, 1.0))

    non_boundary_bin_edges = bins_edges[1:-1]
    bin_centers = (bins_edges[1:] + bins_edges[:-1])/2

    sample_bin_ids = np.digitize(top_scores, non_boundary_bin_edges)

    num_samples_in_bins = np.zeros(num_bins)
    accuracies_in_bins = np.zeros(num_bins)
    confidences_in_bins = np.zeros(num_bins)

    for bin in range(num_bins):
        num_samples_in_bins[bin] = len(y_pred[sample_bin_ids == bin])
        if num_samples_in_bins[bin] > 0:
            accuracies_in_bins[bin] = np.sum(y_true[sample_bin_ids == bin] == y_pred[sample_bin_ids == bin]) / num_samples_in_bins[bin]
            confidences_in_bins[bin] = np.sum(top_scores[sample_bin_ids == bin]) / num_samples_in_bins[bin]

    ece = np.sum(
        num_samples_in_bins * np.abs(accuracies_in_bins - confidences_in_bins) / num_samples
    )
    frac_samples_in_bins = num_samples_in_bins / num_samples

    if not return_counts:
        return ece
    else:
        return ece, confidences_in_bins, accuracies_in_bins, frac_samples_in_bins, bin_centers


def compute_classification_metrics(y_true, y_prob, option='all'):
    """"""
    Computes the metrics specified in the option which can be string or a list of strings. Default option `all` computes
    the [aurrrc, ece, auroc, nll, brier, accuracy] metrics.

    Args:
        y_true: array-like of shape (n_samples,)
            ground truth labels.
        y_prob: array-like of shape (n_samples, n_classes).
            Probability scores from the base model.
        option: string or list of string contained the name of the metrics to be computed.

    Returns:
        dict: a dictionary containing the computed metrics.
    """"""
    results = {}
    if not isinstance(option, list):
        if option == ""all"":
            option_list = [""aurrrc"", ""ece"", ""auroc"", ""nll"", ""brier"", ""accuracy""]
        else:
            option_list = [option]

    if ""aurrrc"" in option_list:
        results[""aurrrc""] = area_under_risk_rejection_rate_curve(y_true=y_true, y_prob=y_prob)
    if ""ece"" in option_list:
        results[""ece""] = expected_calibration_error(y_true=y_true, y_prob=y_prob)
    if ""auroc"" in option_list:
        results[""auroc""], _ = roc_auc_score(y_true=y_true, y_score=y_prob)
    if ""nll"" in option_list:
        results[""nll""] = log_loss(y_true=y_true, y_pred=np.argmax(y_prob, axis=1))
    if ""brier"" in option_list:
        results[""brier""] = multiclass_brier_score(y_true=y_true, y_prob=y_prob)
    if ""accuracy"" in option_list:
        results[""accuracy""] = accuracy_score(y_true=y_true, y_pred=np.argmax(y_prob, axis=1))

    return results


def plot_reliability_diagram(y_true, y_prob, y_pred, plot_label=[""""], num_bins=10):
    """"""
    Plots the reliability diagram showing the calibration error for different confidence scores. Multiple curves
    can be plot by passing data as lists.

    Args:
        y_true: array-like or or a list of array-like of shape (n_samples,)
            ground truth labels.
        y_prob: array-like or or a list of array-like of shape (n_samples, n_classes).
            Probability scores from the base model.
        y_pred: array-like or or a list of array-like of shape (n_samples,)
            predicted labels.
        plot_label: (optional) list of names identifying each curve.
        num_bins: number of bins.

    Returns:
        tuple:
            - ece_list: ece: list containing expected calibration error for each curve.
            - accuracies_in_bins_list: list containing binned average accuracies for each curve.
            - frac_samples_in_bins_list: list containing binned sample frequencies for each curve.
            - confidences_in_bins_list: list containing binned average confidence for each curve.
    """"""
    import matplotlib.pyplot as plt

    if not isinstance(y_true, list):
        y_true, y_prob, y_pred = [y_true], [y_prob], [y_pred]
    if len(plot_label) != len(y_true):
        raise ValueError('y_true and plot_label should be of same length.')

    ece_list = []
    accuracies_in_bins_list = []
    frac_samples_in_bins_list = []
    confidences_in_bins_list = []

    for idx in range(len(plot_label)):
        ece, confidences_in_bins, accuracies_in_bins, frac_samples_in_bins, bins = expected_calibration_error(y_true[idx],
                                                                                                  y_prob[idx],
                                                                                                  y_pred[idx],
                                                                                                  num_bins=num_bins,
                                                                                                  return_counts=True)
        ece_list.append(ece)
        accuracies_in_bins_list.append(accuracies_in_bins)
        frac_samples_in_bins_list.append(frac_samples_in_bins)
        confidences_in_bins_list.append(confidences_in_bins)

    fig = plt.figure(figsize=(12, 5))

    plt.subplot(1, 2, 1)
    for idx in range(len(plot_label)):
        plt.plot(bins, frac_samples_in_bins_list[idx], 'o-', label=plot_label[idx])
    plt.title(""Confidence Histogram"")
    plt.xlabel(""Confidence"")
    plt.ylabel(""Fraction of Samples"")
    plt.grid()
    plt.ylim([0.0, 1.0])
    plt.legend()

    plt.subplot(1, 2, 2)
    for idx in range(len(plot_label)):
        plt.plot(bins, accuracies_in_bins_list[idx], 'o-',
                 label=""{} ECE = {:.2f}"".format(plot_label[idx], ece_list[idx]))
    plt.plot(np.linspace(0, 1, 50), np.linspace(0, 1, 50), 'b.', label=""Perfect Calibration"")
    plt.title(""Reliability Plot"")
    plt.xlabel(""Confidence"")
    plt.ylabel(""Accuracy"")
    plt.grid()
    plt.legend()

    plt.show()

    return ece_list, accuracies_in_bins_list, frac_samples_in_bins_list, confidences_in_bins_list


def plot_risk_vs_rejection_rate(y_true, y_prob, y_pred, selection_scores=None, plot_label=[""""], risk_func=None,
                                attributes=None, num_bins=10, subgroup_ids=None):
    """"""
    Plots the risk vs rejection rate curve showing the risk for different rejection rates. Multiple curves
    can be plot by passing data as lists.

    Args:
        y_true: array-like or or a list of array-like of shape (n_samples,)
            ground truth labels.
        y_prob: array-like or or a list of array-like of shape (n_samples, n_classes).
            Probability scores from the base model.
        y_pred: array-like or or a list of array-like of shape (n_samples,)
            predicted labels.
        selection_scores: ndarray or a list of ndarray containing scores corresponding to certainty in the predicted labels.
        risk_func: risk function under consideration.
        attributes: (optional) if risk function is a fairness metric also pass the protected attribute name.
        num_bins: number of bins.
        subgroup_ids: (optional) ndarray or a list of ndarray containing subgroup_ids to selectively compute risk on a
            subgroup of the samples specified by subgroup_ids.

    Returns:
        tuple:
            - aurrrc_list: list containing the area under risk rejection rate curves.
            - rejection_rate_list: list containing the binned rejection rates.
            - selection_thresholds_list: list containing the binned selection thresholds.
            - risk_list: list containing the binned risks.
    """"""
    import matplotlib.pyplot as plt

    if not isinstance(y_true, list):
        y_true, y_prob, y_pred, selection_scores, subgroup_ids = [y_true], [y_prob], [y_pred], [selection_scores], [subgroup_ids]
    if len(plot_label) != len(y_true):
        raise ValueError('y_true and plot_label should be of same length.')

    aurrrc_list = []
    rejection_rate_list = []
    risk_list = []
    selection_thresholds_list = []

    for idx in range(len(plot_label)):
        aursrc, rejection_rates, selection_thresholds, risks = area_under_risk_rejection_rate_curve(
            y_true[idx],
            y_prob[idx],
            y_pred[idx],
            selection_scores=selection_scores[idx],
            risk_func=risk_func,
            attributes=attributes,
            num_bins=num_bins,
            subgroup_ids=subgroup_ids[idx],
            return_counts=True
        )

        aurrrc_list.append(aursrc)
        rejection_rate_list.append(rejection_rates)
        risk_list.append(risks)
        selection_thresholds_list.append(selection_thresholds)

    plt.figure(figsize=(12, 5))

    plt.subplot(1, 2, 1)
    for idx in range(len(plot_label)):
        plt.plot(rejection_rate_list[idx], risk_list[idx], label=""{} AURRRC={:.5f}"".format(plot_label[idx], aurrrc_list[idx]))

    plt.legend(loc=""best"")
    plt.xlabel(""Rejection Rate"")
    if risk_func is None:
        ylabel = ""Prediction Error Rate""
    else:
        if 'accuracy' in risk_func.__name__:
            ylabel = ""1.0 - "" + risk_func.__name__
        else:
            ylabel = risk_func.__name__

    plt.ylabel(ylabel)
    plt.title(""Risk vs Rejection Rate Plot"")
    plt.grid()

    plt.subplot(1, 2, 2)
    for idx in range(len(plot_label)):
        plt.plot(selection_thresholds_list[idx], risk_list[idx], label=""{}"".format(plot_label[idx]))

    plt.legend(loc=""best"")
    plt.xlabel(""Selection Threshold"")
    if risk_func is None:
        ylabel = ""Prediction Error Rate""
    else:
        if 'accuracy' in risk_func.__name__:
            ylabel = ""1.0 - "" + risk_func.__name__
        else:
            ylabel = risk_func.__name__

    plt.ylabel(ylabel)
    plt.title(""Risk vs Selection Threshold Plot"")
    plt.grid()

    plt.show()

    return aurrrc_list, rejection_rate_list, selection_thresholds_list, risk_list
"
__init__.py,"from .classification_metrics import expected_calibration_error, area_under_risk_rejection_rate_curve, \
    compute_classification_metrics, entropy_based_uncertainty_decomposition
from .regression_metrics import picp, mpiw, compute_regression_metrics, plot_uncertainty_distribution, \
    plot_uncertainty_by_feature, plot_picp_by_feature
from .uncertainty_characteristics_curve import UncertaintyCharacteristicsCurve
"
__init__.py,"from .uncertainty_characteristics_curve import UncertaintyCharacteristicsCurve
"
uncertainty_characteristics_curve.py,"from copy import deepcopy

import matplotlib.pyplot as plt
import numpy as np
from scipy.integrate import simps, trapz
from sklearn.isotonic import IsotonicRegression

DEFAULT_X_AXIS_NAME = 'excess'
DEFAULT_Y_AXIS_NAME = 'missrate'


class UncertaintyCharacteristicsCurve:
    """"""
    Class with main functions of the Uncertainty Characteristics Curve (UCC).

    """"""

    def __init__(self, normalize=True, precompute_bias_data=True):
        """"""
        :param normalize: set initial axes normalization flag (can be changed via set_coordinates())
        :param precompute_bias_data: if True, fit() will compute statistics necessary to generate bias-based
            UCCs (in addition to the scale-based ones). Skipping this precomputation may speed up the fit() call
            if bias-based UCC is not needed.

        """"""
        self.axes_name2idx = {""missrate"": 1, ""bandwidth"": 2, ""excess"": 3, ""deficit"": 4}
        self.axes_idx2descr = {1: ""Missrate"", 2: ""Bandwidth"", 3: ""Excess"", 4: ""Deficit""}
        self.x_axis_idx = None
        self.y_axis_idx = None
        self.norm_x_axis = False
        self.norm_y_axis = False
        self.std_unit = None
        self.normalize = normalize
        self.d = None
        self.gt = None
        self.lb = None
        self.ub = None
        self.precompute_bias_data = precompute_bias_data
        self.set_coordinates(x_axis_name=DEFAULT_X_AXIS_NAME, y_axis_name=DEFAULT_Y_AXIS_NAME, normalize=normalize)

    def set_coordinates(self, x_axis_name=None, y_axis_name=None, normalize=None):
        """"""
        Assigns user-specified type to the axes and normalization behavior (sticky).

        :param x_axis_name: None-> unchanged, or name from self.axes_name2idx 
        :param y_axis_name: ditto
        :param normalize: True/False will activate/deactivate norming for specified axes. Behavior for
                          Axes_name that are None will not be changed.
                          Value None will leave norm status unchanged.
                          Note, axis=='missrate' will never get normalized, even with normalize == True
        :return: none
        """"""
        normalize = self.normalize if normalize is None else normalize
        if x_axis_name is None and self.x_axis_idx is None:
            raise ValueError(""ERROR(UCC): x-axis has not been defined."")
        if y_axis_name is None and self.y_axis_idx is None:
            raise ValueError(""ERROR(UCC): y-axis has not been defined."")
        if x_axis_name is None and y_axis_name is None and normalize is not None:
            # just set normalization on/off for both axes and return
            self.norm_x_axis = False if x_axis_name == 'missrate' else normalize
            self.norm_y_axis = False if y_axis_name == 'missrate' else normalize
            return
        if x_axis_name is not None:
            self.x_axis_idx = self.axes_name2idx[x_axis_name]
            self.norm_x_axis = False if x_axis_name == 'missrate' else normalize
        if y_axis_name is not None:
            self.y_axis_idx = self.axes_name2idx[y_axis_name]
            self.norm_y_axis = False if y_axis_name == 'missrate' else normalize

    def set_std_unit(self, std_unit=None):
        """"""
        Sets the UCC's unit to be used when displaying normalized axes.

        :param std_unit: if None, the unit will be calculated as stddev of the ground truth data 
                        (ValueError raised if data has not been set at this point)
                        or set to the user-specified value.
        :return: 
        """"""
        if std_unit is None:  # set it to stddev of data
            if self.gt is None:
                raise ValueError(""ERROR(UCC): No data specified - cannot set stddev unit."")
            self.std_unit = np.std(self.gt)

            if np.isclose(self.std_unit, 0.):
                print(""WARN(UCC): data-based stddev is zero - resetting axes unit to 1."")
                self.std_unit = 1.
        else:
            self.std_unit = float(std_unit)

    def fit(self, X, gt):
        """"""
        Calculates internal arrays necessary for other methods (plotting, auc, cost minimization).
        Re-entrant.

        :param X: [numsamples, 3] numpy matrix, or list of numpy matrices.
                    Col 1: predicted values
                    Col 2: lower band (deviate) wrt predicted value  (always positive)
                    Col 3: upper band wrt predicted value  (always positive)
                    If list is provided, all methods will output corresponding metrics as lists as well!
        :param gt: Ground truth array (i.e.,the 'actual' values corresponding to predictions in X
        :return: self

        """"""
        if not isinstance(X, list):
            X = [X]
        newX = []
        for x in X:
            assert (isinstance(x, np.ndarray) and len(x.shape) == 2 and x.shape[1] == 3 and x.shape[0] == len(gt))
            newX.append(self._sanitize_input(x))
        self.d = [gt - x[:, 0] for x in newX]
        self.lb = [x[:, 1] for x in newX]
        self.ub = [x[:, 2] for x in newX]
        self.gt = gt
        self.set_std_unit()
        self.plotdata_for_scale = []
        self.plotdata_for_bias = []
        # precompute plotdata:
        for i in range(len(self.d)):
            self.plotdata_for_scale.append(self._calc_plotdata(self.d[i], self.lb[i], self.ub[i], vary_bias=False))
            if self.precompute_bias_data:
                self.plotdata_for_bias.append(self._calc_plotdata(self.d[i], self.lb[i], self.ub[i], vary_bias=True))

        return self

    def minimize_cost(self, x_axis_cost=.5, y_axis_cost=.5, augment_cost_by_normfactor=True,
                      search=('scale', 'bias')):
        """"""
        Find minima of a linear cost function for each component.
        Cost function C = x_axis_cost * x_axis_value + y_axis_cost * y_axis_value.
        A minimum can occur in the scale-based or bias-based UCC (this can be constrained by the 'search' arg).
        The function returns a 'recipe' how to achieve the corresponding minimum, for each component.

        :param x_axis_cost: weight of one unit on x_axis
        :param y_axis_cost: weight of one unit on y_axis
        :param augment_cost_by_normfactor: when False, the cost multipliers will apply as is. If True, they will be
            pre-normed by the corresponding axis norm (where applicable), to account for range differences between axes.
        :param search: list of types over which minimization is to be performed, valid elements are 'scale' and 'bias'.

        :return: list of dicts - one per component, or a single dict, if there is only one component. Dict keys are -
            'operation': can be 'bias' (additive) or 'scale' (multiplicative), 'modvalue': value to multiply by or to
            add to error bars to achieve the minimum, 'new_x'/'new_y': new coordinates (operating point) with that
            minimum, 'cost': new cost at minimum point, 'original_cost': original cost (original operating point).

        """"""
        if self.d is None:
            raise ValueError(""ERROR(UCC): call fit() prior to using this method."")
        if augment_cost_by_normfactor:
            if self.norm_x_axis:
                x_axis_cost /= self.std_unit
            if self.norm_y_axis:
                y_axis_cost /= self.std_unit
            print(""INFO(UCC): Pre-norming costs by corresp. std deviation: new x_axis_cost = %.4f, y_axis_cost = %.4f"" %
                  (x_axis_cost, y_axis_cost))
        if isinstance(search, tuple):
            search = list(search)
        if not isinstance(search, list):
            search = [search]

        min_costs = []
        for d in range(len(self.d)):
            # original OP cost
            m, b, e, df = self._calc_missrate_bandwidth_excess_deficit(self.d[d], self.lb[d], self.ub[d])
            original_cost = x_axis_cost * [0., m, b, e, df][self.x_axis_idx] + y_axis_cost * [0., m, b, e, df][
                self.y_axis_idx]

            plotdata = self.plotdata_for_scale[d]
            cost_scale, minidx_scale = self._find_min_cost_in_component(plotdata, self.x_axis_idx, self.y_axis_idx,
                                                                        x_axis_cost, y_axis_cost)
            mcf_scale_multiplier = plotdata[minidx_scale][0]
            mcf_scale_x = plotdata[minidx_scale][self.x_axis_idx]
            mcf_scale_y = plotdata[minidx_scale][self.y_axis_idx]

            if 'bias' in search:
                if not self.precompute_bias_data:
                    raise ValueError(
                        ""ERROR(UCC): Cannot perform minimization - instantiated without bias data computation"")
                plotdata = self.plotdata_for_bias[d]
                cost_bias, minidx_bias = self._find_min_cost_in_component(plotdata, self.x_axis_idx, self.y_axis_idx,
                                                                          x_axis_cost, y_axis_cost)
                mcf_bias_add = plotdata[minidx_bias][0]
                mcf_bias_x = plotdata[minidx_bias][self.x_axis_idx]
                mcf_bias_y = plotdata[minidx_bias][self.y_axis_idx]

            if 'bias' in search and 'scale' in search:
                if cost_bias < cost_scale:
                    min_costs.append({'operation': 'bias', 'cost': cost_bias, 'modvalue': mcf_bias_add,
                                      'new_x': mcf_bias_x, 'new_y': mcf_bias_y, 'original_cost': original_cost})
                else:
                    min_costs.append({'operation': 'scale', 'cost': cost_scale, 'modvalue': mcf_scale_multiplier,
                                      'new_x': mcf_scale_x, 'new_y': mcf_scale_y, 'original_cost': original_cost})
            elif 'scale' in search:
                min_costs.append({'operation': 'scale', 'cost': cost_scale, 'modvalue': mcf_scale_multiplier,
                                  'new_x': mcf_scale_x, 'new_y': mcf_scale_y, 'original_cost': original_cost})
            elif 'bias' in search:
                min_costs.append({'operation': 'bias', 'cost': cost_bias, 'modvalue': mcf_bias_add,
                                  'new_x': mcf_bias_x, 'new_y': mcf_bias_y, 'original_cost': original_cost})
            else:
                raise ValueError(""(ERROR): Unknown search element (%s) requested."" % "","".join(search))

        if len(min_costs) < 2:
            return min_costs[0]
        else:
            return min_costs

    def get_specific_operating_point(self, req_x_axis_value=None, req_y_axis_value=None,
                                     req_critical_value=None, vary_bias=False):
        """"""
        Finds corresponding operating point on the current UCC, given a point on either x or y axis. Returns
        a list of recipes how to achieve the point (x,y), for each component. If there is only one component,
        returns a single recipe dict.

        :param req_x_axis_value: requested x value on UCC (normalization status is taken from current display)
        :param req_y_axis_value: requested y value on UCC (normalization status is taken from current display)
        :param vary_bias: set to True when referring to bias-induced UCC (scale UCC default)
        :return: list of dicts (recipes), or a single dict
        """"""
        if self.d is None:
            raise ValueError(""ERROR(UCC): call fit() prior to using this method."")
        if np.sum([req_x_axis_value is not None, req_y_axis_value is not None, req_critical_value is not None]) != 1:
            raise ValueError(""ERROR(UCC): exactly one axis value must be requested at a time."")
        if vary_bias and not self.precompute_bias_data:
            raise ValueError(""ERROR(UCC): Cannot vary bias - instantiated without bias data computation"")
        xnorm = self.std_unit if self.norm_x_axis else 1.
        ynorm = self.std_unit if self.norm_y_axis else 1.
        recipe = []
        for dc in range(len(self.d)):
            plotdata = self.plotdata_for_bias[dc] if vary_bias else self.plotdata_for_scale[dc]
            if req_x_axis_value is not None:
                tgtidx = self.x_axis_idx
                req_value = req_x_axis_value * xnorm
            elif req_y_axis_value is not None:
                tgtidx = self.y_axis_idx
                req_value = req_y_axis_value * ynorm
            elif req_critical_value is not None:
                req_value = req_critical_value
                tgtidx = 0  # first element in plotdata is always the critical value (scale of bias)
            else:
                raise RuntimeError(""Unhandled case"")
            closestidx = np.argmin(np.asarray([np.abs(p[tgtidx] - req_value) for p in plotdata]))
            recipe.append({'operation': ('bias' if vary_bias else 'scale'),
                           'modvalue': plotdata[closestidx][0],
                           'new_x': plotdata[closestidx][self.x_axis_idx] / xnorm,
                           'new_y': plotdata[closestidx][self.y_axis_idx] / ynorm})
        if len(recipe) < 2:
            return recipe[0]
        else:
            return recipe


    def _find_min_cost_in_component(self, plotdata, idx1, idx2, cost1, cost2):
        """"""
        Find s minimum cost function value and corresp. position index in plotdata

        :param plotdata: liste of tuples
        :param idx1: idx of  x-axis item within the tuple
        :param idx2: idx of y-axis item within the tuple
        :param cost1: cost factor for x-axis unit
        :param cost2: cost factor for y-axis unit
        :return: min cost value, index within plotdata where minimum occurs
        """"""
        raw = [cost1 * i[idx1] + cost2 * i[idx2] for i in plotdata]
        minidx = np.argmin(raw)
        return raw[minidx], minidx

    def _sanitize_input(self, x):
        """"""
        Replaces problematic values in input data (e.g, zero error bars)

        :param x: single matrix of input data [n, 3]
        :return: sanitized version of x
        """"""
        if np.isclose(np.sum(x[:, 1]), 0.):
            raise ValueError(""ERROR(UCC): Provided lower bands are all zero."")
        if np.isclose(np.sum(x[:, 2]), 0.):
            raise ValueError(""ERROR(UCC): Provided upper bands are all zero."")
        for i in [1, 2]:
            if any(np.isclose(x[:, i], 0.)):
                print(""WARN(UCC): some band values are 0. - REPLACING with positive minimum"")
                m = np.min(x[x[:, i] > 0, i])
                x = np.where(np.isclose(x, 0.), m, x)
        return x

    def _calc_avg_excess(self, d, lb, ub):
        """"""
        Excess is amount an error bar overshoots actual

        :param d: pred-actual array
        :param lb: lower band
        :param ub: upper band
        :return: average excess over array
        """"""
        excess = np.zeros(d.shape)
        posidx = np.where(d >= 0)[0]
        excess[posidx] = np.where(ub[posidx] - d[posidx] < 0., 0., ub[posidx] - d[posidx])
        negidx = np.where(d < 0)[0]
        excess[negidx] = np.where(lb[negidx] + d[negidx] < 0., 0., lb[negidx] + d[negidx])
        return np.mean(excess)

    def _calc_avg_deficit(self, d, lb, ub):
        """"""
        Deficit is error bar insufficiency: bar falls short of actual

        :param d: pred-actual array
        :param lb: lower band
        :param ub: upper band
        :return: average deficit over array
        """"""
        deficit = np.zeros(d.shape)
        posidx = np.where(d >= 0)[0]
        deficit[posidx] = np.where(- ub[posidx] + d[posidx] < 0., 0., - ub[posidx] + d[posidx])
        negidx = np.where(d < 0)[0]
        deficit[negidx] = np.where(- lb[negidx] - d[negidx] < 0., 0., - lb[negidx] - d[negidx])
        return np.mean(deficit)

    def _calc_missrate_bandwidth_excess_deficit(self, d, lb, ub, scale=1.0, bias=0.0):
        """"""
        Calculates recall at a given scale/bias, average bandwidth and average excess

        :param d: delta
        :param lb: lower band
        :param ub: upper band
        :param scale: scale * (x + bias)
        :param bias:
        :return: miss rate, average bandwidth, avg excess, avg deficit
        """"""
        abslband = scale * np.where((lb + bias) < 0., 0., lb + bias)
        absuband = scale * np.where((ub + bias) < 0., 0., ub + bias)
        recall = np.sum((d >= - abslband) & (d <= absuband)) / len(d)
        avgbandwidth = np.mean([absuband, abslband])
        avgexcess = self._calc_avg_excess(d, abslband, absuband)
        avgdeficit = self._calc_avg_deficit(d, abslband, absuband)
        return 1 - recall, avgbandwidth, avgexcess, avgdeficit

    def _calc_plotdata(self, d, lb, ub, vary_bias=False):
        """"""
        Generates data necessary for various UCC metrics.

        :param d: delta (predicted - actual) vector
        :param ub: upper uncertainty bandwidth (above predicted)
        :param lb: lower uncertainty bandwidth (below predicted) - all positive (bandwidth)
        :param vary_bias: True will switch to additive bias instead of scale
        :return: list. Elements are tuples (varyvalue, missrate, bandwidth, excess, deficit)
        """"""

        # step 1: collect critical scale or bias values
        critval = []
        for i in range(len(d)):
            if not vary_bias:
                if d[i] >= 0:
                    critval.append(d[i] / ub[i])
                else:
                    critval.append(-d[i] / lb[i])
            else:
                if d[i] >= 0:
                    critval.append(d[i] - ub[i])
                else:
                    critval.append(-lb[i] - d[i])
        critval = sorted(critval)
        plotdata = []
        for i in range(len(critval)):
            if not vary_bias:
                missrate, bandwidth, excess, deficit = self._calc_missrate_bandwidth_excess_deficit(d, lb, ub,
                                                                                                    scale=critval[i])
            else:
                missrate, bandwidth, excess, deficit = self._calc_missrate_bandwidth_excess_deficit(d, lb, ub,
                                                                                                    bias=critval[i])
            plotdata.append((critval[i], missrate, bandwidth, excess, deficit))

        return plotdata

    def get_AUUCC(self, vary_bias=False, aucfct=""trapz"", partial_x=None, partial_y=None):
        """"""
        returns approximate area under the curve on current coordinates, for each component.

        :param vary_bias: False == varies scale, True == varies bias
        :param aucfct: specifies AUC integrator (can be ""trapz"", ""simps"")
        :param partial_x: tuple (x_min, x_max) defining interval on x to calc a a partial AUC.
                        The interval bounds refer to axes as visualized (ie. potentially normed)
        :param partial_y: tuple (y_min, y_max) defining interval on y to calc a a partial AUC. partial_x must be None.
        :return: list of floats with AUUCCs for each input component, or a single float, if there is only 1 component.
        """"""
        if self.d is None:
            raise ValueError(""ERROR(UCC): call fit() prior to using this method."")
        if vary_bias and not self.precompute_bias_data:
            raise ValueError(""ERROR(UCC): Cannot vary bias - instantiated without bias data computation"")
        if partial_x is not None and partial_y is not None:
            raise ValueError(""ERROR(UCC): partial_x and partial_y can not be specified at the same time."")
        assert(partial_x is None or (isinstance(partial_x, tuple) and len(partial_x)==2))
        assert(partial_y is None or (isinstance(partial_y, tuple) and len(partial_y)==2))

        # find starting point (where the x axis value starts to actually change)
        rv = []
        # do this for individual streams 
        xind = self.x_axis_idx
        aucfct = simps if aucfct == ""simps"" else trapz
        for s in range(len(self.d)):
            plotdata = self.plotdata_for_bias[s] if vary_bias else self.plotdata_for_scale[s]
            prev = plotdata[0][xind]
            t = 1
            cval = plotdata[t][xind]
            while cval == prev and t < len(plotdata) - 1:
                t += 1
                prev = cval
                cval = plotdata[t][xind]
            startt = t - 1  # from here, it's a valid function
            endtt = len(plotdata)

            if startt >= endtt - 2:
                rvs = 0.  # no area
            else:
                xnorm = self.std_unit if self.norm_x_axis else 1.
                ynorm = self.std_unit if self.norm_y_axis else 1.
                y=[(plotdata[i][self.y_axis_idx]) / ynorm for i in range(startt, endtt)]
                x=[(plotdata[i][self.x_axis_idx]) / xnorm for i in range(startt, endtt)]
                if partial_x is not None:
                    from_i = self._find_closest_index(partial_x[0], x)
                    to_i = self._find_closest_index(partial_x[1], x) + 1
                elif partial_y is not None:
                    from_i = self._find_closest_index(partial_y[0], y)
                    to_i = self._find_closest_index(partial_y[1], y)
                    if from_i > to_i:   # y is in reverse order
                        from_i, to_i = to_i, from_i
                    to_i += 1 # as upper bound in array indexing
                else:
                    from_i = 0
                    to_i = len(x)
                to_i = min(to_i, len(x))
                if to_i < from_i:
                    raise ValueError(""ERROR(UCC): Failed to find an appropriate partial-AUC interval in the data."")
                if to_i - from_i < 2:
                    raise RuntimeError(""ERROR(UCC): There are too few samples (1) in the partial-AUC interval specified"")
                rvs = aucfct(x=x[from_i:to_i], y=y[from_i:to_i])
            rv.append(rvs)
        if len(rv) < 2:
            return rv[0]
        else:
            return rv

    @ staticmethod
    def _find_closest_index(value, array):
        """"""
        Returns an index of the 'array' element closest in value to 'value'

        :param value:
        :param array:
        :return:
        """"""
        return np.argmin(np.abs(np.asarray(array)-value))

    def _get_single_OP(self, d, lb, ub, scale=1., bias=0.):
        """"""
        Returns Operating Point for original input data, on coordinates currently set up, given a scale/bias.

        :param scale:
        :param bias: 
        :return: single tuple (x point, y point, unit of x, unit of y)
        """"""
        xnorm = self.std_unit if self.norm_x_axis else 1.
        ynorm = self.std_unit if self.norm_y_axis else 1.
        auxop = self._calc_missrate_bandwidth_excess_deficit(d, lb, ub, scale=scale, bias=bias)
        op = [0.] + [i for i in auxop]  # mimic plotdata (first element ignored here)
        return (op[self.x_axis_idx] / xnorm, op[self.y_axis_idx] / ynorm, xnorm, ynorm)

    def get_OP(self, scale=1., bias=0.):
        """"""
        Returns all Operating Points for original input data, on coordinates currently set up, given a scale/bias.

        :param scale:
        :param bias:
        :return: list of tuples (x point, y point, unit of x, unit of y) or a single tuple if there is only
                1 component.
        """"""
        if self.d is None:
            raise ValueError(""ERROR(UCC): call fit() prior to using this method."")
        op = []
        for dc in range(len(self.d)):
            op.append(self._get_single_OP(self.d[dc], self.lb[dc], self.ub[dc], scale=scale, bias=bias))
        if len(op) < 2:
            return op[0]
        else:
            return op

    def plot_UCC(self, titlestr='', syslabel='model', outfn=None, vary_bias=False, markers=None,
                 xlim=None, ylim=None, **kwargs):
        """""" Will plot/display the UCC based on current data and coordinates. Multiple curves will be shown
        if there are multiple data components (via fit())

        :param titlestr: Plot title string
        :param syslabel: list is label strings to appear in the plot legend. Can be single, if one component.
        :param outfn: base name of an image file to be created (will append .png before creating)
        :param vary_bias: True will switch to varying additive bias (default is multiplicative scale)
        :param markers: None or a list of marker styles to be used for each curve.
            List must be same or longer than number of components.
            Markers can be one among these ['o', 's', 'v', 'D', '+'].
        :param xlim: tuples or lists of specifying the range for the x axis, or None (auto)
        :param ylim: tuples or lists of specifying the range for the y axis, or None (auto)
        :param `**kwargs`: Additional arguments passed to the main plot call.

        :return: list of areas under the curve (or single area, if one data component)
                 list of operating points (or single op): format of an op is tuple (xaxis value, yaxis value, xunit, yunit)
        """"""
        if self.d is None:
            raise ValueError(""ERROR(UCC): call fit() prior to using this method."")
        if vary_bias and not self.precompute_bias_data:
            raise ValueError(""ERROR(UCC): Cannot vary bias - instantiated without bias data computation"")
        if not isinstance(syslabel, list):
            syslabel = [syslabel]
        assert (len(syslabel) == len(self.d))
        assert (markers is None or (isinstance(markers, list) and len(markers) >= len(self.d)))
        # main plot of (possibly multiple) datasets
        plt.figure()
        xnorm = self.std_unit if self.norm_x_axis else 1.
        ynorm = self.std_unit if self.norm_y_axis else 1.
        op_info = []
        auucc = self.get_AUUCC(vary_bias=vary_bias)
        auucc = [auucc] if not isinstance(auucc, list) else auucc
        for s in range(len(self.d)):
            # original operating point
            x_op, y_op, x_unit, y_unit = self._get_single_OP(self.d[s], self.lb[s], self.ub[s])
            op_info.append((x_op, y_op, x_unit, y_unit))
            # display chart
            plotdata = self.plotdata_for_scale[s] if not vary_bias else self.plotdata_for_bias[s]
            axisX_data = [i[self.x_axis_idx] / xnorm for i in plotdata]
            axisY_data = [i[self.y_axis_idx] / ynorm for i in plotdata]
            marker = None
            if markers is not None: marker = markers[s]
            p = plt.plot(axisX_data, axisY_data, label=syslabel[s] + ("" (AUC=%.3f)"" % auucc[s]), marker=marker, **kwargs)
            if s + 1 == len(self.d):
                oplab = 'OP'
            else:
                oplab = None
            plt.plot(x_op, y_op, marker='o', color=p[0].get_color(), label=oplab, markerfacecolor='w',
                     markeredgewidth=1.5, markeredgecolor=p[0].get_color())
        axisX_label = self.axes_idx2descr[self.x_axis_idx]
        axisY_label = self.axes_idx2descr[self.y_axis_idx]
        axisX_units = ""(raw)"" if np.isclose(xnorm, 1.0) else ""[in std deviations]""
        axisY_units = ""(raw)"" if np.isclose(ynorm, 1.0) else ""[in std deviations]""
        axisX_label += ' ' + axisX_units
        axisY_label += ' ' + axisY_units
        if ylim is not None:
            plt.ylim(ylim)
        if xlim is not None:
            plt.xlim(xlim)
        plt.xlabel(axisX_label)
        plt.ylabel(axisY_label)
        plt.legend()
        plt.title(titlestr)
        plt.grid()
        if outfn is None:
            plt.show()
        else:
            plt.savefig(outfn)
        if len(auucc) < 2:
            auucc = auucc[0]
            op_info = op_info[0]
        return auucc, op_info
"
heteroscedastic_mlp.py,"import torch
import torch.nn.functional as F
from uq360.models.noise_models.heteroscedastic_noise_models import GaussianNoise

class GaussianNoiseMLPNet(torch.nn.Module):

    def __init__(self, num_features, num_outputs, num_hidden):
        super(GaussianNoiseMLPNet, self).__init__()
        self.fc = torch.nn.Linear(num_features, num_hidden)
        self.fc_mu = torch.nn.Linear(num_hidden, num_outputs)
        self.fc_log_var = torch.nn.Linear(num_hidden, num_outputs)
        self.noise_layer = GaussianNoise()

    def forward(self, x):
        x = F.relu(self.fc(x))
        mu = self.fc_mu(x)
        log_var = self.fc_log_var(x)
        return mu, log_var

    def loss(self, y_true=None, mu_pred=None, log_var_pred=None):
        return self.noise_layer.loss(y_true, mu_pred, log_var_pred, reduce_mean=True)"
layer_utils.py,"""""""
  Contains implementations of various utilities used by Horseshoe Bayesian layers
""""""
import numpy as np
import torch
from torch.nn import Parameter

td = torch.distributions
gammaln = torch.lgamma


def diag_gaussian_entropy(log_std, D):
    return 0.5 * D * (1.0 + torch.log(2 * np.pi)) + torch.sum(log_std)


def inv_gamma_entropy(a, b):
    return torch.sum(a + torch.log(b) + torch.lgamma(a) - (1 + a) * torch.digamma(a))


def log_normal_entropy(log_std, mu, D):
    return torch.sum(log_std + mu + 0.5) + (D / 2) * np.log(2 * np.pi)


class InvGammaHalfCauchyLayer(torch.nn.Module):
    """"""
    Uses the inverse Gamma parameterization of the half-Cauchy distribution.
    a ~ C^+(0, b)  <==> a^2 ~ IGamma(0.5, 1/lambda), lambda ~ IGamma(0.5, 1/b^2), where lambda is an
    auxiliary latent variable.
    Uses a factorized variational approximation q(ln a^2)q(lambda) = N(mu, sigma^2) IGamma(ahat, bhat).
    This layer places a half Cauchy prior on the scales of each output node of the layer.
    """"""
    def __init__(self, out_features, b):
        """"""
        :param out_fatures: number of output nodes in the layer.
        :param b: scale of the half Cauchy
        """"""
        super(InvGammaHalfCauchyLayer, self).__init__()
        self.b = b
        self.out_features = out_features
        # variational parameters for q(ln a^2)
        self.mu = Parameter(torch.FloatTensor(out_features))
        self.log_sigma = Parameter(torch.FloatTensor(out_features))
        # self.log_sigma = torch.FloatTensor(out_features)
        # variational parameters for q(lambda). These will be updated via fixed point updates, hence not parameters.
        self.ahat = torch.FloatTensor([1.])  # The posterior parameter is always 1.
        self.bhat = torch.ones(out_features) * (1.0 / self.b ** 2)
        self.const = torch.FloatTensor([0.5])
        self.initialize_from_prior()

    def initialize_from_prior(self):
        """"""
        Initializes variational parameters by sampling from the prior.
        """"""
        # sample from half cauchy and log to initialize the mean of the log normal
        sample = np.abs(self.b * (np.random.randn(self.out_features) / np.random.randn(self.out_features)))
        self.mu.data = torch.FloatTensor(np.log(sample))
        self.log_sigma.data = torch.FloatTensor(np.random.randn(self.out_features) - 10.)

    def expectation_wrt_prior(self):
        """"""
        Computes E[ln p(a^2 | lambda)] + E[ln p(lambda)]
        """"""
        expected_a_given_lambda = -gammaln(self.const) - 0.5 * (torch.log(self.bhat) - torch.digamma(self.ahat)) + (
                -0.5 - 1.) * self.mu - torch.exp(-self.mu + 0.5 * self.log_sigma.exp() ** 2) * (self.ahat / self.bhat)
        expected_lambda = -gammaln(self.const) - 2 * 0.5 * np.log(self.b) + (-self.const - 1.) * (
                torch.log(self.bhat) - torch.digamma(self.ahat)) - (1. / self.b ** 2) * (self.ahat / self.bhat)
        return torch.sum(expected_a_given_lambda) + torch.sum(expected_lambda)

    def entropy(self):
        """"""
        Computes entropy of q(ln a^2) and q(lambda)
        """"""
        return self.entropy_lambda() + self.entropy_a2()

    def entropy_lambda(self):
        return inv_gamma_entropy(self.ahat, self.bhat)

    def entropy_a2(self):
        return log_normal_entropy(self.log_sigma, self.mu, self.out_features)

    def kl(self):
        """"""
        Computes KL(q(ln(a^2)q(lambda) || IG(a^2 | 0.5, 1/lambda) IG(lambda | 0.5, 1/b^2))
        """"""
        return -self.expectation_wrt_prior() - self.entropy()

    def fixed_point_updates(self):
        # update lambda moments
        self.bhat = torch.exp(-self.mu + 0.5 * self.log_sigma.exp() ** 2) + (1. / self.b ** 2)


class InvGammaLayer(torch.nn.Module):
    """"""
    Approximates the posterior of c^2 with prior IGamma(c^2 | a , b)
    using a log Normal approximation q(ln c^2) = N(mu, sigma^2)
    """"""

    def __init__(self, a, b, out_features=1):
        super(InvGammaLayer, self).__init__()
        self.a = torch.FloatTensor([a])
        self.b = torch.FloatTensor([b])
        # variational parameters for q(ln c^2)
        self.mu = Parameter(torch.FloatTensor(out_features))
        self.log_sigma = Parameter(torch.FloatTensor(out_features))
        self.out_features = out_features
        self.initialize_from_prior()

    def initialize_from_prior(self):
        """"""
        Initializes variational parameters by sampling from the prior.
        """"""
        self.mu.data = torch.log(self.b / (self.a + 1) * torch.ones(self.out_features)) # initialize at the mode
        self.log_sigma.data = torch.FloatTensor(np.random.randn(self.out_features) - 10.)

    def expectation_wrt_prior(self):
        """"""
        Computes E[ln p(c^2 | a, b)]
        """"""
        # return self.c_a * np.log(self.c_b) - gammaln(self.c_a) + (
        #                                             - self.c_a - 1) * c_mu - self.c_b * Ecinv
        return self.a * torch.log(self.b) - gammaln(self.a) + (- self.a - 1) \
               * self.mu - self.b * torch.exp(-self.mu + 0.5 * self.log_sigma.exp() ** 2)

    def entropy(self):
        return log_normal_entropy(self.log_sigma, self.mu, 1)

    def kl(self):
        """"""
        Computes KL(q(ln(c^2) || IG(c^2 | a, b))
        """"""
        return -self.expectation_wrt_prior().sum() - self.entropy()
"
layers.py,"""""""
  Contains implementations of various Bayesian layers
""""""
import numpy as np
import torch
import torch.nn.functional as F
from torch.nn import Parameter

from uq360.models.bayesian_neural_networks.layer_utils import InvGammaHalfCauchyLayer, InvGammaLayer

td = torch.distributions


def reparam(mu, logvar, do_sample=True, mc_samples=1):
    if do_sample:
        std = torch.exp(0.5 * logvar)
        eps = torch.FloatTensor(std.size()).normal_()
        sample = mu + eps * std
        for _ in np.arange(1, mc_samples):
            sample += mu + eps * std
        return sample / mc_samples
    else:
        return mu


class BayesianLinearLayer(torch.nn.Module):
    """"""
    Affine layer with N(0, v/H) or N(0, user specified v) priors on weights and
    fully factorized variational Gaussian approximation
    """"""

    def __init__(self, in_features, out_features, cuda=False, init_weight=None, init_bias=None, prior_stdv=None):
        super(BayesianLinearLayer, self).__init__()
        self.cuda = cuda
        self.in_features = in_features
        self.out_features = out_features

        # weight mean params
        self.weights = Parameter(torch.Tensor(out_features, in_features))
        self.bias = Parameter(torch.Tensor(out_features))
        # weight variance params
        self.weights_logvar = Parameter(torch.Tensor(out_features, in_features))
        self.bias_logvar = Parameter(torch.Tensor(out_features))

        # numerical stability
        self.fudge_factor = 1e-8
        if not prior_stdv:
            # We will use a N(0, 1/num_inputs) prior over weights
            self.prior_stdv = torch.FloatTensor([1. / np.sqrt(self.weights.size(1))])
        else:
            self.prior_stdv = torch.FloatTensor([prior_stdv])
        # self.prior_stdv = torch.Tensor([1. / np.sqrt(1e+3)])
        self.prior_mean = torch.FloatTensor([0.])
        # for Bias use a prior of N(0, 1)
        self.prior_bias_stdv = torch.FloatTensor([1.])
        self.prior_bias_mean = torch.FloatTensor([0.])

        # init params either random or with pretrained net
        self.init_parameters(init_weight, init_bias)

    def init_parameters(self, init_weight, init_bias):
        # init means
        if init_weight is not None:
            self.weights.data = torch.Tensor(init_weight)
        else:
            self.weights.data.normal_(0, np.float(self.prior_stdv.numpy()[0]))

        if init_bias is not None:
            self.bias.data = torch.Tensor(init_bias)
        else:
            self.bias.data.normal_(0, 1)

        # init variances
        self.weights_logvar.data.normal_(-9, 1e-2)
        self.bias_logvar.data.normal_(-9, 1e-2)

    def forward(self, x, do_sample=True, scale_variances=False):
        # local reparameterization trick
        mu_activations = F.linear(x, self.weights, self.bias)
        var_activations = F.linear(x.pow(2), self.weights_logvar.exp(), self.bias_logvar.exp())
        if scale_variances:
            activ = reparam(mu_activations, var_activations.log() - np.log(self.in_features), do_sample=do_sample)
        else:
            activ = reparam(mu_activations, var_activations.log(), do_sample=do_sample)
        return activ

    def kl(self):
        """"""
        KL divergence (q(W) || p(W))
        :return:
        """"""
        weights_logvar = self.weights_logvar
        kld_weights = self.prior_stdv.log() - weights_logvar.mul(0.5) + \
                      (weights_logvar.exp() + (self.weights.pow(2) - self.prior_mean)) / (
                                  2 * self.prior_stdv.pow(2)) - 0.5
        kld_bias = self.prior_bias_stdv.log() - self.bias_logvar.mul(0.5) + \
                   (self.bias_logvar.exp() + (self.bias.pow(2) - self.prior_bias_mean)) / (
                               2 * self.prior_bias_stdv.pow(2)) \
                   - 0.5
        return kld_weights.sum() + kld_bias.sum()


class HorseshoeLayer(BayesianLinearLayer):
    """"""
    Uses non-centered parametrization. w_k = v*tau_k*beta_k where k indexes an output unit and w_k and beta_k
    are vectors of all weights incident into the unit
    """"""
    def __init__(self, in_features, out_features, cuda=False, scale=1.):
        super(HorseshoeLayer, self).__init__(in_features, out_features)
        self.cuda = cuda
        self.in_features = in_features
        self.out_features = out_features
        self.nodescales = InvGammaHalfCauchyLayer(out_features=out_features, b=1.)
        self.layerscale = InvGammaHalfCauchyLayer(out_features=1, b=scale)
        # prior on beta is N(0, I) when employing non centered parameterization
        self.prior_stdv = torch.Tensor([1])
        self.prior_mean = torch.Tensor([0.])

    def forward(self,  x, do_sample=True, debug=False, eps_scale=None, eps_w=None):
        # At a particular unit k, preactivation_sample = scale_sample * pre_activation_sample
        # sample scales
        scale_mean = 0.5 * (self.nodescales.mu + self.layerscale.mu)
        scale_var = 0.25 * (self.nodescales.log_sigma.exp() ** 2 + self.layerscale.log_sigma.exp() ** 2)
        scale_sample = reparam(scale_mean, scale_var.log(), do_sample=do_sample).exp()
        # sample preactivations
        mu_activations = F.linear(x, self.weights, self.bias)
        var_activations = F.linear(x.pow(2), self.weights_logvar.exp(), self.bias_logvar.exp())
        activ_sample = reparam(mu_activations, var_activations.log(), do_sample=do_sample)
        return scale_sample * activ_sample

    def kl(self):
        return super(HorseshoeLayer, self).kl() + self.nodescales.kl() + self.layerscale.kl()

    def fixed_point_updates(self):
        self.nodescales.fixed_point_updates()
        self.layerscale.fixed_point_updates()


class RegularizedHorseshoeLayer(HorseshoeLayer):
    """"""
    Uses the regularized Horseshoe distribution. The regularized Horseshoe soft thresholds the tails of the Horseshoe.
    For all weights w_k incident upon node k in the layer we have:
    w_k ~ N(0, (tau_k * v)^2 I) N(0, c^2 I), c^2 ~ InverseGamma(c_a, b).
    c^2 controls the scale of the thresholding. As c^2 -> infinity, the regularized Horseshoe -> Horseshoe.
    """"""

    def __init__(self, in_features, out_features, cuda=False, scale=1., c_a=2., c_b=6.):
        super(RegularizedHorseshoeLayer, self).__init__(in_features, out_features, cuda=cuda, scale=scale)
        self.c = InvGammaLayer(a=c_a, b=c_b)

    def forward(self, x, do_sample=True, **kwargs):
        # At a particular unit k, preactivation_sample = scale_sample * pre_activation_sample
        # sample regularized scales
        scale_mean = self.nodescales.mu + self.layerscale.mu
        scale_var = self.nodescales.log_sigma.exp() ** 2 + self.layerscale.log_sigma.exp() ** 2
        scale_sample = reparam(scale_mean, scale_var.log(), do_sample=do_sample).exp()
        c_sample = reparam(self.c.mu, 2 * self.c.log_sigma, do_sample=do_sample).exp()
        regularized_scale_sample = (c_sample * scale_sample) / (c_sample + scale_sample)
        # sample preactivations
        mu_activations = F.linear(x, self.weights, self.bias)
        var_activations = F.linear(x.pow(2), self.weights_logvar.exp(), self.bias_logvar.exp())
        activ_sample = reparam(mu_activations, var_activations.log(), do_sample=do_sample)
        return torch.sqrt(regularized_scale_sample) * activ_sample

    def kl(self):
        return super(RegularizedHorseshoeLayer, self).kl() + self.c.kl()


class NodeSpecificRegularizedHorseshoeLayer(RegularizedHorseshoeLayer):
    """"""
    Uses the regularized Horseshoe distribution. The regularized Horseshoe soft thresholds the tails of the Horseshoe.
    For all weights w_k incident upon node k in the layer we have:
    w_k ~ N(0, (tau_k * v)^2 I) N(0, c_k^2 I), c_k^2 ~ InverseGamma(a, b).
    c_k^2 controls the scale of the thresholding. As c_k^2 -> infinity, the regularized Horseshoe -> Horseshoe
    Note that we now have a per-node c_k.
    """"""

    def __init__(self, in_features, out_features, cuda=False, scale=1., c_a=2., c_b=6.):
        super(NodeSpecificRegularizedHorseshoeLayer, self).__init__(in_features, out_features, cuda=cuda, scale=scale)
        self.c = InvGammaLayer(a=c_a, b=c_b, out_features=out_features)




"
misc.py,"import numpy as np
import torch
from uq360.models.noise_models.homoscedastic_noise_models import GaussianNoiseFixedPrecision

def compute_test_ll(y_test, y_pred_samples, std_y=1.):
    """"""
    Computes test log likelihoods = (1 / Ntest) * \sum_n p(y_n | x_n, D_train)
    :param y_test: True y
    :param y_pred_samples: y^s = f(x_test, w^s); w^s ~ q(w). S x Ntest, where S is the number of samples
    q(w) is either a trained variational posterior or an MCMC approximation to p(w | D_train)
    :param std_y: True std of y (assumed known)
    """"""
    S, _ = y_pred_samples.shape
    noise = GaussianNoiseFixedPrecision(std_y=std_y)
    ll = noise.loss(y_pred=y_pred_samples, y_true=y_test.unsqueeze(dim=0), reduce_sum=False)
    ll = torch.logsumexp(ll, dim=0) - np.log(S)  # mean over num samples
    return torch.mean(ll)  # mean over test points


"
horseshoe_mlp.py,"from abc import ABC

import numpy as np
import torch
from torch import nn

from uq360.models.bayesian_neural_networks.layers import HorseshoeLayer, BayesianLinearLayer, RegularizedHorseshoeLayer
from uq360.models.noise_models.homoscedastic_noise_models import GaussianNoiseGammaPrecision
import numpy as np
td = torch.distributions


class HshoeBNN(nn.Module, ABC):
    """"""
     Bayesian neural network with Horseshoe layers.
    """"""
    def __init__(self, ip_dim=1, op_dim=1, num_nodes=50, activation_type='relu', num_layers=1,
                 hshoe_scale=1e-1, use_reg_hshoe=False):
        if use_reg_hshoe:
            layer = RegularizedHorseshoeLayer
        else:
            layer = HorseshoeLayer
        super(HshoeBNN, self).__init__()
        self.num_layers = num_layers
        if activation_type == 'relu':
            # activation
            self.activation = nn.ReLU()
        elif activation_type == 'tanh':
            self.activation = nn.Tanh()
        else:
            print(""Activation Type not supported"")
        self.fc_hidden = []
        self.fc1 = layer(ip_dim, num_nodes, scale=hshoe_scale)
        for _ in np.arange(self.num_layers - 1):
            self.fc_hidden.append(layer(num_nodes, num_nodes))
        self.fc_out = BayesianLinearLayer(num_nodes, op_dim)
        self.noise_layer = None

    def forward(self, x, do_sample=True):
        x = self.fc1(x, do_sample=do_sample)
        x = self.activation(x)
        for layer in self.fc_hidden:
            x = layer(x, do_sample=do_sample)
            x = self.activation(x)
        return self.fc_out(x, do_sample=do_sample, scale_variances=True)

    def kl_divergence_w(self):
        kld = self.fc1.kl() + self.fc_out.kl()
        for layer in self.fc_hidden:
            kld += layer.kl()
        return kld

    def fixed_point_updates(self):
        if hasattr(self.fc1, 'fixed_point_updates'):
            self.fc1.fixed_point_updates()
        if hasattr(self.fc_out, 'fixed_point_updates'):
            self.fc_out.fixed_point_updates()
        for layer in self.fc_hidden:
            if hasattr(layer, 'fixed_point_updates'):
                layer.fixed_point_updates()

    def prior_predictive_samples(self, n_sample=100):
        n_eval = 1000
        x = torch.linspace(-2, 2, n_eval)[:, np.newaxis]
        y = np.zeros([n_sample, n_eval])
        for i in np.arange(n_sample):
            y[i] = self.forward(x).data.numpy().ravel()
        return x.data.numpy(), y

    ### get and set weights ###
    def get_weights(self):
        assert len(self.fc_hidden) == 0 # only works for one layer networks.
        weight_dict = {}
        weight_dict['layerip_means'] = torch.cat([self.fc1.weights, self.fc1.bias.unsqueeze(1)], dim=1).data.numpy()
        weight_dict['layerip_logvar'] = torch.cat([self.fc1.weights_logvar, self.fc1.bias_logvar.unsqueeze(1)], dim=1).data.numpy()
        weight_dict['layerop_means'] = torch.cat([self.fc_out.weights, self.fc_out.bias.unsqueeze(1)], dim=1).data.numpy()
        weight_dict['layerop_logvar'] = torch.cat([self.fc_out.weights_logvar, self.fc_out.bias_logvar.unsqueeze(1)], dim=1).data.numpy()
        return weight_dict

    def set_weights(self, weight_dict):
        assert len(self.fc_hidden) == 0  # only works for one layer networks.
        to_param = lambda x: nn.Parameter(torch.Tensor(x))
        self.fc1.weights = to_param(weight_dict['layerip_means'][:, :-1])
        self.fc1.weights = to_param(weight_dict['layerip_logvar'][:, :-1])
        self.fc1.bias = to_param(weight_dict['layerip_means'][:, -1])
        self.fc1.bias_logvar = to_param(weight_dict['layerip_logvar'][:, -1])

        self.fc_out.weights = to_param(weight_dict['layerop_means'][:, :-1])
        self.fc_out.weights = to_param(weight_dict['layerop_logvar'][:, :-1])
        self.fc_out.bias = to_param(weight_dict['layerop_means'][:, -1])
        self.fc_out.bias_logvar = to_param(weight_dict['layerop_logvar'][:, -1])


class HshoeRegressionNet(HshoeBNN, ABC):
    """"""
    Horseshoe net with N(y_true | f(x, w), \lambda^-1); \lambda ~ Gamma(a, b) likelihoods.
    """"""
    def __init__(self, ip_dim=1, op_dim=1, num_nodes=50, activation_type='relu',
                     num_layers=1, hshoe_scale=1e-5, use_reg_hshoe=False):
        super(HshoeRegressionNet, self).__init__(ip_dim=ip_dim, op_dim=op_dim,
                                                    num_nodes=num_nodes, activation_type=activation_type,
                                                    num_layers=num_layers,
                                                    hshoe_scale=hshoe_scale,
                                                    use_reg_hshoe=use_reg_hshoe)
        self.noise_layer = GaussianNoiseGammaPrecision(a0=6., b0=6.)

    def likelihood(self, x=None, y=None):
        out = self.forward(x)
        return -self.noise_layer.loss(y_pred=out, y_true=y)

    def neg_elbo(self, num_batches, x=None, y=None):
        # scale the KL terms by number of batches so that the minibatch elbo is an unbiased estiamte of the true elbo.
        Elik = self.likelihood(x, y)
        neg_elbo = (self.kl_divergence_w() + self.noise_layer.kl()) / num_batches - Elik
        return neg_elbo

    def mse(self, x, y):
        """"""
        scaled rmse (scaled by 1 / std_y**2)
        """"""
        E_noise_precision = 1. / self.noise_layer.get_noise_var()
        return (0.5 * E_noise_precision * (self.forward(x, do_sample=False) - y)**2).sum()

    def get_noise_var(self):
        return self.noise_layer.get_noise_var()


class HshoeClassificationNet(HshoeBNN, ABC):
    """"""
    Horseshoe net with Categorical(y_true | f(x, w)) likelihoods. Use for classification.
    """"""
    def __init__(self, ip_dim=1, op_dim=1, num_nodes=50, activation_type='relu',
                 num_layers=1, hshoe_scale=1e-5, use_reg_hshoe=False):
        super(HshoeClassificationNet, self).__init__(ip_dim=ip_dim, op_dim=op_dim,
                                                    num_nodes=num_nodes, activation_type=activation_type,
                                                    num_layers=num_layers,
                                                     hshoe_scale=hshoe_scale,
                                                     use_reg_hshoe=use_reg_hshoe)
        self.noise_layer = torch.nn.CrossEntropyLoss(reduction='sum')

    def likelihood(self, x=None, y=None):
        out = self.forward(x)
        return -self.noise_layer(out, y)

    def neg_elbo(self, num_batches, x=None, y=None):
        # scale the KL terms by number of batches so that the minibatch elbo is an unbiased estiamte of the true elbo.
        Elik = self.likelihood(x, y)
        neg_elbo = (self.kl_divergence_w()) / num_batches - Elik
        return neg_elbo




"
bayesian_mlp.py,"from abc import ABC
import torch
from torch import nn
from uq360.models.bayesian_neural_networks.layers import BayesianLinearLayer
from uq360.models.noise_models.homoscedastic_noise_models import GaussianNoiseGammaPrecision
import numpy as np
td = torch.distributions


class BayesianNN(nn.Module, ABC):
    """"""
     Bayesian neural network with zero mean Gaussian priors over weights.
    """"""
    def __init__(self, layer=BayesianLinearLayer, ip_dim=1, op_dim=1, num_nodes=50,
                 activation_type='relu', num_layers=1):
        super(BayesianNN, self).__init__()
        self.num_layers = num_layers
        if activation_type == 'relu':
            # activation
            self.activation = nn.ReLU()
        elif activation_type == 'tanh':
            self.activation = nn.Tanh()
        else:
            print(""Activation Type not supported"")
        self.fc_hidden = []
        self.fc1 = layer(ip_dim, num_nodes,)
        for _ in np.arange(self.num_layers - 1):
            self.fc_hidden.append(layer(num_nodes, num_nodes, ))
        self.fc_out = layer(num_nodes, op_dim, )
        self.noise_layer = None

    def forward(self, x, do_sample=True):
        x = self.fc1(x, do_sample=do_sample)
        x = self.activation(x)
        for layer in self.fc_hidden:
            x = layer(x, do_sample=do_sample)
            x = self.activation(x)
        return self.fc_out(x, do_sample=do_sample, scale_variances=True)

    def kl_divergence_w(self):
        kld = self.fc1.kl() + self.fc_out.kl()
        for layer in self.fc_hidden:
            kld += layer.kl()
        return kld

    def prior_predictive_samples(self, n_sample=100):
        n_eval = 1000
        x = torch.linspace(-2, 2, n_eval)[:, np.newaxis]
        y = np.zeros([n_sample, n_eval])
        for i in np.arange(n_sample):
            y[i] = self.forward(x).data.numpy().ravel()
        return x.data.numpy(), y

    ### get and set weights ###
    def get_weights(self):
        assert len(self.fc_hidden) == 0 # only works for one layer networks.
        weight_dict = {}
        weight_dict['layerip_means'] = torch.cat([self.fc1.weights, self.fc1.bias.unsqueeze(1)], dim=1).data.numpy()
        weight_dict['layerip_logvar'] = torch.cat([self.fc1.weights_logvar, self.fc1.bias_logvar.unsqueeze(1)], dim=1).data.numpy()
        weight_dict['layerop_means'] = torch.cat([self.fc_out.weights, self.fc_out.bias.unsqueeze(1)], dim=1).data.numpy()
        weight_dict['layerop_logvar'] = torch.cat([self.fc_out.weights_logvar, self.fc_out.bias_logvar.unsqueeze(1)], dim=1).data.numpy()
        return weight_dict

    def set_weights(self, weight_dict):
        assert len(self.fc_hidden) == 0  # only works for one layer networks.
        to_param = lambda x: nn.Parameter(torch.Tensor(x))
        self.fc1.weights = to_param(weight_dict['layerip_means'][:, :-1])
        self.fc1.weights = to_param(weight_dict['layerip_logvar'][:, :-1])
        self.fc1.bias = to_param(weight_dict['layerip_means'][:, -1])
        self.fc1.bias_logvar = to_param(weight_dict['layerip_logvar'][:, -1])

        self.fc_out.weights = to_param(weight_dict['layerop_means'][:, :-1])
        self.fc_out.weights = to_param(weight_dict['layerop_logvar'][:, :-1])
        self.fc_out.bias = to_param(weight_dict['layerop_means'][:, -1])
        self.fc_out.bias_logvar = to_param(weight_dict['layerop_logvar'][:, -1])


class BayesianRegressionNet(BayesianNN, ABC):
    """"""
    Bayesian neural net with N(y_true | f(x, w), \lambda^-1); \lambda ~ Gamma(a, b) likelihoods.
    """"""
    def __init__(self, layer=BayesianLinearLayer, ip_dim=1, op_dim=1, num_nodes=50, activation_type='relu',
                     num_layers=1):
        super(BayesianRegressionNet, self).__init__(layer=layer, ip_dim=ip_dim, op_dim=op_dim,
                                                    num_nodes=num_nodes, activation_type=activation_type,
                                                    num_layers=num_layers,
                                                    )
        self.noise_layer = GaussianNoiseGammaPrecision(a0=6., b0=6.)

    def likelihood(self, x=None, y=None):
        out = self.forward(x)
        return -self.noise_layer.loss(y_pred=out, y_true=y)

    def neg_elbo(self, num_batches, x=None, y=None):
        # scale the KL terms by number of batches so that the minibatch elbo is an unbiased estiamte of the true elbo.
        Elik = self.likelihood(x, y)
        neg_elbo = (self.kl_divergence_w() + self.noise_layer.kl()) / num_batches - Elik
        return neg_elbo

    def mse(self, x, y):
        """"""
        scaled rmse (scaled by 1 / std_y**2)
        """"""
        E_noise_precision = 1. / self.noise_layer.get_noise_var()
        return (0.5 * E_noise_precision * (self.forward(x, do_sample=False) - y)**2).sum()

    def get_noise_var(self):
        return self.noise_layer.get_noise_var()


class BayesianClassificationNet(BayesianNN, ABC):
    """"""
    Bayesian neural net with Categorical(y_true | f(x, w)) likelihoods. Use for classification.
    """"""
    def __init__(self, layer=BayesianLinearLayer, ip_dim=1, op_dim=1, num_nodes=50, activation_type='relu',
                 num_layers=1):
        super(BayesianClassificationNet, self).__init__(layer=layer, ip_dim=ip_dim, op_dim=op_dim,
                                                    num_nodes=num_nodes, activation_type=activation_type,
                                                    num_layers=num_layers)
        self.noise_layer = torch.nn.CrossEntropyLoss(reduction='sum')

    def likelihood(self, x=None, y=None):
        out = self.forward(x)
        return -self.noise_layer(out, y)

    def neg_elbo(self, num_batches, x=None, y=None):
        # scale the KL terms by number of batches so that the minibatch elbo is an unbiased estiamte of the true elbo.
        Elik = self.likelihood(x, y)
        neg_elbo = self.kl_divergence_w() / num_batches - Elik
        return neg_elbo




"
homoscedastic_noise_models.py,"import math

import numpy as np
import torch
from scipy.special import gammaln
from uq360.models.noise_models.noisemodel import AbstractNoiseModel
from torch.nn import Parameter

td = torch.distributions


def transform(a):
    return torch.log(1 + torch.exp(a))


class GaussianNoiseGammaPrecision(torch.nn.Module, AbstractNoiseModel):
    """"""
        N(y_true | f(x, w), \lambda^-1); \lambda ~ Gamma(a, b).
        Uses a variational approximation; q(lambda) = Gamma(ahat, bhat)
    """"""

    def __init__(self, a0=6, b0=6, cuda=False):
        super(GaussianNoiseGammaPrecision, self).__init__()
        self.cuda = cuda
        self.a0 = a0
        self.b0 = b0
        self.const = torch.log(torch.FloatTensor([2 * math.pi]))
        # variational parameters
        self.ahat = Parameter(torch.FloatTensor([10.]))
        self.bhat = Parameter(torch.FloatTensor([3.]))

    def loss(self, y_pred=None, y_true=None):
        """"""
        computes -1 *  E_q(\lambda)[ln N (y_pred | y_true, \lambda^-1)], where q(lambda) = Gamma(ahat, bhat)
        :param y_pred:
        :param y_true:
        :return:
        """"""
        n = y_pred.shape[0]
        ahat = transform(self.ahat)
        bhat = transform(self.bhat)
        return -1 * (-0.5 * n * self.const + 0.5 * n * (torch.digamma(ahat) - torch.log(bhat)) \
                     - 0.5 * (ahat/bhat) * ((y_pred - y_true) ** 2).sum())

    def kl(self):
        ahat = transform(self.ahat)
        bhat = transform(self.bhat)
        return (ahat - self.a0) * torch.digamma(ahat) - torch.lgamma(ahat) + gammaln(self.a0) + \
            self.a0 * (torch.log(bhat) - np.log(self.b0)) + ahat * (self.b0 - bhat) / bhat

    def get_noise_var(self):
        ahat = transform(self.ahat)
        bhat = transform(self.bhat)
        return (bhat / ahat).data.numpy()[0]


class GaussianNoiseFixedPrecision(torch.nn.Module, AbstractNoiseModel):
    """"""
        N(y_true | f(x, w), sigma_y**2); known sigma_y
    """"""

    def __init__(self, std_y=1., cuda=False):
        super(GaussianNoiseFixedPrecision, self).__init__()
        self.cuda = cuda
        self.const = torch.log(torch.FloatTensor([2 * math.pi]))
        self.sigma_y = std_y

    def loss(self, y_pred=None, y_true=None):
        """"""
        computes -1 *  ln N (y_pred | y_true, sigma_y**2)
        :param y_pred:
        :param y_true:
        :return:
        """"""
        ll = -0.5 * self.const - np.log(self.sigma_y) - 0.5 * (1. / self.sigma_y ** 2) * ((y_pred - y_true) ** 2)
        return -ll.sum(dim=0)

    def get_noise_var(self):
        return self.sigma_y ** 2"
heteroscedastic_noise_models.py,"import math

import numpy as np
import torch
from scipy.special import gammaln
from uq360.models.noise_models.noisemodel import AbstractNoiseModel
from torch.nn import Parameter

td = torch.distributions


def transform(a):
    return torch.log(1 + torch.exp(a))


class GaussianNoise(torch.nn.Module, AbstractNoiseModel):
    """"""
        N(y_true | f_\mu(x, w), f_\sigma^2(x, w))
    """"""

    def __init__(self, cuda=False):
        super(GaussianNoise, self).__init__()
        self.cuda = cuda
        self.const = torch.log(torch.FloatTensor([2 * math.pi]))

    def loss(self, y_true=None, mu_pred=None, log_var_pred=None, reduce_mean=True):
        """"""
        computes -1 *  ln N (y_true | mu_pred, softplus(log_var_pred))
        :param y_true:
        :param mu_pred:
        :param log_var_pred:

        :return:
        """"""
        var_pred = transform(log_var_pred)
        ll = -0.5 * self.const - 0.5 * torch.log(var_pred) - 0.5 * (1. / var_pred) * ((mu_pred - y_true) ** 2)
        if reduce_mean:
            return -ll.mean(dim=0)
        else:
            return -ll.sum(dim=0)

    def get_noise_var(self, log_var_pred):
        return transform(log_var_pred)


"
noisemodel.py,"import abc
import sys

# Ensure compatibility with Python 2/3
if sys.version_info >= (3, 4):
    ABC = abc.ABC
else:
    ABC = abc.ABCMeta(str('ABC'), (), {})


class AbstractNoiseModel(ABC):
    """""" Abstract class. All noise models inherit from here.
    """"""

    def __init__(self, *argv, **kwargs):
        """""" Initialize an AbstractNoiseModel object.
        """"""

    @abc.abstractmethod
    def loss(self, *argv, **kwargs):
        """""" Compute loss given predictions and groundtruth labels
        """"""
        raise NotImplementedError

    @abc.abstractmethod
    def get_noise_var(self, *argv, **kwargs):
        """"""
        Return the current estimate of noise variance
        """"""
        raise NotImplementedError
"
builtinuq.py,"import abc
import sys

# Ensure compatibility with Python 2/3
if sys.version_info >= (3, 4):
    ABC = abc.ABC
else:
    ABC = abc.ABCMeta(str('ABC'), (), {})


class BuiltinUQ(ABC):
    """""" BuiltinUQ is the base class for any algorithm that has UQ built into it.
    """"""

    def __init__(self, *argv, **kwargs):
        """""" Initialize a BuiltinUQ object.
        """"""

    @abc.abstractmethod
    def fit(self, *argv, **kwargs):
        """""" Learn the UQ related parameters..
        """"""
        raise NotImplementedError

    @abc.abstractmethod
    def predict(self, *argv, **kwargs):
        """""" Method to obtain the predicitve uncertainty, this can return the total, epistemic and/or aleatoric
         uncertainty in the predictions.
        """"""
        raise NotImplementedError

    def set_params(self, **parameters):
        for parameter, value in parameters.items():
            setattr(self, parameter, value)
        return self


"
posthocuq.py,"import abc
import sys

# Ensure compatibility with Python 2/3
if sys.version_info >= (3, 4):
    ABC = abc.ABC
else:
    ABC = abc.ABCMeta(str('ABC'), (), {})


class PostHocUQ(ABC):
    """""" PostHocUQ is the base class for any algorithm that quantifies uncertainty of a pre-trained model.
    """"""

    def __init__(self, *argv, **kwargs):
        """""" Initialize a BuiltinUQ object.
        """"""

    @abc.abstractmethod
    def _process_pretrained_model(self, *argv, **kwargs):
        """""" Method to process the pretrained model that requires UQ.
        """"""
        raise NotImplementedError

    @abc.abstractmethod
    def predict(self, *argv, **kwargs):
        """""" Method to obtain the predicitve uncertainty, this can return the total, epistemic and/or aleatoric
         uncertainty in the predictions.
        """"""
        raise NotImplementedError

    def set_params(self, **parameters):
        for parameter, value in parameters.items():
            setattr(self, parameter, value)
        return self

    def get_params(self):
        """"""
         This method should not take any arguments and returns a dict of the __init__ parameters.

        """"""
        raise NotImplementedError
"
__init__.py,"from .ucc_recalibration import UCCRecalibration
"
ucc_recalibration.py,"from collections import namedtuple

from uq360.algorithms.posthocuq import PostHocUQ
from uq360.utils.misc import form_D_for_auucc
from uq360.metrics.uncertainty_characteristics_curve.uncertainty_characteristics_curve import UncertaintyCharacteristicsCurve


class UCCRecalibration(PostHocUQ):
    """""" Recalibration a regression model to specified operating point using Uncertainty Characteristics Curve.
    """"""

    def __init__(self, base_model):
        """"""
        Args:
            base_model: pretrained model to be recalibrated.
        """"""
        super(UCCRecalibration).__init__()
        self.base_model = self._process_pretrained_model(base_model)
        self.ucc = None

    def get_params(self, deep=True):
        return {""base_model"": self.base_model}

    def _process_pretrained_model(self, base_model):
        return base_model

    def fit(self, X, y):
        """"""
        Fit the Uncertainty Characteristics Curve.

        Args:
            X: array-like of shape (n_samples, n_features).
                Features vectors of the test points.
            y: array-like of shape (n_samples,) or (n_samples, n_targets)
                Target values

        Returns:
            self

        """"""
        y_pred_mean, y_pred_lower, y_pred_upper = self.base_model.predict(X)[:3]
        bwu = y_pred_upper - y_pred_mean
        bwl = y_pred_mean - y_pred_lower
        self.ucc = UncertaintyCharacteristicsCurve()
        self.ucc.fit(form_D_for_auucc(y_pred_mean, bwl, bwu), y.squeeze())

        return self

    def predict(self, X, missrate=0.05):
        """"""
        Generate prediction and uncertainty bounds for data X.

        Args:
            X: array-like of shape (n_samples, n_features).
                Features vectors of the test points.
            missrate: desired missrate of the new operating point, set to 0.05 by default.

        Returns:
            namedtuple: A namedtupe that holds

            y_mean: ndarray of shape (n_samples, [n_output_dims])
                Mean of predictive distribution of the test points.
            y_lower: ndarray of shape (n_samples, [n_output_dims])
                Lower quantile of predictive distribution of the test points.
            y_upper: ndarray of shape (n_samples, [n_output_dims])
                Upper quantile of predictive distribution of the test points.
        """"""
        C = self.ucc.get_specific_operating_point(req_y_axis_value=missrate, vary_bias=False)
        new_scale = C['modvalue']

        y_pred_mean, y_pred_lower, y_pred_upper = self.base_model.predict(X)[:3]
        bwu = y_pred_upper - y_pred_mean
        bwl = y_pred_mean - y_pred_lower

        if C['operation'] == 'bias':
            calib_y_pred_upper = y_pred_mean + (new_scale + bwu)  # lower bound width
            calib_y_pred_lower = y_pred_mean - (new_scale + bwl)  # Upper bound width
        else:
            calib_y_pred_upper = y_pred_mean + (new_scale * bwu)  # lower bound width
            calib_y_pred_lower = y_pred_mean - (new_scale * bwl)  # Upper bound width

        Result = namedtuple('res', ['y_mean', 'y_lower', 'y_upper'])
        res = Result(y_pred_mean, calib_y_pred_lower, calib_y_pred_upper)

        return res
"
__init__.py,"from .classification_calibration import ClassificationCalibration
"
classification_calibration.py,"from collections import namedtuple

import numpy as np

from sklearn.calibration import CalibratedClassifierCV
from sklearn.preprocessing import LabelEncoder

from uq360.utils.misc import DummySklearnEstimator
from uq360.algorithms.posthocuq import PostHocUQ


class ClassificationCalibration(PostHocUQ):
    """"""Post hoc calibration of classification models. Currently wraps `CalibratedClassifierCV` from sklearn and allows
    non-sklearn models to be calibrated.

    """"""
    def __init__(self, num_classes, fit_mode=""features"", method='isotonic', base_model_prediction_func=None):
        """"""

        Args:
            num_classes: number of classes.
            fit_mode: features or probs. If probs the `fit` and `predict` operate on the base models probability scores,
                useful when these are precomputed.
            method: isotonic or sigmoid.
            base_model_prediction_func: the function that takes in the input features and produces base model's
                probability scores. This is ignored when operating in `probs` mode.
        """"""
        super(ClassificationCalibration).__init__()
        if fit_mode == ""probs"":
            # In this case, the fit assumes that it receives the probability scores of the base model.
            # create a dummy estimator
            self.base_model = DummySklearnEstimator(num_classes, lambda x: x)
        else:
            self.base_model = DummySklearnEstimator(num_classes, base_model_prediction_func)
        self.method = method

    def get_params(self, deep=True):
        return {""num_classes"": self.num_classes, ""fit_mode"": self.fit_mode, ""method"": self.method,
                ""base_model_prediction_func"": self.base_model_prediction_func}

    def _process_pretrained_model(self, base_model):
        return base_model

    def fit(self, X, y):
        """""" Fits calibration model using the provided calibration set.

        Args:
            X: array-like of shape (n_samples, n_features) or (n_samples, n_classes).
                Features vectors of the training data or the probability scores from the base model.
            y: array-like of shape (n_samples,) or (n_samples, n_targets)
                Target values

        Returns:
            self

        """"""

        self.base_model.label_encoder_ = LabelEncoder().fit(y)
        self.calib_model = CalibratedClassifierCV(base_estimator=self.base_model,
                                                  cv=""prefit"",
                                                  method=self.method)
        self.calib_model.fit(X, y)

        return self

    def predict(self, X):
        """"""
        Obtain calibrated predictions for the test points.

        Args:
            X: array-like of shape (n_samples, n_features) or (n_samples, n_classes).
                Features vectors of the training data or the probability scores from the base model.

        Returns:
            namedtuple: A namedtupe that holds

            y_pred: ndarray of shape (n_samples,)
                Predicted labels of the test points.
            y_prob: ndarray of shape (n_samples, n_classes)
                Predicted probability scores of the classes.

        """"""
        y_prob = self.calib_model.predict_proba(X)
        if len(np.shape(y_prob)) == 1:
            y_pred_labels = y_prob > 0.5

        else:
            y_pred_labels = np.argmax(y_prob, axis=1)

        Result = namedtuple('res', ['y_pred', 'y_prob'])
        res = Result(y_pred_labels, y_prob)

        return res
"
auxiliary_interval_predictor.py,"from collections import namedtuple

import numpy as np
import torch
import torch.nn.functional as F
from scipy.stats import norm
from torch.utils.data import DataLoader
from torch.utils.data import TensorDataset

from uq360.algorithms.builtinuq import BuiltinUQ

np.random.seed(42)
torch.manual_seed(42)


class _MLPNet_Main(torch.nn.Module):
    def __init__(self, num_features, num_outputs, num_hidden):
        super(_MLPNet_Main, self).__init__()
        self.fc = torch.nn.Linear(num_features, num_hidden)
        self.fc_mu = torch.nn.Linear(num_hidden, num_outputs)
        self.fc_log_var = torch.nn.Linear(num_hidden, num_outputs)

    def forward(self, x):
        x = F.relu(self.fc(x))
        mu = self.fc_mu(x)
        log_var = self.fc_log_var(x)
        return mu, log_var


class _MLPNet_Aux(torch.nn.Module):
    def __init__(self, num_features, num_outputs, num_hidden):
        super(_MLPNet_Aux, self).__init__()
        self.fc = torch.nn.Linear(num_features, num_hidden)
        self.fc_log_var = torch.nn.Linear(num_hidden, num_outputs)

    def forward(self, x):
        x = F.relu(self.fc(x))
        log_var = self.fc_log_var(x)
        return log_var


class AuxiliaryIntervalPredictor(BuiltinUQ):
    """""" Auxiliary Interval Predictor [1]_ uses an auxiliary model to encourage calibration of the main model.

    References:
        .. [1] Thiagarajan, J. J., Venkatesh, B., Sattigeri, P., & Bremer, P. T. (2020, April). Building calibrated deep
         models via uncertainty matching with auxiliary interval predictors. In Proceedings of the AAAI Conference on
         Artificial Intelligence (Vol. 34, No. 04, pp. 6005-6012). https://arxiv.org/abs/1909.04079
    """"""

    def __init__(self, model_type=None, main_model=None, aux_model=None, config=None, device=None, verbose=True):
        """"""
        Args:
            model_type: The model type used to build the main model and the auxiliary model. Currently supported values
             are [mlp, custom]. `mlp` modeltype learns a mlp neural network using pytorch framework. For `custom` the user
             provide `main_model` and `aux_model`.
            main_model: (optional) The main prediction model. Currently support pytorch models that return mean and log variance.
            aux_model: (optional) The auxiliary prediction model. Currently support pytorch models that return calibrated log variance.
            config: dictionary containing the config parameters for the model.
            device: device used for pytorch models ignored otherwise.
            verbose: if True, print statements with the progress are enabled.
        """"""

        super(AuxiliaryIntervalPredictor).__init__()
        self.config = config
        self.device = device
        self.verbose = verbose
        if model_type == ""mlp"":
            self.model_type = model_type
            self.main_model = _MLPNet_Main(
                num_features=self.config[""num_features""],
                num_outputs=self.config[""num_outputs""],
                num_hidden=self.config[""num_hidden""],
            )
            self.aux_model = _MLPNet_Aux(
                num_features=self.config[""num_features""],
                num_outputs=self.config[""num_outputs""],
                num_hidden=self.config[""num_hidden""],
            )
        elif model_type == ""custom"":
            self.model_type = model_type
            self.main_model = main_model
            self.aux_model = aux_model

        else:
            raise NotImplementedError

    def get_params(self, deep=True):
        return {""model_type"": self.model_type, ""config"": self.config, ""main_model"": self.main_model,
                ""aux_model"": self.aux_model, ""device"": self.device, ""verbose"": self.verbose}

    def _main_model_loss(self, y_true, y_pred_mu, y_pred_log_var, y_pred_log_var_aux):
        r = torch.abs(y_true - y_pred_mu)
        # + 0.5 * y_pred_log_var +
        loss = torch.mean(0.5 * torch.exp(-y_pred_log_var) * r ** 2) + \
               self.config[""lambda_match""] * torch.mean(torch.abs(torch.exp(0.5 * y_pred_log_var) - torch.exp(0.5 * y_pred_log_var_aux)))
        return loss

    def _aux_model_loss(self, y_true, y_pred_mu, y_pred_log_var_aux):
        deltal = deltau = 2.0 * torch.exp(0.5 * y_pred_log_var_aux)
        upper = y_pred_mu + deltau
        lower = y_pred_mu - deltal
        width = upper - lower
        r = torch.abs(y_true - y_pred_mu)

        emce = torch.mean(torch.sigmoid((y_true - lower) * (upper - y_true) * 100000))

        loss_emce = torch.abs(self.config[""calibration_alpha""]-emce)
        loss_noise = torch.mean(torch.abs(0.5 * width - r))
        loss_sharpness = torch.mean(torch.abs(upper - y_true)) + torch.mean(torch.abs(lower - y_true))

        #print(emce)
        return loss_emce + self.config[""lambda_noise""] * loss_noise + self.config[""lambda_sharpness""] * loss_sharpness

    def fit(self, X, y):
        """""" Fit the Auxiliary Interval Predictor model.

        Args:
            X: array-like of shape (n_samples, n_features).
                Features vectors of the training data.
            y: array-like of shape (n_samples,) or (n_samples, n_targets)
                Target values

        Returns:
            self

        """"""

        X = torch.from_numpy(X).float().to(self.device)
        y = torch.from_numpy(y).float().to(self.device)

        dataset_loader = DataLoader(
            TensorDataset(X,y),
            batch_size=self.config[""batch_size""]
        )
        optimizer_main_model = torch.optim.Adam(self.main_model.parameters(), lr=self.config[""lr""])
        optimizer_aux_model = torch.optim.Adam(self.aux_model.parameters(), lr=self.config[""lr""])

        for it in range(self.config[""num_outer_iters""]):

            # Train the main model
            for epoch in range(self.config[""num_main_iters""]):
                avg_mean_model_loss = 0.0
                for batch_x, batch_y in dataset_loader:
                    self.main_model.train()
                    self.aux_model.eval()
                    batch_y_pred_log_var_aux = self.aux_model(batch_x)
                    batch_y_pred_mu, batch_y_pred_log_var = self.main_model(batch_x)
                    main_loss = self._main_model_loss(batch_y, batch_y_pred_mu, batch_y_pred_log_var, batch_y_pred_log_var_aux)
                    optimizer_main_model.zero_grad()
                    main_loss.backward()
                    optimizer_main_model.step()

                    avg_mean_model_loss += main_loss.item()/len(dataset_loader)

                if self.verbose:
                    print(""Iter: {},  Epoch: {}, main_model_loss = {}"".format(it, epoch, avg_mean_model_loss))

            # Train the auxiliary model
            for epoch in range(self.config[""num_aux_iters""]):
                avg_aux_model_loss = 0.0
                for batch_x, batch_y in dataset_loader:
                    self.aux_model.train()
                    self.main_model.eval()
                    batch_y_pred_log_var_aux = self.aux_model(batch_x)
                    batch_y_pred_mu, batch_y_pred_log_var = self.main_model(batch_x)
                    aux_loss = self._aux_model_loss(batch_y, batch_y_pred_mu, batch_y_pred_log_var_aux)
                    optimizer_aux_model.zero_grad()
                    aux_loss.backward()
                    optimizer_aux_model.step()

                    avg_aux_model_loss += aux_loss.item() / len(dataset_loader)

                if self.verbose:
                    print(""Iter: {},  Epoch: {}, aux_model_loss = {}"".format(it, epoch, avg_aux_model_loss))

        return self

    def predict(self, X, return_dists=False):
        """"""
        Obtain predictions for the test points.

        In addition to the mean and lower/upper bounds, also returns full predictive distribution (return_dists=True).

        Args:
            X: array-like of shape (n_samples, n_features).
                Features vectors of the test points.
            return_dists: If True, the predictive distribution for each instance using scipy distributions is returned.

        Returns:
            namedtuple: A namedtupe that holds

            y_mean: ndarray of shape (n_samples, [n_output_dims])
                Mean of predictive distribution of the test points.
            y_lower: ndarray of shape (n_samples, [n_output_dims])
                Lower quantile of predictive distribution of the test points.
            y_upper: ndarray of shape (n_samples, [n_output_dims])
                Upper quantile of predictive distribution of the test points.
            dists: list of predictive distribution as `scipy.stats` objects with length n_samples.
                Only returned when `return_dists` is True.
        """"""

        self.main_model.eval()

        X = torch.from_numpy(X).float().to(self.device)
        dataset_loader = DataLoader(
            X,
            batch_size=self.config[""batch_size""]
        )

        y_mean_list = []
        y_log_var_list = []
        for batch_x in dataset_loader:
            batch_y_pred_mu, batch_y_pred_log_var = self.main_model(batch_x)
            y_mean_list.append(batch_y_pred_mu.data.cpu().numpy())
            y_log_var_list.append(batch_y_pred_log_var.data.cpu().numpy())

        y_mean = np.concatenate(y_mean_list)
        y_log_var = np.concatenate(y_log_var_list)
        y_std = np.sqrt(np.exp(y_log_var))
        y_lower = y_mean - 2.0*y_std
        y_upper = y_mean + 2.0*y_std

        Result = namedtuple('res', ['y_mean', 'y_lower', 'y_upper'])
        res = Result(y_mean, y_lower, y_upper)

        if return_dists:
            dists = [norm(loc=y_mean[i], scale=y_std[i]) for i in range(y_mean.shape[0])]
            Result = namedtuple('res', Result._fields + ('y_dists',))
            res = Result(*res, y_dists=dists)

        return res
"
__init__.py,"from .auxiliary_interval_predictor import AuxiliaryIntervalPredictor
"
bnn.py,"import copy
from collections import namedtuple

import numpy as np
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader
import torch.utils.data as data_utils
from scipy.stats import norm
from sklearn.preprocessing import StandardScaler

from uq360.algorithms.builtinuq import BuiltinUQ
from uq360.models.bayesian_neural_networks.bnn_models import horseshoe_mlp, bayesian_mlp


class BnnRegression(BuiltinUQ):
    """"""
    Variationally trained BNNs with Gaussian and Horseshoe [6]_ priors for regression.

    References:
        .. [6] Ghosh, Soumya, Jiayu Yao, and Finale Doshi-Velez. ""Structured variational learning of Bayesian neural
            networks with horseshoe priors."" International Conference on Machine Learning. PMLR, 2018.
    """"""
    def __init__(self,  config, prior=""Gaussian""):
        """"""

        Args:
            config: a dictionary specifying network and learning hyperparameters.
            prior: BNN priors specified as a string. Supported priors are Gaussian, Hshoe, RegHshoe
        """"""
        super(BnnRegression, self).__init__()
        self.config = config
        if prior == ""Gaussian"":
            self.net = bayesian_mlp.BayesianRegressionNet(ip_dim=config['ip_dim'], op_dim=config['op_dim'],
                                          num_nodes=config['num_nodes'], num_layers=config['num_layers'])
            self.config['use_reg_hshoe'] = None
        elif prior == ""Hshoe"":
            self.net = horseshoe_mlp.HshoeRegressionNet(ip_dim=config['ip_dim'], op_dim=config['op_dim'],
                                          num_nodes=config['num_nodes'], num_layers=config['num_layers'],
                                                       hshoe_scale=config['hshoe_scale'])
            self.config['use_reg_hshoe'] = False
        elif prior == ""RegHshoe"":
            self.net = horseshoe_mlp.HshoeRegressionNet(ip_dim=config['ip_dim'], op_dim=config['op_dim'],
                                                   num_nodes=config['num_nodes'], num_layers=config['num_layers'],
                                                   hshoe_scale=config['hshoe_scale'],
                                                   use_reg_hshoe=config['use_reg_hshoe'])
            self.config['use_reg_hshoe'] = True
        else:
            raise NotImplementedError(""'prior' must be a string. It can be one of Gaussian, Hshoe, RegHshoe"")

    def get_params(self, deep=True):
        return {""prior"": self.prior, ""config"": self.config}

    def fit(self, X, y):
        """""" Fit the BNN regression model.

        Args:
            X: array-like of shape (n_samples, n_features).
                Features vectors of the training data.
            y: array-like of shape (n_samples,) or (n_samples, n_targets)
                Target values

        Returns:
            self

        """"""
        torch.manual_seed(1234)
        optimizer = torch.optim.Adam(self.net.parameters(), lr=self.config['step_size'])
        neg_elbo = torch.zeros([self.config['num_epochs'], 1])
        params_store = {}
        for epoch in range(self.config['num_epochs']):
            loss = self.net.neg_elbo(num_batches=1, x=X, y=y.float().unsqueeze(dim=1)) / X.shape[0]
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            if hasattr(self.net, 'fixed_point_updates'):
                # for hshoe or regularized hshoe nets
                self.net.fixed_point_updates()
            neg_elbo[epoch] = loss.item()
            if (epoch + 1) % 10 == 0:
                # print ((net.noise_layer.bhat/net.noise_layer.ahat).data.numpy()[0])
                print('Epoch[{}/{}], neg elbo: {:.6f}, noise var: {:.6f}'
                      .format(epoch + 1, self.config['num_epochs'], neg_elbo[epoch].item() / X.shape[0],
                              self.net.get_noise_var()))
            params_store[epoch] = copy.deepcopy(self.net.state_dict()) # for small nets we can just store all.
        best_model_id = neg_elbo.argmin()  # loss_val_store.argmin() #
        self.net.load_state_dict(params_store[best_model_id.item()])

        return self

    def predict(self, X, mc_samples=100, return_dists=False, return_epistemic=True, return_epistemic_dists=False):
        """"""
        Obtain predictions for the test points.

        In addition to the mean and lower/upper bounds, also returns epistemic uncertainty (return_epistemic=True)
        and full predictive distribution (return_dists=True).

        Args:
            X: array-like of shape (n_samples, n_features).
                Features vectors of the test points.
            mc_samples: Number of Monte-Carlo samples.
            return_dists: If True, the predictive distribution for each instance using scipy distributions is returned.
            return_epistemic: if True, the epistemic upper and lower bounds are returned.
            return_epistemic_dists: If True, the epistemic distribution for each instance using scipy distributions
                is returned.

        Returns:
            namedtuple: A namedtupe that holds

            y_mean: ndarray of shape (n_samples, [n_output_dims])
                Mean of predictive distribution of the test points.
            y_lower: ndarray of shape (n_samples, [n_output_dims])
                Lower quantile of predictive distribution of the test points.
            y_upper: ndarray of shape (n_samples, [n_output_dims])
                Upper quantile of predictive distribution of the test points.
            y_lower_epistemic: ndarray of shape (n_samples, [n_output_dims])
                Lower quantile of epistemic component of the predictive distribution of the test points.
                Only returned when `return_epistemic` is True.
            y_upper_epistemic: ndarray of shape (n_samples, [n_output_dims])
                Upper quantile of epistemic component of the predictive distribution of the test points.
                Only returned when `return_epistemic` is True.
            dists: list of predictive distribution as `scipy.stats` objects with length n_samples.
                Only returned when `return_dists` is True.
        """"""
        epistemic_out = np.zeros([mc_samples, X.shape[0]])
        total_out = np.zeros([mc_samples, X.shape[0]])
        for s in np.arange(mc_samples):
            pred = self.net(X).data.numpy().ravel()
            epistemic_out[s] = pred
            total_out[s] = pred + np.sqrt(self.net.get_noise_var()) * np.random.randn(pred.shape[0])
        y_total_std = np.std(total_out, axis=0)
        y_epi_std = np.std(epistemic_out, axis=0)
        y_mean = np.mean(total_out, axis=0)
        y_lower = y_mean - 2 * y_total_std
        y_upper = y_mean + 2 * y_total_std
        y_epi_lower = y_mean - 2 * y_epi_std
        y_epi_upper = y_mean + 2 * y_epi_std

        Result = namedtuple('res', ['y_mean', 'y_lower', 'y_upper'])
        res = Result(y_mean, y_lower, y_upper)

        if return_epistemic:
            Result = namedtuple('res', Result._fields + ('lower_epistemic', 'upper_epistemic',))
            res = Result(*res, lower_epistemic=y_epi_lower, upper_epistemic=y_epi_upper)

        if return_dists:
            dists = [norm(loc=y_mean[i], scale=y_total_std[i]) for i in range(y_mean.shape[0])]
            Result = namedtuple('res', Result._fields + ('y_dists',))
            res = Result(*res, y_dists=dists)

        if return_epistemic_dists:
            epi_dists = [norm(loc=y_mean[i], scale=y_epi_std[i]) for i in range(y_mean.shape[0])]
            Result = namedtuple('res', Result._fields + ('y_epistemic_dists',))
            res = Result(*res, y_epistemic_dists=epi_dists)

        return res


class BnnClassification(BuiltinUQ):
    """"""
    Variationally trained BNNs with Gaussian and Horseshoe [6]_ priors for classification.
    """"""
    def __init__(self,  config, prior=""Gaussian"", device=None):
        """"""

        Args:
            config: a dictionary specifying network and learning hyperparameters.
            prior: BNN priors specified as a string. Supported priors are Gaussian, Hshoe, RegHshoe
        """"""
        super(BnnClassification, self).__init__()
        self.config = config
        self.device = device
        if prior == ""Gaussian"":
            self.net = bayesian_mlp.BayesianClassificationNet(ip_dim=config['ip_dim'], op_dim=config['op_dim'],
                                          num_nodes=config['num_nodes'], num_layers=config['num_layers'])
            self.config['use_reg_hshoe'] = None
        elif prior == ""Hshoe"":
            self.net = horseshoe_mlp.HshoeClassificationNet(ip_dim=config['ip_dim'], op_dim=config['op_dim'],
                                          num_nodes=config['num_nodes'], num_layers=config['num_layers'],
                                                       hshoe_scale=config['hshoe_scale'])
            self.config['use_reg_hshoe'] = False
        elif prior == ""RegHshoe"":
            self.net = horseshoe_mlp.HshoeClassificationNet(ip_dim=config['ip_dim'], op_dim=config['op_dim'],
                                                   num_nodes=config['num_nodes'], num_layers=config['num_layers'],
                                                   hshoe_scale=config['hshoe_scale'],
                                                   use_reg_hshoe=config['use_reg_hshoe'])
            self.config['use_reg_hshoe'] = True
        else:
            raise NotImplementedError(""'prior' must be a string. It can be one of Gaussian, Hshoe, RegHshoe"")
        if ""batch_size"" not in self.config:
            self.config[""batch_size""] = 50
        self.net = self.net.to(device)

    def get_params(self, deep=True):
        return {""prior"": self.prior, ""config"": self.config, ""device"": self.device}

    def fit(self, X=None, y=None, train_loader=None):
        """""" Fits BNN regression model.

        Args:
            X: array-like of shape (n_samples, n_features) or (n_samples, n_classes).
                Features vectors of the training data or the probability scores from the base model.
                Ignored if train_loader is not None.
            y: array-like of shape (n_samples,) or (n_samples, n_targets)
                Target values
                Ignored if train_loader is not None.
            train_loader: pytorch train_loader object.

        Returns:
            self

        """"""
        if train_loader is None:
            train = data_utils.TensorDataset(torch.Tensor(X), torch.Tensor(y.values).long())
            train_loader = data_utils.DataLoader(train, batch_size=self.config['batch_size'], shuffle=True)

        torch.manual_seed(1234)
        optimizer = torch.optim.Adam(self.net.parameters(), lr=self.config['step_size'])
        neg_elbo = torch.zeros([self.config['num_epochs'], 1])
        params_store = {}
        for epoch in range(self.config['num_epochs']):
            avg_loss = 0.0
            for batch_x, batch_y in train_loader:
                loss = self.net.neg_elbo(num_batches=len(train_loader), x=batch_x, y=batch_y) / batch_x.size(0)
                optimizer.zero_grad()
                loss.backward()
                optimizer.step()

                if hasattr(self.net, 'fixed_point_updates'):
                    # for hshoe or regularized hshoe nets
                    self.net.fixed_point_updates()

                avg_loss += loss.item()

            neg_elbo[epoch] = avg_loss / len(train_loader)

            if (epoch + 1) % 10 == 0:
                # print ((net.noise_layer.bhat/net.noise_layer.ahat).data.numpy()[0])
                print('Epoch[{}/{}], neg elbo: {:.6f}'
                      .format(epoch + 1, self.config['num_epochs'], neg_elbo[epoch].item()))
            params_store[epoch] = copy.deepcopy(self.net.state_dict()) # for small nets we can just store all.
        best_model_id = neg_elbo.argmin()  # loss_val_store.argmin() #
        self.net.load_state_dict(params_store[best_model_id.item()])

        return self

    def predict(self, X, mc_samples=100):
        """"""
        Obtain calibrated predictions for the test points.

        Args:
            X: array-like of shape (n_samples, n_features) or (n_samples, n_classes).
                Features vectors of the training data or the probability scores from the base model.
            mc_samples: Number of Monte-Carlo samples.

        Returns:
            namedtuple: A namedtupe that holds

            y_pred: ndarray of shape (n_samples,)
                Predicted labels of the test points.
            y_prob: ndarray of shape (n_samples, n_classes)
                Predicted probability scores of the classes.
            y_prob_var: ndarray of shape (n_samples,)
                Variance of the prediction on the test points.
            y_prob_samples: ndarray of shape (mc_samples, n_samples, n_classes)
                Samples from the predictive distribution.

        """"""

        X = torch.Tensor(X)
        y_prob_samples = [F.softmax(self.net(X), dim=1).detach().numpy() for _ in np.arange(mc_samples)]

        y_prob_samples_stacked = np.stack(y_prob_samples)
        prob_mean = np.mean(y_prob_samples_stacked, 0)
        prob_var = np.std(y_prob_samples_stacked, 0) ** 2

        if len(np.shape(prob_mean)) == 1:
            y_pred_labels = prob_mean > 0.5

        else:
            y_pred_labels = np.argmax(prob_mean, axis=1)

        Result = namedtuple('res', ['y_pred', 'y_prob', 'y_prob_var', 'y_prob_samples'])
        res = Result(y_pred_labels, prob_mean, prob_var, y_prob_samples)

        return res
"
homoscedastic_gaussian_process_regression.py,"from collections import namedtuple

import botorch
import gpytorch
import numpy as np
import torch
from botorch.models import SingleTaskGP
from botorch.utils.transforms import normalize
from gpytorch.constraints import GreaterThan
from scipy.stats import norm
from sklearn.preprocessing import StandardScaler

from uq360.algorithms.builtinuq import BuiltinUQ

np.random.seed(42)
torch.manual_seed(42)


class HomoscedasticGPRegression(BuiltinUQ):
    """""" A wrapper around Botorch SingleTask Gaussian Process Regression [1]_ with homoscedastic noise.

    References:
        .. [1] https://botorch.org/api/models.html#singletaskgp

    """"""

    def __init__(self,
                 kernel=gpytorch.kernels.ScaleKernel(gpytorch.kernels.RBFKernel()),
                 likelihood=None,
                 config=None):
        """"""
        Args:
            kernel: gpytorch kernel function with default set to `RBFKernel` with output scale.
            likelihood: gpytorch likelihood function with default set to `GaussianLikelihood`.
            config: dictionary containing the config parameters for the model.
        """"""

        super(HomoscedasticGPRegression).__init__()
        self.config = config
        self.kernel = kernel
        self.likelihood = likelihood
        self.model = None
        self.scaler = StandardScaler()
        self.X_bounds = None

    def get_params(self, deep=True):
        return {""kernel"": self.kernel, ""likelihood"": self.likelihood, ""config"": self.config}

    def fit(self, X, y, **kwargs):
        """"""
        Fit the GP Regression model.

        Additional arguments relevant for SingleTaskGP fitting can be passed to this function.

        Args:
            X: array-like of shape (n_samples, n_features).
                Features vectors of the training data.
            y: array-like of shape (n_samples,) or (n_samples, n_targets)
                Target values
            **kwargs: Additional arguments relevant for SingleTaskGP fitting.

        Returns:
            self

        """"""
        y = self.scaler.fit_transform(y)
        X, y = torch.tensor(X), torch.tensor(y)
        self.X_bounds = X_bounds = torch.stack([X.min() * torch.ones(X.shape[1]),
                                X.max() * torch.ones(X.shape[1])])

        X = normalize(X, X_bounds)

        model_homo = SingleTaskGP(train_X=X, train_Y=y, covar_module=self.kernel, likelihood=self.likelihood, **kwargs)
        model_homo.likelihood.noise_covar.register_constraint(""raw_noise"", GreaterThan(1e-5))
        model_homo_marginal_log_lik = gpytorch.mlls.ExactMarginalLogLikelihood(model_homo.likelihood, model_homo)
        botorch.fit.fit_gpytorch_model(model_homo_marginal_log_lik)

        model_homo_marginal_log_lik.eval()

        self.model = model_homo_marginal_log_lik
        self.inferred_observation_noise = self.scaler.inverse_transform(self.model.likelihood.noise.detach().numpy()[0].reshape(1,1)).squeeze()

        return self

    def predict(self, X, return_dists=False, return_epistemic=False, return_epistemic_dists=False):
        """"""
        Obtain predictions for the test points.

        In addition to the mean and lower/upper bounds, also returns epistemic uncertainty (return_epistemic=True)
        and full predictive distribution (return_dists=True).

        Args:
            X: array-like of shape (n_samples, n_features).
                Features vectors of the test points.
            return_dists: If True, the predictive distribution for each instance using scipy distributions is returned.
            return_epistemic: if True, the epistemic upper and lower bounds are returned.
            return_epistemic_dists: If True, the epistemic distribution for each instance using scipy distributions
                is returned.

        Returns:
            namedtuple: A namedtuple that holds

            y_mean: ndarray of shape (n_samples, [n_output_dims])
                Mean of predictive distribution of the test points.
            y_lower: ndarray of shape (n_samples, [n_output_dims])
                Lower quantile of predictive distribution of the test points.
            y_upper: ndarray of shape (n_samples, [n_output_dims])
                Upper quantile of predictive distribution of the test points.
            y_lower_epistemic: ndarray of shape (n_samples, [n_output_dims])
                Lower quantile of epistemic component of the predictive distribution of the test points.
                Only returned when `return_epistemic` is True.
            y_upper_epistemic: ndarray of shape (n_samples, [n_output_dims])
                Upper quantile of epistemic component of the predictive distribution of the test points.
                Only returned when `return_epistemic` is True.
            dists: list of predictive distribution as `scipy.stats` objects with length n_samples.
                Only returned when `return_dists` is True.
        """"""
        X = torch.tensor(X)

        X_test_norm = normalize(X, self.X_bounds)

        self.model.eval()
        with torch.no_grad():
            posterior = self.model.model.posterior(X_test_norm)
            y_mean = posterior.mean
            #y_epi_std = torch.sqrt(posterior.variance)
            y_lower_epistemic, y_upper_epistemic = posterior.mvn.confidence_region()

            predictive_posterior = self.model.model.posterior(X_test_norm, observation_noise=True)
            #y_std = torch.sqrt(predictive_posterior.variance)
            y_lower_total, y_upper_total = predictive_posterior.mvn.confidence_region()

        y_mean, y_lower, y_upper, y_lower_epistemic, y_upper_epistemic = self.scaler.inverse_transform(y_mean.numpy()).squeeze(), \
               self.scaler.inverse_transform(y_lower_total.numpy()).squeeze(),\
               self.scaler.inverse_transform(y_upper_total.numpy()).squeeze(),\
               self.scaler.inverse_transform(y_lower_epistemic.numpy()).squeeze(),\
               self.scaler.inverse_transform(y_upper_epistemic.numpy()).squeeze()

        y_epi_std = (y_upper_epistemic - y_lower_epistemic) / 4.0
        y_std = (y_upper_total - y_lower_total) / 4.0

        Result = namedtuple('res', ['y_mean', 'y_lower', 'y_upper'])
        res = Result(y_mean, y_lower, y_upper)

        if return_epistemic:
            Result = namedtuple('res', Result._fields + ('y_lower_epistemic', 'y_upper_epistemic',))
            res = Result(*res, y_lower_epistemic=y_lower_epistemic, y_upper_epistemic=y_upper_epistemic)

        if return_dists:
            dists = [norm(loc=y_mean[i], scale=y_std[i]) for i in range(y_mean.shape[0])]
            Result = namedtuple('res', Result._fields + ('y_dists',))
            res = Result(*res, y_dists=dists)

        if return_epistemic_dists:
            epi_dists = [norm(loc=y_mean[i], scale=y_epi_std[i]) for i in range(y_mean.shape[0])]
            Result = namedtuple('res', Result._fields + ('y_epistemic_dists',))
            res = Result(*res, y_epistemic_dists=epi_dists)

        return res

"
__init__.py,from .homoscedastic_gaussian_process_regression import HomoscedasticGPRegression
quantile_regression.py,"from collections import namedtuple

from sklearn.ensemble import GradientBoostingRegressor

from uq360.algorithms.builtinuq import BuiltinUQ


class QuantileRegression(BuiltinUQ):
    """"""Quantile Regression uses quantile loss and learns two separate models for the upper and lower quantile
    to obtain the prediction intervals.
    """"""

    def __init__(self, model_type=""gbr"", config=None):
        """"""
        Args:
            model_type: The base model used for predicting a quantile. Currently supported values are [gbr].
                gbr is sklearn GradientBoostingRegressor.
            config: dictionary containing the config parameters for the model.
        """"""

        super(QuantileRegression).__init__()
        if config is not None:
            self.config = config
        else:
            self.config = {}
        if ""alpha"" not in self.config:
            self.config[""alpha""] = 0.95
        if model_type == ""gbr"":
            self.model_type = model_type
            self.model_mean = GradientBoostingRegressor(
                loss='ls',
                n_estimators=self.config[""n_estimators""],
                max_depth=self.config[""max_depth""],
                learning_rate=self.config[""learning_rate""],
                min_samples_leaf=self.config[""min_samples_leaf""],
                min_samples_split=self.config[""min_samples_split""]
            )
            self.model_upper = GradientBoostingRegressor(
                loss='quantile',
                alpha=self.config[""alpha""],
                n_estimators=self.config[""n_estimators""],
                max_depth=self.config[""max_depth""],
                learning_rate=self.config[""learning_rate""],
                min_samples_leaf=self.config[""min_samples_leaf""],
                min_samples_split=self.config[""min_samples_split""]
            )
            self.model_lower = GradientBoostingRegressor(
                loss='quantile',
                alpha=1.0 - self.config[""alpha""],
                n_estimators=self.config[""n_estimators""],
                max_depth=self.config[""max_depth""],
                learning_rate=self.config[""learning_rate""],
                min_samples_leaf=self.config[""min_samples_leaf""],
                min_samples_split=self.config[""min_samples_split""])

        else:
            raise NotImplementedError

    def get_params(self, deep=True):
        return {""model_type"": self.model_type, ""config"": self.config}

    def fit(self, X, y):
        """""" Fit the Quantile Regression model.

        Args:
            X: array-like of shape (n_samples, n_features).
                Features vectors of the training data.
            y: array-like of shape (n_samples,) or (n_samples, n_targets)
                Target values

        Returns:
            self

        """"""

        self.model_mean.fit(X, y)
        self.model_lower.fit(X, y)
        self.model_upper.fit(X, y)

        return self

    def predict(self, X):
        """"""
        Obtain predictions for the test points.

        In addition to the mean and lower/upper bounds, also returns epistemic uncertainty (return_epistemic=True)
        and full predictive distribution (return_dists=True).

        Args:
            X: array-like of shape (n_samples, n_features).
                Features vectors of the test points.

        Returns:
            namedtuple: A namedtupe that holds

            y_mean: ndarray of shape (n_samples, [n_output_dims])
                Mean of predictive distribution of the test points.
            y_lower: ndarray of shape (n_samples, [n_output_dims])
                Lower quantile of predictive distribution of the test points.
            y_upper: ndarray of shape (n_samples, [n_output_dims])
                Upper quantile of predictive distribution of the test points.
        """"""

        y_mean = self.model_mean.predict(X)
        y_lower = self.model_lower.predict(X)
        y_upper = self.model_upper.predict(X)

        Result = namedtuple('res', ['y_mean', 'y_lower', 'y_upper'])
        res = Result(y_mean, y_lower, y_upper)

        return res
"
__init__.py,"from .quantile_regression import QuantileRegression
"
__init__.py,"from .infinitesimal_jackknife import InfinitesimalJackknife
"
infinitesimal_jackknife.py,"from collections import namedtuple

import numpy as np

from uq360.algorithms.posthocuq import PostHocUQ


class InfinitesimalJackknife(PostHocUQ):
    """"""
    Performs a first order Taylor series expansion around MLE / MAP fit.
    Requires the model being probed to be twice differentiable.
    """"""
    def __init__(self, params, gradients, hessian, config):
        """""" Initialize IJ.
        Args:
            params: MLE / MAP fit around which uncertainty is sought. d*1
            gradients: Per data point gradients, estimated at the MLE / MAP fit. d*n
            hessian: Hessian evaluated at the MLE / MAP fit. d*d
        """"""

        super(InfinitesimalJackknife).__init__()
        self.params_one = params
        self.gradients = gradients
        self.hessian = hessian
        self.d, self.n = gradients.shape
        self.dParams_dWeights = -np.linalg.solve(self.hessian, self.gradients)
        self.approx_dParams_dWeights = -np.linalg.solve(np.diag(np.diag(self.hessian)), self.gradients)
        self.w_one = np.ones([self.n])
        self.config = config

    def get_params(self, deep=True):
        return {""params"": self.params, ""config"": self.config, ""gradients"": self.gradients,
                ""hessian"": self.hessian}

    def _process_pretrained_model(self, *argv, **kwargs):
        pass

    def get_parameter_uncertainty(self):
        if (self.config['resampling_strategy'] == ""jackknife"") or (self.config['resampling_strategy'] == ""jackknife+""):
            w_query = np.ones_like(self.w_one)
            resampled_params = np.zeros([self.n, self.d])
            for i in np.arange(self.n):
                w_query[i] = 0
                resampled_params[i] = self.ij(w_query)
                w_query[i] = 1
            return np.cov(resampled_params), resampled_params
        elif self.config['resampling_strategy'] == ""bootstrap"":
            pass
        else:
            raise NotImplementedError(""Only jackknife, jackknife+, and bootstrap resampling strategies are supported"")

    def predict(self, X, model):
        """"""
        Args:
            X: array-like of shape (n_samples, n_features).
                Features vectors of the test points.
            model: model object, must implement a set_parameters function

        Returns:
            namedtuple: A namedtupe that holds

            y_mean: ndarray of shape (n_samples, [n_output_dims])
                Mean of predictive distribution of the test points.
            y_lower: ndarray of shape (n_samples, [n_output_dims])
                Lower quantile of predictive distribution of the test points.
            y_upper: ndarray of shape (n_samples, [n_output_dims])
                Upper quantile of predictive distribution of the test points.

        """"""
        n, _ = X.shape
        y_all = model.predict(X)
        _, d_out = y_all.shape
        params_cov, params = self.get_parameter_uncertainty()
        if d_out > 1:
            print(""Quantiles are computed independently for each dimension. May not be accurate."")
        y = np.zeros([params.shape[0], n, d_out])
        for i in np.arange(params.shape[0]):
            model.set_parameters(params[i])
            y[i] = model.predict(X)
        y_lower = np.quantile(y, q=0.5 * self.config['alpha'], axis=0)
        y_upper = np.quantile(y, q=(1. - 0.5 * self.config['alpha']), axis=0)
        y_mean = y.mean(axis=0)

        Result = namedtuple('res', ['y_mean', 'y_lower', 'y_upper'])
        res = Result(y_mean, y_lower, y_upper)

        return res

    def ij(self, w_query):
        """"""
        Args:
            w_query: A n*1 vector to query parameters at.
        Return:
            new parameters at w_query
        """"""
        assert w_query.shape[0] == self.n
        return self.params_one + self.dParams_dWeights @ (w_query-self.w_one).T

    def approx_ij(self, w_query):
        """"""
        Args:
            w_query: A n*1 vector to query parameters at.
        Return:
            new parameters at w_query
        """"""
        assert w_query.shape[0] == self.n
        return self.params_one + self.approx_dParams_dWeights @ (w_query-self.w_one).T"
blackbox_metamodel_classification.py,"import inspect
from collections import namedtuple

import numpy as np
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.exceptions import NotFittedError
from uq360.algorithms.posthocuq import PostHocUQ


class BlackboxMetamodelClassification(PostHocUQ):
    """""" Extracts confidence scores from black-box classification models using a meta-model [4]_ .

    References:
        .. [4] Chen, Tongfei, et al. ""Confidence scoring using whitebox meta-models with linear classifier probes.""
         The 22nd International Conference on Artificial Intelligence and Statistics. PMLR, 2019.
    """"""

    def _create_named_model(self, mdltype, config):
        """""" Instantiates a model by name passed in 'mdltype'.

        Args:
            mdltype: string with name (must be supported)
            config: dict with args passed in the instantiation call
        Returns:
             mdl instance
        """"""
        assert (isinstance(mdltype, str))
        if mdltype == 'lr':
            mdl = LogisticRegression(**config)
        elif mdltype == 'gbm':
            mdl = GradientBoostingClassifier(**config)
        else:
            raise NotImplementedError(""ERROR: Requested model type unknown: \""%s\"""" % mdltype)
        return mdl

    def _get_model_instance(self, model, config):
        """""" Returns an instance of a model based on (a) a desired name or (b) passed in class, or
        (c) passed in instance.

        :param model: string, class, or instance. Class and instance must have certain methods callable.
        :param config: dict with args passed in during the instantiation
        :return: model instance
        """"""
        assert (model is not None and config is not None)
        if isinstance(model, str):  # 'model' is a name, create it
            mdl = self._create_named_model(model, config)
        elif inspect.isclass(model):  # 'model' is a class, instantiate it
            mdl = model(**config)
        else:  # 'model' is an instance, register it
            mdl = model
        if not all([hasattr(mdl, key) and callable(getattr(mdl, key)) for key in self.callable_keys]):
            raise ValueError(""ERROR: Passed model/method failed the interface test. Methods required: %s"" %
                             ','.join(self.callable_keys))
        return mdl

    def __init__(self, base_model=None, meta_model=None, base_config=None, meta_config=None, random_seed=42):
        """"""

        :param base_model: Base model. Can be:
                            (1) None (default mdl will be set up),
                            (2) Named model (e.g., logistic regression 'lr' or gradient boosting machine 'gbm'),
                            (3) Base model class declaration (e.g., sklearn.linear_model.LogisticRegression). Will instantiate.
                            (4) Model instance (instantiated outside). Will be re-used. Must have certain callable methods.
                            Note: user-supplied classes and models must have certain callable methods ('predict', 'fit')
                            and be capable of raising NotFittedError.
        :param meta_model: Meta model. Same values possible as with 'base_model'
        :param base_config: None or a params dict to be passed to 'base_model' at instantiation
        :param meta_config: None or a params dict to be passed to 'meta_model' at instantiation
        :param random_seed: seed used in the various pipeline steps
        """"""
        super(BlackboxMetamodelClassification).__init__()
        self.random_seed = random_seed
        self.callable_keys = ['predict', 'fit']  # required methods - must be present in models passed in
        self.base_model_default = 'gbm'
        self.meta_model_default = 'lr'
        self.base_config_default = {'n_estimators': 300, 'max_depth': 10,
                                    'learning_rate': 0.001, 'min_samples_leaf': 10, 'min_samples_split': 10,
                                    'random_state': self.random_seed}
        self.meta_config_default = {'penalty': 'l1', 'C': 1, 'solver': 'liblinear', 'random_state': self.random_seed}
        self.base_config = base_config if base_config is not None else self.base_config_default
        self.meta_config = meta_config if meta_config is not None else self.meta_config_default
        self.base_model = None
        self.meta_model = None
        self.base_model = self._get_model_instance(base_model if base_model is not None else self.base_model_default,
                                                   self.base_config)
        self.meta_model = self._get_model_instance(meta_model if meta_model is not None else self.meta_model_default,
                                                   self.meta_config)

    def get_params(self, deep=True):
        return {""base_model"": self.base_model, ""meta_model"": self.meta_model, ""base_config"": self.base_config,
                ""meta_config"": self.meta_config, ""random_seed"": self.random_seed}

    def _process_pretrained_model(self, X, y_hat_proba):
        """"""
        Given the original input features and the base output probabilities, generate input features
        to train a meta model. Current implementation copies all input features and appends.

        :param X: numpy [nsamples, dim]
        :param y_hat_proba: [nsamples, nclasses]
        :return: array with new features [nsamples, newdim]
        """"""
        assert (len(y_hat_proba.shape) == 2)
        assert (X.shape[0] == y_hat_proba.shape[0])
        # sort the probs sample by sample
        faux1 = np.sort(y_hat_proba, axis=-1)
        # add delta between top and second candidate
        faux2 = np.expand_dims(faux1[:, -1] - faux1[:, -2], axis=-1)
        return np.hstack([X, faux1, faux2])

    def fit(self, X, y, meta_fraction=0.2, randomize_samples=True, base_is_prefitted=False,
            meta_train_data=(None, None)):
        """"""
        Fit base and meta models.

        :param X: input to the base model,
                array-like of shape (n_samples, n_features).
                Features vectors of the training data.
        :param y: ground truth for the base model,
                array-like of shape (n_samples,)
        :param meta_fraction: float in [0,1] - a fractional size of the partition carved out to train the meta model
                                (complement will be used to train the base model)
        :param randomize_samples: use shuffling when creating partitions
        :param base_is_prefitted: Setting True will skip fitting the base model (useful for base models that have been
                        instantiated outside/by the user and are already fitted.
        :param meta_train_data: User supplied data to train the meta model. Note that this option should only be used
                        with 'base_is_prefitted'==True. Pass a tuple meta_train_data=(X_meta, y_meta) to activate.
                        Note that (X,y,meta_fraction, randomize_samples) will be ignored in this mode.
        :return: self
        """"""
        X = np.asarray(X)
        y = np.asarray(y)
        assert (len(meta_train_data) == 2)
        if meta_train_data[0] is None:
            X_base, X_meta, y_base, y_meta = train_test_split(X, y, shuffle=randomize_samples, test_size=meta_fraction,
                                                              random_state=self.random_seed)
        else:
            if not base_is_prefitted:
                raise ValueError(""ERROR: fit(): base model must be pre-fitted to use the 'meta_train_data' option"")
            X_base = y_base = None
            X_meta = meta_train_data[0]
            y_meta = meta_train_data[1]
        # fit the base model
        if not base_is_prefitted:
            self.base_model.fit(X_base, y_base)
        # get input for the meta model from the base
        try:
            y_hat_meta_proba = self.base_model.predict_proba(X_meta)
            # determine correct-incorrect outcome - these are targets for the meta model trainer
            
            # y_hat_meta_targets = np.asarray((y_meta == np.argmax(y_hat_meta_proba, axis=-1)), dtype=np.int) -- Fix for python 3.8.11 update (in 2.9.0.8)
            y_hat_meta_targets = np.asarray((y_meta == np.argmax(y_hat_meta_proba, axis=-1)), dtype=int)
        
        except NotFittedError as e:
            raise RuntimeError(""ERROR: fit(): The base model appears not pre-fitted (%s)"" % repr(e))
        # get input features for meta training
        X_meta_in = self._process_pretrained_model(X_meta, y_hat_meta_proba)
        # train meta model to predict 'correct' vs. 'incorrect' of the base
        self.meta_model.fit(X_meta_in, y_hat_meta_targets)
        return self

    def predict(self, X):
        """"""
        Generate a base prediction along with uncertainty/confidence for data X.

        :param X: array-like of shape (n_samples, n_features).
                Features vectors of the test points.
        :return: namedtuple: A namedtuple that holds

            y_pred: ndarray of shape (n_samples,)
                Predicted labels of the test points.
            y_score: ndarray of shape (n_samples,)
                Confidence score the test points.

        """"""
        y_hat_proba = self.base_model.predict_proba(X)
        y_hat = np.argmax(y_hat_proba, axis=-1)
        X_meta_in = self._process_pretrained_model(X, y_hat_proba)
        z_hat = self.meta_model.predict_proba(X_meta_in)
        index_of_class_1 = np.where(self.meta_model.classes_ == 1)[0][0]  # class 1 corresponds to probab of positive/correct outcome
        Result = namedtuple('res', ['y_pred', 'y_score'])
        res = Result(y_hat, z_hat[:, index_of_class_1])

        return res
"
__init__.py,"from .blackbox_metamodel_regression import BlackboxMetamodelRegression
from .blackbox_metamodel_classification import BlackboxMetamodelClassification
"
blackbox_metamodel_regression.py,"import inspect
from collections import namedtuple

import numpy as np
from sklearn.ensemble import GradientBoostingRegressor
from sklearn.model_selection import train_test_split
from sklearn.exceptions import NotFittedError
from uq360.algorithms.posthocuq import PostHocUQ


class BlackboxMetamodelRegression(PostHocUQ):
    """""" Extracts confidence scores from black-box regression models using a meta-model [2]_ .

    References:
        .. [2] Chen, Tongfei, et al. Confidence scoring using whitebox meta-models with linear classifier probes.
         The 22nd International Conference on Artificial Intelligence and Statistics. PMLR, 2019.

    """"""

    def _create_named_model(self, mdltype, config):
        """"""
        Instantiates a model by name passed in 'mdltype'

        :param mdltype: string with name (must be supprted)
        :param config: dict with args passed in the instantiation call
        :return: mdl instance
        """"""
        assert (isinstance(mdltype, str))
        if mdltype == 'gbr':
            mdl = GradientBoostingRegressor(**config)
        else:
            raise NotImplementedError(""ERROR: Requested model type unknown: \""%s\"""" % mdltype)
        return mdl

    def _get_model_instance(self, model, config):
        """"""
        Returns an instance of a model based on (a) a desired name or (b) passed in class, or
        (c) passed in instance

        :param model: string, class, or instance. Class and instance must have certain methods callable.
        :param config: dict with args passed in during the instantiation
        :return: model instance
        """"""
        assert (model is not None and config is not None)
        if isinstance(model, str):  # 'model' is a name, create it
            mdl = self._create_named_model(model, config)
        elif inspect.isclass(model):  # 'model' is a class, instantiate it
            mdl = model(**config)
        else:  # 'model' is an instance, register it
            mdl = model
        if not all([hasattr(mdl, key) and callable(getattr(mdl, key)) for key in self.callable_keys]):
            raise ValueError(""ERROR: Passed model/method failed the interface test. Methods required: %s"" %
                             ','.join(self.callable_keys))
        return mdl

    def __init__(self, base_model=None, meta_model=None, base_config=None, meta_config=None, random_seed=42):
        """"""

        :param base_model: Base model. Can be:
                            (1) None (default mdl will be set up),
                            (2) Named model (e.g., 'gbr'),
                            (3) Base model class declaration (e.g., sklearn.linear_model.LinearRegressor). Will instantiate.
                            (4) Model instance (instantiated outside). Will be re-used. Must have required callable methods.
                            Note: user-supplied classes and models must have certain callable methods ('predict', 'fit')
                            and be capable of raising NotFittedError.
        :param meta_model: Meta model. Same values possible as with 'base_model'
        :param base_config: None or a params dict to be passed to 'base_model' at instantiation
        :param meta_config: None or a params dict to be passed to 'meta_model' at instantiation
        :param random_seed: seed used in the various pipeline steps
        """"""
        super(BlackboxMetamodelRegression).__init__()
        self.random_seed = random_seed
        self.callable_keys = ['predict', 'fit']  # required methods - must be present in models passed in
        self.base_model_default = 'gbr'
        self.meta_model_default = 'gbr'
        self.base_config_default = {'loss': 'ls', 'n_estimators': 300, 'max_depth': 10, 'learning_rate': 0.001,
                                    'min_samples_leaf': 10, 'min_samples_split': 10, 'random_state': self.random_seed}
        self.meta_config_default = {'loss': 'quantile', 'alpha': 0.95, 'n_estimators': 300, 'max_depth': 10,
                                    'learning_rate': 0.001, 'min_samples_leaf': 10, 'min_samples_split': 10,
                                    'random_state': self.random_seed}
        self.base_config = base_config if base_config is not None else self.base_config_default
        self.meta_config = meta_config if meta_config is not None else self.meta_config_default
        self.base_model = None
        self.meta_model = None
        self.base_model = self._get_model_instance(base_model if base_model is not None else self.base_model_default,
                                                   self.base_config)
        self.meta_model = self._get_model_instance(meta_model if meta_model is not None else self.meta_model_default,
                                                   self.meta_config)

    def get_params(self, deep=True):
        return {""base_model"": self.base_model, ""meta_model"": self.meta_model, ""base_config"": self.base_config,
                ""meta_config"": self.meta_config, ""random_seed"": self.random_seed}

    def fit(self, X, y, meta_fraction=0.2, randomize_samples=True, base_is_prefitted=False,
            meta_train_data=(None, None)):
        """"""
        Fit base and meta models.

        :param X: input to the base model
        :param y: ground truth for the base model
        :param meta_fraction: float in [0,1] - a fractional size of the partition carved out to train the meta model
                                (complement will be used to train the base model)
        :param randomize_samples: use shuffling when creating partitions
        :param base_is_prefitted: Setting True will skip fitting the base model (useful for base models that have been
                        instantiated outside/by the user and are already fitted.
        :param meta_train_data: User supplied data to train the meta model. Note that this option should only be used
                        with 'base_is_prefitted'==True. Pass a tuple meta_train_data=(X_meta, y_meta) to activate.
                        Note that (X,y,meta_fraction, randomize_samples) will be ignored in this mode.
        :return: self
        """"""
        X = np.asarray(X)
        y = np.asarray(y)
        assert(len(meta_train_data)==2)
        if meta_train_data[0] is None:
            X_base, X_meta, y_base, y_meta = train_test_split(X, y, shuffle=randomize_samples, test_size=meta_fraction,
                                                          random_state=self.random_seed)
        else:
            if not base_is_prefitted:
                raise ValueError(""ERROR: fit(): base model must be pre-fitted to use the 'meta_train_data' option"")
            X_base = y_base = None
            X_meta = meta_train_data[0]
            y_meta = meta_train_data[1]
        # fit the base model
        if not base_is_prefitted:
            self.base_model.fit(X_base, y_base)
        # get input for the meta model from the base
        try:
            y_hat_meta = self.base_model.predict(X_meta)
        except NotFittedError as e:
            raise RuntimeError(""ERROR: fit(): The base model appears not pre-fitted (%s)"" % repr(e))
        # used base input and output as meta input
        X_meta_in = self._process_pretrained_model(X_meta, y_hat_meta)
        # train meta model to predict abs diff
        self.meta_model.fit(X_meta_in, np.abs(y_hat_meta - y_meta))
        return self

    def _process_pretrained_model(self, X, y_hat):
        """"""
        Given the original input features and the base output probabilities, generate input features
        to train a meta model. Current implementation copies all input features and appends.

        :param X: numpy [nsamples, dim]
        :param y_hat: [nsamples,]
        :return: array with new features [nsamples, newdim]
        """"""
        y_hat_meta_prime = np.expand_dims(y_hat, -1) if len(y_hat.shape) < 2 else y_hat
        X_meta_in = np.hstack([X, y_hat_meta_prime])
        return X_meta_in

    def predict(self, X):
        """"""
        Generate prediction and uncertainty bounds for data X.

        :param X: input features
        :return: namedtuple: A namedtuple that holds

            y_mean: ndarray of shape (n_samples, [n_output_dims])
                Mean of predictive distribution of the test points.
            y_lower: ndarray of shape (n_samples, [n_output_dims])
                Lower quantile of predictive distribution of the test points.
            y_upper: ndarray of shape (n_samples, [n_output_dims])
                Upper quantile of predictive distribution of the test points.

        """"""
        y_hat = self.base_model.predict(X)
        y_hat_prime = np.expand_dims(y_hat, -1) if len(y_hat.shape) < 2 else y_hat
        X_meta_in = np.hstack([X, y_hat_prime])
        z_hat = self.meta_model.predict(X_meta_in)

        Result = namedtuple('res', ['y_mean', 'y_lower', 'y_upper'])
        res = Result(y_hat, y_hat - z_hat, y_hat + z_hat)

        return res
"
__init__.py,from .heteroscedastic_regression import HeteroscedasticRegression
heteroscedastic_regression.py,"from collections import namedtuple

import numpy as np
import torch
from scipy.stats import norm
from torch.utils.data import DataLoader
from torch.utils.data import TensorDataset
from uq360.algorithms.builtinuq import BuiltinUQ
from uq360.models.heteroscedastic_mlp import GaussianNoiseMLPNet as _MLPNet

np.random.seed(42)
torch.manual_seed(42)

class HeteroscedasticRegression(BuiltinUQ):
    """""" Wrapper for heteroscedastic regression. We learn to predict targets given features, 
         assuming that the targets are noisy and that the amount of noise varies between data points. 
         https://en.wikipedia.org/wiki/Heteroscedasticity
    """"""

    def __init__(self, model_type=None, model=None, config=None, device=None, verbose=True):
        """"""
        Args:
            model_type: The base model architecture. Currently supported values are [mlp].
                mlp modeltype learns a multi-layer perceptron with a heteroscedastic Gaussian likelihood. Both the
                mean and variance of the Gaussian are functions of the data point ->git  N(y_n | mlp_mu(x_n), mlp_var(x_n))
            model: (optional) The prediction model. Currently support pytorch models that returns mean and log variance.
            config: dictionary containing the config parameters for the model.
            device: device used for pytorch models ignored otherwise.
            verbose: if True, print statements with the progress are enabled.
        """"""

        super(HeteroscedasticRegression).__init__()
        self.config = config
        self.device = device
        self.verbose = verbose
        if model_type == ""mlp"":
            self.model_type = model_type
            self.model = _MLPNet(
                num_features=self.config[""num_features""],
                num_outputs=self.config[""num_outputs""],
                num_hidden=self.config[""num_hidden""],
            )

        elif model_type == ""custom"":
            self.model_type = model_type
            self.model = model

        else:
            raise NotImplementedError

    def get_params(self, deep=True):
        return {""model_type"": self.model_type, ""config"": self.config, ""model"": self.model,
                ""device"": self.device, ""verbose"": self.verbose}

    def _loss(self, y_true, y_pred_mu, y_pred_log_var):
        return torch.mean(0.5 * torch.exp(-y_pred_log_var) * torch.abs(y_true - y_pred_mu) ** 2 +
                          0.5 * y_pred_log_var)

    def fit(self, X, y):
        """""" Fit the Heteroscedastic Regression model.

        Args:
            X: array-like of shape (n_samples, n_features).
                Features vectors of the training data.
            y: array-like of shape (n_samples,) or (n_samples, n_targets)
                Target values

        Returns:
            self

        """"""
        X = torch.from_numpy(X).float().to(self.device)
        y = torch.from_numpy(y).float().to(self.device)

        dataset_loader = DataLoader(
            TensorDataset(X,y),
            batch_size=self.config[""batch_size""]
        )
        optimizer = torch.optim.Adam(self.model.parameters(), lr=self.config[""lr""])

        for epoch in range(self.config[""num_epochs""]):
            avg_loss = 0.0
            for batch_x, batch_y in dataset_loader:
                self.model.train()
                batch_y_pred_mu, batch_y_pred_log_var = self.model(batch_x)
                loss = self.model.loss(batch_y, batch_y_pred_mu, batch_y_pred_log_var)
                optimizer.zero_grad()
                loss.backward()
                optimizer.step()

                avg_loss += loss.item()/len(dataset_loader)

            if self.verbose:
                print(""Epoch: {}, loss = {}"".format(epoch, avg_loss))

        return self

    def predict(self, X, return_dists=False):
        """"""
        Obtain predictions for the test points.

        In addition to the mean and lower/upper bounds, also returns epistemic uncertainty (return_epistemic=True)
        and full predictive distribution (return_dists=True).

        Args:
            X: array-like of shape (n_samples, n_features).
                Features vectors of the test points.
            return_dists: If True, the predictive distribution for each instance using scipy distributions is returned.

        Returns:
            namedtuple: A namedtupe that holds

            y_mean: ndarray of shape (n_samples, [n_output_dims])
                Mean of predictive distribution of the test points.
            y_lower: ndarray of shape (n_samples, [n_output_dims])
                Lower quantile of predictive distribution of the test points.
            y_upper: ndarray of shape (n_samples, [n_output_dims])
                Upper quantile of predictive distribution of the test points.
            dists: list of predictive distribution as `scipy.stats` objects with length n_samples.
                Only returned when `return_dists` is True.
        """"""

        self.model.eval()

        X = torch.from_numpy(X).float().to(self.device)
        dataset_loader = DataLoader(
            X,
            batch_size=self.config[""batch_size""]
        )

        y_mean_list = []
        y_log_var_list = []
        for batch_x in dataset_loader:
            batch_y_pred_mu, batch_y_pred_log_var = self.model(batch_x)
            y_mean_list.append(batch_y_pred_mu.data.cpu().numpy())
            y_log_var_list.append(batch_y_pred_log_var.data.cpu().numpy())

        y_mean = np.concatenate(y_mean_list)
        y_log_var = np.concatenate(y_log_var_list)
        y_std = np.sqrt(np.exp(y_log_var))
        y_lower = y_mean - 2.0*y_std
        y_upper = y_mean + 2.0*y_std

        Result = namedtuple('res', ['y_mean', 'y_lower', 'y_upper'])
        res = Result(y_mean, y_lower, y_upper)

        if return_dists:
            dists = [norm(loc=y_mean[i], scale=y_std[i]) for i in range(y_mean.shape[0])]
            Result = namedtuple('res', Result._fields + ('y_dists',))
            res = Result(*res, y_dists=dists)

        return res
"
__init__.py,"from .meps_dataset import MEPSDataset
"
meps_dataset.py,"# Adapted from https://github.com/Trusted-AI/AIX360/blob/master/aix360/datasets/meps_dataset.py
# Utilization target is kept as a continuous target.
import os

import pandas as pd


def default_preprocessing(df):
    """"""
    1.Create a new column, RACE that is 'White' if RACEV2X = 1 and HISPANX = 2 i.e. non Hispanic White
      and 'non-White' otherwise
    2. Restrict to Panel 19
    3. RENAME all columns that are PANEL/ROUND SPECIFIC
    4. Drop rows based on certain values of individual features that correspond to missing/unknown - generally < -1
    5. Compute UTILIZATION.
    """"""
    def race(row):
        if ((row['HISPANX'] == 2) and (row['RACEV2X'] == 1)):  #non-Hispanic Whites are marked as WHITE; all others as NON-WHITE
            return 'White'
        return 'Non-White'

    df['RACEV2X'] = df.apply(lambda row: race(row), axis=1)
    df = df.rename(columns = {'RACEV2X' : 'RACE'})

    df = df[df['PANEL'] == 19]

    # RENAME COLUMNS
    df = df.rename(columns = {'FTSTU53X' : 'FTSTU', 'ACTDTY53' : 'ACTDTY', 'HONRDC53' : 'HONRDC', 'RTHLTH53' : 'RTHLTH',
                              'MNHLTH53' : 'MNHLTH', 'CHBRON53' : 'CHBRON', 'JTPAIN53' : 'JTPAIN', 'PREGNT53' : 'PREGNT',
                              'WLKLIM53' : 'WLKLIM', 'ACTLIM53' : 'ACTLIM', 'SOCLIM53' : 'SOCLIM', 'COGLIM53' : 'COGLIM',
                              'EMPST53' : 'EMPST', 'REGION53' : 'REGION', 'MARRY53X' : 'MARRY', 'AGE53X' : 'AGE',
                              'POVCAT15' : 'POVCAT', 'INSCOV15' : 'INSCOV'})

    df = df[df['REGION'] >= 0] # remove values -1
    df = df[df['AGE'] >= 0] # remove values -1

    df = df[df['MARRY'] >= 0] # remove values -1, -7, -8, -9

    df = df[df['ASTHDX'] >= 0] # remove values -1, -7, -8, -9

    df = df[(df[['FTSTU','ACTDTY','HONRDC','RTHLTH','MNHLTH','HIBPDX','CHDDX','ANGIDX','EDUCYR','HIDEG',
                             'MIDX','OHRTDX','STRKDX','EMPHDX','CHBRON','CHOLDX','CANCERDX','DIABDX',
                             'JTPAIN','ARTHDX','ARTHTYPE','ASTHDX','ADHDADDX','PREGNT','WLKLIM',
                             'ACTLIM','SOCLIM','COGLIM','DFHEAR42','DFSEE42','ADSMOK42',
                             'PHQ242','EMPST','POVCAT','INSCOV']] >= -1).all(1)]  #for all other categorical features, remove values < -1

    def utilization(row):
        return row['OBTOTV15'] + row['OPTOTV15'] + row['ERTOT15'] + row['IPNGTD15'] + row['HHTOTD15']

    df['TOTEXP15'] = df.apply(lambda row: utilization(row), axis=1)

    df = df.rename(columns = {'TOTEXP15' : 'UTILIZATION'})

    df = df[['REGION','AGE','SEX','RACE','MARRY',
                                 'FTSTU','ACTDTY','HONRDC','RTHLTH','MNHLTH','HIBPDX','CHDDX','ANGIDX',
                                 'MIDX','OHRTDX','STRKDX','EMPHDX','CHBRON','CHOLDX','CANCERDX','DIABDX',
                                 'JTPAIN','ARTHDX','ARTHTYPE','ASTHDX','ADHDADDX','PREGNT','WLKLIM',
                                 'ACTLIM','SOCLIM','COGLIM','DFHEAR42','DFSEE42','ADSMOK42','PCS42',
                                 'MCS42','K6SUM42','PHQ242','EMPST','POVCAT','INSCOV','UTILIZATION','PERWT15F']]

    return df


class MEPSDataset():
    """"""
    The Medical Expenditure Panel Survey (MEPS) [#]_ data consists of large scale surveys of families and individuals,
    medical providers, and employers, and collects data on health services used, costs & frequency of services,
    demographics, health status and conditions, etc., of the respondents.
    This specific dataset contains MEPS survey data for calendar year 2015 obtained in rounds 3, 4, and 5 of Panel 19,
    and rounds 1, 2, and 3 of Panel 20.
    See :file:`uq360/datasets/data/meps_data/README.md` for more details on the dataset and instructions on downloading/processing the data.
    References:
        .. [#] `Medical Expenditure Panel Survey data <https://meps.ahrq.gov/mepsweb/>`_
    """"""

    def __init__(self, custom_preprocessing=default_preprocessing, dirpath=None):
        self._dirpath = dirpath
        if not self._dirpath:
            self._dirpath = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'data', 'meps_data')

        self._filepath = os.path.join(self._dirpath, 'h181.csv')
        try:
            df = pd.read_csv(self._filepath, sep=',', na_values=[])
        except IOError as err:
            print(""IOError: {}"".format(err))
            print(""To use this class, please place the heloc_dataset.csv:"")
            print(""file, as-is, in the folder:"")
            print(""\n\t{}\n"".format(os.path.abspath(os.path.join(
               os.path.abspath(__file__), 'data', 'meps_data'))))
            import sys
            sys.exit(1)

        if custom_preprocessing:
            self._data = custom_preprocessing(df)

    def data(self):
        return self._data"
logistic_regression.py,"import autograd
import autograd.numpy as np
import numpy.random as npr
import scipy.optimize

sigmoid = lambda x: 0.5 * (np.tanh(x / 2.) + 1)
get_num_train = lambda inputs: inputs.shape[0]
logistic_predictions = lambda params, inputs: sigmoid(np.dot(inputs, params))


class LogisticRegression:
    def __init__(self):
        self.params = None

    def set_parameters(self, params):
        self.params = params

    def predict(self, X):
        if self.params is not None:
            # Outputs probability of a label being true according to logistic model
            return np.atleast_2d(sigmoid(np.dot(X, self.params))).T
        else:
            raise RuntimeError(""Params need to be fit before predictions can be made."")

    def loss(self, params, weights, inputs, targets):
        # Training loss is the negative log-likelihood of the training labels.
        preds = logistic_predictions(params, inputs)
        label_probabilities = preds * targets + (1 - preds) * (1 - targets)
        return -np.sum(weights * np.log(label_probabilities + 1e-16))

    def fit(self, weights, init_params, inputs, targets, verbose=True):
        training_loss_fun = lambda params: self.loss(params, weights, inputs, targets)
        # Define a function that returns gradients of training loss using Autograd.
        training_gradient_fun = autograd.grad(training_loss_fun, 0)
        # optimize params
        if verbose:
            print(""Initial loss:"", self.loss(init_params, weights, inputs, targets))
        # opt_params = sgd(training_gradient_fun, params, hyper=1, num_iters=5000, step_size=0.1)
        res = scipy.optimize.minimize(fun=training_loss_fun,
                                      jac=training_gradient_fun,
                                      x0=init_params,
                                      tol=1e-10,
                                      options={'disp': verbose})
        opt_params = res.x
        if verbose:
            print(""Trained loss:"", self.loss(opt_params, weights, inputs, targets))
        self.params = opt_params
        return opt_params

    def get_test_acc(self, params, test_targets, test_inputs):
        preds = np.round(self.predict(test_inputs).T).astype(np.int)
        err = np.abs(test_targets - preds).sum()
        return 1 - err/ test_targets.shape[1]

    #### Required for IJ computation ###
    def compute_hessian(self, params_one, weights_one, inputs, targets):
        return autograd.hessian(self.loss, argnum=0)(params_one, weights_one, inputs, targets)

    def compute_jacobian(self, params_one, weights_one, inputs, targets):
        return autograd.jacobian(autograd.jacobian(self.loss, argnum=0), argnum=1)\
                                (params_one, weights_one, inputs, targets).squeeze()
    ###################################################

    @staticmethod
    def synthetic_lr_data(N=10000, D=10):
        x = 1. * npr.randn(N, D)
        x_test = 1. * npr.randn(int(0.3 * N), D)
        w = npr.randn(D, 1)
        y = sigmoid((x @ w)).ravel()
        y = npr.binomial(n=1, p=y) # corrupt labels
        y_test = sigmoid(x_test @ w).ravel()
        # y_test = np.round(y_test)
        y_test = npr.binomial(n=1, p=y_test)
        return x, np.atleast_2d(y), x_test, np.atleast_2d(y_test)
"
hidden_markov_model.py,"import autograd
import autograd.numpy as np
import scipy.optimize
from autograd import grad
from autograd.scipy.special import logsumexp
from sklearn.cluster import KMeans


class HMM:
    """"""
    A Hidden Markov Model with Gaussian observations with
    unknown means and known precisions.
    """"""
    def __init__(self, X, config_dict=None):
        self.N, self.T, self.D = X.shape
        self.K = config_dict['K']  # number of HMM states
        self.I = np.eye(self.K)
        self.Precision = np.zeros([self.D, self.D, self.K])
        self.X = X
        if config_dict['precision'] is None:
            for k in np.arange(self.K):
                self.Precision[:, :, k] = np.eye(self.D)
        else:
                self.Precision = config_dict['precision']
        self.dParams_dWeights = None
        self.alphaT = None # Store the final beliefs.
        self.beta1 = None # store the first timestep beliefs from the beta recursion.
        self.forward_trellis = {}  # stores \alpha
        self.backward_trellis = {}  # stores \beta

    def initialize_params(self, seed=1234):
        np.random.seed(seed)
        param_dict = {}
        A = np.random.randn(self.K, self.K)
        # use k-means to initialize the mean parameters
        X = self.X.reshape([-1, self.D])
        kmeans = KMeans(n_clusters=self.K, random_state=seed,
                        n_init=15).fit(X)
        labels = kmeans.labels_
        _, counts = np.unique(labels, return_counts=True)
        pi = counts
        phi = kmeans.cluster_centers_

        param_dict['A'] = np.exp(A)
        param_dict['pi0'] = pi
        param_dict['phi'] = phi
        return self.pack_params(param_dict)

    def unpack_params(self, params):
        param_dict = dict()
        K = self.K
        # For unpacking simplex parameters: have packed them as
        # log(pi[:-1]) - log(pi[-1]).
        unnorm_A = np.exp(np.append(params[:K**2-K].reshape(K, K-1),
                                    np.zeros((K, 1)),
                                    axis=1)
                          )
        Z = np.sum(unnorm_A[:, :-1], axis=1)
        unnorm_A /= Z[:, np.newaxis]
        norm_A = unnorm_A / unnorm_A.sum(axis=1, keepdims=True)
        param_dict['A'] = norm_A

        unnorm_pi = np.exp(np.append(params[K**2-K:K**2-1], 0.0))
        Z = np.sum(unnorm_pi[:-1])
        unnorm_pi /= Z
        param_dict['pi0'] = unnorm_pi / unnorm_pi.sum()
        param_dict['phi'] = params[K**2-K+K-1:].reshape(self.D, K)
        return param_dict

    def weighted_alpha_recursion(self, xseq, pi, phi, Sigma, A, wseq, store_belief=False):
        """"""
        Computes the weighted marginal probability of the sequence xseq given parameters;
        weights wseq turn on or off the emissions p(x_t | z_t) (weighting scheme B)
        :param xseq: T * D
        :param pi: K * 1
        :param phi: D * K
        :param wseq: T * 1
        :param A:
        :return:
        """"""
        ll = self.log_obs_lik(xseq[:, :, np.newaxis], phi[np.newaxis, :, :], Sigma)
        alpha = np.log(pi.ravel()) + wseq[0] * ll[0]
        if wseq[0] == 0:
            self.forward_trellis[0] = alpha[:, np.newaxis]
        for t in np.arange(1, self.T):
            alpha = logsumexp(alpha[:, np.newaxis] + np.log(A), axis=0) + wseq[t] * ll[t]
            if wseq[t] == 0:
                # store the trellis, would be used to compute the posterior z_t | x_1...x_t-1, x_t+1, ...x_T
                self.forward_trellis[t] = alpha[:, np.newaxis]
        if store_belief:
            # store the final belief
            self.alphaT = alpha
        return logsumexp(alpha)

    def weighted_beta_recursion(self, xseq, pi, phi, Sigma, A, wseq, store_belief=False):
            """"""
            Runs beta recursion;
            weights wseq turn on or off the emissions p(x_t | z_t) (weighting scheme B)
            :param xseq: T * D
            :param pi: K * 1
            :param phi: D * K
            :param wseq: T * 1
            :param A:
            :return:
            """"""
            ll = self.log_obs_lik(xseq[:, :, np.newaxis], phi[np.newaxis, :, :], Sigma)
            beta = np.zeros_like(pi.ravel())  # log(\beta) of all ones.
            max_t = ll.shape[0]
            if wseq[max_t - 1] == 0:
                # store the trellis, would be used to compute the posterior z_t | x_1...x_t-1, x_t+1, ...x_T
                self.backward_trellis[max_t - 1] = beta[:, np.newaxis]
            for i in np.arange(1, max_t):
                t = max_t - i - 1
                beta = logsumexp((beta + wseq[t + 1] * ll[t + 1])[np.newaxis, :] + np.log(A), axis=1)
                if wseq[t] == 0:
                    # store the trellis, would be used to compute the posterior z_t | x_1...x_t-1, x_t+1, ...x_T
                    self.backward_trellis[t] = beta[:, np.newaxis]
            # account for the init prob
            beta = (beta + wseq[0] * ll[0]) + np.log(pi.ravel())
            if store_belief:
                # store the final belief
                self.beta1 = beta
            return logsumexp(beta)

    def weighted_loss(self, params, weights):
        """"""
        For LOOCV / IF computation within a single sequence. Uses weighted alpha recursion
        :param params:
        :param weights:
        :return:
        """"""
        param_dict = self.unpack_params(params)
        logp = self.get_prior_contrib(param_dict)
        logp = logp + self.weighted_alpha_recursion(self.X[0], param_dict['pi0'],
                                                               param_dict['phi'],
                                                               self.Precision,
                                                               param_dict['A'],
                                                               weights)
        return -logp

    def loss_at_missing_timesteps(self, weights, params):
        """"""
        :param weights: zeroed out weights indicate missing values
        :param params: packed parameters
        :return:
        """"""
        # empty forward and backward trellis
        self.clear_trellis()
        param_dict = self.unpack_params(params)
        # populate forward and backward trellis
        lpx = self.weighted_alpha_recursion(self.X[0], param_dict['pi0'],
                                                  param_dict['phi'],
                                                  self.Precision,
                                                  param_dict['A'],
                                                  weights,
                                                  store_belief=True )
        lpx_alt = self.weighted_beta_recursion(self.X[0], param_dict['pi0'],
                                                 param_dict['phi'],
                                                 self.Precision,
                                                 param_dict['A'],
                                                 weights,
                                                 store_belief=True)
        assert np.allclose(lpx, lpx_alt) # sanity check
        test_ll = []
        # compute loo likelihood
        ll = self.log_obs_lik(self.X[0][:, :, np.newaxis], param_dict['phi'], self.Precision)
        # compute posterior p(z_t | x_1,...t-1, t+1,...T) \forall missing t
        tsteps = []
        for t in self.forward_trellis.keys():
            lpz_given_x = self.forward_trellis[t] + self.backward_trellis[t] - lpx
            test_ll.append(logsumexp(ll[t] + lpz_given_x.ravel()))
            tsteps.append(t)
        # empty forward and backward trellis
        self.clear_trellis()
        return -np.array(test_ll)

    def fit(self, weights, init_params=None, num_random_restarts=1, verbose=False, maxiter=None):
        if maxiter:
            options_dict = {'disp': verbose, 'gtol': 1e-10, 'maxiter': maxiter}
        else:
            options_dict = {'disp': verbose, 'gtol': 1e-10}

        # Define a function that returns gradients of training loss using Autograd.
        training_loss_fun = lambda params: self.weighted_loss(params, weights)
        training_gradient_fun = grad(training_loss_fun, 0)
        if init_params is None:
            init_params = self.initialize_params()
        if verbose:
            print(""Initial loss: "", training_loss_fun(init_params))
        res = scipy.optimize.minimize(fun=training_loss_fun,
                                      jac=training_gradient_fun,
                                      x0=init_params,
                                      tol=1e-10,
                                      options=options_dict)
        if verbose:
            print('grad norm =', np.linalg.norm(res.jac))
        return res.x

    def clear_trellis(self):
        self.forward_trellis = {}
        self.backward_trellis = {}

    #### Required for IJ computation ###
    def compute_hessian(self, params_one, weights_one):
        return autograd.hessian(self.weighted_loss, argnum=0)(params_one, weights_one)

    def compute_jacobian(self, params_one, weights_one):
        return autograd.jacobian(autograd.jacobian(self.weighted_loss, argnum=0), argnum=1)\
                                (params_one, weights_one).squeeze()
    ###################################################

    @staticmethod
    def log_obs_lik(x, phi, Sigma):
        """"""
        :param x: T*D*1
        :param phi: 1*D*K
        :param Sigma: D*D*K --- precision matrices per state
        :return: ll
        """"""
        centered_x = x - phi
        ll = -0.5 * np.einsum('tdk, tdk, ddk -> tk', centered_x, centered_x, Sigma )
        return ll

    @staticmethod
    def pack_params(params_dict):
        param_list = [(np.log(params_dict['A'][:, :-1]) -
                       np.log(params_dict['A'][:, -1])[:, np.newaxis]).ravel(),
                       np.log(params_dict['pi0'][:-1]) - np.log(params_dict['pi0'][-1]),
                       params_dict['phi'].ravel()]
        return np.concatenate(param_list)

    @staticmethod
    def get_prior_contrib(param_dict):
        logp = 0.0
        # Prior
        logp += -0.5 * (np.linalg.norm(param_dict['phi'], axis=0) ** 2).sum()
        logp += (1.1 - 1) * np.log(param_dict['A']).sum()
        logp += (1.1 - 1) * np.log(param_dict['pi0']).sum()
        return logp

    @staticmethod
    def get_indices_in_held_out_fold(T, pct_to_drop, contiguous=False):
        """"""
        :param T: length of the sequence
        :param pct_to_drop: % of T in the held out fold
        :param contiguous: if True generate a block of indices to drop else generate indices by iid sampling
        :return: o (the set of indices in the fold)
        """"""
        if contiguous:
            l = np.floor(pct_to_drop / 100. * T)
            anchor = np.random.choice(np.arange(l + 1, T))
            o = np.arange(anchor - l, anchor).astype(int)
        else:
            # i.i.d LWCV
            o = np.random.choice(T - 2, size=np.int(pct_to_drop / 100. * T), replace=False) + 1
        return o

    @staticmethod
    def synthetic_hmm_data(K, T, D, sigma0=None, seed=1234, varainces_of_mean=1.0,
                        diagonal_upweight=False):
        """"""
        :param K: Number of HMM states
        :param T: length of the sequence
        """"""
        N = 1 # For structured IJ we will remove data / time steps from a single sequence
        np.random.seed(seed)
        if sigma0 is None:
            sigma0 = np.eye(D)

        A = np.random.dirichlet(alpha=np.ones(K), size=K)
        if diagonal_upweight:
            A = A + 3 * np.eye(K)  # add 3 to the diagonal and renormalize to encourage self transitions
            A = A / A.sum(axis=1)

        pi0 = np.random.dirichlet(alpha=np.ones(K))
        mus = np.random.normal(size=(K, D), scale=np.sqrt(varainces_of_mean))
        zs = np.empty((N, T), dtype=np.int)
        X = np.empty((N, T, D))

        for n in range(N):
            zs[n, 0] = int(np.random.choice(np.arange(K), p=pi0))
            X[n, 0] = np.random.multivariate_normal(mean=mus[zs[n, 0]], cov=sigma0)
            for t in range(1, T):
                zs[n, t] = int(np.random.choice(np.arange(K), p=A[zs[n, t - 1], :]))
                X[n, t] = np.random.multivariate_normal(mean=mus[zs[n, t]], cov=sigma0)

        return {'X': X, 'state_assignments': zs, 'A': A, 'initial_state_assignment': pi0,  'means': mus}
"
misc.py,"import abc
import sys

# Ensure compatibility with Python 2/3
if sys.version_info >= (3, 4):
    ABC = abc.ABC
else:
    ABC = abc.ABCMeta(str('ABC'), (), {})

from copy import deepcopy

import numpy as np
import numpy.random as npr


def make_batches(n_data, batch_size):
    return [slice(i, min(i+batch_size, n_data)) for i in range(0, n_data, batch_size)]


def generate_regression_data(seed, data_count=500):
    """"""
    Generate data from a noisy sine wave.
    :param seed: random number seed
    :param data_count: number of data points.
    :return:
    """"""
    np.random.seed(seed)
    noise_var = 0.1

    x = np.linspace(-4, 4, data_count)
    y = 1*np.sin(x) + np.sqrt(noise_var)*npr.randn(data_count)

    train_count = int (0.2 * data_count)
    idx = npr.permutation(range(data_count))
    x_train = x[idx[:train_count], np.newaxis ]
    x_test = x[ idx[train_count:], np.newaxis ]
    y_train = y[ idx[:train_count] ]
    y_test = y[ idx[train_count:] ]

    mu = np.mean(x_train, 0)
    std = np.std(x_train, 0)
    x_train = (x_train - mu) / std
    x_test = (x_test - mu) / std
    mu = np.mean(y_train, 0)
    std = np.std(y_train, 0)
    y_train = (y_train - mu) / std
    train_stats = dict()
    train_stats['mu'] = mu
    train_stats['sigma'] = std

    return x_train, y_train, x_test, y_test, train_stats


def form_D_for_auucc(yhat, zhatl, zhatu):
    # a handy routine to format data as needed by the UCC fit() method
    D = np.zeros([yhat.shape[0], 3])
    D[:, 0] = yhat.squeeze()
    D[:, 1] = zhatl.squeeze()
    D[:, 2] = zhatu.squeeze()
    return D


def fitted_ucc_w_nullref(y_true, y_pred_mean, y_pred_lower, y_pred_upper):
    """"""
    Instantiates an UCC object for the target predictor plus a 'null' (constant band) reference
    :param y_pred_lower:
    :param y_pred_mean:
    :param y_pred_upper:
    :param y_true:
    :return: ucc object fitted for two systems: target  + null reference
    """"""
    # form matrix for ucc:
    X_for_ucc = form_D_for_auucc(y_pred_mean.squeeze(),
                                 y_pred_mean.squeeze() - y_pred_lower.squeeze(),
                                 y_pred_upper.squeeze() - y_pred_mean.squeeze())
    # form matrix for a 'null' system (constant band)
    X_null = deepcopy(X_for_ucc)
    X_null[:,1:] = np.std(y_pred_mean)  # can be set to any other constant (no effect on AUUCC)
    # create an instance of ucc and fit data
    from uq360.metrics.uncertainty_characteristics_curve import UncertaintyCharacteristicsCurve as ucc
    u = ucc()
    u.fit([X_for_ucc, X_null], y_true.squeeze())
    return u


def make_sklearn_compatible_scorer(task_type, metric, greater_is_better=True, **kwargs):
    """"""

    Args:
        task_type: (str) regression or classification.
        metric: (str): choice of metric can be one of these - [aurrrc, ece, auroc, nll, brier, accuracy] for
            classification and [""rmse"", ""nll"", ""auucc_gain"", ""picp"", ""mpiw"", ""r2""] for regression.
        greater_is_better: is False the scores are negated before returning.
        **kwargs: additional arguments specific to some metrics.

    Returns:
        sklearn compatible scorer function.

    """"""

    from uq360.metrics.classification_metrics import compute_classification_metrics
    from uq360.metrics.regression_metrics import compute_regression_metrics

    def sklearn_compatible_score(model, X, y_true):
        """"""

        Args:
            model: The model being scored. Currently uq360 and sklearn models are supported.
            X: Input features.
            y_true: ground truth values for the target.

        Returns:
            Computed score of the model.

        """"""

        from uq360.algorithms.builtinuq import BuiltinUQ
        from uq360.algorithms.posthocuq import PostHocUQ
        if isinstance(model, BuiltinUQ) or isinstance(model, PostHocUQ):
            # uq360 models
            if task_type == ""classification"":
                score = compute_classification_metrics(
                    y_true=y_true,
                    y_prob=model.predict(X).y_prob,
                    option=metric,
                    **kwargs
                )[metric]
            elif task_type == ""regression"":
                y_mean, y_lower, y_upper = model.predict(X)
                score = compute_regression_metrics(
                    y_true=y_true,
                    y_mean=y_mean,
                    y_lower=y_lower,
                    y_upper=y_upper,
                    option=metric,
                    **kwargs
                )[metric]
            else:
                raise NotImplementedError

        else:
            # sklearn models
            if task_type == ""classification"":
                score = compute_classification_metrics(
                    y_true=y_true,
                    y_prob=model.predict_proba(X),
                    option=metric,
                    **kwargs
                )[metric]
            else:
                if metric in [""rmse"", ""r2""]:
                    score = compute_regression_metrics(
                        y_true=y_true,
                        y_mean=model.predict(X),
                        y_lower=None,
                        y_upper=None,
                        option=metric,
                        **kwargs
                    )[metric]
                else:
                    raise NotImplementedError(""{} is not supported for sklearn regression models"".format(metric))

        if not greater_is_better:
            score = -score
        return score
    return sklearn_compatible_score


class DummySklearnEstimator(ABC):
    def __init__(self, num_classes, base_model_prediction_fn):
        self.base_model_prediction_fn = base_model_prediction_fn
        self.classes_ = [i for i in range(num_classes)]

    def fit(self):
        pass

    def predict_proba(self, X):
        return self.base_model_prediction_fn(X)
"
optimizers.py,"from builtins import range

import autograd.numpy as np


def adam(grad, x, callback=None, num_iters=100, step_size=0.001, b1=0.9, b2=0.999, eps=10**-8, polyak=False):
    """"""Adapted from autograd.misc.optimizers""""""
    m = np.zeros(len(x))
    v = np.zeros(len(x))
    for i in range(num_iters):
        g = grad(x, i)
        if callback: callback(x, i, g, polyak)
        m = (1 - b1) * g      + b1 * m  # First  moment estimate.
        v = (1 - b2) * (g**2) + b2 * v  # Second moment estimate.
        mhat = m / (1 - b1**(i + 1))    # Bias correction.
        vhat = v / (1 - b2**(i + 1))
        x = x - step_size*mhat/(np.sqrt(vhat) + eps)
    return x"
generate_1D_regression_data.py,"import matplotlib.pyplot as plt
import numpy as np
import numpy.random as npr
import torch as torch


def make_data_gap(seed, data_count=100):
    import GPy
    npr.seed(0)
    x = np.hstack([np.linspace(-5, -2, int(data_count/2)), np.linspace(2, 5, int(data_count/2))])
    x = x[:, np.newaxis]
    k = GPy.kern.RBF(input_dim=1, variance=1., lengthscale=1.)
    K = k.K(x)
    L = np.linalg.cholesky(K + 1e-5 * np.eye(data_count))

    # draw a noise free random function from a GP
    eps = np.random.randn(data_count)
    f = L @ eps


    # use a homoskedastic Gaussian noise model N(f(x)_i, \sigma^2). \sigma^2 = 0.1
    eps_noise =  np.sqrt(0.1) * np.random.randn(data_count)
    y = f + eps_noise
    y = y[:, np.newaxis]

    plt.plot(x, f, 'ko', ms=2)
    plt.plot(x, y, 'ro')
    plt.title(""GP generated Data"")
    plt.pause(1)
    return torch.FloatTensor(x), torch.FloatTensor(y), torch.FloatTensor(x), torch.FloatTensor(y)


def make_data_sine(seed, data_count=450):
    # fix the random seed
    np.random.seed(seed)
    noise_var = 0.1

    X = np.linspace(-4, 4, data_count)
    y = 1*np.sin(X) + np.sqrt(noise_var)*npr.randn(data_count)

    train_count = int (0.2 * data_count)
    idx = npr.permutation(range(data_count))
    X_train = X[idx[:train_count], np.newaxis ]
    X_test = X[ idx[train_count:], np.newaxis ]
    y_train = y[ idx[:train_count] ]
    y_test = y[ idx[train_count:] ]

    mu = np.mean(X_train, 0)
    std = np.std(X_train, 0)
    X_train = (X_train - mu) / std
    X_test = (X_test - mu) / std
    mu = np.mean(y_train, 0)
    std = np.std(y_train, 0)
    # mu = 0
    # std = 1
    y_train = (y_train - mu) / std
    y_test = (y_test -mu) / std
    train_stats = dict()
    train_stats['mu'] = torch.FloatTensor([mu])
    train_stats['sigma'] = torch.FloatTensor([std])
    return torch.FloatTensor(X_train), torch.FloatTensor(y_train), torch.FloatTensor(X_test), torch.FloatTensor(y_test),\
           train_stats"
dataTransformer.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
#System imports
import os
import sys
import json
import datetime,time,timeit
import itertools


import numpy as np
import pandas as pd
import math
from sklearn.preprocessing import MinMaxScaler,StandardScaler
from sklearn.preprocessing import PowerTransformer
import logging
class dataTransformer():	
		
	def __init__(self):
		self.log = logging.getLogger('eion')
		
	def startTransformer(self,df,features,target,transType):
		scaler ='None'
		if target in features:
			features.remove(target)
		
		transFeatures=features
		transDfColumns=[]
		dataframe=df[transFeatures]
		#targetArray=np.array(df[target])
		#targetArray.shape = (len(targetArray), 1)
		self.log.info(""Data Normalization has started"")
		if transType.lower() =='standardscaler':
			scaler = StandardScaler().fit(dataframe)
			transDf = scaler.transform(dataframe)

		elif transType.lower() =='minmax':
			scaler=MinMaxScaler().fit(dataframe)
			transDf = scaler.transform(dataframe)
		elif transType.lower() =='lognormal':
			print(dataframe)
			scaler = PowerTransformer(method='yeo-johnson', standardize=False).fit(dataframe)
			transDf = scaler.transform(dataframe)
		else:
			self.log.info(""Need to implement"")
		#features.append(target)

		#scaledDf = pd.DataFrame(np.hstack((transDf, targetArray)),columns=features)
		return transDf,features,scaler"
preprocess.py,"import pandas as pd

tab = '    '
VALID_AGGREGATION_METHODS = ['mean','sum']
VALID_GRANULARITY_UNITS = ['second','minute','hour','day','week','month','year']
VALID_INTERPOLATE_KWARGS = {'linear':{},'spline':{'order':5},'timebased':{}}
VALID_INTERPOLATE_METHODS = list( VALID_INTERPOLATE_KWARGS.keys())

def get_one_true_option(d, default_value=None):
	if isinstance(d, dict):
		for k,v in d.items():
			if (isinstance(v, str) and v.lower() == 'true') or (isinstance(v, bool) and v == True):
				return k
	return default_value

def get_boolean(value):
    if (isinstance(value, str) and value.lower() == 'true') or (isinstance(value, bool) and value == True):
        return True
    else:
        return False
        
def get_source_delta( data: pd.DataFrame):
    MAX_SAMPLE_TRY = 20
    if len( data) <= 1:
        return None
    time_delta = data.index[-1] - data.index[-2]
    count = {}
    for i in range(len(data)):
        if i == MAX_SAMPLE_TRY or i == data.index[-1]:
            break
        delta = data.index[i+1] - data.index[i]
        if delta not in count.keys():
            count[delta] = 1
        else:
            count[delta] += 1
    if count:
        return max(count, key=count.get)
    else:
        return None

        
class timeSeries():

    def __init__( self, config, datetime, log=None):
        self.datetime = datetime
        self.validate_config(config)
        self.log = log
       
    def validate_config( self, config):

        if not self.datetime or self.datetime.lower() == 'na':
            raise ValueError('date time feature is not provided')
        self.config = {}
        method = get_one_true_option(config.get('interpolation',None))
        self.config['interpolate'] = {}
        self.config['interpolate']['enabled'] = method in VALID_INTERPOLATE_METHODS
        self.config['interpolate']['method'] = method
        self.config['rolling'] = {}
        self.config['rolling']['enabled'] = get_boolean( config.get('rollingWindow',False))
        self.config['rolling']['size'] = int( config.get('rollingWindowSize',1))
        if self.config['rolling']['size'] < 1:
            raise ValueError('Rolling window size should be greater than 0.')
        self.config['aggregation'] = {}
        aggregation = config.get('aggregation',{})
        agg_method = get_one_true_option(aggregation['type'])
        self.config['aggregation'] = {}
        self.config['aggregation']['enabled'] = agg_method in VALID_AGGREGATION_METHODS
        self.config['aggregation']['method'] = agg_method
        granularity = aggregation.get('granularity',{})
        granularity_unit = get_one_true_option( granularity.get('unit',None))
        if granularity_unit in VALID_GRANULARITY_UNITS:
            granularity_mapping = {'second':'S','minute':'Min','hour':'H','day':'D','week':'W','month':'M','year':'Y'}
            size = int(granularity.get('size',10))
            granularity_unit = granularity_mapping.get(granularity_unit,granularity_unit)
            self.config['aggregation']['granularity'] = {}
            self.config['aggregation']['granularity']['unit'] = granularity_unit
            self.config['aggregation']['granularity']['size'] = size

    def log_info(self, msg, type='info'):
        if self.log:
            if type == 'error':
                self.log.error( msg)
            else:
                self.log.info( msg)
        else:
            print( msg)
            
    def is_down_sampling(self, data, size, granularity_unit):
        down_sampling = False
        if granularity_unit in ['M', 'Y']:
            return True
        else:
            target_delta = pd.Timedelta(size , granularity_unit)
            source_delta = get_source_delta(data)
            if not source_delta:
                raise ValueError('Could not find the data frame time frequency')
            return source_delta < target_delta 
    
    def run( self, data):
        if self.datetime not in data.columns:
            raise ValueError(f""Date time feature '{self.datetime}' is not present in data"")
        try:
            # data[self.datetime] = pd.to_datetime( data[self.datetime])
            ##For bug 13513 - If the datetime needs UTC timestamp process, except part will handle.
            try:
                #for non utc timestamp
                data[self.datetime] = pd.to_datetime( data[self.datetime])
            except:
                #for utc timestamp
                data[self.datetime] = pd.to_datetime( data[self.datetime],utc=True)
            data.set_index( self.datetime, inplace=True)
        except:
            raise ValueError(f""can not convert '{self.datetime}' to dateTime"")
        if self.config.get('interpolate',{}).get('enabled',False):
            method = self.config['interpolate']['method']
            self.log_info(f""Applying Interpolation using {method}"")
            methods_mapping = {'timebased': 'time'}
            self.config['interpolate']['mapped_method'] = methods_mapping.get(method, method)
            data.interpolate(method=self.config['interpolate']['mapped_method'], inplace=True, **VALID_INTERPOLATE_KWARGS[method])
        if self.config.get('rolling',{}).get('enabled',False):
            if self.config['rolling']['size'] > len( data):
                raise ValueError('Rolling window size is greater than dataset size')
            self.log_info(f""Applying rolling window( moving avg) with size {self.config['rolling']['size']}"")
            data = data.rolling( self.config['rolling']['size']).mean()
            data = data.iloc[self.config['rolling']['size'] - 1:]
        aggregation = self.config.get('aggregation',{})
        if aggregation.get('enabled',False):
            method = aggregation.get('method','mean')
            self.rule = str(aggregation['granularity']['size']) + aggregation['granularity']['unit']
            if self.is_down_sampling(data, aggregation['granularity']['size'], aggregation['granularity']['unit']):
                self.log_info(f""Applying down sampling( {self.rule})"")
                if method == 'mean':
                    data = data.resample( self.rule).mean()
                elif method == 'sum':
                    data = data.resample( self.rule).sum()
            else:
                self.log_info(f""Applying up sampling using forward fill method( {self.rule})"")
                data = data.resample( self.rule).ffill()
        data.reset_index( inplace=True, names=self.datetime)
        return data
        
    def get_code(self, indent=0):
        tab = '    '
        code = ''
        code += f""""""
        
def preprocess( data):
    try:
        #for non utc timestamp
        data['{self.datetime}'] = pd.to_datetime( data['{self.datetime}'])
    except:
        data['{self.datetime}'] = pd.to_datetime( data['{self.datetime}'],utc=True)
    data.set_index( '{self.datetime}', inplace=True)
""""""
        if self.config.get('interpolate',{}).get('enabled',False):
            code += tab + f""data.interpolate(method='{self.config['interpolate']['mapped_method']}', inplace=True, **{VALID_INTERPOLATE_KWARGS[self.config['interpolate']['method']]})\n""
        if self.config.get('rolling',{}).get('enabled',False):
            code += tab + f""data = data.rolling( {self.config['rolling']['size']}).mean().iloc[{self.config['rolling']['size'] - 1}:]\n""
        if self.config.get('aggregation',{}).get('enabled',False):
            code += tab + f""data = data.resample( '{self.rule}').{self.config.get('aggregation',{}).get('method','mean')}()\n""
        code += tab + f""data.reset_index( inplace=True, names='{self.datetime}')\n""
        code += tab + ""return data\n""
        return code

"
textDataProfiler.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import numpy as np
import os
import sys
import string
import spacy
#import en_core_web_sm
from spacy.lang.en.stop_words import STOP_WORDS
from spacy.lang.en import English
try:
	from sklearn.feature_extraction.text import ENGLISH_STOP_WORDS
except:
	from sklearn.feature_extraction.stop_words import ENGLISH_STOP_WORDS
from sklearn.feature_extraction.text import CountVectorizer,TfidfVectorizer
from sklearn.base import TransformerMixin
from nltk.stem import WordNetLemmatizer
import re
from collections import defaultdict
from nltk.corpus import wordnet as wn
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import LabelBinarizer
from nltk.tokenize import word_tokenize
from nltk import pos_tag
from nltk.corpus import stopwords

class textDataProfiler():
	def __init__(self):
		self.data=None
		#self.nlp=en_core_web_sm.load()
		self.punctuations = string.punctuation
		self.stopwords = list(STOP_WORDS)
	
	def startTextProfiler(self,df,target):
		try:
			dataColumns = list(df.columns)
			print(' \n No of rows and columns in dataFrame',df.shape)
			print('\n features in dataFrame',dataColumns)
			dataFDtypes=self.dataFramecolType(df)
			print('\n feature types in dataFrame',dataFDtypes)
			trainX=df['text']
			trainY=df[target]
			return trainX,trainY
		except Exception as inst:
			print('startTextProfiler code execution failed !....',inst)
			exc_type, exc_obj, exc_tb = sys.exc_info()
			fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
			print(exc_type, fname, exc_tb.tb_lineno)
			
	def dataFramecolType(self,dataFrame):
		dataFDtypes=[]
		try:
			dataColumns=list(dataFrame.columns)
			for i in dataColumns:
				dataType=dataFrame[i].dtypes
				dataFDtypes.append(tuple([i,str(dataType)]))
			return dataFDtypes
		except Exception as e:
			print(""error in dataFramecolyType"",e)
			return dataFDtypes
					 
	def textTokenizer(self,text):
		try:
			parser = English()
			tokens = parser(text)
			tokens = [ word.lemma_.lower().strip() if word.lemma_ != ""-PRON-"" else word.lower_ for word in tokens ]
			tokens = [ word for word in tokens if word not in self.stopwords and word not in self.punctuations ]
			return tokens
		except Exception as inst:
			print('textDataProfiler code execution failed !....',inst)
			exc_type, exc_obj, exc_tb = sys.exc_info()
			fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
			print(exc_type, fname, exc_tb.tb_lineno)
			return {}
	
	def cleanText(self,text):
		try:
			text=str(text).strip().lower()
			for punctuation in string.punctuation:
				text = text.replace(punctuation, '')
			return text
		except Exception as inst:
			print('cleanText code execution failed !....',inst)
			exc_type, exc_obj, exc_tb = sys.exc_info()
			fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
			print(exc_type, fname, exc_tb.tb_lineno)
			
	def textTokenization(self,text):
		try:
			tokenizedText=word_tokenize(text)
			return tokenizedText
		except Exception as inst:
			print('textDataProfiler code execution failed !....',inst)
			exc_type, exc_obj, exc_tb = sys.exc_info()
			fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
			print(exc_type, fname, exc_tb.tb_lineno)
			return {}
		
	def textLemmitizer(self,text):
		try:
			tag_map = defaultdict(lambda : wn.NOUN)
			tag_map['J'] = wn.ADJ
			tag_map['V'] = wn.VERB
			tag_map['R'] = wn.ADV
			Final_words = []
			word_Lemmatized = WordNetLemmatizer()
			for word, tag in pos_tag(text):
				if word not in stopwords.words('english') and word.isalpha():
					word_Final = word_Lemmatized.lemmatize(word,tag_map[tag[0]])
					Final_words.append(word_Final)
			return str(Final_words)
		except Exception as inst:
			print('textLemmitizer code execution failed !....',inst)
			exc_type, exc_obj, exc_tb = sys.exc_info()
			fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
			print(exc_type, fname, exc_tb.tb_lineno)
			return {}
			
class TextCleaner(TransformerMixin):
	
	def clean_text(self,text):
		try:
			text=str(text).strip().lower()
			text = text.replace(""isn't"", ""is not"")
			text = text.replace(""aren't"", ""are not"")
			text = text.replace(""ain't"", ""am not"")
			text = text.replace(""won't"", ""will not"")
			text = text.replace(""didn't"", ""did not"")
			text = text.replace(""shan't"", ""shall not"")
			text = text.replace(""haven't"", ""have not"")
			text = text.replace(""hadn't"", ""had not"")
			text = text.replace(""hasn't"", ""has not"")
			text = text.replace(""don't"", ""do not"")
			text = text.replace(""wasn't"", ""was not"")
			text = text.replace(""weren't"", ""were not"")
			text = text.replace(""doesn't"", ""does not"")
			text = text.replace(""'s"", "" is"")
			text = text.replace(""'re"", "" are"")
			text = text.replace(""'m"", "" am"")
			text = text.replace(""'d"", "" would"")
			text = text.replace(""'ll"", "" will"")
			text = re.sub(r'^https?:\/\/.*[\r\n]*', ' ', text, flags=re.MULTILINE)
			text = re.sub(r'[\w\.-]+@[\w\.-]+', ' ', text, flags=re.MULTILINE)
			for punctuation in string.punctuation:
				text = text.replace(punctuation,' ')
			text = re.sub(r'[^A-Za-z0-9\s]',r' ',text)
			text = re.sub(r'\n',r' ',text)
			text = re.sub(r'[0-9]',r' ',text)
			wordnet_lemmatizer = WordNetLemmatizer()
			text = "" "".join([wordnet_lemmatizer.lemmatize(w, pos='v') for w in text.split()])
			return text
		except Exception as inst:
			print('TextCleaner clean_text code execution failed !....',inst)
			exc_type, exc_obj, exc_tb = sys.exc_info()
			fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
			print(exc_type, fname, exc_tb.tb_lineno)
	
	def text_cleaner(self,text):
		text = self.clean_text(text)
		stop_words = set(stopwords.words('english')) 
		text_tokens = word_tokenize(text)
		out=' '.join(str(j) for j in text_tokens if j not in stop_words and (len(j)!=1))
		return(out)
		
	def transform(self, X, **transform_params):
        # Cleaning Text
		return [self.clean_text(text) for text in X]

	def fit(self, X, y=None, **fit_params):
		return self

	def get_params(self, deep=True):
		return {}"
imageAug.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import random
from matplotlib import pyplot as plt
import cv2
import albumentations as A
import os
import pandas as pd
from pathlib import Path


class ImageAugmentation():

    def __init__(self, dataLocation, csvFile):
        self.AugmentationOptions = {""Flip"": {""operation"": A.HorizontalFlip, ""suffix"":""_flip""},
            ""Rotate"": {""operation"": A.Rotate, ""suffix"":""_rotate""},
            ""Shift"": {""operation"": A.RGBShift, ""suffix"":""_shift""},
            ""Crop"": {""operation"": [A.CenterCrop, A.RandomSizedBBoxSafeCrop], ""suffix"":""_crop""},
            ""Contrast"": {""operation"": A.RandomContrast, ""suffix"":""_cont""},
            ""Brightness"": {""operation"": A.RandomBrightness, ""suffix"":""_bright""},
            ""Blur"": {""operation"": A.GaussianBlur, ""suffix"":""_blur""}
        }
        self.dataLocation = dataLocation
        self.csvFile = csvFile
        
    def __applyAugmentationClass(self, image, augmentation,limit):
        if augmentation in list(self.AugmentationOptions.keys()):
            if augmentation == ""Crop"":
                height, width, _ = image.shape
                crop_percentage = random.uniform(0.6, 0.9)
                transform = self.AugmentationOptions[augmentation][""operation""][0](height=int(height*crop_percentage), width=int(width*crop_percentage) )
            elif augmentation == ""Blur"":
                transform = self.AugmentationOptions[augmentation][""operation""](blur_limit = limit)			
            elif augmentation in [""Contrast"",""Brightness""]:
                transform = self.AugmentationOptions[augmentation][""operation""](limit = limit)
            else:				
                transform = self.AugmentationOptions[augmentation][""operation""]()
            return transform(image=image)
    
    def __applyAugmentation(self, image, augmentation,limit,bboxes=None, category_ids=None, seed=7):
        transformOptions = []
        if bboxes:
            bbox_params = A.BboxParams(format='pascal_voc', label_fields=['category_ids'])
        else:
            bbox_params = None
        if augmentation in list(self.AugmentationOptions.keys()):
            if augmentation == ""Crop"":
                height, width, _ = image.shape
                crop_percentage = random.uniform(0.6, 0.9)		
                transformOptions.append(self.AugmentationOptions[augmentation][""operation""][1](height=int(height*crop_percentage), width=int(width*crop_percentage) ))
            elif augmentation == ""Blur"":
                transformOptions.append(self.AugmentationOptions[augmentation][""operation""](blur_limit = limit))
            elif augmentation in [""Contrast"",""Brightness""]:
                transformOptions.append(self.AugmentationOptions[augmentation][""operation""](limit = limit))
            else:
                transformOptions.append(self.AugmentationOptions[augmentation][""operation""]())
            transform = A.Compose(
                transformOptions,
                bbox_params=bbox_params,
            )
            random.seed(seed)
            return transform(image=image, bboxes=bboxes, category_ids=category_ids)
        else:
            return None
    def getBBox(self, df, imageLoc, category_name_to_id):
            
        subDf = df[df['loc']==imageLoc]
        boxes = []
        category = []
        for index, row in subDf.iterrows():
            boxes.append( [row['xmin'],row['ymin'],row['xmax'],row['ymax']])
            category.append(category_name_to_id[row['Label']])
        return boxes, category

    def __objAug(self, imageLoc, df, classes_names, category_id_to_name, category_name_to_id,limit,numberofImages,op):
        for x in range(numberofImages):
            bbox, category_ids = self.getBBox(df, imageLoc, category_name_to_id)
            image = cv2.imread(imageLoc)
            image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
            transformed = self.__applyAugmentation(image, op,limit,bbox, category_ids)
            transformed['image'] = cv2.cvtColor(transformed['image'], cv2.COLOR_RGB2BGR)
            count = 1
            row = df[df['loc']==imageLoc].iloc[0]
            filename = (Path(imageLoc).stem +'_'+str(x)+ self.AugmentationOptions[op][""suffix""] + Path(imageLoc).suffix)
            newImage = str(Path(imageLoc).parent/filename)
            for index,bbox in enumerate(transformed['bboxes']):
                data = {'File':filename, 'xmin':bbox[0],'ymin':bbox[1],'xmax':bbox[2],'ymax':bbox[3],'Label':category_id_to_name[transformed['category_ids'][index]],'id':count,'height':row['height'],'width':row['width'], 'angle':0.0, 'loc': newImage, 'AugmentedImage': True}
                count += 1
                df=df.append(data, ignore_index=True)
    
            cv2.imwrite(newImage, transformed['image'])
        return df

        
    def __objectDetection(self, images, df, optionDf, classes_names, suffix='',augConf={}):

        category_id_to_name = {v+1:k for v,k in enumerate(classes_names)}
        category_name_to_id = {k:v+1 for v,k in enumerate(classes_names)}
        for i, imageLoc in enumerate(images):            
            for key in optionDf.columns:
                if optionDf.iloc[i][key]:
                    if key in augConf:
                        limit = eval(augConf[key].get('limit','0.2'))
                        numberofImages = int(augConf[key].get('noOfImages',1))
                    else:
                        limit = 0.2
                        numberofImages = 1
                    
                    df = self.__objAug(imageLoc, df, classes_names, category_id_to_name,category_name_to_id,limit,numberofImages,op=key)
        return df
        
    def __augClassificationImage(self, imageLoc, df,limit,imageindex,op):
        data = {}
        image = cv2.imread(imageLoc)
        image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
        transformed = self.__applyAugmentationClass(image, op,limit)
        transformed['image'] = cv2.cvtColor(transformed['image'], cv2.COLOR_RGB2BGR)
        location = Path(imageLoc).parent
        filename = (Path(imageLoc).stem +'_'+'str(imageindex)'+ self.AugmentationOptions[op][""suffix""] + Path(imageLoc).suffix)
        cv2.imwrite(str(location/'AION'/'AugumentedImages'/filename), transformed['image'])
        data['File'] = filename
        data['Label'] = df[df['File']==Path(imageLoc).name][""Label""].iloc[0]
        data['AugmentedImage'] = True
        data['loc'] = str(location/filename)
        return data

    def __classification(self, images, df, optionDf,augConf,csv_file=None, outputDir=None):
        for i, imageLoc in enumerate(images):            
            for key in optionDf.columns:
                if optionDf.iloc[i][key]:
                    if key in augConf:
                        limit = eval(augConf[key].get('limit','0.2'))
                        numberofImages = int(augConf[key].get('noOfImages',1))
                    else:
                        limit = 0.2
                        numberofImages = 1
                    for x in range(numberofImages):	
                        rows = self.__augClassificationImage(imageLoc, df,limit,x,op=key)
                        df=df.append(rows, ignore_index=True)
        return df

    def removeAugmentedImages(self, df):
        removeDf = df[df['AugmentedImage'] == True]['loc'].unique().tolist()
        #df[df['imageAugmentationOriginalImage'] != True][loocationField].apply(lambda x: Path(x).unlink())
        for file in removeDf:
            if file:
                Path(file).unlink()

    def augment(self, modelType=""imageclassification"",params=None,csvSavePath = None,augConf={}):
        if isinstance(params, dict) and any(params.values()):
            df = pd.read_csv(self.csvFile)
            if not self.dataLocation.endswith('/'):
                images = self.dataLocation+'/'
            else:
                images = self.dataLocation
            if modelType == ""imageclassification"":
                images = images + df['File']
            else:
                images = images + df['File']
                df['loc'] = images
            images = set(images.tolist())
            option = {}
            for key in list(self.AugmentationOptions.keys()):
                option[key] = params.get(key, False)
            optionDf = pd.DataFrame(columns=list(option.keys()))
            for i in range(len(images)):
                optionDf = optionDf.append(option, ignore_index=True)
            if modelType == ""imageclassification"":
                df = self.__classification(images, df, optionDf,augConf)
            else:
                classes_names = sorted(df['Label'].unique().tolist())
                df = self.__objectDetection(images, df, optionDf, classes_names,'',augConf)
            df.to_csv(self.csvFile, index=False)
        return self.csvFile"
__init__.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''"
textProfiler.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
#System imports
import logging
from distutils.util import strtobool
import pandas as pd
from text import TextProcessing


def get_one_true_option(d, default_value):
	if isinstance(d, dict):
		for k,v in d.items():
			if (isinstance(v, str) and v.lower() == 'true') or (isinstance(v, bool) and v == True):
				return k
	return default_value


class textProfiler():
		
	def __init__(self):
		self.log = logging.getLogger('eion')

	def textCleaning(self, textCorpus):
		textProcessor = TextProcessing.TextProcessing()
		textCorpus = textProcessor.transform(textCorpus)
		return(textCorpus)
		
	def textProfiler(self, textCorpus, conf_json, pipeList, max_features):
		cleaning_kwargs = {}
		textCleaning = conf_json.get('textCleaning')
		self.log.info(""Text Preprocessing config: "",textCleaning)
		cleaning_kwargs['fRemoveNoise'] = strtobool(textCleaning.get('removeNoise', 'True'))
		cleaning_kwargs['fNormalize'] = strtobool(textCleaning.get('normalize', 'True'))
		cleaning_kwargs['fReplaceAcronym'] = strtobool(textCleaning.get('replaceAcronym', 'False'))
		cleaning_kwargs['fCorrectSpelling'] = strtobool(textCleaning.get('correctSpelling', 'False'))
		cleaning_kwargs['fRemoveStopwords'] = strtobool(textCleaning.get('removeStopwords', 'True'))
		cleaning_kwargs['fRemovePunctuation'] = strtobool(textCleaning.get('removePunctuation', 'True'))
		cleaning_kwargs['fRemoveNumericTokens'] = strtobool(textCleaning.get('removeNumericTokens', 'True'))
		cleaning_kwargs['normalizationMethod'] = get_one_true_option(textCleaning.get('normalizeMethod'),
																	 'lemmatization').capitalize()
		
		removeNoiseConfig = textCleaning.get('removeNoiseConfig')
		if type(removeNoiseConfig) is dict:
			cleaning_kwargs['removeNoise_fHtmlDecode'] = strtobool(removeNoiseConfig.get('decodeHTML', 'True'))
			cleaning_kwargs['removeNoise_fRemoveHyperLinks'] = strtobool(removeNoiseConfig.get('removeHyperLinks', 'True'))
			cleaning_kwargs['removeNoise_fRemoveMentions'] = strtobool(removeNoiseConfig.get('removeMentions', 'True'))
			cleaning_kwargs['removeNoise_fRemoveHashtags'] = strtobool(removeNoiseConfig.get('removeHashtags', 'True'))
			cleaning_kwargs['removeNoise_RemoveOrReplaceEmoji'] = 'remove' if strtobool(removeNoiseConfig.get('removeEmoji', 'True')) else 'replace'
			cleaning_kwargs['removeNoise_fUnicodeToAscii'] = strtobool(removeNoiseConfig.get('unicodeToAscii', 'True'))
			cleaning_kwargs['removeNoise_fRemoveNonAscii'] = strtobool(removeNoiseConfig.get('removeNonAscii', 'True'))

		acronymConfig = textCleaning.get('acronymConfig')
		if type(acronymConfig) is dict:
			cleaning_kwargs['acronymDict'] = acronymConfig.get('acronymDict', None)
		
		stopWordsConfig = textCleaning.get('stopWordsConfig')
		if type(stopWordsConfig) is dict:
			cleaning_kwargs['stopwordsList'] = stopWordsConfig.get('stopwordsList', [])
			cleaning_kwargs['extend_or_replace_stopwordslist'] = 'extend' if strtobool(stopWordsConfig.get('extend', 'True')) else 'replace'
		removeNumericConfig = textCleaning.get('removeNumericConfig')
		if type(removeNumericConfig) is dict:
			cleaning_kwargs['removeNumeric_fIncludeSpecialCharacters'] = strtobool(removeNumericConfig.get('removeNumeric_IncludeSpecialCharacters', 'True'))

		removePunctuationConfig = textCleaning.get('removePunctuationConfig')
		if type(removePunctuationConfig) is dict:
			cleaning_kwargs['fRemovePuncWithinTokens'] = strtobool(removePunctuationConfig.get('removePuncWithinTokens', 'False'))
		
		cleaning_kwargs['fExpandContractions'] = strtobool(textCleaning.get('expandContractions', 'False'))
		if cleaning_kwargs['fExpandContractions']:
			cleaning_kwargs['expandContractions_googleNewsWordVectorPath'] = GOOGLE_NEWS_WORD_VECTORS_PATH

		libConfig = textCleaning.get('libConfig')
		if type(libConfig) is dict:
			cleaning_kwargs['tokenizationLib'] = get_one_true_option(libConfig.get('tokenizationLib'), 'nltk')
			cleaning_kwargs['lemmatizationLib'] = get_one_true_option(libConfig.get('lemmatizationLib'), 'nltk')
			cleaning_kwargs['stopwordsRemovalLib'] = get_one_true_option(libConfig.get('stopwordsRemovalLib'), 'nltk')

		textProcessor = TextProcessing.TextProcessing(**cleaning_kwargs)
		textCorpus = textProcessor.transform(textCorpus)
		pipeList.append((""TextProcessing"",textProcessor))

		textFeatureExtraction = conf_json.get('textFeatureExtraction')
		if strtobool(textFeatureExtraction.get('pos_tags', 'False')):
			pos_tags_lib = get_one_true_option(textFeatureExtraction.get('pos_tags_lib'), 'nltk')
			posTagger = TextProcessing.PosTagging( pos_tags_lib)
			textCorpus = posTagger.transform(textCorpus)
			pipeList.append((""posTagger"",posTagger))
		ngram_min = 1
		ngram_max = 1
		if strtobool(textFeatureExtraction.get('n_grams', 'False')):
			n_grams_config = textFeatureExtraction.get(""n_grams_config"")
			ngram_min = int(n_grams_config.get('min_n', 1))
			ngram_max = int(n_grams_config.get('max_n', 1))
			if (ngram_min < 1) or ngram_min > ngram_max:
				ngram_min = 1
				ngram_max = 1
				invalidNgramWarning = 'WARNING : invalid ngram config.\nUsing the default values min_n={}, max_n={}'.format(ngram_min, ngram_max)
				self.log.info(invalidNgramWarning)
		ngram_range_tuple = (ngram_min, ngram_max)
		textConversionMethod = conf_json.get('textConversionMethod')
		conversion_method = get_one_true_option(textConversionMethod, None)
		if conversion_method.lower() == ""countvectors"":
			X, vectorizer = TextProcessing.ExtractFeatureCountVectors(textCorpus, ngram_range=ngram_range_tuple, max_features=max_features)
			pipeList.append((""vectorizer"",vectorizer))
			df1 = pd.DataFrame(X.toarray(), columns=vectorizer.get_feature_names())
			df1 = df1.add_suffix('_vect')
			self.log.info('----------> Conversion Method: CountVectors')
		elif conversion_method.lower() in [""word2vec"",""fasttext"",""glove""]:
			embedding_method = conversion_method
			wordEmbeddingVecotrizer = TextProcessing.wordEmbedding(embedding_method)
			wordEmbeddingVecotrizer.checkAndDownloadPretrainedModel()
			X = wordEmbeddingVecotrizer.transform(textCorpus)
			df1 = pd.DataFrame(X)
			df1 = df1.add_suffix('_vect')
			pipeList.append((""vectorizer"",wordEmbeddingVecotrizer))
			self.log.info('----------> Conversion Method: '+str(conversion_method))
		elif conversion_method.lower() == ""sentencetransformer"":
			from sentence_transformers import SentenceTransformer
			model = SentenceTransformer('sentence-transformers/msmarco-distilroberta-base-v2')
			X = model.encode(textCorpus)
			df1 = pd.DataFrame(X)
			df1 = df1.add_suffix('_vect')
			pipeList.append((""vectorizer"",model))
			self.log.info('----------> Conversion Method: SentenceTransformer')
		elif conversion_method.lower() == 'tf_idf':
			X, vectorizer = TextProcessing.ExtractFeatureTfIdfVectors(textCorpus,ngram_range=ngram_range_tuple, max_features=max_features)
			pipeList.append((""vectorizer"",vectorizer))
			df1 = pd.DataFrame(X.toarray(), columns=vectorizer.get_feature_names())
			df1 = df1.add_suffix('_vect')
			self.log.info('----------> Conversion Method: TF_IDF')
		else:
			df1 = pd.DataFrame()
			df1['tokenize'] = textCorpus
			self.log.info('----------> Conversion Method: NA')            
		return df1, pipeList,conversion_method
"
generate_tfrecord.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import os
import glob
import pandas as pd
import io
import xml.etree.ElementTree as ET
import argparse

os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'    # Suppress TensorFlow logging (1)
import tensorflow as tf
from PIL import Image
from object_detection.utils import dataset_util, label_map_util
from collections import namedtuple
from pathlib import Path


def class_text_to_int(row_label, label_map_dict):
    return label_map_dict[row_label]


def split(df, group):
    data = namedtuple('data', ['File', 'object'])
    gb = df.groupby(group)
    return [data(File, gb.get_group(x)) for File, x in zip(gb.groups.keys(), gb.groups)]


def create_tf_example(group, path, label_map_dict):
    with tf.io.gfile.GFile(os.path.join(path, '{}'.format(group.File)), 'rb') as fid:
        encoded_jpg = fid.read()
    encoded_jpg_io = io.BytesIO(encoded_jpg)
    image = Image.open(encoded_jpg_io)
    width, height = image.size

    File = group.File.encode('utf8')
    image_format = b'jpg'
    xmins = []
    xmaxs = []
    ymins = []
    ymaxs = []
    classes_text = []
    classes = []

    for index, row in group.object.iterrows():
        xmin_n = min(row['xmin'], row['xmax'])
        xmax_n = max(row['xmin'], row['xmax'])
        ymin_n = min(row['ymin'], row['ymax'])
        ymax_n = max(row['ymin'], row['ymax'])

        xmin_new = min(xmin_n, width)
        xmax_new = min(xmax_n, width)
        ymin_new = min(ymin_n, height)
        ymax_new = min(ymax_n, height)

        xmn = xmin_new / width
        xmins.append(xmn)

        xmx = xmax_new / width
        xmaxs.append(xmx)

        ymn = ymin_new / height
        ymins.append(ymn)

        ymx = ymax_new / height
        ymaxs.append(ymx)
        classes_text.append(row['Label'].encode('utf8'))
        classes.append(class_text_to_int(row['Label'], label_map_dict))

    tf_example = tf.train.Example(features=tf.train.Features(feature={
        'image/height': dataset_util.int64_feature(height),
        'image/width': dataset_util.int64_feature(width),
        'image/filename': dataset_util.bytes_feature(File),
        'image/source_id': dataset_util.bytes_feature(File),
        'image/encoded': dataset_util.bytes_feature(encoded_jpg),
        'image/format': dataset_util.bytes_feature(image_format),
        'image/object/bbox/xmin': dataset_util.float_list_feature(xmins),
        'image/object/bbox/xmax': dataset_util.float_list_feature(xmaxs),
        'image/object/bbox/ymin': dataset_util.float_list_feature(ymins),
        'image/object/bbox/ymax': dataset_util.float_list_feature(ymaxs),
        'image/object/class/text': dataset_util.bytes_list_feature(classes_text),
        'image/object/class/label': dataset_util.int64_list_feature(classes),
    }))
    return tf_example

def labelFile(classes_names, label_map_path):
    pbtxt_content = """"

    for i, class_name in enumerate(classes_names):
        pbtxt_content = (
                pbtxt_content
                + ""item {{\n    id: {0}\n    name: '{1}'\n}}\n\n"".format(i + 1, class_name)
        )
    pbtxt_content = pbtxt_content.strip()
    with open(label_map_path, ""w"") as f:
        f.write(pbtxt_content)

def createLabelFile(train_df, save_path):
    labelmap_path = str(Path(save_path)/ 'label_map.pbtxt')
    classes_names = sorted(train_df['Label'].unique().tolist())
    labelFile(classes_names, labelmap_path)
    return labelmap_path, len(classes_names)
    

def generate_TF_record(image_dir, output_dir, train_df, test_df, labelmap_path):
    
    outputPath = str(Path(output_dir)/ 'train.tfrecord')
    writer = tf.io.TFRecordWriter( outputPath)
    grouped = split(train_df, 'File')
    label_map = label_map_util.load_labelmap(labelmap_path )
    label_map_dict = label_map_util.get_label_map_dict(label_map)
    for group in grouped:
        tf_example = create_tf_example(group, image_dir, label_map_dict)
        writer.write(tf_example.SerializeToString())
    writer.close()
    if len(test_df):
        outputPath = str(Path(output_dir)/ 'test.tfrecord')
        writer = tf.io.TFRecordWriter( outputPath)
        grouped = split(test_df, 'File')
        for group in grouped:
            tf_example = create_tf_example(group, image_dir, label_map_dict)
            writer.write(tf_example.SerializeToString())
        writer.close()
            

"
dataProfiler.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import io
import json
import logging
import pandas as pd
import sys
import numpy as np
from pathlib import Path
from word2number import w2n
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import OrdinalEncoder
from sklearn.preprocessing import OneHotEncoder
from sklearn.impute import SimpleImputer, KNNImputer
from sklearn.pipeline import Pipeline, FeatureUnion
from sklearn.preprocessing import FunctionTransformer
from sklearn.preprocessing import MinMaxScaler,StandardScaler
from sklearn.preprocessing import PowerTransformer
from sklearn.compose import ColumnTransformer
from sklearn.base import TransformerMixin
from sklearn.ensemble import IsolationForest
from category_encoders import TargetEncoder
try:
    import transformations.data_profiler_functions as cs
except:
    import data_profiler_functions as cs

if 'AION' in sys.modules:
    try:
        from appbe.app_config import DEBUG_ENABLED
    except:
        DEBUG_ENABLED = False
else:
    DEBUG_ENABLED = False
log_suffix = f'[{Path(__file__).stem}] '


class profiler():

    def __init__(self, xtrain, ytrain=None, target=None, encode_target = False, config={}, keep_unprocessed=[],data_path=None,log=None):
        if not isinstance(xtrain, pd.DataFrame):
            raise ValueError(f'{log_suffix}supported data type is pandas.DataFrame but provide data is of {type(xtrain)} type')
        if xtrain.empty:
            raise ValueError(f'{log_suffix}Data frame is empty')
        if target and target in xtrain.columns:
            self.target = xtrain[target]
            xtrain.drop(target, axis=1, inplace=True)
            self.target_name = target
        elif ytrain:
            self.target = ytrain
            self.target_name = 'target'
        else:
            self.target = pd.Series()
            self.target_name = None
        self.data_path = data_path
        self.encode_target = encode_target
        self.label_encoder = None
        self.data = xtrain
        self.keep_unprocessed = keep_unprocessed
        self.colm_type = {}
        for colm, infer_type in zip(self.data.columns, self.data.dtypes):
            self.colm_type[colm] = infer_type
        self.numeric_feature = []
        self.cat_feature = []
        self.text_feature = []
        self.wordToNumericFeatures = []
        self.added_features = []
        self.pipeline = []
        self.dropped_features = {}
        self.train_features_type={}
        self.__update_type()
        self.config = config
        self.featureDict = config.get('featureDict', [])
        self.output_columns = []
        self.feature_expender = []
        self.text_to_num = {}
        self.force_numeric_conv = []
        if log:
            self.log = log
        else:
            self.log = logging.getLogger('eion')
        self.type_conversion = {}
        self.log_input_feat_info()

    def log_input_feat_info(self):
        if self.featureDict:
            feature_df = pd.DataFrame(self.featureDict)
            log_text = '\nPreprocessing options:'
            log_text += '\n\t'+str(feature_df.head( len(self.featureDict))).replace('\n','\n\t')  
            self.log.info(log_text)

    def log_dataframe(self, msg=None):                    
        buffer = io.StringIO()                    
        self.data.info(buf=buffer)                    
        if msg:                    
            log_text = f'Data frame after {msg}:'                    
        else:                    
            log_text = 'Data frame:'                    
        log_text += '\n\t'+str(self.data.head(2)).replace('\n','\n\t')                    
        log_text += ('\n\t' + buffer.getvalue().replace('\n','\n\t'))                    
        self.log.info(log_text)

    def transform(self):
        if self.is_target_available():
            if self.target_name:
                self.log.info(f""Target feature name: '{self.target_name}'"")
            self.log.info(f""Target feature size: {len(self.target)}"")
        else:
            self.log.info(f""Target feature not present"")
        self.log_dataframe()
        print(self.data.info())
        try:
            self.process()
        except Exception as e:            
            self.log.error(e, exc_info=True)
            raise
        pipe = FeatureUnion(self.pipeline)
        try:
            if self.text_feature:
                from text.textProfiler import set_pretrained_model
                set_pretrained_model(pipe)
            conversion_method = self.get_conversion_method()
            process_data = pipe.fit_transform(self.data, y=self.target)
            # save for testing
            if DEBUG_ENABLED:
                if not isinstance(process_data, np.ndarray):
                    process_data = process_data.toarray()        
                df = pd.DataFrame(process_data)
                df.to_csv('debug_preprocessed.csv', index=False)
            if self.text_feature and conversion_method == 'latentsemanticanalysis':
                n_size = self.get_tf_idf_output_size( pipe)
                dimensions = self.get_tf_idf_dimensions()
                if n_size < dimensions or n_size > dimensions:
                    dimensions = n_size
                from sklearn.decomposition import TruncatedSVD
                reducer = TruncatedSVD( n_components = dimensions)
                reduced_data = reducer.fit_transform( process_data[:,-n_size:])
                text_process_idx = [t[0] for t in pipe.transformer_list].index('text_process')
                pipe.transformer_list[text_process_idx][1].steps.append(('feature_reducer',reducer))
                if not isinstance(process_data, np.ndarray):
                    process_data = process_data.toarray()
                process_data = np.concatenate((process_data[:,:-n_size], reduced_data), axis=1)
                last_step = self.feature_expender.pop()
                self.feature_expender.append({'feature_reducer':list(last_step.values())[0]})
                    
        except EOFError as e:
            if ""Compressed file ended before the end-of-stream marker was reached"" in str(e):
                raise EOFError('Pretrained model is not downloaded properly')

        self.update_output_features_names(pipe)
        if not isinstance(process_data, np.ndarray):
            process_data = process_data.toarray()        
        df = pd.DataFrame(process_data, index=self.data.index, columns=self.output_columns)
        
        if self.is_target_available() and self.target_name:
            df[self.target_name] = self.target
        if self.keep_unprocessed:
            df[self.keep_unprocessed] = self.data[self.keep_unprocessed]
        self.log_numerical_fill()
        self.log_categorical_fill()
        self.log_normalization()
        return df, pipe, self.label_encoder
    
    def log_type_conversion(self):
        if self.log:
            self.log.info('-----------  Inspecting Features -----------')
            self.log.info('-----------  Type Conversion -----------')
            count = 0
            for k, v in self.type_conversion.items():
                if v[0] != v[1]:
                    self.log.info(f'-------> {k} -> from {v[0]} to {v[1]} : {v[2]}')
            self.log.info('Status:- |... Feature inspection done')
    
    def check_config(self):
        removeDuplicate = self.config.get('removeDuplicate', False)
        self.config['removeDuplicate'] = cs.get_boolean(removeDuplicate)
        self.config['misValueRatio'] = float(self.config.get('misValueRatio', cs.default_config['misValueRatio']))
        self.config['numericFeatureRatio'] = float(self.config.get('numericFeatureRatio', cs.default_config['numericFeatureRatio']))
        self.config['categoryMaxLabel'] = int(self.config.get('categoryMaxLabel', cs.default_config['categoryMaxLabel']))
        featureDict = self.config.get('featureDict', [])
        if isinstance(featureDict, dict):
            self.config['featureDict'] = []
        if isinstance(featureDict, str):
            self.config['featureDict'] = []
                
    def process(self):
        #remove duplicate not required at the time of prediction
        self.check_config()
        self.remove_constant_feature()
        self.remove_empty_feature(self.config['misValueRatio'])
        self.remove_index_features()
        self.dropna()
        if self.config['removeDuplicate']:
            self.drop_duplicate()
        #self.check_categorical_features()
        #self.string_to_numeric()
        self.process_target()
        self.train_features_type = {k:v for k,v in zip(self.data.columns, self.data.dtypes)}
        self.parse_process_step_config()
        self.process_drop_fillna()
        self.log_type_conversion()
        self.update_num_fill_dict()
        if DEBUG_ENABLED:
            print(self.num_fill_method_dict)
        self.update_cat_fill_dict()
        self.create_pipeline()
        self.text_pipeline(self.config)
        self.apply_outlier()
        if DEBUG_ENABLED:
            self.log.info(self.process_method)
            self.log.info(self.pipeline)
    
    def is_target_available(self):
        return (isinstance(self.target, pd.Series) and not self.target.empty) or len(self.target)
    
    def process_target(self, operation='encode', arg=None):
        if self.is_target_available():
            # drop null values
            self.__update_index( self.target.notna(), 'target')
            if self.encode_target:
                self.label_encoder = LabelEncoder()
                self.target = self.label_encoder.fit_transform(self.target)
                return self.label_encoder
        return None
        
    def is_target_column(self, column):
        return column == self.target_name
    
    def fill_default_steps(self):

        num_fill_method = cs.get_one_true_option(self.config.get('numericalFillMethod',{}))
        normalization_method = cs.get_one_true_option(self.config.get('normalization',{}),'none')
        for colm in self.numeric_feature:
            if num_fill_method:
                self.fill_missing_value_method(colm, num_fill_method.lower())
            if normalization_method:
                self.fill_normalizer_method(colm, normalization_method.lower())
        
        cat_fill_method = cs.get_one_true_option(self.config.get('categoricalFillMethod',{}))
        cat_encode_method = cs.get_one_true_option(self.config.get('categoryEncoding',{}))
        for colm in self.cat_feature:
            if cat_fill_method:
                self.fill_missing_value_method(colm, cat_fill_method.lower())
            if cat_encode_method:
                self.fill_encoder_value_method(colm, cat_encode_method.lower(), default=True)
    
    def parse_process_step_config(self):
        self.process_method = {}
        user_provided_data_type = {}
        for feat_conf in self.featureDict:
            colm = feat_conf.get('feature', '')
            if not self.is_target_column(colm):
                if colm in self.data.columns:
                    user_provided_data_type[colm] = feat_conf['type']
        if user_provided_data_type:
            self.update_user_provided_type(user_provided_data_type)
                    
        self.fill_default_steps()
        for feat_conf in self.featureDict:
            colm = feat_conf.get('feature', '')
            if not self.is_target_column(colm):
                if colm in self.data.columns:
                    if feat_conf.get('fillMethod', None):
                        self.fill_missing_value_method(colm, feat_conf['fillMethod'].lower())
                    if feat_conf.get('categoryEncoding', None):
                        self.fill_encoder_value_method(colm, feat_conf['categoryEncoding'].lower())
                    if feat_conf.get('normalization', None):
                        self.fill_normalizer_method(colm, feat_conf['normalization'].lower())
                    if feat_conf.get('outlier', None):
                        self.fill_outlier_method(colm, feat_conf['outlier'].lower())
                    if feat_conf.get('outlierOperation', None):
                        self.fill_outlier_process(colm, feat_conf['outlierOperation'].lower())
        
    
    def get_tf_idf_dimensions(self):
        dim = cs.get_one_true_option(self.config.get('embeddingSize',{}).get('TF_IDF',{}), 'default')
        return {'default': 300, '50d':50, '100d':100, '200d':200, '300d':300}[dim]

    def get_tf_idf_output_size(self, pipe):
        start_index = {}
        for feat_expender in self.feature_expender:
            if feat_expender:
                step_name = list(feat_expender.keys())[0]
                index = list(feat_expender.values())[0]
                for transformer_step in pipe.transformer_list:
                    if transformer_step[1].steps[-1][0] in step_name:
                        start_index[index] = {transformer_step[1].steps[-1][0]: transformer_step[1].steps[-1][1].get_feature_names_out()}    
        if start_index:
            for key,value in start_index.items():
                for k,v in value.items():
                    if k == 'vectorizer':
                        return len(v)
        return 0

    def update_output_features_names(self, pipe):
        columns = self.output_columns
        start_index = {}
        index_shifter = 0
        for feat_expender in self.feature_expender:
            if feat_expender:
                step_name = list(feat_expender.keys())[0]
                for key,value in start_index.items():
                    for k,v in value.items():
                        index_shifter += len(v)
                index = list(feat_expender.values())[0]
                for transformer_step in pipe.transformer_list:
                    if transformer_step[1].steps[-1][0] in step_name:
                        start_index[index + index_shifter] = {transformer_step[1].steps[-1][0]: transformer_step[1].steps[-1][1].get_feature_names_out()}
        #print(start_index)
        if start_index:
            for key,value in start_index.items():
                for k,v in value.items():
                    if k == 'vectorizer':
                        v = [f'{x}_vect' for x in v]    
                    self.output_columns[key:key] = v
                    self.added_features = [*self.added_features, *v]
                    
                    
    def text_pipeline(self, conf_json):

        if self.text_feature:
            from text.textProfiler import textProfiler
            from text.textProfiler import textCombine
            pipeList = []
            text_pipe = Pipeline([ 
                ('selector', ColumnTransformer([
                        (""selector"", ""passthrough"", self.text_feature)
                        ], remainder=""drop"")),
                (""text_fillNa"",SimpleImputer(strategy='constant', fill_value='')),
                (""merge_text_feature"", textCombine())])
            obj = textProfiler()
            pipeList = obj.cleaner(conf_json, pipeList, self.data_path)
            pipeList = obj.embedding(conf_json, pipeList)
            last_step = ""merge_text_feature""
            for pipe_elem in pipeList:
                text_pipe.steps.append((pipe_elem[0], pipe_elem[1]))
                last_step = pipe_elem[0]
            text_transformer = ('text_process', text_pipe)
            self.pipeline.append(text_transformer)
            self.feature_expender.append({last_step:len(self.output_columns)})
            
    def create_pipeline(self):
        num_pipe = {}
        for k,v in self.num_fill_method_dict.items():
            for k1,v1 in v.items():
                if k1 and k1 != 'none':
                    num_pipe[f'{k}_{k1}'] = Pipeline([
                        ('selector', ColumnTransformer([
                                (""selector"", ""passthrough"", v1)
                                ], remainder=""drop"")),
                        (k, self.get_num_imputer(k)),
                        (k1, self.get_num_scaler(k1))
                    ])
                else:
                    num_pipe[f'{k}_{k1}'] = Pipeline([
                        ('selector', ColumnTransformer([
                                (""selector"", ""passthrough"", v1)
                                ], remainder=""drop"")),
                        (k, self.get_num_imputer(k))
                    ])
                self.output_columns.extend(v1)
        cat_pipe = {}
        for k,v in self.cat_fill_method_dict.items():
            for k1,v1 in v.items():
                cat_pipe[f'{k}_{k1}'] = Pipeline([
                    ('selector', ColumnTransformer([
                            (""selector"", ""passthrough"", v1)
                            ], remainder=""drop"")),
                    (k, self.get_cat_imputer(k)),
                    (k1, self.get_cat_encoder(k1))
                ])                   
                if k1 not in ['onehotencoding']:
                    self.output_columns.extend(v1)
                else:
                    self.feature_expender.append({k1:len(self.output_columns)})
        for key, pipe in num_pipe.items():            
            self.pipeline.append((key, pipe))
        for key, pipe in cat_pipe.items():            
            self.pipeline.append((key, pipe))
    
    ""Drop: feature during training but replace with zero during prediction ""
    def process_drop_fillna(self):
        drop_column = []
        if 'numFill' in self.process_method.keys():
            for col, method in self.process_method['numFill'].items():
                if method == 'drop':
                    self.process_method['numFill'][col] = 'zero'
                    drop_column.append(col)
        if 'catFill' in self.process_method.keys():
            for col, method in self.process_method['catFill'].items():
                if method == 'drop':
                    self.process_method['catFill'][col] = 'zero'
                    drop_column.append(col)
        if drop_column:
            self.data.dropna(subset=drop_column, inplace=True)

    def update_num_fill_dict(self):
        self.num_fill_method_dict = {}
        if 'numFill' in self.process_method.keys():
            for f in cs.supported_method['fillNa']['numeric']:
                self.num_fill_method_dict[f] = {}
                for en in cs.supported_method['normalization']:
                    self.num_fill_method_dict[f][en] = []
                    for col in self.numeric_feature:
                        numFillDict = self.process_method.get('numFill',{})
                        normalizationDict = self.process_method.get('normalization',{})
                        if f == numFillDict.get(col, '') and en == normalizationDict.get(col,''):
                            self.num_fill_method_dict[f][en].append(col)
                    if not self.num_fill_method_dict[f][en] :
                        del self.num_fill_method_dict[f][en]
                if not self.num_fill_method_dict[f]:
                    del self.num_fill_method_dict[f]

    def update_cat_fill_dict(self):
        self.cat_fill_method_dict = {}
        if 'catFill' in self.process_method.keys():
            for f in cs.supported_method['fillNa']['categorical']:
                self.cat_fill_method_dict[f] = {}
                for en in cs.supported_method['categoryEncoding']:
                    self.cat_fill_method_dict[f][en] = []
                    for col in self.cat_feature:
                        catFillDict = self.process_method.get('catFill',{})
                        catEncoderDict = self.process_method.get('catEncoder',{})
                        if f == catFillDict.get(col, '') and en == catEncoderDict.get(col,''):
                            self.cat_fill_method_dict[f][en].append(col)
                    if not self.cat_fill_method_dict[f][en] :
                        del self.cat_fill_method_dict[f][en]
                if not self.cat_fill_method_dict[f]:
                    del self.cat_fill_method_dict[f]


    def __update_type(self):
        self.numeric_feature = list( set(self.data.select_dtypes(include='number').columns.tolist()) - set(self.keep_unprocessed))
        self.cat_feature = list( set(self.data.select_dtypes(include='category').columns.tolist()) - set(self.keep_unprocessed))
        self.text_feature = list( set(self.data.select_dtypes(include='object').columns.tolist()) - set(self.keep_unprocessed))
        self.datetime_feature = list( set(self.data.select_dtypes(include='datetime').columns.tolist()) - set(self.keep_unprocessed))

    def update_user_provided_type(self, data_types):
        allowed_types = ['numerical','categorical', 'text']
        skipped_types = ['date','index']
        type_mapping = {'numerical': np.dtype('float'), 'float': np.dtype('float'),'categorical': 'category', 'text':np.dtype('object'),'date':'datetime64[ns]','index': np.dtype('int64'),}
        mapped_type = {k:type_mapping[v] for k,v in data_types.items() if v in allowed_types}
        skipped_features = [k for k,v in data_types.items() if v in skipped_types]
        if skipped_features:
            self.keep_unprocessed.extend( skipped_features)
            self.keep_unprocessed = list(set(self.keep_unprocessed))
        self.update_type(mapped_type, 'user provided data type')
        
    def get_type(self, as_list=False):
        if as_list:
            return [self.colm_type.values()]
        else:
            return self.colm_type
    
    def update_type(self, data_types={}, reason=''):
        invalid_features = [x for x in data_types.keys() if x not in self.data.columns]
        if invalid_features:
            valid_feat = list(set(data_types.keys()) - set(invalid_features))
            valid_feat_type = {k:v for k,v in data_types if k in valid_feat}
        else:
            valid_feat_type = data_types
        for k,v in valid_feat_type.items():
            if v != self.colm_type[k].name:
                try:
                    self.data.astype({k:v})
                    self.colm_type.update({k:self.data[k].dtype})
                    self.type_conversion[k] = (self.colm_type[k] , v, 'Done', reason)
                except:
                    self.type_conversion[k] = (self.colm_type[k] , v, 'Fail', reason)
                    if v == np.dtype('float64') and self.colm_type[k].name == 'object':
                        if self.check_numeric( k):
                            self.data[ k] = pd.to_numeric(self.data[ k], errors='coerce')
                            self.type_conversion[k] = (self.colm_type[k] , v, 'Done', reason)
                            self.force_numeric_conv.append( k)
                        else:
                            raise ValueError(f""Can not convert '{k}' feature to 'numeric' as numeric values are less than {self.config['numericFeatureRatio'] * 100}%"")
        self.data = self.data.astype(valid_feat_type)
        self.__update_type()
        
    def check_numeric(self, feature):
        col_values = self.data[feature].copy()
        col_values = pd.to_numeric(col_values, errors='coerce')
        if col_values.count() >= (self.config['numericFeatureRatio'] * len(col_values)):
            return True
        return False

    def string_to_numeric(self):
        def to_number(x):
            try:
                return w2n.word_to_num(x)
            except:
                return np.nan
        for col in self.text_feature:
            col_values = self.data[col].copy()
            col_values = pd.to_numeric(col_values, errors='coerce')
            if col_values.count() >= (self.config['numericFeatureRatio'] * len(col_values)):
                self.text_to_num[col] = 'float64'
                self.wordToNumericFeatures.append(col)
        if self.text_to_num:
            columns = list(self.text_to_num.keys())
            self.data[columns] = self.data[columns].apply(lambda x: to_number(x), axis=1, result_type='broadcast')
            self.update_type(self.text_to_num)
        self.log.info('-----------  Inspecting Features -----------')
        for col in self.text_feature:
            self.log.info(f'-------> Feature : {col}')
            if col in self.text_to_num:
                self.log.info('----------> Numeric Status :Yes')
                self.log.info('----------> Data Type Converting to numeric :Yes')
            else:
                self.log.info('----------> Numeric Status :No')
        self.log.info(f'\nStatus:- |... Feature inspection done for numeric data: {len(self.text_to_num)} feature(s) converted to numeric')
        self.log.info(f'\nStatus:- |... Feature word to numeric treatment done: {self.text_to_num}')
        self.log.info('-----------   Inspecting Features End -----------')
            
    def check_categorical_features(self):
        num_data = self.data.select_dtypes(include='number')
        num_data_unique = num_data.nunique()
        num_to_cat_col = {}
        for i, value in enumerate(num_data_unique):
            if value < self.config['categoryMaxLabel']:
                num_to_cat_col[num_data_unique.index[i]] = 'category'
        if num_to_cat_col:
            self.update_type(num_to_cat_col, 'numerical to categorical')
        str_to_cat_col = {}
        str_data = self.data.select_dtypes(include='object')
        str_data_unique = str_data.nunique()
        for i, value in enumerate(str_data_unique):
            if value < self.config['categoryMaxLabel']:
                str_to_cat_col[str_data_unique.index[i]] = 'category'
        for colm in str_data.columns:
            if self.data[colm].str.len().max() < cs.default_config['str_to_cat_len_max']:
                str_to_cat_col[colm] = 'category'
        if str_to_cat_col:
            self.update_type(str_to_cat_col, 'text to categorical')        
        
    def drop_features(self, features=[], reason='unspecified'):
        if isinstance(features, str):
            features = [features]
        feat_to_remove = [x for x in features if x in self.data.columns]
        if feat_to_remove:
            self.data.drop(feat_to_remove, axis=1, inplace=True)
            for feat in feat_to_remove:
                self.dropped_features[feat] = reason        
            self.log_drop_feature(feat_to_remove, reason)
            self.__update_type()
    
    def __update_index(self, indices, reason=''):
        if isinstance(indices, (bool, pd.core.series.Series)) and len(indices) == len(self.data):
            if not indices.all():
                self.data = self.data[indices]
                if self.is_target_available():
                    self.target = self.target[indices]
                self.log_update_index((indices == False).sum(), reason)
    
    def dropna(self):
        self.data.dropna(how='all',inplace=True)
        if self.is_target_available():
            self.target = self.target[self.data.index]

    def drop_duplicate(self):
        index = self.data.duplicated(keep='first')
        self.__update_index( ~index, reason='duplicate')

    def log_drop_feature(self, columns, reason):
        self.log.info(f'---------- Dropping {reason} features ----------')
        self.log.info(f'\nStatus:- |... {reason} feature treatment done: {len(columns)} {reason} feature(s) found')
        self.log.info(f'-------> Drop Features: {columns}')
        self.log.info(f'Data Frame Shape After Dropping (Rows,Columns): {self.data.shape}')
    
    def log_update_index(self,count, reason):
        if count:
            if reason == 'target':
                self.log.info('-------> Null Target Rows Drop:')
                self.log.info(f'------->     Dropped rows count: {count}')
            elif reason == 'duplicate':
                self.log.info('-------> Duplicate Rows Drop:')
                self.log.info(f'------->     Dropped rows count: {count}')
            elif reason == 'outlier':
                self.log.info(f'------->     Dropped rows count: {count}')
                self.log.info('Status:- |... Outlier treatment done')
            self.log.info(f'------->     Data Frame Shape After Dropping samples(Rows,Columns): {self.data.shape}')
    
    def log_normalization(self):
        if self.process_method.get('normalization', None):
            self.log.info(f'\nStatus:- !... Normalization treatment done')
            for method in cs.supported_method['normalization']:
                cols = []
                for col, m in self.process_method['normalization'].items():
                    if m == method:
                        cols.append(col)
                if cols and method != 'none':
                    self.log.info(f'Running {method} on features: {cols}')

    def log_numerical_fill(self):
        if self.process_method.get('numFill', None):
            self.log.info(f'\nStatus:- !... Fillna for numeric feature done')
            for method in cs.supported_method['fillNa']['numeric']:
                cols = []
                for col, m in self.process_method['numFill'].items():
                    if m == method:
                        cols.append(col)
                if cols:
                    self.log.info(f'-------> Running {method} on features: {cols}')

    def log_categorical_fill(self):
        if self.process_method.get('catFill', None):
            self.log.info(f'\nStatus:- !... FillNa for categorical feature done')
            for method in cs.supported_method['fillNa']['categorical']:
                cols = []
                for col, m in self.process_method['catFill'].items():
                    if m == method:
                        cols.append(col)
                if cols:
                    self.log.info(f'-------> Running {method} on features: {cols}')
    
    
    def remove_constant_feature(self):
        unique_values = self.data.nunique()
        constant_features = []
        for i, value in enumerate(unique_values):
            if value == 1:
                constant_features.append(unique_values.index[i])
        if constant_features:
            self.drop_features(constant_features, ""constant"")
        
    def remove_empty_feature(self, misval_ratio=1.0):
        missing_ratio = self.data.isnull().sum() / len(self.data)
        missing_ratio = {k:v for k,v in zip(self.data.columns, missing_ratio)}
        empty_features = [k for k,v in missing_ratio.items() if v > misval_ratio]
        if empty_features:
            self.drop_features(empty_features, ""empty"")

    def remove_index_features(self):
        index_feature = []
        
        for feat in self.numeric_feature:
            if self.data[feat].nunique() == len(self.data):
               #if (self.data[feat].sum()- sum(self.data.index) == (self.data.iloc[0][feat]-self.data.index[0])*len(self.data)):
                # index feature can be time based 
                count = (self.data[feat] - self.data[feat].shift() == 1).sum()
                if len(self.data) - count == 1:
                    index_feature.append(feat)
        self.drop_features(index_feature, ""index"")

    def fill_missing_value_method(self, colm, method):
        if colm in self.numeric_feature:
            if method in cs.supported_method['fillNa']['numeric']:
                if 'numFill' not in self.process_method.keys():
                    self.process_method['numFill'] = {}
                if method == 'na' and self.process_method['numFill'].get(colm, None):
                    pass # don't overwrite
                else:
                    self.process_method['numFill'][colm] = method
        if colm in self.cat_feature:
            if method in cs.supported_method['fillNa']['categorical']:
                if 'catFill' not in self.process_method.keys():
                    self.process_method['catFill'] = {}
                if method == 'na' and self.process_method['catFill'].get(colm, None):
                    pass
                else:
                    self.process_method['catFill'][colm] = method
    
    def check_encoding_method(self, method, colm,default=False):
        if not self.is_target_available() and (method.lower() == list(cs.target_encoding_method_change.keys())[0]):
            method = cs.target_encoding_method_change[method.lower()]
            if default:
                self.log.info(f""Applying Label encoding instead of Target encoding on feature '{colm}' as target feature is not present"")
        return method
    
    def fill_encoder_value_method(self,colm, method, default=False):
        if colm in self.cat_feature:
            if method.lower() in cs.supported_method['categoryEncoding']:
                if 'catEncoder' not in self.process_method.keys():
                    self.process_method['catEncoder'] = {}
                if method == 'na' and self.process_method['catEncoder'].get(colm, None):
                    pass
                else:
                    self.process_method['catEncoder'][colm] = self.check_encoding_method(method, colm,default)
            else:
                self.log.info(f""-------> categorical encoding method '{method}' is not supported. supported methods are {cs.supported_method['categoryEncoding']}"")

    def fill_normalizer_method(self,colm, method):
        if colm in self.numeric_feature:
            if method in cs.supported_method['normalization']:
                if 'normalization' not in self.process_method.keys():
                    self.process_method['normalization'] = {}
                if (method == 'na' or method == 'none')  and self.process_method['normalization'].get(colm, None):
                    pass
                else:
                    self.process_method['normalization'][colm] = method
            else:
                self.log.info(f""-------> Normalization method '{method}' is not supported. supported methods are {cs.supported_method['normalization']}"")

    def apply_outlier(self):
        inlier_indice = np.array([True] * len(self.data))
        if self.process_method.get('outlier', None):
            self.log.info('-------> Feature wise outlier detection:')
            for k,v in self.process_method['outlier'].items():
                if k in self.numeric_feature:
                    if v == 'iqr':
                        index = cs.findiqrOutlier(self.data[k])
                    elif v == 'zscore':
                        index = cs.findzscoreOutlier(self.data[k])
                    elif v == 'disable':
                        index = None
                    if k in self.process_method['outlierOperation'].keys():
                        if self.process_method['outlierOperation'][k] == 'dropdata':
                            inlier_indice = np.logical_and(inlier_indice, index)
                        elif self.process_method['outlierOperation'][k] == 'average':
                            mean = self.data[k].mean()
                            index = ~index
                            self.data.loc[index,[k]] = mean
                            self.log.info(f'------->     {k}: Replaced by Mean {mean}: total replacement {index.sum()}')
                        elif self.process_method['outlierOperation'][k] == 'nochange' and v != 'disable':
                            self.log.info(f'------->     Total outliers in ""{k}"": {(~index).sum()}')
        if self.config.get('outlierDetection',None):
            if self.config['outlierDetection'].get('IsolationForest','False') == 'True':
                if self.numeric_feature:
                    index = cs.findiforestOutlier(self.data[self.numeric_feature])
                    inlier_indice = np.logical_and(inlier_indice, index)
                    self.log.info(f'-------> Numeric feature based Outlier detection(IsolationForest):')
        if inlier_indice.sum() != len(self.data):
            self.__update_index(inlier_indice, 'outlier')

    def fill_outlier_method(self,colm, method):
        if colm in self.numeric_feature:
            if method in cs.supported_method['outlier_column_wise']:
                if 'outlier' not in self.process_method.keys():
                    self.process_method['outlier'] = {}
                if method not in ['Disable', 'na']:
                    self.process_method['outlier'][colm] = method
            else:
                self.log.info(f""-------> outlier detection method '{method}' is not supported for column wise. supported methods are {cs.supported_method['outlier_column_wise']}"")

    def fill_outlier_process(self,colm, method):
        if colm in self.numeric_feature:
            if method in cs.supported_method['outlierOperation']:
                if 'outlierOperation' not in self.process_method.keys():
                    self.process_method['outlierOperation'] = {}
                self.process_method['outlierOperation'][colm] = method
            else:
                self.log.info(f""-------> outlier process method '{method}' is not supported for column wise. supported methods are {cs.supported_method['outlierOperation']}"")
        
    def get_cat_imputer(self,method):
        if method == 'mode':
            return SimpleImputer(strategy='most_frequent')
        elif method == 'zero':
            return SimpleImputer(strategy='constant', fill_value=0)
            
    def get_cat_encoder(self,method):
        if method == 'labelencoding':
            return OrdinalEncoder()
        elif method == 'onehotencoding':
            return OneHotEncoder(sparse=False,handle_unknown=""ignore"")
        elif method == 'targetencoding':
            if not self.is_target_available():
                raise ValueError('Can not apply Target Encoding when target feature is not present')
            return TargetEncoder()

    def get_num_imputer(self,method):
        if method == 'mode':
            return SimpleImputer(strategy='most_frequent')
        elif method == 'mean':
            return SimpleImputer(strategy='mean')
        elif method == 'median':
            return SimpleImputer(strategy='median')
        elif method == 'knnimputer':
            return KNNImputer()
        elif method == 'zero':
            return SimpleImputer(strategy='constant', fill_value=0)
            
    def get_num_scaler(self,method):
        if method == 'minmax':
            return MinMaxScaler()
        elif method == 'standardscaler':
            return StandardScaler()
        elif method == 'lognormal':
            return PowerTransformer(method='yeo-johnson', standardize=False)

    def recommenderStartProfiler(self,modelFeatures):
        return cs.recommenderStartProfiler(self,modelFeatures)
        
    def folderPreprocessing(self,folderlocation,folderdetails,deployLocation):
        return cs.folderPreprocessing(self,folderlocation,folderdetails,deployLocation)

    def textSimilarityStartProfiler(self, doc_col_1, doc_col_2):
        return cs.textSimilarityStartProfiler(self, doc_col_1, doc_col_2)

    def get_conversion_method(self):
        return cs.get_one_true_option(self.config.get('textConversionMethod','')).lower()
    
def set_features(features,profiler=None):
    return cs.set_features(features,profiler)


"
data_profiler_functions.py,"import os
import sys
import numpy as np
import scipy
import pandas as pd
from pathlib import Path

default_config = {
    'misValueRatio': '1.0',
    'numericFeatureRatio': '1.0',
    'categoryMaxLabel': '20',
    'str_to_cat_len_max': 10
}

target_encoding_method_change = {'targetencoding': 'labelencoding'}

supported_method = {
    'fillNa':
        {
            'categorical' : ['mode','zero','na'],
            'numeric' : ['median','mean','knnimputer','zero','drop','na'],
        },
    'categoryEncoding': ['labelencoding','targetencoding','onehotencoding','na','none'],
    'normalization': ['standardscaler','minmax','lognormal', 'na','none'],
    'outlier_column_wise': ['iqr','zscore', 'disable', 'na'],
    'outlierOperation': ['dropdata', 'average', 'nochange']
    }
    
def findiqrOutlier(df):
    Q1 = df.quantile(0.25)
    Q3 = df.quantile(0.75)
    IQR = Q3 - Q1
    index = ~((df < (Q1 - 1.5 * IQR)) |(df > (Q3 + 1.5 * IQR)))
    return index
    
def findzscoreOutlier(df):
    z = np.abs(scipy.stats.zscore(df))
    index = (z < 3)
    return index
    
def findiforestOutlier(df):
    from sklearn.ensemble import IsolationForest
    isolation_forest = IsolationForest(n_estimators=100)
    isolation_forest.fit(df)
    y_pred_train = isolation_forest.predict(df)
    return y_pred_train == 1

def get_one_true_option(d, default_value=None):
	if isinstance(d, dict):
		for k,v in d.items():
			if (isinstance(v, str) and v.lower() == 'true') or (isinstance(v, bool) and v == True):
				return k
	return default_value

def get_boolean(value):
    if (isinstance(value, str) and value.lower() == 'true') or (isinstance(value, bool) and value == True):
        return True
    else:
        return False
        
def recommenderStartProfiler(self,modelFeatures):
    try:
        self.log.info('----------> FillNA:0')
        self.data = self.data.fillna(value=0)
        self.log.info('Status:-        !... Missing value treatment done')
        self.log.info('----------> Remove Empty Row')
        self.data = self.data.dropna(axis=0,how='all')
        self.log.info('Status:-        !... Empty feature treatment done')                      
        userId,itemId,rating = modelFeatures.split(',')
        self.data[itemId] = self.data[itemId].astype(np.int32)
        self.data[userId] = self.data[userId].astype(np.int32)
        self.data[rating] = self.data[rating].astype(np.float32)
        return self.data
    except Exception as inst:
        self.log.info(""Error: dataProfiler failed ""+str(inst))
        return(self.data)

def folderPreprocessing(self,folderlocation,folderdetails,deployLocation):
    try:
        dataset_directory = Path(folderlocation)
        dataset_csv_file = dataset_directory/folderdetails['label_csv_file_name']
        tfrecord_directory = Path(deployLocation)/'Video_TFRecord'
        from savp import PreprocessSAVP
        import csv
        csvfile = open(dataset_csv_file, newline='')
        csv_reader = csv.DictReader(csvfile)
        PreprocessSAVP(dataset_directory,csv_reader,tfrecord_directory)
        dataColumns = list(self.data.columns)
        VideoProcessing = True
        return dataColumns,VideoProcessing,tfrecord_directory
    except Exception as inst:
        self.log.info(""Error: dataProfiler failed ""+str(inst))

def textSimilarityStartProfiler(self, doc_col_1, doc_col_2):
    import os
    try:
        features = [doc_col_1, doc_col_2]
        pipe = None
        dataColumns = list(self.data.columns)
        self.numofCols = self.data.shape[1]
        self.numOfRows = self.data.shape[0]
        from transformations.textProfiler import textProfiler            
        
        self.log.info('-------> Execute Fill NA With Empty String')
        self.data = self.data.fillna(value="" "")
        self.log.info('Status:- |... Missing value treatment done')
        self.data[doc_col_1] = textProfiler().textCleaning(self.data[doc_col_1])
        self.data[doc_col_2] = textProfiler().textCleaning(self.data[doc_col_2])
        self.log.info('-------> Concatenate: ' + doc_col_1 + ' ' + doc_col_2)
        self.data['text'] = self.data[[doc_col_1, doc_col_2]].apply(lambda row: ' '.join(row.values.astype(str)), axis=1)
        from tensorflow.keras.preprocessing.text import Tokenizer
        pipe = Tokenizer()
        pipe.fit_on_texts(self.data['text'].values)
        self.log.info('-------> Tokenizer: Fit on  Concatenate Field')
        self.log.info('Status:- |... Tokenizer the text')
        self.data[doc_col_1] = self.data[doc_col_1].astype(str)
        self.data[doc_col_1] = self.data[doc_col_1].astype(str)
        return (self.data, pipe, self.target_name, features)
    except Exception as inst:
        self.log.info(""StartProfiler failed "" + str(inst))
        exc_type, exc_obj, exc_tb = sys.exc_info()
        fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)[1]
        self.log.info(str(exc_type) + ' ' + str(fname) + ' ' + str(exc_tb.tb_lineno))

def set_features(features,profiler=None):
    if profiler:
        features = [x for x in features if x not in profiler.added_features]
        return features + profiler.text_feature
    return features"
dataReader.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import numpy as np
import pandas as pd
import sys
import os
import warnings
import logging
from pathlib import Path
import random
from sklearn.model_selection import train_test_split
import operator
import re
import pdfplumber

class dataReader():
	
	def __init__(self):
		self.dataDf =None
		self.log = logging.getLogger('eion')

	
	def readCsv(self,dataPath,featureList,targetColumn):
		data=pd.read_csv(dataPath)
		dataDf=data[featureList]
		predictDf=data[targetColumn]
		return dataDf,predictDf
		
	def rowsfilter(self,filters,dataframe):
		self.log.info('\n-------> No of rows before filtering: '+str(dataframe.shape[0])) #task-13479
		filterexpression=''
		firstexpressiondone = False
		for x in filters:
			if firstexpressiondone:
				filterexpression += ' '
				if x['combineOperator'].lower() == 'and':
					filterexpression += '&'
				elif x['combineOperator'].lower() == 'or':	
					filterexpression += '|'
				filterexpression += ' '
			firstexpressiondone = True
			filterexpression += x['feature']
			filterexpression += ' '
			if x['condition'].lower() == 'equals':
				filterexpression += '=='
			elif x['condition'].lower() == 'notequals':
				filterexpression += '!='
			elif x['condition'].lower() == 'lessthan':	
				filterexpression += '<'
			elif x['condition'].lower() == 'lessthanequalto':
				filterexpression += '<='
			elif x['condition'].lower() == 'greaterthan':	
				filterexpression += '>'
			elif x['condition'].lower() == 'greaterthanequalto':
				filterexpression += '>='
			filterexpression += ' '
			if dataframe[x['feature']].dtype in ['int16', 'int32', 'int64', 'float16', 'float32', 'float64']:
				filterexpression += x['value']
			else:
				filterexpression += '\''+x['value']+'\''
		dataframe = dataframe.query(filterexpression)
		self.log.info('-------> Row filter: '+str(filterexpression)) #task-13479
		self.log.info('-------> No of rows after filtering: '+str(dataframe.shape[0]))
		return dataframe,filterexpression
        
	def grouping(self,grouper,dataframe):
		grouperbyjson= {}
		groupbyfeatures = grouper['groupby']
		dataframe = dataframe.reset_index()
		features = dataframe.columns.tolist()
		aggjson = {}
		for feature, featureType in zip(features,dataframe.dtypes):
			if feature == groupbyfeatures or feature == 'index':
				continue
			if dataframe[feature].empty == True:
				continue
			if dataframe[feature].isnull().all() == True:
				continue
			if featureType in ['int16', 'int32', 'int64', 'float16', 'float32', 'float64']:
				temp = {}
				temp[feature+'_size'] = 'size'
				temp[feature+'_sum'] = 'sum'
				temp[feature+'_max'] = 'max'
				temp[feature+'_min'] = 'min'
				temp[feature+'_mean'] = 'mean'
				aggjson[feature] = temp
			else:
				temp = {}
				temp[feature+'_size'] = 'size'
				temp[feature+'_unique'] = 'nunique'
				aggjson[feature] = temp
		groupbystring = 'groupby([\''+groupbyfeatures+'\']).agg('+str(aggjson)+')'	
		grouperbyjson['groupbystring'] = groupbystring
		dataframe = dataframe.groupby([groupbyfeatures]).agg(aggjson)
		dataframe.columns = dataframe.columns.droplevel(0)	
		dataframe = dataframe.reset_index()
		'''
		if operation.lower() == 'size':
			dataframe = dataframe.groupby([pd.Grouper(freq=frequency),groupbyfeatures]).size()
		elif operation.lower() == 'mean':
			dataframe = dataframe.groupby([pd.Grouper(freq=frequency),groupbyfeatures]).mean()
		elif operation.lower() == 'max':
			dataframe = dataframe.groupby([pd.Grouper(freq=frequency),groupbyfeatures]).max()
		elif operation.lower() == 'min':
			dataframe = dataframe.groupby([pd.Grouper(freq=frequency),groupbyfeatures]).min()
			
		dataframe = dataframe.rename(""groupby_value"")
		dataframe = dataframe.to_frame()
		dataframe = dataframe.reset_index()
		'''
		return dataframe,grouperbyjson


	def timeGrouping(self,timegrouper,dataframe):
		grouperbyjson= {}
		dateTime = timegrouper['dateTime']
		frequency = timegrouper['freq']
		groupbyfeatures = timegrouper['groupby']
		grouperbyjson['datetime'] = dateTime
		if dataframe[dateTime].dtypes in ['int16', 'int32', 'int64', 'float16', 'float32', 'float64']:
			dtlenth = dataframe[dateTime].iloc[0]
			dtlenth = np.int64(dtlenth)
			dtlenth = len(str(dtlenth))
			if dtlenth == 13:
				dataframe['date'] = pd.to_datetime(dataframe[dateTime],unit='ms')
				grouperbyjson['unit'] = 'ms'
			elif dtlenth == 10:
				dataframe['date'] = pd.to_datetime(dataframe[dateTime],unit='s')
				grouperbyjson['unit'] = 's'
			else:
				dataframe['date'] = pd.to_datetime(dataframe[dateTime])
				grouperbyjson['unit'] = ''
		else:
			dataframe['date'] = pd.to_datetime(dataframe[dateTime])
			grouperbyjson['unit'] = ''
		dataframe = dataframe.reset_index()
		dataframe.set_index('date',inplace=True)
		features = dataframe.columns.tolist()
		aggjson = {}
		for feature, featureType in zip(features,dataframe.dtypes):
			if feature == groupbyfeatures or feature == dateTime or feature == 'index':
				continue
			if dataframe[feature].empty == True:
				continue
			if dataframe[feature].isnull().all() == True:
				continue
			if featureType in ['int16', 'int32', 'int64', 'float16', 'float32', 'float64']:
				temp = {'size','sum','max','min','mean'}
				aggjson[feature] = temp
			else:
				temp = {'size','nunique'}
				aggjson[feature] = temp
		
		if groupbyfeatures == '':
			groupbystring = 'groupby([pd.Grouper(freq=\''+frequency+'\')]).agg('+str(aggjson)+')'	
		else:    
			groupbystring = 'groupby([pd.Grouper(freq=\''+frequency+'\'),\''+groupbyfeatures+'\']).agg('+str(aggjson)+')'
		
		grouperbyjson['groupbystring'] = groupbystring
		print(grouperbyjson)
		if groupbyfeatures == '':
			dataframe = dataframe.groupby([pd.Grouper(freq=frequency)]).agg(aggjson)	
		else:        
			dataframe = dataframe.groupby([pd.Grouper(freq=frequency),groupbyfeatures]).agg(aggjson)	        
		
		dataframe.columns = ['_'.join(col) for col in dataframe.columns]
		dataframe = dataframe.reset_index()
		self.log.info(dataframe.head(10))        
		'''
		if operation.lower() == 'size':
			dataframe = dataframe.groupby([pd.Grouper(freq=frequency),groupbyfeatures]).size()
		elif operation.lower() == 'mean':
			dataframe = dataframe.groupby([pd.Grouper(freq=frequency),groupbyfeatures]).mean()
		elif operation.lower() == 'max':
			dataframe = dataframe.groupby([pd.Grouper(freq=frequency),groupbyfeatures]).max()
		elif operation.lower() == 'min':
			dataframe = dataframe.groupby([pd.Grouper(freq=frequency),groupbyfeatures]).min()
			
		dataframe = dataframe.rename(""groupby_value"")
		dataframe = dataframe.to_frame()
		dataframe = dataframe.reset_index()
		'''
		return dataframe,grouperbyjson
	
		
	def readDf(self,dataF,featureList,targetColumn):
		dataDf = dataF[featureList]
		predictDf =dataF[targetColumn]
		return dataDf,predictDf
	
	def csvTodf(self,dataPath,delimiter,textqualifier):
		'''
		if os.path.splitext(dataPath)[1] == "".tsv"":
			dataFrame=pd.read_csv(dataPath,encoding='latin1',sep='\t')
		else:
			dataFrame=pd.read_csv(dataPath,encoding='latin1')
		'''
		if os.path.splitext(dataPath)[1] == "".py"":
			f = open(dataPath, ""r"")
			pythoncode = f.read()
			f.close()
			ldict = {}
			exec(pythoncode, globals(), ldict)
			dataFrame = ldict['dfpy']
		else:
			dataFrame=pd.read_csv(dataPath,encoding='utf-8',sep=delimiter,quotechar=textqualifier, skipinitialspace = True,na_values=['-','?'],encoding_errors= 'replace')
			dataFrame.rename(columns=lambda x: x.strip(), inplace=True)			
		return dataFrame
	
	def read_file(self, fileName):
		fileName = Path(fileName)
		if fileName.suffix == '.pdf':
			pdf = pdfplumber.open(fileName)
			text = ''
			for index, page in enumerate(pdf.pages):
				if index:
					text += ' '
				text += page.extract_text()
		else:
			with open(fileName, ""r"",encoding=""utf-8"") as f:
				text = f.read()
		return text
	
	def documentsTodf(self,folderlocation,labelFilePath):
		dataDf = pd.DataFrame()
		error_message = """"
		dataset_csv_file = os.path.join(folderlocation,labelFilePath)
		labels = pd.read_csv(dataset_csv_file)
		dataDict = {}
		keys = [""File"",""Label""]
		for key in keys:
			dataDict[key] = []
		for i in range(len(labels)):
			filename = os.path.join(folderlocation,labels.loc[i,""File""])
			dataDict[""File""].append(self.read_file(filename))
			dataDict[""Label""].append(labels.loc[i,""Label""])
		dataDf = pd.DataFrame.from_dict(dataDict)
		error_message = """"
		return dataDf, error_message
	
	def removeFeatures(self,df,datetimeFeature,indexFeature,modelFeatures,targetFeature):
		self.log.info(""\n---------- Prepare Features ----------"")
		if(str(datetimeFeature).lower() != 'na'):
			datetimeFeature = datetimeFeature.split("","")
			datetimeFeature = list(map(str.strip, datetimeFeature))
			for dtfeature in datetimeFeature:
				if dtfeature in df.columns:
					self.log.info(""-------> Remove Date Time Feature: ""+dtfeature)
					df = df.drop(columns=dtfeature)	
		if(str(indexFeature).lower() != 'na'):
			indexFeature = indexFeature.split("","")
			indexFeature = list(map(str.strip, indexFeature))
			for ifeature in indexFeature:
				if ifeature in df.columns:
					self.log.info(""-------> Remove Index Feature: ""+ifeature)
					df = df.drop(columns=ifeature)
		if(str(modelFeatures).lower() != 'na'):
			self.log.info(""-------> Model Features: ""+str(modelFeatures))
			modelFeatures = modelFeatures.split("","")
			modelFeatures = list(map(str.strip, modelFeatures))
			if(targetFeature != '' and str(targetFeature).lower() != 'na'):
				targetFeature = targetFeature.split("","")
				targetFeature = list(map(str.strip, targetFeature))
				for ifeature in targetFeature:
					if ifeature not in modelFeatures:
						modelFeatures.append(ifeature)
			if(str(indexFeature).lower() != 'na'):
				for ifeature in indexFeature:
					if ifeature in modelFeatures:
						modelFeatures.remove(ifeature)
			if(str(datetimeFeature).lower() != 'na'):
				for dtfeature in datetimeFeature:
					if dtfeature in modelFeatures:
						modelFeatures.remove(dtfeature)
			df = df[modelFeatures]
		self.log.info(""---------- Prepare Features End ----------"")
		return(df)

	def splitImageDataset(self, df, ratio, modelType):
		if modelType.lower() == ""objectdetection"":
			images = df['File'].unique().tolist()
			trainImages = random.sample(images, int(len(images) * ratio))
			mask = [0] * len(df)
			for i in range(len(df)):
				mask[i] = df.iloc[i]['File'] in trainImages
			trainDf = df.iloc[mask]
			testDf = df.iloc[[not elem for elem in mask]]
			return trainDf, testDf
		else:
			return train_test_split(df, test_size=(1 - ratio))
	def createTFRecord(self, train_image_dir, output_dir, csv_file, testPercentage, AugEnabled,keepAugImages,operations, modelType,augConf={}):
		from transformations import generate_tfrecord
		from transformations.imageAug import ImageAugmentation
		if isinstance(csv_file, pd.DataFrame):
			df = csv_file
		else:
			df = pd.read_csv(os.path.join(train_image_dir,csv_file))
		labelmap_path, num_classes = generate_tfrecord.createLabelFile(df, output_dir)
		train_df, test_df = self.splitImageDataset(df, testPercentage/100.0, modelType)
		if AugEnabled:
			augFile = os.path.join(output_dir,""tempTrainDf.csv"")
			train_df.to_csv(augFile)
			ia = ImageAugmentation(train_image_dir, augFile)
			augFile = ia.augment(modelType, operations,None,augConf)
			train_df = pd.read_csv(augFile)
		generate_tfrecord.generate_TF_record(train_image_dir, output_dir, train_df, test_df, labelmap_path)
		if AugEnabled and not keepAugImages:
			ia.removeAugmentedImages(train_df)
		return train_df, num_classes
	
"
pretrainedModels.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import sys
from pathlib import Path
import urllib.request
import tarfile
import json
import subprocess
import os
from os.path import expanduser
import platform


class ODpretrainedModels():

    def __init__(self, location=None):
        if location:
            if isinstance(location, Path):
                self.pretrained_models_location = location.as_posix()
            else:
                self.pretrained_models_location = location
        else:
            p = subprocess.run([sys.executable, ""-m"", ""pip"",""show"",""AION""],capture_output=True, text=True)
            if p.returncode == 0:
                Output = p.stdout.split('\n')
                for x in Output:
                    y = x.split(':',1)
                    if(y[0]=='Location'):
                        self.pretrained_models_location = y[1].strip()+""/AION/pretrained_models/object_detection""
                        break
        if Path(self.pretrained_models_location).is_dir():   
            self.config_file_location = self.pretrained_models_location+'/supported_models.json'
            with open(self.config_file_location) as json_data:
                self.supportedModels = json.load(json_data)
        
        home = expanduser(""~"")
        if platform.system() == 'Windows':
            self.modelsPath = os.path.join(home,'AppData','Local','HCLT','AION','PreTrainedModels','ObjectDetection')
        else:
            self.modelsPath = os.path.join(home,'HCLT','AION','PreTrainedModels','ObjectDetection')
            
        if os.path.isdir(self.modelsPath) == False:
            os.makedirs(self.modelsPath)
    
    def __save_config(self):
        with open(self.config_file_location, 'w') as json_file:
            json.dump(self.supportedModels, json_file)
        
        
    def __download(self, modelName):
        try:
            url = self.supportedModels[modelName][""url""]
            file = self.supportedModels[modelName][""file""]
            local_file_path = Path(self.modelsPath)/(file+"".tar.gz"")
            urllib.request.urlretrieve(url, local_file_path)
        except:
            raise ValueError(""{} model download error, check your internet connection"".format(modelName))
        return local_file_path
        
        
    def __extract(self, modelName, file_location, extract_dir):
        try:
            tarFile = tarfile.open(file_location)
            tarFile.extractall(extract_dir)
            tarFile.close()
            Path.unlink(file_location)
            return True
        except:
            return False


    def download(self, modelName):
        if modelName in list(self.supportedModels.keys()):
            p = Path(self.modelsPath).glob('**/*')
            modelsDownloaded = [x.name for x in p if x.is_dir()]
            if self.supportedModels[modelName]['file'] not in modelsDownloaded:
                file = self.__download(modelName)
                self.supportedModels[modelName][""downloaded""] = True
                if self.__extract(modelName, file, self.modelsPath):
                    self.supportedModels[modelName][""extracted""] = True
                    self.__save_config()
                else:
                    self.__save_config()
                    raise ValueError(""{} model downloaded but extraction failed,please try again"".format(modelName))
        else:
            raise ValueError(""{} is not supported for object detection"".format(modelName))
        return self.supportedModels[modelName]

    def get_info(self,modeltype):
        models_info = {}
        p = Path(self.pretrained_models_location)
        downloaded_models = [x.name for x in p.iterdir() if x.is_dir()]
        for model in list(self.supportedModels.keys()):
            if (self.supportedModels[model]['type'] == modeltype) or (modeltype == ''):
                models_info[model] = self.supportedModels[model]['extracted']
        return models_info

    def is_model_exist(self, model_name):
        models = self.get_info('')
        status = ""NOT_SUPPORTED""
        if model_name in models:
            if self.supportedModels[model_name]['extracted']:
                status = ""READY""
            else:
                status = ""NOT_READY""
        return status

    def clear_config(self, model_name):
        self.supportedModels[model_name]['extracted'] = False
        self.supportedModels[model_name]['downloaded'] = False
        self.__save_config()
        "
performance.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import json
from pathlib import Path

def get_metrics(request):
    output = {}
    output_path = Path(request.session['deploypath'])/""etc""/""output.json""
    if not output_path.exists():
        raise ValueError('output json path does not exist, something unexpected happen')
    with open(output_path) as file:
        config = json.load(file)
    output['problem_type'] = config.get('data',{}).get('ModelType')
    output['best_model'] = config.get('data',{}).get('BestModel')
    output['hyper_params'] = config.get('data',{}).get('params')
    output['best_score'] = str(round(float(config.get('data',{}).get('BestScore')), 2))
    output['scoring_method'] = config.get('data',{}).get('ScoreType')
    if output['problem_type'] == 'classification':
        output['mcc_score'] = str(round(float(config.get('data',{}).get('matrix',{}).get('MCC_SCORE', 0.0)), 2))
    else:
        output['mcc_score'] = 'NA'
    return output
"
brier_score.py,"import json
import os

def get_brier_score(request):
    try:
        displaypath = os.path.join(request.session['deploypath'], ""etc"", ""output.json"")
        with open(displaypath) as file:
            config = json.load(file)
        problem_type = config[""data""][""ModelType""]
        brier_score = config[""data""][""matrix""][""BRIER_SCORE""]
        print(problem_type,brier_score)
    except Exception as e:
        #print(str(e))
        raise ValueError(str(e))
    return problem_type, brier_score
                          "
__init__.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
"
fairness_metrics.py,"
import pandas as pd
import numpy as np
from appbe.eda import ux_eda
from sklearn.preprocessing import LabelEncoder
import json
import matplotlib.pyplot as plt
import os
import mpld3
import subprocess
import os
import sys
import re
import json
import pandas as pd

from appbe.eda import ux_eda
from aif360.datasets import StandardDataset
from aif360.metrics import ClassificationMetric
from aif360.datasets import BinaryLabelDataset

def get_metrics(request):
    dataFile = os.path.join(request.session['deploypath'], ""data"", ""preprocesseddata.csv.gz"")
    predictionScriptPath = os.path.join(request.session['deploypath'], 'aion_predict.py')
    displaypath = os.path.join(request.session['deploypath'], ""etc"", ""display.json"")
    f = open(displaypath, ""r"")
    configSettings = f.read()
    f.close()
    configSettings = json.loads(configSettings)
    Target_feature = configSettings['targetFeature']

    outputStr = subprocess.check_output([sys.executable, predictionScriptPath, dataFile])
    outputStr = outputStr.decode('utf-8')
    outputStr = re.search(r'predictions:(.*)', str(outputStr), re.IGNORECASE).group(1)
    outputStr = outputStr.strip()
    predict_dict = json.loads(outputStr)
   
    df = pd.read_csv(dataFile)
    df_p = pd.DataFrame.from_dict(predict_dict['data'])
    
    d3_url = request.GET.get('d3_url')
    mpld3_url = request.GET.get('mpld3_url')
    df_temp = request.GET.get('feature')
    global metricvalue
    metricvalue = request.GET.get('metricvalue')
    
    Protected_feature = df_temp

    df_p = df_p.drop(columns=[Target_feature, 'remarks', 'probability'])
    df_p.rename(columns={'prediction': Target_feature}, inplace=True)

    
    eda_obj = ux_eda(dataFile, optimize=1)                  
    features,dateFeature,seqFeature,constantFeature,textFeature,targetFeature,numericCatFeatures,numericFeature,catfeatures = eda_obj.getFeatures()

    features_to_Encode = features

    categorical_names = {}
    encoders = {}

    for feature in features_to_Encode:
        le = LabelEncoder()
        le.fit(df[feature])            
        df[feature] = le.transform(df[feature])
        le.fit(df_p[feature])            
        df_p[feature] = le.transform(df_p[feature])             
        categorical_names[feature] = le.classes_
        encoders[feature] = le       
        
    new_list = [item for item in categorical_names[Protected_feature] if not(pd.isnull(item)) == True]
    claas_size = len(new_list)

    if claas_size > 10:
        return 'HeavyFeature'

    metrics = fair_metrics(categorical_names, Protected_feature,Target_feature, claas_size, df, df_p)
    figure = plot_fair_metrics(metrics)
    html_graph = mpld3.fig_to_html(figure,d3_url=d3_url,mpld3_url=mpld3_url) 
    return html_graph

def fair_metrics(categorical_names, Protected_feature,Target_feature, claas_size, df, df_p):
    cols = [metricvalue]
    obj_fairness = [[0]]  
    fair_metrics = pd.DataFrame(data=obj_fairness, index=['objective'], columns=cols)
    for indx in range(claas_size):
        priv_group = categorical_names[Protected_feature][indx]
        privileged_class = np.where(categorical_names[Protected_feature] == priv_group)[0]
        data_orig = StandardDataset(df, 
                                        label_name=Target_feature, 
                                        favorable_classes=[1], 
                                        protected_attribute_names=[Protected_feature], 
                                        privileged_classes=[privileged_class])
        attr = data_orig.protected_attribute_names[0]
        idx = data_orig.protected_attribute_names.index(attr)
        privileged_groups =  [{attr:data_orig.privileged_protected_attributes[idx][0]}] 

        unprivileged_size = data_orig.unprivileged_protected_attributes[0].size
        unprivileged_groups = []
        for idx2 in range(unprivileged_size):   
            unprivileged_groups.extend([{attr:data_orig.unprivileged_protected_attributes[idx][idx2]}])
        
        bld = BinaryLabelDataset(df=df, label_names=[Target_feature], protected_attribute_names=[Protected_feature])
        bld_p = BinaryLabelDataset(df=df_p, label_names=[Target_feature], protected_attribute_names=[Protected_feature])

        ClsMet = ClassificationMetric(bld, bld_p,unprivileged_groups=unprivileged_groups, privileged_groups=privileged_groups)

        if metricvalue == ""Theil Index"":
            row = pd.DataFrame([[ClsMet.theil_index()]],
                        columns  = cols ,
                        index = [priv_group])
        elif metricvalue == ""Equal Opportunity Difference"":
            row = pd.DataFrame([[ClsMet.equal_opportunity_difference()]],
                        columns  = cols ,
                        index = [priv_group])
        elif metricvalue == ""Disparate Impact"":
            row = pd.DataFrame([[ClsMet.disparate_impact()]],
                        columns  = cols ,
                        index = [priv_group])
        elif metricvalue == ""Statistical Parity Difference"":
            row = pd.DataFrame([[ClsMet.statistical_parity_difference()]],
                        columns  = cols ,
                        index = [priv_group])                       

        #fair_metrics = fair_metrics.append(row)
        fair_metrics = pd.concat([fair_metrics,row])

    return fair_metrics

def plot_fair_metrics(fair_metrics):
    import matplotlib.patches as patches
    plt.style.use('default')
    
    import seaborn as sns    
    fig, ax = plt.subplots(figsize=(10,4), ncols=1, nrows=1)

    plt.subplots_adjust(
        left    =  0.125, 
        bottom  =  0.1, 
        right   =  0.9, 
        top     =  0.9, 
        wspace  =  .5, 
        hspace  =  1.1
    )

    y_title_margin = 1.2

    plt.suptitle(""Fairness metrics"", y = 1.09, fontsize=20)
    sns.set(style=""dark"")

    cols = fair_metrics.columns.values
    obj = fair_metrics.loc['objective']
    if metricvalue == ""Theil Index"":
        size_rect = [0.5]
        rect = [-0.1]
        bottom = [-0.1]
        top = [2]
        bound = [[-0.1,0.1]]
    
    elif metricvalue == ""Equal Opportunity Difference"":
        size_rect = [0.2]
        rect = [-0.1]
        bottom = [-1]
        top = [1]
        bound = [[-0.1,0.1]]
    elif metricvalue == ""Disparate Impact"":
        size_rect = [0.4]
        rect = [0.8]
        bottom = [0]
        top = [2]
        bound = [[-0.1,0.1]]
    elif metricvalue == ""Statistical Parity Difference"":
        size_rect = [0.2]
        rect = [-0.1]
        bottom = [-1]
        top = [1]
        bound = [[-0.1,0.1]]

    for attr in fair_metrics.index[1:len(fair_metrics)].values:
        check = [bound[i][0] < fair_metrics.loc[attr][i] < bound[i][1] for i in range(0,1)]
    
    for i in range(0,1):
        plt.subplot(1, 1, i+1)        
        xx = fair_metrics.index[1:len(fair_metrics)].values.tolist()
        yy = fair_metrics.iloc[1:len(fair_metrics)][cols[i]].values.tolist()
      
        palette = sns.color_palette('husl', len(xx))  
        ax = sns.pointplot(x=fair_metrics.index[1:len(fair_metrics)], y=yy, palette=palette, hue=xx)
        
        index = 0
        for p in zip(ax.get_xticks(), yy):
            if (p[1] > 2.0):
                _color = palette.as_hex()[index]   
                _val = 'Outlier(' + str(round(p[1],3)) + ')'
                ax.text(p[0]-0.5, 0.02, _val, color=_color)
            else:
                ax.text(p[0], p[1]+0.05, round(p[1],3), color='k') 
            index = index + 1
            
        plt.ylim(bottom[i], top[i])
        plt.setp(ax.patches, linewidth=0)              
        ax.get_xaxis().set_visible(False)
                
        ax.legend(loc='right', bbox_to_anchor=(1, 0.8), ncol=1)        
        ax.add_patch(patches.Rectangle((-5,rect[i]), 10, size_rect[i], alpha=0.3, facecolor=""green"", linewidth=1, linestyle='solid'))
        # plt.axhline(obj[i], color='black', alpha=0.3)              
        
        plt.title(cols[i], fontname=""Times New Roman"", size=20,fontweight=""bold"")
        ax.set_ylabel('')    
        ax.set_xlabel('')    
            
    return fig"
sensitivity_analysis.py,"import base64
import io
import json
import os
import urllib

import joblib
import numpy as np
import pandas as pd
from SALib.analyze import sobol


class sensitivityAnalysis():
    def __init__(self, model, problemType, data, target, featureName):
        self.model = model
        self.probemType = problemType
        self.data = data
        self.target = target
        self.featureName = featureName
        self.paramvales = []
        self.X = []
        self.Y = []
        self.problem = {}

    def preprocess(self):

        self.X = self.data[self.featureName].values
        self.Y = self.data[self.target].values


        bounds = [[np.min(self.X[:, i]), np.max(self.X[:, i])] for i in range(self.X.shape[1])]

        self.problem = {
            'num_vars': self.X.shape[1],
            'names': self.featureName,
            'bounds': bounds
        }

    def generate_samples(self,size):
        from SALib.sample import sobol
        self.param_values = sobol.sample(self.problem, size)

    def calSiClass(self, satype,isML,isDL):
        try:

            D = self.problem['num_vars']
            S = np.zeros(self.X.shape[1])

            for class_label in np.unique(self.Y):
                if isML:
                    y_pred_poba = self.model.predict_proba(self.param_values)[:, class_label]
                if isDL:
                    y_pred_poba = self.model.predict(self.param_values)[:,class_label]


                if not y_pred_poba.size % (2 * D + 2) == 0:
                    lim = y_pred_poba.size - y_pred_poba.size % (2 * D + 2)
                    y_pred_poba = y_pred_poba[:lim]
                Si = sobol.analyze(self.problem, y_pred_poba)
                if satype.lower() == 'first':
                    S += Si['S1']
                else:
                    S += Si['ST']
            S /= len(np.unique(self.Y))
            return S
        except Exception as e:
            print('Error in calculating Si for Classification: ', str(e))
            raise ValueError(str(e))


    def calSiReg(self, satype,isML,isDL):
        try:

            D = self.problem['num_vars']

            Y = np.array([self.model.predict(X_sample.reshape(1, -1)) for X_sample in self.param_values])

            Y = Y.reshape(-1)

            if not Y.size % (2 * D + 2) == 0:
                lim = Y.size - Y.size % (2 * D + 2)
                Y = Y[:lim]
            Si = sobol.analyze(self.problem, Y)
            if satype.lower() == 'first':
                S = Si['S1']
            else:
                S = Si['ST']
            return S
        except Exception as e:
            print('Error in calculating Si for Regression: ', str(e))
            raise ValueError(str(e))


    def plotSi(self, S, saType):
        try:
            import matplotlib.pyplot as plt
            if saType.lower() == 'first':
                title, label = 'Sensitivity Analysis', 'First order'
            else:
                title, label = 'Sensitivity Analysis', 'Total order'
            x = np.arange(len(self.problem['names']))
            width = 0.35
            fig, ax = plt.subplots()
            ax.bar(x - width / 2, S, width, label=label)
            ax.set_xticks(x)
            ax.set_xlabel('Features')
            ax.set_ylabel('Sensitivity Indices')
            ax.set_title(title)
            ax.set_xticklabels(self.problem['names'], rotation=45, ha=""right"")
            ax.legend()

            plt.tight_layout()
            image = io.BytesIO()
            plt.savefig(image, format='png')
            image.seek(0)
            string = base64.b64encode(image.read())
            SAimage = 'data:image/png;base64,' + urllib.parse.quote(string)
        except Exception as e:
            print(e)
            SAimage = ''
        return SAimage

def checkModelType(modelName):
    isML= False
    isDL = False

    if modelName in [""Neural Network"", ""Convolutional Neural Network (1D)"", ""Recurrent Neural Network"",""Recurrent Neural Network (GRU)"",
                     ""Recurrent Neural Network (LSTM)"", ""Neural Architecture Search"", ""Deep Q Network"", ""Dueling Deep Q Network""]:
        isDL = True
    elif modelName in [""Linear Regression"",""Lasso"",""Ridge"",""Logistic Regression"", ""Naive Bayes"", ""Decision Tree"", ""Random Forest"", ""Support Vector Machine"", ""K Nearest Neighbors"", ""Gradient Boosting"",
                       ""Extreme Gradient Boosting (XGBoost)"", ""Light Gradient Boosting (LightGBM)"", ""Categorical Boosting (CatBoost)"",""Bagging (Ensemble)""]:
        isML = True

    return isML,isDL



def startSA(request):

    try:
        displaypath = os.path.join(request.session['deploypath'], ""etc"", ""display.json"")
        if not os.path.exists(displaypath):
            raise Exception('Config file not found.')
        with open(displaypath) as file:
            config = json.load(file)

        probelmType = config['problemType']

        if probelmType.lower() not in ['classification','regression']:
            raise Exception(f""Probolem Type: {probelmType} not supported"")

        isML,isDL = checkModelType(config['modelname'])
        sample_size = 1024
        if isML:
            model = joblib.load(os.path.join(request.session['deploypath'], 'model', config['saved_model']))
            sample_size = 2048
        if isDL:
            from tensorflow.keras.models import load_model
            model = load_model(os.path.join(request.session['deploypath'], 'model', config['saved_model']))
            sample_size = 512

        target = config['targetFeature']
        featureName = config['modelFeatures']
        dataPath = os.path.join(request.session['deploypath'], 'data', 'postprocesseddata.csv.gz')
        if not os.path.exists(dataPath):
            raise Exception('Data file not found.')

        from utils.file_ops import read_df_compressed
        read_status,dataFrame = read_df_compressed(dataPath)

        obj = sensitivityAnalysis(model, probelmType, dataFrame, target, featureName)
        obj.preprocess()
        obj.generate_samples(sample_size)
        submitType = str(request.GET.get('satype'))
        saType = 'first' if submitType == 'first' else 'total'
        if probelmType.lower() == 'classification':
            SA_values = obj.calSiClass(saType,isML,isDL)
        else:
            SA_values = obj.calSiReg(saType,isML,isDL)
        if SA_values.size and saType:

            graph = obj.plotSi(SA_values, saType)
            if graph:
                outputJson = {'Status': ""Success"", ""graph"": graph}
            else:
                outputJson = {'Status': ""Error"", ""graph"": '','reason':'Error in Plotting Graph'}
        else:
            outputJson = {'Status': ""Error"", ""graph"": '','reason':'Error in calculating Si values'}
        output_json = json.dumps(outputJson)
        return output_json
    except Exception as e:
        print(str(e))
        raise ValueError(str(e))
"
trustedai_uq.py,"import numpy as np
import joblib
import pandas as pd
from appbe.eda import ux_eda
from sklearn.preprocessing import MinMaxScaler, LabelEncoder

# from pathlib import Path
import configparser
import json
import matplotlib.pyplot as plt
import numpy as np
import os
def trustedai_uq(request):
    try:
        displaypath = os.path.join(request.session['deploypath'], ""etc"", ""display.json"")
        f = open(displaypath, ""r"")
        configSettings = f.read()
        f.close()
        configSettings = json.loads(configSettings)
        
        TargetFeature = configSettings['targetFeature']
        problemType = configSettings['problemType']
        raw_data_loc = configSettings['preprocessedData']
        dataLocation = configSettings['postprocessedData'] 
        selectedfeatures = request.GET.get('values')

        if problemType.lower() == ""classification"":
            model = (os.path.join(request.session['deploypath'], 'model', configSettings['saved_model']))
            df = pd.read_csv(dataLocation)
            trainfea = df.columns.tolist()
            
            feature = json.loads(selectedfeatures)
            # feature = "","".join(featurs)
            # features = ['PetalLengthCm','PetalWidthCm']
            targ = TargetFeature
            tar =[targ]
            from bin.aion_uncertainties import aion_uq
            outputStr = aion_uq(model,dataLocation,feature,tar)
            return outputStr
     
        if problemType.lower() == ""regression"":
            model = (os.path.join(request.session['deploypath'], 'model', configSettings['saved_model']))
            df = pd.read_csv(dataLocation)
            trainfea = df.columns.tolist()
            feature = json.loads(selectedfeatures)
            # feature = "","".join(featurs)
            # features = ['PetalLengthCm','PetalWidthCm']
            targ = TargetFeature
            tar =[targ]
            from bin.aion_uncertainties import aion_uq
            outputStr = aion_uq(model,dataLocation,feature,tar)
            print(outputStr)
            return outputStr
    except Exception as e:
        print('error',e)
        return e"
__init__.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''"
visualization.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import warnings
import numpy as np
import pandas as pd
import sklearn.metrics as metrics
from collections import defaultdict
from sklearn.metrics import confusion_matrix 
import re
import shutil
import scipy.stats as st
import json
import os,sys
import glob
import logging
from utils.file_ops import read_df_compressed
class Visualization():
	def __init__(self,usecasename,version,dataframe,visualizationJson,dateTimeColumn,deployPath,dataFolderLocation,numericContinuousFeatures,discreteFeatures,categoricalFeatures,modelFeatures,targetFeature,modeltype,original_data_file,profiled_data_file,trained_data_file,predicted_data_file,labelMaps,vectorizerFeatures,textFeatures,numericalFeatures,nonNumericFeatures,emptyFeatures,nrows,ncols,saved_model,scoreParam,learner_type,modelname,featureReduction,reduction_data_file):
		self.dataframe = dataframe
		self.displayjson = {}
		self.visualizationJson = visualizationJson
		self.dateTimeColumn = dateTimeColumn
		self.deployPath = deployPath
		#shutil.copy2(os.path.join(os.path.dirname(os.path.abspath(__file__)),'aion_portal.py'),self.deployPath)
		if learner_type == 'ML' and modelname != 'Neural Architecture Search':
			if(os.path.isfile(os.path.join(self.deployPath,'explainable_ai.py'))):
				os.remove(os.path.join(self.deployPath,'explainable_ai.py'))
			shutil.copy2(os.path.join(os.path.dirname(os.path.abspath(__file__)),'..','utilities','xai','explainable_ai.py'),self.deployPath)
			# os.rename(os.path.join(self.deployPath,'explainable_ai.py'),os.path.join(self.deployPath,'aion_xai.py'))
			try:
				os.rename(os.path.join(self.deployPath,'explainable_ai.py'),os.path.join(self.deployPath,'aion_xai.py'))
			except FileExistsError:
				os.remove(os.path.join(self.deployPath,'aion_xai.py'))
				os.rename(os.path.join(self.deployPath,'explainable_ai.py'),os.path.join(self.deployPath,'aion_xai.py'))
		elif learner_type == 'DL' or modelname == 'Neural Architecture Search':
			if(os.path.isfile(os.path.join(self.deployPath,'explainable_ai.py'))):
				os.remove(os.path.join(self.deployPath,'explainable_ai.py'))
			shutil.copy2(os.path.join(os.path.dirname(os.path.abspath(__file__)),'..','utilities','xai','explainabledl_ai.py'),self.deployPath)			
			# os.rename(os.path.join(self.deployPath,'explainabledl_ai.py'),os.path.join(self.deployPath,'aion_xai.py'))
			try:
				os.rename(os.path.join(self.deployPath,'explainabledl_ai.py'),os.path.join(self.deployPath,'aion_xai.py'))
			except FileExistsError:
				os.remove(os.path.join(self.deployPath,'aion_xai.py'))
				os.rename(os.path.join(self.deployPath,'explainabledl_ai.py'),os.path.join(self.deployPath,'aion_xai.py'))
		self.jsondeployPath = deployPath
		#self.deployPath = self.deployPath+'visualization/'
		self.dataFolderLocation = dataFolderLocation
		self.vectorizerFeatures = vectorizerFeatures
		self.textFeatures = textFeatures
		self.emptyFeatures = emptyFeatures
		'''
		try:
			os.makedirs(self.deployPath)
		except OSError as e:
			print(""\nFolder Already Exists"")
		'''
		self.numericContinuousFeatures = numericContinuousFeatures
		self.discreteFeatures = discreteFeatures
		self.categoricalFeatures = categoricalFeatures
		self.modelFeatures = modelFeatures
		self.modeltype = modeltype
		self.targetFeature = targetFeature
		self.displayjson['usecasename'] = str(usecasename)
		self.displayjson['version'] = str(version)
		self.displayjson['problemType'] = str(self.modeltype)
		self.displayjson['targetFeature'] = self.targetFeature
		self.displayjson['numericalFeatures'] = numericalFeatures
		self.displayjson['nonNumericFeatures'] = nonNumericFeatures
		self.displayjson['modelFeatures'] = self.modelFeatures
		self.displayjson['textFeatures'] = self.textFeatures
		self.displayjson['emptyFeatures'] = self.emptyFeatures
		self.displayjson['modelname']= str(modelname)
		self.displayjson['preprocessedData'] = str(original_data_file)
		self.displayjson['nrows'] = str(nrows)
		self.displayjson['ncols'] = str(ncols)
		self.displayjson['saved_model'] = str(saved_model)
		self.displayjson['scoreParam'] = str(scoreParam)
		self.displayjson['labelMaps'] = eval(str(labelMaps))
		self.original_data_file  = original_data_file
		self.displayjson['featureReduction'] = featureReduction 
		if featureReduction == 'True':
			self.displayjson['reduction_data_file'] = reduction_data_file
		else:
			self.displayjson['reduction_data_file'] = ''
		self.pred_filename = predicted_data_file
		self.profiled_data_file = profiled_data_file
		self.displayjson['predictedData'] = predicted_data_file
		self.displayjson['postprocessedData'] = profiled_data_file
		#self.trained_data_file = trained_data_file
		#self.displayjson['trainingData'] = trained_data_file
		#self.displayjson['categorialFeatures']=categoricalFeatures
		#self.displayjson['discreteFeatures']=discreteFeatures
		#self.displayjson['continuousFeatures']=numericContinuousFeatures
		#y = json.dumps(self.displayjson)
		#print(y)
		self.labelMaps = labelMaps
		self.log = logging.getLogger('eion')
		
	def visualizationrecommandsystem(self):
		try:
			import tensorflow.keras.utils as kutils
			datasetid = self.visualizationJson['datasetid']
			self.log.info('\n================== Data Profiling Details==================')
			datacolumns=list(self.dataframe.columns)
			self.log.info('================== Data Profiling Details End ==================\n')
			self.log.info('================== Features Correlation Details ==================\n')
			self.log.info('\n================== Model Performance Analysis ==================')
			if os.path.exists(self.pred_filename):
				try:                
					status,df=read_df_compressed(self.pred_filename)
					if self.modeltype == 'Classification' or self.modeltype == 'ImageClassification' or self.modeltype == 'anomaly_detection':
						y_actual = df['actual'].values
						y_predict = df['predict'].values
						y_actual = kutils.to_categorical(y_actual)
						y_predict = kutils.to_categorical(y_predict)
						classes = df.actual.unique()
						n_classes = y_actual.shape[1]
						self.log.info('-------> ROC AUC CURVE')
						roc_curve_dict = []
						for i in classes:
							try:	
								classname = i
								if str(self.labelMaps) != '{}':
									inv_map = {v: k for k, v in self.labelMaps.items()}
									classname = inv_map[i]
								fpr, tpr, threshold = metrics.roc_curve(y_actual[:,i],y_predict[:,i])
								roc_auc = metrics.auc(fpr, tpr)
								class_roc_auc_curve = {}
								class_roc_auc_curve['class']  = str(classname)
								fprstring = ','.join(str(v) for v in fpr)
								tprstring = ','.join(str(v) for v in tpr)
								class_roc_auc_curve['FP']  = str(fprstring)
								class_roc_auc_curve['TP']  = str(tprstring)
								roc_curve_dict.append(class_roc_auc_curve)
								self.log.info('----------> Class: '+str(classname))
								self.log.info('------------> ROC_AUC: '+str(roc_auc))
								self.log.info('------------> False Positive Rate (x Points): '+str(fpr))
								self.log.info('------------> True Positive Rate (y Points): '+str(tpr))
							except:
								pass
							self.displayjson['ROC_AUC_CURVE'] = roc_curve_dict
							self.log.info('-------> Precision Recall CURVE')
							precision_recall_curve_dict = []
						for i in range(n_classes):
							try:
								lr_precision, lr_recall, threshold = metrics.precision_recall_curve(y_actual[:,i],y_predict[:,i])
								classname = i
								if str(self.labelMaps) != '{}':
									inv_map = {v: k for k, v in self.labelMaps.items()}
									classname = inv_map[i]
								roc_auc = metrics.auc(lr_recall,lr_precision)
								class_precision_recall_curve = {}
								class_precision_recall_curve['class']  = str(classname)
								Precisionstring = ','.join(str(round(v,2)) for v in lr_precision)
								Recallstring = ','.join(str(round(v,2)) for v in lr_recall)
								class_precision_recall_curve['Precision']  = str(Precisionstring)
								class_precision_recall_curve['Recall']  = str(Recallstring)
								precision_recall_curve_dict.append(class_precision_recall_curve)
							except:
								pass
					
							self.log.info('----------> Class: '+str(classname))
							self.log.info('------------> ROC_AUC: '+str(roc_auc))
							self.log.info('------------> Recall (x Points): '+str(lr_precision))
							self.log.info('------------> Precision (y Points): '+str(lr_recall))
						self.displayjson['PRECISION_RECALL_CURVE'] = precision_recall_curve_dict
						status,predictdataFrame=read_df_compressed(self.displayjson['predictedData'])
				except Exception as e:
					self.log.info('================== Error in Calculation ROC_AUC/Recall Precision Curve '+str(e))
			self.log.info('================== Model Performance Analysis End ==================\n')
			self.log.info('\n================== For Descriptive Analysis of Model Features ==================')

			
			outputfile = os.path.join(self.jsondeployPath,'etc','display.json')
			with open(outputfile, 'w') as fp:
				json.dump(self.displayjson, fp)
			self.log.info('================== For Descriptive Analysis of Model Features End ==================\n')		
		except Exception as inst:
			self.log.info('Visualization Failed !....'+str(inst))
			exc_type, exc_obj, exc_tb = sys.exc_info()
			fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
			self.log.info(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))
			
	def drawlinechart(self,xcolumn,ycolumn,deploy_path,datasetid):
		title = 'aion_visualization_'+xcolumn+""_""+ycolumn+""_linechart""
		yaxisname = 'Average '+ycolumn
		datasetindex = datasetid		
		visulizationjson = '[{""_id"": ""543234"",""_type"": ""visualization"",""_source"": {""title"": ""'+title+'"",'
		visulizationjson = visulizationjson+'""visState"": ""{\\""title\\"":\\""'+title+'\\"",'		
		visulizationjson = visulizationjson+'\\""type\\"":\\""line\\"",\\""params\\"":{\\""type\\"":\\""line\\"",\\""grid\\"":{\\""categoryLines\\"":false,\\""style\\"":{\\""color\\"":\\""#eee\\""}},\\""categoryAxes\\"":[{\\""id\\"":\\""CategoryAxis-1\\"",\\""type\\"":\\""category\\"",\\""position\\"":\\""bottom\\"",\\""show\\"":true,\\""style\\"":{},\\""scale\\"":{\\""type\\"":\\""linear\\""},\\""labels\\"":{\\""show\\"":true,\\""truncate\\"":100},\\""title\\"":{}}],\\""valueAxes\\"":[{\\""id\\"":\\""ValueAxis-1\\"",\\""name\\"":\\""LeftAxis-1\\"",\\""type\\"":\\""value\\"",\\""position\\"":\\""left\\"",\\""show\\"":true,\\""style\\"":{},\\""scale\\"":{\\""type\\"":\\""linear\\"",\\""mode\\"":\\""normal\\""},\\""labels\\"":{\\""show\\"":true,\\""rotate\\"":0,\\""filter\\"":false,\\""truncate\\"":100},\\""title\\"":'		
		visulizationjson = visulizationjson+'{\\""text\\"":\\""'+yaxisname+'\\""}}],\\""seriesParams\\"":[{\\""show\\"":\\""true\\"",\\""type\\"":\\""line\\"",\\""mode\\"":\\""normal\\"",\\""data\\"":'
		visulizationjson = visulizationjson+'{\\""label\\"":\\""'+yaxisname+'\\"",\\""id\\"":\\""1\\""},\\""valueAxis\\"":\\""ValueAxis-1\\"",\\""drawLinesBetweenPoints\\"":true,\\""showCircles\\"":true}],\\""addTooltip\\"":true,\\""addLegend\\"":true,\\""legendPosition\\"":\\""right\\"",\\""times\\"":[],\\""addTimeMarker\\"":false},\\""aggs\\"":[{\\""id\\"":\\""1\\"",\\""enabled\\"":true,\\""type\\"":\\""avg\\"",\\""schema\\"":\\""metric\\"",\\""params\\"":{\\""field\\"":\\""'+str(ycolumn)+'\\""}},{\\""id\\"":\\""2\\"",\\""enabled\\"":true,\\""type\\"":\\""terms\\"",\\""schema\\"":\\""segment\\"",\\""params\\"":{\\""field\\"":\\""'+xcolumn+'\\"",\\""size\\"":100,\\""order\\"":\\""desc\\"",\\""orderBy\\"":\\""1\\"",\\""otherBucket\\"":false,\\""otherBucketLabel\\"":\\""Other\\"",\\""missingBucket\\"":false,\\""missingBucketLabel\\"":\\""Missing\\""}}]}"",""uiStateJSON"": ""{}"", ""description"": """",""version"": 1,""kibanaSavedObjectMeta"": {""searchSourceJSON"": ""{\\""index\\"":\\""'+datasetindex+'\\"",\\""query\\"":{\\""query\\"":\\""\\"",\\""language\\"":\\""lucene\\""},\\""filter\\"":[]}""}},""_migrationVersion"": {""visualization"": ""6.7.2""}}]'
		filename = deploy_path+title+'.json'
		f = open(filename, ""w"")
		f.write(str(visulizationjson))
		f.close()

	def drawbarchart(self,xcolumn,ycolumn,deploy_path,datasetid):
		title = 'aion_visualization_'+xcolumn+""_""+ycolumn+""_barchart""
		yaxisname = 'Average '+ycolumn
		datasetindex = datasetid
		visulizationjson = '[{""_id"": ""123456"",""_type"": ""visualization"",""_source"": {""title"":""'+title+'"",'
		visulizationjson = visulizationjson+'""visState"": ""{\\""title\\"":\\""'+title+'\\"",'
		visulizationjson = visulizationjson+'\\""type\\"":\\""histogram\\"",\\""params\\"":{\\""addLegend\\"":true,\\""addTimeMarker\\"":false,\\""addTooltip\\"":true,\\""categoryAxes\\"":[{\\""id\\"":\\""CategoryAxis-1\\"",\\""labels\\"":{\\""show\\"":true,\\""truncate\\"":100},\\""position\\"":\\""bottom\\"",\\""scale\\"":{\\""type\\"":\\""linear\\""},\\""show\\"":true,\\""style\\"":{},\\""title\\"":{},\\""type\\"":\\""category\\""}],\\""grid\\"":{\\""categoryLines\\"":false,\\""style\\"":{\\""color\\"":\\""#eee\\""}},\\""legendPosition\\"":\\""right\\"",\\""seriesParams\\"":[{\\""data\\"":{\\""id\\"":\\""1\\"",'
		visulizationjson = visulizationjson+'\\""label\\"":\\""'+yaxisname+'\\""},'
		visulizationjson = visulizationjson+'\\""drawLinesBetweenPoints\\"":true,\\""mode\\"":\\""stacked\\"",\\""show\\"":\\""true\\"",\\""showCircles\\"":true,\\""type\\"":\\""histogram\\"",\\""valueAxis\\"":\\""ValueAxis-1\\""}],\\""times\\"":[],\\""type\\"":\\""histogram\\"",\\""valueAxes\\"":[{\\""id\\"":\\""ValueAxis-1\\"",\\""labels\\"":{\\""filter\\"":false,\\""rotate\\"":0,\\""show\\"":true,\\""truncate\\"":100},\\""name\\"":\\""LeftAxis-1\\"",\\""position\\"":\\""left\\"",\\""scale\\"":{\\""mode\\"":\\""normal\\"",\\""type\\"":\\""linear\\""},\\""show\\"":true,\\""style\\"":{},\\""title\\"":'
		visulizationjson = visulizationjson+'{\\""text\\"":\\""'+yaxisname+'\\""},'
		visulizationjson = visulizationjson+'\\""type\\"":\\""value\\""}]},\\""aggs\\"":[{\\""id\\"":\\""1\\"",\\""enabled\\"":true,\\""type\\"":\\""avg\\"",\\""schema\\"":\\""metric\\"",\\""params\\"":{\\""field\\"":\\""'+str(xcolumn)+'\\""}},{\\""id\\"":\\""2\\"",\\""enabled\\"":true,\\""type\\"":\\""terms\\"",\\""schema\\"":\\""segment\\"",\\""params\\"":{\\""field\\"":\\""'+ycolumn+'\\"",\\""size\\"":100,\\""order\\"":\\""asc\\"",\\""orderBy\\"":\\""1\\"",\\""otherBucket\\"":false,\\""otherBucketLabel\\"":\\""Other\\"",\\""missingBucket\\"":false,\\""missingBucketLabel\\"":\\""Missing\\""}}]}"",""uiStateJSON"":""{}"",""description"": """",""version"": 1,""kibanaSavedObjectMeta"": {'
		visulizationjson = visulizationjson+'""searchSourceJSON"": ""{\\""index\\"":\\""'+datasetindex+'\\"",\\""query\\"":{\\""language\\"":\\""lucene\\"",\\""query\\"":\\""\\""},\\""filter\\"":[]}""}},""_migrationVersion"":{""visualization"": ""6.7.2""}}]'
		filename = deploy_path+title+'.json'
		f = open(filename, ""w"")
		f.write(str(visulizationjson))
		f.close()

	def drawpiechart(self,xcolumn,deploy_path,datasetid):
		title = 'aion_visualization_'+xcolumn+""_piechart""
		datasetindex = datasetid
		visulizationjson = '[{""_id"": ""123456"",""_type"": ""visualization"",""_source"": {""title"":""'+title+'"",'
		visulizationjson = visulizationjson+'""visState"": ""{\\""title\\"":\\""'+title+'\\"",'
		visulizationjson = visulizationjson+'\\""type\\"":\\""pie\\"",\\""params\\"":{\\""type\\"":\\""pie\\"",\\""addTooltip\\"":true,\\""addLegend\\"":true,\\""legendPosition\\"":\\""right\\"",\\""isDonut\\"":true,\\""labels\\"":{\\""show\\"":false,\\""values\\"":true,\\""last_level\\"":true,\\""truncate\\"":100}},\\""aggs\\"":[{\\""id\\"":\\""1\\"",\\""enabled\\"":true,\\""type\\"":\\""count\\"",\\""schema\\"":\\""metric\\"",\\""params\\"":{}},{\\""id\\"":\\""2\\"",\\""enabled\\"":true,\\""type\\"":\\""terms\\"",\\""schema\\"":\\""segment\\"",\\""params\\"":{\\""field\\"":\\""'+xcolumn+'\\"",\\""size\\"":100,\\""order\\"":\\""asc\\"",\\""orderBy\\"":\\""1\\"",\\""otherBucket\\"":false,\\""otherBucketLabel\\"":\\""Other\\"",\\""missingBucket\\"":false,\\""missingBucketLabel\\"":\\""Missing\\""}}]}"",'
		visulizationjson = visulizationjson+'""uiStateJSON"": ""{}"",""description"": """",""version"": 1,""kibanaSavedObjectMeta"": {""searchSourceJSON"":""{\\""index\\"":\\""'+datasetid+'\\"",\\""query\\"":{\\""query\\"":\\""\\"",\\""language\\"":\\""lucene\\""},\\""filter\\"":[]}""}},""_migrationVersion"": {""visualization"": ""6.7.2""}}]'
		filename = deploy_path+title+'.json'
		f = open(filename, ""w"")
		f.write(str(visulizationjson))
		f.close()	
		
	def get_confusion_matrix(self,df):
		setOfyTrue = set(df['actual'])
		unqClassLst = list(setOfyTrue)
		if(str(self.labelMaps) != '{}'):
			inv_mapping_dict = {v: k for k, v in self.labelMaps.items()}
			unqClassLst2 = (pd.Series(unqClassLst)).map(inv_mapping_dict)
			unqClassLst2 = list(unqClassLst2)
		else:
			unqClassLst2 = 	unqClassLst
		indexName = []
		columnName = []
		for item in unqClassLst2:
			indexName.append(""act:""+str(item))
			columnName.append(""pre:""+str(item))
		result = pd.DataFrame(confusion_matrix(df['actual'], df['predict'], labels = unqClassLst),index = indexName, columns = columnName)
		resultjson = result.to_json(orient='index')
		return(resultjson)
		
	def DistributionFinder(self,data):
		try:
			
			distributionName =""""
			sse =0.0
			KStestStatic=0.0
			dataType=""""
			if(data.dtype == ""float64""):
				dataType =""Continuous""
			elif(data.dtype ==""int"" or data.dtype ==""int64""):
				dataType=""Discrete""
					  
			if(dataType == ""Discrete""):
				distributions= [st.bernoulli,st.binom,st.geom,st.nbinom,st.poisson]                
				index, counts = np.unique(abs(data.astype(int)),return_counts=True)

				if(len(index)>=2):
					best_sse = np.inf
					y1=[]
					total=sum(counts)
					mean=float(sum(index*counts))/total
					variance=float((sum(index**2*counts) -total*mean**2))/(total-1)
					dispersion=mean/float(variance)
					theta=1/float(dispersion)
					r=mean*(float(theta)/1-theta)

					for j in counts:
							y1.append(float(j)/total)
							
					pmf1=st.bernoulli.pmf(index,mean)      
					pmf2=st.binom.pmf(index,len(index),p=mean/len(index))
					pmf3=st.geom.pmf(index,1/float(1+mean))
					pmf4=st.nbinom.pmf(index,mean,r)
					pmf5=st.poisson.pmf(index,mean)

					sse1 = np.sum(np.power(y1 - pmf1, 2.0))
					sse2 = np.sum(np.power(y1 - pmf2, 2.0))
					sse3 = np.sum(np.power(y1 - pmf3, 2.0))
					sse4 = np.sum(np.power(y1 - pmf4, 2.0))
					sse5 = np.sum(np.power(y1-  pmf5, 2.0))

					sselist=[sse1,sse2,sse3,sse4,sse5]
					for i in range(0,len(sselist)):
					  if best_sse > sselist[i] > 0:
						  best_distribution = distributions[i].name
						  best_sse = sselist[i]

				elif (len(index) == 1): 
					best_distribution = ""Constant Data-No Distribution""
					best_sse = 0.0

				distributionName =best_distribution
				sse=best_sse   

			elif(dataType == ""Continuous""): 
					 
				distributions = [st.uniform,st.expon,st.weibull_max,st.weibull_min,st.chi,st.norm,st.lognorm,st.t,st.gamma,st.beta]

				best_distribution = st.norm.name
				best_sse = np.inf
				datamin=data.min()
				datamax=data.max()
				nrange=datamax-datamin
					 
				y, x = np.histogram(data.astype(float), bins='auto', density=True)
				x = (x + np.roll(x, -1))[:-1] / 2.0
										
				for distribution in distributions:
						with warnings.catch_warnings():
								warnings.filterwarnings('ignore')
										
								params = distribution.fit(data.astype(float))
										# Separate parts of parameters
								arg = params[:-2]
								loc = params[-2]
								scale = params[-1]

										# Calculate fitted PDF and error with fit in distribution
								pdf = distribution.pdf(x, loc=loc, scale=scale, *arg)
								sse = np.sum(np.power(y - pdf, 2.0))
								if(best_sse >sse > 0):
										best_distribution = distribution.name
										best_sse = sse

				distributionName =best_distribution
				sse=best_sse 
		except:
			response = str(sys.exc_info()[0])
			message='Job has Failed'+response
			print(message)
		return distributionName,sse

				
	
"
cat_type_str.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import pandas as pd
class cat_to_str:
    def __init__(self):
        pass

    def convert(self, x):
        return pd.DataFrame(x).astype(str)

        "
file_ops.py,"import os
from pathlib import Path
import pandas as pd
import numpy as np
import json

def listToStringWithDelimiter(s, vectorDBFeatureDelimitInDoc):
    #lenght
    sLen = len(s)
    
    # initialize an empty string
    str1 = """"
 
    # traverse in the string
    for i in range(0, sLen-1):
        str1 +=str(s[i])+vectorDBFeatureDelimitInDoc
    str1 +=str(s[sLen-1])
 
    # return string
    return str1

def save_csv(df, fileLocation, encoding=None):
    #import pdb;pdb.set_trace();
    try:
        parent_dir = Path(fileLocation).parent
        parent_dir.mkdir(parents=True, exist_ok=True)
        if encoding:
            df.to_csv(fileLocation, encoding=encoding, index=False,)
        else:
            df.to_csv(fileLocation, index=False)
        return True, ''
    except Exception as e:
        print(e)
        return False, str(e)

def save_csv_compressed(df, fileLocation, encoding=None):
    try:
        parent_dir = Path(fileLocation).parent
        parent_dir.mkdir(parents=True, exist_ok=True)
        if encoding:
            df.to_csv(fileLocation, encoding=encoding, index=False, compression='gzip')
        else:
            df.to_csv(fileLocation, index=False, compression='gzip')
        return True, ''
    except Exception as e:
        print(e)
        return False, str(e)
def read_df(fileLocation,encoding=None, nrows=None):
    parent_dir = Path(fileLocation).parent
    if parent_dir.exists():
        try:
            if encoding and nrows:
                df = pd.read_csv(fileLocation, encoding=encoding,nrows=nrows,encoding_errors= 'replace')
            elif encoding:
                df = pd.read_csv(fileLocation, encoding=encoding,encoding_errors= 'replace')
            elif nrows:
                df = pd.read_csv(fileLocation, nrows=nrows)
            return True, df

        except Exception as e:
            df = pd.read_csv(fileLocation, encoding=""utf-8"",encoding_errors= 'replace')
            print(e)
            return True,df
    else:
        print(""parent fails"")
def read_df_compressed(fileLocation, encoding=None, nrows=None):
    parent_dir = Path(fileLocation).parent
    if parent_dir.exists():
        try:
            if encoding:
                df = pd.read_csv(fileLocation, encoding=encoding, compression=""gzip"",encoding_errors= 'replace')
            if nrows:
                df = pd.read_csv(fileLocation, nrows=nrows, compression=""gzip"")
            else:
                df = pd.read_csv(fileLocation, encoding=""utf-8"", compression=""gzip"",encoding_errors= 'replace')
            return True, df

        except Exception as e:
            df = pd.read_csv(fileLocation, encoding=""utf-8"",encoding_errors= 'replace')
            print(e)
            return True,df
    else:
        print(""parent fails"")

def save_chromadb(df, config_obj, fileLocation, modelFeatures):
    import chromadb
    #from chromadb.config import Settings
    try:
        parent_dir = Path(fileLocation).parent
        parent_dir.mkdir(parents=True, exist_ok=True)
        vectorDBFeatureDelimitInDoc = config_obj.getVectorDBFeatureDelimitInDoc()
        persist_directory = os.path.dirname(os.path.abspath(fileLocation))

        # client = chromadb.Client(
        #     Settings(
        #         persist_directory=persist_directory,
        #         chroma_db_impl=""duckdb+parquet"",
        #     )
        # )
        client = chromadb.PersistentClient(path=persist_directory)


        # Create a new chroma collection
        collection_name = os.path.basename(fileLocation).split('/')[-1]
        collection_name = collection_name.replace('.csv', '')
        collection_name = collection_name + 'VecDB'
        collection = client.create_collection(
            name=collection_name,
            metadata={""hnsw:space"": ""cosine""}

        )

        features = modelFeatures.split("","")
        dftxt = pd.concat([df.pop(x) for x in  features], axis=1)
       
        stepSize = 500
        for i in range(0, len(df),stepSize):
            start = i 
            end = i+ stepSize
            dfembdary = df.iloc[start:end].to_numpy()
            dftxtary = dftxt.iloc[start:end].to_numpy()
            idxary = df.iloc[start:end].index.values
            #convert to string
            idxary = [str(x) for x in idxary]
            dftxtary = [listToStringWithDelimiter(x.tolist(), vectorDBFeatureDelimitInDoc) for x in dftxtary]
            collection.add(
                embeddings=dfembdary.tolist(),
                ids=idxary,
                documents= dftxtary
            )
        client.persist()

        return True, ''
    except Exception as e:
        return False, str(e)
"
__init__.py,"import os
import sys
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__))))
from .cat_type_str import cat_to_str
__version__ = ""1.0"""
validate_inputs.py,"import pandas as pd
def dataGarbageValue(dataFrame,datetimeFeature):
    if datetimeFeature == '' or datetimeFeature.lower() == 'na':
        return 'Success',''
    try:
        features = datetimeFeature.split(',')
        for dtfeature in features:
            dataFrame[dtfeature] = pd.to_datetime(dataFrame[dtfeature],errors='coerce')
            if pd.isnull(dataFrame[dtfeature]).sum() > 0:
                return 'Error',dtfeature+' feature have some garbage values'
    except Exception as e:
        print(e)
        return 'Error', 'Datetime features validation error'

    return 'Success',''"
VideoTraining.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import logging
class VideoTraining(object):
	def __init__(self):
		self.log = logging.getLogger('eion')
	def train_model(self,model,modelParam,outputLocation,tfrecord_directory):
		print(model)
		print(modelParam)
		print(outputLocation)
		print(tfrecord_directory)
		from savp import TrainSAVP
		TrainSAVP(tfrecord_directory,outputLocation,modelParam,model)
"
deeplearning.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import logging
import numpy as np
import pandas as pd
from sklearn.metrics import confusion_matrix
from sklearn.metrics import classification_report
from sklearn.metrics import roc_curve, auc
from sklearn.metrics import roc_auc_score
from sklearn.preprocessing import LabelBinarizer
from imblearn.over_sampling import RandomOverSampler,SMOTE
from imblearn.under_sampling import RandomUnderSampler
from imblearn.under_sampling import TomekLinks
from sklearn.model_selection import train_test_split
from sklearn.metrics import r2_score
from sklearn.metrics import mean_absolute_error,make_scorer
from sklearn.metrics import mean_squared_error
from sklearn.metrics import log_loss
import tensorflow as tf
from tensorflow.keras import backend as K
from tensorflow.keras.models import load_model
from dlearning.Classification import DLClassificationModel
from dlearning.Regression import DLRegressionModel
from learner.machinelearning import machinelearning
from sklearn.metrics import matthews_corrcoef, brier_score_loss
import os
def recall_m(y_true, y_pred):
	true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
	possible_positives = K.sum(K.round(K.clip(y_true, 0, 1)))
	recall = true_positives / (possible_positives + K.epsilon())
	return recall
	
def precision_m(y_true, y_pred):
	true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
	predicted_positives = K.sum(K.round(K.clip(y_pred, 0, 1)))
	precision = true_positives / (predicted_positives + K.epsilon())
	return precision

def f1_m(y_true, y_pred):
	precision = precision_m(y_true, y_pred)
	recall = recall_m(y_true, y_pred)
	return 2*((precision*recall)/(precision+recall+K.epsilon()))
	

def rmse_m(y_true, y_pred):
	return K.sqrt(K.mean(K.square(y_pred - y_true), axis=-1))

def r_square(y_true, y_pred):
	SS_res = K.sum(K.square(y_true-y_pred))
	SS_tot = K.sum(K.square(y_true-K.mean(y_true)))
	return (1 - SS_res/(SS_tot+K.epsilon()))


class deeplearning(object):
	def __init__(self):
		self.log = logging.getLogger('eion')
	
	def getDLPredictionData(self,model_dl,hist_reloaded,X):
		if model_dl == ""Neural Network"":
			XSNN = X.values
			predictedData = hist_reloaded.predict(XSNN)
		else:
			X1 = np.expand_dims(X, axis=2)
			predictedData = hist_reloaded.predict(X1)
		return(predictedData)
		
	def getPredictionData(self,model_dl,hist_reloaded,X):
		if model_dl == ""Neural Network"":
			XSNN = X.values
			#predictedData = hist_reloaded.predict_classes(XSNN)
			predict_x=hist_reloaded.predict(XSNN) 
			predictedData=np.argmax(predict_x,axis=1)
		else:
			X1 = np.expand_dims(X, axis=2)
			#predictedData = hist_reloaded.predict_classes(X1)
			predict_x=hist_reloaded.predict(X1) 
			predictedData=np.argmax(predict_x,axis=1)
		return(predictedData, predict_x)	
	
	def LoadDL_Regression_Model(self,filename_dl,scoreParam,loss_matrix,optimizer):
		if(scoreParam.lower() == 'rmse'):
			hist_reloaded = load_model(filename_dl,custom_objects={""rmse"": rmse_m},compile=False)
			hist_reloaded.compile(loss=loss_matrix,optimizer=optimizer, metrics=[rmse_m])
		elif(scoreParam.lower() == 'r2'):
			hist_reloaded = load_model(filename_dl,custom_objects={""r2"": r_square},compile=False)
			hist_reloaded.compile(loss=loss_matrix,optimizer=optimizer, metrics=[r_square])
		else:
			hist_reloaded = load_model(filename_dl)		
		return(hist_reloaded)
	

	def startLearning(self,model_type,modelList, modelParams, scoreParam, cvSplit, xtrain,ytrain,xtest,ytest,method,randomMethod,roundLimit,labelMaps,df_test,deployLocation,modelName,modelVersion,best_feature_model):
		mlobj = machinelearning()        
		if model_type == 'Classification':
			self.log.info('\n------ Training DL: Classification ----')        
			objClf = DLClassificationModel(modelList, modelParams, scoreParam, cvSplit, xtrain,ytrain,xtest,ytest,method,randomMethod,roundLimit,best_feature_model)            
			dftrain = xtrain.copy()
			dftrain['Target'] = ytrain
			model_dl,score_dl,best_model_dl,params_dl,X1,XSNN,model_tried_dl,loss_matrix,optimizer = objClf.TalosScan(objClf)            
			self.log.info('------ Training DL: Classification End----\n')            
			saved_model_dl = 'dl_'+modelName+'_'+modelVersion+'.sav'
			filename_dl = os.path.join(deployLocation,'model',saved_model_dl)
			best_model_dl.save(filename_dl)            
			hist_reloaded = self.LoadDL_Classification_Model(filename_dl,scoreParam,loss_matrix,optimizer)
			self.log.info('\n--------- Performance Matrix with Train Data ---------')
			predictedData, prob = self.getPredictionData(model_dl,hist_reloaded,xtrain)            
			trainingperformancematrix = mlobj.getClassificationPerformaceMatrix(ytrain, predictedData, prob,labelMaps)
			self.log.info('\n--------- Performance Matrix with Train Data End ---------')
			predictedData, prob = self.getPredictionData(model_dl,hist_reloaded,xtest)            
			df_test['predict'] = predictedData
			self.log.info('\n--------- Performance Matrix with Test Data ---------')
			performancematrix = mlobj.getClassificationPerformaceMatrix(ytest, predictedData, prob,labelMaps)
			self.log.info('\n--------- Performance Matrix with Test Data End ---------')            
			return(model_dl,score_dl,best_model_dl,params_dl,X1,XSNN,model_tried_dl,loss_matrix,optimizer,saved_model_dl,filename_dl,dftrain,df_test,performancematrix,trainingperformancematrix)                            
		else:          
			objReg = DLRegressionModel(modelList, modelParams, scoreParam, cvSplit, xtrain,ytrain,xtest,ytest,method,randomMethod,roundLimit,best_feature_model)
			dftrain = xtrain.copy()
			dftrain['Target'] = ytrain            
			model_dl,score_dl,best_model_dl,params_dl,X1,XSNN,model_tried_dl,loss_matrix,optimizer = objReg.TalosScan(objReg)        
			self.log.info('------ Training DL: Regression End----\n')
			self.log.info('\n------- Best DL Model and its parameters -------------')
			self.log.info('-------> Best Model: '+str(model_dl))
			self.log.info('-------> Best Score: '+str(score_dl))
			self.log.info('-------> Best Params: '+str(params_dl))
			self.log.info('------- Best DL Model and its parameters End-------------\n')
			saved_model_dl = 'dl_'+modelName+'_'+modelVersion+'.sav'
			filename_dl = os.path.join(deployLocation,'model',saved_model_dl)
			best_model_dl.save(filename_dl)            
			hist_reloaded=self.LoadDL_Regression_Model(filename_dl,scoreParam,loss_matrix,optimizer)
			predictedData = self.getDLPredictionData(model_dl,hist_reloaded,xtrain)
			self.log.info('\n--------- Performance Matrix with Train Data ---------')
			trainingperformancematrix = mlobj.get_regression_matrix(ytrain, predictedData)
			self.log.info('--------- Performance Matrix with Train Data End---------\n')
			predictedData = self.getDLPredictionData(model_dl,hist_reloaded,xtest)
			df_test['predict'] = predictedData
			self.log.info('\n--------- Performance Matrix with Test Data ---------')
			performancematrix = mlobj.get_regression_matrix(ytest, predictedData)
			self.log.info('--------- Performance Matrix with Test Data End---------\n')
			return(model_dl,score_dl,best_model_dl,params_dl,X1,XSNN,model_tried_dl,loss_matrix,optimizer,saved_model_dl,filename_dl,dftrain,df_test,performancematrix,trainingperformancematrix)                                        
			
	def LoadDL_Classification_Model(self,filename_dl,scoreParam,loss_matrix,optimizer):
		if(scoreParam.lower() == 'recall'):
			hist_reloaded = load_model(filename_dl,custom_objects={""recall"": recall_m},compile=False)
			hist_reloaded.compile(loss=loss_matrix,optimizer=optimizer, metrics=[recall_m])
		elif(scoreParam.lower() == 'precision'):
			hist_reloaded = load_model(filename_dl,custom_objects={""precision"": precision_m},compile=False)
			hist_reloaded.compile(loss=loss_matrix,optimizer=optimizer, metrics=[precision_m])
		elif(scoreParam.lower() == 'roc_auc'):
			hist_reloaded = load_model(filename_dl,compile=False)
			hist_reloaded.compile(loss=loss_matrix,optimizer=optimizer, metrics=[tf.keras.metrics.AUC()])
		elif(scoreParam.lower() == 'f1_score'):
			hist_reloaded = load_model(filename_dl,custom_objects={""f1_score"": f1_m},compile=False)
			hist_reloaded.compile(loss=loss_matrix,optimizer=optimizer, metrics=[f1_m])	
		else:
			hist_reloaded = load_model(filename_dl)
		return(hist_reloaded)	
			
	def getClassificationPerformaceMatrix(self,le_trainY,predictedData,prob,labelMaps):
		setOfyTrue = set(le_trainY)
		unqClassLst = list(setOfyTrue)
		if(str(labelMaps) != '{}'):
			inv_mapping_dict = {v: k for k, v in labelMaps.items()}
			unqClassLst2 = (pd.Series(unqClassLst)).map(inv_mapping_dict)
			unqClassLst2 = list(unqClassLst2)
		else:
			unqClassLst2 = 	unqClassLst
		indexName = []
		columnName = []
		for item in unqClassLst2:
			indexName.append(""true:""+str(item))
			columnName.append(str(item))
		matrixconfusion = pd.DataFrame(confusion_matrix(le_trainY,predictedData, labels = unqClassLst),index = indexName, columns = columnName)
		self.log.info('\n <--- Confusion Matrix  --->')
		self.log.info(matrixconfusion)
		classificationreport = pd.DataFrame(classification_report(le_trainY, predictedData, output_dict=True))
		self.log.info('\n <--- Classification Report --->')
		self.log.info(classificationreport)
		lb = LabelBinarizer()
		lb.fit(le_trainY)
		transformTarget= lb.transform(le_trainY)
		if transformTarget.shape[-1] == 1:
			transformTarget = le_trainY
			prob = np.delete( prob, 0, 1)
		rocaucscore = roc_auc_score(transformTarget,prob,average=""macro"")
		brier_score = None
		mcc_score = matthews_corrcoef(le_trainY,predictedData)
		if len(unqClassLst) > 2:
			brier_score = np.mean(np.sum(np.square(prob - transformTarget), axis=1))
		else:
			brier_score = brier_score_loss(transformTarget,prob)
		self.log.info('-------> ROC AUC SCORE :'+str(rocaucscore))
		self.log.info(f'-------> Matthews correlation coefficient SCORE : {mcc_score}')
		self.log.info(f'-------> BRIER SCORE : {brier_score}')
		matrixconfusion = matrixconfusion.to_json(orient='index')
		classificationreport = classificationreport.to_json(orient='index')
		matrix = f'""ConfusionMatrix"": {matrixconfusion},""ClassificationReport"": {classificationreport},""ROC_AUC_SCORE"": {rocaucscore},""MCC_SCORE"": {mcc_score},""BRIER_SCORE"": {brier_score}'
		return(matrix)
		
	def split_into_train_test_data(self,featureData,targetData,cvSplit,testPercentage,modelType='classification'):
		'''
		if cvSplit == None:
		'''
		testSize=testPercentage/100
		if modelType == 'regression':
			xtrain,xtest,ytrain,ytest=train_test_split(featureData,targetData,test_size=testSize,shuffle=True)
		else:
			try:
				xtrain,xtest,ytrain,ytest=train_test_split(featureData,targetData,stratify=targetData,test_size=testSize,shuffle=True)
			except:
				xtrain,xtest,ytrain,ytest=train_test_split(featureData,targetData,test_size=testSize,shuffle=True)
				
		self.log.info('\n<-------------- Test Train Split ---------------->\n')
		self.log.info('\n<-------- Train Data Shape '+str(xtrain.shape)+' ---------->\n')
		self.log.info('\n<-------- Test Data Shape '+str(xtest.shape)+' ---------->\n')
		'''
		else:
			xtrain=featureData
			ytrain=targetData
			xtest=featureData
			ytest=targetData
		'''
		return(xtrain,ytrain,xtest,ytest)
		
	def checkForClassBalancing(self,targetData):
		imbalancedCount=0
		valueCount=targetData.value_counts()
		self.log.info(""<------ Categories and Count ------>"")
		self.log.info(valueCount)
		categoryList=valueCount.keys().tolist()
		categoryCountList=valueCount.tolist()
		for i in range(0,len(categoryCountList)):
			if float(categoryCountList[i])<=float(0.3*max(categoryCountList)):
				self.log.info(""<------ Imbalanced class ------>""+str(categoryCountList[i])+'    '+str(categoryList[i]))
				imbalancedCount=imbalancedCount+1
		return(imbalancedCount)
	def setScoreParams(self,scoreParam,problem_type):
		
		if problem_type.lower() == 'classification' or problem_type.lower() == 'textclassification':
			allowedmatrix =  ['accuracy','recall','precision','f1_score','roc_auc']
			if(scoreParam.lower() not in allowedmatrix):
				scoreParam = 'accuracy'
			elif scoreParam.lower() == 'none':
				scoreParam = 'accuracy'
			else:
				scoreParam = scoreParam.lower()
		else:
			allowedmatrix =  ['mse','rmse','r2','mae']
			if(scoreParam.lower() not in allowedmatrix):
				scoreParam = 'mse'
			elif scoreParam.lower() == 'none':
				scoreParam = 'mse'
			else:	
				scoreParam = scoreParam.lower()
		return(scoreParam)
		
	def ExecuteClassBalancing(self,featureData,targetData,balancingMethod):
		if balancingMethod.lower() == ""oversample"":
			self.log.info(""<------ Balancing data using SMOTE OverSampling Technique  ------>"")
			oversample = SMOTE()
			balfeatureData, baltargetData = oversample.fit_resample(featureData, targetData)
			self.log.info(baltargetData.value_counts())
		elif balancingMethod.lower() == ""undersample"":
			self.log.info(""<------ Balancing data using Tomelinks UnderSampling Technique  ------>"")
			tLinks = TomekLinks()
			balfeatureData, baltargetData= tLinks.fit_sample(featureData, targetData)
			self.log.info(baltargetData.value_counts())
		else:
			balfeatureData = featureData
			baltargetData = targetData
			self.log.info(""<------ No balancing technique has been defined ,using imbalanced data for classification ------>"")
		return(balfeatureData,baltargetData)
	def get_regression_matrix(self,targetData,predictedData):
		try:        
			self.log.info('\n <--------- r2_score-------------- --->')        
			r2score=r2_score(targetData, predictedData)
			self.log.info(r2score)
		except Exception as e: 
			self.log.info('\n--------- r2_score ',str(e))        
			r2score = 0
		try:            
			self.log.info('\n <--- Mean Absolute Error --->')
			meanabsoluteerror=(mean_absolute_error(targetData, predictedData))
			self.log.info(meanabsoluteerror)
		except Exception as e: 
			self.log.info('\n---------Error: meanabsoluteerror ',str(e))
			meanabsoluteerror = 0
		try:            
			self.log.info(""<------------mean_squared_error--------------->"")
			meanssquatederror=mean_squared_error(targetData, predictedData)
			self.log.info(meanssquatederror)
		except Exception as e: 
			self.log.info('\n---------Error: meanssquatederror ',str(e))
			meanssquatederror = 0        
		try:            
			self.log.info(""<------------root mean_squared_error--------------->"")
			rootmeanssquatederror=mean_squared_error(targetData, predictedData,squared=False)
			self.log.info(rootmeanssquatederror)
		except Exception as e: 
			self.log.info('\n---------Error: rootmeanssquatederror ',str(e))
			rootmeanssquatederror = 0
		try:            
			self.log.info('\n <--- Mean Absolute Percentage Error --->')
			targetArray, predictedArray = np.array(targetData), np.array(predictedData)
			meanpercentageerror=np.mean(np.abs((targetArray - predictedArray) / targetArray))*100
			self.log.info(meanpercentageerror)
		except Exception as e: 
			self.log.info('\n---------Error: meanpercentageerror ',str(e))
			meanpercentageerror = 0            
		matrix = '""MAE"":'+str(meanabsoluteerror)+',""R2Score"":'+str(r2score)+',""MSE"":'+str(meanssquatederror)+',""MAPE"":'+str(meanpercentageerror)+',""RMSE"":'+str(rootmeanssquatederror)
		return matrix"
__init__.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''"
Classification.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''

import numpy as np
import pandas as pd
import talos
import json
import sys
import time
import os
from sklearn.metrics import recall_score
from sklearn.metrics import precision_score
from sklearn.metrics import accuracy_score
from sklearn.metrics import roc_auc_score
from sklearn.metrics import f1_score
import tensorflow.keras.utils as kutils
from talos.model.normalizers import lr_normalizer
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense,Dropout,LSTM,GRU,SimpleRNN,Flatten, Input
from sklearn.model_selection import train_test_split
from tensorflow.keras.layers import Conv1D,MaxPooling1D
from sklearn.model_selection import train_test_split
from sklearn.model_selection import KFold
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.optimizers import Nadam
from tensorflow.keras.optimizers import RMSprop
from tensorflow.keras.optimizers import SGD
import logging
import tensorflow as tf
import tensorflow.keras.backend as K


def recall_m(y_true, y_pred):
	true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
	possible_positives = K.sum(K.round(K.clip(y_true, 0, 1)))
	recall = true_positives / (possible_positives + K.epsilon())
	return recall
	
def precision_m(y_true, y_pred):
	true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
	predicted_positives = K.sum(K.round(K.clip(y_pred, 0, 1)))
	precision = true_positives / (predicted_positives + K.epsilon())
	return precision

def f1_m(y_true, y_pred):
	precision = precision_m(y_true, y_pred)
	recall = recall_m(y_true, y_pred)
	return 2*((precision*recall)/(precision+recall+K.epsilon()))


class DLClassificationModel:
	
	def __init__(self,modelList, modelParams, scoreParam, cvSplit, featuresData,
                                             targetData,testX,testY, method,randomMethod,roundLimit,best_feature_model):

		
		self.modelList =modelList
		self.modelParams =modelParams
		self.scoreParam = scoreParam
		self.cvSplit =cvSplit
		self.featuresData =featuresData
		self.targetData = targetData
		self.testX = testX
		self.testY = testY
		self.method =method
		self.randomMethod=randomMethod
		self.roundLimit=roundLimit
		self.best_feature_model = best_feature_model
		self.log = logging.getLogger('eion')
		
	def RNNClassification(self,x_train,y_train,x_val,y_val,params):
		tf.keras.backend.clear_session()
		x_train = K.reshape(x_train, (x_train.shape[0], x_train.shape[1], 1))
		x_val = K.reshape(x_val, (x_val.shape[0], x_val.shape[1], 1))
		model = Sequential()                            
		
		if params['RNNType'] == ""LSTM"" :
			if params['numRNNLayers'] > 1:  
				model.add(LSTM(params['first_neuron'],return_sequences=True,input_shape=(x_train.shape[1],1)))
				for x in range(1,params['numRNNLayers']):
					model.add(LSTM(params['first_neuron']))
			else:
				model.add(LSTM(params['first_neuron'],input_shape=(x_train.shape[1],1)))
				
		elif params['RNNType'] == ""GRU"" :
			if params['numRNNLayers'] > 1: 
				model.add(GRU(params['first_neuron'],return_sequences=True,input_shape=(x_train.shape[1],1)))
				for x in range(1,params['numRNNLayers']):
					model.add(GRU(params['first_neuron']))
			else:
				model.add(GRU(params['first_neuron'],input_shape=(x_train.shape[1],1)))

		elif params['RNNType'] == ""SimpleRNN"" :
			if params['numRNNLayers'] > 1: 
				model.add(SimpleRNN(params['first_neuron'],return_sequences=True,input_shape=(x_train.shape[1],1)))
				for x in range(1,params['numRNNLayers']):
					model.add(SimpleRNN(params['first_neuron']))
			else:
				model.add(SimpleRNN(params['first_neuron'],input_shape=(x_train.shape[1],1)))


		talos.utils.hidden_layers(model, params, x_train.shape[1])
    
		model.add(Dense(y_train.shape[1],activation=params['last_activation']))

		model.compile(loss=params['losses'],optimizer=params['optimizer'],metrics=['acc',f1_m,precision_m,recall_m,tf.keras.metrics.AUC()])
   
		out = model.fit(x_train, y_train, validation_data=(x_val, y_val), batch_size=params['batch_size'],epochs=params['epochs'],verbose=0,shuffle=True)
    
		return out, model
	
	def SNNClassification(self,x_train,y_train,x_val,y_val,params):
		tf.keras.backend.clear_session()
		model = Sequential()
		model.add(Dense(params['first_neuron'], input_dim=x_train.shape[1], activation=params['activation']))
		talos.utils.hidden_layers(model, params,1)
		model.add(Dropout(params['dropout']))
		model.add(Dense(y_train.shape[1], activation=params['last_activation']))
		model.compile(loss=params['losses'], 
			optimizer=params['optimizer'],
				metrics=['acc',f1_m,precision_m,recall_m,tf.keras.metrics.AUC()])
		out = model.fit(x=x_train, 
			    y=y_train,
			    validation_data=(x_val, y_val),
			    epochs=params['epochs'],
			    batch_size=params['batch_size'],
			    verbose=0)
		
		return out, model

	def CNNClassification(self,x_train,y_train,x_val,y_val,params):
		tf.keras.backend.clear_session()
		x_train = K.reshape(x_train, (x_train.shape[0], x_train.shape[1], 1))
		x_val = K.reshape(x_val, (x_val.shape[0], x_val.shape[1], 1))
		model = Sequential()
		model.add(Conv1D(filters=params['first_neuron'], kernel_size=(3), activation=params['activation'], input_shape=(x_train.shape[1],1),padding='same') )
		if params['numConvLayers'] > 1:
			for x in range(1,params['numConvLayers']):
				if params['MaxPool'] == ""True"":
					model.add(MaxPooling1D(pool_size=2,padding='same'))
					model.add(Conv1D(filters=8, kernel_size=3, activation=params['activation'],padding='same'))
		talos.utils.hidden_layers(model, params, x_train.shape[1])
		model.add(MaxPooling1D(pool_size=2,padding='same'))
		model.add(Flatten())
		model.add(Dense(y_train.shape[1],activation=params['last_activation']))
		model.compile(loss=params['losses'],optimizer=params['optimizer'],metrics=['acc',f1_m,precision_m,recall_m,tf.keras.metrics.AUC()])
		out = model.fit(x_train, y_train, validation_data=(x_val, y_val), batch_size=params['batch_size'],
				epochs=params['epochs'],verbose=0,shuffle=True)

		return out, model


	def TalosScan(self,modelObj):
		
		try:
			#dataPath = pd.read_csv(self.dataLocation)
			#X = dataPath.drop(self.targetData, axis=1)
			loss_matrix='binary_crossentropy'
			optimizer='Nadam'
			X = self.featuresData
			x = X.values
			Y = self.targetData
			scoredetails = ''
			#Y= dataPath[self.targetData]
			y = Y.values
			y = kutils.to_categorical(y)
			XSNN = X.values
			X1 = np.expand_dims(X, axis=2)			
			

			kf = KFold(n_splits = self.cvSplit)
			
			for train_index, test_index in kf.split(X):
				X_train, X_test = x[train_index], x[test_index]
				y_train, y_test = y[train_index], y[test_index]	
					
			data = self.modelParams
			models = data.keys() 
			start = time.time()
			scoreSNN = []
			scoreRNN = []
			scoreCNN = []
			scoreRNNGRU = []
			scoreRNNLSTM = []
			best_paramsSNN = {} 	
			best_paramsRNN = {} 
			best_paramsRNNGRU = {}             
			best_paramsRNNLSTM = {}
			best_paramsCNN = {} 	
			if ""Neural Network""in self.modelList:
				self.log.info(""-------> Model Name: Neural Network"")
				start = time.time()
				data = self.modelParams[""Neural Network""]
				
				p = {""activation"":data[""activation""].split("",""),
					 ""last_activation"":data[""last_activation""].split("",""),
					 ""optimizer"":data[""optimizer""].split("",""),
					 ""losses"":data[""losses""].split("",""),
					 ""first_neuron"":[int(n) for n in data[""first_layer""].split("","")],
					 ""shapes"": data[""shapes""].split("",""),
					 ""hidden_layers"":[int(n) for n in data[""hidden_layers""].split("","")],
					 ""dropout"": [float(n) for n in data[""dropout""].split("","")],
					 ""lr"": [float(n) for n in data[""learning_rate""].split("","")],
					 ""batch_size"": [int(n) for n in data[""batch_size""].split("","")],
					 ""epochs"": [int(n) for n in data[""epochs""].split("","")]
					 }
				param_combinations = int(np.prod([len(x.split(',')) for x in p]))
				round_limit = self.roundLimit if not self.roundLimit else min(self.roundLimit, param_combinations)
				scan_object = talos.Scan(x=X_train,
						 y=y_train,
						 x_val = X_test,
						 y_val = y_test,
						 model = modelObj.SNNClassification,
						 experiment_name='SNN',
						 params=p,
						round_limit=round_limit,
						 random_method=self.randomMethod
					 )
				matrix_type = 'val_acc'
				if self.scoreParam.lower() == 'accuracy':
					matrix_type = 'val_acc'
				elif(self.scoreParam.lower() == 'roc_auc'):
					matrix_type = 'val_auc'
				elif(self.scoreParam.lower() == 'recall'):
					matrix_type = 'val_recall_m'
				elif(self.scoreParam.lower() == 'precision'):
					matrix_type = 'val_precision_m'
				elif(self.scoreParam.lower() == 'f1_score'):
					matrix_type = 'val_f1_m'
					
				analyze_objectSNN = talos.Analyze(scan_object)				
				highValAccSNN = analyze_objectSNN.high(matrix_type)
				dfSNN = 	analyze_objectSNN.data
				#pd.set_option('display.max_columns',20)
				#print(dfSNN)
				#pd.reset_option('display.max_columns')
				newdfSNN = dfSNN.loc[dfSNN[matrix_type] == highValAccSNN]
				if(len(newdfSNN) > 1):
					lowLoss = analyze_objectSNN.low('val_loss')
					newdfSNN = newdfSNN.loc[newdfSNN['val_loss'] == lowLoss]
				best_paramsSNN[""activation""] = list(newdfSNN[""activation""])[0]
				best_paramsSNN[""optimizer""] = list(newdfSNN[""optimizer""])[0]
				best_paramsSNN[""losses""] = list(newdfSNN[""losses""])[0]
				best_paramsSNN[""first_layer""] = list(newdfSNN[""first_neuron""])[0]
				best_paramsSNN[""shapes""] = list(newdfSNN[""shapes""])[0]
				best_paramsSNN[""hidden_layers""] = list(newdfSNN[""hidden_layers""])[0]
				best_paramsSNN[""dropout""] = list(newdfSNN[""dropout""])[0]
				best_paramsSNN[""batch_size""] = list(newdfSNN[""batch_size""])[0]
				best_paramsSNN[""epochs""] = list(newdfSNN[""epochs""])[0]
				best_paramsSNN[""lr""] = list(newdfSNN[""lr""])[0]
				best_paramsSNN[""last_activation""] = list(newdfSNN[""last_activation""])[0]				
				
				best_modelSNN = scan_object.best_model(metric=matrix_type)
				try:
					if(len(best_paramsSNN[""losses""]) == 0):
						loss_matrix = 'binary_crossentropy'
					else:
						loss_matrix = best_paramsSNN[""losses""]
					if(len(best_paramsSNN[""optimizer""]) == 0):
						optimizer = 'Nadam'
					else:
						optimizer = best_paramsSNN[""optimizer""]
					if best_paramsSNN[""batch_size""] == 0:
						batchsize = 32
					else:
						batchsize = best_paramsSNN[""batch_size""]
				except:
					loss_matrix = 'binary_crossentropy'
					optimizer = 'Nadam'
					batchsize = 32
					
				if self.scoreParam == 'accuracy':
					best_modelSNN.compile(loss=loss_matrix,optimizer=optimizer, metrics=['accuracy'])
				elif self.scoreParam == 'roc_auc':
					best_modelSNN.compile(loss=loss_matrix,optimizer=optimizer, metrics=[tf.keras.metrics.AUC()])
				elif self.scoreParam == 'recall':
					best_modelSNN.compile(loss=loss_matrix,optimizer=optimizer, metrics=[recall_m])
				elif self.scoreParam == 'precision':
					best_modelSNN.compile(loss=loss_matrix,optimizer=optimizer, metrics=[precision_m])
				elif self.scoreParam == 'f1_score':
					best_modelSNN.compile(loss=loss_matrix,optimizer=optimizer, metrics=[f1_m])
				
				scoreSNN = best_modelSNN.evaluate(XSNN,y, batch_size=batchsize)
				self.log.info(""----------> Score Matrix: ""+str(best_modelSNN.metrics_names))
				self.log.info(""----------> Score: ""+str(scoreSNN))
				self.log.info(""----------> Model Params: ""+str(best_paramsSNN))
				executionTime=time.time() - start
				XSNN = self.testX.values
				#predict_x=best_modelSNN.predict(XSNN) 
				predictedData=np.argmax(best_modelSNN.predict(XSNN),axis=1)
				#predictedData = best_modelSNN.predict_classes(XSNN)
				#print(predictedData)
				#predictedData = best_modelSNN.predict(self.testX)
				if 'accuracy' in str(self.scoreParam):
					score = accuracy_score(self.testY,predictedData)
				elif 'recall' in str(self.scoreParam):
					score = recall_score(self.testY,predictedData, average='macro')
				elif 'precision' in str(self.scoreParam):
					score = precision_score(self.testY,predictedData,average='macro')
				elif 'f1_score' in str(self.scoreParam):
					score = f1_score(self.testY,predictedData, average='macro')
				elif 'roc_auc' in str(self.scoreParam):
					score = roc_auc_score(self.testY,predictedData,average=""macro"")
				score = round((score*100),2)     					
				self.log.info(""----------> Testing Score: ""+str(score))
				self.log.info('----------> Total Execution: '+str(executionTime)+'\n')
				scoreSNN[1] = score
				if(scoredetails != ''):
						scoredetails += ','
				scoredetails += '{""Model"":""Neural Network"",""FeatureEngineering"":""'+str(self.best_feature_model)+'"",""Score"":'+str(scoreSNN[1])+'}'
				self.log.info('Status:-  |... DL Algorithm applied: Neural Network')
				self.log.info('Status:-   |... Score after hyperparameter tuning: '+str(round(score,2)))
                
			if ""Recurrent Neural Network""in self.modelList:
				self.log.info(""-------> Model Name: Recurrent Neural Network"")
				start = time.time()
				data = self.modelParams[""Recurrent Neural Network""]
				p = {""RNNType"":[""SimpleRNN""],
					 ""numRNNLayers"":[int(n) for n in data[""numRNNLayers""].split("","")],
					 ""activation"":data[""activation""].split("",""),
					 ""last_activation"":data[""last_activation""].split("",""),
					 ""optimizer"":data[""optimizer""].split("",""),
					 ""losses"":data[""losses""].split("",""),
					 ""first_neuron"":[int(n) for n in data[""first_layer""].split("","")],
					 ""shapes"": data[""shapes""].split("",""),
					 ""hidden_layers"":[int(n) for n in data[""hidden_layers""].split("","")],
					 ""dropout"": [float(n) for n in data[""dropout""].split("","")],
					 ""lr"": [float(n) for n in data[""learning_rate""].split("","")],
					 ""batch_size"": [int(n) for n in data[""batch_size""].split("","")],
					 ""epochs"": [int(n) for n in data[""epochs""].split("","")]}
				param_combinations = int(np.prod([len(x.split(',')) for x in p]))
				round_limit = self.roundLimit if not self.roundLimit else min(self.roundLimit, param_combinations)

				scan_object = talos.Scan(x=X_train,
						 y=y_train,
						 x_val = X_test,
						 y_val = y_test,
						 model = modelObj.RNNClassification,
						 experiment_name='RNN',
						 params=p,
						 round_limit=round_limit,
						 random_method=self.randomMethod
					 )

				matrix_type = 'val_acc'
				if self.scoreParam.lower() == 'accuracy':
					matrix_type = 'val_acc'
				elif(self.scoreParam.lower() == 'roc_auc'):
					matrix_type = 'val_auc'
				elif(self.scoreParam.lower() == 'recall'):
					matrix_type = 'val_recall_m'
				elif(self.scoreParam.lower() == 'precision'):
					matrix_type = 'val_precision_m'
				elif(self.scoreParam.lower() == 'f1_score'):
					matrix_type = 'val_f1_m'
					
				analyze_objectRNN = talos.Analyze(scan_object)				
				highValAccRNN = analyze_objectRNN.high(matrix_type)				
				dfRNN = 	analyze_objectRNN.data
				newdfRNN = dfRNN.loc[dfRNN[matrix_type] == highValAccRNN]
				if(len(newdfRNN) > 1):
					lowLoss = analyze_objectRNN.low('val_loss')
					newdfRNN = newdfRNN.loc[newdfRNN['val_loss'] == lowLoss]
			
				best_paramsRNN[""RNNType""] = list(newdfRNN[""RNNType""])[0]
				best_paramsRNN[""numRNNLayers""] = list(newdfRNN[""numRNNLayers""])[0]
				best_paramsRNN[""activation""] = list(newdfRNN[""activation""])[0]
				best_paramsRNN[""optimizer""] = list(newdfRNN[""optimizer""])[0]
				best_paramsRNN[""losses""] = list(newdfRNN[""losses""])[0]
				best_paramsRNN[""first_layer""] = list(newdfRNN[""first_neuron""])[0]
				best_paramsRNN[""shapes""] = list(newdfRNN[""shapes""])[0]
				best_paramsRNN[""hidden_layers""] = list(newdfRNN[""hidden_layers""])[0]
				best_paramsRNN[""dropout""] = list(newdfRNN[""dropout""])[0]
				best_paramsRNN[""batch_size""] = list(newdfRNN[""batch_size""])[0]
				best_paramsRNN[""epochs""] = list(newdfRNN[""epochs""])[0]
				best_paramsRNN[""lr""] = list(newdfRNN[""lr""])[0]
				best_paramsRNN[""last_activation""] = list(newdfRNN[""last_activation""])[0]
		
				best_modelRNN = scan_object.best_model(metric=matrix_type, asc=False)
				
				try:
					if(len(best_paramsRNN[""losses""]) == 0):
						loss_matrix = 'binary_crossentropy'
					else:
						loss_matrix = best_paramsRNN[""losses""][0]
					
					if(len(best_paramsRNN[""optimizer""]) == 0):
						optimizer = 'Nadam'
					else:
						optimizer = best_paramsRNN[""optimizer""][0]
					
					if(best_paramsRNN[""batch_size""] == 0):
						batchsize = 32
					else:
						batchsize = best_paramsRNN[""batch_size""][0]
				except:
					loss_matrix = 'binary_crossentropy'
					optimizer = 'Nadam'
					batchsize = 32
					
				if self.scoreParam == 'accuracy':
					best_modelRNN.compile(loss=loss_matrix,optimizer=optimizer, metrics=['accuracy'])
				elif self.scoreParam == 'recall':
					best_modelRNN.compile(loss=loss_matrix,optimizer=optimizer, metrics=[recall_m])
				elif self.scoreParam == 'roc_auc':
					best_modelRNN.compile(loss=loss_matrix,optimizer=optimizer, metrics=[tf.keras.metrics.AUC()])
				elif self.scoreParam == 'precision':
					best_modelRNN.compile(loss=loss_matrix,optimizer=optimizer, metrics=[precision_m])
				elif self.scoreParam == 'f1_score':
					best_modelRNN.compile(loss=loss_matrix,optimizer=optimizer, metrics=[f1_m])
				self.log.info(""----------> Score Matrix: ""+str(best_modelRNN.metrics_names))
				scoreRNN = best_modelRNN.evaluate(X1,y, batch_size=batchsize)	
				self.log.info(""----------> Score: ""+str(scoreRNN))
				self.log.info(""----------> Model Params: ""+str(best_paramsRNN))
				executionTime=time.time() - start
				self.log.info('----------> Total Execution: '+str(executionTime)+'\n')
				
				XSNN = np.expand_dims(self.testX, axis=2)
				#predictedData = best_modelRNN.predict_classes(XSNN)
				predictedData=np.argmax(best_modelRNN.predict(XSNN),axis=1)
				#predictedData = best_modelSNN.predict(self.testX)
				if 'accuracy' in str(self.scoreParam):
					score = accuracy_score(self.testY,predictedData)
				elif 'recall' in str(self.scoreParam):
					score = recall_score(self.testY,predictedData, average='macro')
				elif 'precision' in str(self.scoreParam):
					score = precision_score(self.testY,predictedData,average='macro')
				elif 'f1_score' in str(self.scoreParam):
					score = f1_score(self.testY,predictedData, average='macro')
				elif 'roc_auc' in str(self.scoreParam):
					score = roc_auc_score(self.testY,predictedData,average=""macro"")
				score = round((score*100),2)
				self.log.info(""----------> Testing Score: ""+str(score))
				scoreRNN[1] = score
				if(scoredetails != ''):
						scoredetails += ','
				scoredetails += '{""Model"":""Recurrent Neural Network"",""FeatureEngineering"":""'+str(self.best_feature_model)+'"",""Score"":'+str(scoreRNN[1])+'}'
				self.log.info('Status:-  |... DL Algorithm applied: Recurrent Neural Network')
				self.log.info('Status:-   |... Score after hyperparameter tuning: '+str(round(score,2)))
                
			if ""Recurrent Neural Network (GRU)""in self.modelList:
				self.log.info(""-------> Model Name: Recurrent Neural Network (GRU)"")
				start = time.time()
				data = self.modelParams[""Recurrent Neural Network (GRU)""]
				print(data)
				p = {""RNNType"":[""GRU""],
					 ""numRNNLayers"":[int(n) for n in data[""numRNNLayers""].split("","")],
					 ""activation"":data[""activation""].split("",""),
					 ""last_activation"":data[""last_activation""].split("",""),
					 ""optimizer"":data[""optimizer""].split("",""),
					 ""losses"":data[""losses""].split("",""),
					 ""first_neuron"":[int(n) for n in data[""first_layer""].split("","")],
					 ""shapes"": data[""shapes""].split("",""),
					 ""hidden_layers"":[int(n) for n in data[""hidden_layers""].split("","")],
					 ""dropout"": [float(n) for n in data[""dropout""].split("","")],
					 ""lr"": [float(n) for n in data[""learning_rate""].split("","")],
					 ""batch_size"": [int(n) for n in data[""batch_size""].split("","")],
					 ""epochs"": [int(n) for n in data[""epochs""].split("","")]}
				param_combinations = int(np.prod([len(x.split(',')) for x in p]))
				round_limit = self.roundLimit if not self.roundLimit else min(self.roundLimit, param_combinations)

				scan_object = talos.Scan(x=X_train,
						 y=y_train,
						 x_val = X_test,
						 y_val = y_test,
						 model = modelObj.RNNClassification,
						 experiment_name='RNN',
						 params=p,
						 round_limit=round_limit,
						 random_method=self.randomMethod
					 )

				matrix_type = 'val_acc'
				if self.scoreParam.lower() == 'accuracy':
					matrix_type = 'val_acc'
				elif(self.scoreParam.lower() == 'roc_auc'):
					matrix_type = 'val_auc'
				elif(self.scoreParam.lower() == 'recall'):
					matrix_type = 'val_recall_m'
				elif(self.scoreParam.lower() == 'precision'):
					matrix_type = 'val_precision_m'
				elif(self.scoreParam.lower() == 'f1_score'):
					matrix_type = 'val_f1_m'
					
				analyze_objectRNNGRU = talos.Analyze(scan_object)				
				highValAccRNNGRU = analyze_objectRNNGRU.high(matrix_type)				
				dfRNNGRU = 	analyze_objectRNNGRU.data
				newdfRNNGRU = dfRNNGRU.loc[dfRNNGRU[matrix_type] == highValAccRNNGRU]
				if(len(newdfRNNGRU) > 1):
					lowLoss = analyze_objectRNNGRU.low('val_loss')
					newdfRNNGRU = newdfRNNGRU.loc[newdfRNNGRU['val_loss'] == lowLoss]
			
				best_paramsRNNGRU[""RNNType""] = ""GRU""
				best_paramsRNNGRU[""numRNNLayers""] = list(newdfRNNGRU[""numRNNLayers""])[0]
				best_paramsRNNGRU[""activation""] = list(newdfRNNGRU[""activation""])[0]
				best_paramsRNNGRU[""optimizer""] = list(newdfRNNGRU[""optimizer""])[0]
				best_paramsRNNGRU[""losses""] = list(newdfRNNGRU[""losses""])[0]
				best_paramsRNNGRU[""first_layer""] = list(newdfRNNGRU[""first_neuron""])[0]
				best_paramsRNNGRU[""shapes""] = list(newdfRNNGRU[""shapes""])[0]
				best_paramsRNNGRU[""hidden_layers""] = list(newdfRNNGRU[""hidden_layers""])[0]
				best_paramsRNNGRU[""dropout""] = list(newdfRNNGRU[""dropout""])[0]
				best_paramsRNNGRU[""batch_size""] = list(newdfRNNGRU[""batch_size""])[0]
				best_paramsRNNGRU[""epochs""] = list(newdfRNNGRU[""epochs""])[0]
				best_paramsRNNGRU[""lr""] = list(newdfRNNGRU[""lr""])[0]
				best_paramsRNNGRU[""last_activation""] = list(newdfRNNGRU[""last_activation""])[0]
		
				best_modelRNNGRU = scan_object.best_model(metric=matrix_type, asc=False)
				try:
					if(len(best_paramsRNNGRU[""losses""]) == 0):
						loss_matrix = 'binary_crossentropy'
					else:
						loss_matrix = best_paramsRNNGRU[""losses""][0]
					
					if(len(best_paramsRNNGRU[""optimizer""]) == 0):
						optimizer = 'Nadam'
					else:
						optimizer = best_paramsRNNGRU[""optimizer""][0]
					
					if(best_paramsRNNGRU[""batch_size""]== 0):
						batchsize = 32
					else:
						batchsize = best_paramsRNNGRU[""batch_size""][0]
				except: 
					loss_matrix = 'binary_crossentropy'
					optimizer = 'Nadam'
					batchsize = 32
					
				if self.scoreParam == 'accuracy':
					best_modelRNNGRU.compile(loss=loss_matrix,optimizer=optimizer, metrics=['accuracy'])
				elif self.scoreParam == 'recall':
					best_modelRNNGRU.compile(loss=loss_matrix,optimizer=optimizer, metrics=[recall_m])
				elif self.scoreParam == 'roc_auc':
					best_modelRNNGRU.compile(loss=loss_matrix,optimizer=optimizer, metrics=[tf.keras.metrics.AUC()])
				elif self.scoreParam == 'precision':
					best_modelRNNGRU.compile(loss=loss_matrix,optimizer=optimizer, metrics=[precision_m])
				elif self.scoreParam == 'f1_score':
					best_modelRNNGRU.compile(loss=loss_matrix,optimizer=optimizer, metrics=[f1_m])
				self.log.info(""----------> Score Matrix: ""+str(best_modelRNNGRU.metrics_names))
				scoreRNNGRU = best_modelRNNGRU.evaluate(X1,y, batch_size=batchsize)	
				self.log.info(""----------> Score: ""+str(scoreRNNGRU))
				self.log.info(""----------> Model Params: ""+str(best_paramsRNNGRU))
				executionTime=time.time() - start
				self.log.info('----------> Total Execution: '+str(executionTime)+'\n')
				
				XSNN = np.expand_dims(self.testX, axis=2)
				#predictedData = best_modelRNNGRU.predict_classes(XSNN)
				predictedData=np.argmax(best_modelRNNGRU.predict(XSNN),axis=1)
				#predictedData = best_modelSNN.predict(self.testX)
				if 'accuracy' in str(self.scoreParam):
					score = accuracy_score(self.testY,predictedData)
				elif 'recall' in str(self.scoreParam):
					score = recall_score(self.testY,predictedData, average='macro')
				elif 'precision' in str(self.scoreParam):
					score = precision_score(self.testY,predictedData,average='macro')
				elif 'f1_score' in str(self.scoreParam):
					score = f1_score(self.testY,predictedData, average='macro')
				elif 'roc_auc' in str(self.scoreParam):
					score = roc_auc_score(self.testY,predictedData,average=""macro"")
				score = round((score*100),2)
				self.log.info(""----------> Testing Score: ""+str(score))
				scoreRNNGRU[1] = score
				if(scoredetails != ''):
						scoredetails += ','
				scoredetails += '{""Model"":""Recurrent Neural Network (GRU)"",""FeatureEngineering"":""'+str(self.best_feature_model)+'"",""Score"":'+str(scoreRNNGRU[1])+'}'
				self.log.info('Status:-  |... DL Algorithm applied: Recurrent Neural Network (GRU)')
				self.log.info('Status:-   |... Score after hyperparameter tuning: '+str(round(score,2)))			
			
			if ""Recurrent Neural Network (LSTM)""in self.modelList:
				self.log.info(""-------> Model Name: Recurrent Neural Network (LSTM)"")
				start = time.time()
				data = self.modelParams[""Recurrent Neural Network (LSTM)""]
				p = {""RNNType"":[""LSTM""],
					 ""numRNNLayers"":[int(n) for n in data[""numRNNLayers""].split("","")],
					 ""activation"":data[""activation""].split("",""),
					 ""last_activation"":data[""last_activation""].split("",""),
					 ""optimizer"":data[""optimizer""].split("",""),
					 ""losses"":data[""losses""].split("",""),
					 ""first_neuron"":[int(n) for n in data[""first_layer""].split("","")],
					 ""shapes"": data[""shapes""].split("",""),
					 ""hidden_layers"":[int(n) for n in data[""hidden_layers""].split("","")],
					 ""dropout"": [float(n) for n in data[""dropout""].split("","")],
					 ""lr"": [float(n) for n in data[""learning_rate""].split("","")],
					 ""batch_size"": [int(n) for n in data[""batch_size""].split("","")],
					 ""epochs"": [int(n) for n in data[""epochs""].split("","")]}
				param_combinations = int(np.prod([len(x.split(',')) for x in p]))
				round_limit = self.roundLimit if not self.roundLimit else min(self.roundLimit, param_combinations)

				scan_object = talos.Scan(x=X_train,
						 y=y_train,
						 x_val = X_test,
						 y_val = y_test,
						 model = modelObj.RNNClassification,
						 experiment_name='RNN',
						 params=p,
						 round_limit=round_limit,
						 random_method=self.randomMethod
					 )

				matrix_type = 'val_acc'
				if self.scoreParam.lower() == 'accuracy':
					matrix_type = 'val_acc'
				elif(self.scoreParam.lower() == 'roc_auc'):
					matrix_type = 'val_auc'
				elif(self.scoreParam.lower() == 'recall'):
					matrix_type = 'val_recall_m'
				elif(self.scoreParam.lower() == 'precision'):
					matrix_type = 'val_precision_m'
				elif(self.scoreParam.lower() == 'f1_score'):
					matrix_type = 'val_f1_m'
					
				analyze_objectRNNLSTM = talos.Analyze(scan_object)				
				highValAccRNNLSTM = analyze_objectRNNLSTM.high(matrix_type)				
				dfRNNLSTM = 	analyze_objectRNNLSTM.data
				newdfRNNLSTM = dfRNNLSTM.loc[dfRNNLSTM[matrix_type] == highValAccRNNLSTM]
				if(len(newdfRNNLSTM) > 1):
					lowLoss = analyze_objectRNNLSTM.low('val_loss')
					newdfRNNLSTM = newdfRNNLSTM.loc[newdfRNNLSTM['val_loss'] == lowLoss]
			
				best_paramsRNNLSTM[""RNNType""] = ""LSTM""
				best_paramsRNNLSTM[""numRNNLayers""] = list(newdfRNNLSTM[""numRNNLayers""])[0]
				best_paramsRNNLSTM[""activation""] = list(newdfRNNLSTM[""activation""])[0]
				best_paramsRNNLSTM[""optimizer""] = list(newdfRNNLSTM[""optimizer""])[0]
				best_paramsRNNLSTM[""losses""] = list(newdfRNNLSTM[""losses""])[0]
				best_paramsRNNLSTM[""first_layer""] = list(newdfRNNLSTM[""first_neuron""])[0]
				best_paramsRNNLSTM[""shapes""] = list(newdfRNNLSTM[""shapes""])[0]
				best_paramsRNNLSTM[""hidden_layers""] = list(newdfRNNLSTM[""hidden_layers""])[0]
				best_paramsRNNLSTM[""dropout""] = list(newdfRNNLSTM[""dropout""])[0]
				best_paramsRNNLSTM[""batch_size""] = list(newdfRNNLSTM[""batch_size""])[0]
				best_paramsRNNLSTM[""epochs""] = list(newdfRNNLSTM[""epochs""])[0]
				best_paramsRNNLSTM[""lr""] = list(newdfRNNLSTM[""lr""])[0]
				best_paramsRNNLSTM[""last_activation""] = list(newdfRNNLSTM[""last_activation""])[0]
		
				best_modelRNNLSTM = scan_object.best_model(metric=matrix_type, asc=False)
				try:
					if(len(best_paramsRNNLSTM[""losses""]) == 0):
						loss_matrix = 'binary_crossentropy'
					else:
						loss_matrix = best_paramsRNNLSTM[""losses""][0]
					
					if(len(best_paramsRNNLSTM[""optimizer""]) == 0):
						optimizer = 'Nadam'
					else:
						optimizer = best_paramsRNNLSTM[""optimizer""][0]
					
					if(best_paramsRNNLSTM[""batch_size""] == 0):
						batchsize = 32
					else:
						batchsize = best_paramsRNNLSTM[""batch_size""][0]
				except:
					loss_matrix = 'binary_crossentropy'
					optimizer = 'Nadam'
					batchsize = 32
					
				if self.scoreParam == 'accuracy':
					best_modelRNNLSTM.compile(loss=loss_matrix,optimizer=optimizer, metrics=['accuracy'])
				elif self.scoreParam == 'recall':
					best_modelRNNLSTM.compile(loss=loss_matrix,optimizer=optimizer, metrics=[recall_m])
				elif self.scoreParam == 'roc_auc':
					best_modelRNNLSTM.compile(loss=loss_matrix,optimizer=optimizer, metrics=[tf.keras.metrics.AUC()])
				elif self.scoreParam == 'precision':
					best_modelRNNLSTM.compile(loss=loss_matrix,optimizer=optimizer, metrics=[precision_m])
				elif self.scoreParam == 'f1_score':
					best_modelRNNLSTM.compile(loss=loss_matrix,optimizer=optimizer, metrics=[f1_m])
				self.log.info(""----------> Score Matrix: ""+str(best_modelRNNLSTM.metrics_names))
				scoreRNNLSTM = best_modelRNNLSTM.evaluate(X1,y, batch_size=batchsize)	
				self.log.info(""----------> Score: ""+str(scoreRNNLSTM))
				self.log.info(""----------> Model Params: ""+str(best_paramsRNNLSTM))
				executionTime=time.time() - start
				self.log.info('----------> Total Execution: '+str(executionTime)+'\n')
				
				XSNN = np.expand_dims(self.testX, axis=2)
				#predictedData = best_modelRNNLSTM.predict_classes(XSNN)
				predictedData=np.argmax(best_modelRNNLSTM.predict(XSNN),axis=1)
				#predictedData = best_modelSNN.predict(self.testX)
				if 'accuracy' in str(self.scoreParam):
					score = accuracy_score(self.testY,predictedData)
				elif 'recall' in str(self.scoreParam):
					score = recall_score(self.testY,predictedData, average='macro')
				elif 'precision' in str(self.scoreParam):
					score = precision_score(self.testY,predictedData,average='macro')
				elif 'f1_score' in str(self.scoreParam):
					score = f1_score(self.testY,predictedData, average='macro')
				elif 'roc_auc' in str(self.scoreParam):
					score = roc_auc_score(self.testY,predictedData,average=""macro"")
				score = round((score*100),2)     
				self.log.info(""----------> Testing Score: ""+str(score))
				scoreRNNLSTM[1] = score
				if(scoredetails != ''):
						scoredetails += ','
				scoredetails += '{""Model"":""Recurrent Neural Network (LSTM)"",""FeatureEngineering"":""'+str(self.best_feature_model)+'"",""Score"":'+str(scoreRNNLSTM[1])+'}'
				self.log.info('Status:-  |... DL Algorithm applied: Recurrent Neural Network (LSTM)')
				self.log.info('Status:-   |... Score after hyperparameter tuning: '+str(round(score,2)))
                
			if ""Convolutional Neural Network (1D)""in self.modelList:
				self.log.info(""-------> Model Name: CNN"")
				start = time.time()
				data = self.modelParams[""Convolutional Neural Network (1D)""]
				p = {""activation"":data[""activation""].split("",""),
					""last_activation"":data[""last_activation""].split("",""),
					 ""numConvLayers"":[int(n) for n in data[""numConvLayers""].split("","")],
					 ""MaxPool"":data[""activation""].split("",""),
					 ""optimizer"":data[""optimizer""].split("",""),
					 ""losses"":data[""losses""].split("",""),
					 ""first_neuron"":[int(n) for n in data[""first_layer""].split("","")],
					 ""shapes"": data[""shapes""].split("",""),
					 ""hidden_layers"":[int(n) for n in data[""hidden_layers""].split("","")],
					 ""dropout"": [float(n) for n in data[""dropout""].split("","")],
					 ""lr"": [float(n) for n in data[""learning_rate""].split("","")],
					 ""batch_size"": [int(n) for n in data[""batch_size""].split("","")],
					 ""epochs"": [int(n) for n in data[""epochs""].split("","")]}
				param_combinations = int(np.prod([len(x.split(',')) for x in p]))
				round_limit = self.roundLimit if not self.roundLimit else min(self.roundLimit, param_combinations)
				scan_object = talos.Scan(x=X_train,
						 y=y_train,
						 x_val = X_test,
						 y_val = y_test,
						 model = modelObj.CNNClassification,
						 experiment_name='CNN',
						 params=p,
						 round_limit=round_limit,
						 random_method=self.randomMethod
					 )
				matrix_type = 'val_acc'
				if self.scoreParam.lower() == 'accuracy':
					matrix_type = 'val_acc'
				elif(self.scoreParam.lower() == 'roc_auc'):
					matrix_type = 'val_auc'
				elif(self.scoreParam.lower() == 'recall'):
					matrix_type = 'val_recall_m'
				elif(self.scoreParam.lower() == 'precision'):
					matrix_type = 'val_precision_m'
				elif(self.scoreParam.lower() == 'f1_score'):
					matrix_type = 'val_f1_m'
				analyze_objectCNN = talos.Analyze(scan_object)				
				highValAccCNN = analyze_objectCNN.high(matrix_type)				
				dfCNN = 	analyze_objectCNN.data
			
				newdfCNN = dfCNN.loc[dfCNN[matrix_type] == highValAccCNN]
				if(len(newdfCNN) > 1):
					lowLoss = analyze_objectCNN.low('val_loss')
					newdfCNN = newdfCNN.loc[newdfCNN['val_loss'] == lowLoss]
			
				best_paramsCNN[""numConvLayers""] = list(newdfCNN[""numConvLayers""])
				best_paramsCNN[""MaxPool""] = list(newdfCNN[""MaxPool""])
				best_paramsCNN[""activation""] = list(newdfCNN[""activation""])
				best_paramsCNN[""optimizer""] = list(newdfCNN[""optimizer""])
				best_paramsCNN[""losses""] = list(newdfCNN[""losses""])
				best_paramsCNN[""first_layer""] = list(newdfCNN[""first_neuron""])
				best_paramsCNN[""shapes""] = list(newdfCNN[""shapes""])
				best_paramsCNN[""hidden_layers""] = list(newdfCNN[""hidden_layers""])
				best_paramsCNN[""dropout""] = list(newdfCNN[""dropout""])
				best_paramsCNN[""batch_size""] = list(newdfCNN[""batch_size""])
				best_paramsCNN[""epochs""] = list(newdfCNN[""epochs""])
				best_paramsCNN[""lr""] = list(newdfCNN[""lr""])
				best_paramsCNN[""last_activation""] = list(newdfCNN[""last_activation""])[0]
		
				best_modelCNN = scan_object.best_model(metric='val_acc', asc=True)
				try:
					if(len(best_paramsCNN[""losses""]) == 0):
						loss_matrix = 'binary_crossentropy'
					else:
						loss_matrix = best_paramsCNN[""losses""][0]
					if(len(best_paramsCNN[""optimizer""]) == 0):
						optimizer = 'Nadam'
					else:
						optimizer = best_paramsCNN[""optimizer""][0]
					
					if(best_paramsCNN[""batch_size""] == 0):
						batchsize = 32
					else:
						batchsize = best_paramsCNN[""batch_size""][0]
				except:
					loss_matrix = 'binary_crossentropy'
					optimizer = 'Nadam'
					batchsize = 32
					
					
				if self.scoreParam == 'accuracy':
					best_modelCNN.compile(loss=loss_matrix,optimizer=optimizer, metrics=['accuracy'])
				elif self.scoreParam == 'recall':
					best_modelCNN.compile(loss=loss_matrix,optimizer=optimizer, metrics=[recall_m])
				elif self.scoreParam == 'precision':
					best_modelCNN.compile(loss=loss_matrix,optimizer=optimizer, metrics=[precision_m])
				elif self.scoreParam == 'roc_auc':
					best_modelCNN.compile(loss=loss_matrix,optimizer=optimizer, metrics=[tf.keras.metrics.AUC()])
				elif self.scoreParam == 'f1_score':
					best_modelCNN.compile(loss=loss_matrix,optimizer=optimizer, metrics=[f1_m])
				self.log.info(""----------> Score Matrix: ""+str(best_modelCNN.metrics_names))
				scoreCNN = best_modelCNN.evaluate(X1,y, batch_size=batchsize)
				self.log.info(""----------> Score: ""+str(scoreCNN))				
				self.log.info(""----------> Model Params: ""+str(best_paramsCNN))
				executionTime=time.time() - start
				self.log.info('----------> Total Execution: '+str(executionTime)+'\n')
				
				XSNN = np.expand_dims(self.testX, axis=2)
				#predictedData = best_modelCNN.predict_classes(XSNN)
				predictedData=np.argmax(best_modelCNN.predict(XSNN),axis=1)
				#predictedData = best_modelSNN.predict(self.testX)
				if 'accuracy' in str(self.scoreParam):
					score = accuracy_score(self.testY,predictedData)
				elif 'recall' in str(self.scoreParam):
					score = recall_score(self.testY,predictedData, average='macro')
				elif 'precision' in str(self.scoreParam):
					score = precision_score(self.testY,predictedData,average='macro')
				elif 'f1_score' in str(self.scoreParam):
					score = f1_score(self.testY,predictedData, average='macro')
				elif 'roc_auc' in str(self.scoreParam):
					score = roc_auc_score(self.testY,predictedData,average=""macro"")
				score = round((score*100),2)     				
				self.log.info(""----------> Testing Score: ""+str(score))
				scoreCNN[1] = score
				
				if(scoredetails != ''):
						scoredetails += ','
				scoredetails += '{""Model"":""Convolutional Neural Network (1D)"",""FeatureEngineering"":""'+str(self.best_feature_model)+'"",""Score"":'+str(scoreCNN[1])+'}'
				self.log.info('Status:-  |... DL Algorithm applied: Convolutional Neural Network (1D)')
				self.log.info('Status:-   |... Score after hyperparameter tuning: '+str(round(score,2)))
			modelScore = []
			if len(scoreSNN) != 0:
				modelScore.append(scoreSNN[1])
			if len(scoreRNN) != 0:
				modelScore.append(scoreRNN[1])
			if len(scoreRNNGRU) != 0:
				modelScore.append(scoreRNNGRU[1])
			if len(scoreRNNLSTM) != 0:
				modelScore.append(scoreRNNLSTM[1])
			if len(scoreCNN) != 0:
				modelScore.append(scoreCNN[1])
                
			selectedModel = """"
			best_params=""""
			if len(scoreSNN) != 0 and max(modelScore) == scoreSNN[1]:
				selectedModel = ""Neural Network""
				best_model = best_modelSNN
				best_params = best_paramsSNN
 				
			elif len(scoreRNN) != 0 and max(modelScore) == scoreRNN[1]:
				selectedModel = ""Recurrent Neural Network""
				best_model = best_modelRNN
				best_params = best_paramsRNN

			elif len(scoreRNNGRU) != 0 and max(modelScore) == scoreRNNGRU[1]:
				selectedModel = ""Recurrent Neural Network (GRU)""
				best_model = best_modelRNNGRU
				best_params = best_paramsRNNGRU
                
			elif len(scoreRNNLSTM) != 0 and max(modelScore) == scoreRNNLSTM[1]:
				selectedModel = ""Recurrent Neural Network (LSTM)""
				best_model = best_modelRNNLSTM
				best_params = best_paramsRNNLSTM
                
			elif len(scoreCNN) != 0 and max(modelScore) == scoreCNN[1]:
				selectedModel = ""Convolutional Neural Network (1D)""
				best_model = best_modelCNN
				best_params = best_paramsCNN


			modelScore = max(modelScore)
			executionTime=time.time() - start
			self.log.info(""-------> ExecutionTime(sec) :""+str(executionTime)+'\n')
			self.log.info('Status:-  |... Best Algorithm selected: '+str(selectedModel)+' '+str(round(modelScore,2)))
			self.log.info('-------> Best Params: '+str(best_params))
			return selectedModel,modelScore,best_model,best_params,X1,XSNN,scoredetails,loss_matrix,optimizer

		except Exception as inst:
			self.log.info( '\n-----> classificationModel failed!!!.'+str(inst))
			exc_type, exc_obj, exc_tb = sys.exc_info()
			fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
			self.log.info(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))"
Regression.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''

import numpy as np
import pandas as pd
import talos
from talos import Evaluate
import json
import sys
import time
import os
import tensorflow.keras.utils as kutils
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense,Dropout,LSTM,GRU,SimpleRNN,Flatten,Input
from sklearn.model_selection import train_test_split
from tensorflow.keras.layers import Conv1D,MaxPooling1D
from sklearn.model_selection import train_test_split
from sklearn.model_selection import KFold
from sklearn.metrics import r2_score
from sklearn.metrics import mean_absolute_error,make_scorer
from sklearn.metrics import mean_squared_error
import logging
import tensorflow as tf
import tensorflow.keras.backend as K


def rmse_m(y_true, y_pred):
	return K.sqrt(K.mean(K.square(y_pred - y_true), axis=-1))

def r_square(y_true, y_pred):
	SS_res = K.sum(K.square(y_true-y_pred))
	SS_tot = K.sum(K.square(y_true-K.mean(y_true)))
	return (1 - SS_res/(SS_tot+K.epsilon()))

class DLRegressionModel:
	
	def __init__(self,modelList, modelParams, scoreParam, cvSplit, featuresData,
                                             targetData,testX,testY, method,randomMethod,roundLimit,best_feature_model):

		
		self.modelList =modelList
		self.modelParams =modelParams
		self.scoreParam = scoreParam
		self.cvSplit =cvSplit
		self.featuresData =featuresData
		self.targetData = targetData
		self.testX = testX
		self.testY = testY
		self.method =method
		#self.logFile = logFile
		self.randomMethod=randomMethod
		self.roundLimit=roundLimit
		self.log = logging.getLogger('eion')
		self.best_feature_model = best_feature_model        

	def RNNRegression(self,x_train,y_train,x_val,y_val,params):
		tf.keras.backend.clear_session()    
		x_train = np.reshape(x_train, (x_train.shape[0], x_train.shape[1], 1))
		x_val = np.reshape(x_val, (x_val.shape[0], x_val.shape[1], 1))
		model = Sequential()  
		if params['RNNType'] == ""LSTM"" : 
			if params['numRNNLayers'] > 1:                       
				model.add(LSTM(params['first_neuron'],return_sequences=True,input_shape=(x_train.shape[1],1)))
				for x in range(1,params['numRNNLayers']):
					model.add(LSTM(params['first_neuron']))
			else:
				model.add(LSTM(params['first_neuron'],input_shape=(x_train.shape[1],1)))

		elif params['RNNType'] == ""GRU"" :
			if params['numRNNLayers'] > 1:                       
				model.add(GRU(params['first_neuron'],return_sequences=True,input_shape=(x_train.shape[1],1)))
				for x in range(1,params['numRNNLayers']):
						model.add(GRU(params['first_neuron']))
			else:
				model.add(GRU(params['first_neuron'],input_shape=(x_train.shape[1],1)))


		elif params['RNNType'] == ""SimpleRNN"" : 
			if params['numRNNLayers'] > 1:                       
				model.add(SimpleRNN(params['first_neuron'],return_sequences=True,input_shape=(x_train.shape[1],1)))
				for x in range(1,params['numRNNLayers']):
					model.add(SimpleRNN(params['first_neuron']))
			else:
				model.add(SimpleRNN(params['first_neuron'],input_shape=(x_train.shape[1],1)))


		talos.utils.hidden_layers(model, params, 1)   
		model.add(Dense(1,activation=params['activation']))
		model.compile(loss=params['losses'],optimizer=params['optimizer'],metrics=['mae','mse',rmse_m,r_square]) 
		out = model.fit(x_train, y_train, validation_data=(x_val, y_val), batch_size=params['batch_size'],
				epochs=params['epochs'],verbose=0,shuffle=True)
    
		return out, model
	
	def SNNRegression(self,x_train,y_train,x_val,y_val,params):
		tf.keras.backend.clear_session()    
		model = Sequential()
		model.add(Dense(params['first_neuron'],input_dim=x_train.shape[1],activation=params['activation']))
		talos.utils.hidden_layers(model, params, 1)
		model.add(Dense(1, activation=params['activation']))
		model.compile(loss=params['losses'], optimizer=params['optimizer'], metrics=['mae','mse',rmse_m,r_square])
		out = model.fit(x=x_train, 
			    y=y_train,
			    validation_data=(x_val, y_val),
			    epochs=params['epochs'],
			    batch_size=params['batch_size'],
			    verbose=0)
		return out, model
    
	def CNNRegression(self,x_train,y_train,x_val,y_val,params):
		tf.keras.backend.clear_session()    
		x_train = np.reshape(x_train, (x_train.shape[0], x_train.shape[1], 1))
		self.log.info(x_train.shape)
		x_val = np.reshape(x_val, (x_val.shape[0], x_val.shape[1], 1))
		model = Sequential()
		self.log.info(params['kernel_size'])
		model.add(Conv1D(filters=params['first_neuron'], kernel_size=int(params['kernel_size']), activation=params['activation'], input_shape=(x_train.shape[1],1)) )
		if params['numConvLayers'] > 1:
				for x in range(1,params['numConvLayers']):
					if params['MaxPool'] == ""True"":
						model.add(MaxPooling1D(pool_size=2))
					model.add(Conv1D(filters=8, kernel_size=int(params['kernel_size']), activation=params['activation']))
		
		talos.utils.hidden_layers(model, params, 1)
		model.add(Flatten())
		model.add(Dense(1))
		model.compile(loss=params['losses'],optimizer=params['optimizer'],metrics=['mae','mse',rmse_m,r_square])
		out = model.fit(x_train, y_train, validation_data=(x_val, y_val), batch_size=params['batch_size'],
				epochs=params['epochs'],verbose=0,shuffle=True)

		return out, model


	def TalosScan(self,modelObj):
		
		try:
			#dataPath = pd.read_csv(self.dataLocation)
			#X = dataPath.drop(self.targetData, axis=1)
			X = self.featuresData
			x = X.values
			loss_matrix = 'mean_absolute_error'
			optimizer='Nadam'
			Y= self.targetData
			y = Y.values
			XSNN = X.values
			X1 = np.expand_dims(X, axis=2)			
			scoredetails = ''

			kf = KFold(n_splits = self.cvSplit)
			for train_index, test_index in kf.split(X):
				X_train, X_test = x[train_index], x[test_index]
				y_train, y_test = y[train_index], y[test_index]	

			
			data = self.modelParams
			models = data.keys() 
			lstart = time.time()
			scoreSNN = []
			scoreRNN = []
			scoreCNN = []
			scoreRNNGRU = []
			scoreRNNLSTM = []            
			best_paramsSNN = {} 	
			best_paramsRNN = {} 
			best_paramsRNNGRU = {}             
			best_paramsRNNLSTM = {}            
			best_paramsCNN = {} 
			
			if ""Neural Network""in self.modelList:
				self.log.info(""-------> Model Name: Neural Network"")
				start = time.time()
				data = self.modelParams[""Neural Network""]
				p = {""activation"":data[""activation""].split("",""),
				     ""optimizer"":data[""optimizer""].split("",""),
				     ""losses"":data[""losses""].split("",""),
				     ""first_neuron"":[int(n) for n in data[""first_layer""].split("","")],
				     ""shapes"": data[""shapes""].split("",""),
				     ""hidden_layers"":[int(n) for n in data[""hidden_layers""].split("","")],
				     ""dropout"": [float(n) for n in data[""dropout""].split("","")],
				     ""lr"": [float(n) for n in data[""learning_rate""].split("","")],
				     ""batch_size"": [int(n) for n in data[""batch_size""].split("","")],
				     ""epochs"": [int(n) for n in data[""epochs""].split("","")]}
				
				scan_object = talos.Scan(x=X_train,y=y_train,x_val = X_test,y_val = y_test,model = modelObj.SNNRegression,experiment_name='SNN',params=p,round_limit=self.roundLimit,random_method=self.randomMethod)
				
				matrix_type = 'val_loss'
				if self.scoreParam.lower() == 'rmse':
					matrix_type = 'val_rmse_m'
				elif(self.scoreParam.lower() == 'r2'):
					matrix_type = 'val_r_square'
				elif(self.scoreParam.lower() == 'mae'):
					matrix_type = 'val_mae'
				elif(self.scoreParam.lower() == 'mse'):
					matrix_type = 'val_mse'
			
					
				analyze_objectSNN = talos.Analyze(scan_object)				
				highValAccSNN = analyze_objectSNN.low(matrix_type)
				
				dfSNN = 	analyze_objectSNN.data
			
				newdfSNN = dfSNN.loc[dfSNN[matrix_type] == highValAccSNN]

			
				best_paramsSNN[""activation""] = list(newdfSNN[""activation""])[0]
				best_paramsSNN[""optimizer""] = list(newdfSNN[""optimizer""])[0]
				best_paramsSNN[""losses""] = list(newdfSNN[""losses""])[0]
				best_paramsSNN[""first_layer""] = list(newdfSNN[""first_neuron""])[0]
				best_paramsSNN[""shapes""] = list(newdfSNN[""shapes""])[0]
				best_paramsSNN[""hidden_layers""] = list(newdfSNN[""hidden_layers""])[0]
				best_paramsSNN[""dropout""] = list(newdfSNN[""dropout""])[0]
				best_paramsSNN[""batch_size""] = list(newdfSNN[""batch_size""])[0]
				best_paramsSNN[""epochs""] = list(newdfSNN[""epochs""])[0]
				best_paramsSNN[""lr""] = list(newdfSNN[""lr""])[0]

				
				best_modelSNN = scan_object.best_model(metric=matrix_type, asc=True)
				
				loss_matrix = best_paramsSNN[""losses""]
				optimizer = best_paramsSNN[""optimizer""]
				batchsize = best_paramsSNN[""batch_size""]
				
				if self.scoreParam == 'rmse': 
					best_modelSNN.compile(loss=loss_matrix,optimizer=optimizer, metrics=[rmse_m])
				elif self.scoreParam == 'r2':
					best_modelSNN.compile(loss=loss_matrix,optimizer=optimizer, metrics=[r_square])
				elif self.scoreParam == 'mae':
					best_modelSNN.compile(loss=loss_matrix,optimizer=optimizer, metrics=['mae'])
				else:
					best_modelSNN.compile(loss=loss_matrix,optimizer=optimizer, metrics=['mse'])
				scoreSNN = best_modelSNN.evaluate(XSNN,Y, batch_size=batchsize)
				self.log.info(""----------> Score Matrix: ""+str(best_modelSNN.metrics_names))
				self.log.info(""----------> Score: ""+str(scoreSNN))
				self.log.info(""----------> Model Params: ""+str(best_paramsSNN))
				executionTime=time.time() - start
				self.log.info('----------> SNN Execution Time: '+str(executionTime)+'\n')
				XSNN = self.testX.values
				predictedData = best_modelSNN.predict(XSNN)
				if self.scoreParam.lower() == 'mse':
					score = mean_squared_error(self.testY,predictedData)
				elif self.scoreParam.lower() == 'rmse': 
					score=mean_squared_error(self.testY,predictedData,squared=False)
				elif self.scoreParam.lower() == 'mae':
					score=mean_absolute_error(self.testY,predictedData)
				elif self.scoreParam.lower() == 'r2':
					score=r2_score(self.testY,predictedData)
				else:
					score = scoreSNN[1]
				self.log.info(""----------> Testing Score: ""+str(score))		
				scoreSNN[1] = score
				if(scoredetails != ''):
					scoredetails += ','
				scoredetails += '{""Model"":""Neural Network"",""FeatureEngineering"":""'+str(self.best_feature_model)+'"",""Score"":'+str(scoreSNN[1])+'}'
				self.log.info('Status:-  |... DL Algorithm applied: Neural Network')
				self.log.info('Status:-   |... Score after hyperparameter tuning: '+str(round(score,2)))
			                
			if ""Recurrent Neural Network""in self.modelList:
				self.log.info(""-------> Model Name: Recurrent Neural Network"")
				start = time.time()
				data = self.modelParams[""Recurrent Neural Network""]
				p = {""RNNType"":[""SimpleRNN""],
				     ""numRNNLayers"":[int(n) for n in data[""numRNNLayers""].split("","")],
				     ""activation"":data[""activation""].split("",""),
				     ""optimizer"":data[""optimizer""].split("",""),
				     ""losses"":data[""losses""].split("",""),
				     ""first_neuron"":[int(n) for n in data[""first_layer""].split("","")],
				     ""shapes"": data[""shapes""].split("",""),
				     ""hidden_layers"":[int(n) for n in data[""hidden_layers""].split("","")],
				     ""dropout"": [float(n) for n in data[""dropout""].split("","")],
				     ""lr"": [float(n) for n in data[""learning_rate""].split("","")],
				     ""batch_size"": [int(n) for n in data[""batch_size""].split("","")],
				     ""epochs"": [int(n) for n in data[""epochs""].split("","")]}

				scan_object = talos.Scan(x=X_train,y=y_train,x_val = X_test,y_val = y_test,model = modelObj.RNNRegression,experiment_name='RNN',params=p,round_limit=self.roundLimit,random_method=self.randomMethod)
				
				matrix_type = 'val_loss'
				if self.scoreParam.lower() == 'rmse':
					matrix_type = 'val_rmse_m'
				elif(self.scoreParam.lower() == 'r2'):
					matrix_type = 'val_r_square'
				elif(self.scoreParam.lower() == 'mae'):
					matrix_type = 'val_mae'
				elif(self.scoreParam.lower() == 'mse'):
					matrix_type = 'val_mse'
					
				analyze_objectRNN = talos.Analyze(scan_object)				
				highValAccRNN = analyze_objectRNN.low(matrix_type)				
				dfRNN = 	analyze_objectRNN.data
			
				newdfRNN = dfRNN.loc[dfRNN[matrix_type] == highValAccRNN]

			
				best_paramsRNN[""RNNType""] = ""SimpleRNN""
				best_paramsRNN[""numRNNLayers""] = list(newdfRNN[""numRNNLayers""])[0]
				best_paramsRNN[""activation""] = list(newdfRNN[""activation""])[0]
				best_paramsRNN[""optimizer""] = list(newdfRNN[""optimizer""])[0]
				best_paramsRNN[""losses""] = list(newdfRNN[""losses""])[0]
				best_paramsRNN[""first_layer""] = list(newdfRNN[""first_neuron""])[0]
				best_paramsRNN[""shapes""] = list(newdfRNN[""shapes""])[0]
				best_paramsRNN[""hidden_layers""] = list(newdfRNN[""hidden_layers""])[0]
				best_paramsRNN[""dropout""] = list(newdfRNN[""dropout""])[0]
				best_paramsRNN[""batch_size""] = list(newdfRNN[""batch_size""])[0]
				best_paramsRNN[""epochs""] = list(newdfRNN[""epochs""])[0]
				best_paramsRNN[""lr""] = list(newdfRNN[""lr""])[0]

				best_modelRNN = scan_object.best_model(metric=matrix_type, asc=True)
				
				loss_matrix = best_paramsRNN[""losses""]
				optimizer = best_paramsRNN[""optimizer""]
				batchsize = best_paramsRNN[""batch_size""]
				
				if self.scoreParam == 'rmse': 
					best_modelRNN.compile(loss=loss_matrix,optimizer=optimizer, metrics=[rmse_m])
				elif self.scoreParam == 'r2':
					best_modelRNN.compile(loss=loss_matrix,optimizer=optimizer, metrics=[r_square])
				elif self.scoreParam == 'mae':
					best_modelRNN.compile(loss=loss_matrix,optimizer=optimizer, metrics=['mae'])
				else:
					best_modelRNN.compile(loss=loss_matrix,optimizer=optimizer, metrics=['mse'])
				
				scoreRNN = best_modelRNN.evaluate(X1,Y, batch_size=batchsize)
				self.log.info(""----------> Score Matrix: ""+str(best_modelRNN.metrics_names))
				self.log.info(""----------> Score: ""+str(scoreRNN))
				self.log.info(""----------> Model Params: ""+str(best_paramsRNN))
				executionTime=time.time() - start
				self.log.info('----------> RNN Execution Time: '+str(executionTime)+'\n')
				XSNN = np.expand_dims(self.testX, axis=2)
				predictedData = best_modelRNN.predict(XSNN)
				if self.scoreParam.lower() == 'mse':
					score = mean_squared_error(self.testY,predictedData)
				elif self.scoreParam.lower() == 'rmse': 
					score=mean_squared_error(self.testY,predictedData,squared=False)
				elif self.scoreParam.lower() == 'mae':
					score=mean_absolute_error(self.testY,predictedData)
				elif self.scoreParam.lower() == 'r2':
					score=r2_score(self.testY,predictedData)
				else:
					score = scoreRNN[1]
				self.log.info(""----------> Testing Score: ""+str(score))		
				scoreRNN[1] = score
				
				if(scoredetails != ''):
					scoredetails += ','
				scoredetails += '{""Model"":""Recurrent Neural Network"",""FeatureEngineering"":""'+str(self.best_feature_model)+'"",""Score"":'+str(scoreRNN[1])+'}'
				self.log.info('Status:-  |... DL Algorithm applied: Recurrent Neural Network')
				self.log.info('Status:-   |... Score after hyperparameter tuning: '+str(round(score,2)))
             
			if ""Recurrent Neural Network (GRU)""in self.modelList:
				self.log.info(""-------> Model Name: Recurrent Neural Network (GRU)"")
				start = time.time()
				data = self.modelParams[""Recurrent Neural Network (GRU)""]
				p = {""RNNType"":[""GRU""],
				     ""numRNNLayers"":[int(n) for n in data[""numRNNLayers""].split("","")],
				     ""activation"":data[""activation""].split("",""),
				     ""optimizer"":data[""optimizer""].split("",""),
				     ""losses"":data[""losses""].split("",""),
				     ""first_neuron"":[int(n) for n in data[""first_layer""].split("","")],
				     ""shapes"": data[""shapes""].split("",""),
				     ""hidden_layers"":[int(n) for n in data[""hidden_layers""].split("","")],
				     ""dropout"": [float(n) for n in data[""dropout""].split("","")],
				     ""lr"": [float(n) for n in data[""learning_rate""].split("","")],
				     ""batch_size"": [int(n) for n in data[""batch_size""].split("","")],
				     ""epochs"": [int(n) for n in data[""epochs""].split("","")]}

				scan_object = talos.Scan(x=X_train,y=y_train,x_val = X_test,y_val = y_test,model = modelObj.RNNRegression,experiment_name='RNNGRU',params=p,round_limit=self.roundLimit,random_method=self.randomMethod)
				
				matrix_type = 'val_loss'
				if self.scoreParam.lower() == 'rmse':
					matrix_type = 'val_rmse_m'
				elif(self.scoreParam.lower() == 'r2'):
					matrix_type = 'val_r_square'
				elif(self.scoreParam.lower() == 'mae'):
					matrix_type = 'val_mae'
				elif(self.scoreParam.lower() == 'mse'):
					matrix_type = 'val_mse'
					
				analyze_objectRNNGRU = talos.Analyze(scan_object)				
				highValAccRNNGRU = analyze_objectRNNGRU.low(matrix_type)				
				dfRNNGRU = 	analyze_objectRNNGRU.data
			
				newdfRNNGRU = dfRNNGRU.loc[dfRNNGRU[matrix_type] == highValAccRNNGRU]

			
				best_paramsRNNGRU[""RNNType""] = ""GRU""
				best_paramsRNNGRU[""numRNNLayers""] = list(newdfRNNGRU[""numRNNLayers""])[0]
				best_paramsRNNGRU[""activation""] = list(newdfRNNGRU[""activation""])[0]
				best_paramsRNNGRU[""optimizer""] = list(newdfRNNGRU[""optimizer""])[0]
				best_paramsRNNGRU[""losses""] = list(newdfRNNGRU[""losses""])[0]
				best_paramsRNNGRU[""first_layer""] = list(newdfRNNGRU[""first_neuron""])[0]
				best_paramsRNNGRU[""shapes""] = list(newdfRNNGRU[""shapes""])[0]
				best_paramsRNNGRU[""hidden_layers""] = list(newdfRNNGRU[""hidden_layers""])[0]
				best_paramsRNNGRU[""dropout""] = list(newdfRNNGRU[""dropout""])[0]
				best_paramsRNNGRU[""batch_size""] = list(newdfRNNGRU[""batch_size""])[0]
				best_paramsRNNGRU[""epochs""] = list(newdfRNNGRU[""epochs""])[0]
				best_paramsRNNGRU[""lr""] = list(newdfRNNGRU[""lr""])[0]

				best_modelRNNGRU = scan_object.best_model(metric=matrix_type, asc=True)
				
				loss_matrix = best_paramsRNNGRU[""losses""]
				optimizer = best_paramsRNNGRU[""optimizer""]
				batchsize = best_paramsRNNGRU[""batch_size""]
				
				if self.scoreParam == 'rmse': 
					best_modelRNNGRU.compile(loss=loss_matrix,optimizer=optimizer, metrics=[rmse_m])
				elif self.scoreParam == 'r2':
					best_modelRNNGRU.compile(loss=loss_matrix,optimizer=optimizer, metrics=[r_square])
				elif self.scoreParam == 'mae':
					best_modelRNNGRU.compile(loss=loss_matrix,optimizer=optimizer, metrics=['mae'])
				else:
					best_modelRNNGRU.compile(loss=loss_matrix,optimizer=optimizer, metrics=['mse'])
				
				scoreRNNGRU = best_modelRNNGRU.evaluate(X1,Y, batch_size=batchsize)
				self.log.info(""----------> Score Matrix: ""+str(best_modelRNNGRU.metrics_names))
				self.log.info(""----------> Score: ""+str(scoreRNNGRU))
				self.log.info(""----------> Model Params: ""+str(best_paramsRNNGRU))
				executionTime=time.time() - start
				self.log.info('----------> RNN Execution Time: '+str(executionTime)+'\n')
				XSNN = np.expand_dims(self.testX, axis=2)
				predictedData = best_modelRNNGRU.predict(XSNN)
				if self.scoreParam.lower() == 'mse':
					score = mean_squared_error(self.testY,predictedData)
				elif self.scoreParam.lower() == 'rmse': 
					score=mean_squared_error(self.testY,predictedData,squared=False)
				elif self.scoreParam.lower() == 'mae':
					score=mean_absolute_error(self.testY,predictedData)
				elif self.scoreParam.lower() == 'r2':
					score=r2_score(self.testY,predictedData)
				else:
					score = scoreRNNGRU[1]
				self.log.info(""----------> Testing Score: ""+str(score))		
				scoreRNNGRU[1] = score
				
				if(scoredetails != ''):
					scoredetails += ','
				scoredetails += '{""Model"":""Recurrent Neural Network (GRU)"",""FeatureEngineering"":""'+str(self.best_feature_model)+'"",""Score"":'+str(scoreRNNGRU[1])+'}'
				self.log.info('Status:-  |... DL Algorithm applied: Recurrent Neural Network (GRU)')
				self.log.info('Status:-   |... Score after hyperparameter tuning: '+str(round(score,2)))

			if ""Recurrent Neural Network (LSTM)""in self.modelList:
				self.log.info(""-------> Model Name: Recurrent Neural Network (LSTM)"")
				start = time.time()
				data = self.modelParams[""Recurrent Neural Network (LSTM)""]
				p = {""RNNType"":[""LSTM""],
				     ""numRNNLayers"":[int(n) for n in data[""numRNNLayers""].split("","")],
				     ""activation"":data[""activation""].split("",""),
				     ""optimizer"":data[""optimizer""].split("",""),
				     ""losses"":data[""losses""].split("",""),
				     ""first_neuron"":[int(n) for n in data[""first_layer""].split("","")],
				     ""shapes"": data[""shapes""].split("",""),
				     ""hidden_layers"":[int(n) for n in data[""hidden_layers""].split("","")],
				     ""dropout"": [float(n) for n in data[""dropout""].split("","")],
				     ""lr"": [float(n) for n in data[""learning_rate""].split("","")],
				     ""batch_size"": [int(n) for n in data[""batch_size""].split("","")],
				     ""epochs"": [int(n) for n in data[""epochs""].split("","")]}

				scan_object = talos.Scan(x=X_train,y=y_train,x_val = X_test,y_val = y_test,model = modelObj.RNNRegression,experiment_name='RNNLSTM',params=p,round_limit=self.roundLimit,random_method=self.randomMethod)
				
				matrix_type = 'val_loss'
				if self.scoreParam.lower() == 'rmse':
					matrix_type = 'val_rmse_m'
				elif(self.scoreParam.lower() == 'r2'):
					matrix_type = 'val_r_square'
				elif(self.scoreParam.lower() == 'mae'):
					matrix_type = 'val_mae'
				elif(self.scoreParam.lower() == 'mse'):
					matrix_type = 'val_mse'
					
				analyze_objectRNNLSTM = talos.Analyze(scan_object)				
				highValAccRNNLSTM = analyze_objectRNNLSTM.low(matrix_type)				
				dfRNNLSTM = 	analyze_objectRNNLSTM.data
			
				newdfRNNLSTM = dfRNNLSTM.loc[dfRNNLSTM[matrix_type] == highValAccRNNLSTM]

			
				best_paramsRNNLSTM[""RNNType""] = ""GRU""
				best_paramsRNNLSTM[""numRNNLayers""] = list(newdfRNNLSTM[""numRNNLayers""])[0]
				best_paramsRNNLSTM[""activation""] = list(newdfRNNLSTM[""activation""])[0]
				best_paramsRNNLSTM[""optimizer""] = list(newdfRNNLSTM[""optimizer""])[0]
				best_paramsRNNLSTM[""losses""] = list(newdfRNNLSTM[""losses""])[0]
				best_paramsRNNLSTM[""first_layer""] = list(newdfRNNLSTM[""first_neuron""])[0]
				best_paramsRNNLSTM[""shapes""] = list(newdfRNNLSTM[""shapes""])[0]
				best_paramsRNNLSTM[""hidden_layers""] = list(newdfRNNLSTM[""hidden_layers""])[0]
				best_paramsRNNLSTM[""dropout""] = list(newdfRNNLSTM[""dropout""])[0]
				best_paramsRNNLSTM[""batch_size""] = list(newdfRNNLSTM[""batch_size""])[0]
				best_paramsRNNLSTM[""epochs""] = list(newdfRNNLSTM[""epochs""])[0]
				best_paramsRNNLSTM[""lr""] = list(newdfRNNLSTM[""lr""])[0]
				

				best_modelRNNLSTM = scan_object.best_model(metric=matrix_type, asc=True)
				
				loss_matrix = best_paramsRNNLSTM[""losses""]
				optimizer = best_paramsRNNLSTM[""optimizer""]
				batchsize = best_paramsRNNLSTM[""batch_size""]
				
				if self.scoreParam == 'rmse': 
					best_modelRNNLSTM.compile(loss=loss_matrix,optimizer=optimizer, metrics=[rmse_m])
				elif self.scoreParam == 'r2':
					best_modelRNNLSTM.compile(loss=loss_matrix,optimizer=optimizer, metrics=[r_square])
				elif self.scoreParam == 'mae':
					best_modelRNNLSTM.compile(loss=loss_matrix,optimizer=optimizer, metrics=['mae'])
				else:
					best_modelRNNLSTM.compile(loss=loss_matrix,optimizer=optimizer, metrics=['mse'])
				
				scoreRNNLSTM = best_modelRNNLSTM.evaluate(X1,Y, batch_size=batchsize)
				self.log.info(""----------> Score Matrix: ""+str(best_modelRNNLSTM.metrics_names))
				self.log.info(""----------> Score: ""+str(scoreRNNLSTM))
				self.log.info(""----------> Model Params: ""+str(best_paramsRNNLSTM))
				executionTime=time.time() - start
				self.log.info('----------> RNN Execution Time: '+str(executionTime)+'\n')
				XSNN = np.expand_dims(self.testX, axis=2)
				predictedData = best_modelRNNLSTM.predict(XSNN)
				if self.scoreParam.lower() == 'mse':
					score = mean_squared_error(self.testY,predictedData)
				elif self.scoreParam.lower() == 'rmse': 
					score=mean_squared_error(self.testY,predictedData,squared=False)
				elif self.scoreParam.lower() == 'mae':
					score=mean_absolute_error(self.testY,predictedData)
				elif self.scoreParam.lower() == 'r2':
					score=r2_score(self.testY,predictedData)
				else:
					score = scoreRNNLSTM[1]
				self.log.info(""----------> Testing Score: ""+str(score))		
				scoreRNNLSTM[1] = score
				
				if(scoredetails != ''):
					scoredetails += ','
				scoredetails += '{""Model"":""Recurrent Neural Network (LSTM)"",""FeatureEngineering"":""'+str(self.best_feature_model)+'"",""Score"":'+str(scoreRNNLSTM[1])+'}'
				self.log.info('Status:-  |... DL Algorithm applied: Recurrent Neural Network (LSTM)')
				self.log.info('Status:-   |... Score after hyperparameter tuning: '+str(round(score,2)))

			if ""Convolutional Neural Network (1D)""in self.modelList:
				self.log.info(""-------> Model Name: CNN"")
				start = time.time()
				data = self.modelParams[""Convolutional Neural Network (1D)""]
				p = {""activation"":data[""activation""].split("",""),
					 ""kernel_size"":data[""kernel_size""].split("",""),
				     ""numConvLayers"":[int(n) for n in data[""numConvLayers""].split("","")],
				     ""MaxPool"":data[""activation""].split("",""),
				     ""optimizer"":data[""optimizer""].split("",""),
				     ""losses"":data[""losses""].split("",""),
				     ""first_neuron"":[int(n) for n in data[""first_layer""].split("","")],
				     ""shapes"": data[""shapes""].split("",""),
				     ""hidden_layers"":[int(n) for n in data[""hidden_layers""].split("","")],
				     ""dropout"": [float(n) for n in data[""dropout""].split("","")],
				     ""lr"": [float(n) for n in data[""learning_rate""].split("","")],
				     ""batch_size"": [int(n) for n in data[""batch_size""].split("","")],
				     ""epochs"": [int(n) for n in data[""epochs""].split("","")]}
				scan_object = talos.Scan(x=X_train,y=y_train, x_val = X_test, y_val = y_test, model = modelObj.CNNRegression,experiment_name='CNN', params=p,round_limit=self.roundLimit,random_method=self.randomMethod)
				
				matrix_type = 'val_loss'
				if self.scoreParam.lower() == 'rmse':
					matrix_type = 'val_rmse_m'
				elif(self.scoreParam.lower() == 'r2'):
					matrix_type = 'val_r_square'
				elif(self.scoreParam.lower() == 'mae'):
					matrix_type = 'val_mae'
				elif(self.scoreParam.lower() == 'mse'):
					matrix_type = 'val_mse'
					
				analyze_objectCNN = talos.Analyze(scan_object)				
				highValAccCNN = analyze_objectCNN.low(matrix_type)				
				dfCNN = 	analyze_objectCNN.data
			
				newdfCNN = dfCNN.loc[dfCNN[matrix_type] == highValAccCNN]

			
				best_paramsCNN[""numConvLayers""] = list(newdfCNN[""numConvLayers""])[0]
				best_paramsCNN[""MaxPool""] = list(newdfCNN[""MaxPool""])[0]
				best_paramsCNN[""activation""] = list(newdfCNN[""activation""])[0]
				best_paramsCNN[""optimizer""] = list(newdfCNN[""optimizer""])[0]
				best_paramsCNN[""losses""] = list(newdfCNN[""losses""])[0]
				best_paramsCNN[""first_layer""] = list(newdfCNN[""first_neuron""])[0]
				best_paramsCNN[""shapes""] = list(newdfCNN[""shapes""])[0]
				best_paramsCNN[""hidden_layers""] = list(newdfCNN[""hidden_layers""])[0]
				best_paramsCNN[""dropout""] = list(newdfCNN[""dropout""])[0]
				best_paramsCNN[""batch_size""] = list(newdfCNN[""batch_size""])[0]
				best_paramsCNN[""epochs""] = list(newdfCNN[""epochs""])[0]
				best_paramsCNN[""lr""] = list(newdfCNN[""lr""])[0]


				best_modelCNN = scan_object.best_model(metric=matrix_type, asc=True)
				
				loss_matrix = best_paramsCNN[""losses""]
				optimizer = best_paramsCNN[""optimizer""]
				batchsize = best_paramsCNN[""batch_size""]
				
				if self.scoreParam == 'rmse': 
					best_modelCNN.compile(loss=loss_matrix,optimizer=optimizer, metrics=[rmse_m])
				elif self.scoreParam == 'r2':
					best_modelCNN.compile(loss=loss_matrix,optimizer=optimizer, metrics=[r_square])
				elif self.scoreParam == 'mae':
					best_modelCNN.compile(loss=loss_matrix,optimizer=optimizer, metrics=['mae'])
				else:
					best_modelCNN.compile(loss=loss_matrix,optimizer=optimizer, metrics=['mse'])
				
				scoreCNN = best_modelCNN.evaluate(X1,Y, batch_size=batchsize)
				self.log.info(""----------> Score Matrix: ""+str(best_modelCNN.metrics_names))
				self.log.info(""----------> Score: ""+str(scoreCNN))				
				self.log.info(""----------> Model Params: ""+str(best_paramsCNN))
				executionTime=time.time() - start
				self.log.info('----------> CNN Execution Time: '+str(executionTime)+'\n')
				
				XSNN = np.expand_dims(self.testX, axis=2)
				predictedData = best_modelCNN.predict(XSNN)
				if self.scoreParam.lower() == 'mse':
					score = mean_squared_error(self.testY,predictedData)
				elif self.scoreParam.lower() == 'rmse': 
					score=mean_squared_error(self.testY,predictedData,squared=False)
				elif self.scoreParam.lower() == 'mae':
					score=mean_absolute_error(self.testY,predictedData)
				elif self.scoreParam.lower() == 'r2':
					score=r2_score(self.testY,predictedData)
				else:
					score = scoreCNN[1]
				self.log.info(""----------> Testing Score: ""+str(score))		
				scoreCNN[1] = score
				
				if(scoredetails != ''):
						scoredetails += ','
				scoredetails += '{""Model"":""CNN"",""FeatureEngineering"":""'+str(self.best_feature_model)+'"",""Score"":'+str(scoreCNN[1])+'}'
				self.log.info('Status:-  |... DL Algorithm applied: CNN')
				self.log.info('Status:-   |... Score after hyperparameter tuning: '+str(round(score,2)))
			
			modelScore = []
			 
			if len(scoreSNN) != 0:
				modelScore.append(scoreSNN[1])
			if len(scoreRNN) != 0:
				modelScore.append(scoreRNN[1])
			if len(scoreRNNGRU) != 0:
				modelScore.append(scoreRNNGRU[1])
			if len(scoreRNNLSTM) != 0:
				modelScore.append(scoreRNNLSTM[1])
			if len(scoreCNN) != 0:
				modelScore.append(scoreCNN[1])
                
			selectedModel = """"
			best_model = """"
			if self.scoreParam == ""r2"":
				if len(scoreSNN) != 0 and max(modelScore) == scoreSNN[1]:
					selectedModel = ""Neural Network""
					best_model = best_modelSNN
					best_params = best_paramsSNN

				elif len(scoreRNN) != 0 and max(modelScore) == scoreRNN[1]:
					selectedModel = ""Recurrent Neural Network""
					best_model = best_modelRNN
					best_params = best_paramsRNN

				elif len(scoreRNNGRU) != 0 and max(modelScore) == scoreRNNGRU[1]:
					selectedModel = ""Recurrent Neural Network (GRU)""
					best_model = best_modelRNNGRU
					best_params = best_paramsRNNGRU

				elif len(scoreRNNLSTM) != 0 and max(modelScore) == scoreRNNLSTM[1]:
					selectedModel = ""Recurrent Neural Network (LSTM)""
					best_model = best_modelRNNLSTM
					best_params = best_paramsRNNLSTM
                    
				elif len(scoreCNN) != 0 and max(modelScore) == scoreCNN[1]:
					selectedModel = ""Convolutional Neural Network (1D)""
					best_model = best_modelCNN
					best_params = best_paramsCNN

				modelScore = max(modelScore)
			
			else:
				if len(scoreSNN) != 0 and min(modelScore) == scoreSNN[1]:
					selectedModel = ""Neural Network""
					best_model = best_modelSNN
					best_params = best_paramsSNN

				elif len(scoreRNN) != 0 and min(modelScore) == scoreRNN[1]:
					selectedModel = ""Recurrent Neural Network""
					best_model = best_modelRNN
					best_params = best_paramsRNN

				elif len(scoreRNNGRU) != 0 and min(modelScore) == scoreRNNGRU[1]:
					selectedModel = ""Recurrent Neural Network (GRU)""
					best_model = best_modelRNNGRU
					best_params = best_paramsRNNGRU
                    
				elif len(scoreRNNLSTM) != 0 and min(modelScore) == scoreRNNLSTM[1]:
					selectedModel = ""Recurrent Neural Network (LSTM)""
					best_model = best_modelRNNLSTM
					best_params = best_paramsRNNLSTM
                    
				elif len(scoreCNN) != 0 and min(modelScore) == scoreCNN[1]:
					selectedModel = ""Convolutional Neural Network (1D)""
					best_model = best_modelCNN
					best_params = best_paramsCNN

				modelScore = min(modelScore)
				
			executionTime=time.time() - lstart
			self.log.info(""-------> Total Execution Time(sec):""+str(executionTime))
			self.log.info('Status:-  |... Best Algorithm selected: '+str(selectedModel)+' '+str(round(modelScore,2)))
						
			return selectedModel,modelScore,best_model,best_params,X1,XSNN,scoredetails,loss_matrix,optimizer

		except Exception as inst:

                        self.log.info( '\n-----> regressionModel failed!!!.'+str(inst))
                        exc_type, exc_obj, exc_tb = sys.exc_info()
                        fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
                        self.log.info(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))

		




"
edge_convert.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import os
import platform
import json
import shutil
import logging
import sys
from AionConfigManager import AionConfigManager
from sklearn.externals import joblib
class edgeformats:
    def __init__(self,deploy_path):
        self.deploy_path = deploy_path
        self.edge_deploy_path = os.path.join(deploy_path,""edge"")
        os.mkdir(self.edge_deploy_path) 
    
    
    def converttoedgedeployment(self,saved_model,edge_format,xtrain,model_type,iterName,iterVersion,features,profiled_data_file):
        if edge_format == 'onnx':
            from skl2onnx import convert_sklearn
            from skl2onnx.common.data_types import FloatTensorType
            xtrain = xtrain[features]
            initial_type = [('float_input', FloatTensorType([None, xtrain.shape[1]]))]
            filename = os.path.join(self.deploy_path,saved_model)        		
            loaded_model = joblib.load(filename)
            onx = convert_sklearn(loaded_model, initial_types=initial_type)
            onnx_filename = os.path.join(self.edge_deploy_path, model_type + '_' + iterName + '_' + iterVersion + '.onnx')
            with open(onnx_filename, ""wb"") as f:
                f.write(onx.SerializeToString())
            self.createedgeruntimeFile(onnx_filename,profiled_data_file,features)
            
    def createedgeruntimeFile(self,onnx_filename,datafilepath,features):
        runtimefilecontent = ''
        runtimefilecontent += 'import pandas'
        runtimefilecontent += '\n'
        runtimefilecontent += 'import numpy'
        runtimefilecontent += '\n'
        runtimefilecontent += 'import sys'
        runtimefilecontent += '\n'
        runtimefilecontent += 'import onnxruntime as rt'
        runtimefilecontent += '\n'
        runtimefilecontent += 'def onnx_runtime_validation():'
        runtimefilecontent += '\n'
        runtimefilecontent += '    modelfile = r""'+str(onnx_filename)+'""'
        runtimefilecontent += '\n'
        runtimefilecontent += '    datafile = r""'+str(datafilepath)+'""'
        runtimefilecontent += '\n'
        runtimefilecontent += '    dataframe = pandas.read_csv(datafile)'
        runtimefilecontent += '\n'
        runtimefilecontent += '    dataframe = dataframe['+str(features)+']'
        runtimefilecontent += '\n'
        runtimefilecontent += '    df = dataframe.head(8)'
        runtimefilecontent += '\n'
        runtimefilecontent += '    dataset = df.values'
        runtimefilecontent += '\n'
        runtimefilecontent += '    sess = rt.InferenceSession(modelfile)'
        runtimefilecontent += '\n'
        runtimefilecontent += '    input_name = sess.get_inputs()[0].name'
        runtimefilecontent += '\n'
        runtimefilecontent += '    label_name = sess.get_outputs()[0].name'
        runtimefilecontent += '\n'
        runtimefilecontent += '    inputsize=sess.get_inputs()[0].shape'
        runtimefilecontent += '\n'
        runtimefilecontent += '    XYZ = dataset[:,0:inputsize[1]].astype(float)'
        runtimefilecontent += '\n'
        runtimefilecontent += '    pred_onx = sess.run([label_name], {input_name: XYZ.astype(numpy.float32)[0:8]})[0]'
        runtimefilecontent += '\n'
        runtimefilecontent += '    df[\'predictions\'] = pred_onx'
        runtimefilecontent += '\n'
        runtimefilecontent += '    result = df.to_json(orient=""records"")'
        runtimefilecontent += '\n'
        runtimefilecontent += '    return(result)'
        runtimefilecontent += '\n'
        runtimefilecontent += 'if __name__ == ""__main__"":'
        runtimefilecontent += '\n'
        runtimefilecontent += '    output = onnx_runtime_validation()'
        runtimefilecontent += '\n'
        runtimefilecontent += '    print(""predictions:"",output)'
        filename = os.path.join(self.edge_deploy_path,'onnxvalidation.py')
        f = open(filename, ""w"")
        f.write(str(runtimefilecontent))
        f.close()
        
        "
common.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import json
from pathlib import Path
from AION.prediction_package.imports import importModule
from AION.prediction_package import utility
from AION.prediction_package.utility import TAB_CHAR
from importlib.metadata import version

""""""
    This file provide the functionality which is common for most of the
    problem types deployment. 
""""""

def main_code():
    return """"""
class predict():

    def __init__(self):
        self.profiler = inputprofiler()
        self.selector = selector()
        self.trainer = trainer()
        self.formatter = output_format()

    def run(self, data):
        try:
            df = self._parse_data(data)
            raw_df = df.copy()
            df = self.profiler.run(df)
            df = self.selector.run(df)
            df = self.trainer.run(df)
            output = self.formatter.run(raw_df, df)
            print(""predictions:"",output)
            return (output)
        except Exception as e:
            output = {""status"":""FAIL"",""message"":str(e).strip('""')}
            print(""predictions:"",json.dumps(output))
            return (json.dumps(output))
                
    def _parse_data(self, data):
        file_path = Path(data)
        if file_path.suffix == "".tsv"":
            df = pd.read_csv(data,encoding='utf-8',sep='\\t',skipinitialspace = True,na_values=['-','?'])
        elif file_path.suffix in ["".csv"", "".dat""]:
            df=pd.read_csv(data,encoding='utf-8',skipinitialspace = True,na_values=['-','?'])
        elif file_path.suffix in ["".gz""] and file_path.stem.endswith('.csv'):
            df=pd.read_csv(data,encoding='utf-8',skipinitialspace = True,na_values=['-','?'])
        elif file_path.suffix == "".json"":
            with open(data,'r',encoding='utf-8') as f:
                jsonData = json.load(f)
                df = pd.json_normalize(jsonData)
        else:
            jsonData = json.loads(data)
            df = pd.json_normalize(jsonData)
        return df
    
import sys
if __name__ == ""__main__"":
	output = predict().run(sys.argv[1])
    """"""

def profiler_code(params, indent=0):
    """"""
        This will create the profiler file based on the config file.
        separated file is created as profiler is required for input drift also.
    """"""
    imported_modules = [
            {'module': 'json', 'mod_from': None, 'mod_as': None},
            {'module': 'scipy', 'mod_from': None, 'mod_as': None},
            {'module': 'joblib', 'mod_from': None, 'mod_as': None},
            {'module': 'numpy', 'mod_from': None, 'mod_as': 'np'},
            {'module': 'pandas', 'mod_from': None, 'mod_as': 'pd'},
            {'module': 'Path', 'mod_from': 'pathlib', 'mod_as': None}
        ]
    importer = importModule()
    utility.import_modules(importer, imported_modules)
    code = """"""    


class inputprofiler():
""""""
    init_code = """"""
    def __init__(self):
""""""
    if params.get('text_features'):
        imported_modules.append({'module':'importlib.util'})
    init_code += """"""
        # preprocessing
        preprocess_path = Path(__file__).parent.parent/'model'/'preprocess_pipe.pkl'
        if not preprocess_path.exists():
            raise ValueError(f'Preprocess model file not found: {preprocess_path}')
        self.profiler = joblib.load(preprocess_path)

""""""
    run_code = """"""
    def run(self,df):
        df = df.replace(r'^\s*$', np.NaN, regex=True)
""""""
    if params.get('input_features_type'):
        imported_modules.append({'module':'dtype','mod_from':'numpy'})
        run_code += f""""""
        df = df.astype({params.get('input_features_type')})
""""""
    if params.get('word2num_features'):
        imported_modules.append({'module':'w2n','mod_from':'word2number'})
        run_code += f""""""
        def s2n(value):
            try:
                x=eval(value)
                return x
            except:
                try:
                    return w2n.word_to_num(value)
                except:
                    return np.nan 
        df[{params['word2num_features']}] = df[{params['word2num_features']}].apply(lambda x: s2n(x))""""""
    if params.get('unpreprocessed_columns'):
        run_code += f""""""
        unpreprocessed_data = df['{params['unpreprocessed_columns'][0]}']
        df.drop(['{params['unpreprocessed_columns'][0]}'], axis=1,inplace=True)
        """"""
    if params.get('force_numeric_conv'):
        run_code += f""""""
        df[{params['force_numeric_conv']}] = df[{params['force_numeric_conv']}].apply(pd.to_numeric,errors='coerce')""""""
    if params.get('conversion_method','').lower() == 'glove':
        code_text, modules = __profiler_glove_code(params)
        imported_modules.extend( modules)
        init_code += code_text
    elif params.get('conversion_method','').lower() == 'fasttext':
        init_code += __profiler_fasttext_code(params)
    run_code += __profiler_main_code(params)
    if params.get('unpreprocessed_columns'):
        run_code += f""""""
        df['{params.get('unpreprocessed_columns')[0]}'] = unpreprocessed_data
        """"""
    utility.import_modules(importer, imported_modules)
    import_code = importer.getCode()
    return import_code + code + init_code + run_code

def __profiler_glove_code(params, indent=2):
    modules = []
    modules.append({'module':'load_pretrained','mod_from':'text.Embedding'})
    modules.append({'module':'TextProcessing','mod_from':'text'})
    code = """"""
model_path = TextProcessing.checkAndDownloadPretrainedModel('glove')
embed_size, pretrained_model = load_pretrained(model_path)
self.profiler.set_params(text_process__vectorizer__external_model = pretrained_model)
""""""
    return code.replace('\n', '\n'+(indent * TAB_CHAR)), modules

def __profiler_fasttext_code(params, indent=2):
    code = """"""
def get_pretrained_model_path():
    try:
        from AION.appbe.dataPath import DATA_DIR
        modelsPath = Path(DATA_DIR)/'PreTrainedModels'/'TextProcessing'
    except:
        modelsPath = Path('aion')/'PreTrainedModels'/'TextProcessing'
    
    if not modelsPath.exists():
        modelsPath.mkdir(parents=True, exist_ok=True)
    return modelsPath
if not importlib.util.find_spec('fasttext'):
    raise ValueError('fastText not installed')
else:
    import os
    import fasttext
    import fasttext.util
    cwd = os.getcwd()
    os.chdir(get_pretrained_model_path())
    fasttext.util.download_model('en', if_exists='ignore')
    pretrained_model = fasttext.load_model('cc.en.300.bin')
    os.chdir(cwd)
self.profiler.set_params(text_process__vectorizer__external_model = pretrained_model)
self.profiler.set_params(text_process__vectorizer__external_model_type = 'binary')
""""""
    return code.replace('\n', '\n'+(indent * TAB_CHAR))

def __profiler_main_code(params, indent=2):
    code = f""""""
df = self.profiler.transform(df)
columns = {params['output_features']}
if isinstance(df, scipy.sparse.spmatrix):
    df = pd.DataFrame(df.toarray(), columns=columns)
else:
    df = pd.DataFrame(df, columns=columns)
return df
""""""
    return code.replace('\n', '\n'+(indent * TAB_CHAR))

def feature_selector_code( params, indent=0):
    modules = [
            {'module': 'pandas', 'mod_from': None, 'mod_as': 'pd'}
        ]
    code = """"""
class selector():
    # this class 
    def __init__(self):
        pass
        
    def run(self, df):""""""
    code +=f""""""
        return df[{params['output_features']}]
""""""
    return code, modules

def feature_reducer_code( params, indent=0):
    modules = [
            {'module': 'joblib', 'mod_from': None, 'mod_as': None},
            {'module': 'pandas', 'mod_from': None, 'mod_as': 'pd'},
            {'module': 'Path', 'mod_from': 'pathlib', 'mod_as': None}
        ]
    code = f""""""
class selector():
    def __init__(self):
        reducer_file = (Path(__file__).parent/""model"")/""{params['reducer_file']}""
        if not reducer_file.exists():
            raise ValueError(f'Failed to load Feature Engineering model file: {{reducer_file}}') 
        self.model = joblib.load(reducer_file)

    def run(self, df):
        reducer_input = {params['input_features']}
        reducer_output = {params['output_features']}
        df = self.model.transform(df[reducer_input])
        return pd.DataFrame(df,columns=reducer_output)
    """"""
    if indent:
        code = code.replace('\n', '\n'+(indent * TAB_CHAR))
    return code, modules

def create_feature_list(config=None, target_feature=None, deploy_path=None):
    featurelist = []
    if 'profiler' in config:
        if 'input_features_type' in config['profiler']:
            input_features = config['profiler']['input_features_type']
            for x in input_features:
                featurelt={}
                featurelt['feature'] = x
                if x == target_feature:            
                    featurelt['Type'] = 'Target'
                else:
                    if input_features[x] in ['int','int64','float','float64']: 
                        featurelt['Type'] = 'Numeric'
                    elif input_features[x] == 'object':
                        featurelt['Type'] = 'Text'
                    elif input_features[x] == 'category':  
                        featurelt['Type'] = 'Category'   
                    else:
                        featurelt['Type'] = 'Unknown'   
                featurelist.append(featurelt)
        
    featurefile = f""""""
import json
def getfeatures():
    try:
        features = {featurelist}
        outputjson = {{""status"":""SUCCESS"",""features"":features}}
        output = json.dumps(outputjson)
        print(""Features:"",output)
        return(output)
    except Exception as e:
        output = {{""status"":""FAIL"",""message"":str(e).strip(\'""\')}}
        print(""Features:"",json.dumps(output))
        return (json.dumps(output))
        
if __name__ == ""__main__"":
    output = getfeatures()
""""""
    with open( deploy_path/'featureslist.py', 'wb') as f:
        f.write( str(featurefile).encode('utf8'))

def requirement_file(deploy_path,model,textFeatures,learner_type='ML'):
    modules = ['pandas','numpy','alibi','matplotlib','joblib','shap','ipython','category_encoders','scikit-learn','word2number','flask_restful','evidently','Flask-Cors']
    requires = ''
    for mod in modules:
        requires += f""{mod}=={version(mod)}\n""
    if len(textFeatures) > 0:
        tmodules = ['spacy','nltk','textblob','demoji','beautifulsoup4','text-unidecode','pyspellchecker','contractions','protobuf']
        for mod in tmodules:
            requires += f""{mod}=={version(mod)}\n""   
    if model == 'Extreme Gradient Boosting (XGBoost)':
        mmodules = ['xgboost']
        for mod in mmodules:
            requires += f""{mod}=={version(mod)}\n""   
    if model == 'Light Gradient Boosting (LightGBM)':
        mmodules = ['lightgbm']
        for mod in mmodules:
            requires += f""{mod}=={version(mod)}\n""               
    if model == 'Categorical Boosting (CatBoost)':
        mmodules = ['catboost']
        for mod in mmodules:
            requires += f""{mod}=={version(mod)}\n"" 
    if model.lower() == 'arima':
        mmodules = ['pmdarima']
        for mod in mmodules:
            requires += f""{mod}=={version(mod)}\n""
    if model.lower() == 'fbprophet':
        mmodules = ['prophet']
        for mod in mmodules:
            requires += f""{mod}=={version(mod)}\n""              
    if model.lower() == 'lstm' or model.lower() == 'mlp' or learner_type =='DL':
        mmodules = ['tensorflow']
        for mod in mmodules:
            requires += f""{mod}=={version(mod)}\n""  
    if model.lower() in ['cox', 'kaplanmeierfitter']: #bug 12833
        mmodules = ['lifelines']
        for mod in mmodules:
            requires += f""{mod}=={version(mod)}\n""
    if model.lower() == 'sentencetransformer': #bug 12833
        mmodules = ['sentence_transformers']
        for mod in mmodules:
            requires += f""{mod}=={version(mod)}\n""                      
    with open( deploy_path/'requirements.txt', 'wb') as f:
        f.write(str(requires).encode('utf8'))

def create_readme_file(deploy_path,modelfile,features):
    data = json.dumps([{x:x+'_value'} for x in features])
    backslash_data = data.replace('""', '\\""')
    content = f""""""
========== Files Structures ==========
{modelfile} ------ Trained Model
aion_prediction.py --> Python package entry point
script/inputprofiler.py --> Profiling like FillNA and Category to Numeric

========== How to call the model ==========
============== From Windows Terminal ==========
python aion_prediction.py ""{backslash_data}""
============== From Linux Terminal ==========
python aion_prediction.py ""{data}""

============== Output ==========
{{""status"":""SUCCESS"",""data"":[{{""Data1"":""Value"",""prediction"":""Value""}}]}}  ## for single Row/Record
{{""status"":""SUCCESS"",""data"":[{{""Data1"":""Value"",""prediction"":""Value""}},{{""Data1"":""Value"",""prediction"":""Value""}}]}}    ## For Multiple Row/Record
{{""status"":""ERROR"",""message"":""description""}}   ## In Case Exception or Error
        """"""
    filename = deploy_path/'readme.txt'
    with open(filename, 'w') as f:
        f.write(content)

def create_util_folder(deploy_path):
    import tarfile
    ext_path = Path(__file__).parent.parent/'utilities'
    for x in ext_path.iterdir():
        if x.suffix == '.tar':
            if x.name not in ['scikit_surprise-1.1.1.dist-info.tar','surprise.tar']:
                my_tar = tarfile.open(x)
                my_tar.extractall(deploy_path)
                my_tar.close()
"
model_deploy.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import os,sys
import platform
import json
import shutil
import logging
from pathlib import Path
from prediction_package import production 
from prediction_package import prediction_transformation as cs

class DeploymentManager:
    def __init__(self):
        self.requirementfile=''
        self.modelfile=''
        self.s2i_environmentfile=''
        self.selectorfile=''
        self.profilerfile=''
        self.readmepackagename=''
        self.pythonpackage=''
        self.log = logging.getLogger('eion')

    def include_import_file(self,learner_type,method,scoreParam,model_type,model):
        if((learner_type == 'DL') or (learner_type == 'TextDL')):
            self.modelfile += 'from tensorflow.keras.models import load_model'
            self.modelfile += '\n'
            self.modelfile += 'from tensorflow.keras import backend as K'
            self.modelfile += '\n'
            self.modelfile += 'import tensorflow as tf'
            self.modelfile += '\n'
        if (learner_type == 'ML' and model_type.lower()=='anomaly_detection' and model.lower() == 'autoencoder'):
            self.modelfile += 'import joblib'
            self.modelfile += '\n'
            self.modelfile += 'import os'
            self.modelfile += '\n'
            self.modelfile += 'import pandas as pd'
            self.modelfile += '\n'
            self.modelfile += 'import numpy as np'
            self.modelfile += '\n'
            self.modelfile += 'from pathlib import Path'
            self.modelfile += '\n'
            self.modelfile += 'import tensorflow as tf'
            self.modelfile += '\n'
            self.modelfile += 'from keras.models import load_model'
            self.modelfile += '\n'
            self.modelfile += 'import warnings'
            self.modelfile += '\n'
            self.modelfile += 'from sklearn.preprocessing import StandardScaler'
            self.modelfile += '\n'
            self.modelfile += 'warnings.filterwarnings(""ignore"")'
            self.modelfile += '\n'
        if(learner_type == 'ImageClassification'):
            self.modelfile += 'import os'
            self.modelfile += '\n'
            self.modelfile += 'from tensorflow.keras.models import Sequential'
            self.modelfile += '\n'
            self.modelfile += 'from tensorflow.keras.layers import Dense, Dropout, Flatten'
            self.modelfile += '\n'
            self.modelfile += 'from tensorflow.keras.preprocessing import image'
            self.modelfile += '\n'
            self.modelfile += 'import numpy as np'
            self.modelfile += '\n'
            self.modelfile += 'import tensorflow as tf'
            self.modelfile += '\n'
            self.modelfile += 'from tensorflow.keras.layers import Input'
            self.modelfile += '\n'
            self.modelfile += 'from tensorflow.keras.models import Model'
            self.modelfile += '\n'
            self.modelfile += 'from tensorflow.keras.optimizers import Adam'
            self.modelfile += '\n'
            self.modelfile += 'import cv2'
            self.modelfile += '\n'
        if(learner_type == 'objectDetection'):
            self.modelfile += 'import os\n'
            self.modelfile += 'from object_detection.utils import label_map_util\n'
            self.modelfile += 'from object_detection.utils import config_util\n'
            self.modelfile += 'from object_detection.utils import visualization_utils as viz_utils\n'
            self.modelfile += 'from object_detection.builders import model_builder\n'
            self.modelfile += 'import tensorflow as tf\n'
            self.modelfile += 'import numpy as np\n'
            self.modelfile += 'from PIL import Image\n'
            self.modelfile += 'import matplotlib.pyplot as plt\n'
            self.modelfile += 'import pandas as pd\n'
            self.modelfile += 'from pathlib import Path\n'
        if(learner_type == 'Text Similarity'):
            self.modelfile += 'from tensorflow.keras.models import load_model'
            self.modelfile += '\n'
            self.modelfile += 'from tensorflow.keras import backend as K'
            self.modelfile += '\n'
            self.modelfile += 'from tensorflow.keras.preprocessing.sequence import pad_sequences'
            self.modelfile += '\n'
            self.modelfile += 'from tensorflow.keras.preprocessing.text import Tokenizer'
            self.modelfile += '\n'
            self.modelfile += 'import tensorflow as tf'
            self.modelfile += '\n'
        if(model == 'Neural Architecture Search'):
            self.modelfile += 'from tensorflow.keras.models import load_model'
            self.modelfile += '\n'
            self.modelfile += 'from tensorflow.keras import backend as K'
            self.modelfile += '\n'
            self.modelfile += 'import tensorflow as tf'
            self.modelfile += '\n'
        self.modelfile += 'import joblib'
        self.modelfile += '\n'
        self.modelfile += 'import os'
        self.modelfile += '\n'
        self.modelfile += 'import pandas as pd'
        self.modelfile += '\n'
        self.modelfile += 'from sklearn.decomposition import LatentDirichletAllocation\n'
        self.modelfile += 'import numpy as np\n'
        self.modelfile += 'from pathlib import Path\n'
        if model.lower() == 'deep q network' or model.lower() == 'dueling deep q network':
            self.modelfile += 'from tensorflow import constant'
            self.modelfile += '\n'
            self.modelfile += 'from tf_agents.trajectories import time_step'
            self.modelfile += '\n'
            self.requirementfile += 'tensorflow==2.5.0'
        if model.lower() == 'lstm' or model.lower() == 'mlp':
            self.modelfile += 'from tensorflow.keras.models import load_model'
            self.modelfile += '\n'
            self.requirementfile += 'tensorflow==2.5.0'
        if(learner_type == 'Text Similarity'):
            self.modelfile += 'def cosine_distance(vests):'
            self.modelfile += '\n';
            self.modelfile += '    x, y = vests'
            self.modelfile += '\n';
            self.modelfile += '    x = K.l2_normalize(x, axis=-1)'
            self.modelfile += '\n';
            self.modelfile += '    y = K.l2_normalize(y, axis=-1)'
            self.modelfile += '\n';
            self.modelfile += '    return -K.mean(x * y, axis=-1, keepdims=True)'
            self.modelfile += '\n';
            self.modelfile += 'def cos_dist_output_shape(shapes):'
            self.modelfile += '\n';
            self.modelfile += '    shape1, shape2 = shapes'
            self.modelfile += '\n';
            self.modelfile += '    return (shape1[0],1)'
            self.modelfile += '\n';

        if(learner_type == 'TextDL' or learner_type == 'DL'):
            if(scoreParam.lower() == 'recall' or scoreParam.lower() == 'f1_score'):
                self.modelfile += 'def recall_m(y_true, y_pred):'
                self.modelfile += '\n';
                self.modelfile += '    true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))'
                self.modelfile += '\n';
                self.modelfile += '    possible_positives = K.sum(K.round(K.clip(y_true, 0, 1)))'
                self.modelfile += '\n';
                self.modelfile += '    recall = true_positives / (possible_positives + K.epsilon())'
                self.modelfile += '\n';
                self.modelfile += '    return recall'
                self.modelfile += '\n';
            if(scoreParam.lower() == 'precision' or scoreParam.lower() == 'f1_score'):
                self.modelfile += 'def precision_m(y_true, y_pred):'
                self.modelfile += '\n';
                self.modelfile += '    true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))'
                self.modelfile += '\n';
                self.modelfile += '    predicted_positives = K.sum(K.round(K.clip(y_pred, 0, 1)))'
                self.modelfile += '\n';
                self.modelfile += '    precision = true_positives / (predicted_positives + K.epsilon())'
                self.modelfile += '\n';
                self.modelfile += '    return precision'
                self.modelfile += '\n';
            if(scoreParam.lower() == 'f1_score'):
                self.modelfile += 'def f1_m(y_true, y_pred):'
                self.modelfile += '\n';
                self.modelfile += '    precision = precision_m(y_true, y_pred)'
                self.modelfile += '\n';
                self.modelfile += '    recall = recall_m(y_true, y_pred)'
                self.modelfile += '\n';
                self.modelfile += '    return 2*((precision*recall)/(precision+recall+K.epsilon()))'
                self.modelfile += '\n';
            if(scoreParam.lower() == 'rmse'):
                self.modelfile += 'def rmse_m(y_true, y_pred):'
                self.modelfile += '\n';
                self.modelfile += '    return K.sqrt(K.mean(K.square(y_pred - y_true), axis=-1))'
                self.modelfile += '\n';
            if(scoreParam.lower() =='r2'):
                self.modelfile += 'def r_square(y_true, y_pred):'
                self.modelfile += '\n';
                self.modelfile += '    SS_res = K.sum(K.square(y_true-y_pred))'
                self.modelfile += '\n';
                self.modelfile += '    SS_tot = K.sum(K.square(y_true-K.mean(y_true)))'
                self.modelfile += '\n';
                self.modelfile += '    return (1 - SS_res/(SS_tot+K.epsilon()))'
                self.modelfile += '\n';
        if(learner_type.lower() in ['similarityidentification','contextualsearch']):
            self.modelfile += 'from pathlib import Path\n'
            if model_type == 'BM25':
                self.modelfile += 'from rank_bm25 import BM25Okapi\n'
            elif scoreParam == 'VectorDB Cosine':
                self.modelfile += 'import chromadb\n'
            else:
                self.modelfile += 'from sklearn.metrics.pairwise import cosine_similarity\n'

        self.pythonpackage += '========== Python Packags Requires ========='
        self.pythonpackage += '\n'
        self.pythonpackage += 'scikit-learn'
        self.pythonpackage += '\n'
        self.pythonpackage += 'scipy'
        self.pythonpackage += '\n'
        self.pythonpackage += 'numpy'
        self.pythonpackage += '\n'
        if((learner_type == 'DL') or (learner_type =='TextDL')):
            self.modelfile += 'import numpy as np'
            self.modelfile += '\n'
        self.requirementfile += 'scikit-learn==0.21.3'
        self.requirementfile += '\n'
        self.requirementfile += 'scipy==1.3.3'
        self.requirementfile += '\n'
        self.requirementfile += 'numpy==1.17.4'
        self.requirementfile += '\n'

        if(learner_type == 'TextML'):
            self.requirementfile += 'spacy==2.2.3'
            self.requirementfile += '\n'
            self.requirementfile += 'https://github.com/explosion/spacy-models/releases/download/en_core_web_sm-2.2.0/en_core_web_sm-2.2.0.tar.gz'
            self.requirementfile += '\n'

        if(learner_type == 'DL' or learner_type == 'TextDL'):
            self.requirementfile += 'keras==2.3.1'
            self.requirementfile += '\n'
            self.requirementfile += 'tensorflow==2.0.0b1'
            self.requirementfile += '\n'

        if(learner_type == 'RecommenderSystem'):
            self.requirementfile += 'surprise'
            self.requirementfile += '\n'
            if(method == 'package'):
                self.modelfile += 'import surprise'
                self.modelfile += '\n'
            self.modelfile += 'import statsmodels'
            self.modelfile += '\n'
            self.requirementfile += 'statsmodels==0.10.2'
            self.requirementfile += '\n'

    def crate_readme_file(self,deploy_path,modelfile,features,method,single_file=False):
        self.readme='========== Files Structures =========='
        self.readme+='\n'
        self.readme+=modelfile+' ------ Trained Model'
        self.readme+='\n'
        self.readme+='aion_prediction.py --> Python package entry point'
        self.readme+='\n'
        if not single_file:
            self.readme+='script/inputprofiler.py --> Profiling like FillNA and Category to Numeric'
            self.readme+='\n'
            self.readme+='script/selector.py --> Feature Selection'
            self.readme+='\n'
            self.readme+='script/trained_model.py --> Read the model file and call the prediction'
            self.readme+='\n'
            self.readme+='script/output_format.py --> Output formatter file'
            self.readme+='\n'
        self.readme+= self.pythonpackage
        self.readme+= '========== How to call the model =========='
        self.readme+='\n'
        self.readme+= '============== From Windows Terminal =========='
        self.readme+='\n'
        if method == 'optimus_package':
            self.readme += 'python aion_prediction.py filename.json'
            self.readme +='\n'
            self.readme += '========== Embedded Methods =========='
            self.readme +='\n'
            self.readme += 'Function Name: predict_from_json - When input is Json Data'
            self.readme +='\n'
            self.readme += 'Function Name: predict_from_file - When input is Json File'
            self.readme +='\n'
        else:
            callpython = 'python aion_prediction.py ""[{'
            for x in features:
                if(callpython != 'python prediction.py ""[{'):
                    callpython += ','
                callpython += '\\\""'+str(x)+'\\\""'+':'+'\\\""'+str(x)+'_value'+'\\\""'
            callpython += '}]""'
            self.readme += callpython
            self.readme+='\n'
            self.readme+= '============== From Linux Terminal =========='
            self.readme+='\n'
            callpython = 'python aion_prediction.py \'[{'
            temp =callpython
            for x in features:
                if(callpython != temp):
                    callpython += ','
                callpython += '""'+str(x)+'""'+':'+'""'+str(x)+'_value'+'""'
            callpython += '}]\''
            self.readme += callpython
            self.readme+='\n'
        self.readme+= '============== Output =========='
        self.readme+='\n'
        self.readme+= '{""status"":""SUCCESS"",""data"":[{""Data1"":""Value"",""prediction"":""Value""}]}'    ## For Single Row/Record'
        self.readme+='\n'
        self.readme+= '{""status"":""SUCCESS"",""data"":[{""Data1"":""Value"",""prediction"":""Value""},{""Data1"":""Value"",""prediction"":""Value""}]}    ## For Multiple Row/Record'
        self.readme+='\n'
        self.readme+= '{""status"":""ERROR"",""message"":""description""}   ## In Case Exception or Error'
        self.readme+='\n'
        #print(self.readme)
        filename = os.path.join(deploy_path,'readme.txt')
        self.log.info('-------> Readme File Location: '+filename)
        f = open(filename, ""wb"")
        f.write(str(self.readme).encode('utf8'))
        f.close()
    def create_class(self,classname):
        #self.modelfile += 'class '+classname+'(object):'
        self.modelfile += 'class trained_model(object):'
        self.modelfile += '\n'

    def profiler_code(self,model_type,model,output_columns, features, text_feature,wordToNumericFeatures=[], deploy={},datetimeFeature=''):
        profiler = deploy.get('profiler',{})
        if isinstance(features, str):
            features = features.split(',')
        code = f""""""
import scipy
import joblib
import numpy as np
import pandas as pd
from pathlib import Path
""""""
        if text_feature:
            code += """"""
import importlib.util\n""""""

        if wordToNumericFeatures:
            code += """"""
from word2number import w2n

def s2n(value):
    try:
        x=eval(value)
        return x
    except:
        try:
            return w2n.word_to_num(value)
        except:
            return np.nan 
""""""
        if 'code' in deploy.get('preprocess',{}).keys():
            code += deploy['preprocess']['code']

        if profiler.get('conversion_method','').lower() == 'glove':
            code += """"""
class inputprofiler(object):

    def __init__(self):
        self.model = None
        preprocess_path = Path(__file__).parent.parent/'model'/'preprocess_pipe.pkl'

        if preprocess_path.exists():
            self.model = joblib.load(preprocess_path)
            from text.Embedding import load_pretrained
            from text import TextProcessing
            model_path = TextProcessing.checkAndDownloadPretrainedModel('glove')
            embed_size, loaded_model = load_pretrained(model_path)
            self.model.set_params(text_process__vectorizer__external_model = loaded_model)
        else:
            raise ValueError('Preprocess model not found')

    def apply_profiler(self,df):
        df = df.replace(r'^\s*$', np.NaN, regex=True)
""""""
        elif profiler.get('conversion_method','').lower() == 'fasttext':
            code += """"""
def get_pretrained_model_path():
    try:
        from AION.appbe.dataPath import DATA_DIR
        modelsPath = Path(DATA_DIR)/'PreTrainedModels'/'TextProcessing'
    except:
        modelsPath = Path('aion')/'PreTrainedModels'/'TextProcessing'
    
    if not modelsPath.exists():
        modelsPath.mkdir(parents=True, exist_ok=True)
    return modelsPath

class inputprofiler(object):

    def __init__(self):
        self.model = None
        preprocess_path = Path(__file__).parent.parent/'model'/'preprocess_pipe.pkl'

        if preprocess_path.exists():
            self.model = joblib.load(preprocess_path)
            if not importlib.util.find_spec('fasttext'):
                raise ValueError('fastText not installed')
            else:
                import os
                import fasttext
                import fasttext.util
                cwd = os.getcwd()
                os.chdir(get_pretrained_model_path())
                fasttext.util.download_model('en', if_exists='ignore')
                loaded_model = fasttext.load_model('cc.en.300.bin')
                os.chdir(cwd)
            self.model.set_params(text_process__vectorizer__external_model = loaded_model)
            self.model.set_params(text_process__vectorizer__external_model_type = 'binary')
        else:
            raise ValueError('Preprocess model not found')

    def apply_profiler(self,df):
        df = df.replace(r'^\s*$', np.NaN, regex=True)
""""""
        else:
            code += """"""
class inputprofiler(object):

    def __init__(self):
        self.model = None
        preprocess_path = Path(__file__).parent.parent/'model'/'preprocess_pipe.pkl'
        if preprocess_path.exists():
            self.model = joblib.load(preprocess_path)
        else:
            raise ValueError('Preprocess model not found')

    def apply_profiler(self,df):
        df = df.replace(r'^\s*$', np.NaN, regex=True)
""""""
        if 'code' in deploy.get('preprocess',{}).keys():
            code += ""        df = preprocess( df)\n""
        if wordToNumericFeatures:
            code += f""""""
        df[{wordToNumericFeatures}] = df[{wordToNumericFeatures}].apply(lambda x: s2n(x))""""""
        if profiler.get('unpreprocessed_columns'):
            code += f""""""
        unpreprocessed_data = df['{profiler['unpreprocessed_columns'][0]}']
        df.drop(['{profiler['unpreprocessed_columns'][0]}'], axis=1,inplace=True)
            """"""
        if profiler.get('force_numeric_conv'):
            code += f""""""
        df[{profiler['force_numeric_conv']}] = df[{profiler['force_numeric_conv']}].apply(pd.to_numeric,errors='coerce')
            """"""
        code += f""""""
        if self.model:
            df = self.model.transform(df)""""""
        code += f""""""    
            columns = {output_columns}
            if isinstance(df, scipy.sparse.spmatrix):
                df = pd.DataFrame(df.toarray(), columns=columns)
            else:
                df = pd.DataFrame(df, columns=columns)
            """"""
        ##The below if loop for avoiding unpreprocessed column variable storing which is not used for anomaly detection
        if model_type.lower() == 'anomaly_detection' and datetimeFeature != '' and datetimeFeature.lower() != 'na':
            pass
        else:
            if profiler.get('unpreprocessed_columns'):
                code += f""""""
        df['{profiler.get('unpreprocessed_columns')[0]}'] = unpreprocessed_data
            """"""
        if model_type.lower() == 'anomaly_detection' and datetimeFeature != '' and datetimeFeature.lower() != 'na':
            ##This below set_index is wrong, because we drop datetimefeature before profiling and doing set_index. So commented now.
            # code += f""""""
            # df.set_index('{datetimeFeature}', inplace=True)""""""
            code += f""""""
        return(df,'{datetimeFeature}')\n""""""
        else:
            code += f""""""
        return(df)""""""
        return code


    def no_profiling_code(self, features):
        if isinstance(features, str):
            features = features.split(',')
        return f""""""
import pandas as pd
import numpy as np

class inputprofiler(object):

    def apply_profiler(self,df):
        df = df.replace(r'^\s*$', np.NaN, regex=True)
        return df[{features}]
        """"""

    def create_profiler_file(self,learner_type,deploy_path,profiler,features,numericToLabel_json,column_merge_flag,text_features,preprocessing_pipe,firstDocFeature,secondDocFeature,normalizer,normFeatures,wordToNumericFeatures,conversion_method,model_type,preprocess_pipe,preprocess_out_columns, label_encoder,model, config=None,datetimeFeature=''):
        filename = str(Path(deploy_path)/'script'/'inputprofiler.py')
        if 'profiler' in config:
            if model_type == 'BM25':
                code = self.profiler_code(model_type,model,['tokenize'],features, text_features,config['profiler']['word2num_features'])
            elif model == 'KaplanMeierFitter':
                code = self.no_profiling_code(features)
            elif model.lower() in ['arima', 'fbprophet']: #task 12627
                code = self.no_profiling_code('noofforecasts')
            else:
                code = self.profiler_code(model_type,model,config['profiler']['output_features'],features, text_features,config['profiler']['word2num_features'],config,datetimeFeature)
            if code:
                with open(filename,'w',encoding=""utf-8"") as f:
                    f.write(code)
                self.log.info('-------> Profiler File Location :'+filename)
                return
        self.profilerfile += 'import pandas as pd'
        self.profilerfile += '\n'
        self.profilerfile += 'import joblib'
        self.profilerfile += '\n'
        self.profilerfile += 'import os'
        self.profilerfile += '\n'
        self.profilerfile += 'from word2number import w2n'
        self.profilerfile += '\n'

        self.profilerfile += 'import numpy as np'
        self.profilerfile += '\nfrom pathlib import Path\n'
        #print(""1"")
        #print(profiler)
        if(learner_type == 'Text Similarity' or len(text_features) > 0):
            self.profilerfile += 'from text import TextProcessing'
            self.profilerfile += '\n'
            self.profilerfile += 'def textCleaning(textCorpus):'
            self.profilerfile += '\n'
            self.profilerfile += '    textProcessor = TextProcessing.TextProcessing()'
            self.profilerfile += '\n'
            self.profilerfile += '    textCorpus = textProcessor.transform(textCorpus)'
            self.profilerfile += '\n'
            self.profilerfile += '    return(textCorpus)'
            self.profilerfile += '\n'

        self.profilerfile += 'class inputprofiler(object):'
        self.profilerfile += '\n'
        self.profilerfile += '    def s2n(self,value):'
        self.profilerfile += '\n'
        self.profilerfile += '        try:'
        self.profilerfile += '\n'
        self.profilerfile += '            x=eval(value)'
        self.profilerfile += '\n'
        self.profilerfile += '            return x'
        self.profilerfile += '\n'
        self.profilerfile += '        except:'
        self.profilerfile += '\n'
        self.profilerfile += '            try:'
        self.profilerfile += '\n'
        self.profilerfile += '                return w2n.word_to_num(value)'
        self.profilerfile += '\n'
        self.profilerfile += '            except:'
        self.profilerfile += '\n'
        self.profilerfile += '                return np.nan '
        self.profilerfile += '\n'
        self.profilerfile += '    def apply_profiler(self,df):'
        self.profilerfile += '\n'
        if(len(wordToNumericFeatures) > 0):
            for w2nFeature in wordToNumericFeatures:
                if w2nFeature not in features:
                    continue
                self.profilerfile += ""        df['""+w2nFeature+""']=df['""+w2nFeature+""'].apply(lambda x: self.s2n(x))""
                self.profilerfile += '\n'
        self.profilerfile += ""        df = df.replace(r'^\s*$', np.NaN, regex=True)""
        self.profilerfile += '\n'
        self.profilerfile += '        try:'
        self.profilerfile += '\n'
        self.profilerfile += '            df.dropna(how=""all"",axis=1,inplace=True)'
        self.profilerfile += '\n'
        self.profilerfile += '        except:'
        self.profilerfile += '\n'
        self.profilerfile += '            df.fillna(0)'
        self.profilerfile += '\n'

        if model_type.lower() != 'timeseriesforecasting': #task 11997
            self.profilerfile += '        preprocess_path = Path(__file__).parent.parent/""model""/""preprocess_pipe.pkl""\n'
            self.profilerfile += '        if preprocess_path.exists():\n'
            self.profilerfile += '            model = joblib.load(preprocess_path)\n'
            if model_type.lower()=='anomaly_detection' and model.lower() == 'autoencoder':
                self.profilerfile += f""            df[{features}] = model.transform(df[{features}])\n""
            else:
                self.profilerfile += f""            df = model.transform(df)\n""
            if 'operation' in profiler:
                y = profiler['operation']
                for action in y:
                    feature = action['feature']
                    #if feature not in features:
                    #   continue
                    operation = action['Action']
                    if(operation == 'Drop'):
                        self.profilerfile += ""        if '""+feature+""' in df.columns:""
                        self.profilerfile += '\n'
                        self.profilerfile += ""            df.drop(columns=['""+feature+""'],inplace = True)""
                        self.profilerfile += '\n'
                    if(operation == 'FillValue'):
                        self.profilerfile += ""        if '""+feature+""' in df.columns:""
                        self.profilerfile += '\n'
                        fvalue = action['value']
                        self.profilerfile += ""            df['""+feature+""'] = df['""+feature+""'].fillna(value='""+fvalue+""')""
                        self.profilerfile += '\n'
                    if(operation == 'Encoder'):
                        value = action['value']
                        value = value.replace(""\n"", ""\\n"")
                        self.profilerfile += ""        if '""+feature+""' in df.columns:""
                        self.profilerfile += '\n'
                        self.profilerfile += ""            le_dict=""+str(value)
                        self.profilerfile += '\n'
                        self.profilerfile += ""            df['""+feature+""'] = df['""+feature+""'].apply(lambda x: le_dict.get(x,-1))""
                        self.profilerfile += '\n'
                        self.profilerfile += ""            if -1 in df['""+feature+""'].values:""
                        self.profilerfile += '\n'
                        self.profilerfile += ""                raise Exception('Category value of ""+feature+"" not present in training data')""
                        self.profilerfile += '\n'
            if 'conversion' in profiler:
                catergoryConverton  = profiler['conversion']
                #print(catergoryConverton)
                if (catergoryConverton['categoryEncoding'].lower() in ['targetencoding','onehotencoding']) and ('features' in catergoryConverton):
                    self.profilerfile += ""        encoder = joblib.load(os.path.join(os.path.dirname(__file__),'..','model','categoryEncoder.pkl'))""
                    self.profilerfile += '\n'
                    self.profilerfile += ""        CategoryFeatures = ""+str(catergoryConverton['features'])
                    self.profilerfile += '\n'
                    if  catergoryConverton['categoryEncoding'].lower() == 'onehotencoding':
                        self.profilerfile += ""        transformed_data = encoder.transform(df[CategoryFeatures]).toarray()""
                        self.profilerfile += '\n'
                        self.profilerfile += ""        feature_labels = encoder.get_feature_names(CategoryFeatures)""
                        self.profilerfile += '\n'
                        self.profilerfile += ""        transformed_data = pd.DataFrame(transformed_data,columns=feature_labels)    ""
                        self.profilerfile += '\n'
                    else:
                        self.profilerfile += ""        transformed_data = encoder.transform(df[CategoryFeatures])""
                        self.profilerfile += '\n'
                    self.profilerfile += ""        dataColumns=list(df.columns)""
                    self.profilerfile += '\n'
                    self.profilerfile += ""        nonNormFeatures=list(set(dataColumns) - set(CategoryFeatures))""
                    self.profilerfile += '\n'
                    self.profilerfile += ""        dataArray=df[nonNormFeatures]""
                    self.profilerfile += '\n'
                    self.profilerfile += ""        df = pd.concat([dataArray, transformed_data],axis=1)""
                    self.profilerfile += '\n'
            y = json.loads(numericToLabel_json)

            for feature_details in y:
                feature = feature_details['feature']
                if feature not in features:
                    continue
                label = feature_details['Labels']
                bins = feature_details['Bins']
                self.profilerfile += ""        if '""+feature+""' in df.columns:""
                self.profilerfile += '\n'
                self.profilerfile += ""            cut_bins=""+str(bins)
                self.profilerfile += '\n'
                self.profilerfile += ""            cut_labels=""+str(label)
                self.profilerfile += '\n'
                self.profilerfile += ""            df['""+feature+""'] = pd.cut(df['""+feature+""'],bins=cut_bins,labels=cut_labels)""
                self.profilerfile += '\n'
                self.profilerfile += ""            df['""+feature+""'] = df['""+feature+""'].fillna(value=0)""
                self.profilerfile += '\n'

            if(len(text_features) > 0):
                if(len(text_features) > 1):
                    self.profilerfile += '        merge_features = '+str(text_features)
                    self.profilerfile += '\n'
                    self.profilerfile += '        df[\'combined\'] = df[merge_features].apply(lambda row: \' \'.join(row.values.astype(str)), axis=1)'
                    self.profilerfile += '\n'
                    self.profilerfile += '        features = [\'combined\']'
                    self.profilerfile += '\n'
                else:
                    self.profilerfile += ""        features = ""+str(text_features)
                    self.profilerfile += '\n'
                if model_type == 'BM25':
                    self.profilerfile += """"""\
        df_text = df[features[0]]
        pipe = joblib.load(os.path.join(os.path.dirname(__file__),'..','model','{preprocessing_pipe}'))
        df['tokenize'] = pipe.transform(df_text)\n"""""".format(preprocessing_pipe=preprocessing_pipe)
                elif conversion_method == 'sentenceTransformer':
                    self.profilerfile += """"""\
        df_text = df[features[0]]
        from sentence_transformers import SentenceTransformer
        model = SentenceTransformer(\'sentence-transformers/msmarco-distilroberta-base-v2\')
        df_vect = model.encode(df_text)
        for empCol in {text_features}:
            df = df.drop(columns=[empCol])
        if isinstance(df_vect, np.ndarray):
            df1 = pd.DataFrame(df_vect)
        else:
            df1 = pd.DataFrame(df_vect.toarray(),columns = pipe.named_steps[\'vectorizer\'].get_feature_names())
        df1 = df1.add_suffix(\'_vect\')
        df = pd.concat([df, df1],axis=1)\n"""""".format(preprocessing_pipe=preprocessing_pipe, text_features=text_features)
                else:
                    self.profilerfile += """"""\
        df_text = df[features[0]]
        pipe = joblib.load(os.path.join(os.path.dirname(__file__),'..','model','{preprocessing_pipe}'))
        df_vect=pipe.transform(df_text)
        for empCol in {text_features}:
            df = df.drop(columns=[empCol])
        if isinstance(df_vect, np.ndarray):
            df1 = pd.DataFrame(df_vect)
        else:
            df1 = pd.DataFrame(df_vect.toarray(),columns = pipe.named_steps[\'vectorizer\'].get_feature_names())
        df1 = df1.add_suffix(\'_vect\')
        df = pd.concat([df, df1],axis=1)\n"""""".format(preprocessing_pipe=preprocessing_pipe, text_features=text_features)

            if(learner_type == 'Text Similarity'):
                self.profilerfile += '        df[\''+firstDocFeature+'\'] = textCleaning(df[\''+firstDocFeature+'\'])'
                self.profilerfile += '\n'
                self.profilerfile += '        df[\''+secondDocFeature+'\'] = textCleaning(df[\''+secondDocFeature+'\'])'
                self.profilerfile += '\n'
            if len(normFeatures) > 0 and normalizer != '':
                self.profilerfile += ""        normFeatures = ""+str(normFeatures)
                self.profilerfile += '\n'
                self.profilerfile += '        normalizepipe = joblib.load(os.path.join(os.path.dirname(os.path.abspath(__file__)),\'..\',\'model\',\''+normalizer+'\'))'
                self.profilerfile += '\n'
                self.profilerfile += '        dataColumns=list(df.columns)'
                self.profilerfile += '\n'
                self.profilerfile += '        nonNormFeatures=list(set(dataColumns) - set(normFeatures))'
                self.profilerfile += '\n'
                self.profilerfile += '        dataframe=df[normFeatures]'
                self.profilerfile += '\n'
                self.profilerfile += '        transDf = normalizepipe.transform(dataframe)'
                self.profilerfile += '\n'
                self.profilerfile += '        nontransDF=df[nonNormFeatures].values'
                self.profilerfile += '\n'
                self.profilerfile += '        dataColumns=normFeatures+nonNormFeatures'
                self.profilerfile += '\n'
                self.profilerfile += '        scaledDf = pd.DataFrame(np.hstack((transDf, nontransDF)),columns=dataColumns)'
                self.profilerfile += '\n'
                self.profilerfile += '        df=scaledDf'
                self.profilerfile += '\n'
        else:
            self.profilerfile += '        df=df.dropna()\n'
        self.profilerfile += '        return(df)'
        filename = os.path.join(deploy_path,'script','inputprofiler.py')
        self.log.info('-------> Profiler File Location :'+filename)
        f = open(filename, ""w"",encoding=""utf-8"")
        f.write(str(self.profilerfile))
        f.close()

    def isEnglish(self, s):
        try:
            s.encode(encoding='utf-8').decode('ascii')
        except UnicodeDecodeError:
            return False
        else:
            return True

    def create_selector_file(self,deploy_path,features,pcaModel_pickle_file,bpca_features,apca_features,textFeatures,nonNumericFeatures,numericalFeatures,profiler,targetFeature, model_type,model,config=None):
        cs.create_selector_file(self,deploy_path,features,pcaModel_pickle_file,bpca_features,apca_features,textFeatures,nonNumericFeatures,numericalFeatures,profiler,targetFeature, model_type,model,config)

    def create_init_function_for_regression(self,modelfile):
        self.modelfile += '   def __init__(self):'
        self.modelfile += '\n'
        self.modelfile += ""       self.model = joblib.load(os.path.join(os.path.dirname(__file__),'..','model','""+modelfile+""'))""
        self.modelfile += '\n'

    def create_init_function_for_classification(self,modelfile,classes,learner_type,scoreParam,loss_matrix,optimizer,preprocessing_pipe,modelName,model_type,imageconfig):
        cs.create_init_function_for_classification(self,modelfile,classes,learner_type,scoreParam,loss_matrix,optimizer,preprocessing_pipe,modelName,model_type,imageconfig)

    def create_predict_proba(self,learner_type,method):
        self.modelfile += '   def predict(self,X,features_names):'
        self.modelfile += '\n'
        self.modelfile += '       return self.model.predict_proba(X)'

    def create_forcast(self,method,no_of_prediction):
        self.modelfile += '   def predict(self,X,features_names):'
        self.modelfile += '\n'
        self.modelfile += '       no_of_prediction = '+str(no_of_prediction)
        self.modelfile += '\n'
        self.modelfile += '       lag_order = self.model.k_ar'
        self.modelfile += '\n'
        self.modelfile += '       return self.model.forecast(X.values[-lag_order:],steps=no_of_prediction)'

    def create_predict(self,learner_type,method,model,model_type,threshold,firstDocFeature,secondDocFeature,padding_length,optimizationmethod,sessonal_freq,additional_regressors,feature,modelFeatures,indexFeature,lag_order,scalertransformationFile,datetimeFeature,scoreParam=None):
        scorePrm = scoreParam
        cs.create_predict(self,learner_type,method,model,model_type,threshold,firstDocFeature,secondDocFeature,padding_length,optimizationmethod,sessonal_freq,additional_regressors,feature,modelFeatures,indexFeature,lag_order,scalertransformationFile,datetimeFeature,scorePrm)

    def save_model_deploy(self,outputfolder,modelname):
        #filename = outputfolder+modelname+'.py'
        filename = os.path.join(outputfolder,'script','trained_model.py')
        self.log.info('-------> Model File Location :'+filename)
        f = open(filename, ""w"",encoding=""utf-8"")
        f.write(str(self.modelfile))
        f.close()

    def create_TextCleaner(self,outputfolder):
        profilerPath = os.path.join(outputfolder,'profiler')
        try:
            os.makedirs(profilerPath)
        except OSError:
            self.log.info(""ProfilePath Folder Already Exists"")

        try:
            textprofileFileLocation =  os.path.join(os.path.dirname(os.path.abspath(__file__)),'..','profiler','textDataProfiler.py')
            initFileLocation = os.path.join(os.path.dirname(os.path.abspath(__file__)),'..','profiler','__init__.py')
            shutil.copy2(textprofileFileLocation,profilerPath)
            shutil.copy2(initFileLocation,profilerPath)
            '''
            if(platform.system() == 'Windows'):
                shutil.copy2(os.path.dirname(os.path.abspath(__file__))+'\\..\\profiler\\textDataProfiler.py',profilerPath)
                shutil.copy2(os.path.dirname(os.path.abspath(__file__))+'\\..\\profiler\\__init__.py',profilerPath)
            else:
                shutil.copy2(os.path.dirname(os.path.abspath(__file__))+'/../profiler/textDataProfiler.py',profilerPath)
                shutil.copy2(os.path.dirname(os.path.abspath(__file__))+'/../profiler/__init__.py',profilerPath)
            '''
        except OSError:
            self.log.info(""Copy to Profiler Path Failed"")

    def listToString(self,s):
        str1='['
        for feature in s:
            if(str1 != '['):
                str1 += ','
            str1 += '""'+feature+'""'
        str1+=']'
        return str1

    def print_files(self):
        self.log.info(self.modelfile)

    def create_util_folder(self, deploy_path,learner_type):
        import tarfile
        ext_path = os.path.abspath(os.path.join(os.path.dirname(__file__), '..','utilities'))
        for x in os.listdir(ext_path):
            if x.endswith('.tar'):
                if x not in ['scikit_surprise-1.1.1.dist-info.tar','surprise.tar']:
                    tarPackage = os.path.join(ext_path, x)
                    my_tar = tarfile.open(tarPackage)
                    my_tar.extractall(deploy_path)
                    my_tar.close()
                else:
                    if learner_type == 'RecommenderSystem':
                        tarPackage = os.path.join(ext_path, x)
                        my_tar = tarfile.open(tarPackage)
                        my_tar.extractall(deploy_path)
                        my_tar.close()
    def deploy_model(self,deploy_name,deployJson,learner_type,model_type,model,scoreParam,saved_model,deploy_path,features,profiler,datalocation,output_label,column_merge_flag,textFeatures,numericalFeatures,nonNumericFeatures,preprocessing_pipe,numericToLabel_json,threshold,loss_matrix,optimizer,firstDocFeature,secondDocFeature,padding_length,trained_data_file,dictDiffCount,targetFeature,normalizer,normFeatures,pcaModel_pickle_file,bpca_features,apca_features,optimizationmethod,deployFolder,iterName,iterVersion,wordToNumericFeatures,imageconfig,sessonal_freq,additional_regressors,grouperbyjson,rowfilterexpression,xtrain,profiled_data_file,conversion_method,modelFeatures,indexFeature,lag_order,scalertransformationFile,no_of_prediction,preprocess_pipe,preprocess_out_columns, label_encoder,datetimeFeature,usecaseLocation,config=None):
        try:
            serviceName = '{}{}{}'.format(iterName, '_' if iterVersion != '' else '', iterVersion)
            self.log.info('-------> Deploy Location :'+deploy_path)
            if production.is_supported(model_type.lower()):
                if learner_type == 'Text Similarity':
                    coder = production.get_deployer(learner_type)
                    coder.create_file(deploy_path, preprocessing_pipe, saved_model, firstDocFeature, secondDocFeature)
                elif model_type.lower() in ['classification', 'regression','clustering','timeseriesforecasting']:
                    params = {}
                    params['usecase_name']= iterName
                    params['usecase_ver']= iterVersion
                    params['features']={}
                    params['features']['input_feat'] = config['profiler']['input_features']
                    params['features']['target_feat'] = targetFeature
                    params['features']['text_feat'] = textFeatures
                    params['paths']={}
                    params['paths']['deploy'] = Path(deploy_path)
                    params['paths']['usecase'] = params['paths']['deploy'].parent
                    params['profiler']=config['profiler']
                    if 'code' in config.get('preprocess',{}).keys():
                        params['profiler']['preprocess']=config['preprocess']
                    params['selector']={}
                    params['selector']['reducer']=True if pcaModel_pickle_file else False
                    params['selector']['reducer_file']=pcaModel_pickle_file
                    if pcaModel_pickle_file:
                        params['selector']['input_features']=bpca_features
                        params['selector']['output_features']=apca_features
                    else:
                        params['selector']['input_features']=config['profiler']['input_features']
                        params['selector']['output_features']=features
                    params['training']={}
                    params['training']['algo']= model
                    params['training']['model_file']=saved_model
                    if model_type.lower() == 'timeseriesforecasting':
                        if params['training']['algo'] in ['LSTM','MLP','ENCODER_DECODER_LSTM_MVI_UVO']:
                            params['training']['lag_order'] = int(lag_order)
                            params['training']['scaler_file'] = Path(scalertransformationFile).name
                        elif params['training']['algo'] == 'VAR':
                            params['training']['dictDiffCount'] = dictDiffCount
                            params['training']['no_of_prediction'] = no_of_prediction
                        elif params['training']['algo'] == 'FBPROPHET':
                            params['training']['sessonal_freq'] = sessonal_freq
                            params['training']['additional_regressors'] = additional_regressors
                    self.log.info(params)
                    deployer = production.get_deployer(model_type.lower(), params=params)
                    deployer.run( )
                self.log.info('Status:- |... Model deployment files created')
                self.log.info('Status:- |... Model deployment completed')
                return

            else:
                # for output_formatter.py
                from prediction_package.output_formatter import outputFormatter
                outputObj = outputFormatter()
                outputObj.crate_output_format_file(deploy_path, learner_type, model_type, model, output_label,
                                                   threshold, trained_data_file, dictDiffCount, targetFeature, features,datetimeFeature)
                #for aion_predict.py
                from prediction_package.aion_prediction import aionPrediction
                predictionObj = aionPrediction()
                # print(deploy_path)
                predictionObj.create_prediction_file(deploy_name, deploy_path, learner_type, grouperbyjson,rowfilterexpression,model_type,datetimeFeature)
                # for aion_service.py
                predictionObj.create_model_service(deploy_path, serviceName, model_type)
                # for aion_publish.py
                predictionObj.create_publish_service(usecaseLocation, iterName, iterVersion, model_type)
                if learner_type.lower()==""recommendersystem"":
                    # Task 11190---
                    #For recommender system
                    from prediction_package.recommender_code import generate_recommender_code
                    generate_recommender_code(deploy_path)
                    return
                #self.create_TextCleaner(deploy_path)
            if(len(textFeatures) > 0):
                self.create_TextCleaner(deploy_path)

            self.include_import_file(learner_type,deployJson['method'],scoreParam, model_type,model)

            if((learner_type == 'TS' and model.lower() not in ['lstm','mlp','var']) or  learner_type == 'RecommenderSystem'):
                features=[]

            self.create_class(deploy_name)

            if len(bpca_features) != 0:
                self.create_profiler_file(learner_type,deploy_path,profiler,bpca_features,numericToLabel_json,column_merge_flag,textFeatures,preprocessing_pipe,firstDocFeature,secondDocFeature,normalizer,normFeatures,wordToNumericFeatures,conversion_method,model_type,preprocess_pipe,preprocess_out_columns, label_encoder, model, config,datetimeFeature)
            else:
                self.create_profiler_file(learner_type,deploy_path,profiler,features,numericToLabel_json,column_merge_flag,textFeatures,preprocessing_pipe,firstDocFeature,secondDocFeature,normalizer,normFeatures,wordToNumericFeatures,conversion_method,model_type,preprocess_pipe,preprocess_out_columns, label_encoder, model, config,datetimeFeature)

            self.create_selector_file(deploy_path,features,pcaModel_pickle_file,bpca_features,apca_features,textFeatures,nonNumericFeatures,numericalFeatures,profiler,targetFeature,model_type, model,config)
            self.create_init_function_for_classification(saved_model,'classes',learner_type,scoreParam,loss_matrix,optimizer,preprocessing_pipe,model,model_type,imageconfig)
        except Exception as e:
            print(e)
            import traceback
            exception_type, exception_object, exception_traceback = sys.exc_info()
            filename = exception_traceback.tb_frame.f_code.co_filename
            line_number = exception_traceback.tb_lineno

            self.log.info(""Exception type: "", exception_type)
            self.log.info(""File name: "", filename)
            self.log.info(""Line number: "", line_number)
            self.log.info(""multivariate model build error traceback: \n""+str(traceback.print_exc()))
            raise Exception(e)
        #print(model)
        if(model.lower() == 'var'):
            self.log.info(""Create Forecast Function"")
            self.create_forcast(deployJson['method'],no_of_prediction)
        else:
            self.create_predict(learner_type,deployJson['method'],model,model_type,threshold,firstDocFeature,secondDocFeature,padding_length,optimizationmethod,sessonal_freq,additional_regressors,features,modelFeatures,indexFeature,lag_order,scalertransformationFile,datetimeFeature,scoreParam)
        self.save_model_deploy(deploy_path,deploy_name)


        if(len(textFeatures) > 0):
            if model_type.lower() == 'classification' or model_type.lower() == 'regression' or model_type.lower() == 'timeseriesforecasting':
                predictionObj.create_text_drift_file(deploy_path,textFeatures,targetFeature,model_type)
                if  model_type.lower() == 'classification':
                    predictionObj.create_classification_text_performance_file(deploy_path,textFeatures,targetFeature)
                elif model_type.lower() == 'regression':
                    predictionObj.create_regression_text_performance_file(deploy_path,textFeatures,targetFeature)

        else: 
            if model_type.lower() == 'classification' or model_type.lower() == 'regression' or model_type.lower() == 'timeseriesforecasting': #task 11997
                predictionObj.create_drift_file(deploy_path,features,targetFeature,model_type)
                if  model_type.lower() == 'classification':
                    predictionObj.create_classification_performance_file(deploy_path,features,targetFeature)
                elif model_type.lower() == 'regression':
                    predictionObj.create_regression_performance_file(deploy_path,features,targetFeature)

        self.log.info('Status:- |... Model deployment files created')
        self.crate_readme_file(deploy_path,saved_model,features,deployJson['method'])
        from prediction_package.requirements import requirementfile
        requirementfile(deploy_path,model,textFeatures,learner_type)
        os.chdir(deploy_path)
        textdata = False
        if(learner_type == 'Text Similarity' or len(textFeatures) > 0):
            textdata = True
        self.create_util_folder(deploy_path,learner_type)
        self.log.info('Status:- |... Model deployment completed')


    def deployTSum(self,deploy_path,preTrainedModellocation):
        def create_predict(preTrainedModellocation):

            text = f""""""
import sys
import json            
def predict(data):
    try:
        import pandas as pd
        import numpy as np
        from pathlib import Path
        keywordsFile =Path(__file__).parent/'data'/'keywordDataBase.csv'
        outputSumFile =Path(__file__).parent/'data'/'summarizedOutput.csv'
        fileName=data
        #print(""fileName---"",fileName)
        inputDataFileFrame = pd.DataFrame()
        inputDataFileFrame['Sentences']=""""
        rowIndex=0
        if fileName.endswith("".pdf""):
            from pypdf import PdfReader
            reader = PdfReader(fileName)
            number_of_pages = len(reader.pages)
            text=""""
            textOutputForFile=""""    
            OrgTextOutputForFile=""""                
            for i in range(number_of_pages) :
                page = reader.pages[i]
                text1 = page.extract_text()
                text=text+text1
            import nltk
            tokens = nltk.sent_tokenize(text)
            for sentence in tokens:
                sentence=sentence.replace(""\\n"", "" "")                                
                if   (len(sentence.split()) < 4 ) or (len(str(sentence.split(',')).split()) < 8)or (any(chr.isdigit() for chr in sentence)) :
                    continue
                inputDataFileFrame.at[rowIndex,'Sentences']=str(sentence.strip())              
                rowIndex=rowIndex+1
        if fileName.endswith("".txt""):
            data=[]
            with open(fileName, ""r"",encoding=""utf-8"") as f:
                data.append(f.read())
            str1 = """"
            for ele in data:
                str1 += ele
            sentences=str1.split(""."")
            count=0
            for sentence in sentences:
                count += 1
                inputDataFileFrame.at[rowIndex,'Sentences']=str(sentence.strip())
                rowIndex=rowIndex+1
        inputDataFileFrame['LabelByKw']=0            
        #print(inputDataFileFrame)
        keywordsFileFrame=pd.read_csv(keywordsFile,encoding='utf-8')
        Keyword_list = keywordsFileFrame['Keyword'].tolist()
        for i in inputDataFileFrame.index:
            for x in Keyword_list:
                if (str(inputDataFileFrame[""Sentences""][i])).lower().find(x) != -1:
                    inputDataFileFrame['LabelByKw'][i]=1
                    break
        import pickle
        from sklearn.preprocessing import LabelEncoder
        pkl_filename='classificationModel.sav'
        pkl_filename =Path(__file__).parent/'model'/'classificationModel.sav'
        with open(pkl_filename, 'rb') as file:
            pickle_model = pickle.load(file)
        testsample=inputDataFileFrame[[""Sentences""]]
        labelencoder = LabelEncoder()
        testsample[""Sentences""] = labelencoder.fit_transform(testsample[""Sentences""])
        y_predicted = pickle_model.predict_proba(testsample)

        df=pd.DataFrame({{""SectionName"":np.nan,""Sentences"":np.nan, ""Predicted_Prob"":y_predicted[:,1]}})
        df['LabelByModel']=df['Predicted_Prob'].apply(lambda x: 0 if x <= 0.5 else 1 )
        inputDataFileFrame['LabelByModel']= df['LabelByModel']
        textToSum=""""
        for i in inputDataFileFrame.index:
            if (inputDataFileFrame['LabelByModel'][i] or inputDataFileFrame['LabelByKw'][i]) :
                textToSum=textToSum+"" ""+inputDataFileFrame[""Sentences""][i]
        stdir=r""{preTrainedModellocation}""               
        stdir = stdir.replace('\\\\', '\\\\\\\\')
        from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
        modelbert = AutoModelForSeq2SeqLM.from_pretrained(stdir,local_files_only=True)
        tokenizer = AutoTokenizer.from_pretrained(stdir,local_files_only=True)
        inputs = tokenizer(""summarize: "" + textToSum, return_tensors=""pt"", max_length=512, truncation=True)
        outputs = modelbert.generate(inputs[""input_ids""], max_length=512, min_length=140, length_penalty=2.0, num_beams=4, early_stopping=True)
        summarizedOutputOfSection= tokenizer.decode(outputs[0])
        summarizedOutputOfSection=summarizedOutputOfSection.replace(""</s>"","""")
        summarizedOutputOfSection=summarizedOutputOfSection.replace(""<s>"","""")
        sumDatadata = [summarizedOutputOfSection]
        df = pd.DataFrame(sumDatadata, columns=['textSum'])
        df.to_csv(outputSumFile,encoding='utf-8')
        outputjson = {{""status"":""SUCCESS"",""msg"":""Press Download button to download summarized output"",""data"":summarizedOutputOfSection}}   
        print(""predictions:"",json.dumps(outputjson))
        return (json.dumps(outputjson))
    except KeyError as e:
        output = {{""status"":""FAIL"",""message"":str(e).strip('""')}}
        print(""predictions:"",json.dumps(output))
        return (json.dumps(output))
    except Exception as e:
        output = {{""status"":""FAIL"",""message"":str(e).strip('""')}}
        print(""predictions:"",json.dumps(output))
        return (json.dumps(output))
        
if __name__ == ""__main__"":
    output = predict(sys.argv[1])
        """"""
            return text
        deploy_path = Path(deploy_path)
        aion_prediction = deploy_path/'aion_predict.py'

        with open(aion_prediction, 'w') as f:
            f.write(create_predict(preTrainedModellocation))
"
recommender_code.py,"#task 11190: Item based Recommender system---Usnish
import os
def generate_recommender_code(deployPath):
    code = """"""
import pandas as pd
import numpy as np
import os
ITEMID = 'itemId'
DATA_FOLDER = 'data'
USER_ITEM_MATRIX = 'user_item_matrix.csv'
ITEM_SIMILARITY_MATRIX = 'item_similarity_matrix.csv'
RATING = 'rating'
SIMILARITY_SCORE = 'similarity_score'

class collaborative_filter(object):
    def __init__(self):
        self.matrix = pd.read_csv(os.path.join(os.path.dirname(__file__), '..', DATA_FOLDER, USER_ITEM_MATRIX),index_col=0)
        self.matrix.index.name = ITEMID
        self.item_similarity_cosine = pd.read_csv(os.path.join(os.path.dirname(__file__), '..', DATA_FOLDER, ITEM_SIMILARITY_MATRIX))
        self.item_similarity_cosine.index.name = ITEMID
        self.item_similarity_cosine.columns.name = ITEMID
    def item_based_rec(self,picked_userid,  number_of_recommendations,number_of_similar_items=5):
        import operator
        if not isinstance(picked_userid,str):
            picked_userid = str(picked_userid)
        if picked_userid not in self.matrix.columns:
            raise KeyError(""UserID Does Not Exist"")
        # Movies that the target user has not watched
        try:
            picked_userid_unwatched = pd.DataFrame(self.matrix[picked_userid].isna()).reset_index()
            picked_userid_unwatched = picked_userid_unwatched[picked_userid_unwatched[picked_userid] == True][ITEMID].values.tolist()
        
            # Movies that the target user has watched
            picked_userid_watched = pd.DataFrame(self.matrix[picked_userid].dropna(axis=0, how='all') \
                                             .sort_values(ascending=False)) \
                                            .reset_index() \
            .rename(columns={picked_userid: 'rating'})

            # Dictionary to save the unwatched movie and predicted rating pair
            rating_prediction = {}
            # Loop through unwatched movies
            for picked_movie in picked_userid_unwatched:
                if not isinstance(picked_movie,str):
                    picked_movie = str(picked_movie)
                # Calculate the similarity score of the picked movie with other movies
                try:
                    picked_movie_similarity_score = self.item_similarity_cosine[[picked_movie]].reset_index().rename(
                        columns={picked_movie: SIMILARITY_SCORE})
                    # Rank the similarities between the picked user watched movie and the picked unwatched movie.
                    picked_userid_watched_similarity = pd.merge(left=picked_userid_watched,
                                                                right=picked_movie_similarity_score,
                                                                on=ITEMID,
                                                                how='inner') \
                                                           .sort_values(SIMILARITY_SCORE, ascending=False)[
                                                       :number_of_similar_items]
                    # Calculate the predicted rating using weighted average of similarity scores and the ratings from picked user
                    try:
                        predicted_rating = round(np.average(picked_userid_watched_similarity[RATING],weights=picked_userid_watched_similarity[SIMILARITY_SCORE]), 6)
                    except Exception as e:
                        predicted_rating = 0
                    # Save the predicted rating in the dictionary
                    
                    rating_prediction[picked_movie] = predicted_rating
                except Exception as e:
                    rating_prediction[picked_movie] = 0
                # Return the top recommended movies

            return sorted(rating_prediction.items(), key=operator.itemgetter(1), reverse=True)[:number_of_recommendations]
        except Exception as e:
            print(e)
            raise KeyError(str(e))
    def predict(self,X):
        predictions = []
        for index,row in X.iterrows():
           score = self.item_based_rec(int(row[""uid""]),int(row[""numberOfRecommendation""]))
           df = pd.DataFrame(score,columns=['ItemId','Ratings'])
           predictions.append(df)
        return predictions""""""
    filename = os.path.join(deployPath, 'script', 'item_recommendation.py')
    # print(deploy_path)
    f = open(filename, ""wb"")

    f.write(str(code).encode('utf8'))
    f.close()
"
aion_prediction.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import os
import platform
import json
import shutil
import logging

class aionPrediction:

    def __init__(self):
        self.log = logging.getLogger('eion')        
        
    def create_optimus_prediction_file (self,classname,deploy_path,learner_type):
        self.predictionFile = 'import warnings'
        self.predictionFile += '\n'         
        self.predictionFile += 'warnings.filterwarnings(""ignore"")'
        self.predictionFile += '\n'
        self.predictionFile += 'import json'
        self.predictionFile += '\n'         
        self.predictionFile += 'import os'
        self.predictionFile += '\n'
        self.predictionFile += 'import sys'
        self.predictionFile += '\n'     
        self.predictionFile += 'import pandas as pd'
        self.predictionFile += '\n'     
        self.predictionFile += 'from pandas import json_normalize'
        self.predictionFile += '\n'
        self.predictionFile += 'from importlib import import_module'
        self.predictionFile += '\n'
        self.predictionFile += 'import importlib.util'
        self.predictionFile += '\n'
        self.predictionFile += 'class prediction:'
        self.predictionFile += '\n'
        self.predictionFile += '    def predict_from_json(self,json_data):'
        self.predictionFile += '\n'
        self.predictionFile += '        data = json.loads(json_data)'
        self.predictionFile += '\n'
        self.predictionFile += '        output=self.predict(data)'
        self.predictionFile += '\n'
        self.predictionFile += '        print(""predictions:"",output)'
        self.predictionFile += '\n'
        self.predictionFile += '\n'
        self.predictionFile += '    def predict_from_file(self,filename):'
        self.predictionFile += '\n'
        self.predictionFile += '        with open(filename,\'r\',encoding=\'utf-8\') as f:'
        self.predictionFile += '\n'
        self.predictionFile += '            data = json.load(f)'
        self.predictionFile += '\n'
        self.predictionFile += '            output=self.predict(data)'
        self.predictionFile += '\n'
        self.predictionFile += '            print(""predictions:"",output)'
        self.predictionFile += '\n'
        self.predictionFile += '\n'
        self.predictionFile += '    def predict(self,json_data):'
        self.predictionFile += '\n'
        self.predictionFile += '        try:'
        self.predictionFile += '\n'
        #self.predictionFile += '           jsonData = json.loads(json_data)'
        self.predictionFile += '            jsonData=json_data'
        self.predictionFile += '\n'
        self.predictionFile += '            model_obj = importlib.util.spec_from_file_location(""module.name"", os.path.dirname(os.path.abspath(__file__))+""/trained_model.py"")'
        self.predictionFile += '\n'
        self.predictionFile += '            model = importlib.util.module_from_spec(model_obj)'
        self.predictionFile += '\n'
        self.predictionFile += '            model_obj.loader.exec_module(model)'
        self.predictionFile += '\n'
        #if(learner_type != 'TextML'):  
        self.predictionFile += '            profiler_obj = importlib.util.spec_from_file_location(""module.name"",  os.path.dirname(os.path.abspath(__file__))+""/inputprofiler.py"")'
        self.predictionFile += '\n'
        self.predictionFile += '            inputprofiler = importlib.util.module_from_spec(profiler_obj)'
        self.predictionFile += '\n'
        self.predictionFile += '            profiler_obj.loader.exec_module(inputprofiler)'
        self.predictionFile += '\n'
            
        self.predictionFile += '            selector_obj = importlib.util.spec_from_file_location(""module.name"",  os.path.dirname(os.path.abspath(__file__))+""/selector.py"")'
        self.predictionFile += '\n'
        self.predictionFile += '            selector = importlib.util.module_from_spec(selector_obj)'
        self.predictionFile += '\n'
        self.predictionFile += '            selector_obj.loader.exec_module(selector)'
        self.predictionFile += '\n'

        self.predictionFile += '            output_format_obj = importlib.util.spec_from_file_location(""module.name"",  os.path.dirname(os.path.abspath(__file__))+""/output_format.py"")'
        self.predictionFile += '\n'
        self.predictionFile += '            output_format = importlib.util.module_from_spec(output_format_obj)'
        self.predictionFile += '\n'
        self.predictionFile += '            output_format_obj.loader.exec_module(output_format)'
        self.predictionFile += '\n'
        
        self.predictionFile += '            df = json_normalize(jsonData)'
        self.predictionFile += '\n'
        self.predictionFile += '            df0 = df.copy()'
        self.predictionFile += '\n'
        #if(learner_type != 'TextML'):
        self.predictionFile += '            profilerobj = inputprofiler.inputprofiler()'
        self.predictionFile += '\n'
        self.predictionFile += '            df = profilerobj.apply_profiler(df)'
        self.predictionFile += '\n'
        self.predictionFile += '            selectobj = selector.selector()'
        self.predictionFile += '\n'
        self.predictionFile += '            df = selectobj.apply_selector(df)'
        self.predictionFile += '\n'
        self.predictionFile += '            output = model.trained_model().predict(df,"""")'
        self.predictionFile += '\n'
        self.predictionFile += '            outputobj = output_format.output_format()'
        self.predictionFile += '\n'
        self.predictionFile += '            output = outputobj.apply_output_format(df0,output)'
        #self.predictionFile += '\n'
        #self.predictionFile += '           print(output)'
        self.predictionFile += '\n'
        self.predictionFile += '            return output'
        self.predictionFile += '\n'
        self.predictionFile += '        except KeyError as e:'
        self.predictionFile += '\n'
        self.predictionFile += '            output = {""status"":""FAIL"",""message"":str(e).strip(\'""\')}'
        self.predictionFile += '\n'
        self.predictionFile += '            return json.dumps(output)'
        self.predictionFile += '\n'
        self.predictionFile += '        except Exception as e:'
        self.predictionFile += '\n'
        self.predictionFile += '            output = {""status"":""FAIL"",""message"":str(e).strip(\'""\')}'
        self.predictionFile += '\n'
        self.predictionFile += '            return json.dumps(output)'
        self.predictionFile += '\n'
        self.predictionFile += '\n'
        self.predictionFile += 'if __name__ == ""__main__"":'
        self.predictionFile += '\n'
        self.predictionFile += '    predictobj = prediction()'
        self.predictionFile += '\n'     
        self.predictionFile += '    predictobj.predict_from_file(sys.argv[1])'
        self.predictionFile += '\n' 
            
        
        filename = os.path.join(deploy_path,'prediction.py')
        f = open(filename, ""wb"")
        f.write(str(self.predictionFile).encode('utf8'))
        f.close() 
    
    def create_text_drift_file(self,deploy_path,features,target,model_type): #task-14549
        self.predictionFile = 'import warnings'
        self.predictionFile += '\n'         
        self.predictionFile += 'warnings.filterwarnings(""ignore"")'
        self.predictionFile += '\n'
        self.predictionFile += 'import json'
        self.predictionFile += '\n'         
        self.predictionFile += 'import os'
        self.predictionFile += '\n'
        self.predictionFile += 'import sys'
        self.predictionFile += '\n'     
        self.predictionFile += 'import pandas as pd'
        self.predictionFile += '\n'
        self.predictionFile += 'from monitoring import check_drift'
        self.predictionFile += '\n'
        self.predictionFile += 'def drift(data):'
        self.predictionFile += '\n'
        self.predictionFile += '    try:'
        self.predictionFile += '\n'
        self.predictionFile += '        if os.path.splitext(data)[1] == "".json"":'
        self.predictionFile += '\n'
        self.predictionFile += '            with open(data,\'r\',encoding=\'utf-8\') as f:'
        self.predictionFile += '\n'
        self.predictionFile += '                jsonData = json.load(f)'
        self.predictionFile += '\n'
        self.predictionFile += '        else:'
        self.predictionFile += '\n'
        self.predictionFile += '            jsonData = json.loads(data)'     
        self.predictionFile += '\n'        
        self.predictionFile += '        jsonData[\'features\'] = \''+"","".join([feature for feature in features])+'\''
        self.predictionFile += '\n'
        self.predictionFile += '        jsonData[\'target\'] = \''+target+'\''
        self.predictionFile += '\n'
        if  model_type.lower() != 'timeseriesforecasting': #task 11997       
            self.predictionFile += '        htmlfilepath=evidently_details(jsonData)'
            self.predictionFile += '\n'        
        else:            
            self.predictionFile += '        htmlfilepath=\'\''        
            self.predictionFile += '\n'            
        self.predictionFile += '        jsonData = json.dumps(jsonData)'
        self.predictionFile += '\n'              
        self.predictionFile += '        output = check_drift(jsonData)'
        self.predictionFile += '\n'
        self.predictionFile += '        output = json.loads(output)'
        self.predictionFile += '\n'
        self.predictionFile += '        output[\'htmlPath\'] = str(htmlfilepath)'        
        self.predictionFile += '\n'
        self.predictionFile += '        print(""drift:"", json.dumps(output))'
        self.predictionFile += '\n'        
        self.predictionFile += '        return(output)'
        self.predictionFile += '\n'
        self.predictionFile += '    except KeyError as e:'
        self.predictionFile += '\n'
        self.predictionFile += '        output = {""status"":""FAIL"",""message"":str(e).strip(\'""\')}'
        self.predictionFile += '\n'
        self.predictionFile += '        print(""drift:"",json.dumps(output))'
        self.predictionFile += '\n'
        self.predictionFile += '        return (json.dumps(output))'
        self.predictionFile += '\n'
        self.predictionFile += '    except Exception as e:'
        self.predictionFile += '\n'
        self.predictionFile += '        output = {""status"":""FAIL"",""message"":str(e).strip(\'""\')}'
        self.predictionFile += '\n'
        self.predictionFile += '        print(""drift:"",json.dumps(output))'
        self.predictionFile += '\n'
        self.predictionFile += '        return (json.dumps(output))'
        self.predictionFile += '\n'
        if  model_type.lower() != 'timeseriesforecasting': #task 11997        
            self.predictionFile += 'def evidently_details(deployJson):'
            self.predictionFile += '\n'
            self.predictionFile += '    features = deployJson[\'features\'].split(\',\')'
            self.predictionFile += '\n'
            self.predictionFile += '    target = deployJson[\'target\']'
            self.predictionFile += '\n'
            self.predictionFile += """"""\
    try:
        from evidently.report import Report
        from evidently.metrics import TextDescriptorsDriftMetric, ColumnDriftMetric
        from evidently.pipeline.column_mapping import ColumnMapping
        from sklearn.preprocessing import LabelEncoder
        historicaldataFrame=pd.read_csv(deployJson['trainingDataLocation'],skipinitialspace = True,na_values=['-','?'])
        currentdataFrame=pd.read_csv(deployJson['currentDataLocation'],skipinitialspace = True,na_values=['-','?'])
        historicaldataFrame.columns = historicaldataFrame.columns.str.strip()
        currentdataFrame.columns = currentdataFrame.columns.str.strip()   
        hdf = historicaldataFrame.dropna(subset=features)
        cdf = currentdataFrame.dropna(subset=features)
        hdf['Text_Features'] = hdf[features].apply(""-"".join, axis=1)
        cdf['Text_Features'] = cdf[features].apply(""-"".join, axis=1)
        hdf['target'] = historicaldataFrame[target]
        cdf['target'] = currentdataFrame[target]
        le = LabelEncoder()
        le.fit(hdf['target'])            
        hdf['target'] = le.transform(hdf['target'])
        le.fit(cdf['target'])            
        cdf['target'] = le.transform(cdf['target'])
        hd = hdf[['Text_Features', 'target']]
        cd = cdf[['Text_Features', 'target']]
        column_mapping = ColumnMapping()
        column_mapping.target = 'target'
        column_mapping.prediction = 'target'
        column_mapping.text_features = ['Text_Features']
        column_mapping.numerical_features = []
        column_mapping.categorical_features = []
        performance_report = Report(metrics=[ColumnDriftMetric('target'),TextDescriptorsDriftMetric(column_name='Text_Features')])
        performance_report.run(reference_data=hd, current_data=cd,column_mapping=column_mapping)
        report = os.path.join(os.path.dirname(os.path.abspath(__file__)),""log"",""My_report.html"")
        performance_report.save_html(report)
        return(report)
    except Exception as e:
        print('Error: ', e)
        return('NA')""""""        
        
            self.predictionFile += '\n'
        self.predictionFile += 'if __name__ == ""__main__"":'
        self.predictionFile += '\n'
        self.predictionFile += '    output = drift(sys.argv[1])'
        filename = os.path.join(deploy_path,'aion_ipdrift.py')
        f = open(filename, ""wb"")
        f.write(str(self.predictionFile).encode('utf8'))
        f.close()

    def create_drift_file(self,deploy_path,features,target,model_type):
        self.predictionFile = 'import warnings'
        self.predictionFile += '\n'         
        self.predictionFile += 'warnings.filterwarnings(""ignore"")'
        self.predictionFile += '\n'
        self.predictionFile += 'import json'
        self.predictionFile += '\n'         
        self.predictionFile += 'import os'
        self.predictionFile += '\n'
        self.predictionFile += 'import sys'
        self.predictionFile += '\n'     
        self.predictionFile += 'import pandas as pd'
        self.predictionFile += '\n'
        self.predictionFile += 'from monitoring import check_drift'
        self.predictionFile += '\n'
        self.predictionFile += 'from pandas import json_normalize'
        self.predictionFile += '\n'    
        self.predictionFile += 'from script.inputprofiler import inputprofiler'
        self.predictionFile += '\n'
        self.predictionFile += 'def drift(data):'
        self.predictionFile += '\n'
        self.predictionFile += '    try:'
        self.predictionFile += '\n'
        self.predictionFile += '        if os.path.splitext(data)[1] == "".json"":'
        self.predictionFile += '\n'
        self.predictionFile += '            with open(data,\'r\',encoding=\'utf-8\') as f:'
        self.predictionFile += '\n'
        self.predictionFile += '                jsonData = json.load(f)'
        self.predictionFile += '\n'
        self.predictionFile += '        else:'
        self.predictionFile += '\n'
        self.predictionFile += '            jsonData = json.loads(data)'     
        self.predictionFile += '\n'        
        self.predictionFile += '        jsonData[\'features\'] = \''+"","".join([feature for feature in features])+'\''
        self.predictionFile += '\n'
        self.predictionFile += '        jsonData[\'target\'] = \''+target+'\''
        self.predictionFile += '\n'
        if  model_type.lower() != 'timeseriesforecasting': #task 11997       
            self.predictionFile += '        htmlfilepath=evidently_details(jsonData)'
            self.predictionFile += '\n'        
        else:            
            self.predictionFile += '        htmlfilepath=\'\''        
            self.predictionFile += '\n'            
        self.predictionFile += '        jsonData = json.dumps(jsonData)'
        self.predictionFile += '\n'              
        self.predictionFile += '        output = check_drift(jsonData)'
        self.predictionFile += '\n'
        self.predictionFile += '        output = json.loads(output)'
        self.predictionFile += '\n'
        self.predictionFile += '        output[\'htmlPath\'] = str(htmlfilepath)'        
        self.predictionFile += '\n'
        self.predictionFile += '        output = json.dumps(output)'
        self.predictionFile += '\n'
        self.predictionFile += '        print(""drift:"",output)'
        self.predictionFile += '\n'        
        self.predictionFile += '        return(output)'
        self.predictionFile += '\n'
        self.predictionFile += '    except KeyError as e:'
        self.predictionFile += '\n'
        self.predictionFile += '        output = {""status"":""FAIL"",""message"":str(e).strip(\'""\')}'
        self.predictionFile += '\n'
        self.predictionFile += '        print(""drift:"",json.dumps(output))'
        self.predictionFile += '\n'
        self.predictionFile += '        return (json.dumps(output))'
        self.predictionFile += '\n'
        self.predictionFile += '    except Exception as e:'
        self.predictionFile += '\n'
        self.predictionFile += '        output = {""status"":""FAIL"",""message"":str(e).strip(\'""\')}'
        self.predictionFile += '\n'
        self.predictionFile += '        print(""drift:"",json.dumps(output))'
        self.predictionFile += '\n'
        self.predictionFile += '        return (json.dumps(output))'
        self.predictionFile += '\n'
        if  model_type.lower() != 'timeseriesforecasting': #task 11997        
            self.predictionFile += 'def evidently_details(deployJson):'
            self.predictionFile += '\n'
            self.predictionFile += '    features = deployJson[\'features\'].split(\',\')'
            self.predictionFile += '\n'
            self.predictionFile += '    target = deployJson[\'target\']'
            self.predictionFile += '\n'
            self.predictionFile += """"""\
    try:
        from evidently.report import Report
        from evidently.metric_preset import DataDriftPreset
        historicaldataFrame=pd.read_csv(deployJson['trainingDataLocation'],skipinitialspace = True,na_values=['-','?'])
        currentdataFrame=pd.read_csv(deployJson['currentDataLocation'],skipinitialspace = True,na_values=['-','?'])
        historicaldataFrame.columns = historicaldataFrame.columns.str.strip()
        currentdataFrame.columns = currentdataFrame.columns.str.strip()
        profilerobj = inputprofiler()
        historicaldataFramep = profilerobj.run(historicaldataFrame)
        currentdataFramep = profilerobj.run(currentdataFrame)        
        hdf = historicaldataFramep[features]
        cdf = currentdataFramep[features]
        hdf['target'] = historicaldataFrame[target]
        cdf['target'] = currentdataFrame[target]
        data_drift_report = Report(metrics = [DataDriftPreset()])
        data_drift_report.run(reference_data=hdf,current_data=cdf,column_mapping = None)
        report = os.path.join(os.path.dirname(os.path.abspath(__file__)),'log','my_report.html')
        data_drift_report.save_html(report)
        return(report)
    except Exception as e:
        print('Error')
        return('NA')""""""        
        
            self.predictionFile += '\n'
        self.predictionFile += 'if __name__ == ""__main__"":'
        self.predictionFile += '\n'
        self.predictionFile += '    output = drift(sys.argv[1])'
        filename = os.path.join(deploy_path,'aion_ipdrift.py')
        f = open(filename, ""wb"")
        f.write(str(self.predictionFile).encode('utf8'))
        f.close()    
        
    def create_prediction_file(self,classname,deploy_path,learner_type,grouperbyjson,rowfilterexpression,model_type,datetimeFeature):
        self.predictionFile = 'import warnings'
        self.predictionFile += '\n'         
        self.predictionFile += 'warnings.filterwarnings(""ignore"")'
        self.predictionFile += '\n'
        self.predictionFile += 'import json'
        self.predictionFile += '\n'         
        self.predictionFile += 'import os'
        self.predictionFile += '\n'
        self.predictionFile += 'import sys'
        self.predictionFile += '\n'     
        self.predictionFile += 'import pandas as pd'
        self.predictionFile += '\n'     
        self.predictionFile += 'from pandas import json_normalize'
        self.predictionFile += '\n'

        if(learner_type.lower() != 'recommendersystem'): #task 11190
            self.predictionFile += 'from script.selector import selector'
            self.predictionFile += '\n'
            self.predictionFile += 'from script.inputprofiler import inputprofiler'
            self.predictionFile += '\n'
            #self.predictionFile += 'from '+classname+' import '+classname
            self.predictionFile += 'from script.trained_model import trained_model'
            self.predictionFile += '\n'
        else:
            self.predictionFile += 'from script.item_recommendation import collaborative_filter'
            self.predictionFile += '\n'

        self.predictionFile += 'from script.output_format import output_format'
        self.predictionFile += '\n'
        if (learner_type != 'RecommenderSystem'): #task 11190
            self.predictionFile += 'profilerobj = inputprofiler()'
            self.predictionFile += '\n'
            self.predictionFile += 'selectobj = selector()'
            self.predictionFile += '\n'
            self.predictionFile += 'modelobj = trained_model()'
            self.predictionFile += '\n'
        else:
            self.predictionFile += 'colabobj = collaborative_filter()'
            self.predictionFile += '\n'

        self.predictionFile += 'outputobj = output_format()'
        self.predictionFile += '\n'        
        self.predictionFile += 'def predict(data):'
        self.predictionFile += '\n'
        self.predictionFile += '    try:'
        self.predictionFile += '\n'
        self.predictionFile += '        if os.path.splitext(data)[1] == "".tsv"":'
        self.predictionFile += '\n'
        self.predictionFile += '            df=pd.read_csv(data,encoding=\'utf-8\',sep=\'\\t\',skipinitialspace = True,na_values=[\'-\',\'?\'])'
        self.predictionFile += '\n'
        self.predictionFile += '        elif os.path.splitext(data)[1] == "".csv"":'
        self.predictionFile += '\n'
        self.predictionFile += '            df=pd.read_csv(data,encoding=\'utf-8\',skipinitialspace = True,na_values=[\'-\',\'?\'])'
        self.predictionFile += '\n'
        self.predictionFile += '        elif os.path.splitext(data)[1] == "".dat"":'
        self.predictionFile += '\n'
        self.predictionFile += '            df=pd.read_csv(data,encoding=\'utf-8\',skipinitialspace = True,na_values=[\'-\',\'?\'])'
        self.predictionFile += '\n'
        self.predictionFile += '        else:'
        self.predictionFile += '\n'
        self.predictionFile += '            if os.path.splitext(data)[1] == "".json"":'
        self.predictionFile += '\n'
        self.predictionFile += '                with open(data,\'r\',encoding=\'utf-8\') as f:'
        self.predictionFile += '\n'
        self.predictionFile += '                    jsonData = json.load(f)'
        self.predictionFile += '\n'
        self.predictionFile += '            else:'
        self.predictionFile += '\n'
        self.predictionFile += '                jsonData = json.loads(data)'
        self.predictionFile += '\n'
        self.predictionFile += '            df = json_normalize(jsonData)'
        self.predictionFile += '\n'
        self.predictionFile += '        df.rename(columns=lambda x: x.strip(), inplace=True)'       
        self.predictionFile += '\n'
        if str(rowfilterexpression) != '':
            self.predictionFile += '        filterexpression = ""'+rowfilterexpression+'""'
            self.predictionFile += '\n'
            self.predictionFile += '        df = df.query(filterexpression)'
            self.predictionFile += '\n'
        #print(grouperbyjson)
        if str(grouperbyjson) != '':
            datetime = grouperbyjson['datetime']
            unit = grouperbyjson['unit']
            if unit == '':
                self.predictionFile += '        df[\'date\'] = pd.to_datetime(df[\''+datetime+'\'])'
                self.predictionFile += '\n'
            else:
                self.predictionFile += '        df[\'date\'] = pd.to_datetime(df[\''+datetime+'\'],unit=\''+unit+'\')'
                self.predictionFile += '\n'
            self.predictionFile += '        df = df.reset_index()'
            self.predictionFile += '\n'
            self.predictionFile += '        df.set_index(\'date\',inplace=True)'
            self.predictionFile += '\n'
            self.predictionFile += '        df = df.'+grouperbyjson['groupbystring']
            self.predictionFile += '\n'
            self.predictionFile += '        df.columns = df.columns.droplevel(0)'
            self.predictionFile += '\n'
            self.predictionFile += '        df = df.reset_index()'
            self.predictionFile += '\n'
            
        self.predictionFile += '        df0 = df.copy()'
        self.predictionFile += '\n'

        if(learner_type != 'RecommenderSystem'): #task 11190
            if model_type.lower() == 'anomaly_detection' and datetimeFeature != '' and datetimeFeature.lower() != 'na':
                self.predictionFile += '        df,datetimeFeature = profilerobj.apply_profiler(df)'
                self.predictionFile += '\n'
            else:
                self.predictionFile += '        df = profilerobj.apply_profiler(df)'
                self.predictionFile += '\n'
            self.predictionFile += '        df = selectobj.apply_selector(df)'
            self.predictionFile += '\n'
            #self.predictionFile += '        modelobj = '+classname+'()'
            self.predictionFile += '        output = modelobj.predict(df,"""")'
            self.predictionFile += '\n'
        else:
            self.predictionFile += '        output = colabobj.predict(df)'
            self.predictionFile += '\n'        
        if model_type.lower() == 'anomaly_detection' and datetimeFeature != '' and datetimeFeature.lower() != 'na':
            self.predictionFile += '        output = outputobj.apply_output_format(df0,output,datetimeFeature)'
            self.predictionFile += '\n'
        else:
            self.predictionFile += '        output = outputobj.apply_output_format(df0,output)'
            self.predictionFile += '\n'
        self.predictionFile += '        print(""predictions:"",output)'
        self.predictionFile += '\n'
        self.predictionFile += '        return(output)'
        self.predictionFile += '\n'
        self.predictionFile += '    except KeyError as e:'
        self.predictionFile += '\n'
        self.predictionFile += '        output = {""status"":""FAIL"",""message"":str(e).strip(\'""\')}'
        self.predictionFile += '\n'
        self.predictionFile += '        print(""predictions:"",json.dumps(output))'
        self.predictionFile += '\n'
        self.predictionFile += '        return (json.dumps(output))'
        self.predictionFile += '\n'
        self.predictionFile += '    except Exception as e:'
        self.predictionFile += '\n'
        self.predictionFile += '        output = {""status"":""FAIL"",""message"":str(e).strip(\'""\')}'
        self.predictionFile += '\n'
        self.predictionFile += '        print(""predictions:"",json.dumps(output))'
        self.predictionFile += '\n'
        self.predictionFile += '        return (json.dumps(output))'
        self.predictionFile += '\n'
        self.predictionFile += 'if __name__ == ""__main__"":'
        self.predictionFile += '\n'
        self.predictionFile += '    output = predict(sys.argv[1])'
        
        filename = os.path.join(deploy_path,'aion_predict.py')
        f = open(filename, ""w"")
        f.write(str(self.predictionFile))
        f.close() 
    def create_classification_text_performance_file(self,deploy_path,features,target):
        features = "","".join([feature for feature in features])
        self.predictionFile = """"""\
import pandas as pd
import warnings
warnings.filterwarnings(""ignore"")
import json
import os
import sys
from pandas import json_normalize
# from evidently.dashboard import Dashboard
# from evidently.tabs import ClassificationPerformanceTab
from evidently.pipeline.column_mapping import ColumnMapping
from aion_predict import predict
from evidently.report import Report
from evidently.pipeline.column_mapping import ColumnMapping
from evidently.metric_preset import ClassificationPreset 
def odrift(data):
    try:
""""""
        self.predictionFile += '        features = \''+features+'\''
        self.predictionFile += '\n'
        self.predictionFile += '        target = \''+target+'\''
        self.predictionFile += '\n'
        self.predictionFile +=""""""\
        if os.path.splitext(data)[1] == "".json"":
            with open(data,'r',encoding='utf-8') as f:
                jsonData = json.load(f)
        else:
            jsonData = json.loads(data)            
        production = predict().run(jsonData['currentDataLocation'])
        reference = predict().run(jsonData['trainingDataLocation'])
        production = json.loads(production)
        reference = json.loads(reference)
        if (production['status'] == 'SUCCESS' and reference['status'] == 'SUCCESS'):
            production = production['data']
            production = json_normalize(production)
            reference = reference['data']
            reference = json_normalize(reference)
            production['target'] = production[target]
            reference['target'] = reference[target]                
            column_mapping = ColumnMapping()
            column_mapping.target = target
            column_mapping.prediction = 'prediction'
            column_mapping.datetime = None
            column_mapping.text_features = features.split(',')
            iris_model_performance_dashboard = Report(metrics=[ClassificationPreset()])
            iris_model_performance_dashboard.run(reference_data=reference, current_data=production,column_mapping=column_mapping)
            report = os.path.join(os.path.dirname(os.path.abspath(__file__)),'log','performance.html')
            iris_model_performance_dashboard.save_html(report)
            metrics_output = iris_model_performance_dashboard.as_dict()
            output = {""status"":""SUCCESS"",""htmlPath"":report, 'drift_details':metrics_output['metrics']} 
            print(""drift:"",json.dumps(output))
            return (json.dumps(output))
    except KeyError as e:
        print(e)
        output = {""status"":""FAIL"",""message"":str(e).strip('""')}
        print(""drift:"",json.dumps(output))
        return (json.dumps(output))
    except Exception as e:
        print(e)
        output = {""status"":""FAIL"",""message"":str(e).strip('""')}
        print(""drift:"",json.dumps(output))
        return (json.dumps(output))  
if __name__ == ""__main__"":
    output = odrift(sys.argv[1])""""""
    
        filename = os.path.join(deploy_path,'aion_opdrift.py')
        f = open(filename, ""wb"")
        f.write(str(self.predictionFile).encode('utf8'))
        f.close()
    def create_classification_performance_file(self,deploy_path,features,target):
        features = "","".join([feature for feature in features])
        self.predictionFile = """"""\
import pandas as pd
import warnings
warnings.filterwarnings(""ignore"")
import json
import os
import sys
from pandas import json_normalize
from evidently.report import Report
from evidently.metric_preset import ClassificationPreset
from evidently.pipeline.column_mapping import ColumnMapping
from aion_predict import predict
def odrift(data):
    try:
""""""
        self.predictionFile += '        features = \''+features+'\''
        self.predictionFile += '\n'
        self.predictionFile += '        target = \''+target+'\''
        self.predictionFile += '\n'
        self.predictionFile +=""""""\
        if os.path.splitext(data)[1] == "".json"":
            with open(data,'r',encoding='utf-8') as f:
                jsonData = json.load(f)
        else:
            jsonData = json.loads(data) 
        production = predict().run(jsonData['currentDataLocation'])
        reference = predict().run(jsonData['trainingDataLocation'])
        production = json.loads(production)
        reference = json.loads(reference)
        if (production['status'] == 'SUCCESS' and reference['status'] == 'SUCCESS'):
                production = production['data']
                production = json_normalize(production)
                reference = reference['data']
                reference = json_normalize(reference)
                production['target'] = production[target]
                reference['target'] = reference[target]                
                column_mapping = ColumnMapping()
                column_mapping.target = target
                column_mapping.prediction = 'prediction'
                column_mapping.datetime = None
                column_mapping.numerical_features = features.split(',')
                model_performance_dashboard = Report(metrics = [ClassificationPreset()])
                model_performance_dashboard.run(reference_data =reference, current_data =production, column_mapping = column_mapping)
                report = os.path.join(os.path.dirname(os.path.abspath(__file__)),'log','performance.html')
                model_performance_dashboard.save_html(report)
                metrics_output = model_performance_dashboard.as_dict()
                output = {""status"":""SUCCESS"",""htmlPath"":report, 'drift_details':metrics_output['metrics']}    
                print(""drift:"",json.dumps(output))
                return (json.dumps(output))
        else:
                output = {""status"":""SUCCESS"",""htmlPath"":'NA'}    
                print(""drift:"",json.dumps(output))
                return (json.dumps(output))        
         
    except KeyError as e:
        print(e)
        output = {""status"":""FAIL"",""message"":str(e).strip('""')}
        print(""drift:"",json.dumps(output))
        return (json.dumps(output))
    except Exception as e:
        print(e)
        output = {""status"":""FAIL"",""message"":str(e).strip('""')}
        print(""drift:"",json.dumps(output))
        return (json.dumps(output))

if __name__ == ""__main__"":
    output = odrift(sys.argv[1])""""""
    
        filename = os.path.join(deploy_path,'aion_opdrift.py')
        f = open(filename, ""wb"")
        f.write(str(self.predictionFile).encode('utf8'))
        f.close()
    def create_model_service(self,deploy_path,serviceName,problemType):
            
        filedata = """"""
from flask import Flask, jsonify, request
from flask_restful import Resource, Api
from aion_predict import predict""""""
        if  problemType.lower() == 'classification' or problemType.lower() == 'regression':
            filedata += """"""        
from aion_xai import local_analysis
from aion_ipdrift import drift
from aion_opdrift import odrift""""""
        filedata += """"""
import json
import os
import pandas as pd
import io
import argparse 
from pathlib import Path
from flask_cors import CORS, cross_origin
app = Flask(__name__)
#cross origin resource from system arguments
parser = argparse.ArgumentParser()
parser.add_argument('-ip', '--ipaddress', help='IP Address')    
parser.add_argument('-p', '--port', help='Port Number')  
parser.add_argument(""-cors"", type=str, required=False) 
d = vars(parser.parse_args())

modelPath = Path(__file__).parent
try:
    with open( (modelPath/'etc')/'display.json', 'r') as f:
        disp_data = json.load(f)
        is_explainable = not disp_data.get('textFeatures')
except:
    disp_data = {}
    is_explainable = True

if ""cors"" in d.keys(): 
    if d[""cors""] != '' and d[""cors""] != None:
        d[""cors""] = [s.strip() for s in d[""cors""].split("","")]
        #cors = CORS(app, resources={r""/AION/*"": {""origins"": [""http://localhost"", ""http://localhost:5000""]}})
        cors = CORS(app, resources={r""/AION/*"": {""origins"": d[""cors""]}})
api = Api(app)
class predictapi(Resource):
    def get(self):
        features = disp_data.get('modelFeatures')
        if features:
            msg=\""""""
RequestType: POST
Content-Type=application/json
Body: {displaymsg}
            \"""""".format(displaymsg={ x:'Value' for x in features})
        else:
            displaymsg='Data in JSON Format'
        return jsonify(displaymsg)

    def post(self): 
        data = request.get_json()     
        output = predict().run(json.dumps(data))
        return jsonify(json.loads(output))

class predictfileapi(Resource):
    def post(self):              
        if 'file' in request.files:
            file = request.files['file']
            urlData = file.read()
            rawData = pd.read_csv(io.StringIO(urlData.decode('utf-8')))
            data = rawData.to_json(orient='records')
            output = predict().run(data)
            return jsonify(json.loads(output))
        else:
            displaymsg='File is mising'
            return jsonify(displaymsg)

    def get(self): 
        msg=\""""""
RequestType: POST
Body:send file content in body\""""""
        return jsonify(msg)        
        """"""
        if  problemType.lower() == 'classification' or problemType.lower() == 'regression':
            filedata += """"""        
class explainapi(Resource):
    def get(self):
        features = disp_data.get('modelFeatures')
        if features:
            msg=\""""""
RequestType: POST
Content-Type=application/json
Body: {displaymsg}
            \"""""".format(displaymsg={ x:'Value' for x in features})
        else:
            displaymsg='Data in JSON Format'
        return jsonify(displaymsg)

    def post(self):
        data = request.get_json()
        if is_explainable:
            output = local_analysis(json.dumps(data))
        else:
            output = json.dumps({""status"":""FAIL"",""data"":""explain api is not supported when text features are used for training""})
        return jsonify(json.loads(output))
        
class monitoringapi(Resource):
    def get(self):
        return jsonify({'trainingDataLocation':'Training File Location','currentDataLocation':'production Location'})
    def post(self): 
        data = request.get_json()     
        output = drift(json.dumps(data))
        return jsonify(json.loads(output))

class performanceapi(Resource):
    def get(self):
        return jsonify({'trainingDataLocation':'Training File Location','currentDataLocation':'production Location'})
    def post(self): 
        data = request.get_json()     
        output = odrift(json.dumps(data))
        return jsonify(json.loads(output))        
        """"""
        filedata += """"""       
api.add_resource(predictapi, '/AION/{serviceName}/predict')"""""".format(serviceName=serviceName)
        filedata += """"""       
api.add_resource(predictfileapi, '/AION/{serviceName}/predict_file')"""""".format(serviceName=serviceName)
        if  problemType.lower() == 'classification' or problemType.lower() == 'regression':
            filedata += """"""        
api.add_resource(explainapi, '/AION/{serviceName}/explain')
api.add_resource(monitoringapi, '/AION/{serviceName}/monitoring')
api.add_resource(performanceapi, '/AION/{serviceName}/performance')"""""".format(serviceName=serviceName)
        filedata += """"""
if __name__ == '__main__':
    args = parser.parse_args()    
    app.run(args.ipaddress,port = args.port,debug = True)""""""
        filename = os.path.join(deploy_path,'aion_service.py')
        f = open(filename, ""wb"")
        f.write(str(filedata).encode('utf8'))
        f.close()
        
    def create_regression_performance_file(self,deploy_path,features,target):
        features = "","".join([feature for feature in features])
        self.predictionFile = """"""\
import pandas as pd
import warnings
warnings.filterwarnings(""ignore"")
import json
import os
import sys
from pandas import json_normalize
from evidently.report import Report
from evidently.metric_preset import RegressionPreset
from evidently.pipeline.column_mapping import ColumnMapping
from aion_predict import predict
def odrift(data):
    try:
""""""
        self.predictionFile += '        features = \''+features+'\''
        self.predictionFile += '\n'
        self.predictionFile += '        target = \''+target+'\''
        self.predictionFile += '\n'
        self.predictionFile +=""""""\
        if os.path.splitext(data)[1] == "".json"":
            with open(data,'r',encoding='utf-8') as f:
                jsonData = json.load(f)
        else:
            jsonData = json.loads(data) 
        production = predict().run(jsonData['currentDataLocation'])
        reference = predict().run(jsonData['trainingDataLocation'])
        production = json.loads(production)
        reference = json.loads(reference)
        if (production['status'] == 'SUCCESS' and reference['status'] == 'SUCCESS'):
                production = production['data']
                production = json_normalize(production)
                reference = reference['data']
                reference = json_normalize(reference)
                production['target'] = production[target]
                reference['target'] = reference[target]                
                column_mapping = ColumnMapping()
                column_mapping.target = target
                column_mapping.prediction = 'prediction'
                column_mapping.datetime = None
                column_mapping.numerical_features = features.split(',')
                iris_model_performance_dashboard = Report(metrics=[RegressionPreset()])
                iris_model_performance_dashboard.run(reference_data = reference, current_data = production, column_mapping = column_mapping)
                report = os.path.join(os.path.dirname(os.path.abspath(__file__)),'log','performance.html')
                iris_model_performance_dashboard.save_html(report)
                metrics_output = iris_model_performance_dashboard.as_dict()
                output = {""status"":""SUCCESS"",""htmlPath"":report, 'drift_details':metrics_output['metrics']}    
                print(""drift:"",json.dumps(output))
                return (json.dumps(output))
        else:
                output = {""status"":""SUCCESS"",""htmlPath"":'NA'}    
                print(""drift:"",json.dumps(output))
                return (json.dumps(output))        
         
    except KeyError as e:
        print(e)
        output = {""status"":""FAIL"",""message"":str(e).strip('""')}
        print(""drift:"",json.dumps(output))
        return (json.dumps(output))
    except Exception as e:
        print(e)
        output = {""status"":""FAIL"",""message"":str(e).strip('""')}
        print(""drift:"",json.dumps(output))
        return (json.dumps(output))

if __name__ == ""__main__"":
    output = odrift(sys.argv[1])""""""
    
        filename = os.path.join(deploy_path,'aion_opdrift.py')
        f = open(filename, ""wb"")
        f.write(str(self.predictionFile).encode('utf8'))
        f.close()
    
    def create_regression_text_performance_file(self,deploy_path,features,target):
        features = "","".join([feature for feature in features])
        self.predictionFile = """"""\
import pandas as pd
import warnings
warnings.filterwarnings(""ignore"")
import json
import os
import sys
from pandas import json_normalize
from aion_predict import predict
from evidently.report import Report
from evidently.pipeline.column_mapping import ColumnMapping
from evidently.metric_preset import RegressionPreset
def odrift(data):
    try:
""""""
        self.predictionFile += '        features = \''+features+'\''
        self.predictionFile += '\n'
        self.predictionFile += '        target = \''+target+'\''
        self.predictionFile += '\n'
        self.predictionFile +=""""""\
        if os.path.splitext(data)[1] == "".json"":
            with open(data,'r',encoding='utf-8') as f:
                jsonData = json.load(f)
        else:
            jsonData = json.loads(data) 
        production = predict().run(jsonData['currentDataLocation'])
        reference = predict().run(jsonData['trainingDataLocation'])
        production = json.loads(production)
        reference = json.loads(reference)
        if (production['status'] == 'SUCCESS' and reference['status'] == 'SUCCESS'):
                production = production['data']
                production = json_normalize(production)
                reference = reference['data']
                reference = json_normalize(reference)
                production['target'] = production[target]
                reference['target'] = reference[target]                
                column_mapping = ColumnMapping()
                column_mapping.target = target
                column_mapping.prediction = 'prediction'
                column_mapping.datetime = None
                column_mapping.numerical_features = features.split(',')
                iris_model_performance_dashboard = Report(metrics=[RegressionPreset()])
                iris_model_performance_dashboard.run(reference_data=reference, current_data=production,column_mapping=column_mapping)
                report = os.path.join(os.path.dirname(os.path.abspath(__file__)),'log','performance.html')
                iris_model_performance_dashboard.save_html(report)
                metrics_output = iris_model_performance_dashboard.as_dict()
                output = {""status"":""SUCCESS"",""htmlPath"":report, 'drift_details':metrics_output['metrics']}    
                print(""drift:"",json.dumps(output))
                return (json.dumps(output))
        else:
                output = {""status"":""SUCCESS"",""htmlPath"":'NA'}    
                print(""drift:"",json.dumps(output))
                return (json.dumps(output))        
         
    except KeyError as e:
        print(e)
        output = {""status"":""FAIL"",""message"":str(e).strip('""')}
        print(""drift:"",json.dumps(output))
        return (json.dumps(output))
    except Exception as e:
        print(e)
        output = {""status"":""FAIL"",""message"":str(e).strip('""')}
        print(""drift:"",json.dumps(output))
        return (json.dumps(output))

if __name__ == ""__main__"":
    output = odrift(sys.argv[1])""""""
    
        filename = os.path.join(deploy_path,'aion_opdrift.py')
        f = open(filename, ""wb"")
        f.write(str(self.predictionFile).encode('utf8'))
        f.close()

    def create_publish_service(self,datalocation,usecaseid,version,problemType):
        filename = os.path.join(datalocation,'aion_publish_service.py')
        if not os.path.exists(filename):
            filedata = """"""    
import sys
import json
import time
import sqlite3
import argparse
import pandas as pd
import io
from pathlib import Path
from datetime import datetime

filename = Path(__file__).parent/'config.json'
with open (filename, ""r"") as f:
    data = json.loads(f.read())
modelVersion = str(data['version'])
modelPath = Path(__file__).parent/modelVersion
sys.path.append(str(modelPath))

try:
    with open( (modelPath/'etc')/'display.json', 'r') as f:
        disp_data = json.load(f)
        is_explainable = not disp_data.get('textFeatures')
except:
    disp_data = {}
    is_explainable = True
    
from flask import Flask, jsonify, request
from flask_restful import Resource, Api
from flask_cors import CORS, cross_origin
from flask import Response
from aion_predict import predict   
""""""
            if  problemType.lower() == 'classification' or problemType.lower() == 'regression':
                filedata += """"""        
from aion_ipdrift import drift
from aion_opdrift import odrift
if is_explainable:
    from aion_xai import local_analysis
""""""
            filedata += """"""
dataPath = Path(__file__).parent/'data'
dataPath.mkdir(parents=True, exist_ok=True)
app = Flask(__name__)
#cross origin resource from system arguments
parser = argparse.ArgumentParser()
parser.add_argument('-ip', '--ipaddress', help='IP Address')    
parser.add_argument('-p', '--port', help='Port Number')  
parser.add_argument(""-cors"", type=str, required=False) 
d = vars(parser.parse_args())

if ""cors"" in d.keys(): 
    if d[""cors""] != '' and d[""cors""] != None:
        d[""cors""] = [s.strip() for s in d[""cors""].split("","")]
        #cors = CORS(app, resources={r""/AION/*"": {""origins"": [""http://localhost"", ""http://localhost:5000""]}})
        cors = CORS(app, resources={r""/AION/*"": {""origins"": d[""cors""]}})
api = Api(app)

class sqlite_db():
    def __init__(self, location, database_file=None):
        if not isinstance(location, Path):
            location = Path(location)
        if database_file:
            self.database_name = database_file
        else:
            self.database_name = location.stem + '.db'
        db_file = str(location/self.database_name)          
        self.conn = sqlite3.connect(db_file)
        self.cursor = self.conn.cursor()
        self.tables = []

    def table_exists(self, name):
        if name in self.tables:
            return True
        elif name:
            query = f""SELECT name FROM sqlite_master WHERE type='table' AND name='{name}';""
            listOfTables = self.cursor.execute(query).fetchall()
            if len(listOfTables) > 0 :
                self.tables.append(name)
                return True
        return False

    def read(self, table_name,condition=''):
        if condition == '':
            return pd.read_sql_query(f""SELECT * FROM {table_name}"", self.conn)
        else:
            return pd.read_sql_query(f""SELECT * FROM {table_name} WHERE {condition}"", self.conn)

    def create_table(self,name, columns, dtypes):
        query = f'CREATE TABLE IF NOT EXISTS {name} ('
        
        for column, data_type in zip(columns, dtypes):
            query += f""'{column}'   TEXT,""
        query = query[:-1]
        query += ');'
        self.conn.execute(query)
        return True
    def update(self,table_name,updates,condition):
        update_query = f'UPDATE {table_name} SET {updates} WHERE {condition}'
        self.cursor.execute(update_query)
        self.conn.commit()
        return True        
    def write(self,data, table_name):
        if not self.table_exists(table_name):
            self.create_table(table_name, data.columns, data.dtypes)
        tuple_data = list(data.itertuples(index=False, name=None))
        insert_query = f'INSERT INTO {table_name} VALUES('
        for i in range(len(data.columns)):
            insert_query += '?,'
        insert_query = insert_query[:-1] + ')'
        self.cursor.executemany(insert_query, tuple_data)
        self.conn.commit()
        return True
        
    def delete(self, name):
        pass
    def close(self):
        self.conn.close()""""""      
            filedata += """"""
app = Flask(__name__)
api = Api(app)

class predictapi(Resource):

    def get(self):
        features = disp_data.get('modelFeatures')
        if features:
            msg=\""""""
RequestType: POST
Content-Type=application/json
Body: {displaymsg}
            \"""""".format(displaymsg={ x:'Value' for x in features})
        else:
            displaymsg='Data in JSON Format'
        return jsonify(displaymsg)
                
    def post(self): 
        sqlite_dbObj = sqlite_db(dataPath,'data.db')
        if not sqlite_dbObj.table_exists('metrices'):
            data = {'noOfPredictCalls':'0','noOfDriftCalls':'0',""noOfActualCalls"":'0',""mid"":'0'}
            data = pd.DataFrame(data, index=[0])
            sqlite_dbObj.create_table('metrices',data.columns, data.dtypes)        
        data = request.get_json()     
        output = predict().run(json.dumps(data))
        outputobj = json.loads(output)
        if outputobj['status'] == 'SUCCESS':
            try:
                df2 = pd.read_json(json.dumps(outputobj['data']), orient ='records')
                if not sqlite_dbObj.table_exists('prodData'):
                    sqlite_dbObj.create_table('prodData',df2.columns, df2.dtypes)                               
                sqlite_dbObj.write(df2,'prodData')    
            except:
                pass
            try:
                data = sqlite_dbObj.read('metrices')
                #print(data)
                if len(data) == 0:
                    data = [{'mid':'0','noOfPredictCalls':'1','noOfDriftCalls':'0',""noOfActualCalls"":'0'}]
                    data = pd.read_json(json.dumps(data), orient ='records')
                    sqlite_dbObj.write(data,'metrices')                              
                else:
                    noofPredictCalls = int(data['noOfPredictCalls'].iloc[0])+1                       
                    sqlite_dbObj.update('metrices',""noOfPredictCalls = '""+str(noofPredictCalls)+""'"",""mid = 0"")            
            except Exception as e:
                print(e)
                pass               
        return jsonify(json.loads(output))
class predictfileapi(Resource):
    def post(self): 
        sqlite_dbObj = sqlite_db(dataPath,'data.db')
        if not sqlite_dbObj.table_exists('metrices'):
            data = {'noOfPredictCalls':'0','noOfDriftCalls':'0',""noOfActualCalls"":'0',""mid"":'0'}
            data = pd.DataFrame(data, index=[0])
            sqlite_dbObj.create_table('metrices',data.columns, data.dtypes)        
        if 'file' in request.files:
            file = request.files['file']
            urlData = file.read()
            rawData = pd.read_csv(io.StringIO(urlData.decode('utf-8')))    
            data = rawData.to_json(orient='records')
            output = predict().run(data)
            outputobj = json.loads(output)
            if outputobj['status'] == 'SUCCESS':
                try:
                    df2 = pd.read_json(json.dumps(outputobj['data']), orient ='records')
                    if not sqlite_dbObj.table_exists('prodData'):
                        sqlite_dbObj.create_table('prodData',df2.columns, df2.dtypes)                               
                    sqlite_dbObj.write(df2,'prodData')    
                except:
                    pass
                try:
                    data = sqlite_dbObj.read('metrices')
                    #print(data)
                    if len(data) == 0:
                        data = [{'mid':'0','noOfPredictCalls':'1','noOfDriftCalls':'0',""noOfActualCalls"":'0'}]
                        data = pd.read_json(json.dumps(data), orient ='records')
                        sqlite_dbObj.write(data,'metrices')                              
                    else:
                        noofPredictCalls = int(data['noOfPredictCalls'].iloc[0])+1                       
                        sqlite_dbObj.update('metrices',""noOfPredictCalls = '""+str(noofPredictCalls)+""'"",""mid = 0"")            
                except Exception as e:
                    print(e)
                    pass               
            return jsonify(json.loads(output))            
        else:
            output = {'status':'error','msg':'File is missing'}
            return jsonify(output)
        """"""
            if  problemType.lower() == 'classification' or problemType.lower() == 'regression':
                filedata += """"""         
class explainapi(Resource):

    def get(self):
        features = disp_data.get('modelFeatures')
        if features:
            msg=\""""""
RequestType: POST
Content-Type=application/json
Body: {displaymsg}
            \"""""".format(displaymsg={ x:'Value' for x in features})
        else:
            displaymsg='Data in JSON Format'
        return jsonify(displaymsg)

    def post(self):
        data = request.get_json()
        if is_explainable:
            output = local_analysis(json.dumps(data))
        else:
            output = json.dumps({""status"":""FAIL"",""data"":""explain api is not supported when text features are used for training""})
        return jsonify(json.loads(output))

class monitoringapi(Resource):

    def get(self):
        return jsonify({'trainingDataLocation':'Training File Location','currentDataLocation':'production Location'})

    def post(self): 
        sqlite_dbObj = sqlite_db(dataPath,'data.db')    
        if not sqlite_dbObj.table_exists('monitoring'):
            data = {'status':'No Drift','Msg':'No Input Drift Found','RecordTime':'Time','version':'1'}
            data = pd.DataFrame(data, index=[0])
            sqlite_dbObj.create_table('monitoring',data.columns, data.dtypes)                            
        trainingDataPath = (modelPath/'data')/'preprocesseddata.csv.gz'
        if not sqlite_dbObj.table_exists('prodData'):        
            return jsonify({'status':'Error','msg':'Prod data not available'})        
        data = sqlite_dbObj.read('prodData')
        filetimestamp = str(int(time.time()))
        dataFile = dataPath/('AION_' + filetimestamp+'.csv')
        data.to_csv(dataFile, index=False)    
        data = request.get_json()
        data={'trainingDataLocation':trainingDataPath,'currentDataLocation':dataFile}        
        output = drift(json.dumps(data))
        outputData = json.loads(output)
        status = outputData['status']
        
        if status == 'SUCCESS':
            Msg = str(outputData['data'])
        else:
            Msg = 'Error during drift analysis'
        now = datetime.now() # current date and time     
        date_time = now.strftime(""%m/%d/%Y, %H:%M:%S"")
        data = {'status':status,'Msg':Msg,'RecordTime':date_time,'version':modelVersion}                            
        data = pd.DataFrame(data, index=[0])
        sqlite_dbObj.write(data,'monitoring')         
        return jsonify(json.loads(output))""""""
            filedata += """"""        

class matricesapi(Resource):

    def get(self):
        sqlite_dbObj = sqlite_db(dataPath,'data.db')                
        if sqlite_dbObj.table_exists('metrices'):                
            df1 = sqlite_dbObj.read('metrices')
        else:
            df1 = pd.DataFrame()
        #print(df1)            
        if sqlite_dbObj.table_exists('monitoring'):                    
            df2 = sqlite_dbObj.read('monitoring')                
        else:
            df2 = pd.DataFrame()            
        
        msg = {'Deployed Version':str(modelVersion)}            
        
        if df1.shape[0] > 0:                
            msg.update({'noOfPredictCalls':str(df1['noOfPredictCalls'].iloc[0])})
        else:
            msg.update({'noOfPredictCalls':'0'})
        driftDetails = []    
        for idx in reversed(df2.index):
            driftd = {'version':str(df2.version[idx]),'status':str(df2.status[idx]),'recordTime':str(df2.RecordTime[idx]),'msg':str(df2.Msg[idx])}                
            driftDetails.append(driftd)
        msg.update({'driftDetails':driftDetails})                   
        return jsonify(msg)

class performanceapi(Resource):

    def get(self):
        return jsonify({'trainingDataLocation':'Training File Location','currentDataLocation':'production Location'})

    def post(self): 
        sqlite_dbObj = sqlite_db(dataPath,'data.db')    
        if not sqlite_dbObj.table_exists('monitoring'):
            data = {'status':'No Drift','Msg':'No Input Drift Found','RecordTime':'Time','version':'1'}
            data = pd.DataFrame(data, index=[0])
            sqlite_dbObj.create_table('monitoring',data.columns, data.dtypes)                            
        trainingDataPath = (modelPath/'data')/'preprocesseddata.csv.gz'
        if not sqlite_dbObj.table_exists('prodData'):        
            return jsonify({'status':'Error','msg':'Prod data not available'})        
        data = sqlite_dbObj.read('prodData')
        filetimestamp = str(int(time.time()))
        dataFile = dataPath/('AION_' + filetimestamp+'.csv')
        data.to_csv(dataFile, index=False)    
        data = request.get_json()
        data={'trainingDataLocation':trainingDataPath,'currentDataLocation':dataFile}    
        output = odrift(json.dumps(data))
        return jsonify(json.loads(output))
        """"""
            filedata += """"""       
api.add_resource(predictapi, '/AION/{serviceName}/predict')
api.add_resource(predictfileapi, '/AION/{serviceName}/predict_file')
api.add_resource(matricesapi, '/AION/{serviceName}/metrices')"""""".format(serviceName=usecaseid)
            if  problemType.lower() == 'classification' or problemType.lower() == 'regression':
                filedata += """"""
api.add_resource(explainapi, '/AION/{serviceName}/explain')
api.add_resource(monitoringapi, '/AION/{serviceName}/monitoring')
api.add_resource(performanceapi, '/AION/{serviceName}/performance')
"""""".format(serviceName=usecaseid)
            filedata += """"""
if __name__ == '__main__':    
    args = parser.parse_args()        
    app.run(args.ipaddress,port = args.port,debug = True)""""""
            f = open(filename, ""wb"")
            f.write(str(filedata).encode('utf8'))
            f.close()    
            data = {'version':version}
            filename = os.path.join(datalocation,'config.json')        
            with open(filename, ""w"") as outfile:
                json.dump(data, outfile)
            outfile.close()           "
utility.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''

TAB_CHAR = ' ' * 4

def import_modules(importer, modules_list):
    for module in modules_list:
        mod_from = module.get('mod_from',None)
        mod_as = module.get('mod_as',None)
        importer.addModule(module['module'], mod_from=mod_from, mod_as=mod_as)
                
"
imports.py,"""""""
/**
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  © Copyright HCL Technologies Ltd. 2021, 2022
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*/
""""""

from importlib.metadata import version
import sys

    
class importModule():

    def __init__(self):
        self.importModule = {}
        self.stdlibModule = []
        self.localModule = {}
    
    def addLocalModule(self,module, mod_from=None, mod_as=None):
        if module == '*':
            if module not in self.localModule.keys():
                self.localModule[module]= [mod_from]
            else:
                self.localModule[module].append(mod_from)
        elif module not in self.localModule.keys():
            self.localModule[module] = {'from':mod_from, 'as':mod_as}
        
    def addModule(self, module, mod_from=None, mod_as=None):
        if module not in self.importModule.keys():
            self.importModule[module] = {'from':mod_from, 'as':mod_as}
            if module in sys.stdlib_module_names:
                self.stdlibModule.append(module)
        elif isinstance(self.importModule[module], list):
            if mod_as not in [x['as'] for x in self.importModule[module]]:
                self.importModule[module].append({'from':mod_from, 'as':mod_as})
            elif mod_as not in [x['from'] for x in self.importModule[module]]:
                self.importModule[module].append({'from':mod_from, 'as':mod_as})
        elif mod_as != self.importModule[module]['as']:
            as_list = [self.importModule[module]]
            as_list.append({'from':mod_from, 'as':mod_as})
            self.importModule[module] = as_list
        elif mod_from != self.importModule[module]['from']:
            as_list = [self.importModule[module]]
            as_list.append({'from':mod_from, 'as':mod_as})
            self.importModule[module] = as_list

    def getModules(self):
        return (self.importModule, self.stdlibModule)
        
    def getBaseModule(self, extra_importers=[]):
        modules_alias = {   'sklearn':'scikit-learn', 
                            'genetic_selection':'sklearn-genetic',
                            'google': 'google-cloud-storage',
                            'azure':'azure-storage-file-datalake'}
        local_modules = {'AIX':'/app/AIX-0.1-py3-none-any.whl'}
        modules = []
        require = """"
        if extra_importers:
            extra_importers = [importer.importModule for importer in extra_importers if isinstance(importer, importModule)]
        importers_module = [self.importModule] + extra_importers
        for importer_module in importers_module:
            for k,v in importer_module.items():
                if v['from']:
                    mod = v['from'].split('.')[0]
                else:
                    mod = k
                if mod in modules_alias.keys():
                    mod = modules_alias[mod]
                modules.append(mod)
        modules = list(set(modules))
        for mod in modules:
            try:
                if mod in local_modules.keys():
                    require += f""{local_modules[mod]}\n""
                else:
                    require += f""{mod}=={version(mod)}\n""
            except :
                if mod not in sys.stdlib_module_names:
                    raise  
        return require

    def getCode(self):
        def to_string(k, v):
            mod = ''
            if v['from']:
                mod += 'from {} '.format(v['from'])
            mod += 'import {}'.format(k)
            if v['as']:
                mod += ' as {} '.format(v['as'])
            return mod
        
        modules = """"
        local_modules = """"
        std_lib_modules = """"
        third_party_modules = """"
        for k,v in self.importModule.items():
            if k in self.stdlibModule:
                std_lib_modules = std_lib_modules + '\n' + to_string(k, v)
            elif isinstance(v, dict):
               third_party_modules = third_party_modules + '\n' + to_string(k, v)
            elif isinstance(v, list):
                for alias in v:
                    third_party_modules = third_party_modules + '\n' + to_string(k, alias)
        for k,v in self.localModule.items():
            if k != '*':
                local_modules = local_modules + '\n' + to_string(k, v)
            else:
                for mod_from in v:
                    local_modules = local_modules + '\n' + f'from {mod_from} import {k}'
        if std_lib_modules:
            modules = modules + ""\n#Standard Library modules"" + std_lib_modules
        if third_party_modules:
            modules = modules + ""\n\n#Third Party modules"" + third_party_modules
        if local_modules:
            modules = modules + ""\n\n#local modules"" + local_modules + '\n'
        return modules

    def copyCode(self, importer):
        self.importModule, self.stdlibModule = importer.getModules()
"
EncryptPythonSourceCode.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import subprocess 
import os 
import glob
import sys
import python_minifier
def encrypt_files(path):
    cwd = os.getcwd()
    secure_path = os.path.join(path,'SecuredScripts')
    try:
        if not os.path.exists(secure_path):
            os.mkdir(secure_path)
        files = [f for f in glob.glob(path + ""/*.py"")]
        for file in files:
            #encrypted_file_details[0] = file
            #file = files[0]
            #print(file)
            #filename_w_dir = os.path.splitext(file)
            filename_w_ext = os.path.basename(file)
            filename, file_extension = os.path.splitext(filename_w_ext)
            file_folder_path = os.path.join(secure_path,filename)
            #print(file_folder_path)
            
            if not os.path.exists(file_folder_path):
                os.mkdir(file_folder_path)
                
            # Minify python source code
            minify_file = os.path.join(file_folder_path,filename+'_minify.py')
            pythonfolder,_ = os.path.split(sys.executable)
            pyminify_script = os.path.join(pythonfolder,'Scripts','pyminify.exe')
            minify_command = ""\""""+sys.executable+""\"" \""""+pyminify_script+ ""\"" \"""" + file + ""\"" > \"""" + minify_file+""\""""
            subprocess.call(minify_command, shell=True)
            # Change directory to folder path
            os.chdir(file_folder_path)
            
            # Obfuscate minified file
            pyarmor_script = os.path.join(pythonfolder,'Scripts','pyarmor.exe')
            obfusc_commmand = ""\""""+sys.executable+""\"" \""""+pyarmor_script+""\"" obfuscate \"""" + minify_file+""\""""
            #print(obfusc_commmand)
            subprocess.call(obfusc_commmand, shell=True)
            
            # Change directory to dist path
            obfusc_file = os.path.join(file_folder_path,'dist',filename+'_minify.py')
            #print(obfusc_file)
            chdirpath = os.path.join(file_folder_path,'dist')
            os.chdir(chdirpath)
            
            # Compress obfuscated file
            compressed_file = os.path.join(file_folder_path,'dist',filename+'_compressed.py')
            #print(compressed_file)
            pyminifier_script = os.path.join(pythonfolder,'Scripts','pyminifier.exe')
            compress_command = ""\""""+sys.executable+""\"" \""""+pyminifier_script+""\"" --gzip -o \"""" +compressed_file + ""\"" \"""" + obfusc_file+""\""""
            #print(compress_command)
            subprocess.call(compress_command, shell=True)
            
            #compile_command = sys.executable+'-m py_compile ""' + compressed_file+'""'
            #print(compile_command)
            #subprocess.call(compile_command , shell=True)
            #encrypted_file_details['compiled_file'] = file
            #compiled_file = os.path.join(file_folder_path,'dist','__pycache__',filename+'_compressed.cpython-37.pyc')
            #encrypted_file_details[1] = compiled_file
            #encrypted_file_list.append(encrypted_file_details)
            #encrypted_file = filename + '_compressed.cpython-37_encrypted.pyc'
            #encrypt_command = ""python "" + cwd + ""\\Encrypt_Key_Dcrypt.py "" + compiled_file + ' ' + encrypted_file + "" --g -e""
            #print(encrypt_command)
            #subprocess.call(encrypt_command, shell=True)
        #encrypted_file_list += ']'
        #return(encrypted_file_list)
        os.chdir(path)
    except OSError as err:
        print (""Creation of the directory %s failed ""+str(err))


# Driver function 
if __name__==""__main__"":
    path = sys.argv[1]
    encrypt_files(path)
    
    
#(base) C:\Himanshu\DataPreprocessing>pyminify DataPreprocessing.py > DataPreprocessing_minify.py
#Obfuscate
#(base) C:\Himanshu\DataPreprocessing>pyarmor obfuscate C:\Himanshu\DataPreprocessing\DataPreprocessing_minify.py
#Compression
#(base) C:\Himanshu\DataPreprocessing>pyminifier --gzip -o C:\Himanshu\DataPreprocessing\dist\DataPreprocessing_compressed.py C:\Himanshu\DataPreprocessing\dist\DataPreprocessing_minify.py
#(base) C:\Himanshu\DataPreprocessing>cd dist
#(base) C:\Himanshu\DataPreprocessing\dist>python DataPreprocessing_compressed.py ""DocumentText"" ""Label"" 90 "".csv"" ""C:\Himanshu\DataAcquisition\ClassificationDataNewBalanced.csv""
#Compiling compressed .py to .pyc file
#(base) C:\Himanshu\DataPreprocessing\dist>python -m py_compile  DataPreprocessing_compressed.py
#Encrypt .pyc file
#(base) C:\Himanshu\DataPreprocessing\dist>python C:\Himanshu\Encrypt_Key_Dcrypt.py C:\Himanshu\DataPreprocessing\dist\__pycache__\DataPreprocessing_compressed.cpython-36.pyc DataPreprocessing_compressed.cpython-36_encrypted.pyc --g -e
#Decrypt file
#(base) C:\Himanshu\DataPreprocessing\dist>python C:\Himanshu\Encrypt_Key_Dcrypt.py DataPreprocessing_compressed.cpython-36_encrypted.pyc DataPreprocessing_compressed.cpython-36_decrypted.pyc --d
#Run decrypted file
#(base) C:\Himanshu\DataPreprocessing\dist>python DataPreprocessing_compressed.cpython-36_decrypted.pyc ""DocumentText"" ""Label"" 90 "".csv"" ""C:\Himanshu\DataAcquisition\ClassificationDataNewBalanced.csv"""
create_docker.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import os
import shutil 
import subprocess
from os.path import expanduser
import platform
deploymentfolder = os.path.join(os.path.dirname(os.path.abspath(__file__)),'HCLT','AION','target')
modelname='AION_12'
version='1'
def createDockerImage(deploymentfolder,modelname,version,learner_type,textdata):
    modelPath = os.path.join(deploymentfolder)
    filename = os.path.join(deploymentfolder,'docker_image')
    modelservice = os.path.join(os.path.dirname(os.path.abspath(__file__)),'..','..','..','..','..','extensions','run_modelService.py')
    shellscript = os.path.join(os.path.dirname(os.path.abspath(__file__)),'..','..','..','..','..','extensions','start_modelservice.sh')
    aix = os.path.join(os.path.dirname(os.path.abspath(__file__)),'..','..','..','..','..','extensions','AIX-0.1-py3-none-any.whl')
    drift = os.path.join(os.path.dirname(os.path.abspath(__file__)),'..','..','..','..','..','extensions','Drift-0.1-py3-none-any.whl')
    sitepackage = os.path.join(os.path.dirname(os.path.abspath(__file__)),'..','..','..','..','..','extensions','site-packages')
    model_dockerSetup = os.path.join(os.path.dirname(os.path.abspath(__file__)),'dockersetup','docker_'+modelname + '_' + version)
    docker_setup = os.path.join(model_dockerSetup,modelname + '_' + version)
    model_sitepackage = os.path.join(model_dockerSetup,'site-packages')
    model_dockerSetupservicefile = os.path.join(model_dockerSetup,'run_modelService.py')
    model_dockershellscript = os.path.join(model_dockerSetup,'start_modelservice.sh')
    model_aix = os.path.join(model_dockerSetup,'AIX-0.1-py3-none-any.whl')
    model_drift = os.path.join(model_dockerSetup,'Drift-0.1-py3-none-any.whl')
    
    try:
        os.mkdir(model_dockerSetup) 
    except Exception as e:
        print(""Error in creating Setup directpry ""+str(e))
        pass
    shutil.copytree(modelPath, docker_setup)
    if textdata:
        shutil.copytree(sitepackage, model_sitepackage)
        modelpretrainpath=os.path.join(model_dockerSetup,'HCLT','AION','PreTrainedModels','TextProcessing')
        '''
        try:
            os.makedirs(modelpretrainpath, exist_ok=True)
        except  Exception as e:
            print(""Error in creating Setup directpry ""+str(e))
            pass
        '''
        home = expanduser(""~"")
        if platform.system() == 'Windows':
            hostpretrainpath = os.path.join(home,'AppData','Local','HCLT','AION','PreTrainedModels','TextProcessing')
        else:
            hostpretrainpath = os.path.join(home,'HCLT','AION','PreTrainedModels','TextProcessing')
        shutil.copytree(hostpretrainpath, modelpretrainpath)
        
    shutil.copyfile(modelservice, model_dockerSetupservicefile)
    shutil.copyfile(shellscript, model_dockershellscript)
    shutil.copyfile(aix, model_aix)
    shutil.copyfile(drift,model_drift)
    try:
        os.mkdir(filename) 
    except:
        pass
    requirementfilename = os.path.join(model_dockerSetup,'requirements.txt')
    installfilename = os.path.join(model_dockerSetup,'install.py')
    dockerfile = os.path.join(model_dockerSetup,'Dockerfile')
    dockerdata='FROM python:3.8-slim-buster'
    dockerdata+='\n'
    if textdata:
        dockerdata+='WORKDIR /root'
        dockerdata+='\n'
        dockerdata+='COPY HCLT HCLT'
        dockerdata+='\n'
    dockerdata+='WORKDIR /app'
    dockerdata+='\n'
    dockerdata+='COPY  requirements.txt requirements.txt'
    dockerdata+='\n'
    dockerdata+='COPY '+modelname+'_'+version+' '+modelname+'_'+version
    dockerdata+='\n'
    if textdata:
        dockerdata+='COPY site-packages site-packages'
        dockerdata+='\n'
        dockerdata+='COPY install.py install.py'
        dockerdata+='\n'
    dockerdata+='COPY run_modelService.py  run_modelService.py'
    dockerdata+='\n'
    dockerdata+='COPY AIX-0.1-py3-none-any.whl  AIX-0.1-py3-none-any.whl'
    dockerdata+='\n'
    dockerdata+='COPY Drift-0.1-py3-none-any.whl  Drift-0.1-py3-none-any.whl'
    dockerdata+='\n'
    dockerdata+='COPY start_modelservice.sh  start_modelservice.sh'
    dockerdata+='\n'
    if textdata:
        dockerdata+='''RUN apt-get update \
 && apt-get install -y build-essential manpages-dev \   
 && python -m pip install --no-cache-dir --upgrade pip \
 && python -m pip install --no-cache-dir pandas==1.2.4 \
 && python -m pip install --no-cache-dir numpy==1.19.5 \
 && python -m pip install --no-cache-dir joblib==1.0.1 \
 && python -m pip install --no-cache-dir Cython==0.29.23 \
 && mv site-packages/* /usr/local/lib/python3.8/site-packages \
 && python -m pip install --no-cache-dir scipy==1.6.3 \
 && python -m pip install --no-cache-dir AIX-0.1-py3-none-any.whl \
 && python -m pip install --no-cache-dir Drift-0.1-py3-none-any.whl \
 && python -m pip install --no-cache-dir scikit-learn==0.24.2 \
 && python -m pip install --no-cache-dir spacy==2.2.3 \
 && python -m pip install --no-cache-dir nltk==3.6.2 \
 && python -m pip install --no-cache-dir textblob==0.15.3 \
 && python -m pip install --no-cache-dir gensim==3.8.3 \
 && python -m pip install --no-cache-dir demoji==1.1.0 \
 && python -m pip install --no-cache-dir lxml==4.6.3 \
 && python -m pip install --no-cache-dir Beautifulsoup4==4.9.3 \
 && python -m pip install --no-cache-dir Unidecode==1.2.0 \
 && python -m pip install --no-cache-dir pyspellchecker==0.6.2 \
 && python -m pip install --no-cache-dir pycontractions==2.0.1 \
 && python -m pip install --no-cache-dir tensorflow==2.4.1 \
 && python -m pip install --no-cache-dir nltk==3.6.2 \
 && python -m pip install --no-cache-dir -r requirements.txt \
 && python install.py \
 && chmod +x start_modelservice.sh
ENTRYPOINT [""./start_modelservice.sh""]
'''
    else:
        dockerdata+='''RUN apt-get update \
 && apt-get install -y build-essential manpages-dev \   
 && python -m pip install --no-cache-dir --upgrade pip \
 && python -m pip install --no-cache-dir pandas==1.2.4 \
 && python -m pip install --no-cache-dir numpy==1.19.5 \
 && python -m pip install --no-cache-dir joblib==1.0.1 \
 && python -m pip install --no-cache-dir Cython==0.29.23 \
 && python -m pip install --no-cache-dir scipy==1.6.3 \
 && python -m pip install --no-cache-dir AIX-0.1-py3-none-any.whl \
 && python -m pip install --no-cache-dir Drift-0.1-py3-none-any.whl \
 && python -m pip install --no-cache-dir scikit-learn==0.24.2 \
 && python -m pip install --no-cache-dir -r requirements.txt \
 && chmod +x start_modelservice.sh
ENTRYPOINT [""./start_modelservice.sh""]
'''
    f = open(dockerfile, ""w"")
    f.write(str(dockerdata))
    f.close()  
    requirementdata=''
    requirementdata+='word2number==1.1'
    if learner_type == 'DL':
        requirementdata+='\n'
        requirementdata+='tensorflow==2.5.0'
    f = open(requirementfilename, ""w"")
    f.write(str(requirementdata))
    f.close()
    if textdata:
        installfile='''
import nltk
import ssl
try:
    _create_unverified_https_context = ssl._create_unverified_context
except AttributeError:
    pass
else:
    ssl._create_default_https_context = _create_unverified_https_context
nltk.download('punkt')
nltk.download('wordnet')
nltk.download('stopwords')
nltk.download('averaged_perceptron_tagger')'''
        f = open(installfilename, ""w"")
        f.write(str(installfile))
        f.close()
    try:
        command = 'docker pull python:3.8-slim-buster'
        os.system(command);
        #subprocess.check_call([""chmod"", ""+x"", ""start_modelservice.sh""], cwd=model_dockerSetup)  
        subprocess.check_call([""docker"", ""build"", ""-t"",modelname.lower()+"":""+version,"".""], cwd=model_dockerSetup)  
        subprocess.check_call([""docker"", ""save"", ""-o"",modelname.lower()+""_""+version+"".tar"",modelname.lower()+"":""+version], cwd=model_dockerSetup)  
        dockerfilepath = os.path.join(model_dockerSetup,modelname.lower()+""_""+version+"".tar"")
        shutil.copyfile(dockerfilepath, os.path.join(filename,modelname.lower()+""_""+version+"".tar""))  
        shutil.rmtree(model_dockerSetup)
        return 'Success','SUCCESSFULLY'
    except Exception as e:
        print(""Error: ""+str(e))
        shutil.rmtree(model_dockerSetup)
        return 'Error',str(e)
    
#createDockerImage(deploymentfolder,modelname,version)"
requirements.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
from importlib.metadata import version
import sys
import os
def requirementfile(deploy_path,model,textFeatures,learner_type):
    print('hola', model)
    modules = ['pandas','numpy','alibi','matplotlib','joblib','shap','ipython','category_encoders','scikit-learn','word2number','flask_restful','evidently','Flask-Cors']
    requires = ''
    for mod in modules:
        requires += f""{mod}=={version(mod)}\n""
    if len(textFeatures) > 0:
        tmodules = ['spacy','nltk','textblob','demoji','beautifulsoup4','text-unidecode','pyspellchecker','contractions','protobuf']
        for mod in tmodules:
            requires += f""{mod}=={version(mod)}\n""   
    if model == 'Extreme Gradient Boosting (XGBoost)':
        mmodules = ['xgboost']
        for mod in mmodules:
            requires += f""{mod}=={version(mod)}\n""   
    if model == 'Light Gradient Boosting (LightGBM)':
        mmodules = ['lightgbm']
        for mod in mmodules:
            requires += f""{mod}=={version(mod)}\n""               
    if model == 'Categorical Boosting (CatBoost)':
        mmodules = ['catboost']
        for mod in mmodules:
            requires += f""{mod}=={version(mod)}\n"" 
    if model.lower() == 'arima':
        mmodules = ['pmdarima']
        for mod in mmodules:
            requires += f""{mod}=={version(mod)}\n""
    if model.lower() == 'fbprophet':
        mmodules = ['prophet']
        for mod in mmodules:
            requires += f""{mod}=={version(mod)}\n""              
    if model.lower() == 'lstm' or model.lower() == 'mlp' or learner_type =='DL':
        mmodules = ['tensorflow']
        for mod in mmodules:
            requires += f""{mod}=={version(mod)}\n""  
    if model.lower() in ['cox', 'kaplanmeierfitter']: #bug 12833
        mmodules = ['lifelines']
        for mod in mmodules:
            requires += f""{mod}=={version(mod)}\n""
    if model.lower() == 'sentencetransformer': #bug 12833
        mmodules = ['sentence_transformers']
        for mod in mmodules:
            requires += f""{mod}=={version(mod)}\n""                      
    filename = os.path.join(deploy_path,'requirements.txt')
    f = open(filename, ""wb"")
    f.write(str(requires).encode('utf8'))
    f.close()   
    
    
    
    
    
    "
eion_compress.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import os
import platform
import sys
import subprocess
import glob
import shutil
import time
from aion_deployment.EncryptPythonSourceCode import encrypt_files
import json
def encrypt(alldirs):
	for dir in alldirs:
		try:
			encrypt_files(dir)
		except Exception as error_obj:
			print(""Exception in encrypting"", error_obj)
		print(""-""*50)
def replace_by_compressed(alldirs):
	for dir in alldirs:
		try:
			#print(""Processing dir"", dir)
			files = [f for f in glob.glob(dir + ""/*.py"")]
			secure_path = os.path.join(dir, 'SecuredScripts')
			time.sleep(6)
			for file in files:
				try:
					filename_w_ext = os.path.basename(file)
					filename, file_extension = os.path.splitext(filename_w_ext)
					if filename == ""__init__"":
						continue	
					#print(""Processing file"", file)
					file_folder_path = os.path.join(secure_path, filename, 'dist')
					compressed_file_path = os.path.join(file_folder_path, filename+'_compressed.py')
					shutil.copy(compressed_file_path, dir)
					os.remove(file)
					new_compressed_file_path = os.path.join(dir, filename+'_compressed.py')
					target_file_path = os.path.join(dir, filename_w_ext)
					os.rename(new_compressed_file_path, target_file_path)
					if filename == 'aion_prediction':
						shutil.copytree(os.path.join(file_folder_path, 'pytransform'), os.path.join(dir, 'pytransform'))
				except Exception as error_obj:
					print(""Exception in file "", error_obj)
			shutil.rmtree(secure_path)
		except Exception as error_obj:
			print(""Exception in dir "", error_obj)

def start_Obfuscate(path):
	project_path = path
	subdirs = [dI for dI in os.listdir(project_path) if os.path.isdir(os.path.join(project_path,dI))]
	alldirs = [
		project_path,
	]
	for subdir in subdirs:
		if(subdir != 'pytransform'):
			alldirs.append(os.path.join(project_path, subdir))
	encrypt(alldirs)
	replace_by_compressed(alldirs)
	
if __name__==""__main__"":
	project_path = sys.argv[1]
	print(""project_path"", project_path)
	subdirs = [dI for dI in os.listdir(project_path) if os.path.isdir(os.path.join(project_path,dI))]
	alldirs = [
		project_path,
	]
	for subdir in subdirs:
		alldirs.append(os.path.join(project_path, subdir))
	encrypt(alldirs)
	print(""*""*50)
	replace_by_compressed(alldirs)


# python eion_compress.py ""C:\Users\ashwani.s\Desktop\22April\22April\Mohita"" ""C:\Users\ashwani.s\Desktop\eion\eion"" > logfile.log
"
production.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
from pathlib import Path
from AION.prediction_package.imports import importModule
from AION.prediction_package.aion_prediction import aionPrediction
from AION.prediction_package.utility import TAB_CHAR
from AION.prediction_package import utility
from AION.prediction_package import common
from AION.prediction_package.base import deployer


def is_supported(problem_type, algo=None):
    """"""
        Return True if problem_type supported otherwise False
    """"""
    supported = ['classification','regression','clustering','timeseriesforecasting','Text Similarity']
    return problem_type in supported
    
def get_deployer(problem_type, algo=None, params={}):
    """"""
        Return deployer class object based on problem type
        Raise error if no class is associated with problem type 
    """"""
    params['problem_type'] = problem_type
    if problem_type == 'classification':
        return classification( params)
    elif problem_type == 'regression':
        return regression( params)
    elif problem_type == 'clustering':
        return clustering( params)
    elif problem_type == 'timeseriesforecasting':
        from AION.prediction_package.time_series import forecasting
        return forecasting.get_deployer( params)
    elif problem_type == 'Text Similarity':
        return textSimilarity( params)
    else:
        raise ValueError('deployment is not supported')
    
class classification( deployer):
    
    def __init__(self, params={}):
        super().__init__( params)
        self.feature_reducer = False
        if not self.name:
            self.name = 'classification'

    def create_idrift(self):
        obj = aionPrediction()
        if self.params['features']['text_feat']:
            obj.create_text_drift_file(self.deploy_path,self.params['features']['text_feat'],self.params['features']['target_feat'],self.name)
        else:
            obj.create_drift_file(self.deploy_path,self.params['features']['input_feat'],self.params['features']['target_feat'],self.name)

    def create_odrift(self):
        obj = aionPrediction()
        if self.params['features']['text_feat']:
            obj.create_classification_text_performance_file(self.deploy_path,self.params['features']['text_feat'],self.params['features']['target_feat'])        
        else:
            obj.create_classification_performance_file(self.deploy_path,self.params['features']['input_feat'],self.params['features']['target_feat'])        

    def training_code( self):
        self.importer.addModule(module='pandas',mod_as='pd')
        code = f""""""
class trainer():        
""""""
        init_code, run_code = self._get_train_code()
        return code + init_code + run_code
        
    def _get_train_code(self):    
        init_code = f""""""
    def __init__( self):
        model_file = (Path(__file__).parent/""model"")/""{self.params['training']['model_file']}""
        if not model_file.exists():
            raise ValueError(f'Trained model file not found: {{model_file}}')""""""
            
        run_code = f""""""
    def run(self, df):\
""""""
        if self.params['training']['algo'] in ['Neural Network']:
            self.importer.addModule(module='load_model',mod_from='tensorflow.keras.models')
            init_code += f""""""
        self.model = load_model(model_file)
""""""
            run_code += """"""
        df = df.astype(np.float32)
        return pd.DataFrame(np.argmax(self.model.predict(df),axis=1))
""""""        
        elif self.params['training']['algo'] in ['Neural Architecture Search']:
            self.importer.addModule(module='load_model',mod_from='tensorflow.keras.models')
            self.importer.addModule(module='autokeras',mod_as='ak')
            init_code += f""""""
        self.model = load_model(model_file,custom_objects=ak.CUSTOM_OBJECTS)
""""""
            run_code += """"""
        df = df.astype(np.float32)
        return pd.DataFrame(self.model.predict(df))
""""""        
        elif self.params['training']['algo'] in ['Deep Q Network','Dueling Deep Q Network']:
            self.importer.addModule('joblib')
            self.importer.addModule(module='numpy',mod_as='np')
            self.importer.addModule(module='constant',mod_from='tensorflow')
            self.importer.addModule(module='time_step',mod_from='tf_agents.trajectories')
            init_code += f""""""
        self.model = joblib.load(model_file)
""""""
            run_code += """"""
        df = df.astype(np.float32)
        q, _ = self.model(np.array(df), step_type=constant([time_step.StepType.FIRST] * np.array(df).shape[0]), training=False)
        return pd.DataFrame(q.numpy())
""""""        
        elif self.params['training']['algo'] in ['Convolutional Neural Network (1D)','Recurrent Neural Network','Recurrent Neural Network (GRU)','Recurrent Neural Network (LSTM)']:
            self.importer.addModule(module='numpy',mod_as='np')
            self.importer.addModule(module='load_model',mod_from='tensorflow.keras.models')
            init_code += f""""""
        self.model = load_model(model_file)
""""""
            run_code += """"""
        df = np.expand_dims(df, axis=2)
        df = df.astype(np.float32)
        return pd.DataFrame(np.argmax(self.model.predict(df),axis=1))
""""""        
        else:
            self.importer.addModule(module='joblib')
            self.importer.addModule(module='numpy',mod_as='np')
            init_code += f""""""
        self.model = joblib.load(model_file)
""""""
            run_code += """"""
        df = df.astype(np.float32)
        return pd.DataFrame(self.model.predict_proba(df), columns=self.model.classes_)
    """"""
        return init_code, run_code
        
    def formatter_code(self):
        self.importer.addModule('json')
        self.importer.addModule('joblib')
        self.importer.addModule('pandas', mod_as='pd')
        return """"""
class output_format():

    def __init__(self):
        pass
        
    def run(self, raw_df, output):
        output = round(output,2)
        encoder_file = (Path(__file__).parent/""model"")/""label_encoder.pkl""
        if encoder_file.exists():
            encoder = joblib.load(encoder_file)
            output.rename(columns=dict(zip(output.columns, encoder.inverse_transform(list(output.columns)))), inplace=True)
        raw_df['prediction'] = output.idxmax(axis=1)
        raw_df['probability'] = output.max(axis=1).round(2)
        raw_df['remarks'] = output.apply(lambda x: x.to_json(double_precision=2), axis=1)
        outputjson = raw_df.to_json(orient='records',double_precision=5)
        outputjson = {""status"":""SUCCESS"",""data"":json.loads(outputjson)}
        return(json.dumps(outputjson))
        """"""
         
class regression( deployer):
    
    def __init__(self, params={}):
        super().__init__( params)
        self.feature_reducer = False
        if not self.name:
            self.name = 'regression'
        
    def create_idrift(self):
        obj = aionPrediction()
        if self.params['features']['text_feat']:
            obj.create_text_drift_file(self.deploy_path,self.params['features']['text_feat'],self.params['features']['target_feat'],self.name)
        else:
            obj.create_drift_file(self.deploy_path,self.params['features']['input_feat'],self.params['features']['target_feat'],self.name)

    def create_odrift(self):
        obj = aionPrediction()
        if self.params['features']['text_feat']:
            obj.create_regression_text_performance_file(self.deploy_path,self.params['features']['text_feat'],self.params['features']['target_feat'])        
        else:
            obj.create_regression_performance_file(self.deploy_path,self.params['features']['input_feat'],self.params['features']['target_feat'])        

    def training_code( self):
        self.importer.addModule(module='pandas',mod_as='pd')
        code = f""""""
class trainer():        
""""""
        init_code = f""""""
    def __init__( self):
        model_file = (Path(__file__).parent/""model"")/""{self.params['training']['model_file']}""
        if not model_file.exists():
            raise ValueError(f'Trained model file not found: {{model_file}}') 
""""""
        run_code = f""""""
    def run(self, df):\
""""""
        if self.params['training']['algo'] in ['Neural Architecture Search']:
            self.importer.addModule(module='load_model',mod_from='tensorflow.keras.models')
            self.importer.addModule(module='autokeras',mod_as='ak')
            init_code += f""""""
        self.model = load_model(model_file,custom_objects=ak.CUSTOM_OBJECTS)
""""""
            run_code += """"""
        df = df.astype(np.float32)
        return self.model.predict(df).reshape(1, -1)
""""""        
        elif self.params['training']['algo'] in ['Neural Network','Convolutional Neural Network (1D)','Recurrent Neural Network','Recurrent Neural Network (GRU)','Recurrent Neural Network (LSTM)']:
            self.importer.addModule(module='numpy',mod_as='np')
            self.importer.addModule(module='load_model',mod_from='tensorflow.keras.models')
            init_code += f""""""
        self.model = load_model(model_file)
""""""
            run_code += """"""
        df = np.expand_dims(df, axis=2)
        df = df.astype(np.float32)
        return self.model.predict(df).reshape(1, -1)
""""""        
        else:
            self.importer.addModule('joblib')
            init_code += f""""""
        self.model = joblib.load(model_file)
""""""
            run_code += """"""
        df = df.astype(np.float32)
        return self.model.predict(df).reshape(1, -1)
    """"""
        return code + init_code + run_code
        
    def formatter_code(self):
        self.importer.addModule('json')
        self.importer.addModule('pandas', mod_as='pd')
        return """"""
class output_format():

    def __init__(self):
        pass
        
    def run(self, raw_df, output):
        raw_df['prediction'] = output[0]
        raw_df['prediction'] = raw_df['prediction'].round(2)
        outputjson = raw_df.to_json(orient='records',double_precision=5)
        outputjson = {""status"":""SUCCESS"",""data"":json.loads(outputjson)}
        return(json.dumps(outputjson))
        """"""

class clustering( deployer):
    
    def __init__(self, params={}):
        super().__init__( params)
        self.feature_reducer = False
        if not self.name:
            self.name = 'clustering'
        
    def training_code( self):
        self.importer.addModule('joblib')
        self.importer.addModule(module='pandas',mod_as='pd')
        code = f""""""
class trainer():        
""""""
        init_code = f""""""
    def __init__( self):
        model_file = (Path(__file__).parent/""model"")/""{self.params['training']['model_file']}""
        if not model_file.exists():
            raise ValueError(f'Trained model file not found: {{model_file}}') 
""""""
        run_code = f""""""
    def run(self, df):\
""""""
        if self.params['training']['algo'] == 'DBSCAN':
            init_code += f""""""
        self.model = joblib.load(model_file)
""""""
            run_code += """"""
        return self.model.fit_predict(df)
""""""        
        else:
            init_code += f""""""
        self.model = joblib.load(model_file)
""""""
            run_code += """"""
        return self.model.predict(df).reshape(1, -1)
    """"""
        return code + init_code + run_code
        
    def formatter_code(self):
        self.importer.addModule('json')
        self.importer.addModule('pandas', mod_as='pd')
        return """"""
class output_format():

    def __init__(self):
        pass
        
    def run(self, raw_df, output):
        raw_df['prediction'] = output[0]
        raw_df['prediction'] = raw_df['prediction'].round(2)
        outputjson = raw_df.to_json(orient='records',double_precision=2)
        outputjson = {""status"":""SUCCESS"",""data"":json.loads(outputjson)}
        return(json.dumps(outputjson))
        """"""
        return code

if __name__ == '__main__':
    config = {'usecase_name': 'AI0110', 'usecase_ver': '1', 'features': {'input_feat': ['v2'], 'target_feat': 'v1', 'text_feat': ['v2']}, 'paths': {'deploy': r'C:/Users/vashistah/AppData/Local/Programs/HCLTech/AION/data/target/AI0110/1', 'usecase': r'C:/Users/vashistah/AppData/Local/Programs/HCLTech/AION/data/target/AI0110'}, 'profiler': {'input_features': ['v2'], 'output_features': ['07xxxxxxxxx_vect', '08700621170150p_vect', '08702840625comuk_vect', '08718726270150gbpmtmsg18_vect', '1000s_vect', '10am7pm_vect', '10k_vect', '10p_vect', '10pmin_vect', '10ppm_vect', '11mths_vect', '125gift_vect', '12hrs_vect', '12mths_vect', '150p_vect', '150perwksub_vect', '150pm_vect', '150pmin_vect', '150pmsg_vect', '150pmsgrcvdhgsuite3422landsroww1j6hl_vect', '150pmtmsgrcvd18_vect', '150ppm_vect', '150ptone_vect', '150pwk_vect', '150week_vect', '16only_vect', '18only_vect', '1hr_vect', '1minmobsmorelkpobox177hp51fl_vect', '1st_vect', '1x150pwk_vect', '20p_vect', '20pmin_vect', '21st_vect', '220cm2_vect', '24hrs_vect', '25p_vect', '26th_vect', '2day_vect', '2find_vect', '2geva_vect', '2go_vect', '2marrow_vect', '2mrw_vect', '2nd_vect', '2nite_vect', '2optout_vect', '2p_vect', '2u_vect', '2waxsto_vect', '2wks_vect', '300p_vect', '31pmsg_vect', '3510i_vect', '3d_vect', '3g_vect', '3gbp_vect', '3hrs_vect', '3mins_vect', '3qxj9_vect', '3rd_vect', '3ss_vect', '3u_vect', '3uz_vect', '3wk_vect', '40gb_vect', '4a_vect', '4d_vect', '4eva_vect', '4get_vect', '4info_vect', '4mths_vect', '4th_vect', '4u_vect', '50p_vect', '5min_vect', '5pm_vect', '5wb_vect', '5we_vect', '60pmin_vect', '6hrs_vect', '6months_vect', '6pm_vect', '7250i_vect', '7ish_vect', '8am_vect', '8pm_vect', '8th_vect', '8wp_vect', '9ae_vect', '9ja_vect', '9pm_vect', '9t_vect', 'aathi_vect', 'abi_vect', 'ability_vect', 'abiola_vect', 'able_vect', 'abt_vect', 'abta_vect', 'aburo_vect', 'ac_vect', 'academic_vect', 'acc_vect', 'accept_vect', 'access_vect', 'accident_vect', 'accidentally_vect', 'accordingly_vect', 'account_vect', 'ache_vect', 'across_vect', 'acted_vect', 'action_vect', 'activate_vect', 'activities_vect', 'actor_vect', 'actual_vect', 'actually_vect', 'ad_vect', 'adam_vect', 'add_vect', 'added_vect', 'addicted_vect', 'addie_vect', 'address_vect', 'admin_vect', 'administrator_vect', 'admirer_vect', 'admit_vect', 'adore_vect', 'adoring_vect', 'ads_vect', 'adult_vect', 'advance_vect', 'adventure_vect', 'advice_vect', 'advise_vect', 'affair_vect', 'affairs_vect', 'affectionate_vect', 'afraid_vect', 'aft_vect', 'afternoon_vect', 'aftr_vect', 'agalla_vect', 'age_vect', 'age16_vect', 'ages_vect', 'ago_vect', 'agree_vect', 'ah_vect', 'aha_vect', 'ahead_vect', 'ahmad_vect', 'ai_vect', 'aight_vect', 'aint_vect', 'air_vect', 'airport_vect', 'airtel_vect', 'aiya_vect', 'aiyah_vect', 'aiyar_vect', 'aiyo_vect', 'al_vect', 'album_vect', 'alert_vect', 'alex_vect', 'alfie_vect', 'ali_vect', 'allah_vect', 'allow_vect', 'allowed_vect', 'almost_vect', 'alone_vect', 'along_vect', 'already_vect', 'alright_vect', 'alrite_vect', 'also_vect', 'always_vect', 'alwys_vect', 'amazing_vect', 'american_vect', 'among_vect', 'amount_vect', 'amp_vect', 'amt_vect', 'andros_vect', 'angry_vect', 'annie_vect', 'anniversary_vect', 'announcement_vect', 'anot_vect', 'another_vect', 'ans_vect', 'ansr_vect', 'answer_vect', 'answered_vect', 'answering_vect', 'answers_vect', 'anthony_vect', 'anti_vect', 'anybody_vect', 'anymore_vect', 'anyone_vect', 'anything_vect', 'anytime_vect', 'anyway_vect', 'anyways_vect', 'apartment_vect', 'app_vect', 'apparently_vect', 'applebees_vect', 'apply_vect', 'appointment_vect', 'appreciate_vect', 'appreciated_vect', 'approx_vect', 'apps_vect', 'appt_vect', 'april_vect', 'ar_vect', 'arcade_vect', 'ard_vect', 'area_vect', 'argh_vect', 'argument_vect', 'arm_vect', 'armand_vect', 'arms_vect', 'around_vect', 'arrange_vect', 'arrested_vect', 'arrive_vect', 'arsenal_vect', 'art_vect', 'arun_vect', 'asap_vect', 'ashley_vect', 'ask_vect', 'askd_vect', 'asked_vect', 'askin_vect', 'asking_vect', 'asks_vect', 'asleep_vect', 'ass_vect', 'assume_vect', 'ate_vect', 'atlanta_vect', 'atlast_vect', 'atm_vect', 'attached_vect', 'attempt_vect', 'attend_vect', 'auction_vect', 'august_vect', 'aunt_vect', 'aunty_vect', 'auto_vect', 'av_vect', 'available_vect', 'avatar_vect', 'ave_vect', 'avent_vect', 'avoid_vect', 'await_vect', 'awaiting_vect', 'awake_vect', 'award_vect', 'awarded_vect', 'away_vect', 'awesome_vect', 'aww_vect', 'b4_vect', 'ba_vect', 'babe_vect', 'babes_vect', 'babies_vect', 'baby_vect', 'back_vect', 'bad_vect', 'bag_vect', 'bags_vect', 'bahamas_vect', 'bak_vect', 'balance_vect', 'bank_vect', 'banks_vect', 'bar_vect', 'barely_vect', 'basic_vect', 'basically_vect', 'bat_vect', 'bath_vect', 'bathe_vect', 'bathing_vect', 'battery_vect', 'bay_vect', 'bb_vect', 'bc_vect', 'bck_vect', 'bcoz_vect', 'bday_vect', 'be_vect', 'bears_vect', 'beautiful_vect', 'beauty_vect', 'bec_vect', 'become_vect', 'becoz_vect', 'bed_vect', 'bedrm_vect', 'bedroom_vect', 'beer_vect', 'befor_vect', 'beg_vect', 'begin_vect', 'behave_vect', 'behind_vect', 'bein_vect', 'believe_vect', 'bell_vect', 'belly_vect', 'belovd_vect', 'best_vect', 'bet_vect', 'better_vect', 'beyond_vect', 'bf_vect', 'bid_vect', 'bids_vect', 'big_vect', 'bigger_vect', 'biggest_vect', 'bill_vect', 'billed_vect', 'billion_vect', 'bills_vect', 'bin_vect', 'biola_vect', 'birds_vect', 'birla_vect', 'birth_vect', 'birthdate_vect', 'birthday_vect', 'bishan_vect', 'bit_vect', 'bitch_vect', 'bite_vect', 'black_vect', 'blackberry_vect', 'blah_vect', 'blake_vect', 'blank_vect', 'bleh_vect', 'bless_vect', 'blessing_vect', 'bloo_vect', 'blood_vect', 'bloody_vect', 'blue_vect', 'bluetooth_vect', 'bluff_vect', 'boat_vect', 'body_vect', 'bold_vect', 'bone_vect', 'bonus_vect', 'boo_vect', 'book_vect', 'booked_vect', 'booking_vect', 'books_vect', 'boost_vect', 'booty_vect', 'bored_vect', 'boring_vect', 'born_vect', 'boss_vect', 'boston_vect', 'bother_vect', 'bottom_vect', 'bought_vect', 'bout_vect', 'bowl_vect', 'box_vect', 'box326_vect', 'box334sk38ch_vect', 'box97n7qp_vect', 'boy_vect', 'boye_vect', 'boyfriend_vect', 'boys_vect', 'boytoy_vect', 'brah_vect', 'brand_vect', 'bread_vect', 'break_vect', 'breathe_vect', 'bright_vect', 'brilliant_vect', 'bring_vect', 'bringing_vect', 'brings_vect', 'british_vect', 'bro_vect', 'broad_vect', 'broke_vect', 'broken_vect', 'bros_vect', 'brothas_vect', 'brother_vect', 'brought_vect', 'bruv_vect', 'bslvyl_vect', 'bt_vect', 'btnationalrate_vect', 'btw_vect', 'bucks_vect', 'bud_vect', 'budget_vect', 'buff_vect', 'buffet_vect', 'bugis_vect', 'building_vect', 'buns_vect', 'burger_vect', 'burns_vect', 'bus_vect', 'buses_vect', 'business_vect', 'busy_vect', 'butt_vect', 'buy_vect', 'buying_vect', 'buzz_vect', 'bx420_vect', 'bx420ip45we_vect', 'bye_vect', 'ca_vect', 'cabin_vect', 'cafe_vect', 'cake_vect', 'cal_vect', 'calculation_vect', 'calicut_vect', 'california_vect', 'call_vect', 'call2optout674_vect', 'callback_vect', 'callcost_vect', 'called_vect', 'caller_vect', 'callers_vect', 'callertune_vect', 'callin_vect', 'calling_vect', 'calls_vect', 'callså_vect', 'cam_vect', 'camcorder_vect', 'came_vect', 'camera_vect', 'cameravideo_vect', 'campus_vect', 'can_vect', 'canada_vect', 'canal_vect', 'canary_vect', 'cancel_vect', 'cancelled_vect', 'cancer_vect', 'cant_vect', 'captain_vect', 'car_vect', 'card_vect', 'cardiff_vect', 'care_vect', 'cared_vect', 'career_vect', 'careful_vect', 'carefully_vect', 'caring_vect', 'carlos_vect', 'caroline_vect', 'cars_vect', 'cartoon_vect', 'case_vect', 'cash_vect', 'cashbalance_vect', 'cashin_vect', 'castor_vect', 'cat_vect', 'catch_vect', 'catching_vect', 'caught_vect', 'cause_vect', 'cbe_vect', 'cc_vect', 'cd_vect', 'cdgt_vect', 'cds_vect', 'celebrate_vect', 'celebration_vect', 'cell_vect', 'center_vect', 'centre_vect', 'certainly_vect', 'cha_vect', 'chain_vect', 'challenge_vect', 'chance_vect', 'change_vect', 'changed_vect', 'changes_vect', 'channel_vect', 'character_vect', 'charge_vect', 'charged_vect', 'charges_vect', 'charity_vect', 'charles_vect', 'chase_vect', 'chasing_vect', 'chat_vect', 'chatting_vect', 'cheap_vect', 'cheaper_vect', 'cheat_vect', 'chechi_vect', 'check_vect', 'checked_vect', 'checking_vect', 'cheers_vect', 'chennai_vect', 'cherish_vect', 'chest_vect', 'chicken_vect', 'chikku_vect', 'child_vect', 'childish_vect', 'children_vect', 'chill_vect', 'chillin_vect', 'china_vect', 'chinese_vect', 'chip_vect', 'chocolate_vect', 'choice_vect', 'choose_vect', 'chosen_vect', 'christ_vect', 'christmas_vect', 'church_vect', 'cine_vect', 'cinema_vect', 'citizen_vect', 'city_vect', 'claim_vect', 'claims_vect', 'claire_vect', 'class_vect', 'classes_vect', 'clean_vect', 'cleaning_vect', 'clear_vect', 'clearly_vect', 'click_vect', 'clock_vect', 'close_vect', 'closed_vect', 'closer_vect', 'closes_vect', 'clothes_vect', 'club_vect', 'cn_vect', 'co_vect', 'coast_vect', 'coat_vect', 'cochin_vect', 'code_vect', 'coffee_vect', 'coin_vect', 'coins_vect', 'cold_vect', 'colleagues_vect', 'collect_vect', 'collected_vect', 'collecting_vect', 'collection_vect', 'college_vect', 'colour_vect', 'come_vect', 'comedy_vect', 'comes_vect', 'comin_vect', 'coming_vect', 'commercial_vect', 'common_vect', 'community_vect', 'comp_vect', 'company_vect', 'competition_vect', 'complete_vect', 'completed_vect', 'completely_vect', 'complimentary_vect', 'computer_vect', 'concentrate_vect', 'concert_vect', 'conditions_vect', 'conducts_vect', 'confidence_vect', 'confirm_vect', 'congrats_vect', 'congratulations_vect', 'connection_vect', 'consider_vect', 'considering_vect', 'constant_vect', 'constantly_vect', 'contact_vect', 'contacted_vect', 'contacts_vect', 'content_vect', 'contents_vect', 'continue_vect', 'contract_vect', 'control_vect', 'convey_vect', 'convinced_vect', 'cool_vect', 'coping_vect', 'copy_vect', 'cornwall_vect', 'correct_vect', 'cos_vect', 'cost_vect', 'costa_vect', 'costs_vect', 'costå_vect', 'could_vect', 'count_vect', 'countin_vect', 'country_vect', 'couple_vect', 'course_vect', 'cover_vect', 'coz_vect', 'cr9_vect', 'cramps_vect', 'crave_vect', 'crazy_vect', 'created_vect', 'credit_vect', 'credited_vect', 'credits_vect', 'creepy_vect', 'crisis_vect', 'crore_vect', 'cross_vect', 'croydon_vect', 'cruise_vect', 'cry_vect', 'cs_vect', 'csbcm4235wc1n3xx_vect', 'csstop_vect', 'cud_vect', 'cuddling_vect', 'cum_vect', 'cup_vect', 'curious_vect', 'current_vect', 'currently_vect', 'cust_vect', 'custcare_vect', 'custcare08718720201_vect', 'custom_vect', 'customer_vect', 'customers_vect', 'cut_vect', 'cute_vect', 'cutting_vect', 'cuz_vect', 'cw25wx_vect', 'da_vect', 'dad_vect', 'daddy_vect', 'daily_vect', 'damn_vect', 'dance_vect', 'dancing_vect', 'dare_vect', 'dark_vect', 'darlin_vect', 'darling_vect', 'darren_vect', 'dat_vect', 'date_vect', 'dates_vect', 'dating_vect', 'dave_vect', 'day_vect', 'days_vect', 'de_vect', 'dead_vect', 'deal_vect', 'dealer_vect', 'dealing_vect', 'dear_vect', 'dearly_vect', 'death_vect', 'decide_vect', 'decided_vect', 'decimal_vect', 'decision_vect', 'deep_vect', 'def_vect', 'definite_vect', 'definitely_vect', 'del_vect', 'delete_vect', 'deleted_vect', 'delhi_vect', 'deliver_vect', 'delivered_vect', 'deliveredtomorrow_vect', 'delivery_vect', 'dem_vect', 'demand_vect', 'den_vect', 'denis_vect', 'department_vect', 'depends_vect', 'depressed_vect', 'derek_vect', 'desires_vect', 'desperate_vect', 'details_vect', 'dey_vect', 'dhoni_vect', 'dial_vect', 'dick_vect', 'dictionary_vect', 'didn_vect', 'didnt_vect', 'didt_vect', 'die_vect', 'died_vect', 'diet_vect', 'different_vect', 'difficult_vect', 'digital_vect', 'dignity_vect', 'din_vect', 'dinner_vect', 'dint_vect', 'direct_vect', 'directly_vect', 'dirty_vect', 'dis_vect', 'discount_vect', 'discuss_vect', 'dislikes_vect', 'display_vect', 'distance_vect', 'distract_vect', 'disturb_vect', 'division_vect', 'dload_vect', 'dnt_vect', 'doc_vect', 'docs_vect', 'doctor_vect', 'doesnt_vect', 'dog_vect', 'dogging_vect', 'doggy_vect', 'doin_vect', 'dollars_vect', 'don_vect', 'done_vect', 'dont_vect', 'donåõt_vect', 'door_vect', 'dorm_vect', 'double_vect', 'dough_vect', 'download_vect', 'downloads_vect', 'draw_vect', 'dream_vect', 'dreams_vect', 'dress_vect', 'dressed_vect', 'dresser_vect', 'drink_vect', 'drinking_vect', 'drinks_vect', 'drive_vect', 'driver_vect', 'drivin_vect', 'driving_vect', 'drop_vect', 'dropped_vect', 'drug_vect', 'drugs_vect', 'drunk_vect', 'dry_vect', 'ds_vect', 'dubsack_vect', 'dude_vect', 'due_vect', 'dun_vect', 'dunno_vect', 'durban_vect', 'dvd_vect', 'earlier_vect', 'early_vect', 'earth_vect', 'easier_vect', 'easily_vect', 'east_vect', 'easter_vect', 'easy_vect', 'eat_vect', 'eaten_vect', 'eatin_vect', 'eating_vect', 'ebay_vect', 'ec2a_vect', 'ee_vect', 'eek_vect', 'eerie_vect', 'effects_vect', 'eg_vect', 'egg_vect', 'eggs_vect', 'eh_vect', 'eight_vect', 'either_vect', 'ela_vect', 'electricity_vect', 'else_vect', 'elsewhere_vect', 'em_vect', 'email_vect', 'embarassed_vect', 'empty_vect', 'end_vect', 'ended_vect', 'ending_vect', 'ends_vect', 'enemy_vect', 'energy_vect', 'eng_vect', 'engin_vect', 'england_vect', 'english_vect', 'enjoy_vect', 'enjoyed_vect', 'enough_vect', 'enter_vect', 'entered_vect', 'entitled_vect', 'entry_vect', 'enuff_vect', 'envelope_vect', 'er_vect', 'erm_vect', 'escape_vect', 'especially_vect', 'esplanade_vect', 'eta_vect', 'etc_vect', 'euro_vect', 'euro2004_vect', 'europe_vect', 'eve_vect', 'eveb_vect', 'even_vect', 'evening_vect', 'event_vect', 'ever_vect', 'every_vect', 'everybody_vect', 'everyday_vect', 'everyone_vect', 'everything_vect', 'everywhere_vect', 'evn_vect', 'evng_vect', 'ex_vect', 'exact_vect', 'exactly_vect', 'exam_vect', 'exams_vect', 'excellent_vect', 'except_vect', 'exciting_vect', 'excuse_vect', 'excuses_vect', 'executive_vect', 'exeter_vect', 'exhausted_vect', 'expect_vect', 'expecting_vect', 'expensive_vect', 'experience_vect', 'expired_vect', 'expires_vect', 'explain_vect', 'explicit_vect', 'explosive_vect', 'express_vect', 'extra_vect', 'eye_vect', 'eyes_vect', 'fa_vect', 'fab_vect', 'face_vect', 'facebook_vect', 'fact_vect', 'faggy_vect', 'failed_vect', 'fair_vect', 'faith_vect', 'fall_vect', 'falls_vect', 'family_vect', 'fan_vect', 'fancies_vect', 'fancy_vect', 'fantasies_vect', 'fantastic_vect', 'fantasy_vect', 'far_vect', 'farm_vect', 'fast_vect', 'faster_vect', 'fat_vect', 'father_vect', 'fathima_vect', 'fault_vect', 'fave_vect', 'favorite_vect', 'favour_vect', 'favourite_vect', 'fb_vect', 'feb_vect', 'february_vect', 'feel_vect', 'feelin_vect', 'feeling_vect', 'feels_vect', 'fees_vect', 'feet_vect', 'fell_vect', 'felt_vect', 'fetch_vect', 'fever_vect', 'field_vect', 'fifteen_vect', 'fight_vect', 'fighting_vect', 'figure_vect', 'file_vect', 'files_vect', 'fill_vect', 'filling_vect', 'fills_vect', 'film_vect', 'final_vect', 'finally_vect', 'find_vect', 'fine_vect', 'fingers_vect', 'finish_vect', 'finished_vect', 'first_vect', 'fit_vect', 'fix_vect', 'fixed_vect', 'flag_vect', 'flaked_vect', 'flash_vect', 'flat_vect', 'flight_vect', 'flights_vect', 'flirt_vect', 'floor_vect', 'flower_vect', 'fml_vect', 'fo_vect', 'follow_vect', 'followed_vect', 'following_vect', 'fone_vect', 'food_vect', 'fool_vect', 'football_vect', 'force_vect', 'foreign_vect', 'forever_vect', 'forevr_vect', 'forget_vect', 'forgets_vect', 'forgiven_vect', 'forgot_vect', 'format_vect', 'forums_vect', 'forward_vect', 'forwarded_vect', 'found_vect', 'four_vect', 'fr_vect', 'fran_vect', 'freak_vect', 'free_vect', 'freefone_vect', 'freemsg_vect', 'freephone_vect', 'freezing_vect', 'fren_vect', 'frens_vect', 'fret_vect', 'fri_vect', 'friday_vect', 'friend_vect', 'friends_vect', 'friendship_vect', 'fringe_vect', 'frm_vect', 'frnd_vect', 'frnds_vect', 'frndship_vect', 'fuck_vect', 'fuckin_vect', 'fucking_vect', 'ful_vect', 'full_vect', 'fullonsmscom_vect', 'fun_vect', 'funny_vect', 'future_vect', 'fyi_vect', 'gal_vect', 'gals_vect', 'game_vect', 'games_vect', 'gang_vect', 'gap_vect', 'gaps_vect', 'garage_vect', 'garbage_vect', 'gary_vect', 'gas_vect', 'gautham_vect', 'gave_vect', 'gay_vect', 'gd_vect', 'ge_vect', 'gee_vect', 'geeee_vect', 'geeeee_vect', 'gender_vect', 'generally_vect', 'genius_vect', 'gentle_vect', 'gentleman_vect', 'gently_vect', 'germany_vect', 'get_vect', 'gets_vect', 'gettin_vect', 'getting_vect', 'gf_vect', 'gibbs_vect', 'gift_vect', 'gim_vect', 'girl_vect', 'girls_vect', 'gist_vect', 'giv_vect', 'give_vect', 'given_vect', 'gives_vect', 'giving_vect', 'glad_vect', 'gn_vect', 'go_vect', 'goal_vect', 'god_vect', 'goes_vect', 'goin_vect', 'going_vect', 'gold_vect', 'gon_vect', 'gona_vect', 'gone_vect', 'good_vect', 'goodmorning_vect', 'goodnight_vect', 'goodnite_vect', 'google_vect', 'gorgeous_vect', 'gossip_vect', 'got_vect', 'goto_vect', 'gotten_vect', 'govtinstituitions_vect', 'gr8_vect', 'grace_vect', 'gram_vect', 'grand_vect', 'granite_vect', 'gravity_vect', 'great_vect', 'green_vect', 'greet_vect', 'greetings_vect', 'grins_vect', 'grl_vect', 'ground_vect', 'group_vect', 'gt_vect', 'guaranteed_vect', 'gud_vect', 'gudnite_vect', 'guess_vect', 'guessing_vect', 'guide_vect', 'guilty_vect', 'guy_vect', 'guys_vect', 'gym_vect', 'ha_vect', 'haf_vect', 'haha_vect', 'hai_vect', 'hair_vect', 'haiz_vect', 'half_vect', 'halloween_vect', 'ham_vect', 'hand_vect', 'handed_vect', 'handle_vect', 'hands_vect', 'handset_vect', 'hanging_vect', 'happen_vect', 'happened_vect', 'happening_vect', 'happens_vect', 'happiness_vect', 'happy_vect', 'hard_vect', 'hardcore_vect', 'hardly_vect', 'harry_vect', 'hate_vect', 'hav_vect', 'havent_vect', 'havenåõt_vect', 'havin_vect', 'head_vect', 'headache_vect', 'headin_vect', 'heads_vect', 'hear_vect', 'heard_vect', 'heart_vect', 'heavy_vect', 'hee_vect', 'height_vect', 'held_vect', 'helen_vect', 'hell_vect', 'hella_vect', 'hello_vect', 'help_vect', 'help08712400602450p_vect', 'helpline_vect', 'hence_vect', 'henry_vect', 'heri_vect', 'herlove_vect', 'hes_vect', 'hex_vect', 'hey_vect', 'hgsuite3422lands_vect', 'hi_vect', 'hide_vect', 'high_vect', 'hill_vect', 'hint_vect', 'hip_vect', 'history_vect', 'hit_vect', 'hiya_vect', 'hl_vect', 'hlp_vect', 'hmm_vect', 'hmmm_vect', 'hmv_vect', 'ho_vect', 'hockey_vect', 'hol_vect', 'hold_vect', 'holder_vect', 'holding_vect', 'holiday_vect', 'holla_vect', 'hols_vect', 'holy_vect', 'home_vect', 'honey_vect', 'hook_vect', 'hop_vect', 'hope_vect', 'hoped_vect', 'hopefully_vect', 'hoping_vect', 'horny_vect', 'horo_vect', 'horrible_vect', 'hospital_vect', 'hospitals_vect', 'hostel_vect', 'hot_vect', 'hotel_vect', 'hotels_vect', 'hour_vect', 'hours_vect', 'house_vect', 'housemaid_vect', 'however_vect', 'hows_vect', 'howz_vect', 'hr_vect', 'hrishi_vect', 'hrs_vect', 'http_vect', 'hubby_vect', 'hug_vect', 'huh_vect', 'hun_vect', 'hungry_vect', 'hunny_vect', 'hurry_vect', 'hurt_vect', 'hurting_vect', 'hurts_vect', 'husband_vect', 'hv_vect', 'hw_vect', 'hyde_vect', 'iam_vect', 'ibhltd_vect', 'ibiza_vect', 'ic_vect', 'ice_vect', 'id_vect', 'idea_vect', 'ideal_vect', 'ideas_vect', 'identifier_vect', 'idiot_vect', 'idk_vect', 'ignore_vect', 'ikea_vect', 'il_vect', 'ill_vect', 'im_vect', 'imagine_vect', 'imma_vect', 'immediately_vect', 'imp_vect', 'important_vect', 'impossible_vect', 'improved_vect', 'in2_vect', 'inc_vect', 'inches_vect', 'incident_vect', 'include_vect', 'including_vect', 'inclusive_vect', 'inconsiderate_vect', 'indeed_vect', 'india_vect', 'indian_vect', 'indians_vect', 'indicate_vect', 'infections_vect', 'infernal_vect', 'info_vect', 'inform_vect', 'information_vect', 'informed_vect', 'innings_vect', 'insha_vect', 'inside_vect', 'instantly_vect', 'instead_vect', 'instructions_vect', 'insurance_vect', 'intelligent_vect', 'interest_vect', 'interested_vect', 'interesting_vect', 'interflora_vect', 'internet_vect', 'intro_vect', 'invest_vect', 'invite_vect', 'invited_vect', 'inviting_vect', 'iouri_vect', 'ip4_vect', 'ipod_vect', 'irritating_vect', 'iscoming_vect', 'ish_vect', 'island_vect', 'islands_vect', 'isnt_vect', 'issue_vect', 'issues_vect', 'it_vect', 'italian_vect', 'its_vect', 'itz_vect', 'itåõs_vect', 'ive_vect', 'iz_vect', 'izzit_vect', 'iåõm_vect', 'jacket_vect', 'jamster_vect', 'jan_vect', 'january_vect', 'jason_vect', 'java_vect', 'jay_vect', 'jazz_vect', 'jealous_vect', 'jeans_vect', 'jen_vect', 'jenny_vect', 'jess_vect', 'jesus_vect', 'jiayin_vect', 'jiu_vect', 'jo_vect', 'joanna_vect', 'job_vect', 'jogging_vect', 'john_vect', 'join_vect', 'joined_vect', 'joining_vect', 'joke_vect', 'jokes_vect', 'jokin_vect', 'joking_vect', 'jolly_vect', 'joy_vect', 'jsco_vect', 'jst_vect', 'juan_vect', 'juicy_vect', 'july_vect', 'june_vect', 'jus_vect', 'juz_vect', 'k52_vect', 'kadeem_vect', 'kaiez_vect', 'kallis_vect', 'kano_vect', 'kappa_vect', 'karaoke_vect', 'kate_vect', 'kay_vect', 'kb_vect', 'ke_vect', 'keep_vect', 'keeping_vect', 'keeps_vect', 'kent_vect', 'kept_vect', 'kerala_vect', 'key_vect', 'keys_vect', 'ki_vect', 'kick_vect', 'kid_vect', 'kidding_vect', 'kids_vect', 'kidz_vect', 'kind_vect', 'kinda_vect', 'kindly_vect', 'king_vect', 'kiss_vect', 'kisses_vect', 'kk_vect', 'knackered_vect', 'knew_vect', 'knock_vect', 'know_vect', 'knowing_vect', 'knows_vect', 'knw_vect', 'kz_vect', 'l8r_vect', 'la_vect', 'lab_vect', 'ladies_vect', 'lady_vect', 'lag_vect', 'laid_vect', 'land_vect', 'landline_vect', 'langport_vect', 'language_vect', 'laptop_vect', 'lar_vect', 'largest_vect', 'last_vect', 'late_vect', 'later_vect', 'latest_vect', 'latr_vect', 'laugh_vect', 'laughing_vect', 'law_vect', 'lazy_vect', 'ldn_vect', 'ldnw15h_vect', 'le_vect', 'lead_vect', 'learn_vect', 'least_vect', 'leave_vect', 'leaves_vect', 'leaving_vect', 'lect_vect', 'lecture_vect', 'left_vect', 'legal_vect', 'legs_vect', 'leh_vect', 'lei_vect', 'lem_vect', 'less_vect', 'lesson_vect', 'lessons_vect', 'let_vect', 'lets_vect', 'letter_vect', 'letters_vect', 'liao_vect', 'library_vect', 'lick_vect', 'licks_vect', 'lido_vect', 'lie_vect', 'lies_vect', 'life_vect', 'lifetime_vect', 'lift_vect', 'light_vect', 'lik_vect', 'like_vect', 'liked_vect', 'likely_vect', 'likes_vect', 'lil_vect', 'line_vect', 'linerental_vect', 'lines_vect', 'link_vect', 'lion_vect', 'lionm_vect', 'lionp_vect', 'lions_vect', 'lip_vect', 'list_vect', 'listen_vect', 'listening_vect', 'literally_vect', 'little_vect', 'live_vect', 'liverpool_vect', 'living_vect', 'lk_vect', 'll_vect', 'lmao_vect', 'lo_vect', 'loads_vect', 'loan_vect', 'loans_vect', 'local_vect', 'locations_vect', 'lock_vect', 'log_vect', 'login_vect', 'logo_vect', 'logopic_vect', 'lol_vect', 'london_vect', 'lonely_vect', 'long_vect', 'longer_vect', 'look_vect', 'lookatme_vect', 'looked_vect', 'lookin_vect', 'looking_vect', 'looks_vect', 'lor_vect', 'lose_vect', 'losing_vect', 'loss_vect', 'lost_vect', 'lot_vect', 'lotr_vect', 'lots_vect', 'lou_vect', 'loud_vect', 'lounge_vect', 'lousy_vect', 'lovable_vect', 'love_vect', 'loved_vect', 'lovely_vect', 'loveme_vect', 'lover_vect', 'loverboy_vect', 'lovers_vect', 'loves_vect', 'loving_vect', 'low_vect', 'lower_vect', 'loyal_vect', 'loyalty_vect', 'ls15hb_vect', 'lt_vect', 'ltd_vect', 'luck_vect', 'lucky_vect', 'lucy_vect', 'lunch_vect', 'luv_vect', 'lux_vect', 'luxury_vect', 'lyf_vect', 'lyfu_vect', 'lyk_vect', 'm227xy_vect', 'm26_vect', 'm263uz_vect', 'm8s_vect', 'mac_vect', 'machan_vect', 'macho_vect', 'mad_vect', 'madam_vect', 'made_vect', 'mag_vect', 'maga_vect', 'magical_vect', 'mah_vect', 'mail_vect', 'mailbox_vect', 'main_vect', 'maintain_vect', 'major_vect', 'make_vect', 'makes_vect', 'makin_vect', 'making_vect', 'malaria_vect', 'male_vect', 'mall_vect', 'man_vect', 'managed_vect', 'management_vect', 'many_vect', 'map_vect', 'march_vect', 'mark_vect', 'market_vect', 'marriage_vect', 'married_vect', 'marry_vect', 'masters_vect', 'match_vect', 'matches_vect', 'mate_vect', 'mates_vect', 'matrix3_vect', 'matter_vect', 'max10mins_vect', 'maximize_vect', 'maxå_vect', 'may_vect', 'mayb_vect', 'maybe_vect', 'mca_vect', 'mcat_vect', 'meal_vect', 'mean_vect', 'meaning_vect', 'means_vect', 'meant_vect', 'meanwhile_vect', 'med_vect', 'medical_vect', 'medicine_vect', 'meds_vect', 'meet_vect', 'meetin_vect', 'meeting_vect', 'meh_vect', 'mei_vect', 'member_vect', 'members_vect', 'men_vect', 'menu_vect', 'merry_vect', 'mess_vect', 'message_vect', 'messaged_vect', 'messages_vect', 'messaging_vect', 'met_vect', 'mid_vect', 'middle_vect', 'midnight_vect', 'mids_vect', 'might_vect', 'miles_vect', 'milk_vect', 'min_vect', 'mind_vect', 'mine_vect', 'mini_vect', 'minimum_vect', 'minor_vect', 'mins_vect', 'minute_vect', 'minutes_vect', 'minuts_vect', 'miracle_vect', 'mis_vect', 'miserable_vect', 'miss_vect', 'missed_vect', 'missin_vect', 'missing_vect', 'mistake_vect', 'mistakes_vect', 'mite_vect', 'mm_vect', 'mmm_vect', 'mmmm_vect', 'mmmmmm_vect', 'mnths_vect', 'mo_vect', 'moan_vect', 'mob_vect', 'mobile_vect', 'mobiles_vect', 'mobilesdirect_vect', 'mobilesvary_vect', 'mobileupd8_vect', 'mobno_vect', 'moby_vect', 'mode_vect', 'model_vect', 'module_vect', 'modules_vect', 'moji_vect', 'mojibiola_vect', 'mokka_vect', 'mom_vect', 'moment_vect', 'moments_vect', 'moms_vect', 'mon_vect', 'monday_vect', 'money_vect', 'monkeys_vect', 'mono_vect', 'month_vect', 'monthly_vect', 'months_vect', 'mood_vect', 'moon_vect', 'moral_vect', 'morn_vect', 'morning_vect', 'mostly_vect', 'mother_vect', 'motorola_vect', 'mouth_vect', 'move_vect', 'moved_vect', 'movie_vect', 'movies_vect', 'moving_vect', 'mp3_vect', 'mr_vect', 'mrng_vect', 'mrt_vect', 'msg_vect', 'msgs_vect', 'mths_vect', 'mu_vect', 'much_vect', 'mum_vect', 'mummy_vect', 'murder_vect', 'murdered_vect', 'murderer_vect', 'music_vect', 'must_vect', 'muz_vect', 'na_vect', 'nag_vect', 'nah_vect', 'naked_vect', 'name_vect', 'name1_vect', 'name2_vect', 'named_vect', 'names_vect', 'nan_vect', 'nap_vect', 'nasdaq_vect', 'nat_vect', 'national_vect', 'natural_vect', 'nature_vect', 'naughty_vect', 'nb_vect', 'nd_vect', 'ne_vect', 'near_vect', 'nearly_vect', 'necessarily_vect', 'necklace_vect', 'ned_vect', 'need_vect', 'needed_vect', 'needs_vect', 'neither_vect', 'net_vect', 'netcollex_vect', 'network_vect', 'networks_vect', 'neva_vect', 'never_vect', 'new_vect', 'newest_vect', 'news_vect', 'next_vect', 'ni8_vect', 'nice_vect', 'nigeria_vect', 'night_vect', 'nights_vect', 'nimya_vect', 'nite_vect', 'no1_vect', 'nobody_vect', 'noe_vect', 'nokia_vect', 'nokias_vect', 'noline_vect', 'none_vect', 'noon_vect', 'nope_vect', 'norm_vect', 'norm150ptone_vect', 'normal_vect', 'normally_vect', 'northampton_vect', 'note_vect', 'nothin_vect', 'nothing_vect', 'notice_vect', 'noun_vect', 'nowadays_vect', 'nt_vect', 'ntt_vect', 'ntwk_vect', 'num_vect', 'number_vect', 'numbers_vect', 'nuther_vect', 'nvm_vect', 'nw_vect', 'nxt_vect', 'nyc_vect', 'nydc_vect', 'nyt_vect', 'o2_vect', 'obviously_vect', 'odi_vect', 'offer_vect', 'offers_vect', 'office_vect', 'official_vect', 'officially_vect', 'ofice_vect', 'often_vect', 'oh_vect', 'oi_vect', 'oic_vect', 'ok_vect', 'okay_vect', 'okey_vect', 'okie_vect', 'ola_vect', 'old_vect', 'omg_vect', 'omw_vect', 'one_vect', 'ones_vect', 'oni_vect', 'online_vect', 'onto_vect', 'onwards_vect', 'oooh_vect', 'oops_vect', 'open_vect', 'opening_vect', 'operator_vect', 'opinion_vect', 'opportunity_vect', 'opt_vect', 'option_vect', 'optout_vect', 'or2stoptxt_vect', 'orange_vect', 'oranges_vect', 'orchard_vect', 'order_vect', 'ordered_vect', 'oredi_vect', 'original_vect', 'oru_vect', 'os_vect', 'oso_vect', 'others_vect', 'otherwise_vect', 'otside_vect', 'outside_vect', 'outstanding_vect', 'outta_vect', 'ovulation_vect', 'oz_vect', 'pa_vect', 'pack_vect', 'package_vect', 'page_vect', 'pages_vect', 'paid_vect', 'pain_vect', 'painful_vect', 'painting_vect', 'panic_vect', 'paper_vect', 'papers_vect', 'paperwork_vect', 'parco_vect', 'parent_vect', 'parents_vect', 'paris_vect', 'park_vect', 'parked_vect', 'parking_vect', 'part_vect', 'partner_vect', 'partnership_vect', 'party_vect', 'pass_vect', 'passed_vect', 'password_vect', 'past_vect', 'pattern_vect', 'patty_vect', 'pay_vect', 'paying_vect', 'payment_vect', 'payoh_vect', 'pc_vect', 'peace_vect', 'pence_vect', 'people_vect', 'per_vect', 'perfect_vect', 'period_vect', 'person_vect', 'personal_vect', 'pete_vect', 'petey_vect', 'pg_vect', 'philosophy_vect', 'phoenix_vect', 'phone_vect', 'phones_vect', 'photo_vect', 'photos_vect', 'pic_vect', 'pick_vect', 'picked_vect', 'picking_vect', 'pics_vect', 'picsfree1_vect', 'picture_vect', 'pictures_vect', 'pie_vect', 'pieces_vect', 'pig_vect', 'pilates_vect', 'pin_vect', 'pink_vect', 'piss_vect', 'pissed_vect', 'pix_vect', 'pizza_vect', 'place_vect', 'places_vect', 'plan_vect', 'planned_vect', 'planning_vect', 'plans_vect', 'play_vect', 'played_vect', 'player_vect', 'players_vect', 'playing_vect', 'please_vect', 'pleased_vect', 'pleasure_vect', 'plenty_vect', 'pls_vect', 'plus_vect', 'plz_vect', 'pm_vect', 'po_vect', 'pobox_vect', 'pobox334_vect', 'pobox36504w45wq_vect', 'pobox45w2tg150p_vect', 'pobox84_vect', 'pod_vect', 'point_vect', 'points_vect', 'poker_vect', 'pole_vect', 'police_vect', 'politicians_vect', 'poly_vect', 'polyphonic_vect', 'polys_vect', 'pongal_vect', 'poor_vect', 'pop_vect', 'popped_vect', 'porn_vect', 'possession_vect', 'possible_vect', 'post_vect', 'postcard_vect', 'postcode_vect', 'posted_vect', 'posts_vect', 'potential_vect', 'potter_vect', 'pound_vect', 'pounds_vect', 'pouts_vect', 'power_vect', 'ppl_vect', 'pple_vect', 'ppm_vect', 'prabha_vect', 'practice_vect', 'practicing_vect', 'pray_vect', 'prefer_vect', 'premier_vect', 'prepare_vect', 'prescription_vect', 'present_vect', 'press_vect', 'pretty_vect', 'prey_vect', 'price_vect', 'prince_vect', 'princess_vect', 'print_vect', 'privacy_vect', 'private_vect', 'prize_vect', 'prob_vect', 'probably_vect', 'problem_vect', 'problems_vect', 'process_vect', 'processed_vect', 'prof_vect', 'profit_vect', 'program_vect', 'project_vect', 'prolly_vect', 'promise_vect', 'promises_vect', 'promo_vect', 'proof_vect', 'properly_vect', 'prospects_vect', 'provided_vect', 'ps_vect', 'ptbo_vect', 'pub_vect', 'pull_vect', 'purchase_vect', 'purity_vect', 'purpose_vect', 'push_vect', 'pushes_vect', 'pussy_vect', 'put_vect', 'puttin_vect', 'putting_vect', 'qatar_vect', 'quality_vect', 'queen_vect', 'ques_vect', 'question_vect', 'questions_vect', 'quick_vect', 'quickly_vect', 'quiet_vect', 'quit_vect', 'quite_vect', 'quiz_vect', 'quote_vect', 'quoting_vect', 'racing_vect', 'radio_vect', 'railway_vect', 'rain_vect', 'raining_vect', 'raise_vect', 'rakhesh_vect', 'rally_vect', 'ran_vect', 'random_vect', 'randomly_vect', 'randy_vect', 'rang_vect', 'range_vect', 'ranjith_vect', 'rate_vect', 'rates_vect', 'rather_vect', 'rays_vect', 'rcvd_vect', 'rd_vect', 're_vect', 'reach_vect', 'reached_vect', 'reaching_vect', 'reaction_vect', 'read_vect', 'readers_vect', 'reading_vect', 'ready_vect', 'real_vect', 'realise_vect', 'reality_vect', 'realized_vect', 'really_vect', 'realy_vect', 'reason_vect', 'reasonable_vect', 'reasons_vect', 'reboot_vect', 'recd_vect', 'receipt_vect', 'receive_vect', 'received_vect', 'receiving_vect', 'recent_vect', 'recently_vect', 'recession_vect', 'record_vect', 'records_vect', 'recovery_vect', 'red_vect', 'ref_vect', 'reference_vect', 'reg_vect', 'regards_vect', 'register_vect', 'registered_vect', 'regret_vect', 'regular_vect', 'relation_vect', 'relax_vect', 'released_vect', 'rem_vect', 'remain_vect', 'remains_vect', 'remember_vect', 'remembered_vect', 'remembr_vect', 'remind_vect', 'reminder_vect', 'remove_vect', 'rent_vect', 'rental_vect', 'rentl_vect', 'repair_vect', 'repeat_vect', 'replied_vect', 'reply_vect', 'replying_vect', 'report_vect', 'representative_vect', 'request_vect', 'requests_vect', 'research_vect', 'resend_vect', 'respect_vect', 'respond_vect', 'responding_vect', 'response_vect', 'responsibility_vect', 'rest_vect', 'restaurant_vect', 'result_vect', 'results_vect', 'retrieve_vect', 'return_vect', 'returned_vect', 'returns_vect', 'reveal_vect', 'revealed_vect', 'review_vect', 'revision_vect', 'reward_vect', 'rhythm_vect', 'rice_vect', 'rich_vect', 'ride_vect', 'right_vect', 'rights_vect', 'ring_vect', 'ringtone_vect', 'ringtones_vect', 'rite_vect', 'river_vect', 'road_vect', 'roads_vect', 'roast_vect', 'rock_vect', 'rocks_vect', 'rofl_vect', 'roger_vect', 'role_vect', 'ron_vect', 'room_vect', 'roommate_vect', 'roommates_vect', 'rooms_vect', 'rose_vect', 'round_vect', 'row_vect', 'roww1j6hl_vect', 'roww1jhl_vect', 'royal_vect', 'rply_vect', 'rs_vect', 'rstm_vect', 'ru_vect', 'rub_vect', 'rude_vect', 'rule_vect', 'run_vect', 'running_vect', 'runs_vect', 'rush_vect', 'sacrifice_vect', 'sad_vect', 'sae_vect', 'safe_vect', 'said_vect', 'salam_vect', 'salary_vect', 'sale_vect', 'salon_vect', 'sam_vect', 'santa_vect', 'sar_vect', 'sarasota_vect', 'sarcastic_vect', 'sary_vect', 'sat_vect', 'sathya_vect', 'saturday_vect', 'savamob_vect', 'save_vect', 'saved_vect', 'saw_vect', 'say_vect', 'saying_vect', 'says_vect', 'scared_vect', 'scary_vect', 'sch_vect', 'schedule_vect', 'school_vect', 'schools_vect', 'science_vect', 'scold_vect', 'score_vect', 'scores_vect', 'scotland_vect', 'scream_vect', 'screaming_vect', 'scrounge_vect', 'se_vect', 'sea_vect', 'search_vect', 'searching_vect', 'season_vect', 'seat_vect', 'sec_vect', 'second_vect', 'seconds_vect', 'secret_vect', 'secretary_vect', 'secs_vect', 'sed_vect', 'see_vect', 'seeing_vect', 'seem_vect', 'seemed_vect', 'seems_vect', 'seen_vect', 'selected_vect', 'selection_vect', 'self_vect', 'sell_vect', 'selling_vect', 'sells_vect', 'sem_vect', 'semester_vect', 'sen_vect', 'send_vect', 'sender_vect', 'sending_vect', 'sense_vect', 'sent_vect', 'sentence_vect', 'sept_vect', 'series_vect', 'serious_vect', 'seriously_vect', 'service_vect', 'services_vect', 'serving_vect', 'set_vect', 'setting_vect', 'settings_vect', 'settle_vect', 'settled_vect', 'seven_vect', 'several_vect', 'sex_vect', 'sexy_vect', 'sh_vect', 'sha_vect', 'shall_vect', 'share_vect', 'shd_vect', 'sheets_vect', 'shes_vect', 'shesil_vect', 'shining_vect', 'ship_vect', 'shipping_vect', 'shirt_vect', 'shirts_vect', 'shit_vect', 'shld_vect', 'shocking_vect', 'shoot_vect', 'shop_vect', 'shoppin_vect', 'shopping_vect', 'short_vect', 'shorter_vect', 'shortly_vect', 'shot_vect', 'shoving_vect', 'show_vect', 'shower_vect', 'showing_vect', 'shows_vect', 'shu_vect', 'shuhui_vect', 'shy_vect', 'si_vect', 'sick_vect', 'side_vect', 'sighs_vect', 'sight_vect', 'sign_vect', 'signing_vect', 'silence_vect', 'silent_vect', 'silver_vect', 'sim_vect', 'simple_vect', 'simply_vect', 'since_vect', 'sing_vect', 'singing_vect', 'single_vect', 'singles_vect', 'sipix_vect', 'sir_vect', 'sis_vect', 'sister_vect', 'sit_vect', 'site_vect', 'sitting_vect', 'situation_vect', 'siva_vect', 'six_vect', 'size_vect', 'sk3_vect', 'sk38xh_vect', 'skilgme_vect', 'skip_vect', 'sky_vect', 'skype_vect', 'skyped_vect', 'slap_vect', 'slave_vect', 'sleep_vect', 'sleepin_vect', 'sleeping_vect', 'sleepy_vect', 'slept_vect', 'slice_vect', 'slide_vect', 'slightly_vect', 'slip_vect', 'slippers_vect', 'slo_vect', 'slots_vect', 'slow_vect', 'slowly_vect', 'small_vect', 'smashed_vect', 'smile_vect', 'smiles_vect', 'smiling_vect', 'smoke_vect', 'smoking_vect', 'sms_vect', 'smth_vect', 'sn_vect', 'snake_vect', 'snow_vect', 'social_vect', 'sofa_vect', 'soft_vect', 'software_vect', 'sol_vect', 'some1_vect', 'somebody_vect', 'someone_vect', 'somethin_vect', 'something_vect', 'sometimes_vect', 'somewhere_vect', 'song_vect', 'songs_vect', 'sony_vect', 'sonyericsson_vect', 'soon_vect', 'sooner_vect', 'sore_vect', 'sorry_vect', 'sort_vect', 'sorting_vect', 'sound_vect', 'sounds_vect', 'south_vect', 'sp_vect', 'space_vect', 'spanish_vect', 'speak_vect', 'speaking_vect', 'special_vect', 'specialcall_vect', 'specially_vect', 'speed_vect', 'spend_vect', 'spending_vect', 'spent_vect', 'spk_vect', 'spoke_vect', 'spoken_vect', 'spook_vect', 'sport_vect', 'sports_vect', 'spree_vect', 'spring_vect', 'sptv_vect', 'sry_vect', 'st_vect', 'staff_vect', 'stamps_vect', 'stand_vect', 'standard_vect', 'standing_vect', 'star_vect', 'staring_vect', 'start_vect', 'started_vect', 'starting_vect', 'starts_vect', 'starwars3_vect', 'statement_vect', 'station_vect', 'stay_vect', 'stayed_vect', 'staying_vect', 'std_vect', 'steam_vect', 'step_vect', 'steve_vect', 'stick_vect', 'sticky_vect', 'still_vect', 'stock_vect', 'stockport_vect', 'stomach_vect', 'stomps_vect', 'stones_vect', 'stop_vect', 'stopped_vect', 'stops_vect', 'store_vect', 'stores_vect', 'story_vect', 'str_vect', 'straight_vect', 'stranger_vect', 'street_vect', 'stress_vect', 'strike_vect', 'strong_vect', 'strongbuy_vect', 'stuck_vect', 'student_vect', 'study_vect', 'studying_vect', 'stuff_vect', 'stupid_vect', 'style_vect', 'stylish_vect', 'sub_vect', 'subpoly_vect', 'subs_vect', 'subscribe6gbpmnth_vect', 'subscribed_vect', 'subscriber_vect', 'subscription_vect', 'success_vect', 'successful_vect', 'successfully_vect', 'sucks_vect', 'sue_vect', 'sufficient_vect', 'suggest_vect', 'suite_vect', 'suits_vect', 'sum1_vect', 'summer_vect', 'sun_vect', 'sunday_vect', 'sunlight_vect', 'sunny_vect', 'sunshine_vect', 'suntec_vect', 'sup_vect', 'super_vect', 'superb_vect', 'superior_vect', 'supervisor_vect', 'supply_vect', 'support_vect', 'suppose_vect', 'supposed_vect', 'suprman_vect', 'sura_vect', 'sure_vect', 'surely_vect', 'surfing_vect', 'surprise_vect', 'surprised_vect', 'survey_vect', 'sux_vect', 'suzy_vect', 'sw7_vect', 'sw73ss_vect', 'sweet_vect', 'swing_vect', 'system_vect', 'ta_vect', 'tablets_vect', 'tahan_vect', 'take_vect', 'taken_vect', 'takes_vect', 'takin_vect', 'taking_vect', 'talent_vect', 'talk_vect', 'talking_vect', 'tampa_vect', 'tape_vect', 'tariffs_vect', 'tat_vect', 'taunton_vect', 'taylor_vect', 'tb_vect', 'tc_vect', 'tcrw1_vect', 'tcs_vect', 'tea_vect', 'teach_vect', 'teacher_vect', 'teaches_vect', 'team_vect', 'tear_vect', 'tease_vect', 'teasing_vect', 'tech_vect', 'technical_vect', 'tee_vect', 'teeth_vect', 'tel_vect', 'telephone_vect', 'tell_vect', 'telling_vect', 'tells_vect', 'telugu_vect', 'temple_vect', 'ten_vect', 'tenants_vect', 'tenerife_vect', 'tension_vect', 'term_vect', 'terms_vect', 'terrible_vect', 'test_vect', 'testing_vect', 'text_vect', 'texted_vect', 'texting_vect', 'textoperator_vect', 'texts_vect', 'th_vect', 'thangam_vect', 'thank_vect', 'thanks_vect', 'thanksgiving_vect', 'thanx_vect', 'that_vect', 'thats_vect', 'thatåõs_vect', 'the_vect', 'theatre_vect', 'themob_vect', 'theory_vect', 'thesis_vect', 'thgt_vect', 'thing_vect', 'things_vect', 'think_vect', 'thinkin_vect', 'thinking_vect', 'thinks_vect', 'thk_vect', 'thnk_vect', 'tho_vect', 'though_vect', 'thought_vect', 'three_vect', 'throat_vect', 'throw_vect', 'thru_vect', 'tht_vect', 'thts_vect', 'thurs_vect', 'thursday_vect', 'tick_vect', 'ticket_vect', 'tickets_vect', 'tight_vect', 'tihs_vect', 'til_vect', 'till_vect', 'time_vect', 'times_vect', 'timing_vect', 'tired_vect', 'tirunelvali_vect', 'tirupur_vect', 'tissco_vect', 'tkts_vect', 'tm_vect', 'tming_vect', 'tmobile_vect', 'tmr_vect', 'tncs_vect', 'toa_vect', 'toclaim_vect', 'today_vect', 'todays_vect', 'tog_vect', 'together_vect', 'tok_vect', 'told_vect', 'tomarrow_vect', 'tomo_vect', 'tomorrow_vect', 'tone_vect', 'tones_vect', 'tones2youcouk_vect', 'tonight_vect', 'tonite_vect', 'took_vect', 'tool_vect', 'tooo_vect', 'toot_vect', 'top_vect', 'topic_vect', 'torch_vect', 'toshiba_vect', 'tot_vect', 'total_vect', 'totally_vect', 'touch_vect', 'tough_vect', 'tour_vect', 'towards_vect', 'town_vect', 'track_vect', 'trade_vect', 'traffic_vect', 'train_vect', 'training_vect', 'transaction_vect', 'transfer_vect', 'transport_vect', 'travel_vect', 'treat_vect', 'treated_vect', 'tried_vect', 'trip_vect', 'trips_vect', 'trouble_vect', 'true_vect', 'truffles_vect', 'truly_vect', 'trust_vect', 'truth_vect', 'try_vect', 'trying_vect', 'ts_vect', 'tscs_vect', 'tscs087147403231winawk_vect', 'tt_vect', 'ttyl_vect', 'tues_vect', 'tuesday_vect', 'tuition_vect', 'turn_vect', 'turning_vect', 'turns_vect', 'tv_vect', 'twelve_vect', 'twice_vect', 'two_vect', 'txt_vect', 'txtauction_vect', 'txtin_vect', 'txting_vect', 'txtno_vect', 'txts_vect', 'txtstop_vect', 'tyler_vect', 'type_vect', 'tyrone_vect', 'u4_vect', 'ubi_vect', 'ufind_vect', 'ugh_vect', 'uh_vect', 'uk_vect', 'uks_vect', 'ultimatum_vect', 'umma_vect', 'unable_vect', 'uncle_vect', 'understand_vect', 'understanding_vect', 'understood_vect', 'underwear_vect', 'unemployed_vect', 'uni_vect', 'unique_vect', 'university_vect', 'unless_vect', 'unlimited_vect', 'unnecessarily_vect', 'unredeemed_vect', 'unsold_vect', 'unsub_vect', 'unsubscribe_vect', 'upd8_vect', 'update_vect', 'updatenow_vect', 'upgrade_vect', 'upload_vect', 'upset_vect', 'upstairs_vect', 'ur_vect', 'ure_vect', 'urgent_vect', 'urgnt_vect', 'url_vect', 'urn_vect', 'urself_vect', 'us_vect', 'usb_vect', 'use_vect', 'used_vect', 'user_vect', 'usf_vect', 'using_vect', 'usual_vect', 'usually_vect', 'vale_vect', 'valentine_vect', 'valentines_vect', 'valid_vect', 'valid12hrs_vect', 'valuable_vect', 'value_vect', 'valued_vect', 'vary_vect', 've_vect', 'vegas_vect', 'verify_vect', 'version_vect', 'via_vect', 'vid_vect', 'video_vect', 'videochat_vect', 'videophones_vect', 'vijay_vect', 'vikky_vect', 'village_vect', 'violated_vect', 'violence_vect', 'vip_vect', 'virgin_vect', 'visit_vect', 'vivek_vect', 'vl_vect', 'voda_vect', 'vodafone_vect', 'vodka_vect', 'voice_vect', 'voicemail_vect', 'vomit_vect', 'vote_vect', 'voucher_vect', 'vouchers_vect', 'vry_vect', 'vth_vect', 'w45wq_vect', 'wa_vect', 'wah_vect', 'wait_vect', 'waited_vect', 'waitin_vect', 'waiting_vect', 'wake_vect', 'waking_vect', 'wales_vect', 'walk_vect', 'walked_vect', 'walking_vect', 'walmart_vect', 'wan_vect', 'wana_vect', 'want_vect', 'wanted_vect', 'wanting_vect', 'wants_vect', 'wap_vect', 'warm_vect', 'warner_vect', 'waste_vect', 'wasted_vect', 'wat_vect', 'watch_vect', 'watching_vect', 'water_vect', 'wats_vect', 'way_vect', 'wc1n3xx_vect', 'we_vect', 'weak_vect', 'wear_vect', 'wearing_vect', 'weather_vect', 'web_vect', 'website_vect', 'wed_vect', 'wedding_vect', 'wednesday_vect', 'wee_vect', 'weed_vect', 'week_vect', 'weekend_vect', 'weekends_vect', 'weekly_vect', 'weeks_vect', 'weigh_vect', 'weight_vect', 'weird_vect', 'welcome_vect', 'well_vect', 'welp_vect', 'wen_vect', 'went_vect', 'west_vect', 'wet_vect', 'what_vect', 'whatever_vect', 'whats_vect', 'whenever_vect', 'whenevr_vect', 'wherever_vect', 'whether_vect', 'white_vect', 'whn_vect', 'whole_vect', 'whos_vect', 'whose_vect', 'wid_vect', 'widelivecomindex_vect', 'wif_vect', 'wife_vect', 'wil_vect', 'willing_vect', 'win_vect', 'wind_vect', 'wine_vect', 'winner_vect', 'winning_vect', 'wins_vect', 'wipro_vect', 'wisdom_vect', 'wise_vect', 'wish_vect', 'wishes_vect', 'wishing_vect', 'wit_vect', 'within_vect', 'without_vect', 'wiv_vect', 'wk_vect', 'wkend_vect', 'wkg_vect', 'wkly_vect', 'wks_vect', 'wld_vect', 'wml_vect', 'wn_vect', 'wnt_vect', 'wo_vect', 'woke_vect', 'woken_vect', 'woman_vect', 'women_vect', 'wonder_vect', 'wonderful_vect', 'wondering_vect', 'wont_vect', 'woot_vect', 'word_vect', 'words_vect', 'work_vect', 'workin_vect', 'working_vect', 'works_vect', 'world_vect', 'worried_vect', 'worries_vect', 'worry_vect', 'worse_vect', 'worst_vect', 'worth_vect', 'wot_vect', 'would_vect', 'wow_vect', 'write_vect', 'wrong_vect', 'wtf_vect', 'wud_vect', 'wuld_vect', 'wun_vect', 'www4tcbiz_vect', 'wwwcomuknet_vect', 'wwwetlpcoukexpressoffer_vect', 'wwwgetzedcouk_vect', 'wwwldewcom_vect', 'wwwldewcom1win150ppmx3age16_vect', 'wwwmovietriviatv_vect', 'wwwringtonescouk_vect', 'wwwsmsconet_vect', 'wwwtxttowincouk_vect', 'wwwurawinnercom_vect', 'wylie_vect', 'xchat_vect', 'xmas_vect', 'xuhui_vect', 'xx_vect', 'xxx_vect', 'xxxx_vect', 'xxxxx_vect', 'xy_vect', 'ya_vect', 'yahoo_vect', 'yan_vect', 'yar_vect', 'yay_vect', 'yck_vect', 'yeah_vect', 'year_vect', 'years_vect', 'yelling_vect', 'yellow_vect', 'yep_vect', 'yes_vect', 'yest_vect', 'yesterday_vect', 'yet_vect', 'yetunde_vect', 'yijue_vect', 'ym_vect', 'yo_vect', 'yoga_vect', 'yogasana_vect', 'yor_vect', 'you_vect', 'yr_vect', 'yrs_vect', 'yummy_vect', 'yun_vect', 'yuo_vect', 'yup_vect', 'zed_vect', 'zindgi_vect', 'ìï_vect', 'ûò_vect'], 'input_features_type': {'v2': 'O'}, 'word2num_features': [], 'unpreprocessed_columns': [], 'force_numeric_conv': [], 'conversion_method': 'TF_IDF'}, 'selector': {'reducer': False, 'reducer_file': '', 'input_features': ['v2'], 'output_features': ['07xxxxxxxxx_vect', '08700621170150p_vect', '08702840625comuk_vect', '08718726270150gbpmtmsg18_vect', '1000s_vect', '10am7pm_vect', '10k_vect', '10p_vect', '10pmin_vect', '10ppm_vect', '11mths_vect', '125gift_vect', '12hrs_vect', '12mths_vect', '150p_vect', '150perwksub_vect', '150pm_vect', '150pmin_vect', '150pmsg_vect', '150pmsgrcvdhgsuite3422landsroww1j6hl_vect', '150pmtmsgrcvd18_vect', '150ppm_vect', '150ptone_vect', '150pwk_vect', '150week_vect', '16only_vect', '18only_vect', '1hr_vect', '1minmobsmorelkpobox177hp51fl_vect', '1st_vect', '1x150pwk_vect', '20p_vect', '20pmin_vect', '21st_vect', '220cm2_vect', '24hrs_vect', '25p_vect', '26th_vect', '2day_vect', '2find_vect', '2geva_vect', '2go_vect', '2marrow_vect', '2mrw_vect', '2nd_vect', '2nite_vect', '2optout_vect', '2p_vect', '2u_vect', '2waxsto_vect', '2wks_vect', '300p_vect', '31pmsg_vect', '3510i_vect', '3d_vect', '3g_vect', '3gbp_vect', '3hrs_vect', '3mins_vect', '3qxj9_vect', '3rd_vect', '3ss_vect', '3u_vect', '3uz_vect', '3wk_vect', '40gb_vect', '4a_vect', '4d_vect', '4eva_vect', '4get_vect', '4info_vect', '4mths_vect', '4th_vect', '4u_vect', '50p_vect', '5min_vect', '5pm_vect', '5wb_vect', '5we_vect', '60pmin_vect', '6hrs_vect', '6months_vect', '6pm_vect', '7250i_vect', '7ish_vect', '8am_vect', '8pm_vect', '8th_vect', '8wp_vect', '9ae_vect', '9ja_vect', '9pm_vect', '9t_vect', 'aathi_vect', 'abi_vect', 'ability_vect', 'abiola_vect', 'able_vect', 'abt_vect', 'abta_vect', 'aburo_vect', 'ac_vect', 'academic_vect', 'acc_vect', 'accept_vect', 'access_vect', 'accident_vect', 'accidentally_vect', 'accordingly_vect', 'account_vect', 'ache_vect', 'across_vect', 'acted_vect', 'action_vect', 'activate_vect', 'activities_vect', 'actor_vect', 'actual_vect', 'actually_vect', 'ad_vect', 'adam_vect', 'add_vect', 'added_vect', 'addicted_vect', 'addie_vect', 'address_vect', 'admin_vect', 'administrator_vect', 'admirer_vect', 'admit_vect', 'adore_vect', 'adoring_vect', 'ads_vect', 'adult_vect', 'advance_vect', 'adventure_vect', 'advice_vect', 'advise_vect', 'affair_vect', 'affairs_vect', 'affectionate_vect', 'afraid_vect', 'aft_vect', 'afternoon_vect', 'aftr_vect', 'agalla_vect', 'age_vect', 'age16_vect', 'ages_vect', 'ago_vect', 'agree_vect', 'ah_vect', 'aha_vect', 'ahead_vect', 'ahmad_vect', 'ai_vect', 'aight_vect', 'aint_vect', 'air_vect', 'airport_vect', 'airtel_vect', 'aiya_vect', 'aiyah_vect', 'aiyar_vect', 'aiyo_vect', 'al_vect', 'album_vect', 'alert_vect', 'alex_vect', 'alfie_vect', 'ali_vect', 'allah_vect', 'allow_vect', 'allowed_vect', 'almost_vect', 'alone_vect', 'along_vect', 'already_vect', 'alright_vect', 'alrite_vect', 'also_vect', 'always_vect', 'alwys_vect', 'amazing_vect', 'american_vect', 'among_vect', 'amount_vect', 'amp_vect', 'amt_vect', 'andros_vect', 'angry_vect', 'annie_vect', 'anniversary_vect', 'announcement_vect', 'anot_vect', 'another_vect', 'ans_vect', 'ansr_vect', 'answer_vect', 'answered_vect', 'answering_vect', 'answers_vect', 'anthony_vect', 'anti_vect', 'anybody_vect', 'anymore_vect', 'anyone_vect', 'anything_vect', 'anytime_vect', 'anyway_vect', 'anyways_vect', 'apartment_vect', 'app_vect', 'apparently_vect', 'applebees_vect', 'apply_vect', 'appointment_vect', 'appreciate_vect', 'appreciated_vect', 'approx_vect', 'apps_vect', 'appt_vect', 'april_vect', 'ar_vect', 'arcade_vect', 'ard_vect', 'area_vect', 'argh_vect', 'argument_vect', 'arm_vect', 'armand_vect', 'arms_vect', 'around_vect', 'arrange_vect', 'arrested_vect', 'arrive_vect', 'arsenal_vect', 'art_vect', 'arun_vect', 'asap_vect', 'ashley_vect', 'ask_vect', 'askd_vect', 'asked_vect', 'askin_vect', 'asking_vect', 'asks_vect', 'asleep_vect', 'ass_vect', 'assume_vect', 'ate_vect', 'atlanta_vect', 'atlast_vect', 'atm_vect', 'attached_vect', 'attempt_vect', 'attend_vect', 'auction_vect', 'august_vect', 'aunt_vect', 'aunty_vect', 'auto_vect', 'av_vect', 'available_vect', 'avatar_vect', 'ave_vect', 'avent_vect', 'avoid_vect', 'await_vect', 'awaiting_vect', 'awake_vect', 'award_vect', 'awarded_vect', 'away_vect', 'awesome_vect', 'aww_vect', 'b4_vect', 'ba_vect', 'babe_vect', 'babes_vect', 'babies_vect', 'baby_vect', 'back_vect', 'bad_vect', 'bag_vect', 'bags_vect', 'bahamas_vect', 'bak_vect', 'balance_vect', 'bank_vect', 'banks_vect', 'bar_vect', 'barely_vect', 'basic_vect', 'basically_vect', 'bat_vect', 'bath_vect', 'bathe_vect', 'bathing_vect', 'battery_vect', 'bay_vect', 'bb_vect', 'bc_vect', 'bck_vect', 'bcoz_vect', 'bday_vect', 'be_vect', 'bears_vect', 'beautiful_vect', 'beauty_vect', 'bec_vect', 'become_vect', 'becoz_vect', 'bed_vect', 'bedrm_vect', 'bedroom_vect', 'beer_vect', 'befor_vect', 'beg_vect', 'begin_vect', 'behave_vect', 'behind_vect', 'bein_vect', 'believe_vect', 'bell_vect', 'belly_vect', 'belovd_vect', 'best_vect', 'bet_vect', 'better_vect', 'beyond_vect', 'bf_vect', 'bid_vect', 'bids_vect', 'big_vect', 'bigger_vect', 'biggest_vect', 'bill_vect', 'billed_vect', 'billion_vect', 'bills_vect', 'bin_vect', 'biola_vect', 'birds_vect', 'birla_vect', 'birth_vect', 'birthdate_vect', 'birthday_vect', 'bishan_vect', 'bit_vect', 'bitch_vect', 'bite_vect', 'black_vect', 'blackberry_vect', 'blah_vect', 'blake_vect', 'blank_vect', 'bleh_vect', 'bless_vect', 'blessing_vect', 'bloo_vect', 'blood_vect', 'bloody_vect', 'blue_vect', 'bluetooth_vect', 'bluff_vect', 'boat_vect', 'body_vect', 'bold_vect', 'bone_vect', 'bonus_vect', 'boo_vect', 'book_vect', 'booked_vect', 'booking_vect', 'books_vect', 'boost_vect', 'booty_vect', 'bored_vect', 'boring_vect', 'born_vect', 'boss_vect', 'boston_vect', 'bother_vect', 'bottom_vect', 'bought_vect', 'bout_vect', 'bowl_vect', 'box_vect', 'box326_vect', 'box334sk38ch_vect', 'box97n7qp_vect', 'boy_vect', 'boye_vect', 'boyfriend_vect', 'boys_vect', 'boytoy_vect', 'brah_vect', 'brand_vect', 'bread_vect', 'break_vect', 'breathe_vect', 'bright_vect', 'brilliant_vect', 'bring_vect', 'bringing_vect', 'brings_vect', 'british_vect', 'bro_vect', 'broad_vect', 'broke_vect', 'broken_vect', 'bros_vect', 'brothas_vect', 'brother_vect', 'brought_vect', 'bruv_vect', 'bslvyl_vect', 'bt_vect', 'btnationalrate_vect', 'btw_vect', 'bucks_vect', 'bud_vect', 'budget_vect', 'buff_vect', 'buffet_vect', 'bugis_vect', 'building_vect', 'buns_vect', 'burger_vect', 'burns_vect', 'bus_vect', 'buses_vect', 'business_vect', 'busy_vect', 'butt_vect', 'buy_vect', 'buying_vect', 'buzz_vect', 'bx420_vect', 'bx420ip45we_vect', 'bye_vect', 'ca_vect', 'cabin_vect', 'cafe_vect', 'cake_vect', 'cal_vect', 'calculation_vect', 'calicut_vect', 'california_vect', 'call_vect', 'call2optout674_vect', 'callback_vect', 'callcost_vect', 'called_vect', 'caller_vect', 'callers_vect', 'callertune_vect', 'callin_vect', 'calling_vect', 'calls_vect', 'callså_vect', 'cam_vect', 'camcorder_vect', 'came_vect', 'camera_vect', 'cameravideo_vect', 'campus_vect', 'can_vect', 'canada_vect', 'canal_vect', 'canary_vect', 'cancel_vect', 'cancelled_vect', 'cancer_vect', 'cant_vect', 'captain_vect', 'car_vect', 'card_vect', 'cardiff_vect', 'care_vect', 'cared_vect', 'career_vect', 'careful_vect', 'carefully_vect', 'caring_vect', 'carlos_vect', 'caroline_vect', 'cars_vect', 'cartoon_vect', 'case_vect', 'cash_vect', 'cashbalance_vect', 'cashin_vect', 'castor_vect', 'cat_vect', 'catch_vect', 'catching_vect', 'caught_vect', 'cause_vect', 'cbe_vect', 'cc_vect', 'cd_vect', 'cdgt_vect', 'cds_vect', 'celebrate_vect', 'celebration_vect', 'cell_vect', 'center_vect', 'centre_vect', 'certainly_vect', 'cha_vect', 'chain_vect', 'challenge_vect', 'chance_vect', 'change_vect', 'changed_vect', 'changes_vect', 'channel_vect', 'character_vect', 'charge_vect', 'charged_vect', 'charges_vect', 'charity_vect', 'charles_vect', 'chase_vect', 'chasing_vect', 'chat_vect', 'chatting_vect', 'cheap_vect', 'cheaper_vect', 'cheat_vect', 'chechi_vect', 'check_vect', 'checked_vect', 'checking_vect', 'cheers_vect', 'chennai_vect', 'cherish_vect', 'chest_vect', 'chicken_vect', 'chikku_vect', 'child_vect', 'childish_vect', 'children_vect', 'chill_vect', 'chillin_vect', 'china_vect', 'chinese_vect', 'chip_vect', 'chocolate_vect', 'choice_vect', 'choose_vect', 'chosen_vect', 'christ_vect', 'christmas_vect', 'church_vect', 'cine_vect', 'cinema_vect', 'citizen_vect', 'city_vect', 'claim_vect', 'claims_vect', 'claire_vect', 'class_vect', 'classes_vect', 'clean_vect', 'cleaning_vect', 'clear_vect', 'clearly_vect', 'click_vect', 'clock_vect', 'close_vect', 'closed_vect', 'closer_vect', 'closes_vect', 'clothes_vect', 'club_vect', 'cn_vect', 'co_vect', 'coast_vect', 'coat_vect', 'cochin_vect', 'code_vect', 'coffee_vect', 'coin_vect', 'coins_vect', 'cold_vect', 'colleagues_vect', 'collect_vect', 'collected_vect', 'collecting_vect', 'collection_vect', 'college_vect', 'colour_vect', 'come_vect', 'comedy_vect', 'comes_vect', 'comin_vect', 'coming_vect', 'commercial_vect', 'common_vect', 'community_vect', 'comp_vect', 'company_vect', 'competition_vect', 'complete_vect', 'completed_vect', 'completely_vect', 'complimentary_vect', 'computer_vect', 'concentrate_vect', 'concert_vect', 'conditions_vect', 'conducts_vect', 'confidence_vect', 'confirm_vect', 'congrats_vect', 'congratulations_vect', 'connection_vect', 'consider_vect', 'considering_vect', 'constant_vect', 'constantly_vect', 'contact_vect', 'contacted_vect', 'contacts_vect', 'content_vect', 'contents_vect', 'continue_vect', 'contract_vect', 'control_vect', 'convey_vect', 'convinced_vect', 'cool_vect', 'coping_vect', 'copy_vect', 'cornwall_vect', 'correct_vect', 'cos_vect', 'cost_vect', 'costa_vect', 'costs_vect', 'costå_vect', 'could_vect', 'count_vect', 'countin_vect', 'country_vect', 'couple_vect', 'course_vect', 'cover_vect', 'coz_vect', 'cr9_vect', 'cramps_vect', 'crave_vect', 'crazy_vect', 'created_vect', 'credit_vect', 'credited_vect', 'credits_vect', 'creepy_vect', 'crisis_vect', 'crore_vect', 'cross_vect', 'croydon_vect', 'cruise_vect', 'cry_vect', 'cs_vect', 'csbcm4235wc1n3xx_vect', 'csstop_vect', 'cud_vect', 'cuddling_vect', 'cum_vect', 'cup_vect', 'curious_vect', 'current_vect', 'currently_vect', 'cust_vect', 'custcare_vect', 'custcare08718720201_vect', 'custom_vect', 'customer_vect', 'customers_vect', 'cut_vect', 'cute_vect', 'cutting_vect', 'cuz_vect', 'cw25wx_vect', 'da_vect', 'dad_vect', 'daddy_vect', 'daily_vect', 'damn_vect', 'dance_vect', 'dancing_vect', 'dare_vect', 'dark_vect', 'darlin_vect', 'darling_vect', 'darren_vect', 'dat_vect', 'date_vect', 'dates_vect', 'dating_vect', 'dave_vect', 'day_vect', 'days_vect', 'de_vect', 'dead_vect', 'deal_vect', 'dealer_vect', 'dealing_vect', 'dear_vect', 'dearly_vect', 'death_vect', 'decide_vect', 'decided_vect', 'decimal_vect', 'decision_vect', 'deep_vect', 'def_vect', 'definite_vect', 'definitely_vect', 'del_vect', 'delete_vect', 'deleted_vect', 'delhi_vect', 'deliver_vect', 'delivered_vect', 'deliveredtomorrow_vect', 'delivery_vect', 'dem_vect', 'demand_vect', 'den_vect', 'denis_vect', 'department_vect', 'depends_vect', 'depressed_vect', 'derek_vect', 'desires_vect', 'desperate_vect', 'details_vect', 'dey_vect', 'dhoni_vect', 'dial_vect', 'dick_vect', 'dictionary_vect', 'didn_vect', 'didnt_vect', 'didt_vect', 'die_vect', 'died_vect', 'diet_vect', 'different_vect', 'difficult_vect', 'digital_vect', 'dignity_vect', 'din_vect', 'dinner_vect', 'dint_vect', 'direct_vect', 'directly_vect', 'dirty_vect', 'dis_vect', 'discount_vect', 'discuss_vect', 'dislikes_vect', 'display_vect', 'distance_vect', 'distract_vect', 'disturb_vect', 'division_vect', 'dload_vect', 'dnt_vect', 'doc_vect', 'docs_vect', 'doctor_vect', 'doesnt_vect', 'dog_vect', 'dogging_vect', 'doggy_vect', 'doin_vect', 'dollars_vect', 'don_vect', 'done_vect', 'dont_vect', 'donåõt_vect', 'door_vect', 'dorm_vect', 'double_vect', 'dough_vect', 'download_vect', 'downloads_vect', 'draw_vect', 'dream_vect', 'dreams_vect', 'dress_vect', 'dressed_vect', 'dresser_vect', 'drink_vect', 'drinking_vect', 'drinks_vect', 'drive_vect', 'driver_vect', 'drivin_vect', 'driving_vect', 'drop_vect', 'dropped_vect', 'drug_vect', 'drugs_vect', 'drunk_vect', 'dry_vect', 'ds_vect', 'dubsack_vect', 'dude_vect', 'due_vect', 'dun_vect', 'dunno_vect', 'durban_vect', 'dvd_vect', 'earlier_vect', 'early_vect', 'earth_vect', 'easier_vect', 'easily_vect', 'east_vect', 'easter_vect', 'easy_vect', 'eat_vect', 'eaten_vect', 'eatin_vect', 'eating_vect', 'ebay_vect', 'ec2a_vect', 'ee_vect', 'eek_vect', 'eerie_vect', 'effects_vect', 'eg_vect', 'egg_vect', 'eggs_vect', 'eh_vect', 'eight_vect', 'either_vect', 'ela_vect', 'electricity_vect', 'else_vect', 'elsewhere_vect', 'em_vect', 'email_vect', 'embarassed_vect', 'empty_vect', 'end_vect', 'ended_vect', 'ending_vect', 'ends_vect', 'enemy_vect', 'energy_vect', 'eng_vect', 'engin_vect', 'england_vect', 'english_vect', 'enjoy_vect', 'enjoyed_vect', 'enough_vect', 'enter_vect', 'entered_vect', 'entitled_vect', 'entry_vect', 'enuff_vect', 'envelope_vect', 'er_vect', 'erm_vect', 'escape_vect', 'especially_vect', 'esplanade_vect', 'eta_vect', 'etc_vect', 'euro_vect', 'euro2004_vect', 'europe_vect', 'eve_vect', 'eveb_vect', 'even_vect', 'evening_vect', 'event_vect', 'ever_vect', 'every_vect', 'everybody_vect', 'everyday_vect', 'everyone_vect', 'everything_vect', 'everywhere_vect', 'evn_vect', 'evng_vect', 'ex_vect', 'exact_vect', 'exactly_vect', 'exam_vect', 'exams_vect', 'excellent_vect', 'except_vect', 'exciting_vect', 'excuse_vect', 'excuses_vect', 'executive_vect', 'exeter_vect', 'exhausted_vect', 'expect_vect', 'expecting_vect', 'expensive_vect', 'experience_vect', 'expired_vect', 'expires_vect', 'explain_vect', 'explicit_vect', 'explosive_vect', 'express_vect', 'extra_vect', 'eye_vect', 'eyes_vect', 'fa_vect', 'fab_vect', 'face_vect', 'facebook_vect', 'fact_vect', 'faggy_vect', 'failed_vect', 'fair_vect', 'faith_vect', 'fall_vect', 'falls_vect', 'family_vect', 'fan_vect', 'fancies_vect', 'fancy_vect', 'fantasies_vect', 'fantastic_vect', 'fantasy_vect', 'far_vect', 'farm_vect', 'fast_vect', 'faster_vect', 'fat_vect', 'father_vect', 'fathima_vect', 'fault_vect', 'fave_vect', 'favorite_vect', 'favour_vect', 'favourite_vect', 'fb_vect', 'feb_vect', 'february_vect', 'feel_vect', 'feelin_vect', 'feeling_vect', 'feels_vect', 'fees_vect', 'feet_vect', 'fell_vect', 'felt_vect', 'fetch_vect', 'fever_vect', 'field_vect', 'fifteen_vect', 'fight_vect', 'fighting_vect', 'figure_vect', 'file_vect', 'files_vect', 'fill_vect', 'filling_vect', 'fills_vect', 'film_vect', 'final_vect', 'finally_vect', 'find_vect', 'fine_vect', 'fingers_vect', 'finish_vect', 'finished_vect', 'first_vect', 'fit_vect', 'fix_vect', 'fixed_vect', 'flag_vect', 'flaked_vect', 'flash_vect', 'flat_vect', 'flight_vect', 'flights_vect', 'flirt_vect', 'floor_vect', 'flower_vect', 'fml_vect', 'fo_vect', 'follow_vect', 'followed_vect', 'following_vect', 'fone_vect', 'food_vect', 'fool_vect', 'football_vect', 'force_vect', 'foreign_vect', 'forever_vect', 'forevr_vect', 'forget_vect', 'forgets_vect', 'forgiven_vect', 'forgot_vect', 'format_vect', 'forums_vect', 'forward_vect', 'forwarded_vect', 'found_vect', 'four_vect', 'fr_vect', 'fran_vect', 'freak_vect', 'free_vect', 'freefone_vect', 'freemsg_vect', 'freephone_vect', 'freezing_vect', 'fren_vect', 'frens_vect', 'fret_vect', 'fri_vect', 'friday_vect', 'friend_vect', 'friends_vect', 'friendship_vect', 'fringe_vect', 'frm_vect', 'frnd_vect', 'frnds_vect', 'frndship_vect', 'fuck_vect', 'fuckin_vect', 'fucking_vect', 'ful_vect', 'full_vect', 'fullonsmscom_vect', 'fun_vect', 'funny_vect', 'future_vect', 'fyi_vect', 'gal_vect', 'gals_vect', 'game_vect', 'games_vect', 'gang_vect', 'gap_vect', 'gaps_vect', 'garage_vect', 'garbage_vect', 'gary_vect', 'gas_vect', 'gautham_vect', 'gave_vect', 'gay_vect', 'gd_vect', 'ge_vect', 'gee_vect', 'geeee_vect', 'geeeee_vect', 'gender_vect', 'generally_vect', 'genius_vect', 'gentle_vect', 'gentleman_vect', 'gently_vect', 'germany_vect', 'get_vect', 'gets_vect', 'gettin_vect', 'getting_vect', 'gf_vect', 'gibbs_vect', 'gift_vect', 'gim_vect', 'girl_vect', 'girls_vect', 'gist_vect', 'giv_vect', 'give_vect', 'given_vect', 'gives_vect', 'giving_vect', 'glad_vect', 'gn_vect', 'go_vect', 'goal_vect', 'god_vect', 'goes_vect', 'goin_vect', 'going_vect', 'gold_vect', 'gon_vect', 'gona_vect', 'gone_vect', 'good_vect', 'goodmorning_vect', 'goodnight_vect', 'goodnite_vect', 'google_vect', 'gorgeous_vect', 'gossip_vect', 'got_vect', 'goto_vect', 'gotten_vect', 'govtinstituitions_vect', 'gr8_vect', 'grace_vect', 'gram_vect', 'grand_vect', 'granite_vect', 'gravity_vect', 'great_vect', 'green_vect', 'greet_vect', 'greetings_vect', 'grins_vect', 'grl_vect', 'ground_vect', 'group_vect', 'gt_vect', 'guaranteed_vect', 'gud_vect', 'gudnite_vect', 'guess_vect', 'guessing_vect', 'guide_vect', 'guilty_vect', 'guy_vect', 'guys_vect', 'gym_vect', 'ha_vect', 'haf_vect', 'haha_vect', 'hai_vect', 'hair_vect', 'haiz_vect', 'half_vect', 'halloween_vect', 'ham_vect', 'hand_vect', 'handed_vect', 'handle_vect', 'hands_vect', 'handset_vect', 'hanging_vect', 'happen_vect', 'happened_vect', 'happening_vect', 'happens_vect', 'happiness_vect', 'happy_vect', 'hard_vect', 'hardcore_vect', 'hardly_vect', 'harry_vect', 'hate_vect', 'hav_vect', 'havent_vect', 'havenåõt_vect', 'havin_vect', 'head_vect', 'headache_vect', 'headin_vect', 'heads_vect', 'hear_vect', 'heard_vect', 'heart_vect', 'heavy_vect', 'hee_vect', 'height_vect', 'held_vect', 'helen_vect', 'hell_vect', 'hella_vect', 'hello_vect', 'help_vect', 'help08712400602450p_vect', 'helpline_vect', 'hence_vect', 'henry_vect', 'heri_vect', 'herlove_vect', 'hes_vect', 'hex_vect', 'hey_vect', 'hgsuite3422lands_vect', 'hi_vect', 'hide_vect', 'high_vect', 'hill_vect', 'hint_vect', 'hip_vect', 'history_vect', 'hit_vect', 'hiya_vect', 'hl_vect', 'hlp_vect', 'hmm_vect', 'hmmm_vect', 'hmv_vect', 'ho_vect', 'hockey_vect', 'hol_vect', 'hold_vect', 'holder_vect', 'holding_vect', 'holiday_vect', 'holla_vect', 'hols_vect', 'holy_vect', 'home_vect', 'honey_vect', 'hook_vect', 'hop_vect', 'hope_vect', 'hoped_vect', 'hopefully_vect', 'hoping_vect', 'horny_vect', 'horo_vect', 'horrible_vect', 'hospital_vect', 'hospitals_vect', 'hostel_vect', 'hot_vect', 'hotel_vect', 'hotels_vect', 'hour_vect', 'hours_vect', 'house_vect', 'housemaid_vect', 'however_vect', 'hows_vect', 'howz_vect', 'hr_vect', 'hrishi_vect', 'hrs_vect', 'http_vect', 'hubby_vect', 'hug_vect', 'huh_vect', 'hun_vect', 'hungry_vect', 'hunny_vect', 'hurry_vect', 'hurt_vect', 'hurting_vect', 'hurts_vect', 'husband_vect', 'hv_vect', 'hw_vect', 'hyde_vect', 'iam_vect', 'ibhltd_vect', 'ibiza_vect', 'ic_vect', 'ice_vect', 'id_vect', 'idea_vect', 'ideal_vect', 'ideas_vect', 'identifier_vect', 'idiot_vect', 'idk_vect', 'ignore_vect', 'ikea_vect', 'il_vect', 'ill_vect', 'im_vect', 'imagine_vect', 'imma_vect', 'immediately_vect', 'imp_vect', 'important_vect', 'impossible_vect', 'improved_vect', 'in2_vect', 'inc_vect', 'inches_vect', 'incident_vect', 'include_vect', 'including_vect', 'inclusive_vect', 'inconsiderate_vect', 'indeed_vect', 'india_vect', 'indian_vect', 'indians_vect', 'indicate_vect', 'infections_vect', 'infernal_vect', 'info_vect', 'inform_vect', 'information_vect', 'informed_vect', 'innings_vect', 'insha_vect', 'inside_vect', 'instantly_vect', 'instead_vect', 'instructions_vect', 'insurance_vect', 'intelligent_vect', 'interest_vect', 'interested_vect', 'interesting_vect', 'interflora_vect', 'internet_vect', 'intro_vect', 'invest_vect', 'invite_vect', 'invited_vect', 'inviting_vect', 'iouri_vect', 'ip4_vect', 'ipod_vect', 'irritating_vect', 'iscoming_vect', 'ish_vect', 'island_vect', 'islands_vect', 'isnt_vect', 'issue_vect', 'issues_vect', 'it_vect', 'italian_vect', 'its_vect', 'itz_vect', 'itåõs_vect', 'ive_vect', 'iz_vect', 'izzit_vect', 'iåõm_vect', 'jacket_vect', 'jamster_vect', 'jan_vect', 'january_vect', 'jason_vect', 'java_vect', 'jay_vect', 'jazz_vect', 'jealous_vect', 'jeans_vect', 'jen_vect', 'jenny_vect', 'jess_vect', 'jesus_vect', 'jiayin_vect', 'jiu_vect', 'jo_vect', 'joanna_vect', 'job_vect', 'jogging_vect', 'john_vect', 'join_vect', 'joined_vect', 'joining_vect', 'joke_vect', 'jokes_vect', 'jokin_vect', 'joking_vect', 'jolly_vect', 'joy_vect', 'jsco_vect', 'jst_vect', 'juan_vect', 'juicy_vect', 'july_vect', 'june_vect', 'jus_vect', 'juz_vect', 'k52_vect', 'kadeem_vect', 'kaiez_vect', 'kallis_vect', 'kano_vect', 'kappa_vect', 'karaoke_vect', 'kate_vect', 'kay_vect', 'kb_vect', 'ke_vect', 'keep_vect', 'keeping_vect', 'keeps_vect', 'kent_vect', 'kept_vect', 'kerala_vect', 'key_vect', 'keys_vect', 'ki_vect', 'kick_vect', 'kid_vect', 'kidding_vect', 'kids_vect', 'kidz_vect', 'kind_vect', 'kinda_vect', 'kindly_vect', 'king_vect', 'kiss_vect', 'kisses_vect', 'kk_vect', 'knackered_vect', 'knew_vect', 'knock_vect', 'know_vect', 'knowing_vect', 'knows_vect', 'knw_vect', 'kz_vect', 'l8r_vect', 'la_vect', 'lab_vect', 'ladies_vect', 'lady_vect', 'lag_vect', 'laid_vect', 'land_vect', 'landline_vect', 'langport_vect', 'language_vect', 'laptop_vect', 'lar_vect', 'largest_vect', 'last_vect', 'late_vect', 'later_vect', 'latest_vect', 'latr_vect', 'laugh_vect', 'laughing_vect', 'law_vect', 'lazy_vect', 'ldn_vect', 'ldnw15h_vect', 'le_vect', 'lead_vect', 'learn_vect', 'least_vect', 'leave_vect', 'leaves_vect', 'leaving_vect', 'lect_vect', 'lecture_vect', 'left_vect', 'legal_vect', 'legs_vect', 'leh_vect', 'lei_vect', 'lem_vect', 'less_vect', 'lesson_vect', 'lessons_vect', 'let_vect', 'lets_vect', 'letter_vect', 'letters_vect', 'liao_vect', 'library_vect', 'lick_vect', 'licks_vect', 'lido_vect', 'lie_vect', 'lies_vect', 'life_vect', 'lifetime_vect', 'lift_vect', 'light_vect', 'lik_vect', 'like_vect', 'liked_vect', 'likely_vect', 'likes_vect', 'lil_vect', 'line_vect', 'linerental_vect', 'lines_vect', 'link_vect', 'lion_vect', 'lionm_vect', 'lionp_vect', 'lions_vect', 'lip_vect', 'list_vect', 'listen_vect', 'listening_vect', 'literally_vect', 'little_vect', 'live_vect', 'liverpool_vect', 'living_vect', 'lk_vect', 'll_vect', 'lmao_vect', 'lo_vect', 'loads_vect', 'loan_vect', 'loans_vect', 'local_vect', 'locations_vect', 'lock_vect', 'log_vect', 'login_vect', 'logo_vect', 'logopic_vect', 'lol_vect', 'london_vect', 'lonely_vect', 'long_vect', 'longer_vect', 'look_vect', 'lookatme_vect', 'looked_vect', 'lookin_vect', 'looking_vect', 'looks_vect', 'lor_vect', 'lose_vect', 'losing_vect', 'loss_vect', 'lost_vect', 'lot_vect', 'lotr_vect', 'lots_vect', 'lou_vect', 'loud_vect', 'lounge_vect', 'lousy_vect', 'lovable_vect', 'love_vect', 'loved_vect', 'lovely_vect', 'loveme_vect', 'lover_vect', 'loverboy_vect', 'lovers_vect', 'loves_vect', 'loving_vect', 'low_vect', 'lower_vect', 'loyal_vect', 'loyalty_vect', 'ls15hb_vect', 'lt_vect', 'ltd_vect', 'luck_vect', 'lucky_vect', 'lucy_vect', 'lunch_vect', 'luv_vect', 'lux_vect', 'luxury_vect', 'lyf_vect', 'lyfu_vect', 'lyk_vect', 'm227xy_vect', 'm26_vect', 'm263uz_vect', 'm8s_vect', 'mac_vect', 'machan_vect', 'macho_vect', 'mad_vect', 'madam_vect', 'made_vect', 'mag_vect', 'maga_vect', 'magical_vect', 'mah_vect', 'mail_vect', 'mailbox_vect', 'main_vect', 'maintain_vect', 'major_vect', 'make_vect', 'makes_vect', 'makin_vect', 'making_vect', 'malaria_vect', 'male_vect', 'mall_vect', 'man_vect', 'managed_vect', 'management_vect', 'many_vect', 'map_vect', 'march_vect', 'mark_vect', 'market_vect', 'marriage_vect', 'married_vect', 'marry_vect', 'masters_vect', 'match_vect', 'matches_vect', 'mate_vect', 'mates_vect', 'matrix3_vect', 'matter_vect', 'max10mins_vect', 'maximize_vect', 'maxå_vect', 'may_vect', 'mayb_vect', 'maybe_vect', 'mca_vect', 'mcat_vect', 'meal_vect', 'mean_vect', 'meaning_vect', 'means_vect', 'meant_vect', 'meanwhile_vect', 'med_vect', 'medical_vect', 'medicine_vect', 'meds_vect', 'meet_vect', 'meetin_vect', 'meeting_vect', 'meh_vect', 'mei_vect', 'member_vect', 'members_vect', 'men_vect', 'menu_vect', 'merry_vect', 'mess_vect', 'message_vect', 'messaged_vect', 'messages_vect', 'messaging_vect', 'met_vect', 'mid_vect', 'middle_vect', 'midnight_vect', 'mids_vect', 'might_vect', 'miles_vect', 'milk_vect', 'min_vect', 'mind_vect', 'mine_vect', 'mini_vect', 'minimum_vect', 'minor_vect', 'mins_vect', 'minute_vect', 'minutes_vect', 'minuts_vect', 'miracle_vect', 'mis_vect', 'miserable_vect', 'miss_vect', 'missed_vect', 'missin_vect', 'missing_vect', 'mistake_vect', 'mistakes_vect', 'mite_vect', 'mm_vect', 'mmm_vect', 'mmmm_vect', 'mmmmmm_vect', 'mnths_vect', 'mo_vect', 'moan_vect', 'mob_vect', 'mobile_vect', 'mobiles_vect', 'mobilesdirect_vect', 'mobilesvary_vect', 'mobileupd8_vect', 'mobno_vect', 'moby_vect', 'mode_vect', 'model_vect', 'module_vect', 'modules_vect', 'moji_vect', 'mojibiola_vect', 'mokka_vect', 'mom_vect', 'moment_vect', 'moments_vect', 'moms_vect', 'mon_vect', 'monday_vect', 'money_vect', 'monkeys_vect', 'mono_vect', 'month_vect', 'monthly_vect', 'months_vect', 'mood_vect', 'moon_vect', 'moral_vect', 'morn_vect', 'morning_vect', 'mostly_vect', 'mother_vect', 'motorola_vect', 'mouth_vect', 'move_vect', 'moved_vect', 'movie_vect', 'movies_vect', 'moving_vect', 'mp3_vect', 'mr_vect', 'mrng_vect', 'mrt_vect', 'msg_vect', 'msgs_vect', 'mths_vect', 'mu_vect', 'much_vect', 'mum_vect', 'mummy_vect', 'murder_vect', 'murdered_vect', 'murderer_vect', 'music_vect', 'must_vect', 'muz_vect', 'na_vect', 'nag_vect', 'nah_vect', 'naked_vect', 'name_vect', 'name1_vect', 'name2_vect', 'named_vect', 'names_vect', 'nan_vect', 'nap_vect', 'nasdaq_vect', 'nat_vect', 'national_vect', 'natural_vect', 'nature_vect', 'naughty_vect', 'nb_vect', 'nd_vect', 'ne_vect', 'near_vect', 'nearly_vect', 'necessarily_vect', 'necklace_vect', 'ned_vect', 'need_vect', 'needed_vect', 'needs_vect', 'neither_vect', 'net_vect', 'netcollex_vect', 'network_vect', 'networks_vect', 'neva_vect', 'never_vect', 'new_vect', 'newest_vect', 'news_vect', 'next_vect', 'ni8_vect', 'nice_vect', 'nigeria_vect', 'night_vect', 'nights_vect', 'nimya_vect', 'nite_vect', 'no1_vect', 'nobody_vect', 'noe_vect', 'nokia_vect', 'nokias_vect', 'noline_vect', 'none_vect', 'noon_vect', 'nope_vect', 'norm_vect', 'norm150ptone_vect', 'normal_vect', 'normally_vect', 'northampton_vect', 'note_vect', 'nothin_vect', 'nothing_vect', 'notice_vect', 'noun_vect', 'nowadays_vect', 'nt_vect', 'ntt_vect', 'ntwk_vect', 'num_vect', 'number_vect', 'numbers_vect', 'nuther_vect', 'nvm_vect', 'nw_vect', 'nxt_vect', 'nyc_vect', 'nydc_vect', 'nyt_vect', 'o2_vect', 'obviously_vect', 'odi_vect', 'offer_vect', 'offers_vect', 'office_vect', 'official_vect', 'officially_vect', 'ofice_vect', 'often_vect', 'oh_vect', 'oi_vect', 'oic_vect', 'ok_vect', 'okay_vect', 'okey_vect', 'okie_vect', 'ola_vect', 'old_vect', 'omg_vect', 'omw_vect', 'one_vect', 'ones_vect', 'oni_vect', 'online_vect', 'onto_vect', 'onwards_vect', 'oooh_vect', 'oops_vect', 'open_vect', 'opening_vect', 'operator_vect', 'opinion_vect', 'opportunity_vect', 'opt_vect', 'option_vect', 'optout_vect', 'or2stoptxt_vect', 'orange_vect', 'oranges_vect', 'orchard_vect', 'order_vect', 'ordered_vect', 'oredi_vect', 'original_vect', 'oru_vect', 'os_vect', 'oso_vect', 'others_vect', 'otherwise_vect', 'otside_vect', 'outside_vect', 'outstanding_vect', 'outta_vect', 'ovulation_vect', 'oz_vect', 'pa_vect', 'pack_vect', 'package_vect', 'page_vect', 'pages_vect', 'paid_vect', 'pain_vect', 'painful_vect', 'painting_vect', 'panic_vect', 'paper_vect', 'papers_vect', 'paperwork_vect', 'parco_vect', 'parent_vect', 'parents_vect', 'paris_vect', 'park_vect', 'parked_vect', 'parking_vect', 'part_vect', 'partner_vect', 'partnership_vect', 'party_vect', 'pass_vect', 'passed_vect', 'password_vect', 'past_vect', 'pattern_vect', 'patty_vect', 'pay_vect', 'paying_vect', 'payment_vect', 'payoh_vect', 'pc_vect', 'peace_vect', 'pence_vect', 'people_vect', 'per_vect', 'perfect_vect', 'period_vect', 'person_vect', 'personal_vect', 'pete_vect', 'petey_vect', 'pg_vect', 'philosophy_vect', 'phoenix_vect', 'phone_vect', 'phones_vect', 'photo_vect', 'photos_vect', 'pic_vect', 'pick_vect', 'picked_vect', 'picking_vect', 'pics_vect', 'picsfree1_vect', 'picture_vect', 'pictures_vect', 'pie_vect', 'pieces_vect', 'pig_vect', 'pilates_vect', 'pin_vect', 'pink_vect', 'piss_vect', 'pissed_vect', 'pix_vect', 'pizza_vect', 'place_vect', 'places_vect', 'plan_vect', 'planned_vect', 'planning_vect', 'plans_vect', 'play_vect', 'played_vect', 'player_vect', 'players_vect', 'playing_vect', 'please_vect', 'pleased_vect', 'pleasure_vect', 'plenty_vect', 'pls_vect', 'plus_vect', 'plz_vect', 'pm_vect', 'po_vect', 'pobox_vect', 'pobox334_vect', 'pobox36504w45wq_vect', 'pobox45w2tg150p_vect', 'pobox84_vect', 'pod_vect', 'point_vect', 'points_vect', 'poker_vect', 'pole_vect', 'police_vect', 'politicians_vect', 'poly_vect', 'polyphonic_vect', 'polys_vect', 'pongal_vect', 'poor_vect', 'pop_vect', 'popped_vect', 'porn_vect', 'possession_vect', 'possible_vect', 'post_vect', 'postcard_vect', 'postcode_vect', 'posted_vect', 'posts_vect', 'potential_vect', 'potter_vect', 'pound_vect', 'pounds_vect', 'pouts_vect', 'power_vect', 'ppl_vect', 'pple_vect', 'ppm_vect', 'prabha_vect', 'practice_vect', 'practicing_vect', 'pray_vect', 'prefer_vect', 'premier_vect', 'prepare_vect', 'prescription_vect', 'present_vect', 'press_vect', 'pretty_vect', 'prey_vect', 'price_vect', 'prince_vect', 'princess_vect', 'print_vect', 'privacy_vect', 'private_vect', 'prize_vect', 'prob_vect', 'probably_vect', 'problem_vect', 'problems_vect', 'process_vect', 'processed_vect', 'prof_vect', 'profit_vect', 'program_vect', 'project_vect', 'prolly_vect', 'promise_vect', 'promises_vect', 'promo_vect', 'proof_vect', 'properly_vect', 'prospects_vect', 'provided_vect', 'ps_vect', 'ptbo_vect', 'pub_vect', 'pull_vect', 'purchase_vect', 'purity_vect', 'purpose_vect', 'push_vect', 'pushes_vect', 'pussy_vect', 'put_vect', 'puttin_vect', 'putting_vect', 'qatar_vect', 'quality_vect', 'queen_vect', 'ques_vect', 'question_vect', 'questions_vect', 'quick_vect', 'quickly_vect', 'quiet_vect', 'quit_vect', 'quite_vect', 'quiz_vect', 'quote_vect', 'quoting_vect', 'racing_vect', 'radio_vect', 'railway_vect', 'rain_vect', 'raining_vect', 'raise_vect', 'rakhesh_vect', 'rally_vect', 'ran_vect', 'random_vect', 'randomly_vect', 'randy_vect', 'rang_vect', 'range_vect', 'ranjith_vect', 'rate_vect', 'rates_vect', 'rather_vect', 'rays_vect', 'rcvd_vect', 'rd_vect', 're_vect', 'reach_vect', 'reached_vect', 'reaching_vect', 'reaction_vect', 'read_vect', 'readers_vect', 'reading_vect', 'ready_vect', 'real_vect', 'realise_vect', 'reality_vect', 'realized_vect', 'really_vect', 'realy_vect', 'reason_vect', 'reasonable_vect', 'reasons_vect', 'reboot_vect', 'recd_vect', 'receipt_vect', 'receive_vect', 'received_vect', 'receiving_vect', 'recent_vect', 'recently_vect', 'recession_vect', 'record_vect', 'records_vect', 'recovery_vect', 'red_vect', 'ref_vect', 'reference_vect', 'reg_vect', 'regards_vect', 'register_vect', 'registered_vect', 'regret_vect', 'regular_vect', 'relation_vect', 'relax_vect', 'released_vect', 'rem_vect', 'remain_vect', 'remains_vect', 'remember_vect', 'remembered_vect', 'remembr_vect', 'remind_vect', 'reminder_vect', 'remove_vect', 'rent_vect', 'rental_vect', 'rentl_vect', 'repair_vect', 'repeat_vect', 'replied_vect', 'reply_vect', 'replying_vect', 'report_vect', 'representative_vect', 'request_vect', 'requests_vect', 'research_vect', 'resend_vect', 'respect_vect', 'respond_vect', 'responding_vect', 'response_vect', 'responsibility_vect', 'rest_vect', 'restaurant_vect', 'result_vect', 'results_vect', 'retrieve_vect', 'return_vect', 'returned_vect', 'returns_vect', 'reveal_vect', 'revealed_vect', 'review_vect', 'revision_vect', 'reward_vect', 'rhythm_vect', 'rice_vect', 'rich_vect', 'ride_vect', 'right_vect', 'rights_vect', 'ring_vect', 'ringtone_vect', 'ringtones_vect', 'rite_vect', 'river_vect', 'road_vect', 'roads_vect', 'roast_vect', 'rock_vect', 'rocks_vect', 'rofl_vect', 'roger_vect', 'role_vect', 'ron_vect', 'room_vect', 'roommate_vect', 'roommates_vect', 'rooms_vect', 'rose_vect', 'round_vect', 'row_vect', 'roww1j6hl_vect', 'roww1jhl_vect', 'royal_vect', 'rply_vect', 'rs_vect', 'rstm_vect', 'ru_vect', 'rub_vect', 'rude_vect', 'rule_vect', 'run_vect', 'running_vect', 'runs_vect', 'rush_vect', 'sacrifice_vect', 'sad_vect', 'sae_vect', 'safe_vect', 'said_vect', 'salam_vect', 'salary_vect', 'sale_vect', 'salon_vect', 'sam_vect', 'santa_vect', 'sar_vect', 'sarasota_vect', 'sarcastic_vect', 'sary_vect', 'sat_vect', 'sathya_vect', 'saturday_vect', 'savamob_vect', 'save_vect', 'saved_vect', 'saw_vect', 'say_vect', 'saying_vect', 'says_vect', 'scared_vect', 'scary_vect', 'sch_vect', 'schedule_vect', 'school_vect', 'schools_vect', 'science_vect', 'scold_vect', 'score_vect', 'scores_vect', 'scotland_vect', 'scream_vect', 'screaming_vect', 'scrounge_vect', 'se_vect', 'sea_vect', 'search_vect', 'searching_vect', 'season_vect', 'seat_vect', 'sec_vect', 'second_vect', 'seconds_vect', 'secret_vect', 'secretary_vect', 'secs_vect', 'sed_vect', 'see_vect', 'seeing_vect', 'seem_vect', 'seemed_vect', 'seems_vect', 'seen_vect', 'selected_vect', 'selection_vect', 'self_vect', 'sell_vect', 'selling_vect', 'sells_vect', 'sem_vect', 'semester_vect', 'sen_vect', 'send_vect', 'sender_vect', 'sending_vect', 'sense_vect', 'sent_vect', 'sentence_vect', 'sept_vect', 'series_vect', 'serious_vect', 'seriously_vect', 'service_vect', 'services_vect', 'serving_vect', 'set_vect', 'setting_vect', 'settings_vect', 'settle_vect', 'settled_vect', 'seven_vect', 'several_vect', 'sex_vect', 'sexy_vect', 'sh_vect', 'sha_vect', 'shall_vect', 'share_vect', 'shd_vect', 'sheets_vect', 'shes_vect', 'shesil_vect', 'shining_vect', 'ship_vect', 'shipping_vect', 'shirt_vect', 'shirts_vect', 'shit_vect', 'shld_vect', 'shocking_vect', 'shoot_vect', 'shop_vect', 'shoppin_vect', 'shopping_vect', 'short_vect', 'shorter_vect', 'shortly_vect', 'shot_vect', 'shoving_vect', 'show_vect', 'shower_vect', 'showing_vect', 'shows_vect', 'shu_vect', 'shuhui_vect', 'shy_vect', 'si_vect', 'sick_vect', 'side_vect', 'sighs_vect', 'sight_vect', 'sign_vect', 'signing_vect', 'silence_vect', 'silent_vect', 'silver_vect', 'sim_vect', 'simple_vect', 'simply_vect', 'since_vect', 'sing_vect', 'singing_vect', 'single_vect', 'singles_vect', 'sipix_vect', 'sir_vect', 'sis_vect', 'sister_vect', 'sit_vect', 'site_vect', 'sitting_vect', 'situation_vect', 'siva_vect', 'six_vect', 'size_vect', 'sk3_vect', 'sk38xh_vect', 'skilgme_vect', 'skip_vect', 'sky_vect', 'skype_vect', 'skyped_vect', 'slap_vect', 'slave_vect', 'sleep_vect', 'sleepin_vect', 'sleeping_vect', 'sleepy_vect', 'slept_vect', 'slice_vect', 'slide_vect', 'slightly_vect', 'slip_vect', 'slippers_vect', 'slo_vect', 'slots_vect', 'slow_vect', 'slowly_vect', 'small_vect', 'smashed_vect', 'smile_vect', 'smiles_vect', 'smiling_vect', 'smoke_vect', 'smoking_vect', 'sms_vect', 'smth_vect', 'sn_vect', 'snake_vect', 'snow_vect', 'social_vect', 'sofa_vect', 'soft_vect', 'software_vect', 'sol_vect', 'some1_vect', 'somebody_vect', 'someone_vect', 'somethin_vect', 'something_vect', 'sometimes_vect', 'somewhere_vect', 'song_vect', 'songs_vect', 'sony_vect', 'sonyericsson_vect', 'soon_vect', 'sooner_vect', 'sore_vect', 'sorry_vect', 'sort_vect', 'sorting_vect', 'sound_vect', 'sounds_vect', 'south_vect', 'sp_vect', 'space_vect', 'spanish_vect', 'speak_vect', 'speaking_vect', 'special_vect', 'specialcall_vect', 'specially_vect', 'speed_vect', 'spend_vect', 'spending_vect', 'spent_vect', 'spk_vect', 'spoke_vect', 'spoken_vect', 'spook_vect', 'sport_vect', 'sports_vect', 'spree_vect', 'spring_vect', 'sptv_vect', 'sry_vect', 'st_vect', 'staff_vect', 'stamps_vect', 'stand_vect', 'standard_vect', 'standing_vect', 'star_vect', 'staring_vect', 'start_vect', 'started_vect', 'starting_vect', 'starts_vect', 'starwars3_vect', 'statement_vect', 'station_vect', 'stay_vect', 'stayed_vect', 'staying_vect', 'std_vect', 'steam_vect', 'step_vect', 'steve_vect', 'stick_vect', 'sticky_vect', 'still_vect', 'stock_vect', 'stockport_vect', 'stomach_vect', 'stomps_vect', 'stones_vect', 'stop_vect', 'stopped_vect', 'stops_vect', 'store_vect', 'stores_vect', 'story_vect', 'str_vect', 'straight_vect', 'stranger_vect', 'street_vect', 'stress_vect', 'strike_vect', 'strong_vect', 'strongbuy_vect', 'stuck_vect', 'student_vect', 'study_vect', 'studying_vect', 'stuff_vect', 'stupid_vect', 'style_vect', 'stylish_vect', 'sub_vect', 'subpoly_vect', 'subs_vect', 'subscribe6gbpmnth_vect', 'subscribed_vect', 'subscriber_vect', 'subscription_vect', 'success_vect', 'successful_vect', 'successfully_vect', 'sucks_vect', 'sue_vect', 'sufficient_vect', 'suggest_vect', 'suite_vect', 'suits_vect', 'sum1_vect', 'summer_vect', 'sun_vect', 'sunday_vect', 'sunlight_vect', 'sunny_vect', 'sunshine_vect', 'suntec_vect', 'sup_vect', 'super_vect', 'superb_vect', 'superior_vect', 'supervisor_vect', 'supply_vect', 'support_vect', 'suppose_vect', 'supposed_vect', 'suprman_vect', 'sura_vect', 'sure_vect', 'surely_vect', 'surfing_vect', 'surprise_vect', 'surprised_vect', 'survey_vect', 'sux_vect', 'suzy_vect', 'sw7_vect', 'sw73ss_vect', 'sweet_vect', 'swing_vect', 'system_vect', 'ta_vect', 'tablets_vect', 'tahan_vect', 'take_vect', 'taken_vect', 'takes_vect', 'takin_vect', 'taking_vect', 'talent_vect', 'talk_vect', 'talking_vect', 'tampa_vect', 'tape_vect', 'tariffs_vect', 'tat_vect', 'taunton_vect', 'taylor_vect', 'tb_vect', 'tc_vect', 'tcrw1_vect', 'tcs_vect', 'tea_vect', 'teach_vect', 'teacher_vect', 'teaches_vect', 'team_vect', 'tear_vect', 'tease_vect', 'teasing_vect', 'tech_vect', 'technical_vect', 'tee_vect', 'teeth_vect', 'tel_vect', 'telephone_vect', 'tell_vect', 'telling_vect', 'tells_vect', 'telugu_vect', 'temple_vect', 'ten_vect', 'tenants_vect', 'tenerife_vect', 'tension_vect', 'term_vect', 'terms_vect', 'terrible_vect', 'test_vect', 'testing_vect', 'text_vect', 'texted_vect', 'texting_vect', 'textoperator_vect', 'texts_vect', 'th_vect', 'thangam_vect', 'thank_vect', 'thanks_vect', 'thanksgiving_vect', 'thanx_vect', 'that_vect', 'thats_vect', 'thatåõs_vect', 'the_vect', 'theatre_vect', 'themob_vect', 'theory_vect', 'thesis_vect', 'thgt_vect', 'thing_vect', 'things_vect', 'think_vect', 'thinkin_vect', 'thinking_vect', 'thinks_vect', 'thk_vect', 'thnk_vect', 'tho_vect', 'though_vect', 'thought_vect', 'three_vect', 'throat_vect', 'throw_vect', 'thru_vect', 'tht_vect', 'thts_vect', 'thurs_vect', 'thursday_vect', 'tick_vect', 'ticket_vect', 'tickets_vect', 'tight_vect', 'tihs_vect', 'til_vect', 'till_vect', 'time_vect', 'times_vect', 'timing_vect', 'tired_vect', 'tirunelvali_vect', 'tirupur_vect', 'tissco_vect', 'tkts_vect', 'tm_vect', 'tming_vect', 'tmobile_vect', 'tmr_vect', 'tncs_vect', 'toa_vect', 'toclaim_vect', 'today_vect', 'todays_vect', 'tog_vect', 'together_vect', 'tok_vect', 'told_vect', 'tomarrow_vect', 'tomo_vect', 'tomorrow_vect', 'tone_vect', 'tones_vect', 'tones2youcouk_vect', 'tonight_vect', 'tonite_vect', 'took_vect', 'tool_vect', 'tooo_vect', 'toot_vect', 'top_vect', 'topic_vect', 'torch_vect', 'toshiba_vect', 'tot_vect', 'total_vect', 'totally_vect', 'touch_vect', 'tough_vect', 'tour_vect', 'towards_vect', 'town_vect', 'track_vect', 'trade_vect', 'traffic_vect', 'train_vect', 'training_vect', 'transaction_vect', 'transfer_vect', 'transport_vect', 'travel_vect', 'treat_vect', 'treated_vect', 'tried_vect', 'trip_vect', 'trips_vect', 'trouble_vect', 'true_vect', 'truffles_vect', 'truly_vect', 'trust_vect', 'truth_vect', 'try_vect', 'trying_vect', 'ts_vect', 'tscs_vect', 'tscs087147403231winawk_vect', 'tt_vect', 'ttyl_vect', 'tues_vect', 'tuesday_vect', 'tuition_vect', 'turn_vect', 'turning_vect', 'turns_vect', 'tv_vect', 'twelve_vect', 'twice_vect', 'two_vect', 'txt_vect', 'txtauction_vect', 'txtin_vect', 'txting_vect', 'txtno_vect', 'txts_vect', 'txtstop_vect', 'tyler_vect', 'type_vect', 'tyrone_vect', 'u4_vect', 'ubi_vect', 'ufind_vect', 'ugh_vect', 'uh_vect', 'uk_vect', 'uks_vect', 'ultimatum_vect', 'umma_vect', 'unable_vect', 'uncle_vect', 'understand_vect', 'understanding_vect', 'understood_vect', 'underwear_vect', 'unemployed_vect', 'uni_vect', 'unique_vect', 'university_vect', 'unless_vect', 'unlimited_vect', 'unnecessarily_vect', 'unredeemed_vect', 'unsold_vect', 'unsub_vect', 'unsubscribe_vect', 'upd8_vect', 'update_vect', 'updatenow_vect', 'upgrade_vect', 'upload_vect', 'upset_vect', 'upstairs_vect', 'ur_vect', 'ure_vect', 'urgent_vect', 'urgnt_vect', 'url_vect', 'urn_vect', 'urself_vect', 'us_vect', 'usb_vect', 'use_vect', 'used_vect', 'user_vect', 'usf_vect', 'using_vect', 'usual_vect', 'usually_vect', 'vale_vect', 'valentine_vect', 'valentines_vect', 'valid_vect', 'valid12hrs_vect', 'valuable_vect', 'value_vect', 'valued_vect', 'vary_vect', 've_vect', 'vegas_vect', 'verify_vect', 'version_vect', 'via_vect', 'vid_vect', 'video_vect', 'videochat_vect', 'videophones_vect', 'vijay_vect', 'vikky_vect', 'village_vect', 'violated_vect', 'violence_vect', 'vip_vect', 'virgin_vect', 'visit_vect', 'vivek_vect', 'vl_vect', 'voda_vect', 'vodafone_vect', 'vodka_vect', 'voice_vect', 'voicemail_vect', 'vomit_vect', 'vote_vect', 'voucher_vect', 'vouchers_vect', 'vry_vect', 'vth_vect', 'w45wq_vect', 'wa_vect', 'wah_vect', 'wait_vect', 'waited_vect', 'waitin_vect', 'waiting_vect', 'wake_vect', 'waking_vect', 'wales_vect', 'walk_vect', 'walked_vect', 'walking_vect', 'walmart_vect', 'wan_vect', 'wana_vect', 'want_vect', 'wanted_vect', 'wanting_vect', 'wants_vect', 'wap_vect', 'warm_vect', 'warner_vect', 'waste_vect', 'wasted_vect', 'wat_vect', 'watch_vect', 'watching_vect', 'water_vect', 'wats_vect', 'way_vect', 'wc1n3xx_vect', 'we_vect', 'weak_vect', 'wear_vect', 'wearing_vect', 'weather_vect', 'web_vect', 'website_vect', 'wed_vect', 'wedding_vect', 'wednesday_vect', 'wee_vect', 'weed_vect', 'week_vect', 'weekend_vect', 'weekends_vect', 'weekly_vect', 'weeks_vect', 'weigh_vect', 'weight_vect', 'weird_vect', 'welcome_vect', 'well_vect', 'welp_vect', 'wen_vect', 'went_vect', 'west_vect', 'wet_vect', 'what_vect', 'whatever_vect', 'whats_vect', 'whenever_vect', 'whenevr_vect', 'wherever_vect', 'whether_vect', 'white_vect', 'whn_vect', 'whole_vect', 'whos_vect', 'whose_vect', 'wid_vect', 'widelivecomindex_vect', 'wif_vect', 'wife_vect', 'wil_vect', 'willing_vect', 'win_vect', 'wind_vect', 'wine_vect', 'winner_vect', 'winning_vect', 'wins_vect', 'wipro_vect', 'wisdom_vect', 'wise_vect', 'wish_vect', 'wishes_vect', 'wishing_vect', 'wit_vect', 'within_vect', 'without_vect', 'wiv_vect', 'wk_vect', 'wkend_vect', 'wkg_vect', 'wkly_vect', 'wks_vect', 'wld_vect', 'wml_vect', 'wn_vect', 'wnt_vect', 'wo_vect', 'woke_vect', 'woken_vect', 'woman_vect', 'women_vect', 'wonder_vect', 'wonderful_vect', 'wondering_vect', 'wont_vect', 'woot_vect', 'word_vect', 'words_vect', 'work_vect', 'workin_vect', 'working_vect', 'works_vect', 'world_vect', 'worried_vect', 'worries_vect', 'worry_vect', 'worse_vect', 'worst_vect', 'worth_vect', 'wot_vect', 'would_vect', 'wow_vect', 'write_vect', 'wrong_vect', 'wtf_vect', 'wud_vect', 'wuld_vect', 'wun_vect', 'www4tcbiz_vect', 'wwwcomuknet_vect', 'wwwetlpcoukexpressoffer_vect', 'wwwgetzedcouk_vect', 'wwwldewcom_vect', 'wwwldewcom1win150ppmx3age16_vect', 'wwwmovietriviatv_vect', 'wwwringtonescouk_vect', 'wwwsmsconet_vect', 'wwwtxttowincouk_vect', 'wwwurawinnercom_vect', 'wylie_vect', 'xchat_vect', 'xmas_vect', 'xuhui_vect', 'xx_vect', 'xxx_vect', 'xxxx_vect', 'xxxxx_vect', 'xy_vect', 'ya_vect', 'yahoo_vect', 'yan_vect', 'yar_vect', 'yay_vect', 'yck_vect', 'yeah_vect', 'year_vect', 'years_vect', 'yelling_vect', 'yellow_vect', 'yep_vect', 'yes_vect', 'yest_vect', 'yesterday_vect', 'yet_vect', 'yetunde_vect', 'yijue_vect', 'ym_vect', 'yo_vect', 'yoga_vect', 'yogasana_vect', 'yor_vect', 'you_vect', 'yr_vect', 'yrs_vect', 'yummy_vect', 'yun_vect', 'yuo_vect', 'yup_vect', 'zed_vect', 'zindgi_vect', 'ìï_vect', 'ûò_vect']}, 'training': {'algo': 'Logistic Regression', 'model_file': 'AI0110_1.sav'}}
    deployer = get_deployer('classification',params=config)
    deployer.run( )"
output_formatter.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import os
import platform
import json
import shutil
import logging

class outputFormatter:
    def __init__(self):
        self.log = logging.getLogger('eion')
        self.log.info('========> Inside Output Formatter')  
    
    def crate_output_format_file(self,deploy_path,learner_type,modelType,model,output_label,threshold,trained_data_file,dictDiffCount,targetFeature,features,datetimeFeature):
        self.output_formatfile = 'import json'  
        self.output_formatfile += '\n'
        self.output_formatfile += 'import numpy as np'
        self.output_formatfile += '\n'
        self.output_formatfile += 'import pandas as pd'
        self.output_formatfile += '\n'
        self.output_formatfile += 'import os'
        self.output_formatfile += '\n'
        self.output_formatfile += 'from pathlib import Path'
        self.output_formatfile += '\n'
        if((model.lower() in  ['autoencoder','dbscan']) and modelType.lower()==""anomaly_detection""):
            self.output_formatfile += 'from script.aion_granularity import aion_gettimegranularity'
            self.output_formatfile += '\n'
        
        self.output_formatfile += 'class output_format(object):'
        self.output_formatfile += '\n'
        if(model ==  'VAR'):
            self.output_formatfile += '    def invertTransformation(self,predictions):'
            self.output_formatfile += '\n'
            self.output_formatfile += '        datasetdf = pd.read_csv(os.path.join(os.path.dirname(os.path.abspath(__file__)),"".."",""data"",""trainingdata.csv""))'
            self.output_formatfile += '\n'
            self.output_formatfile += '        dictDiffCount = '+str(dictDiffCount)
            self.output_formatfile += '\n'
            self.output_formatfile += '        targetFeature = ""'+str(targetFeature)+'""'
            self.output_formatfile += '\n'
            self.output_formatfile += '        columns = targetFeature.split("","")'
            self.output_formatfile += '\n'
            self.output_formatfile += '        pred = pd.DataFrame(index=range(0,len(predictions)),columns=columns)'
            self.output_formatfile += '\n'
            self.output_formatfile += '        for j in range(0,len(columns)):'
            self.output_formatfile += '\n'
            self.output_formatfile += '            for i in range(0, len(predictions)):'
            self.output_formatfile += '\n'
            self.output_formatfile += '                pred.iloc[i][j] = round(predictions[i][j],2)'
            self.output_formatfile += '\n'
            self.output_formatfile += '        prediction = pred'
            self.output_formatfile += '\n'
            self.output_formatfile += '        for col in columns:'
            self.output_formatfile += '\n'  
            self.output_formatfile += '            if col in dictDiffCount:'
            self.output_formatfile += '\n'      
            self.output_formatfile += '                if dictDiffCount[col]==2:'
            self.output_formatfile += '\n'
            self.output_formatfile += '                    prediction[col] = (datasetdf[col].iloc[-1]-datasetdf[col].iloc[-2]) + prediction[col].cumsum()'
            self.output_formatfile += '\n'
            self.output_formatfile += '                prediction[col] = datasetdf[col].iloc[-1] + prediction[col].cumsum()'
            self.output_formatfile += '\n'
            self.output_formatfile += '        prediction = pred'
            self.output_formatfile += '\n'
            self.output_formatfile += '        return(prediction)'
            self.output_formatfile += '\n'
        self.log.info(""op:modelType: \n""+str(modelType))
        if((model.lower() in  ['autoencoder','dbscan']) and modelType.lower()==""anomaly_detection""):
        # if modelType == 'anomaly_detection':
            self.output_formatfile += '    def find_point_subsequence_anomalies(self,datetime_column,dataframe=None):'      
            self.output_formatfile += '\n'
            self.output_formatfile += '        try:'        
            self.output_formatfile += '\n'
            self.output_formatfile += '            dataframe[datetime_column] = pd.to_datetime(dataframe[datetime_column]) '
            self.output_formatfile += '\n'
            self.output_formatfile += '            aion_gettimegranularity_obj=aion_gettimegranularity(dataframe,datetime_column) '
            self.output_formatfile += '\n'
            self.output_formatfile += '            anomaly_info_df=aion_gettimegranularity_obj.get_granularity() '
            self.output_formatfile += '\n'
            self.output_formatfile += '        except Exception as e:'
            self.output_formatfile += '\n'
            self.output_formatfile += '            print(f""find_point_subsequence_anomalies,: aion_gettimegranularity err msg:{e} "")\n'
            self.output_formatfile += '        return anomaly_info_df'
            self.output_formatfile += '\n'
        if((model.lower() in  ['autoencoder','dbscan']) and modelType.lower()==""anomaly_detection""):    
            if (datetimeFeature!='' and datetimeFeature!='NA'):
                self.output_formatfile += '    def apply_output_format(self,df,modeloutput,datetimeFeature):'
                self.output_formatfile += '\n'
            else:
                self.output_formatfile += '    def apply_output_format(self,df,modeloutput):'       
                self.output_formatfile += '\n'
        else:
            self.output_formatfile += '    def apply_output_format(self,df,modeloutput):'       
            self.output_formatfile += '\n'
            
        if modelType.lower() == 'classification':
            self.output_formatfile += '        modeloutput = round(modeloutput,2)'
            self.output_formatfile += '\n'
        
        
        if(learner_type == 'ImageClassification'):
            if(str(output_label) != '{}'):
                inv_mapping_dict = {v: k for k, v in output_label.items()}
                self.output_formatfile += '        le_dict = '+ str(inv_mapping_dict)
                self.output_formatfile += '\n'
                self.output_formatfile += '        predictions = []'
                self.output_formatfile += '\n'
                self.output_formatfile += '        for x in modeloutput:'
                self.output_formatfile += '\n'
                self.output_formatfile += '            x = le_dict[x]'
                self.output_formatfile += '\n'
                self.output_formatfile += '            predictions.append(x)'
                self.output_formatfile += '\n'
            else:
                self.output_formatfile += '        predictions=modeloutput'
                self.output_formatfile += '\n'  
            self.output_formatfile += '        df[\'prediction\'] = predictions'
            self.output_formatfile += '\n'
            self.output_formatfile += '        outputjson = df.to_json(orient=\'records\')'
            self.output_formatfile += '\n'      
            self.output_formatfile += '        outputjson = {""status"":""SUCCESS"",""data"":json.loads(outputjson)}'
            self.output_formatfile += '\n'                  
        elif(learner_type == 'Text Similarity'):
            self.output_formatfile += '        df[\'prediction\'] = np.where(modeloutput > '+str(threshold)+',1,0)'
            self.output_formatfile += '\n'
            self.output_formatfile += '        df[\'probability\'] = modeloutput'
            self.output_formatfile += '\n'
            self.output_formatfile += '        outputjson = df.to_json(orient=\'records\',double_precision=2)'
            self.output_formatfile += '\n'
            self.output_formatfile += '        outputjson = {""status"":""SUCCESS"",""data"":json.loads(outputjson)}'
            self.output_formatfile += '\n'
        elif(learner_type ==  'TS'):
            if(model == 'VAR'):
                self.output_formatfile += '        modeloutput = self.invertTransformation(modeloutput)'
                self.output_formatfile += '\n'
                self.output_formatfile += '        modeloutput = modeloutput.to_json(orient=\'records\',double_precision=2)'
                self.output_formatfile += '\n'
                self.output_formatfile += '        outputjson = {""status"":""SUCCESS"",""data"":json.loads(modeloutput)}'
            elif(model.lower() == 'fbprophet'):
                self.output_formatfile += '        modeloutput = modeloutput.to_json(orient=\'records\')'
                self.output_formatfile += '\n'
                self.output_formatfile += '        outputjson = {""status"":""SUCCESS"",""data"":json.loads(modeloutput)}'
            elif((model.lower() == 'lstm' or model.lower() == 'mlp')  and len(features) >= 1):
                self.output_formatfile += '        modeloutput = modeloutput.round(2)\n'
                self.output_formatfile += '        modeloutput = modeloutput.to_json(orient=\'records\')\n'
                self.output_formatfile += '        outputjson = {""status"":""SUCCESS"",""data"":json.loads(modeloutput)}\n'
            else:
                self.output_formatfile += '        modeloutput = modeloutput.round(2)'
                self.output_formatfile += '\n'
                self.output_formatfile += '        modeloutput = json.dumps(modeloutput.tolist())'
                self.output_formatfile += '\n'
                self.output_formatfile += '        outputjson = {""status"":""SUCCESS"",""data"":eval(modeloutput)}'
            self.output_formatfile += '\n'
        elif(learner_type in  ['RecommenderSystem','similarityIdentification','contextualSearch']):
            self.output_formatfile += '\n'
            self.output_formatfile += '        df[\'prediction\'] = modeloutput'
            self.output_formatfile += '\n'          
            self.output_formatfile += '        outputjson = df.to_json(orient=\'records\',double_precision=2)'
            self.output_formatfile += '\n'
            self.output_formatfile += '        outputjson = {""status"":""SUCCESS"",""data"":json.loads(outputjson)}'
            self.output_formatfile += '\n'
        else:           
            if(modelType == 'Classification' or modelType == 'TLClassification' or modelType == 'anomaly_detection'):
                if(modelType == 'Classification' or modelType == 'TLClassification' or modelType == 'anomaly_detection'):
                    if(str(output_label) != '{}'):
                        inv_mapping_dict = {v: k for k, v in output_label.items()}
                        self.output_formatfile += '        le_dict = '+ str(inv_mapping_dict)
                        self.output_formatfile += '\n'
                        '''
                        if(model in ['SGDClassifier']):
                            self.output_formatfile += '        modeloutput  = modeloutput.replace({""predict_class"": le_dict})'
                        else:
                            self.output_formatfile += '        modeloutput = modeloutput.rename(columns=le_dict)'
                        '''
                        if modelType != 'anomaly_detection':
                            self.output_formatfile += '        modeloutput = modeloutput.rename(columns=le_dict)'
                            self.output_formatfile += '\n'
                if(threshold != -1):
                    '''
                    if(model in ['SGDClassifier']):
                        self.output_formatfile += '        df[\'prediction\'] = np.where(modeloutput[\'probability\'] > '+str(threshold)+',1,0)'
                        self.output_formatfile += '\n'
                        self.output_formatfile += '        df[\'probability\'] = modeloutput[\'probability\']'          
                        self.output_formatfile += '\n'
                        self.output_formatfile += '        df[\'remarks\'] = """"'
                        self.output_formatfile += '\n'
                    else:
                        self.output_formatfile += '        predictedData = modeloutput.iloc[:,1]'
                        self.output_formatfile += '\n'
                        self.output_formatfile += '        df[\'prediction\'] = np.where(predictedData > '+str(threshold)+',modeloutput.columns[1],modeloutput.columns[0])'     
                        self.output_formatfile += '\n'
                        self.output_formatfile += '        df[\'probability\'] = np.where(df[\'prediction\'] == modeloutput.columns[1],modeloutput.iloc[:,1],modeloutput.iloc[:,0])'
                        self.output_formatfile += '\n'
                        self.output_formatfile += '        df[\'remarks\'] = modeloutput.apply(lambda x: x.to_json(double_precision=2), axis=1)'                        
                        self.output_formatfile += '\n'  
                    '''
                    self.output_formatfile += '        predictedData = modeloutput.iloc[:,1]'
                    self.output_formatfile += '\n'
                    self.output_formatfile += '        df[\'prediction\'] = np.where(predictedData > '+str(threshold)+',modeloutput.columns[1],modeloutput.columns[0])'     
                    self.output_formatfile += '\n'
                    self.output_formatfile += '        df[\'probability\'] = np.where(df[\'prediction\'] == modeloutput.columns[1],modeloutput.iloc[:,1],modeloutput.iloc[:,0])'
                    self.output_formatfile += '\n'
                    self.output_formatfile += '        df[\'remarks\'] = modeloutput.apply(lambda x: x.to_json(double_precision=2), axis=1)'                        
                    self.output_formatfile += '\n'  
                else:
                    '''
                    if(model in ['SGDClassifier']):
                        self.output_formatfile += '        df[\'prediction\'] = modeloutput[\'predict_class\']'     
                        self.output_formatfile += '\n'      
                        self.output_formatfile += '        df[\'probability\'] = """"'            
                        self.output_formatfile += '\n'
                        self.output_formatfile += '        df[\'remarks\'] = ""NA""'
                        self.output_formatfile += '\n'
                    else:
                    
                        self.output_formatfile += '        df[\'prediction\'] = modeloutput.idxmax(axis=1)'         
                        self.output_formatfile += '\n'      
                        self.output_formatfile += '        df[\'probability\'] = modeloutput.max(axis=1)'           
                        self.output_formatfile += '\n'      
                        self.output_formatfile += '        df[\'remarks\'] = modeloutput.apply(lambda x: x.to_json(double_precision=2), axis=1)'                        
                        self.output_formatfile += '\n'  
                    '''
                    if modelType == 'anomaly_detection':
                        # if (model.lower()=='autoencoder'):
                        if model.lower() in ['autoencoder']:
                            if (datetimeFeature != '' and datetimeFeature.lower() != 'na'):
                                self.output_formatfile += '        df[modeloutput.columns] = modeloutput\n'
                                self.output_formatfile += '        anomaly_df=df[df[\'anomaly\'] == True]\n'
                                self.output_formatfile += '        anomaly_prediction_df=self.find_point_subsequence_anomalies(datetimeFeature,anomaly_df)\n'
                                self.output_formatfile += '        new_dir = str(Path(__file__).parent.parent/\'data\')\n'                                
                                self.output_formatfile += '        anomaly_prediction_df.to_csv(f""{new_dir}/anomaly_data.csv"")\n'
                                self.output_formatfile += '        try:\n'
                                self.output_formatfile += '            anomaly_prediction_df[datetimeFeature]=pd.to_datetime(anomaly_prediction_df[datetimeFeature])\n'
                                self.output_formatfile += '            df[datetimeFeature]=pd.to_datetime(df[datetimeFeature])\n'
                                self.output_formatfile += '            anomaly_prediction_df.drop(""Time_diff"",axis=1,inplace=True)\n'
                                self.output_formatfile += '        except:\n'
                                self.output_formatfile += '            pass\n'
                                self.output_formatfile += '        try:\n'
                                self.output_formatfile += '            df_out = pd.merge(df, anomaly_prediction_df, on=df.columns.values.tolist(), how=\'left\')\n'
                                self.output_formatfile += '            df_out[\'anomaly\'].replace([\'None\', \'NaN\', np.nan], ""Normal"", inplace=True)\n'
                                self.output_formatfile += '            df_out[\'anomalyType\'].replace([\'None\', \'NaN\', np.nan], ""Normal"", inplace=True)\n'
                                self.output_formatfile += '            df_out.to_csv(f""{new_dir}/overall_ad_output.csv"") \n'
                                self.output_formatfile += '            df_out[datetimeFeature]=df_out[datetimeFeature].astype(str) \n'
                                self.output_formatfile += '            df_out.drop(""time_diff"",axis=1,inplace=True)\n'
                                self.output_formatfile += '        except Exception as e:\n'
                                self.output_formatfile += '            print(""anomaly data updated issue"",e)\n'
                                self.output_formatfile += '        df_out[datetimeFeature]=df_out[datetimeFeature].astype(str)\n'
                                self.output_formatfile += '        df=df_out   \n'
                            else:
                                self.output_formatfile += '        df[modeloutput.columns] = modeloutput\n' 
                        elif (model.lower()=='dbscan'):
                            if (datetimeFeature != '' and datetimeFeature.lower() != 'na'):
                                self.output_formatfile += '        df[\'anomaly\'] = modeloutput[\'cluster\']== -1\n'
                                self.output_formatfile += '        anomaly_df=df[df[\'anomaly\'] == True]\n'
                                self.output_formatfile += '        anomaly_prediction_df=self.find_point_subsequence_anomalies(datetimeFeature,anomaly_df)\n'                                
                                self.output_formatfile += '        new_dir = str(Path(__file__).parent.parent/\'data\')\n'
                                self.output_formatfile += '        try:\n'
                                self.output_formatfile += '            anomaly_prediction_df[datetimeFeature]=pd.to_datetime(anomaly_prediction_df[datetimeFeature])\n'
                                self.output_formatfile += '            df[datetimeFeature]=pd.to_datetime(df[datetimeFeature])\n'
                                self.output_formatfile += '        except:\n'
                                self.output_formatfile += '            pass\n'
                                self.output_formatfile += '        try:\n'
                                self.output_formatfile += '            df_out = pd.merge(df, anomaly_prediction_df, on=df.columns.values.tolist(), how=\'left\')\n'
                                self.output_formatfile += '            df_out[\'anomaly\'].replace([\'None\', \'NaN\', np.nan], ""Normal"", inplace=True)\n'
                                self.output_formatfile += '            df_out.to_csv(f""{new_dir}/overall_ad_output.csv"") \n'
                                self.output_formatfile += '            df_out[datetimeFeature]=df_out[datetimeFeature].astype(str)\n'
                                self.output_formatfile += '        except Exception as e:\n'
                                self.output_formatfile += '            print(""anomaly data updated."")\n'
                                self.output_formatfile += '            df_out[datetimeFeature]=df_out[datetimeFeature].astype(str)\n'
                                self.output_formatfile += '        df=df_out   \n'
                            else:
                                self.output_formatfile += '        df[\'anomaly\'] = modeloutput[\'cluster\']== -1\n'
                                self.output_formatfile += '        df.sort_values(by=[\'anomaly\'], ascending=False, inplace=True)\n'
                        else:
                            self.output_formatfile += '        df[\'prediction\'] =     modeloutput'
                            self.output_formatfile += '\n'                          
                    else:
                        self.output_formatfile += '        df[\'prediction\'] = modeloutput.idxmax(axis=1)'         
                        self.output_formatfile += '\n'      
                        if learner_type != 'DL':
                            self.output_formatfile += '        df[\'probability\'] = modeloutput.max(axis=1).round(2)'          
                            self.output_formatfile += '\n'      
                            self.output_formatfile += '        df[\'remarks\'] = modeloutput.apply(lambda x: x.to_json(double_precision=2), axis=1)'
                            self.output_formatfile += '\n'  
            else:
                if model == 'COX':
                    self.output_formatfile += '\n'
                    self.output_formatfile += '        modeloutput[0] = modeloutput[0].round(2)'
                    self.output_formatfile += '\n'
                    #self.output_formatfile += '        modeloutput = modeloutput[0].to_json(orient=\'records\',double_precision=2)'
                    #self.output_formatfile += '\n'
                    self.output_formatfile += '        df[\'prediction\'] =     modeloutput'
                    self.output_formatfile += '\n'                          
                else:
                    self.output_formatfile += '        df[\'prediction\'] =     modeloutput[0]'
                    if(learner_type == 'objectDetection'):    
                        self.output_formatfile += '\n'                          
                        self.output_formatfile += '        df[\'prediction\'] = df[\'prediction\']'
                    else:
                        self.output_formatfile += '\n'                          
                        self.output_formatfile += '        df[\'prediction\'] = df[\'prediction\'].round(2)'                            
                    self.output_formatfile += '\n'                    
            self.output_formatfile += '        outputjson = df.to_json(orient=\'records\',double_precision=2)'
            self.output_formatfile += '\n'      
            self.output_formatfile += '        outputjson = {""status"":""SUCCESS"",""data"":json.loads(outputjson)}'
            self.output_formatfile += '\n'      
        self.output_formatfile += '        return(json.dumps(outputjson))'  
        filename = os.path.join(deploy_path,'script','output_format.py')
        #print(deploy_path)
        f = open(filename, ""wb"")
        self.log.info('-------> Output Mapping File Location :'+filename)
        f.write(str(self.output_formatfile).encode('utf8'))
        f.close()"
inputdrift.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import pandas as pd
import numpy as np
import scipy 
import warnings
import scipy.stats as st
import logging
import json
class inputdrift():
	def __init__(self,conf):
		self.log = logging.getLogger('eion')		
					
	def get_input_drift(self,ndf,hdf,outputfolder):
		selectedColumns = self.features.split(',')
		dataalertcount=0
		distributionChangeColumns=""""
		distributionChangeMessage=[]
		for i in range(0,len(selectedColumns)):
			data1=hdf[selectedColumns[i]]
			data2=ndf[selectedColumns[i]]
			if(data1.dtype !=""str"" and data2.dtype !=""str""  ):
				cumulativeData=data1.append(data2)
				teststaticValue=teststatic(self,data1,data2)
				if (teststaticValue < 0.05):
					distributionName1,sse1=DistributionFinder(self,data1)
					distributionName2,sse2=DistributionFinder(self,data2)
					if(distributionName1 == distributionName2):
						dataalertcount = dataalertcount
					else:
						dataalertcount = dataalertcount+1
						distributionChangeColumns=distributionChangeColumns+selectedColumns[i]+"",""
						changedColumn = {}
						changedColumn['Feature'] = selectedColumns[i]
						changedColumn['KS_Training'] = teststaticValue
						changedColumn['Training_Distribution'] = distributionName1
						changedColumn['New_Distribution'] = distributionName2
						distributionChangeMessage.append(changedColumn)
                                                
				else :
					dataalertcount = dataalertcount

			else :
				response =""Selected Columns should be Numerical Values""
		               	        
			if(dataalertcount == 0):
				resultStatus=""Model is working as expected""
			else :
				resultStatus=json.dumps(distributionChangeMessage)
				
		return(dataalertcount,resultStatus)
		
def DistributionFinder(self,data):
	try:
		distributionName =""""
		sse =0.0
		KStestStatic=0.0
		dataType=""""
		if(data.dtype == ""float64""):
			dataType =""Continuous""
		elif(data.dtype ==""int""):
			dataType=""Discrete""
		elif(data.dtype ==""int64""):
			dataType=""Discrete""	
		if(dataType == ""Discrete""):
			distributions= [st.bernoulli,st.binom,st.geom,st.nbinom,st.poisson]                
			index, counts = np.unique(data.astype(int),return_counts=True)

			if(len(index)>=2):
				best_sse = np.inf
				y1=[]
				total=sum(counts)
				mean=float(sum(index*counts))/total
				variance=float((sum(index**2*counts) -total*mean**2))/(total-1)
				dispersion=mean/float(variance)
				theta=1/float(dispersion)
				r=mean*(float(theta)/1-theta)

				for j in counts:
						y1.append(float(j)/total)
									
				pmf1=st.bernoulli.pmf(index,mean)      
				pmf2=st.binom.pmf(index,len(index),p=mean/len(index))
				pmf3=st.geom.pmf(index,1/float(1+mean))
				pmf4=st.nbinom.pmf(index,mean,r)
				pmf5=st.poisson.pmf(index,mean)

				sse1 = np.sum(np.power(y1 - pmf1, 2.0))
				sse2 = np.sum(np.power(y1 - pmf2, 2.0))
				sse3 = np.sum(np.power(y1 - pmf3, 2.0))
				sse4 = np.sum(np.power(y1 - pmf4, 2.0))
				sse5 = np.sum(np.power(y1-  pmf5, 2.0))

				sselist=[sse1,sse2,sse3,sse4,sse5]

				for i in range(0,len(sselist)):
				  if best_sse > sselist[i] > 0:
					  best_distribution = distributions[i].name
					  best_sse = sselist[i]

			elif (len(index) == 1): 
				best_distribution = ""Constant Data-No Distribution""
				best_sse = 0.0

			distributionName =best_distribution
			sse=best_sse   

		elif(dataType == ""Continuous""): 
				 
			distributions = [st.uniform,st.expon,st.weibull_max,st.weibull_min,st.chi,st.norm,st.lognorm,st.t,st.gamma,st.beta]

			best_distribution = st.norm.name
			best_sse = np.inf
			datamin=data.min()
			datamax=data.max()
			nrange=datamax-datamin
				 
			y, x = np.histogram(data.astype(float), bins='auto', density=True)
			x = (x + np.roll(x, -1))[:-1] / 2.0
									
			for distribution in distributions:
					with warnings.catch_warnings():
							warnings.filterwarnings('ignore')
									
							params = distribution.fit(data.astype(float))
									# Separate parts of parameters
							arg = params[:-2]
							loc = params[-2]
							scale = params[-1]

									# Calculate fitted PDF and error with fit in distribution
							pdf = distribution.pdf(x, loc=loc, scale=scale, *arg)
							sse = np.sum(np.power(y - pdf, 2.0))
							if(best_sse >sse > 0):
									best_distribution = distribution.name
									best_sse = sse

			distributionName =best_distribution
			sse=best_sse 
	except:
		response = str(sys.exc_info()[0])
		message='Job has Failed'+response
		print(message)
	return distributionName,sse

##KStestStatic -pvalue finding 
def teststatic(self,data1,data2):
	try:
		teststatic =st.ks_2samp(data1,data2)
		pValue=0.0
		scipyVersion =scipy.__version__
		if(scipyVersion <= ""0.14.1""):
			pValue =teststatic[1]
		else:
			pValue =teststatic.pvalue
	except:
		response = str(sys.exc_info()[0])
		print(""Input Drift Job Failed ""+response)
	return pValue
			
"
prediction_transformation.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import os,sys
import platform
import json
import shutil
import logging
from pathlib import Path

def create_selector_file(self,deploy_path,features,pcaModel_pickle_file,bpca_features,apca_features,textFeatures,nonNumericFeatures,numericalFeatures,profiler,targetFeature, model_type,model,config=None):
    self.selectorfile += 'import pandas as pd'
    self.selectorfile += '\n'
    self.selectorfile += 'import joblib'
    self.selectorfile += '\n'
    self.selectorfile += 'import os'
    self.selectorfile += '\n'
    self.selectorfile += 'import numpy as np'
    self.selectorfile += '\n'
    self.selectorfile += 'class selector(object):'
    self.selectorfile += '\n'
    self.selectorfile += '    def apply_selector(self,df):'
    self.selectorfile += '\n'
    if pcaModel_pickle_file != '':
        self.selectorfile += ""        pcaModel = joblib.load(os.path.join(os.path.dirname(__file__),'..','model','""+pcaModel_pickle_file+""'))""  
        self.selectorfile += '\n'
        self.selectorfile += '        bpca_features = '+str(bpca_features)
        self.selectorfile += '\n'
        self.selectorfile += '        apca_features = '+str(apca_features)
        self.selectorfile += '\n'
        self.selectorfile += '        df = pcaModel.transform(df[bpca_features])'
        self.selectorfile += '\n'
        self.selectorfile += '        df = pd.DataFrame(df,columns=apca_features)'
        self.selectorfile += '\n'
    if(len(features) != 0) and model_type != 'BM25':
        if model_type.lower()!='anomaly_detection' and model.lower() != 'autoencoder':
            self.selectorfile += '        df = df['+str(features)+']'
            self.selectorfile += '\n'
    self.selectorfile += '        return(df)'
    filename = os.path.join(deploy_path,'script','selector.py')             
    f = open(filename, ""wb"")
    self.log.info('-------> Feature Selector File Location :'+filename)
    f.write(str(self.selectorfile).encode('utf8'))
    f.close()       
    featurefile = 'import json'     
    featurefile +='\n'        
    featurefile += 'def getfeatures():'     
    featurefile +='\n'
    featurefile +='    try:'        
    featurefile +='\n'
    featurelist = []
    if 'profiler' in config:
        if 'input_features_type' in config['profiler']:
            inputfeatures = config['profiler']['input_features_type']
            for x in inputfeatures:
                featurelt={}
                featurelt['feature'] = x
                print(x,inputfeatures[x])
                if x == targetFeature:            
                    featurelt['Type'] = 'Target'
                else:
                    if inputfeatures[x] in ['int','int64','float','float64']: 
                        featurelt['Type'] = 'Numeric'
                    elif inputfeatures[x] == 'object':
                        featurelt['Type'] = 'Text'
                    elif inputfeatures[x] == 'category':  
                        featurelt['Type'] = 'Category'   
                    else:
                        featurelt['Type'] = 'Unknown'   
                featurelist.append(featurelt)
        
    featurefile +='        features = '+str(featurelist)
    featurefile +='\n'
    featurefile +='        outputjson = {""status"":""SUCCESS"",""features"":features}'
    featurefile +='\n'
    featurefile +='        output = json.dumps(outputjson)'       
    featurefile +='\n'
    featurefile +='        print(""Features:"",output)'       
    featurefile +='\n'
    featurefile +='        return(output)'              
    featurefile +='\n'
    featurefile +='    except Exception as e:'      
    featurefile +='\n'
    featurefile +='        output = {""status"":""FAIL"",""message"":str(e).strip(\'""\')}'
    featurefile +='\n'
    featurefile +='        print(""Features:"",json.dumps(output))'        
    featurefile +='\n'
    featurefile +='        return (json.dumps(output))'     
    featurefile +='\n'
    featurefile +='if __name__ == ""__main__"":'        
    featurefile +='\n'
    featurefile +='    output = getfeatures()'      
    filename = os.path.join(deploy_path,'featureslist.py')              
    f = open(filename, ""wb"")
    f.write(str(featurefile).encode('utf8'))
    f.close()        

def create_init_function_for_classification(self,modelfile,classes,learner_type,scoreParam,loss_matrix,optimizer,preprocessing_pipe,modelName,model_type,imageconfig):
    self.modelfile += '   def __init__(self):'
    self.modelfile += '\n'
    if (learner_type == 'ML' and model_type.lower()=='anomaly_detection' and modelName.lower()==""autoencoder""):
        modelfile=modelfile.replace('.sav','')
        self.modelfile+=""      self.model = tf.keras.models.load_model(os.path.join(os.path.dirname(__file__),'..','model','""+modelfile+""'))""
        self.modelfile += '\n'
    elif(learner_type == 'TextDL' or learner_type == 'DL'):
        if modelName.lower() == 'googlemodelsearch':
            self.modelfile += '        import autokeras as ak'
            self.modelfile += '\n'
            self.modelfile += ""        self.model = load_model(os.path.join(os.path.dirname(__file__),'..','model','modelsearch_rootdir','saved_model_onnx.onnx'))""                
            self.modelfile += '\n'         
        else:
            if scoreParam == 'recall':
                self.modelfile += ""       self.model = load_model(os.path.join(os.path.dirname(__file__),'..','model','""+modelfile+""'),custom_objects={'recall': recall_m},compile=False)""
                self.modelfile += '\n'
                self.modelfile += '       self.model.compile(loss=\''+loss_matrix+'\',optimizer=\''+optimizer+'\', metrics=[recall_m])'
                self.modelfile += '\n'
            elif scoreParam == 'precision':
                self.modelfile += ""       self.model = load_model(os.path.join(os.path.dirname(__file__),'..','model','""+modelfile+""'),custom_objects={'precision': precision_m},compile=False)""
                self.modelfile += '\n'
                self.modelfile += '       self.model.compile(loss=\''+loss_matrix+'\',optimizer=\''+optimizer+'\', metrics=[precision_m])'
                self.modelfile += '\n'
            elif scoreParam == 'roc_auc':
                self.modelfile += ""       self.model = load_model(os.path.join(os.path.dirname(__file__),'..','model','""+modelfile+""'),compile=False)""
                self.modelfile += '\n'
                self.modelfile += '       self.model.compile(loss=\''+loss_matrix+'\',optimizer=\''+optimizer+'\', metrics=[tf.keras.metrics.AUC()])'
                self.modelfile += '\n'
            elif scoreParam == 'f1_score':
                self.modelfile += ""       self.model = load_model(os.path.join(os.path.dirname(__file__),'..','model','""+modelfile+""'),custom_objects={'f1_score': f1_m},compile=False)""
                self.modelfile += '\n'
                self.modelfile += '       self.model.compile(loss=\''+loss_matrix+'\',optimizer=\''+optimizer+'\', metrics=[f1_m])'
                self.modelfile += '\n'
            elif scoreParam == 'r2':
                self.modelfile += ""       self.model = load_model(os.path.join(os.path.dirname(__file__),'..','model','""+modelfile+""'),custom_objects={'r2': r_square},compile=False)""
                self.modelfile += '\n'
                self.modelfile += '       self.model.compile(loss=\''+loss_matrix+'\',optimizer=\''+optimizer+'\', metrics=[r_square])'
                self.modelfile += '\n'
            elif scoreParam == 'rmse':
                self.modelfile += ""       self.model = load_model(os.path.join(os.path.dirname(__file__),'..','model','""+modelfile+""'),custom_objects={'rmse': rmse_m},compile=False)""
                self.modelfile += '\n'
                self.modelfile += '       self.model.compile(loss=\''+loss_matrix+'\',optimizer=\''+optimizer+'\', metrics=[rmse_m])'
                self.modelfile += '\n'
            elif scoreParam == 'mse':
                self.modelfile += ""       self.model = load_model(os.path.join(os.path.dirname(__file__),'..','model','""+modelfile+""'))""
                self.modelfile += '\n'
            elif scoreParam == 'mae':
                self.modelfile += ""       self.model = load_model(os.path.join(os.path.dirname(__file__),'..','model','""+modelfile+""'))""        
                self.modelfile += '\n'
        
            elif scoreParam == 'accuracy':
                self.modelfile += ""       self.model = load_model(os.path.join(os.path.dirname(__file__),'..','model','""+modelfile+""'))""        
                self.modelfile += '\n'
            else:
                self.modelfile += ""       self.model = load_model(os.path.join(os.path.dirname(__file__),'..','model','""+modelfile+""'))""        
                self.modelfile += '\n'
    elif(learner_type == 'Text Similarity'):
        self.modelfile += ""       self.preprocessing = joblib.load(os.path.join(os.path.dirname(__file__),'..','model','""+preprocessing_pipe+""'))""
        self.modelfile += '\n'
        self.modelfile += ""       self.model = load_model(os.path.join(os.path.dirname(__file__),'..','model','""+modelfile+""'), custom_objects={'cosine_distance': cosine_distance, 'cos_dist_output_shape': cos_dist_output_shape})""
        self.modelfile += '\n'
    elif(learner_type in ['similarityIdentification','contextualSearch']):
        if scoreParam == 'VectorDB Cosine':
            vectorfiledbname = 'trainingdataVecDB'
            self.modelfile += f""\
            \n        persist_directory = os.path.join(os.path.dirname(__file__),'..','data')\
            \n        client = chromadb.PersistentClient(path=persist_directory)\
            \n        self.collection_name = '{vectorfiledbname}'\
            \n        self.collection = client.get_collection(self.collection_name)\n""

        else:
            self.modelfile += ""        self.train_input = pd.read_csv(os.path.join(os.path.dirname(__file__),'..','data','trainingdata.csv'))\n\n""
    elif(learner_type == 'ImageClassification'):
        self.modelfile += '        self.config='+str(imageconfig)       
        self.modelfile += '\n'
        if(modelName.lower() == 'densenet'):
            self.modelfile += '        baseModel = tf.keras.applications.DenseNet121(weights=""imagenet"", include_top=False, input_tensor=Input(shape=(self.config[\'img_width\'],self.config[\'img_height\'],self.config[\'img_channel\'])))'
        else:
            self.modelfile += '        baseModel = tensorflow.keras.applications.InceptionV3(weights=""imagenet"", include_top=False, input_tensor=Input(shape=(self.config[\'img_width\'],self.config[\'img_height\'],self.config[\'img_channel\'])))'
        self.modelfile += '\n'
        self.modelfile += '        headModel = baseModel.output'
        self.modelfile += '\n'
        self.modelfile += '        headModel = Flatten(name=""flatten"")(headModel)'
        self.modelfile += '\n'
        self.modelfile += '        headModel = Dense(1024, activation=\'relu\')(headModel)'
        self.modelfile += '\n'
        self.modelfile += '        headModel = Dropout(0.5)(headModel)'
        self.modelfile += '\n'
        self.modelfile += '        headModel = Dense(2, activation=\'sigmoid\')(headModel)'
        self.modelfile += '\n'
        self.modelfile += '        headModel = self.model = Model(inputs=baseModel.input, outputs=headModel)'
        self.modelfile += '\n'
        self.modelfile += '        opt = Adam(lr=self.config[\'lr\'])'
        self.modelfile += '\n'
        self.modelfile += '        self.model.compile(loss=""binary_crossentropy"", optimizer=opt, metrics=[""accuracy""])'
        self.modelfile += '\n'
        self.modelfile += ""        self.model.load_weights(os.path.join(os.path.dirname(__file__),'..','model','""+modelfile+""'))""
        self.modelfile += '\n'
    elif(learner_type == 'objectDetection'):
        self.modelfile += ""        self.MODEL_LOCATION = os.path.join(os.path.dirname(__file__),'..','model')\n""
        self.modelfile += '        PATH_TO_CFG = self.MODEL_LOCATION+""/export/pipeline.config""\n'
        self.modelfile += '        PATH_TO_CKPT =  self.MODEL_LOCATION+""/export/checkpoint/""\n'
        self.modelfile += '        PATH_TO_LABELS = self.MODEL_LOCATION+""/export/label_map.pbtxt""\n'
        self.modelfile += '        configs = config_util.get_configs_from_pipeline_file(PATH_TO_CFG)\n'
        self.modelfile += '        self.detection_model = model_builder.build(model_config=configs[""model""], is_training=False)\n'
        self.modelfile += '        ckpt = tf.compat.v2.train.Checkpoint(model=self.detection_model)\n'
        self.modelfile += '        ckpt.restore(os.path.join(PATH_TO_CKPT, ""ckpt-0"")).expect_partial()\n'
        self.modelfile += '        self.category_index = label_map_util.create_category_index_from_labelmap(PATH_TO_LABELS,\
                                                                use_display_name=True)\n'
    elif learner_type == 'TS' and (modelName.lower() == 'lstm' or modelName.lower() == 'mlp'):  
        self.modelfile += ""       self.model = load_model(os.path.join(os.path.dirname(__file__),'..','model','""+modelfile+""'))""
        self.modelfile += '\n'
    elif modelName.lower() == 'neural architecture search':
        self.modelfile += '       import autokeras as ak'
        self.modelfile += '\n'
        self.modelfile += ""       self.model = load_model(os.path.join(os.path.dirname(__file__),'..','model','""+modelfile+""'),custom_objects=ak.CUSTOM_OBJECTS)""                
        self.modelfile += '\n'                          
    else:
        self.modelfile += ""       self.model = joblib.load(os.path.join(os.path.dirname(__file__),'..','model','""+modelfile+""'))""
        self.modelfile += '\n'
    
def create_predict(self,learner_type,method,model,model_type,threshold,firstDocFeature,secondDocFeature,padding_length,optimizationmethod,sessonal_freq,additional_regressors,feature,modelFeatures,indexFeature,lag_order,scalertransformationFile,datetimeFeature,scoreParam=None):
    self.modelfile += '   def predict(self,X,features_names):'
    self.modelfile += '\n'
            
    if (learner_type == 'ML' and model_type.lower()=='anomaly_detection' and model.lower()==""autoencoder""): 
        
        self.modelfile += f""       X=X[{feature}]\n""
        self.modelfile += f""       X = np.asarray(X).astype('float32')\n""        
        self.modelfile += f""       reconstructed = self.model.predict(X)\n""
        self.modelfile += f""       predict_loss = tf.keras.losses.mae(reconstructed,X)\n""
        self.modelfile += '       max_threshold = np.mean(predict_loss) + 2*np.std(predict_loss)\n'
        self.modelfile += '       min_threshold = np.mean(predict_loss) - 2*np.std(predict_loss)\n'
        self.modelfile += '       prediction_df = pd.DataFrame()\n'
        self.modelfile += '       prediction_df[""loss""] = predict_loss\n'
        self.modelfile += '       prediction_df[""max_threshold""] = max_threshold\n'
        self.modelfile += '       prediction_df[""min_threshold""] = min_threshold\n'
        self.modelfile += '       prediction_df[""anomaly""] = np.where((prediction_df[""loss""] > prediction_df[""max_threshold""]) | (prediction_df[""loss""] <= prediction_df[""min_threshold""]), True, False)\n'
        self.modelfile += '       return prediction_df\n'
            
            
    elif(learner_type == 'RecommenderSystem'):
        self.modelfile += '       predictions = []'
        self.modelfile += '\n'
        self.modelfile += '       for index,row in X.iterrows():'
        self.modelfile += '\n'
        self.modelfile += '           score = self.model.predict(int(row[""uid""]),int(row[""iid""]))'
        self.modelfile += '\n'
        self.modelfile += '           predictions.append(score.est)'
        self.modelfile += '\n'
        self.modelfile += '       return predictions'           
    elif(learner_type in ['similarityIdentification','contextualSearch']):
        tfeatures = list(modelFeatures.split("",""))
        if indexFeature != ''  and indexFeature != 'NA':
            ifeatures = indexFeature.split("","")
            for ifes in ifeatures:              
                if ifes not in tfeatures:
                    tfeatures.append(ifes) 
        if model_type == 'BM25':
            self.modelfile += f""\n\
    tokenized_corpus =[doc.split(' ') for doc in self.train_input.tokenize]\n\
    bm25 = BM25Okapi(tokenized_corpus)\n\
    tokenized_query = [doc.split(' ') for doc in X.tokenize]\n\
    logcnt = 5\n\
    output = []\n\
    for query in tokenized_query:\n\
        doc_scores = bm25.get_scores(query)\n\
        related_docs_indices = np.argsort(doc_scores)[::-1][:logcnt]\n\
        x = self.train_input[{tfeatures}].loc[self.train_input.index[related_docs_indices]]\n\
        x['Score'] = doc_scores[related_docs_indices]\n\
        x['Score'] = round(x['Score'],2).astype(str)+'%'\n\
        output.append(x)\n\
    return output\n""
        elif scoreParam == 'VectorDB Cosine':
            featuresVecDB = modelFeatures.split("","")
            self.modelfile += '        logcnt = 5\n'
            self.modelfile += f""        columns = {featuresVecDB}\n""
            self.modelfile += f""\
            \n        output = []\
            \n        for rowindex, row in X.iterrows():\
            \n            queryembedding = X.iloc[rowindex:rowindex+1].to_numpy()\
            \n            results = self.collection.query(\
            \n                query_embeddings=queryembedding.tolist(),\
            \n                n_results=logcnt\
            \n            )\
            \n            x = pd.DataFrame(columns=columns)\
            \n            for i in range(0, len(results['ids'][0])):\
            \n                documentAry = results['documents'][0][i]\
            \n                documentAry = documentAry.split(' ~&~ ')\
            \n                for j in range(0, len(documentAry)):\
            \n                    x.at[i,columns[j]] = documentAry[j]\
            \n                x.at[i,'Score'] = results['distances'][0][i]\
            \n            output.append(x)\
            \n        return output""
        else:
            self.modelfile += '        columns = self.train_input.columns.tolist()\n'
            self.modelfile += '        logcnt = 5\n'
            self.modelfile += f""        train_input = self.train_input[{tfeatures}]\n""
            for tf in tfeatures:
                self.modelfile += f""        columns.remove('{tf}')\n""
            self.modelfile += f""\
            \n        results = cosine_similarity(self.train_input[columns],X)\
            \n        output = []\
            \n        for i in range(results.shape[1]):\
            \n            related_docs_indices = results[:,i].argsort(axis=0)[:-(int(logcnt) + 1):-1]\
            \n            x=self.train_input[{tfeatures}].loc[self.train_input.index[related_docs_indices]]\
            \n            scores = []\
            \n            for j in range(0,logcnt):\
            \n                scores.append(str(round((results[related_docs_indices][j][i])*100))+'%')\
            \n            x['Score'] = scores\
            \n            output.append(x)\
            \n        return output""
    elif(learner_type == 'Text Similarity'):
        self.modelfile += '       X[""'+firstDocFeature+'""] = X[""'+firstDocFeature+'""].astype(str)'
        self.modelfile += '\n'  
        self.modelfile += '       X[""'+secondDocFeature+'""] = X[""'+secondDocFeature+'""].astype(str)'
        self.modelfile += '\n'  
        self.modelfile += '       test_sentence1 = self.preprocessing.texts_to_sequences(X[""'+firstDocFeature+'""].values)' 
        self.modelfile += '\n'  
        self.modelfile += '       test_sentence2 = self.preprocessing.texts_to_sequences(X[""'+secondDocFeature+'""].values)' 
        self.modelfile += '\n'
        self.modelfile += '       test_sentence1 = pad_sequences(test_sentence1, maxlen='+str(padding_length)+', padding=\'post\')' 
        self.modelfile += '\n'
        self.modelfile += '       test_sentence2 = pad_sequences(test_sentence2, maxlen='+str(padding_length)+', padding=\'post\')' 
        self.modelfile += '\n'
        self.modelfile += '       prediction = self.model.predict([test_sentence1, test_sentence2 ])' 
        self.modelfile += '\n'
        self.modelfile += '       return(prediction)' 
        self.modelfile += '\n'
    elif(learner_type == 'ImageClassification'): 
        self.modelfile += '       predictions = []' 
        self.modelfile += '\n'
        self.modelfile += '       for index, row in X.iterrows(): ' 
        self.modelfile += '\n'
        self.modelfile += '           img = cv2.imread(row[\'imagepath\'])' 
        self.modelfile += '\n'
        self.modelfile += '           img = cv2.resize(img, (self.config[\'img_width\'],self.config[\'img_height\']))' 
        self.modelfile += '\n'
        self.modelfile += '           img = image.img_to_array(img)' 
        self.modelfile += '\n'
        self.modelfile += '           img = np.expand_dims(img, axis=0)' 
        self.modelfile += '\n'
        self.modelfile += '           img = img/255' 
        self.modelfile += '\n'
        self.modelfile += '           prediction = self.model.predict(img)' 
        self.modelfile += '\n'
        self.modelfile += '           prediction = np.argmax(prediction,axis=1)' 
        self.modelfile += '\n'
        self.modelfile += '           predictions.append(prediction[0])' 
        self.modelfile += '\n'
        self.modelfile += '       return(predictions)' 
        self.modelfile += '\n'
    elif(learner_type == 'objectDetection'): 
        self.modelfile += '        @tf.function\n'
        self.modelfile += '        def detect_fn(image):\n'
        self.modelfile += '            image, shapes = self.detection_model.preprocess(image)\n'
        self.modelfile += '            prediction_dict = self.detection_model.predict(image, shapes)\n'
        self.modelfile += '            detections = self.detection_model.postprocess(prediction_dict, shapes)\n'
        self.modelfile += '            return detections\n'
        self.modelfile += '        def load_image_into_numpy_array(path):\n'
        self.modelfile += '            return np.array(Image.open(path))\n'
        self.modelfile += '        imageLocation = []\n'
        self.modelfile += '        for i, row in X.iterrows():\n'
        self.modelfile += '            if (""confidance"" in row) and row[""confidance""] <= 1.0:\n'
        self.modelfile += '                confidance = row[""confidance""]\n'
        self.modelfile += '            else:\n'
        self.modelfile += '                confidance = 0.8\n'
        self.modelfile += '            imageName = str(Path(row[""imagepath""]).stem)+""_output""+str(Path(row[""imagepath""]).suffix)\n'
        self.modelfile += '            image_np = load_image_into_numpy_array(row[""imagepath""])\n'
        self.modelfile += '            input_tensor = tf.convert_to_tensor(np.expand_dims(image_np, 0), dtype=tf.float32)\n'
        self.modelfile += '            detections = detect_fn(input_tensor)\n'
        self.modelfile += '            num_detections = int(detections.pop(""num_detections""))\n'
        self.modelfile += '            detections = {key: value[0, :num_detections].numpy()\n\
                                                        for key, value in detections.items()}\n'
        self.modelfile += '            detections[""num_detections""] = num_detections\n'
        self.modelfile += '            detections[""detection_classes""] = detections[""detection_classes""].astype(np.int64)\n'
        self.modelfile += '            label_id_offset = 1\n'
        self.modelfile += '            image_np_with_detections = image_np.copy()\n'
        self.modelfile += '            viz_utils.visualize_boxes_and_labels_on_image_array(\n\
                        image_np_with_detections,\n\
                        detections[""detection_boxes""],\n\
                        detections[""detection_classes""]+label_id_offset,\n\
                        detections[""detection_scores""],\n\
                        self.category_index,\n\
                        use_normalized_coordinates=True,\n\
                        max_boxes_to_draw=200,\n\
                        min_score_thresh=confidance,\n\
                        agnostic_mode=False)\n'

        self.modelfile += '            plt.figure()\n'
        self.modelfile += '            plt.imsave(os.path.join(self.MODEL_LOCATION,imageName), image_np_with_detections)\n'
        self.modelfile += '            imageLocation.append(os.path.join(self.MODEL_LOCATION,imageName))\n'
        self.modelfile += '        plt.show()\n'
        self.modelfile += '        return imageLocation\n'
    else:
        if(learner_type == 'DL' and model != 'Neural Network'):
            self.modelfile += '       X = np.expand_dims(X, axis=2)' 
            self.modelfile += '\n'  
        if(learner_type == 'TextDL'):
            self.modelfile += '       return pd.DataFrame(np.argmax(self.model.predict(X),axis=1))'
            self.modelfile += '\n'
        elif(learner_type == 'TextML'):
            self.modelfile += '       return pd.DataFrame(self.model.predict_proba(X),columns=self.model.classes_)'
            self.modelfile += '\n'
        elif(learner_type == 'DL' and model_type == 'Classification'):
            self.modelfile += '       X = X.astype(np.float32)'
            self.modelfile += '\n'            
            self.modelfile += '       return pd.DataFrame(np.argmax(self.model.predict(X),axis=1))'
            self.modelfile += '\n'
        else:
            if(model_type == 'Classification' or model_type == 'TLClassification'):
                if model == 'Neural Architecture Search':
                    self.modelfile += '       X = X.astype(np.float32)'
                    self.modelfile += '\n'                                          
                    self.modelfile += '       return pd.DataFrame(self.model.predict(X))'
                    self.modelfile += '\n'
                else:   
                    if optimizationmethod == 'genetic':
                        self.modelfile += '\n'
                        self.modelfile += '       try:'
                        self.modelfile += '\n'
                        self.modelfile += '           return pd.DataFrame(self.model.predict_proba(X))'
                        self.modelfile += '\n'
                        self.modelfile += '       except:'
                        self.modelfile += '\n'
                        self.modelfile += '           return pd.DataFrame(self.model.predict(X))'
                    else:
                        self.modelfile += '       X = X.astype(np.float32)'
                        self.modelfile += '\n'
                        if model.lower() == 'deep q network' or model.lower() == 'dueling deep q network': 
                            self.modelfile += '       q, _ = self.model(np.array(X), step_type=constant([time_step.StepType.FIRST] * np.array(X).shape[0]), training=False)'
                            self.modelfile += '\n'
                            self.modelfile += '       return pd.DataFrame(q.numpy())'                               
                        else:
                            self.modelfile += '       return pd.DataFrame(self.model.predict_proba(X), columns=self.model.classes_)'
                    self.modelfile += '\n'
            elif model_type == 'Regression' and model == 'NAS':
                    self.modelfile += \
""""""
   X = X.astype(np.float32)
   return self.model.predict(X)
""""""                    
            elif(learner_type == 'TS'):
                if model.lower() == 'fbprophet':
                    self.modelfile += '       sessonal_freq=""'+str(sessonal_freq)+'""'
                    self.modelfile += '\n'
                    self.modelfile += '       ts_prophet_future = self.model.make_future_dataframe(periods=int(X[""noofforecasts""][0]),freq=sessonal_freq,include_history = False)'
                    self.modelfile += '\n'
                    if (additional_regressors):
                        self.modelfile += '\n'
                        self.modelfile += '       additional_regressors='+str(additional_regressors)
                        self.modelfile += '\n'
                        self.modelfile += '       ts_prophet_future[additional_regressors] = dataFrame[additional_regressors]'
                        self.modelfile += '\n'
                        self.modelfile += '       ts_prophet_future.reset_index(drop=True)'
                        self.modelfile += '\n'
                        self.modelfile += '       ts_prophet_future=ts_prophet_future.dropna()'
                    self.modelfile += '\n'
                    self.modelfile += '       train_forecast = self.model.predict(ts_prophet_future)'
                    self.modelfile += '\n'
                    self.modelfile += '       prophet_forecast_tail=train_forecast[[\'ds\', \'yhat\', \'yhat_lower\',\'yhat_upper\']].tail( int(X[""noofforecasts""][0]))'
                    self.modelfile += '\n'
                    self.modelfile += '       return(prophet_forecast_tail)'
                elif model.lower() == 'lstm' or model.lower() == 'mlp':
                    self.modelfile += '       lag_order='+str(lag_order)
                    self.modelfile += '\n'
                    self.modelfile += '       xt = X.values'
                    self.modelfile += '\n'      
                    scalertransformationFile = scalertransformationFile.split('\\')[-1]
                    self.modelfile += '       loaded_scaler_model = joblib.load(os.path.join(os.path.dirname(__file__),\'..\',\'model\',\''+scalertransformationFile+'\'))'                 
                    self.modelfile += '\n'                  
                    self.modelfile += '       xt = xt.astype(\'float32\')'
                    self.modelfile += '\n'                  
                    self.modelfile += '       xt = loaded_scaler_model.transform(xt)'                       
                    self.modelfile += '\n'                                          
                    self.modelfile += '       noOfPredictions = 10'
                    self.modelfile += '\n'                      
                    self.modelfile += '       pred_data  = xt'
                    self.modelfile += '\n'                      
                    self.modelfile += '       y_future = []'
                    self.modelfile += '\n'
                    self.modelfile += '       for i in range(noOfPredictions):'
                    self.modelfile += '\n'                      
                    if len(feature) == 1:
                        self.modelfile += '           pred_data = pred_data[-lag_order:]'
                        self.modelfile += '\n'
                        if model.lower() == 'mlp':
                            self.modelfile += '           pred_data = pred_data.reshape((1,lag_order))'
                        else:
                            self.modelfile += '           pred_data = pred_data.reshape((1,lag_order,1))'                           
                        self.modelfile += '\n'
                        self.modelfile += '           pred = self.model.predict(pred_data)'                     
                        self.modelfile += '\n'
                        self.modelfile += '           predoutput =  loaded_scaler_model.inverse_transform(pred) '                       
                        self.modelfile += '\n'                          
                        self.modelfile += '           y_future.append(predoutput.flatten()[-1])'                        
                        self.modelfile += '\n'                      
                        self.modelfile += '           pred_data = np.append(pred_data,pred)'                        
                        self.modelfile += '\n'
                        self.modelfile += '       pred = pd.DataFrame(index=range(0,len(y_future)),columns='+str(feature)+')'                           
                        self.modelfile += '\n'
                        self.modelfile += '       for i in range(0, len(y_future)):'                            
                        self.modelfile += '\n'          
                        self.modelfile += '           pred.iloc[i] = y_future[i]'
                        self.modelfile += '\n'
                        self.modelfile += '       return pred'
                    else:
                        self.modelfile += '           pdata = pred_data[-lag_order:]'
                        self.modelfile += '\n'
                        self.modelfile += '           pdata = pdata.reshape((1,lag_order,'+str(len(feature))+'))'
                        self.modelfile += '\n'
                        self.modelfile += '           pred = self.model.predict(pdata)'                     
                        self.modelfile += '\n'
                        self.modelfile += '           predoutput =  loaded_scaler_model.inverse_transform(pred) '                       
                        self.modelfile += '\n'                      
                        self.modelfile += '           y_future.append(predoutput)'                      
                        self.modelfile += '\n'                      
                        self.modelfile += '           pred_data = np.append(pred_data,pred,axis=0)'                     
                        self.modelfile += '\n'
                        self.modelfile += '       pred = pd.DataFrame(index=range(0,len(y_future)),columns='+str(feature)+')'                           
                        self.modelfile += '\n'
                        self.modelfile += '       for i in range(0, len(y_future)):'                            
                        self.modelfile += '\n'          
                        self.modelfile += '           pred.iloc[i] = y_future[i]'
                        self.modelfile += '\n'
                        self.modelfile += '       return pred'                      
                else:
                    self.modelfile += '       return self.model.predict(n_periods=int(X[""noofforecasts""][0]))'  
            else:               
                if model == 'KaplanMeierFitter':
                    self.modelfile += '\n'
                    self.modelfile += '        res = self.model.predict(X[\''+feature[0]+'\'].astype(int))'
                    self.modelfile += '\n'
                    self.modelfile += '        if isinstance(res, pd.DataFrame):\n'
                    self.modelfile += '             return res.values.reshape(1,-1)\n'
                    self.modelfile += '        else:\n'
                    self.modelfile += '             return np.array([res])\n'
                elif model == 'COX':
                    self.modelfile += '        res = []\n'
                    self.modelfile += '        for idx,row in X.iterrows():\n'
                    self.modelfile += '             res.append(self.model.predict_survival_function(X, times=row[self.model.duration_col])[idx].values[0])\n'
                    self.modelfile += '        return pd.DataFrame(res)'
                    #self.modelfile += '        return self.model.predict_survival_function(X, times=X[self.model.duration_col])'
                    self.modelfile += '\n'                  
                elif(learner_type == 'DL' and model_type in ['Classification','Regression']):
                    self.modelfile += '       X = X.astype(np.float32)'
                    self.modelfile += '\n'                             
                    self.modelfile += '       return self.model.predict(X).reshape(1, -1)'
                    self.modelfile += '\n'
                elif (model_type == 'Clustering' and model == 'DBSCAN'):
                    self.modelfile += '       return self.model.fit_predict(X)'
                elif(model_type.lower() == 'anomaly_detection' and model.lower() == 'dbscan'):                        
                    self.modelfile += ""       pred=self.model.fit_predict(X)\n""
                    self.modelfile += ""       X.loc[:,'cluster'] = self.model.labels_ \n""          
                    self.modelfile += '       return X\n'
                elif model_type.lower() == 'anomaly_detection':
                    self.modelfile += '       X = X.astype(np.float32)\n'
                    self.modelfile += '       return self.model.predict(X)'                    
                else:
                    if model_type != 'Clustering':
                        self.modelfile += '       X = X.astype(np.float32)'
                        self.modelfile += '\n'                      
                #self.modelfile += '       return self.model.predict(X).reshape(1, -1)'
                    self.modelfile += \
""""""
       if isinstance(self.model, LatentDirichletAllocation):
           output = np.matrix(self.model.transform(X)).argmax(axis=1)
           return output.flatten().tolist()
       return self.model.predict(X).reshape(1, -1)
""""""
                
"
base.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
from pathlib import Path
from AION.prediction_package.imports import importModule
from AION.prediction_package.aion_prediction import aionPrediction
from AION.prediction_package.utility import TAB_CHAR
from AION.prediction_package import utility
from AION.prediction_package import common

def file_header( usecase=''):
    return ''

class deployer():
    """"""
        base deployer class which can be used to generate the deployemnt code.
        This class will be inherited by deployer specific to problem type.
    """"""

    def __init__(self, params={}):
        if not params['paths']['deploy']:
            raise ValueError('Deploy path is not provided')
        self.deploy_path = Path(params['paths']['deploy'])
        if not self.deploy_path.exists():
            self.deploy_path.mkdir(parents=True, exist_ok=True)
        self.name = params.get('problem_type', '')
        self.params = params
        self.importer = importModule()
        self.feature_reducer = False
        
    def profiler_code(self):
        return common.profiler_code(self.params['profiler'])
        
    def feature_engg_code(self):
        if self.params['selector'].get('reducer',False):
            code, modules = common.feature_reducer_code(self.params['selector'])
        else:
            code, modules = common.feature_selector_code(self.params['selector'])
        utility.import_modules(self.importer, modules)
        return code
        
    def training_code(self):
        return common.training_code(self.params['training'])
        
    def formatter_code(self):
        return ''

    def run(self):
        """"""
            run function will be called to start the deployment process.
            This function will create following files
            inputprofiler.py for preprocessing the input
            aion_predict.py for prediction
            model service file 
        """"""
        code = self.predict_code( )
        with open(self.deploy_path/'aion_predict.py', 'w') as f:
            f.write(code)
        profiler_code = self.profiler_code()
        with open(self.deploy_path/'script'/'inputprofiler.py', 'w') as f:
            f.write(profiler_code)
        self.create_model_service( )
        self.create_publish_service()
        self.create_idrift()
        self.create_odrift()
        common.create_feature_list(self.params, self.params['features']['target_feat'], self.deploy_path)
        common.requirement_file(self.deploy_path,self.params['training']['algo'],self.params['features']['text_feat'])
        common.create_readme_file(self.deploy_path, self.params['training']['model_file'], self.params['features']['input_feat'])
        self.create_utils_folder()
        
    def predict_code(self):
        imported_modules = [
                {'module': 'json', 'mod_from': None, 'mod_as': None},
                {'module': 'joblib', 'mod_from': None, 'mod_as': None},
                {'module': 'numpy', 'mod_from': None, 'mod_as': 'np'},
                {'module': 'pandas', 'mod_from': None, 'mod_as': 'pd'},
                {'module': 'Path', 'mod_from': 'pathlib', 'mod_as': None}
            ]

        utility.import_modules(self.importer, imported_modules)
        self.importer.addLocalModule(module='inputprofiler',mod_from='script.inputprofiler')
        code_text = """"
        code_text += self.feature_engg_code()
        code_text += self.training_code()
        code_text += self.formatter_code()
        code_text += common.main_code()

        code = file_header()
        code += self.importer.getCode()
        return code + code_text
        
    def create_model_service(self):
        service_name = '{}{}{}'.format(self.params['usecase_name'], '_' if self.params['usecase_ver'] != '' else '', self.params['usecase_ver'])
        obj = aionPrediction()
        obj.create_model_service(self.deploy_path, service_name, self.name)

    def create_publish_service(self):
        obj = aionPrediction()
        obj.create_publish_service(self.params['paths']['usecase'], self.params['usecase_name'],self.params['usecase_ver'], self.name)

    def create_idrift(self):
        pass
        
    def create_odrift(self):
        pass

    def create_utils_folder(self):
        common.create_util_folder(self.deploy_path)

"
forecasting.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
from pathlib import Path
from AION.prediction_package.imports import importModule
from AION.prediction_package.aion_prediction import aionPrediction
from AION.prediction_package.utility import TAB_CHAR
from AION.prediction_package import utility
from AION.prediction_package.base import deployer
from AION.prediction_package import common
import numpy as np




def get_deployer( params):

    if params['training']['algo'] == 'ARIMA':
        return arima(params)
    elif params['training']['algo'] == 'LSTM':
        return lstm(params)
    elif params['training']['algo'] == 'ENCODER_DECODER_LSTM_MVI_UVO':
        return lstmencdec_mviuvo(params)
    elif params['training']['algo'] == 'MLP':
        return mlp(params)
    elif params['training']['algo'] == 'VAR':
        return var(params)
    elif params['training']['algo'] == 'FBPROPHET':
        return fbprophet(params)
    else:
        raise ValueError(f""Algorithm {params['training']['algo']} for time series forecasting is not supported"")

def _profiler_code(params, importer):
    """"""
        This will create the profiler file based on the config file.
        separated file is created as profiler is required for input drift also.
    """"""
    imported_modules = [
            {'module': 'json', 'mod_from': None, 'mod_as': None},
            {'module': 'scipy', 'mod_from': None, 'mod_as': None},
            {'module': 'joblib', 'mod_from': None, 'mod_as': None},
            {'module': 'numpy', 'mod_from': None, 'mod_as': 'np'},
            {'module': 'pandas', 'mod_from': None, 'mod_as': 'pd'},
            {'module': 'Path', 'mod_from': 'pathlib', 'mod_as': None}
        ]
    utility.import_modules(importer, imported_modules)
    if 'code' in params['profiler'].get('preprocess',{}).keys():
        code = params['profiler']['preprocess']['code']
    else:
        code = """"
    code += """"""    

class inputprofiler():
    """"""
    init_code = """"""
    def __init__(self):
    """"""
    init_code += """"""
        # preprocessing
        preprocess_path = Path(__file__).parent.parent/'model'/'preprocess_pipe.pkl'
        if not preprocess_path.exists():
            raise ValueError(f'Preprocess model file not found: {preprocess_path}')
        self.profiler = joblib.load(preprocess_path)
    """"""
    run_code = """"""
    def run(self,df):
        df = df.replace(r'^\s*$', np.NaN, regex=True)
    """"""
    if 'code' in params['profiler'].get('preprocess',{}).keys():
        run_code += """"""
        df = preprocess( df)""""""
    if params['profiler'].get('unpreprocessed_columns'):
        run_code += f""""""
        unpreprocessed_data = df['{params['profiler']['unpreprocessed_columns'][0]}']
        df.drop(['{params['profiler']['unpreprocessed_columns'][0]}'], axis=1,inplace=True)
            """"""
    if params['profiler'].get('force_numeric_conv'):
        run_code += f""""""
        df[{params['profiler']['force_numeric_conv']}] = df[{params['profiler']['force_numeric_conv']}].apply(pd.to_numeric,errors='coerce')""""""
    run_code += _profiler_main_code(params)
    if params['profiler'].get('unpreprocessed_columns'):
        run_code += f""""""
        df['{params['profiler'].get('unpreprocessed_columns')[0]}'] = unpreprocessed_data
""""""
    run_code += """"""        return df
""""""
    utility.import_modules(importer, imported_modules)
    import_code = importer.getCode()
    return import_code + code + init_code + run_code

def _profiler_main_code(params):
    code = f""""""
        df = self.profiler.transform(df)
        columns = {params['profiler']['output_features']}
        if isinstance(df, scipy.sparse.spmatrix):
            df = pd.DataFrame(df.toarray(), columns=columns)
        else:
            df = pd.DataFrame(df, columns=columns)
    """"""
    return code

class arima( deployer):
    
    def __init__(self, params={}):
        super().__init__( params)
        self.name = 'timeseriesforecasting'
            
    def profiler_code( self):
        imported_modules = [
                {'module': 'numpy', 'mod_from': None, 'mod_as': 'np'},
                {'module': 'pandas', 'mod_from': None, 'mod_as': 'pd'},
            ]
        importer = importModule()
        utility.import_modules(importer, imported_modules)
        code = """"""    


class inputprofiler():

    def __init__(self):
        pass
        
    def run( self,df):
        df = df.replace(r'^\s*$', np.NaN, regex=True)
        return df[['noofforecasts']]
""""""
        return importer.getCode() + code

    def feature_engg_code(self):
        self.importer.addModule(module='pandas',mod_as='pd')
        return f""""""
class selector():

    def __init__(self):
        pass
        
    def run(self, df):
        return df
""""""
    def training_code( self):
        self.importer.addModule(module='pandas',mod_as='pd')
        self.importer.addModule(module='Path',mod_from='pathlib')
        self.importer.addModule(module='numpy',mod_as='np')
        self.importer.addModule(module='joblib')
        return f""""""
class trainer():

   def __init__(self):
        model_file = (Path(__file__).parent/""model"")/""{self.params['training']['model_file']}""
        if not model_file.exists():
            raise ValueError(f'Trained model file not found: {{model_file}}')
        self.model = joblib.load(model_file)
       
   def run(self,df):
       return self.model.predict(n_periods=int(df[""noofforecasts""][0]))
    """"""

    def formatter_code(self):
        self.importer.addModule('json')
        self.importer.addModule('pandas', mod_as='pd')
        return """"""

class output_format():

    def __init__( self):
        pass
        
    def run(self,raw_df,df):
        df = df.round(2)
        df = json.dumps(df.tolist())
        outputjson = {""status"":""SUCCESS"",""data"":eval(df)}
        return(json.dumps(outputjson))
""""""

class lstm( deployer):
    
    def __init__(self, params={}):
        super().__init__( params)
        self.name = 'timeseriesforecasting'
            
    def profiler_code(self):
        importer = importModule()
        return _profiler_code( self.params, importer)

    def training_code( self):
        self.importer.addModule(module='pandas',mod_as='pd')
        self.importer.addModule(module='Path',mod_from='pathlib')
        code = f""""""
class trainer():        
""""""
        init_code, run_code = self._get_train_code()
        return code + init_code + run_code

    def _get_train_code(self):    
        self.importer.addModule(module='load_model',mod_from='tensorflow.keras.models')
        init_code = f""""""
    def __init__( self):
        model_file = (Path(__file__).parent/""model"")/""{self.params['training']['model_file']}""
        if not model_file.exists():
            raise ValueError(f'Trained model file not found: {{model_file}}')
        self.model = load_model(model_file)
        """"""
            
        run_code = f""""""
    def run(self, df):
        lag_order={self.params['training']['lag_order']}
        xt = df.values
        scaler_file = (Path(__file__).parent/""model"")/""{self.params['training']['scaler_file']}""
        if not scaler_file.exists():
            raise ValueError(f'Scaling file not found: {{scaler_file}}')
        loaded_scaler_model = joblib.load(scaler_file)
        xt = xt.astype('float32')
        xt = loaded_scaler_model.transform(xt)
        noOfPredictions = 10
        pred_data  = xt
        y_future = []
        for i in range(noOfPredictions):
""""""
        if len(self.params['selector']['output_features']) == 1:
            run_code += f""""""
            pred_data = pred_data[-lag_order:]
            pred_data = pred_data.reshape((1,lag_order,1))
            pred = self.model.predict(pred_data)
            predoutput =  loaded_scaler_model.inverse_transform(pred) 
            y_future.append(predoutput.flatten()[-1])
            pred_data = np.append(pred_data,pred)
        pred = pd.DataFrame(index=range(0,len(y_future)),columns={self.params['selector']['output_features']})
        for i in range(0, len(y_future)):
            pred.iloc[i] = y_future[i]
        return pred
""""""
        else:
            run_code += f""""""
            pdata = pred_data[-lag_order:]
            pdata = pdata.reshape((1,lag_order,{len(self.params['selector']['output_features'])}))
            pred = self.model.predict(pdata)
            predoutput =  loaded_scaler_model.inverse_transform(pred)
            y_future.append(predoutput)
            pred_data = np.append(pred_data,pred,axis=0)
        pred = pd.DataFrame(index=range(0,len(y_future)),columns={self.params['selector']['output_features']})
        for i in range(0, len(y_future)):
            pred.iloc[i] = y_future[i]
        return pred
""""""
        return init_code, run_code

    def formatter_code(self):
        self.importer.addModule('json')
        self.importer.addModule('pandas', mod_as='pd')
        return """"""

class output_format():

    def __init__( self):
        pass
        
    def run(self,raw_df,df):
        df = df.round(2)
        df = df.to_json(orient='records')
        outputjson = {""status"":""SUCCESS"",""data"":json.loads(df)}
        return(json.dumps(outputjson))
""""""

class lstmencdec_mviuvo( deployer):
    
    def __init__(self, params={}):
        super().__init__( params)
        self.name = 'timeseriesforecasting'
        outputFeatrues = params['profiler']['output_features']
        self.targetColIndx = outputFeatrues.index(params['features']['target_feat'])
        selectedColDict = params['selector']['output_features']
        self.selectedCols = list()
        for col in selectedColDict:
            self.selectedCols.append(col)
            
    def profiler_code(self):
        importer = importModule()
        return _profiler_code( self.params, importer)

    def training_code( self):
        self.importer.addModule(module='pandas',mod_as='pd')
        self.importer.addModule(module='Path',mod_from='pathlib')
        code = f""""""
class trainer():        
""""""
        init_code, run_code = self._get_train_code()
        return code + init_code + run_code

    def _get_train_code(self):    
        self.importer.addModule(module='load_model',mod_from='tensorflow.keras.models')
        init_code = f""""""
    def __init__( self):
        model_file = (Path(__file__).parent/""model"")/""{self.params['training']['model_file']}""
        if not model_file.exists():
            raise ValueError(f'Trained model file not found: {{model_file}}')
        self.model = load_model(model_file)
        """"""
            
        run_code = f""""""
    def run(self, df):
        targetColIndx = {self.targetColIndx}
        lag_order={self.params['training']['lag_order']}
        xt = df.values
        scaler_file = (Path(__file__).parent/""model"")/""{self.params['training']['scaler_file']}""
        if not scaler_file.exists():
            raise ValueError(f'Scaling file not found: {{scaler_file}}')
        loaded_scaler_model = joblib.load(scaler_file)
        xt = xt.astype('float32')
        xt = loaded_scaler_model.transform(xt)
        noOfPredictions = 10
        pred_data  = xt
        y_future = []
        pdata = pred_data[-lag_order:]
        pdata = pdata.reshape((1,lag_order,{len(self.params['selector']['output_features'])}))
        pred = self.model.predict(pdata)
        pred_1d = pred.ravel()
        pdata_2d = pdata.ravel().reshape(len(pdata) * lag_order, {len(self.params['selector']['output_features'])})
        pdata_2d[:,targetColIndx] = pred_1d
        pred_2d_inv =   loaded_scaler_model.inverse_transform(pdata_2d) 
        predout = pred_2d_inv[:, targetColIndx]  
        predout = predout.reshape(len(pred_1d),1) 
        pred = pd.DataFrame(index=range(0,len(predout)),columns=['{self.params['features']['target_feat']}'])
        for i in range(0, len(predout)):
            pred.iloc[i] = predout[i]
        return pred
""""""
        return init_code, run_code
    
    def feature_engg_code(self):
        self.importer.addModule(module='pandas',mod_as='pd')
        
        return f""""""
class selector():

    def __init__(self):
        pass
        
    def run(self, df):
        return df[{self.selectedCols}]
""""""

    def formatter_code(self):
        self.importer.addModule('json')
        self.importer.addModule('pandas', mod_as='pd')
        return """"""

class output_format():

    def __init__( self):
        pass
        
    def run(self,raw_df,df):
        df = df.round(2)
        df = df.to_json(orient='records')
        outputjson = {""status"":""SUCCESS"",""data"":json.loads(df)}
        return(json.dumps(outputjson))
""""""

class mlp( lstm):
    
    def __init__(self, params={}):
        super().__init__( params)
        self.name = 'timeseriesforecasting'

    def training_code( self):
        self.importer.addModule(module='pandas',mod_as='pd')
        self.importer.addModule(module='Path',mod_from='pathlib')
        code = f""""""
class trainer():        
""""""
        init_code, run_code = self._get_train_code()
        return code + init_code + run_code

    def _get_train_code(self):    
        self.importer.addModule(module='load_model',mod_from='tensorflow.keras.models')
        init_code = f""""""
    def __init__( self):
        model_file = (Path(__file__).parent/""model"")/""{self.params['training']['model_file']}""
        if not model_file.exists():
            raise ValueError(f'Trained model file not found: {{model_file}}')
        self.model = load_model(model_file)""""""
            
        run_code = f""""""
    def run(self, df):
        lag_order={self.params['training']['lag_order']}
        xt = df.values
        scaler_file = (Path(__file__).parent/""model"")/""{self.params['training']['scaler_file']}""
        if not scaler_file.exists():
            raise ValueError(f'Scaling file not found: {{scaler_file}}')
        loaded_scaler_model = joblib.load(scaler_file)
        xt = xt.astype('float32')
        xt = loaded_scaler_model.transform(xt)
        noOfPredictions = 10
        pred_data  = xt
        y_future = []
        for i in range(noOfPredictions):
""""""
        if len(self.params['selector']['output_features']) == 1:
            run_code += f""""""
            pred_data = pred_data[-lag_order:]
            pred_data = pred_data.reshape((1,lag_order))
            pred = self.model.predict(pred_data)
            predoutput =  loaded_scaler_model.inverse_transform(pred) 
            y_future.append(predoutput.flatten()[-1])
            pred_data = np.append(pred_data,pred)
        pred = pd.DataFrame(index=range(0,len(y_future)),columns={self.params['selector']['output_features']})
        for i in range(0, len(y_future)):
            pred.iloc[i] = y_future[i]
        return pred
""""""
        else:
            run_code += f""""""
            pdata = pred_data[-lag_order:]
            pdata = pdata.reshape((1,lag_order,{len(self.params['selector']['output_features'])}))
            pred = self.model.predict(pdata)
            predoutput =  loaded_scaler_model.inverse_transform(pred)
            y_future.append(predoutput)
            pred_data = np.append(pred_data,pred,axis=0)
        pred = pd.DataFrame(index=range(0,len(y_future)),columns={self.params['selector']['output_features']})
        for i in range(0, len(y_future)):
            pred.iloc[i] = y_future[i]
        return pred
""""""
        return init_code, run_code

class var( deployer):
    
    def __init__(self, params={}):
        super().__init__( params)
        self.name = 'timeseriesforecasting'

    def profiler_code(self):
        importer = importModule()
        code = _profiler_code( self.params, importer)
        return code

    def feature_engg_code(self):
        self.importer.addModule(module='pandas',mod_as='pd')
        return f""""""
class selector():

    def __init__(self):
        pass
        
    def run(self, df):
        return df[{self.params['selector']['output_features']}]
""""""
    def training_code( self):
        self.importer.addModule(module='joblib')
        return f""""""
class trainer():        

    def __init__( self):
        model_file = (Path(__file__).parent/""model"")/""{self.params['training']['model_file']}""
        if not model_file.exists():
            raise ValueError(f'Trained model file not found: {{model_file}}')
        self.model = joblib.load(model_file)
        
    def run(self,df):
        lag_order = self.model.k_ar
        return self.model.forecast(df.values[-lag_order:],steps={self.params['training']['no_of_prediction']})
    """"""
    def formatter_code(self):
        self.importer.addModule('json')
        self.importer.addModule('pandas', mod_as='pd')
        return f""""""

class output_format():

    def __init__( self):
        pass
        
    def invertTransformation(self,predictions):
        datasetdf = pd.read_csv((Path(__file__).parent/""data"")/""trainingdata.csv"")
        dictDiffCount = {self.params['training']['dictDiffCount']}
        target_features = ""{self.params['features']['target_feat']}""
        columns = target_features.split(',')
        pred = pd.DataFrame(index=range(0,len(predictions)),columns=columns)
        for j in range(0,len(columns)):
            for i in range(0, len(predictions)):
                pred.iloc[i][j] = round(predictions[i][j],2)
        prediction = pred
        for col in columns:
            if col in dictDiffCount:
                if dictDiffCount[col]==2:
                    prediction[col] = (datasetdf[col].iloc[-1]-datasetdf[col].iloc[-2]) + prediction[col].cumsum()
                prediction[col] = datasetdf[col].iloc[-1] + prediction[col].cumsum()
        prediction = pred
        return(prediction)

    def run(self,raw_df,df):
        df = self.invertTransformation(df)
        df = df.to_json(orient='records',double_precision=2)
        outputjson = {{""status"":""SUCCESS"",""data"":json.loads(df)}}
        return(json.dumps(outputjson)) 
""""""

class fbprophet( deployer):
    
    def __init__(self, params={}):
        super().__init__( params)
        self.name = 'timeseriesforecasting'
            
    def profiler_code( self):
        imported_modules = [
                {'module': 'numpy', 'mod_from': None, 'mod_as': 'np'},
                {'module': 'pandas', 'mod_from': None, 'mod_as': 'pd'},
            ]
        importer = importModule()
        utility.import_modules(importer, imported_modules)
        code = """"""    


class inputprofiler():

    def __init__(self):
        pass
        
    def run( self,df):
        df = df.replace(r'^\s*$', np.NaN, regex=True)
        return df[['noofforecasts']]
""""""
        return importer.getCode() + code

    def feature_engg_code(self):
        self.importer.addModule(module='pandas',mod_as='pd')
        return f""""""
class selector():

    def __init__(self):
        pass
        
    def run(self, df):
        return df
""""""
    def training_code( self):
        self.importer.addModule(module='pandas',mod_as='pd')
        self.importer.addModule(module='Path',mod_from='pathlib')
        self.importer.addModule(module='joblib')
        code = f""""""
class trainer():

    def __init__(self):
        model_file = (Path(__file__).parent/""model"")/""{self.params['training']['model_file']}""
        if not model_file.exists():
            raise ValueError(f'Trained model file not found: {{model_file}}')
        self.model = joblib.load(model_file)
       
""""""
        code += f""""""
    def run(self,df):
        sessonal_freq = '{self.params['training']['sessonal_freq']}'
        ts_prophet_future = self.model.make_future_dataframe(periods=int(df[""noofforecasts""][0]),freq=sessonal_freq,include_history = False)
    """"""
        if (self.params['training']['additional_regressors']):
            code += f""""""
        additional_regressors={self.params['training']['additional_regressors']}
        ts_prophet_future[additional_regressors] = dataFrame[additional_regressors]
        ts_prophet_future.reset_index(drop=True)
        ts_prophet_future=ts_prophet_future.dropna()
    """"""
        code += """"""
        train_forecast = self.model.predict(ts_prophet_future)
        prophet_forecast_tail=train_forecast[[\'ds\', \'yhat\', \'yhat_lower\',\'yhat_upper\']].tail( int(df[""noofforecasts""][0]))
        return(prophet_forecast_tail)""""""
        return code

    def formatter_code(self):
        self.importer.addModule('json')
        self.importer.addModule('pandas', mod_as='pd')
        return """"""

class output_format():

    def __init__( self):
        pass
        
    def run(self,raw_df,df):
        df = df.to_json(orient='records')
        outputjson = {""status"":""SUCCESS"",""data"":json.loads(df)}
        return(json.dumps(outputjson))
        """"""
"
ssh_command.py,"import paramiko
from pathlib import Path
import logging
import json
import os
import sys
import pandas as pd
import time
import timeit
import re
running_state_code = 16
stopped_state_code = 80
#prompt_command = '/home/aion/AION/llm/sbin/run_inference.sh'
log_file_path = '/home/aion/data/log/fine_tuning_log.log'
def read_file_from_server(ip,username,password,pem_file,remote_file_name,localfilepath):
    host = ip
    client = paramiko.SSHClient()
    client.set_missing_host_key_policy(paramiko.AutoAddPolicy())
    if pem_file != '':
        client.connect(host, username=username, key_filename=pem_file)
    else:
        client.connect(host, username=username, password=password)
    sftp = client.open_sftp()   
    sftp.get(remote_file_name,localfilepath)
    sftp.close()
    client.close()
    
def read_log_file(ip,username,password,pem_file):
    host = ip
    client = paramiko.SSHClient()
    client.set_missing_host_key_policy(paramiko.AutoAddPolicy())
    if pem_file != '':
        client.connect(host, username=username, key_filename=pem_file)
    else:
        client.connect(host, username=username, password=password)
    #log_file_path = '/home/ubuntu/AION/data/log/fine_tuning_log.log'
    stdin, stdout, stderr = client.exec_command(f'tail -n 500 {log_file_path}')
    time.sleep(5)
    client.close()
    return stdout.read().decode()
    
def run_ssh_cmd(ip,pem_file,username,password,log,command):
    try:
        buf = ''
        host = ip
        client = paramiko.SSHClient()
        client.set_missing_host_key_policy(paramiko.AutoAddPolicy())
        startTime = timeit.default_timer()
        while True:
            try:
                if pem_file != '':
                    client.connect(host, username=username, key_filename=pem_file)
                else:
                    client.connect(host, username=username, password=password)
                break
            except Exception as e:
                print(e)
                dataLoadTime = timeit.default_timer() - startTime
                if dataLoadTime >= 600:
                    break
                time.sleep(10)
                        
        stdin, stdout, stderr =client.exec_command(command)
        
        for line in stdout:
            if log != '':
                log.info(line)
            else:
                # if buf != '':
                    # buf= buf+'\n'
                buf = buf+line    
        client.close()
        return buf
    except Exception as e:
        print(str(e))
        raise Exception(str(e))
        
def copy_files_to_server(ip, pem_file,local_data_file_path,local_config_file_path,username,password,remote_data_dir,remote_config_dir):
    try:
        host = ip
        client = paramiko.SSHClient()
        client.set_missing_host_key_policy(paramiko.AutoAddPolicy())
        startTime = timeit.default_timer()
        while True:
            try:
                if pem_file != '':
                    client.connect(host, username=username, key_filename=pem_file)
                elif password != '':
                    client.connect(host, username=username,  password=password)
                sftp = client.open_sftp()
                break
            except Exception as e:
                print(e)
                time.sleep(10)
                dataLoadTime = timeit.default_timer() - startTime
                if dataLoadTime >= 600:
                    break
        try:
            sftp.stat(remote_data_dir)
            print(f""Path: '{remote_data_dir}' already exist"")
        except FileNotFoundError:
            sftp.mkdir(remote_data_dir)
        try:
            sftp.stat(remote_config_dir)
            print(f""Path: '{remote_config_dir}' already exist"")
        except FileNotFoundError:
            sftp.mkdir(remote_config_dir)
        Train_Data_InRemoteArtifacts = sftp.listdir(remote_data_dir)
        for traindata_files in Train_Data_InRemoteArtifacts:
            
            if not traindata_files.endswith('.ipynb_checkpoints'):
                sftp.remove(remote_data_dir +'/'+ traindata_files)
        if os.path.isdir(local_data_file_path):
            list_pdf_json_files = os.listdir(local_data_file_path)
            for file_pdf_json in list_pdf_json_files:
                sftp.put(local_data_file_path+'/'+file_pdf_json, remote_data_dir+'/'+ file_pdf_json)
                print(file_pdf_json + "" data copied successfully"")
        else:
            filename = os.path.basename(local_data_file_path)
            directoryname= os.path.dirname(local_data_file_path)
            sftp.put(directoryname+'/'+filename, remote_data_dir+'/'+ filename)
            print(filename + "" data copied successfully"")
        
        if local_config_file_path != '':        
            config_InRemoteArtifacts = sftp.listdir(remote_config_dir)
            for config_file in config_InRemoteArtifacts:
                print(config_file)
                if not config_file.endswith('.ipynb_checkpoints'):
                    sftp.remove(remote_config_dir +'/'+ config_file)

        
            if os.path.isdir(local_config_file_path):        
                list_pdf_json_files = os.listdir(local_config_file_path)
                for file_pdf_json in list_pdf_json_files:
                    sftp.put(local_config_file_path+'/'+file_pdf_json, remote_config_dir+'/'+ file_pdf_json)
                    print(file_pdf_json + "" config copied successfully"")
            else:
                # updated_config_file_path = create_config(local_config_file_path)
                filename = os.path.basename(local_config_file_path)
                directoryname= os.path.dirname(local_config_file_path)
                sftp.put(directoryname+'/'+filename, remote_config_dir+'/'+ 'config.json')
                print(filename + "" config copied successfully"")    


            remote_files = sftp.listdir(remote_config_dir)
            print(""List of uploaded files"",remote_files)
        sftp.close()
        client.close()
    except Exception as e:
        print(e)
        "
bench_marking.py,"import json
import ast
import sys
import time
from pathlib import Path
import pandas as pd
from AION.llm import llm_utils

bench_mark_file = {'code':'code_eval.sh', 'doc': 'doc_eval.sh'}
DB_TABLE = 'llm_benchmarking'

def bench_mark(hypervisor,instanceid,model,usecaseid,eval='code'):
    
    output = {}
    started = False
    if eval not in bench_mark_file.keys():
        raise ValueError(f""Evaluation for '{eval}' is not supported.\nSupported types are {list(bench_mark_file.keys())}"")
    db = benchmark_db( DB_TABLE, usecaseid)
    db.update_state('running')    
    try:
        server = llm_utils.hypervisor( hypervisor,instanceid)
        if not server.is_already_running():
            started, msg = server.start()
            if not started:
                raise ValueError( msg)
        ssh = server.ssh_details()
        pem_file = str(Path(__file__).parent/ssh['keyFilePath'])
        sh_file = llm_utils.remote_code_dir(as_str=True) + '/' + bench_mark_file[eval]
        cmd = sh_file + ' ' + usecaseid + ' '+ str(model)
        print(cmd)
        from llm.ssh_command import run_ssh_cmd
        buf = run_ssh_cmd(server.ip, pem_file, ssh['userName'], '', '', cmd)
        if isinstance( buf, str):
            print( buf)
        else:
            print( buf.decode('utf-8'))
        if buf:
            if 'eval_output:' in buf:
                output = buf.split('eval_output:')[-1].rstrip()
                output = ast.literal_eval( output)
                record = {}
                record['state'] = 'Success'
                record['eval_type'] = eval
                record['result_type'] = 'value' if eval =='code' else 'dict'
                record['result'] =  output
                db.put_record( record)
            else:
                record = {}
                record['state'] = 'Error'
                record['eval_type'] = eval
                db.put_record( record)
        return output
    except Exception as e:
        print(e)
        record = {}
        record['state'] = 'Error'
        record['eval_type'] = eval
        record['result_type'] = 'value' if eval =='code' else 'dict'
        record['result'] = [{'error': str(e)}]
        db.put_record( record)
        output = {'status':'Error','msg':str(e)}
        return output

class benchmark_db():
    
    def __init__(self, table_name, usecaseid):
        from appbe.sqliteUtility import sqlite_db
        from appbe.dataPath import DATA_DIR
        file_path = str(Path(DATA_DIR)/'sqlite')
        self.sqlite_obj = sqlite_db(file_path,'config.db')
        self.table_name = table_name
        self.usecaseid = usecaseid
        self.columns = ['usecaseid','state','eval_type','result_type','result']
        self.sqlite_obj.create_table(self.table_name, self.columns, ['TEXT' for x in self.columns])
        
    def put_record(self, record={}):
        db_data = self.sqlite_obj.get_data(self.table_name,'usecaseid',self.usecaseid)
        if (len(db_data) > 0):
            self.sqlite_obj.update_dict_data(record,f'""usecaseid""=""{self.usecaseid}""',self.table_name)
        else:
            data = {x:[str(record[x])] if x in record.keys() else [''] for x in self.columns} 
            data['usecaseid'] = self.usecaseid
            self.sqlite_obj.write_data(pd.DataFrame.from_dict(data),self.table_name)

    def update_state(self, state, error=None):
        data = {x:'' for x in self.columns} 
        data['state'] = state  
        data['usecaseid'] = self.usecaseid
        if error:
            data['result'] = error
        self.put_record( data)
        
    def read_data(self):
        return self.sqlite_obj.read_data(self.table_name)

if __name__ == '__main__':

    run_code_benchmarking = False
    if run_code_benchmarking:
        #for code
        bench_mark('aws','i-0c7bfeddd00658f45','CodeLLaMA-2-7B','AI0025_1',eval='code')
    else:
        # for document
        bench_mark('aws','i-0c7bfeddd00658f45','LLaMA-2-7B','AI0041_1',eval='doc')
    from appbe.sqliteUtility import sqlite_db
    from appbe.dataPath import DATA_DIR
    file_path = str(Path(DATA_DIR)/'sqlite')
    sqlite_obj = sqlite_db(file_path,'config.db')
    data = sqlite_obj.read_data('llm_benchmarking')
    print(data)
"
llm_utils.py,"import json
import os
import time
from pathlib import Path

BASE_DIR = '/home/aion'
DATA_DIR = '/home/aion/data'
CONFIG_DIR = '/home/aion/data/config'
PROMPT_DATA_DIR = '/home/aion/data/prompt_data'
CODE_DIR = '/home/aion/llm/sbin'

def remote_base_dir(as_str=False):
    if as_str:
        return BASE_DIR
    return Path( BASE_DIR)

def remote_data_dir(as_str=False):
    if as_str:
        return DATA_DIR
    return Path( DATA_DIR)
    
def remote_config_dir(as_str=False):
    if as_str:
        return CONFIG_DIR
    return Path( CONFIG_DIR)
    
def remote_code_dir(as_str=False):
    if as_str:
        return CODE_DIR
    return Path( CODE_DIR)
    
def remote_prompt_data_dir(as_str=False):
    if as_str:
        return DATA_DIR
    return Path( DATA_DIR)
    
def get_ami_details(config,selectedAMI):
    y = {}
    for x in config:
        if x['id'] == selectedAMI:
            return x
    return y

def get_ip(cloudconfig,instanceid,hypervisor,region,image):
    from AION.appbe.compute import readComputeConfig
    cloud_infra = readComputeConfig()
    if hypervisor == 'AWS':
        aws_access_key_id = cloud_infra['awsCredentials']['accessKey']
        aws_secret_key = cloud_infra['awsCredentials']['secretAccessKey']
        if image != ''  and image != 'NA':
            amiDetails = getAMIDetails(cloud_infra['AWS_EC2']['amis'], image)
        else:
            amiDetails = getAMIDetails(cloud_infra['AWS_EC2']['instances'], instanceid)
        if region == '' or region == 'NA':
            region = amiDetails['regionName']
        from llm.aws_instance_api import get_instance_ip
        return get_instance_ip(aws_access_key_id, aws_secret_key, instanceid,region)
    elif hypervisor == 'GCP':
        credentialsJson = cloud_infra['gcpCredentials']['gcpCredentials']
        amiDetails = getAMIDetails(cloud_infra['GCP']['instances'], instanceid)
        zone = amiDetails['regionName'] 
        projectID = cloud_infra['gcpCredentials']['projectID']
        from llm.gcp_compute_api import check_instance
        status,ip = check_instance(credentialsJson,projectID, zone, instanceid) 
        return ip
    else:
        raise ValueError(f""Given hypervisor '{hypervisor}' is not supported"")

def hypervisor( hypervisor,instanceid='', image=''):
    if not hypervisor:
        raise ValueError('No hypervisor provided')
    if hypervisor.lower() == 'aws':
        return aws_server(instanceid, image)
    elif hypervisor.lower() == 'gcp':
        return gcp_server(instanceid, image)
    else:
        raise ValueError(f""Hyperviser '{hypervisor}' is not supported"")

class gcp_server():
    def __init__( self, instanceid='', image=''):
        self.hypervisor_name = 'gcp'
        from AION.appbe.compute import readComputeConfig
        self.cloud_infra = readComputeConfig()
        if image and image.lower() != 'na':
            self.ami_details = get_ami_details(self.cloud_infra['GCP']['machineImage'], image)
            self.instanceid = ''
        elif instanceid and instanceid.lower() != 'na':
            self.ami_details = get_ami_details( self.cloud_infra['GCP']['instances'], instanceid)
            self.instanceid = instanceid
        else:
            raise ValueError(""Either provide 'image name' or 'instance id'"")
        self.credentialsJson = self.cloud_infra['gcpCredentials']['gcpCredentials']
        self.projectID = self.cloud_infra['gcpCredentials']['projectID']
        self.zone = self.ami_details['regionName']
        self.stopped = False
        self.ip = ''
        self.created = False

    def is_machine_running(self):
        from llm.gcp_compute_api import check_instance
        status,self.ip = check_instance(self.credentialsJson,self.projectID,self.zone,self.instanceid) 
        return 'running' == status.lower()
        
    def start(self):
        from AION.llm.gcp_compute_api import is_running
        from AION.llm.gcp_compute_api import check_instance
        from AION.llm.gcp_compute_api import start_instance
        status = is_running(self.credentialsJson, self.projectID, self.zone, self.instanceid).lower()
        if 'running' == status:
            stratus, self.ip = check_instance(self.credentialsJson, self.projectID, self.zone, self.instanceid)
            self.already_running = True
            return True
        else:
            status, self.ip = start_instance(self.credentialsJson, self.projectID, self.zone, self.instanceid)
            return status == 'Success'

    def create(self,key_name = None):
        from AION.llm.gcp_compute_api import create_instance
        machineImageName = self.ami_details['id']
        machineImageProjectID = self.ami_details['machineImageProjectID']
        self.ip,msg = create_instance(self.credentialsJson,self.projectID,self.zone,key_name,machineImageName,machineImageProjectID)
        if self.ip != '':
            self.created = True
        return self.ip,msg

    def stop(self):
        if self.already_running or self.stopped:
            return True
        from AION.llm.gcp_compute_api import stop_server_instance
        status = stop_server_instance(self.credentialsJson,self.projectID, self.zone, self.instanceid)
        if status == 'Process Completed':
            self.stopped = True
            return True
        return False
        
    def showndown(self):
        if self.created:
            self.terminate()
        else:
            if self.already_running or self.stopped:
                return True
            from AION.llm.gcp_compute_api import stop_server_instance
            status = stop_server_instance(self.credentialsJson,self.projectID, self.zone, self.instanceid)
            if status == 'Process Completed':
                self.stopped = True
                return True
            return False
            
    def terminate(self):
        from AION.llm.gcp_compute_api import terminate_instance
        msg, status = terminate_instance(self.projectID, self.zone, self.instanceid)
        print(msg)
        return status == 'success'

    def ssh_details(self):
        return self.ami_details['ssh']
        
class aws_server():

    def __init__(self, instanceid='', image='', boot_up_time=0):
        self.hypervisor_name = 'aws'
        from AION.appbe.compute import readComputeConfig
        self.cloud_infra = readComputeConfig()
        if image and image.lower() != 'na':
            self.ami_details = get_ami_details(self.cloud_infra['AWS_EC2']['amis'], image)
            self.instanceid = ''
            self.machine_type = 'ami'
        elif instanceid and instanceid.lower() != 'na':
            self.ami_details = get_ami_details( self.cloud_infra['AWS_EC2']['instances'], instanceid)
            self.instanceid = instanceid
            self.machine_type = 'instance'
        else:
            raise ValueError(""Either provide 'image name' or 'instance id'"")
        self.access_key = self.cloud_infra['awsCredentials']['accessKey']
        self.secret_key = self.cloud_infra['awsCredentials']['secretAccessKey']
        self.securitygroupid = self.cloud_infra['awsCredentials']['securitygroupid']
        self.region = self.ami_details['regionName']
        self.already_running = False
        self.boot_up_time = boot_up_time
        self.stopped = False
        self.created = False

    def is_already_running(self):
        return self.already_running
    def is_machine_running(self):
        from AION.llm.aws_instance_api import is_running
        status = is_running(self.instanceid, self.region, self.access_key, self.secret_key).lower()
        return 'running' == status.lower()
    def start(self):
        from AION.llm.aws_instance_api import is_running
        from AION.llm.aws_instance_api import get_instance_ip
        from AION.llm.aws_instance_api import start_instance
        status = is_running(self.instanceid, self.region, self.access_key, self.secret_key).lower()
        if 'running' == status:
            self.ip = get_instance_ip(self.access_key, self.secret_key, self.instanceid, self.region)
            self.already_running = True
            return True, 'already running'
        else:
            status, msg, self.ip = start_instance(self.access_key, self.secret_key, self.instanceid, self.region)
            return status == 'Success', msg


    def create(self, key_name=None):
        from AION.llm.aws_instance_api import create_instance
        image_id = self.ami_details['id']
        security_group_ids = self.ami_details['instanceSetting']['securityGroupIds']
        if not key_name:
            key_name = self.ami_details['instanceSetting']['keyName']
        instance_type = self.ami_details['instanceSetting']['instanceType']
        self.instanceid,msg = create_instance(image_id, instance_type, self.securitygroupid, self.region, key_name,
                                          self.access_key, self.secret_key)
        if self.instanceid != '':
            self.created = True
        return self.instanceid,msg
    def showndown(self):
        from AION.llm.aws_instance_api import stop_server_instance
        if self.created:
            return self.terminate()
        else:
            if self.already_running or self.stopped:
                return True
            status = stop_server_instance(self.access_key, self.secret_key, self.instanceid, self.region)
            if status == 'Process Completed':
                self.stopped = True
                return True
        return False
        
    def stop(self):
        from AION.llm.aws_instance_api import stop_server_instance
        if self.already_running or self.stopped:
            return True
        status = stop_server_instance(self.access_key, self.secret_key, self.instanceid, self.region)
        if status == 'Process Completed':
            self.stopped = True
            return True
        return False

    def terminate(self):
        from AION.llm.aws_instance_api import terminate_instance
        msg, status = terminate_instance(self.instanceid, self.region, self.access_key, self.secret_key)
        print(msg)
        return status == 'success'

    def ssh_details(self):
        return self.ami_details['ssh']
        "
llm_cache.py,"
class CachePrompt:
    tableName = 'cachePrompts'
    def __init__(self, conn):
        self.conn = conn

    def selectFromCache(self,prompt ,usecaseId ,modelType,temperature=None ,max_token=None):
        searchFromLLMFlag = False
        try:
            query = f'''SELECT * FROM {CachePrompt.tableName} WHERE usecaseId= ""{usecaseId}"" AND prompt = ""{prompt}"" AND modelType = ""{modelType}""'''
            if temperature:
                query += f''' AND temperature= ""{temperature}""'''
            if max_token:
                query += f''' AND max_token= ""{max_token}""'''
            cursor = self.conn.execute(query)
            results = [x for x in cursor.fetchone()]
            column_names = list(map(lambda x:x[0],cursor.description))
            response = results[column_names.index('response')]
            return searchFromLLMFlag,response
        except Exception as e:
            print(e)
            searchFromLLMFlag = True
            return searchFromLLMFlag,''




    def deleteRecord(self ,usecaseId,max_records=5):
        q_exitingRecords = f'''SELECT count(*) FROM {CachePrompt.tableName} WHERE usecaseId= ""{usecaseId}"" '''
        cursor = self.conn.execute(q_exitingRecords)
        numberOfRecords = cursor.fetchone()[0]
        if numberOfRecords >= max_records:
            idForDeletion = f'SELECT * FROM {CachePrompt.tableName} WHERE usecaseId= ""{usecaseId}"" ORDER BY created_at ASC LIMIT 1;'
            cursor = self.conn.execute(idForDeletion)
            id2del =[x[0] for x in cursor][0]
            sql_delete_query = f""""""DELETE from {CachePrompt.tableName} WHERE id = {id2del};""""""
            self.conn.execute(sql_delete_query)
            self.conn.commit()

    def insertRecord(self,prompt,response,usecaseId ,modelType,temperature=None ,max_token=None, max_records=5):
        self.conn.execute('''CREATE TABLE IF NOT EXISTS cachePrompts
             (ID INTEGER  PRIMARY KEY AUTOINCREMENT NOT NULL,
             prompt TEXT NOT NULL,
             context TEXT ,
             usecaseId text NOT NULL,
             modelType text NOT NULL,
             temperature float  NOT NULL,
             max_token  INT,
             response  TEXT NOT NULL,
             created_at TEXT DEFAULT CURRENT_TIMESTAMP );''')
        cur = self.conn.execute(f""select * from {CachePrompt.tableName}"").fetchall()
        print(cur)
        self.deleteRecord(usecaseId,max_records=5)
        self.conn.execute(f""INSERT INTO {CachePrompt.tableName} (prompt, usecaseId,modelType,temperature,max_token,response) \
          VALUES (?, ?, ?,?, ?, ?)"", (prompt, usecaseId,modelType,temperature, max_token, response));
        self.conn.commit()




"
aws_instance_api.py,"import json
import os
import sys
import pandas as pd
import time
from stat import S_ISDIR, S_ISREG
import paramiko
from pathlib import Path
import logging
import boto3
from botocore.exceptions import ClientError
import re
remote_data_dir = '/home/ubuntu/AION/data/storage'
remote_config_dir = '/home/ubuntu/AION/data/config'
running_state_code = 16
stopped_state_code = 80
sh_file_path = '/home/ubuntu/AION/llm/sbin/run_experiment.sh '
prompt_command = '/home/ubuntu/AION/llm/sbin/run_inference.sh'

def create_instance(image_id, instance_type, security_group_id,region,instance_name,aws_access_key_id,aws_secret_key):
    try:
        ec2 = boto3.client('ec2', aws_access_key_id=aws_access_key_id, aws_secret_access_key=aws_secret_key, region_name=region)
        response = ec2.run_instances(ImageId=image_id, InstanceType=instance_type, SecurityGroupIds=[security_group_id], MaxCount=1, MinCount=1, TagSpecifications=[{'ResourceType': 'instance', 'Tags': [{'Key': 'Name', 'Value': instance_name}]}])
        #print('Instance ID:', response['Instances'][0]['InstanceId'])
        return response['Instances'][0]['InstanceId'],''
    except Exception as e:
        print(e)
        return '',str(e)

def check_instance(aws_access_key_id, aws_secret_key, instance_id,region):
    ip = ''
    ec2 = boto3.client('ec2', region_name=region, aws_access_key_id=aws_access_key_id,
                       aws_secret_access_key=aws_secret_key)
    response = ec2.describe_instance_status(InstanceIds=[instance_id],IncludeAllInstances=True)
    if response['InstanceStatuses'][0]['InstanceState']['Name'] == 'running':
        ip = response['Reservations'][0]['Instances'][0]['PublicIpAddress']
        return 'Running',ip
    else:
        return 'NotRunning',ip
def get_instance_ip(aws_access_key_id, aws_secret_key, instance_id,region):
    try:
        ec2 = boto3.client('ec2', region_name=region, aws_access_key_id=aws_access_key_id,
                           aws_secret_access_key=aws_secret_key)
        response = ec2.describe_instances(InstanceIds=[instance_id])


        ip = response['Reservations'][0]['Instances'][0]['PublicIpAddress']
        return ip
    except Exception as e:
        print(e)
        return ''
    
def start_instance(aws_access_key_id, aws_secret_key, instance_id,region):
    

    ip = ''
    ec2 = boto3.client('ec2', region_name=region, aws_access_key_id=aws_access_key_id,
                       aws_secret_access_key=aws_secret_key)
    response = ec2.describe_instance_status(InstanceIds=[instance_id],IncludeAllInstances=True)
    if response['InstanceStatuses'][0]['InstanceState']['Name'] == 'running':
        print(""Instance is already running"")
    try:
        response = ec2.start_instances(InstanceIds=[instance_id], DryRun=False)
        #print(response)
        instance_status_code = 0
        while instance_status_code != running_state_code:
            response = ec2.describe_instances(InstanceIds=[instance_id])
            instance_status_code = response['Reservations'][0]['Instances'][0]['State']['Code']
            if instance_status_code == running_state_code:
                ip = response['Reservations'][0]['Instances'][0]['PublicIpAddress']
                break
    except Exception as e:
        print(e)
        return 'Fail',str(e),''
    return 'Success','Success',ip
def is_running(instance_id,region,aws_access_key_id,aws_secret_key):
    try:
        ec2 = boto3.client('ec2', region_name=region, aws_access_key_id=aws_access_key_id,
                           aws_secret_access_key=aws_secret_key)
        response = ec2.describe_instance_status(InstanceIds=[instance_id], IncludeAllInstances=True)
        if 'Reservations' in response and len(response['Reservations']) > 0:
            state = response['Reservations'][0]['Instances'][0]['State']['Name']
            return state
        elif 'InstanceStatuses' in response:
            return response['InstanceStatuses'][0]['InstanceState']['Name']
        else :
            return 'failed'
    except:
        return ""error""

def terminate_instance(instance_id,region,aws_access_key_id,aws_secret_key):
    try:
        ec2 = boto3.client('ec2', aws_access_key_id=aws_access_key_id, aws_secret_access_key=aws_secret_key, region_name=region)
        response = ec2.terminate_instances(InstanceIds=[instance_id])
        return response['TerminatingInstances'][0]['InstanceId'],'success'
    except Exception as e:
        print(e),'failed'

def copy_files_to_server(ip, pem_file,local_data_file_path,local_config_file_path,username):
    try:
        host = ip
        client = paramiko.SSHClient()
        client.set_missing_host_key_policy(paramiko.AutoAddPolicy())
        while True:
            try:
                client.connect(host, username=username, key_filename=pem_file)
                sftp = client.open_sftp()
                break
            except:
                time.sleep(10)
                
        try:
            sftp.stat(remote_data_dir)
            print(f""Path: '{remote_data_dir}' already exist"")
        except FileNotFoundError:
            sftp.mkdir(remote_data_dir)
        try:
            sftp.stat(remote_config_dir)
            print(f""Path: '{remote_config_dir}' already exist"")
        except FileNotFoundError:
            sftp.mkdir(remote_config_dir)
        Train_Data_InRemoteArtifacts = sftp.listdir(remote_data_dir)
        for traindata_files in Train_Data_InRemoteArtifacts:
            print(traindata_files)
            if not traindata_files.endswith('.ipynb_checkpoints'):
                sftp.remove(remote_data_dir +'/'+ traindata_files)
        if os.path.isdir(local_data_file_path):
            list_pdf_json_files = os.listdir(local_data_file_path)
            for file_pdf_json in list_pdf_json_files:
                sftp.put(local_data_file_path+'/'+file_pdf_json, remote_data_dir+'/'+ file_pdf_json)
                print(file_pdf_json + "" data copied successfully"")
        else:
            filename = os.path.basename(local_data_file_path)
            directoryname= os.path.dirname(local_data_file_path)
            sftp.put(directoryname+'/'+filename, remote_data_dir+'/'+ filename)
            print(filename + "" data copied successfully"")
            
        config_InRemoteArtifacts = sftp.listdir(remote_config_dir)
        for config_file in config_InRemoteArtifacts:
            print(config_file)
            if not config_file.endswith('.ipynb_checkpoints'):
                sftp.remove(remote_config_dir +'/'+ config_file)

        if local_config_file_path != '':
            if os.path.isdir(local_config_file_path):        
                list_pdf_json_files = os.listdir(local_config_file_path)
                for file_pdf_json in list_pdf_json_files:
                    sftp.put(local_config_file_path+'/'+file_pdf_json, remote_config_dir+'/'+ file_pdf_json)
                    print(file_pdf_json + "" config copied successfully"")
            else:
                # updated_config_file_path = create_config(local_config_file_path)
                filename = os.path.basename(local_config_file_path)
                directoryname= os.path.dirname(local_config_file_path)
                sftp.put(directoryname+'/'+filename, remote_config_dir+'/'+ 'config.json')
                print(filename + "" config copied successfully"")    


            remote_files = sftp.listdir(remote_config_dir)
            print(""List of uploaded files"",remote_files)
        sftp.close()
        client.close()
    except Exception as e:
        print(e)

def check_status(ip,username,pem_file):
    logoutput = read_log_file(ip,username,pem_file)
    if ""aion_llmfinetuning_Status"" in logoutput:
        return True
    else:
        return False

def read_log_file(ip,username,pem_file):
    host = ip
    client = paramiko.SSHClient()
    client.set_missing_host_key_policy(paramiko.AutoAddPolicy())
    client.connect(host, username=username, key_filename=pem_file)
    log_file_path = '/home/ubuntu/AION/data/log/fine_tuning_log.log'
    stdin, stdout, stderr = client.exec_command(f'tail -n 500 {log_file_path}')
    time.sleep(5)
    client.close()
    return stdout.read().decode()


def run_ssh_cmd(ip,pem_file,username,log,command):
    try:
        buf = ''
        host = ip
        client = paramiko.SSHClient()
        client.set_missing_host_key_policy(paramiko.AutoAddPolicy())
        while True:
            try:
                client.connect(host, username=username, key_filename=pem_file)
                break
            except:
                time.sleep(10)
         
        stdin, stdout, stderr =client.exec_command(command)
        
        for line in stdout:
            if log != '':
                log.info(line.strip())
            else:
                if buf != '':
                    buf= buf+'\n'
                buf = buf+line.strip()    
        print(buf)
        client.close()
        return buf
    except Exception as e:
        print(str(e))
        raise Exception(str(e))

def start_logging(deployFolder,modelName,version):
    try:
        deployLocation = Path(deployFolder)/modelName/str(version)/'log'
        deployLocation.mkdir(parents=True, exist_ok=True)
        name = 'model_training_logs.log'
        filehandler = logging.FileHandler(deployLocation/name, 'w','utf-8')
        log = logging.getLogger('log_llm')
        log.propagate = False 
        for hdlr in log.handlers[:]:  # remove the existing file handlers
            if isinstance(hdlr,logging.FileHandler):
                log.removeHandler(hdlr)
        log.addHandler(filehandler)
        log.setLevel(logging.INFO)
        return log
    except Exception as e:
        print(str(e))
        
def update_sqllite_data(usecaseid,variable,variable_value):
    try:
        print(usecaseid)
        from appbe.sqliteUtility import sqlite_db
        from appbe.dataPath import DATA_DIR
        file_path = os.path.join(DATA_DIR,'sqlite')
        sqlite_obj = sqlite_db(file_path,'config.db')
        if sqlite_obj.table_exists(""LLMTuning""):
            data = sqlite_obj.get_data('LLMTuning','usecaseid',usecaseid)
            if (len(data) > 0):
                sqlite_obj.update_data('""'+variable+'""=""'+variable_value+'""','""usecaseid""=""'+str(usecaseid)+'""','LLMTuning')
                return('Success')
        
        data = dict(usecaseid=usecaseid,ip='',instance='',hypervisor='AWS',status='NA')
        data.update({variable:variable_value})
        df = pd.DataFrame(data, index=[0])
        sqlite_obj.write_data(df,'LLMTuning')
        return('Success')    
    except Exception as e:
        print(e)
        return('Error')

def LLM_predict(cloudconfig,instanceid,promptfile):
    with open(cloudconfig, 'r') as config_f:
        cloud_infra = json.load(config_f)
    config_f.close()
    aws_access_key_id = cloud_infra['AWS_EC2']['AWSAccessKeyID']
    aws_secret_key = cloud_infra['AWS_EC2']['AWSSecretAccessKey']
    region = cloud_infra['AWS_EC2']['LLaMa7B']['RegionName']
    ip = start_instance(aws_access_key_id, aws_secret_key, instanceid,region)
    currentDirectory = os.path.dirname(os.path.abspath(__file__))
    pem_file = os.path.join(currentDirectory,cloud_infra['AWS_EC2']['LLaMa7B']['ssh']['keyFilePath'])
    username = cloud_infra['AWS_EC2']['LLaMa7B']['ssh']['userName']
    copy_files_to_server(ip,pem_file,promptfile,'',username)
    promptfile = os.path.basename(promptfile)
    command = prompt_command+' '+remote_data_dir+'/'+ promptfile
    buf = run_ssh_cmd(ip, pem_file, username,'',command)    
    return buf
    
def LLM_tuning_lemma7b(config,cloudconfig):
    with open(config, 'r') as config_f:
        config_data = json.load(config_f)
    config_f.close()
    modelid = config_data['basic']['modelName']+'_'+config_data['basic']['modelVersion']
    log = start_logging(config_data['basic']['deployLocation'],config_data['basic']['modelName'],config_data['basic']['modelVersion'])
    with open(cloudconfig, 'r') as config_f:
        cloud_infra = json.load(config_f)
    config_f.close()
    currentDirectory = os.path.dirname(os.path.abspath(__file__))
    aws_access_key_id = cloud_infra['AWS_EC2']['AWSAccessKeyID']
    aws_secret_key = cloud_infra['AWS_EC2']['AWSSecretAccessKey']
    instance_type = cloud_infra['AWS_EC2']['LLaMa7B']['InstanceSetting']['InstanceType']
    security_group_id = cloud_infra['AWS_EC2']['LLaMa7B']['InstanceSetting']['SecurityGroupId']
    region = cloud_infra['AWS_EC2']['LLaMa7B']['RegionName']
    image_id = cloud_infra['AWS_EC2']['LLaMa7B']['amiId']
    pem_file = os.path.join(currentDirectory,cloud_infra['AWS_EC2']['LLaMa7B']['ssh']['keyFilePath'])
    username = cloud_infra['AWS_EC2']['LLaMa7B']['ssh']['userName']
    datafile = config_data['basic']['dataLocation']
    instance_name = config_data['basic']['modelName']+'_'+str(config_data['basic']['modelVersion'])+'_LLMTuning'
    configfile = config
    ip = cloud_infra['AWS_EC2']['LLaMa7B']['InstanceIP']
    if image_id != '':
        log.info(""Status:-|... Create Instance"")
        instance_id = create_instance(image_id, instance_type, security_group_id,region,instance_name)
    elif cloud_infra['AWS_EC2']['LLaMa7B']['InstanceId'] != '':
        instance_id = cloud_infra['AWS_EC2']['LLaMa7B']['InstanceId']
        update_sqllite_data(modelid,'instance',instance_id)
        print(instance_id)
    else:
        instance_id = ''
        ip = cloud_infra['AWS_EC2']['LLaMa7B']['InstanceIP']
    if instance_id != '':
        log.info(""Status:-|... Start Instance"")
        update_sqllite_data(modelid,'status','Initialize')
        ip = start_instance(aws_access_key_id, aws_secret_key, instance_id,region)
        print(ip)
    if ip != '':
        update_sqllite_data(modelid,'ip',ip)
        try:
            log.info(""Status:-|... Copy Files"")
            copy_files_to_server(ip,pem_file,datafile,configfile,username)
            log.info(""Status:-|... Start LLM Tuning"")
            update_sqllite_data(modelid,'status','Tuning')
            run_ssh_cmd(ip, pem_file, username,log,sh_file_path)          
            log_data = read_log_file(ip,username,pem_file)
            outputStr = re.search(r'aion_learner_status:(.*)', str(log_data), re.IGNORECASE).group(1)
            
            outputStr = outputStr.strip()
            outputStr = json.loads(outputStr)
            from llm.llm_tuning import save_output
            outputStr = save_output(config_data['basic']['deployLocation'],config_data['basic']['modelName'],config_data['basic']['modelVersion'],outputStr)
            print(outputStr)
            if ""Tuning completed Successfully"" in log_data:
                update_sqllite_data(modelid,'status','Success')
                output = json.dumps(outputStr)
                print(f""\naion_learner_status:{output}\n"")
                return output
            else:
                update_sqllite_data(modelid,'status','Error')
                output = json.dumps(outputStr)
                print(f""\naion_learner_status:{output}\n"")
                return output
        except Exception as e:
            print(e)
            log.info(str(e))
            output = {'status':'FAIL','message':str(e),'LogFile':''}
            output = json.dumps(output)
            print(f""\naion_learner_status:{output}\n"")
            return output
    else:
        output = {'status':'FAIL','message':'Not Configured Properly','LogFile':''}
        output = json.dumps(output)
        print(f""\naion_learner_status:{output}\n"")
        return output

def stop_server_instance(aws_access_key_id, aws_secret_access_key, instance_id,region):
    ec2 = boto3.client('ec2', region_name=region, aws_access_key_id=aws_access_key_id,
                       aws_secret_access_key=aws_secret_access_key)
    try:
        ec2.stop_instances(InstanceIds=[instance_id, ], DryRun=True)
    except ClientError as e:
        if 'DryRunOperation' not in str(e):
            raise

    # Dry run succeeded, call stop_instances without dryrun
    try:
        response = ec2.stop_instances(InstanceIds=[instance_id], DryRun=False)
        response = ec2.describe_instances(InstanceIds=[instance_id])
        instance_status_code = 0
        while instance_status_code != stopped_state_code:
            response = ec2.describe_instances(InstanceIds=[instance_id])
            instance_status_code = response['Reservations'][0]['Instances'][0]['State']['Code']
            if instance_status_code == stopped_state_code:
                print(""Instance Stopped"")
                break
        return ""Process Completed""
    except ClientError as e:
        print(e)
        return ""Process failed""
        
if __name__ == ""__main__"":
    status,msg = LLM_tuning_lemma7b(sys.argv[1],sys.argv[2])
    print(status, msg)

def check_file_on_server(file_path, ip, pem_file):
    is_wait = True
    try:
        host = ip
        username = ""ubuntu""
        client = paramiko.SSHClient()
        client.set_missing_host_key_policy(paramiko.AutoAddPolicy())
        client.connect(host, username=username, key_filename=pem_file)

        sftp = client.open_sftp()
        sftp.stat(file_path)
        print(""Model File created On Server"")
        is_wait = False
    except IOError:
        is_wait = True
        print(""Model training is in progress.."")
    return is_wait


def removeremotefolder_files(sftp, path):
    try:
        files = sftp.listdir(path=path)
        for f in files:
            filepath = path + ""/"" + f
            print(filepath)
            if isdir(sftp, filepath):
                removeremotefolder_files(sftp, filepath)
            else:
                sftp.remove(filepath)
        sftp.rmdir(path)
    except IOError as e:
        print(e)


def isdir(sftp, path):
    try:
        return S_ISDIR(sftp.stat(path).st_mode)
    except IOError:
        return False


def get_remote_folder(ip, remotedir, localdir, pem_file, preserve_mtime=False):
    host = ip
    username = ""ubuntu""
    client = paramiko.SSHClient()
    client.set_missing_host_key_policy(paramiko.AutoAddPolicy())
    client.connect(host, username=username, key_filename=pem_file)
    sftp = client.open_sftp()

    for entry in sftp.listdir(remotedir):
        remotepath = remotedir + ""/"" + entry
        localpath = os.path.join(localdir, entry)
        mode = sftp.stat(remotepath).st_mode
        if S_ISDIR(mode):
            try:
                os.mkdir(localpath, mode=777)
            except OSError:
                pass
            get_remote_folder(ip, remotepath, localpath, pem_file, preserve_mtime)
        elif S_ISREG(mode):
            sftp.get(remotepath, localpath)
        print(""{} downloaded successfully"".format(entry))

"
llm_tuning.py,"import json
import os
import sys
import pandas as pd
import time
from stat import S_ISDIR, S_ISREG
from pathlib import Path
import logging
import re
import tarfile
from llm import llm_utils
#remote_data_dir = '/home/ubuntu/AION/data/storage'
remote_data_rawdata_dir = '/home/aion/data/storage/raw_data'
remote_data_processeddata_dir = '/home/aion/data/storage/processed_data'
remote_config_dir = '/home/aion/data/config'
sh_file_path = '/home/aion/llm/sbin/llm_model_finetuning.sh'
unstructured_script_path = '/home/aion/llm/sbin/llm_model_finetuning.sh'
def start_logging(deployFolder,modelName,version):
    try:
        deployLocation = Path(deployFolder)/modelName/str(version)/'log'
        deployLocation.mkdir(parents=True, exist_ok=True)
        name = 'model_training_logs.log'
        filehandler = logging.FileHandler(deployLocation/name, 'w','utf-8')
        log = logging.getLogger('log_llm')
        log.propagate = False 
        for hdlr in log.handlers[:]:  # remove the existing file handlers
            if isinstance(hdlr,logging.FileHandler):
                log.removeHandler(hdlr)
        log.addHandler(filehandler)
        log.setLevel(logging.INFO)
        return log
    except Exception as e:
        print(str(e))

def update_sqllite_data(usecaseid,variable,variable_value):
    try:
        from appbe.sqliteUtility import sqlite_db
        from appbe.dataPath import DATA_DIR
        file_path = os.path.join(DATA_DIR,'sqlite')
        sqlite_obj = sqlite_db(file_path,'config.db')
        if sqlite_obj.table_exists(""LLMTuning""):
            column_names = sqlite_obj.column_names('LLMTuning')
            #print(column_names)
            if 'region' not in column_names:
                query = 'Alter Table LLMTuning ADD region TEXT'
                sqlite_obj.execute_query(query)
            if 'image' not in column_names:
                query = 'Alter Table LLMTuning ADD image TEXT'
                sqlite_obj.execute_query(query)

            data = sqlite_obj.get_data('LLMTuning','usecaseid',usecaseid)
            if (len(data) > 0):
                sqlite_obj.update_data('""'+variable+'""=""'+variable_value+'""','""usecaseid""=""'+str(usecaseid)+'""','LLMTuning')
                return('Success')
        
        data = dict(usecaseid=usecaseid,ip='',instance='',hypervisor='NA',status='NA',region='',image='')
        data.update({variable:variable_value})
        df = pd.DataFrame(data, index=[0])
        sqlite_obj.write_data(df,'LLMTuning')
        return('Success')    
    except Exception as e:
        print(e)
        return('Error')

def save_output(deployFolder,modelName,version,outputstr,hypervisor,instance):
    try:
        deployLocation = Path(deployFolder)/modelName/str(version)/'etc'
        deployLocation.mkdir(parents=True, exist_ok=True) 
        name = 'output.json'
        dpath = Path(deployFolder)/modelName/str(version)
        outputstr['data']['deployLocation'] = str(dpath)
        outputstr['data']['vmDetails'] = str(hypervisor)+' Instance: '+str(instance)
        outputstr['data']['LogFile'] = str(dpath/'log'/'model_training_logs.log')
        with open(deployLocation/name, 'w',encoding='utf-8') as f:
            json.dump(outputstr, f)
        f.close()
        
        return (outputstr)
    except Exception as e:
        print(str(e))
        print(outputstr)

def llm_logs(config,cloudconfig,instanceid,hypervisor,mlmodels):
    try:
        
        with open(config, 'r') as config_f:
            config_data = json.load(config_f)
        config_f.close()
        modelid = config_data['basic']['modelName']+'_'+config_data['basic']['modelVersion']
        from appbe.compute import readComputeConfig
        cloud_infra = readComputeConfig()   
        if hypervisor == 'AWS':
            aws_access_key_id = cloud_infra['awsCredentials']['accessKey']
            aws_secret_key = cloud_infra['awsCredentials']['secretAccessKey']
            amiDetails = getAMIDetails(cloud_infra['AWS_EC2']['instances'], instanceid)
            region = amiDetails['regionName']
            from llm.aws_instance_api import check_instance
            status,ip = check_instance(aws_access_key_id, aws_secret_key, instanceid,region)
            if status.lower() == 'running':
                currentDirectory = os.path.dirname(os.path.abspath(__file__))
                pem_file = os.path.join(currentDirectory,amiDetails['ssh']['keyFilePath'])
                username = amiDetails['ssh']['userName']
                from llm.ssh_command import read_log_file
                logs = read_log_file(ip,username,'',pem_file)
                deployFolder = config_data['basic']['deployLocation']
                modelName = config_data['basic']['modelName']
                version = config_data['basic']['modelVersion'] 
                deployLocation = Path(deployFolder)/modelName/str(version)/'log'
                deployLocation.mkdir(parents=True, exist_ok=True)
                name = 'model_training_logs.log'
                with open(deployLocation/name, 'r+',encoding='utf-8') as f:
                    lines = [line.rstrip('\n') for line in f]
                    for log in logs:
                        if log not in lines:
                            # inserts on top, elsewise use lines.append(name) to append at the end of the file.
                            lines.insert(0, log)
                    f.seek(0) # move to first position in the file, to overwrite !
                    f.write('\n'.join(lines))
            else:
                status = {'status':'Error','msg':'Instance not running'}        
                output = json.dumps(status)
                deployFolder = config_data['basic']['deployLocation']
                modelName = config_data['basic']['modelName']
                version = config_data['basic']['modelVersion']
                deployLocation = Path(deployFolder)/modelName/str(version)/'log'
                deployLocation.mkdir(parents=True, exist_ok=True)  
                name = 'model_training_logs.log'
                with open(deployLocation/name, 'r+',encoding='utf-8') as f:            
                    f.write('aion_learner_status:'+str(output))
                f.close()
            
        else:
            credentialsJson = cloud_infra['gcpCredentials']['gcpCredentials']
            projectID = cloud_infra['gcpCredentials']['projectID']
            amiDetails = getAMIDetails(cloud_infra['GCP']['instances'], instanceid)
            zone = amiDetails['regionName']
            username = username = amiDetails['ssh']['userName']
            currentDirectory = os.path.dirname(os.path.abspath(__file__))
            pem_file = os.path.join(currentDirectory,amiDetails['ssh']['keyFilePath'])
            password = ''
            from llm.gcp_compute_api import check_instance
            status,ip = check_instance(credentialsJson,projectID, zone, instanceid)
            if status.lower() == 'running':
                from llm.ssh_command import read_log_file
                logs = read_log_file(ip,username,'',pem_file)    
                deployFolder = config_data['basic']['deployLocation']
                modelName = config_data['basic']['modelName']
                version = config_data['basic']['modelVersion'] 
                deployLocation = Path(deployFolder)/modelName/str(version)/'log'
                deployLocation.mkdir(parents=True, exist_ok=True)
                name = 'model_training_logs.log'
                with open(deployLocation/name, 'r+',encoding='utf-8') as f:
                    lines = [line.rstrip('\n') for line in f]
                    for log in logs:
                        if log not in lines:
                            lines.insert(0, log)
                    f.seek(0) # move to first position in the file, to overwrite !
                    f.write('\n'.join(lines))
            else:
                status = {'status':'Error','msg':'Instance not running'}        
                output = json.dumps(status)
                deployFolder = config_data['basic']['deployLocation']
                modelName = config_data['basic']['modelName']
                version = config_data['basic']['modelVersion']
                deployLocation = Path(deployFolder)/modelName/str(version)/'log'
                deployLocation.mkdir(parents=True, exist_ok=True)  
                name = 'model_training_logs.log'
                with open(deployLocation/name, 'r+',encoding='utf-8') as f:            
                    f.write('aion_learner_status:'+str(output))
                f.close()    
    except Exception as e:
        print(e)
        exc_type, exc_obj, exc_tb = sys.exc_info()
        fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
        print(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))
def tardirectory(path,tarfilepath,ext):
    with tarfile.open(tarfilepath, 'w:tar') as tarhandle:
        for root, dirs, files in os.walk(path):
            for f in files:
                if ext == 'doc':
                    if f.endswith('.' + 'doc') or f.endswith('.' + 'docx'):
                        tarhandle.add(os.path.join(root, f), arcname=f)
                else:
                    if f.endswith('.'+ext):
                        tarhandle.add(os.path.join(root, f),arcname=f)
    tarhandle.close()

def getAMIDetails(config,selectedAMI):
    y = {}
    for x in config:
        if x['id'] == selectedAMI:
            return x
    return y
def run(config):
    with open(config, 'r') as config_f:
        config_data = json.load(config_f)
    config_f.close()
    modelid = config_data['basic']['modelName']+'_'+config_data['basic']['modelVersion']
    log = start_logging(config_data['basic']['deployLocation'],config_data['basic']['modelName'],config_data['basic']['modelVersion'])
    from appbe.compute import readComputeConfig
    cloud_infra = readComputeConfig()
    currentDirectory = os.path.dirname(os.path.abspath(__file__))
    filetimestamp = str(int(time.time()))
    instance_name = config_data['basic']['modelName']+'-'+str(config_data['basic']['modelVersion'])+'-LLM-'+filetimestamp
    instance_name = instance_name.lower()
    if config_data['basic']['preprocessing']['llmFineTuning']['unstructuredData'] == 'True':
        if os.path.isdir(config_data['basic']['dataLocation']):
            from appbe.dataPath import DATA_FILE_PATH
            filetimestamp = str(int(time.time())) 
            tarfilepath = os.path.join(DATA_FILE_PATH,filetimestamp+'.tar')
            tardirectory(config_data['basic']['dataLocation'],tarfilepath,config_data['basic']['folderSettings']['fileExtension'])
            config_data['basic']['dataLocationUnstructured'] = tarfilepath
            with open(config, ""w"") as outfile:
                json.dump(config_data, outfile)
            outfile.close()    
                
    if cloud_infra['computeInfrastructure'] == 'GCP':
        log.info(""Status:-|... Compute Infrastructure GCP GCE"")
        credentialsJson = cloud_infra['gcpCredentials']['gcpCredentials']
        #credentialsJson = ""C:\AION\GCP-Instance-Utilityv2\GCP-Instance-Utility\ers-research.json""
        selectedID = cloud_infra['gcpCredentials']['selectedID']
        projectID = cloud_infra['gcpCredentials']['projectID']
        zone = cloud_infra['gcpCredentials']['regionName']
        selectMachineType = cloud_infra['gcpCredentials']['machineType']
        if selectMachineType.lower() == 'image':
            amiDetails = getAMIDetails(cloud_infra['GCP']['machineImage'],selectedID)
            machineImageName = amiDetails['id']

        else:
            amiDetails = getAMIDetails(cloud_infra['GCP']['instances'], selectedID)
            zone = amiDetails['regionName']

            machineImageName = ''
            instance_name = selectedID
        pem_file = os.path.join(currentDirectory,amiDetails['ssh']['keyFilePath'])
        username = amiDetails['ssh']['userName']
        if machineImageName != '':
            log.info(""Status:-|... Create Instance Start"")
            try:
                server = llm_utils.gcp_server("""",machineImageName)
                ip,msg = server.create(instance_name)
                log.info(""Status:-|... Create Instance End"")
                if ip == '':
                    if ""resources available"" in msg:
                      msg = ""The respective zone (or region) does not have enough resources available to fulfill the request. Please try after some time.""
                    output_json = {""status"": ""FAIL"", ""message"": str(msg), ""LogFile"": ''}
                    output = json.dumps(output_json)
                    log.info(""Status:-|... Failed to create the instance. ""+str(msg))
                    print(f""\naion_learner_status:{output}\n"")
                    return output
            except Exception as e:
                print(str(e))
                output_json = {""status"":""FAIL"",""message"":'Failed to create the instance.',""LogFile"":''}
                output = json.dumps(output_json)
                log.info(""Status:-|... Failed to create the instance."")
                print(f""\naion_learner_status:{output}\n"")
                return output
        else:
            server = llm_utils.gcp_server(instance_name, """")
            server.start()
            ip = server.ip
        if ip != '':
            time.sleep(20)
            if selectMachineType.lower() == 'machineimage':
                update_sqllite_data(modelid, 'image', machineImageName)
            update_sqllite_data(modelid,'hypervisor','GCP')
            update_sqllite_data(modelid, 'region', zone)
            update_sqllite_data(modelid,'ip',ip)
            update_sqllite_data(modelid,'instance',instance_name)
            from llm.ssh_command import copy_files_to_server
            
            if config_data['basic']['preprocessing']['llmFineTuning']['unstructuredData'] == 'True':
                datafile = config_data['basic']['dataLocationUnstructured'] 
            else:
                datafile = config_data['basic']['dataLocation']
            log.info(""Status:-|... Upload tuning data Start"")
            try:
                if config_data['basic']['preprocessing']['llmFineTuning']['unstructuredData'] == 'True':
                    copy_files_to_server(ip,pem_file,datafile,config,username,'',remote_data_rawdata_dir,remote_config_dir)
                else:
                    copy_files_to_server(ip, pem_file, datafile, config, username,'', remote_data_processeddata_dir,remote_config_dir)
                time.sleep(20)
                log.info(""Status:-|... Upload tuning data End"")
                log.info(""Status:-|... Start LLM Tuning"")
                update_sqllite_data(modelid,'status','Tuning')
                from llm.ssh_command import run_ssh_cmd
                if config_data['basic']['preprocessing']['llmFineTuning']['unstructuredData'] == 'True':
                    script_path = unstructured_script_path
                else:
                    script_path = sh_file_path
                print(script_path)
                run_ssh_cmd(ip,pem_file, username,'',log,script_path)
                from llm.ssh_command import read_log_file
                log_data = read_log_file(ip,username,'',pem_file)
                outputStr = re.search(r'aion_learner_status:(.*)', str(log_data), re.IGNORECASE).group(1)
                        
                outputStr = outputStr.strip()
                outputStr = json.loads(outputStr)
                outputStr = save_output(config_data['basic']['deployLocation'],config_data['basic']['modelName'],config_data['basic']['modelVersion'],outputStr,'GCP GCE',instance_name)
                vmRunning =  config_data['basic'].get('vmRunning','KeepRunning')
                if vmRunning.lower() !=  'keeprunning':
                    from llm.gcp_compute_api import stop_instance
                    server.stop()
                if ""Tuning Completed Successfully"" in log_data:
                    update_sqllite_data(modelid,'status','Success')
                    output = json.dumps(outputStr)
                    print(f""\naion_learner_status:{output}\n"")
                    return output
                else:
                    server.showndown()
                    update_sqllite_data(modelid,'status','Error')
                    output = json.dumps(outputStr)
                    print(f""\naion_learner_status:{output}\n"")
                    return output
            except Exception as e:
                print(e)
                server.showndown()
                output_json = {""status"": ""FAIL"", ""message"": str(e), ""LogFile"": ''}
                output = json.dumps(output_json)
                log.info(""Status:-|... "" + str(e))
                print(f""\naion_learner_status:{output}\n"")
                return output
        else:
            output_json = {""status"":""FAIL"",""message"":'Failed to initialize the instance',""LogFile"":''}
            output = json.dumps(output_json)
            log.info(""Status:-|... Failed to initialize the instance"")
            print(f""\naion_learner_status:{output}\n"")
            return output
    elif cloud_infra['computeInfrastructure'] == 'AWS':
        log.info(""Status:-|... Compute Infrastructure AWS EC2"")
        aws_access_key_id = cloud_infra['awsCredentials']['accessKey']
        aws_secret_key = cloud_infra['awsCredentials']['secretAccessKey']
        selectMachineType = cloud_infra['awsCredentials']['machineType']
        selectedID = cloud_infra['awsCredentials']['selectedID']
        region = cloud_infra['awsCredentials']['regionName']
        if selectMachineType.lower() == 'ami':
            amiDetails = getAMIDetails(cloud_infra['AWS_EC2']['amis'],selectedID)
            instance_type = amiDetails['instanceSetting']['instanceType']
            security_group_id = cloud_infra['awsCredentials']['securitygroupid']
        else:
            amiDetails = getAMIDetails(cloud_infra['AWS_EC2']['instances'], selectedID)
            region = amiDetails['regionName']
        #region = cloud_infra['AWS_EC2']['LLaMa7B']['RegionName']
        image_id = amiDetails['id']
        pem_file = os.path.join(currentDirectory,amiDetails['ssh']['keyFilePath'])
        username = amiDetails['ssh']['userName']
        if config_data['basic']['preprocessing']['llmFineTuning']['unstructuredData'] == 'True':
            datafile = config_data['basic']['dataLocationUnstructured'] 
        else:
            datafile = config_data['basic']['dataLocation'] 
        if selectMachineType.lower() == 'ami':
            log.info(""Status:-|... Create Instance Start"")
            server = llm_utils.aws_server('', image_id)
            instance_id,msg = server.create(instance_name)
            if instance_id == '':
                output_json = {""status"":""FAIL"",""message"":'Failed to initialize the instance. '+str(msg),""LogFile"":''}
                output = json.dumps(output_json)
                log.info(""Status:-|... Failed to initialize the instance"")
                print(f""\naion_learner_status:{output}\n"")
                log.info(f""\naion_learner_status:{output}\n"")
                return output
            log.info(""Status:-|... Create Instance End"")
        elif selectMachineType.lower() == 'instance':
            instance_id = image_id
            update_sqllite_data(modelid,'instance',instance_id)
            server = llm_utils.aws_server( instance_id, '')
        else:
            output_json = {""status"":""FAIL"",""message"":'AMI is not configured',""LogFile"":''}
            output = json.dumps(output_json)
            log.info(""Status:-|... AMI is not configured"")
            print(f""\naion_learner_status:{output}\n"")
            log.info(f""\naion_learner_status:{output}\n"")
            return output
            # instance_id = ''
            # ip = cloud_infra['AWS_EC2']['LLaMa7B']['InstanceIP']
        try:
            from appbe.models import get_published_models
            already_published,published_usecase = get_published_models(instance_id)
            if already_published:
                Msg = f'Fine Tuned Model-{published_usecase} is  already published at the same instance, Please unpublish the mentioned model to proceed.'
                output_json = {""status"":""Error"",""message"":Msg,""LogFile"":''}
                output = json.dumps(output_json)
                log.info(""Status:-|... A Model is already Published at the same instance."")
                print(f""\naion_learner_status:{output}\n"")
                log.info(f""\naion_learner_status:{output}\n"")
                return output
        except Exception as e:
            log.info(str(e))
            print(str(e))
        if instance_id != '':
            log.info(""Status:-|... Start Instance"")
            if selectMachineType.lower() == 'ami':
                update_sqllite_data(modelid, 'image', image_id)
            update_sqllite_data(modelid, 'region', region)
            update_sqllite_data(modelid,'instance',instance_id)
            update_sqllite_data(modelid,'hypervisor','AWS')
            update_sqllite_data(modelid,'status','Initialize')

            status,msg = server.start()
            ip = server.ip
            time.sleep(20)    
            if status and ip != '':
                update_sqllite_data(modelid,'ip',ip)
                try:
                    log.info(""Status:-|... Copy Files"")
                    from llm.ssh_command import copy_files_to_server
                    if config_data['basic']['preprocessing']['llmFineTuning']['unstructuredData'] == 'True':
                        print(ip,pem_file,datafile,config,username,'',remote_data_rawdata_dir,remote_config_dir)
                        copy_files_to_server(ip,pem_file,datafile,config,username,'',remote_data_rawdata_dir,remote_config_dir)
                    else:
                        print(ip, pem_file, datafile, config, username, '', remote_data_processeddata_dir, remote_config_dir)
                        copy_files_to_server(ip, pem_file, datafile, config, username, '', remote_data_processeddata_dir,remote_config_dir)
                    time.sleep(20)
                    log.info(""Status:-|... Start LLM Tuning"")
                    update_sqllite_data(modelid,'status','Tuning')
                    from llm.ssh_command import run_ssh_cmd
                    if config_data['basic']['preprocessing']['llmFineTuning']['unstructuredData'] == 'True':
                        script_path = unstructured_script_path
                    else:
                        script_path = sh_file_path
                    #print(script_path)    
                    #sys.exit()
                    run_ssh_cmd(ip, pem_file, username,'',log,script_path)          
                    from llm.ssh_command import read_log_file
                    log_data = read_log_file(ip,username,'',pem_file)
                    outputStr = re.search(r'aion_learner_status:(.*)', str(log_data), re.IGNORECASE).group(1)
                    
                    outputStr = outputStr.strip()
                    outputStr = json.loads(outputStr)
                    outputStr = save_output(config_data['basic']['deployLocation'],config_data['basic']['modelName'],config_data['basic']['modelVersion'],outputStr,'AWS EC2',instance_id)
                    vmRunning =  config_data['basic'].get('vmRunning','KeepRunning')
                    if vmRunning.lower() !=  'keeprunning':
                        server.stop()
                    if ""Tuning Completed Successfully"" in log_data:
                        update_sqllite_data(modelid,'status','Success')
                        output = json.dumps(outputStr)
                        print(f""\naion_learner_status:{output}\n"")
                        log.info(f""\naion_learner_status:{output}\n"")
                        return output
                    else:
                        server.showndown()
                        update_sqllite_data(modelid,'status','Error')
                        output = json.dumps(outputStr)
                        print(f""\naion_learner_status:{output}\n"")
                        log.info(f""\naion_learner_status:{output}\n"")
                        return output
                except Exception as e:
                    print(e)
                    log.info(str(e))
                    server.showndown()
                    output = {'status': 'FAIL', 'message': str(e), 'LogFile': ''}
                    output = json.dumps(output)
                    print(f""\naion_learner_status:{output}\n"")
                    log.info(f""\naion_learner_status:{output}\n"")
                    return output
            else:
                output = {'status':'FAIL','message':msg,'LogFile':''}
                output = json.dumps(output)
                print(f""\naion_learner_status:{output}\n"")
                log.info(f""\naion_learner_status:{output}\n"")
                return output            
        else:
            output_json = {""status"":""FAIL"",""message"":'Failed to initialize the instance',""LogFile"":''}
            output = json.dumps(output_json)
            log.info(""Status:-|... Failed to initialize the instance"")
            print(f""\naion_learner_status:{output}\n"")
            return output"
llm_summarization.py,"import json
import os
import sys
import pandas as pd
import time
from stat import S_ISDIR, S_ISREG
from pathlib import Path
import logging
import re
remote_data_dir = '/home/ubuntu/AION/data/storage'
remote_config_dir = '/home/ubuntu/AION/data/config'
sh_file_path = '/home/ubuntu/AION/llm/sbin/run_experiment.sh'
import os
import tarfile
def tardirectory(path,tarfilepath):
    with tarfile.open(tarfilepath, 'w:tar') as tarhandle:
        for root, dirs, files in os.walk(path):
            for f in files:
                tarhandle.add(os.path.join(root, f),arcname=f)
    tarhandle.close()
    
def createCodeSummary(codedir,cloudconfig,filetype):
    try:
        from appbe.dataPath import DATA_FILE_PATH
        filetimestamp = str(int(time.time())) 
        tarfilepath = os.path.join(DATA_FILE_PATH,filetimestamp+'.tar')
        tardirectory(codedir,tarfilepath)
        with open(cloudconfig, 'r') as config_f:
            cloud_infra = json.load(config_f)
        config_f.close()
        aws_access_key_id = cloud_infra['AWS_EC2']['AWSAccessKeyID']
        aws_secret_key = cloud_infra['AWS_EC2']['AWSSecretAccessKey']
        instance_type = cloud_infra['AWS_EC2']['CodeSummarization']['InstanceSetting']['InstanceType']
        security_group_id = cloud_infra['AWS_EC2']['CodeSummarization']['InstanceSetting']['SecurityGroupId']
        region = cloud_infra['AWS_EC2']['CodeSummarization']['RegionName']
        image_id = cloud_infra['AWS_EC2']['CodeSummarization']['amiId']
        currentDirectory = os.path.dirname(os.path.abspath(__file__))
        pem_file = os.path.join(currentDirectory,cloud_infra['AWS_EC2']['CodeSummarization']['ssh']['keyFilePath'])
        username = cloud_infra['AWS_EC2']['CodeSummarization']['ssh']['userName']
        
        instance_id = ''
        if image_id != '':
            from llm.aws_instance_api import create_instance
            instance_id = create_instance(image_id, instance_type, security_group_id,region,instance_name,aws_access_key_id, aws_secret_key)
            if instance_id == '':
                return 'Failed','Instance Creation Failed'
        if instance_id == '':
            if cloud_infra['AWS_EC2']['CodeSummarization']['InstanceId'] != '':
                instance_id = cloud_infra['AWS_EC2']['CodeSummarization']['InstanceId']    
        else:
            return 'Failed','Instance Creation Failed.'
        if instance_id != '':        
            from llm.aws_instance_api import start_instance
            ip = start_instance(aws_access_key_id, aws_secret_key, instance_id,region)                
            if ip != '':
                from llm.ssh_command import copy_files_to_server
                copy_files_to_server(ip,pem_file,tarfilepath,'',username,'',remote_data_dir,remote_config_dir)
                from llm.ssh_command import run_ssh_cmd
                command = 'rm -r /home/ubuntu/AION/data/code'
                buf = run_ssh_cmd(ip, pem_file, username,'','',command)
                command = 'mkdir -p /home/ubuntu/AION/data/code'
                buf = run_ssh_cmd(ip, pem_file, username,'','',command)
                command = 'tar -xvf '+remote_data_dir+'/'+filetimestamp+'.tar -C /home/ubuntu/AION/data/code'
                print(command)
                buf = run_ssh_cmd(ip, pem_file, username,'','',command)
                command = sh_file_path+' '+'/home/ubuntu/AION/data/code'+' '+filetype
                print(command)
                buf = run_ssh_cmd(ip, pem_file, username,'','',command)
                from llm.ssh_command import read_file_from_server
                filetimestamp = str(int(time.time())) 
                codesummar = os.path.join(DATA_FILE_PATH,filetimestamp+'.csv')
                read_file_from_server(ip,username,'',pem_file,'/home/ubuntu/AION/data/storage/code_summararies.csv',codesummar)
                return 'Success',codesummar
            else:
                return 'Failed','Instance Initialization Failed.'
        else:
            return 'Failed','Instance Initialization Failed . AMI/Instance is not configured. Please check with ERS Research'
    except Exception as e:
        print(e)
        return 'Failed','Code Summarization Failed'"
gcp_compute_api.py,"from google.cloud import compute_v1  
import os  
  
PROJECT_ID = 'ers-research'  
ZONE = 'us-west1-b'  
INSTANCE_NAME = 'aion-llm-a100-vm1'  
MACHINE_IMAGE_NAME = 'aion-40gb-a100-image'  
MACHINE_IMAGE_PROJECT_ID = 'ers-research'  
  
def create_instance(credentialsJson,project_id, zone, instance_name, machine_image_name, machine_image_project_id):
    try:
        os.environ[""GOOGLE_APPLICATION_CREDENTIALS""] = credentialsJson
        compute = compute_v1.InstancesClient()

        machine_image = compute_v1.MachineImagesClient().get(project=machine_image_project_id, machine_image=machine_image_name)
        instance = compute_v1.Instance()
        instance.name = instance_name
        instance.machine_type = f""zones/{zone}/machineTypes/a2-ultragpu-1g""
        instance.source_machine_image = machine_image.self_link

        boot_disk = compute_v1.AttachedDisk()
        boot_disk.auto_delete = True
        boot_disk.boot = True
        instance.disks = [boot_disk]

        network_interface = compute_v1.NetworkInterface()
        access_config = compute_v1.AccessConfig()
        access_config.type = ""ONE_TO_ONE_NAT""
        network_interface.access_configs = [access_config]
        instance.network_interfaces = [network_interface]
        operation = compute.insert(project=project_id, zone=zone, instance_resource=instance)
        operation.result()

        instance = compute.get(project=project_id, zone=zone, instance=instance_name)
        print(""--->instace created "")
        print(instance.network_interfaces[0])
        return instance.network_interfaces[0].access_configs[0].nat_i_p,''
    except Exception as e:
        print(e)
        return '',str(e)

def is_running(credentialsJson,project_id, zone, instance_name):
    os.environ[""GOOGLE_APPLICATION_CREDENTIALS""] = credentialsJson
    compute = compute_v1.InstancesClient()
    instance = compute.get(project=project_id, zone=zone, instance=instance_name)
    status = instance.status
    return status
def check_instance(credentialsJson,project_id, zone, instance_name):
    os.environ[""GOOGLE_APPLICATION_CREDENTIALS""] = credentialsJson
    compute = compute_v1.InstancesClient()
    instance = compute.get(project=project_id, zone=zone, instance=instance_name)      
    status = instance.status
    
    if status.lower() == 'running':
        print(instance.network_interfaces[0].access_configs[0].nat_i_p)
        ip = instance.network_interfaces[0].access_configs[0].nat_i_p
    else:
        ip = ''
    return status,ip 
def start_instance(credentialsJson,project_id, zone, instance_name):  
    try:
        os.environ[""GOOGLE_APPLICATION_CREDENTIALS""] = credentialsJson
        compute = compute_v1.InstancesClient()  
        operation = compute.start(project=project_id, zone=zone, instance=instance_name)
        operation.result()
        instance = compute.get(project=project_id, zone=zone, instance=instance_name)  
        status = instance.status
        if status.lower() == 'running':
            print(instance.network_interfaces[0].access_configs[0])
            ip = instance.network_interfaces[0].access_configs[0].nat_i_p
        else:
            ip = ''
    except Exception as e:
        print(e)
        status = 'Error'
        ip = ''
    return status,ip 
        
def stop_instance(credentialsJson,project_id, zone, instance_name): 
    os.environ[""GOOGLE_APPLICATION_CREDENTIALS""] = credentialsJson
    compute = compute_v1.InstancesClient()  
    operation = compute.stop(project=project_id, zone=zone, instance=instance_name)  
    operation.result()

  
def terminate_instance(project_id, zone, instance_name):
    try:
        compute = compute_v1.InstancesClient()
        operation = compute.delete(project=project_id, zone=zone, instance=instance_name)
        operation.result()
        return """",""suceess""
    except Exception as e:
        return str(e),""error""

  
# if __name__ == '__main__':
#     ip_address = create_instance(PROJECT_ID, ZONE, INSTANCE_NAME, MACHINE_IMAGE_NAME, MACHINE_IMAGE_PROJECT_ID)
#     print(f""IP address of the new VM: {ip_address}"")
#     #start_instance(PROJECT_ID, ZONE, INSTANCE_NAME)
#     # stop_instance(PROJECT_ID, ZONE, INSTANCE_NAME)
#     # terminate_instance(PROJECT_ID, ZONE, INSTANCE_NAME)
"
llm_inference.py,"import json
import os
import time
remote_data_dir = '/home/aion/data/storage/prompt'
remote_config_dir = '/home/aion/data/config'
prompt_command = '/home/aion/llm/sbin/llm_predict.sh'
command_prepare_model = '/home/aion/llm/sbin/llm_merge_weights.sh'
command_start_service = '/home/aion/llm/sbin/llm_publish_model.sh'
command_stop_service = 'publish.py'
from AION.llm import llm_utils
from pathlib import Path
def getAMIDetails(config,selectedAMI):
    y = {}
    for x in config:
        print(x)
        if x['id'] == selectedAMI:
            return x
    return y

def get_ip(cloudconfig,instanceid,hypervisor,region,image):
    try:
        # with open(cloudconfig, 'r') as config_f:
            # cloud_infra = json.load(config_f)
        # config_f.close()
        from appbe.compute import readComputeConfig
        cloud_infra = readComputeConfig()
        if hypervisor == 'AWS':
            aws_access_key_id = cloud_infra['awsCredentials']['accessKey']
            aws_secret_key = cloud_infra['awsCredentials']['secretAccessKey']
            if image != ''  and image != 'NA':
                amiDetails = getAMIDetails(cloud_infra['AWS_EC2']['amis'], image)
            else:
                amiDetails = getAMIDetails(cloud_infra['AWS_EC2']['instances'], instanceid)
            if region == '' or region == 'NA':
                region = amiDetails['regionName']
            from llm.aws_instance_api import get_instance_ip
            return get_instance_ip(aws_access_key_id, aws_secret_key, instanceid,region)
        elif hypervisor == 'GCP':
            #print(hypervisor,instanceid)
            server = llm_utils.hypervisor( hypervisor,instanceid)
            if server.is_machine_running():
                return server.ip
            else:
                return ''
        
    except Exception as e:
        print(e)
        raise Exception
def kill_inference_server(cloudconfig,instanceid,hypervisor,region,image):
    # with open(cloudconfig, 'r') as config_f:
        # cloud_infra = json.load(config_f)
    # config_f.close()
    from appbe.compute import readComputeConfig
    cloud_infra = readComputeConfig()
    if hypervisor == 'AWS':
        ip = get_ip(cloudconfig,instanceid,hypervisor,region,image)
        if ip == '':
            print(""Machine is not running."")
        else:
            amiDetails = getAMIDetails(cloud_infra['AWS_EC2']['instances'], instanceid)
            currentDirectory = os.path.dirname(os.path.abspath(__file__))
            pem_file = os.path.join(currentDirectory,amiDetails['ssh']['keyFilePath'])
            username = amiDetails['ssh']['userName']
            command = 'pkill -f'+ ' '+command_stop_service
            from llm.ssh_command import run_ssh_cmd
            buf = run_ssh_cmd(ip, pem_file, username, '', '', command)
    elif hypervisor == 'GCP':
        server = llm_utils.hypervisor( hypervisor,instanceid)
        if server.is_machine_running():
            ssh = server.ssh_details()
            pem_file = str(Path(__file__).parent/ssh['keyFilePath'])
            from llm.ssh_command import run_ssh_cmd
            command = 'pkill -f'+ ' '+command_stop_service
            buf = run_ssh_cmd(server.ip, pem_file, ssh['userName'],'','',command)           
    else:
        raise Exception(""Error"")
        
        
    
def LLM_publish(cloudconfig,instanceid,hypervisor,model,usecaseid,region,image):
    
    from appbe.compute import readComputeConfig
    cloud_infra = readComputeConfig()
    # with open(cloudconfig, 'r') as config_f:
        # cloud_infra = json.load(config_f)
    # config_f.close()
    if hypervisor == 'AWS':
        aws_access_key_id = cloud_infra['awsCredentials']['accessKey']
        aws_secret_key = cloud_infra['awsCredentials']['secretAccessKey']
        if image != ''  and image != 'NA':
            amiDetails = getAMIDetails(cloud_infra['AWS_EC2']['amis'], image)
        else:
            amiDetails = getAMIDetails(cloud_infra['AWS_EC2']['instances'], instanceid)
        if region == '' or region == 'NA':
            region = amiDetails['regionName']
        from llm.aws_instance_api import start_instance
        status,msg,ip = start_instance(aws_access_key_id, aws_secret_key, instanceid, region)
        print(status,msg,ip)
        if status.lower() == 'success':
            currentDirectory = os.path.dirname(os.path.abspath(__file__))
            pem_file = os.path.join(currentDirectory,amiDetails['ssh']['keyFilePath'])
            username = amiDetails['ssh']['userName']
            
            command = command_prepare_model + ' ' + usecaseid + ' '+ str(model)
            print(command)
            from llm.ssh_command import run_ssh_cmd
            buf = run_ssh_cmd(ip, pem_file, username, '', '', command)
            
            if ""Error"" in buf:
                print(""Error in Merging model"")
                raise Exception(""Error in Merging model"")
            print(""merging finished"")
            command = command_start_service+' '+ usecaseid
            buf = run_ssh_cmd(ip, pem_file, username, '', '', command)
            print(""inference server running"")
            return buf
        else:
            print(msg)
            return msg    
    elif hypervisor == 'GCP':
        amiDetails = getAMIDetails(cloud_infra['GCP']['instances'], instanceid)
        if region == '' or region == 'NA':
            region = amiDetails['regionName']
        server = llm_utils.hypervisor(hypervisor,instanceid)
        if not server.is_machine_running():
            started, msg = server.start()
            if not started:
                raise ValueError( msg)
        ssh = server.ssh_details()
        pem_file = str(Path(__file__).parent/ssh['keyFilePath'])
        from llm.ssh_command import run_ssh_cmd
        #print(model)
        #print(usecaseid)
        command = command_prepare_model + ' ' + usecaseid + ' '+ str(model)
        buf = run_ssh_cmd(server.ip, pem_file, ssh['userName'], '', '', command)
        if ""Error"" in buf:
            print(""Error in Merging model"")
            raise Exception(""Error in Merging model"")
        #print(""merging finished"")
        command = command_start_service+' '+ usecaseid
        buf = run_ssh_cmd(server.ip, pem_file, ssh['userName'], '', '', command)
        #print(""inference server running"")
        return buf
    else:
        print(""Not configured for gcp"")
        raise Exception(""Eror"")


def LLM_predict(cloudconfig,instanceid,promptfile,hypervisor,model,usecaseid,region,image,temperature,maxtokens,modelType):
    from appbe.compute import readComputeConfig
    cloud_infra = readComputeConfig()
    try:
        temperature = float(temperature)
    except:
        temperature = 0.4
    try:
        maxtokens = int(maxtokens)
    except:
        maxtokens = 2048

    print(""===="")
    print(float(temperature))
    print(""===="")
    if hypervisor == 'AWS':
        aws_access_key_id = cloud_infra['awsCredentials']['accessKey']
        aws_secret_key = cloud_infra['awsCredentials']['secretAccessKey']
        currentDirectory = os.path.dirname(os.path.abspath(__file__))
        if image != ''  and image != 'NA':
            amiDetails = getAMIDetails(cloud_infra['AWS_EC2']['amis'], image)
        else:
            amiDetails = getAMIDetails(cloud_infra['AWS_EC2']['instances'], instanceid)
        if region == '' or region == 'NA':
            region = amiDetails['regionName']
        from llm.aws_instance_api import start_instance
        #print(aws_access_key_id, aws_secret_key, instanceid, region)
        status,msg,ip = start_instance(aws_access_key_id, aws_secret_key, instanceid, region)
        if status.lower() == 'success':
            pem_file = os.path.join(currentDirectory,amiDetails['ssh']['keyFilePath'])
            username = amiDetails['ssh']['userName']
            from llm.ssh_command import copy_files_to_server
            #print(ip,pem_file,promptfile,'',username,'',remote_data_dir,remote_config_dir)
            copy_files_to_server(ip,pem_file,promptfile,'',username,'',remote_data_dir,remote_config_dir)
            promptfile = os.path.basename(promptfile)
            if modelType == 'BaseModel':
                command = prompt_command + ' ' + 'BaseModel' + ' ' + remote_data_dir + '/' + promptfile + ' ' + str(
                    model) + ' ' + str(temperature) + ' ' + str(maxtokens)
            else:
                command = prompt_command+' '+usecaseid+' '+remote_data_dir+'/'+ promptfile+' '+str(model)+' '+str(temperature)+' '+str(maxtokens)
            print(command)
            from llm.ssh_command import run_ssh_cmd
            buf = run_ssh_cmd(ip, pem_file, username,'','',command)    
            return buf
        else:
           return msg 
    else:
        server = llm_utils.hypervisor( hypervisor,instanceid)
        if not server.is_machine_running():
            started, msg = server.start()
            if not started:
                raise ValueError( msg)
        ssh = server.ssh_details()
        pem_file = str(Path(__file__).parent/ssh['keyFilePath'])
        from llm.ssh_command import copy_files_to_server
        copy_files_to_server(server.ip,pem_file,promptfile,'',ssh['userName'],'',remote_data_dir,remote_config_dir)
        promptfile = os.path.basename(promptfile)    
        if modelType == 'BaseModel':
            command = prompt_command + ' ' + 'BaseModel' + ' ' + remote_data_dir + '/' + promptfile + ' ' + str(
                    model) + ' ' + str(temperature) + ' ' + str(maxtokens)
        else:
            command = prompt_command+' '+usecaseid+' '+remote_data_dir+'/'+ promptfile+' '+str(model)+' '+str(temperature)+' '+str(maxtokens)
        #command = '/home/aion/llm/sbin/llm_model_finetuning.sh'
        #print(command)
        from llm.ssh_command import run_ssh_cmd
        #print(ssh['userName'],pem_file)
        buf = run_ssh_cmd(server.ip, pem_file, ssh['userName'],'','',command) 
        return buf"
__init__.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''"
survival_analysis.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import pandas as pd
import matplotlib.pyplot as plt
from lifelines import KaplanMeierFitter, CoxPHFitter
from lifelines.utils import datetimes_to_durations
import logging
import numpy as np
import re
import sys
import os


class SurvivalAnalysis(object):

    def __init__(self, df, pipe, method, event_column, duration_column, filterExpression, train_features_type,start=None, end=None):
        pd.options.display.width = 30
        self.df = df
        self.pipe = pipe
        self.train_features_type = train_features_type
        self.filterExpression = filterExpression
        self.covariateExpression = filterExpression
        self.method = method
        self.event_column = event_column
        if start is not None and end is not None:
            self.df['duration'], _ = datetimes_to_durations(start, end)
            self.duration_column = 'duration'
        else:
            self.duration_column = duration_column
        self.models = []
        self.score = 0
        self.log = logging.getLogger('eion')
        self.plots = []

    def transform_filter_expression(self, covariate, covariate_input):
        '''
        Filter expression given by user will be encoded if it is categorical and if it is a numerical feature that
        is normalised in data profiler, in filter expression feature also it will be converted to normalised value
        '''
        cols = list(self.df.columns)
        if self.duration_column in cols:
            cols.remove(self.duration_column)
        if self.event_column in cols:
            cols.remove(self.event_column)
        df_filter = pd.DataFrame([{covariate:covariate_input}], columns=cols)
        df_filter[covariate] = df_filter[covariate].astype(self.train_features_type[covariate])
        df_transform_array = self.pipe.transform(df_filter)
        df_transform = pd.DataFrame(df_transform_array, columns=cols)
        return df_transform[covariate].iloc[0]

    def learn(self):
        self.log.info('\n---------- SurvivalAnalysis learner has started ----------')
        self.log.info('\n---------- SurvivalAnalysis learner method is ""%s"" ----------' % self.method)

        if self.method.lower() in ['kaplanmeierfitter', 'kaplanmeier', 'kaplan-meier', 'kaplan meier', 'kaplan', 'km',
                                   'kmf']:
            self.log.info('\n---------- SurvivalAnalysis learner method ""%s"" has started ----------' % self.method)
            kmf = KaplanMeierFitter()
            T = self.df[self.duration_column]
            E = self.df[self.event_column]
            self.log.info('\n T : \n%s' % str(T))
            self.log.info('\n E : \n%s' % str(E))
            K = kmf.fit(T, E)
            kmf_sf = K.survival_function_
            kmf_sf_json = self.survival_probability_to_json(kmf_sf)
            self.models.append(K)
            if isinstance(self.filterExpression, str):
                df_f, df_n, refined_filter_expression = self.parse_filterExpression()
                kmf1 = KaplanMeierFitter()
                kmf2 = KaplanMeierFitter()
                self.log.info(
                    '\n---------- SurvivalAnalysis learner ""%s"" fitting for filter expression has started----------' % self.method)
                T1 = df_f[self.duration_column]
                E1 = df_f[self.event_column]
                T2 = df_n[self.duration_column]
                E2 = df_n[self.event_column]
                kmf1.fit(T1, E1)
                fig, ax = plt.subplots(1, 1)
                ax = kmf1.plot_survival_function(ax=ax, label='%s' % refined_filter_expression)
                self.log.info(
                    '\n---------- SurvivalAnalysis learner ""%s"" fitting for filter expression has ended----------' % self.method)
                plt.title(""KM Survival Functions - Filter vs Negation"")
                self.log.info(
                    '\n---------- SurvivalAnalysis learner ""%s"" fitting for negation has started----------' % self.method)
                kmf2.fit(T2, E2)
                ax = kmf2.plot_survival_function(ax=ax, label='~%s' % refined_filter_expression)
                self.log.info(
                    '\n---------- SurvivalAnalysis learner ""%s"" fitting for negation has ended----------' % self.method)
                self.models.extend([kmf1, kmf2])

                kmf1_sf = kmf1.survival_function_
                kmf2_sf = kmf2.survival_function_
                kmf1_sf_json = self.survival_probability_to_json(kmf1_sf)
                self.plots.append(fig)
                self.log.info('\n---------- SurvivalAnalysis learner method ""%s"" has ended ----------' % self.method)
                self.log.info('\n---------- SurvivalAnalysis learner has ended ----------')
                self.log.info('Status:- |... Algorithm applied: KaplanMeierFitter')
                return kmf1_sf_json
            else:
                fig, ax = plt.subplots(1, 1)
                ax = kmf_sf.plot(ax=ax)
                plt.title(""KM Survival Functions"")
                self.plots.append(fig)
                self.log.info('\n---------- SurvivalAnalysis learner method ""%s"" has ended ----------' % self.method)
                self.log.info('\n---------- SurvivalAnalysis learner has ended ----------')
                self.log.info('Status:- |... Algorithm applied: KaplanMeierFitter')
                return kmf_sf_json


        elif self.method.lower() in ['coxphfitter', 'coxregression', 'cox-regression', 'cox regression',
                                     'coxproportionalhazard', 'coxph', 'cox', 'cph']:
            self.log.info('\n---------- SurvivalAnalysis learner method ""%s"" has started ----------' % self.method)

            cph = CoxPHFitter(penalizer=0.1)
            self.df = self.drop_constant_features(self.df)
            C = cph.fit(self.df, self.duration_column, self.event_column)
            self.models.append(C)
            cph_sf = C.baseline_survival_
            self.score = C.score(self.df, scoring_method=""concordance_index"")
            self.log.info(
                '\n---------- SurvivalAnalysis learner ""%s"" score is ""%s""----------' % (self.method, str(self.score)))
            cph_sf_json = self.survival_probability_to_json(cph_sf)
            if isinstance(self.covariateExpression, str):
                covariate, covariate_inputs, covariate_values = self.parse_covariateExpression()
                fig, (ax1, ax2) = plt.subplots(1, 2)
                fig.tight_layout()
                ax1 = C.plot(ax=ax1, hazard_ratios=True)
                self.log.info('\n Summary : \n%s' % str(C.summary))
                ax1.set_title(""COX hazard ratio"")
                ax2 = C.plot_partial_effects_on_outcome(covariate, covariate_values, ax=ax2)
                mylabels = [covariate + '=' + str(x) for x in covariate_inputs]
                mylabels.append('baseline')
                ax2.legend(labels=mylabels)
                ax2.set_title(""Covariate Plot"")
                self.plots.append(fig)
            else:
                fig = plt.figure()
                ax1 = C.plot(hazard_ratios=True)
                self.log.info('\n Summary : \n%s' % str(C.summary))
                plt.title(""COX hazard ratio"")
                self.plots.append(fig)
            self.log.info('\n---------- SurvivalAnalysis learner method ""%s"" has ended ----------' % self.method)
            self.log.info('\n---------- SurvivalAnalysis learner has ended ----------')
            self.log.info('Status:- |... Algorithm applied: CoxPHFitter')
            return cph_sf_json

    def parse_filterExpression(self):
        import operator
        self.log.info('\n---------- Filter Expression parsing has started ----------')
        self.log.info('Filter Expression provided : %s' % self.filterExpression)
        self.log.info('Shape before filter : %s' % str(self.df.shape))
        f = self.filterExpression.split('&')
        f = list(filter(None, f))
        if len(f) == 1:
            p = '[<>=!]=?'
            op = re.findall(p, self.filterExpression)[0]
            covariate, covariate_input = [x.strip().strip('\'').strip('\""') for x in self.filterExpression.split(op)]
            refined_filter_expression = covariate + op + covariate_input
            self.log.info('Final refined filter : %s' % refined_filter_expression)
            ops = {""=="": operator.eq, "">"": operator.gt, ""<"": operator.lt, "">="": operator.ge, ""<="": operator.le,
                   ""!="": operator.ne}
            try:
                fv = self.transform_filter_expression(covariate, covariate_input)
                df_f = self.df[ops[op](self.df[covariate], fv)]
                self.log.info('Shape after filter : %s' % str(df_f.shape))
                df_n = self.df[~self.df[covariate].isin(df_f[covariate])]
                self.log.info('Shape of negation : %s' % str(df_n.shape))
                self.log.info('---------- Filter Expression has ended ----------')
                return df_f, df_n, refined_filter_expression
            except Exception:
                self.log.info('\n-----> Filter Expression parsing encountered error!!!')
                exc_type, exc_obj, exc_tb = sys.exc_info()
                if exc_type == IndexError or ValueError or KeyError:
                    self.log.info('----->Given filter expression '+ self.filterExpression +' is invalid')
                    self.log.info('Valid examples are ""A>100"", ""B==category1"", ""C>=10 && C<=20"" etc..')
                fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
                self.log.info(str(exc_type)+' '+str(fname) + ' ' + str(exc_tb.tb_lineno))
                raise Exception(str(exc_type)+str(exc_obj))
        else:
            full_f = []
            try:
                for filterExpression in f:
                    p = '[<>=!]=?'
                    op = re.findall(p, filterExpression)[0]
                    covariate, covariate_input = [x.strip().strip('\'').strip('\""') for x in filterExpression.split(op)]
                    full_f.append(covariate + op + covariate_input)
                    ops = {""=="": operator.eq, "">"": operator.gt, ""<"": operator.lt, "">="": operator.ge, ""<="": operator.le,
                           ""!="": operator.ne}

                    fv = self.transform_filter_expression(covariate, covariate_input)
                    df_f = self.df[ops[op](self.df[covariate], fv)]
                    df_n = self.df[~self.df[covariate].isin(df_f[covariate])]
 
                refined_filter_expression = "" & "".join(full_f)
                self.log.info('Final refined filter : %s' % refined_filter_expression)
                self.log.info('Shape after filter : %s' % str(df_f.shape))
                self.log.info('Shape of negation : %s' % str(df_n.shape))
                self.log.info('---------- Filter Expression has ended ----------')
                return df_f, df_n, refined_filter_expression
            # except (IndexError, ValueError, KeyError):
            except Exception:
                self.log.info('\n-----> Filter Expression parsing encountered error!!!')
                exc_type, exc_obj, exc_tb = sys.exc_info()
                if exc_type == IndexError or ValueError or KeyError:
                    self.log.info('----->Given filter expression '+ self.filterExpression +' is invalid')
                    self.log.info('Valid examples are ""A>100"", ""B==category1"", ""C>=10 && C<=20"" etc..')
                fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
                self.log.info(str(exc_type)+' '+str(fname) + ' ' + str(exc_tb.tb_lineno))
                raise Exception(str(exc_type)+str(exc_obj))

    def parse_covariateExpression(self):
        self.log.info('\n---------- Covariate Expression parsing has started ----------')
        self.log.info('\n Covariate Expression provided : %s' % self.covariateExpression)
        import ast
        p = '[=:]'
        try:
            op = re.findall(p, self.covariateExpression)[0]
            covariate, covariate_inputs = [x.strip().strip('\'').strip('\""') for x in
                                           self.covariateExpression.split(op)]
            covariate_inputs = ast.literal_eval(covariate_inputs)
            covariate_values = [self.transform_filter_expression(covariate, x) for x in covariate_inputs]
            self.log.info('\n---------- Covariate Expression parsing has ended ----------')
            return covariate, covariate_inputs, covariate_values
        except Exception:
            self.log.info('\n-----> Covariate Expression parsing encountered error!!!')
            exc_type, exc_obj, exc_tb = sys.exc_info()
            if exc_type == IndexError or ValueError or KeyError:
                self.log.info('----->Given covariate expression '+ self.filterExpression +' is invalid')
                self.log.info(""\n Valid examples are A=['Yes','No'] or B=[100,500,1000]"")
            fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
            self.log.info(str(exc_type)+' '+str(fname) + ' ' + str(exc_tb.tb_lineno))
            raise Exception(str(exc_type)+str(exc_obj))

    def survival_probability_to_json(self, sf):
        '''
        sf = Survival function i.e. KaplanMeierFitter.survival_function_ or CoxPHFitter.baseline_survival_
        returns json of survival probabilities
        '''
        sf = sf[sf.columns[0]].apply(lambda x: ""%4.2f"" % (x * 100))
        self.log.info('\n Survival probabilities : \n%s' % str(sf))
        sf = sf.reset_index()
        sf = sf.sort_values(sf.columns[0])
        sf_json = sf.to_json(orient='records')
        self.log.info('\n Survival probability json : \n%s' % str(sf_json))

        return sf_json

    def drop_constant_features(self, df):
        dropped = []
        for col in df.columns:
            if (len(df[col].unique()) == 1) and (col not in [self.duration_column, self.event_column]):
                df.drop(col, inplace=True, axis=1)
                dropped.append(col)
        if len(dropped) != 0:
            self.log.info('\n Dropping constant features %s' % str(col))
        self.log.info('\n After dropping constant features : \n%s' % str(df))
        return df

    def predict(self):
        if self.method == 'KaplanMeierFitter':
            return self.model.predict(self.test[self.duration_column])


        elif self.method == 'CoxPHFitter':
            res = []
            for idx, row in self.test.iterrows():
                res.append(
                    self.model.predict_survival_function(self.test, times=row[self.model.duration_col])[idx].values[0])
            return pd.DataFrame(res)
"
__init__.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''"
learning.py,"import warnings
import sys
warnings.simplefilter(action='ignore', category=FutureWarning)
import xgboost as xgb
import dask.array as da
import shutil
import dask.distributed
import dask.dataframe as dd
import dask_ml
import logging
from sklearn.metrics import accuracy_score, recall_score, \
            roc_auc_score, precision_score, f1_score, \
            mean_squared_error, mean_absolute_error, \
            r2_score, classification_report, confusion_matrix, \
            mean_absolute_percentage_error

import lightgbm as lgb
import re
from sklearn.pipeline import Pipeline
from sklearn.base import BaseEstimator, TransformerMixin
from dask_ml.impute import SimpleImputer
from dask_ml.compose import ColumnTransformer
from dask_ml.decomposition import TruncatedSVD, PCA
from dask_ml.preprocessing import StandardScaler, \
            MinMaxScaler, \
            OneHotEncoder, LabelEncoder
from dask_ml.wrappers import ParallelPostFit
import numpy as np
import json
import time
from sklearn.ensemble import IsolationForest
import joblib
import pickle as pkl
import os
predict_config={}

dask.config.set({""distributed.workers.memory.terminate"": 0.99})
dask.config.set({""array.chunk-size"": ""128 MiB""})
dask.config.set({""distributed.admin.tick.limit"": ""3h""})

# dask.config.set({""distributed.workers.memory.pause"": 0.9})

class MinImputer(BaseEstimator, TransformerMixin):
    def fit(self, X, y=None):
        return self
    def transform(self, X, y=None):
        # to_fillna = ['public_meeting', 'scheme_management', 'permit']
        # X[to_fillna] = X[to_fillna].fillna(value='NaN')
        # X[to_fillna] = X[to_fillna].astype(str)  
        X = X.fillna(value=X.min())
        # X = X.astype(str)  
        return X

class MaxImputer(BaseEstimator, TransformerMixin):
    def fit(self, X, y=None):
        return self
    def transform(self, X, y=None):
        X = X.fillna(value=X.max())
        return X

class DropImputer(BaseEstimator, TransformerMixin):   
    def fit(self, X, y=None):
        return self
    def transform(self, X, y=None):
        X = X.dropna()
        return X

class ModeCategoricalImputer(BaseEstimator, TransformerMixin):   
    def fit(self, X, y=None):
        return self
    def transform(self, X, y=None):
        X = X.fillna(value=X.mode())
        return X

class IsoForestOutlierExtractor(TransformerMixin):
    def fit(self, X, y=None):
        return self
    def transform(self, X, y):
        lcf = IsolationForest()
        with joblib.parallel_backend('dask'):
            lcf.fit(X)
        y_pred_train = lcf.predict(X)
        y_pred_train =  y_pred_train == 1
        return X

def load_config_json(json_file):
    with open(json_file, 'r') as j:
        contents = json.loads(j.read())
    return contents

def load_data_dask(data_file, npartitions=500):
    big_df = dd.read_csv(data_file, # sep=r'\s*,\s*',
            assume_missing=True,
            parse_dates=True, infer_datetime_format=True,
            sample=1000000,
            # dtype={'caliper': 'object',
            #         'timestamp': 'object'},
            # dtype='object',
            na_values=['-','?']
            )
    big_df = big_df.repartition(npartitions) 
    return big_df

def get_dask_eda(df_dask):
    descr = df_dask.describe().compute()
    corr = df_dask.corr().compute()
    return descr, corr

def normalization(config):
    scaler = config[""advance""] \
            [""profiler""][""normalization""]
    scaler_method = None
    if scaler[""minMax""] == ""True"":
        scaler_method = MinMaxScaler()
    if scaler[""standardScaler""] == ""True"":
        scaler_method = StandardScaler()
    return scaler_method

def categorical_encoding(config):
    encoder = config[""advance""][""profiler""] \
                [""categoryEncoding""]
    encoder_method = None
    if encoder[""OneHotEncoding""] == ""True"":
        encoder_method = OneHotEncoder()
        # OneHotEncoder(handle_unknown='ignore', sparse=False)
    if encoder[""LabelEncoding""] == ""True"": 
        encoder_method = LabelEncoder()
    return encoder_method

def numeric_feature_imputing(config):
    imputer_numeric_method = None
    imputer_numeric = config[""advance""] \
            [""profiler""][""numericalFillMethod""]
    if imputer_numeric[""Median""] == ""True"":
        print(""Median Simple Imputer"")
        imputer_numeric_method = SimpleImputer(strategy='median')
    if imputer_numeric[""Mean""] == ""True"":
        print(""Mean Simple Imputer"")
        imputer_numeric_method = SimpleImputer(strategy='mean')
    if imputer_numeric[""Min""] == ""True"":
        print(""Min Simple Imputer"")
        imputer_numeric_method = MinImputer()
    if imputer_numeric[""Max""] == ""True"":
        print(""Max Simple Imputer"")
        imputer_numeric_method = MaxImputer()
    if imputer_numeric[""Zero""] == ""True"":
        print(""Zero Simple Imputer"")
        imputer_numeric_method = SimpleImputer(strategy='constant', 
                                fill_value=0)
    # if imputer_numeric[""Drop""] == ""True"":
    #     print(""Median Simple Imputer"")
    #     imputer_numeric_method = DropImputer()
    return imputer_numeric_method

def categorical_feature_imputing(config):
    imputer_categorical_method = None
    imputer_categorical = config[""advance""] \
            [""profiler""][""categoricalFillMethod""]
    if imputer_categorical[""MostFrequent""] == ""True"":
        imputer_categorical_method = SimpleImputer(strategy='most_frequent')
    if imputer_categorical[""Mode""] == ""True"":
        imputer_categorical_method = ModeCategoricalImputer()
    if imputer_categorical[""Zero""] == ""True"":
        imputer_categorical_method = SimpleImputer(strategy='constant', 
                                fill_value=0)
    return imputer_categorical_method

def preprocessing_pipeline(config, X_train):
    print(""Start preprocessing"")
    scaler_method = normalization(config)
    encoding_method = categorical_encoding(config)
    imputer_numeric_method = numeric_feature_imputing(config)
    imputer_categorical_method = categorical_feature_imputing(config)
    
    numeric_pipeline = Pipeline(steps=[
    ('impute', imputer_numeric_method),
    ('scale', scaler_method)
    ])

    categorical_pipeline = Pipeline(steps=[
    ('impute', imputer_categorical_method),
    ('encoding', encoding_method)
    ])

    numerical_features = X_train._get_numeric_data().columns.values.tolist()
    categorical_features = list(set(X_train.columns) - set(X_train._get_numeric_data().columns))
    print(""numerical_features: "", numerical_features)
    print(""categorical_features: "", categorical_features)
    full_processor = ColumnTransformer(transformers=[
        ('number', numeric_pipeline, numerical_features),
        # ('category', categorical_pipeline, categorical_features)
    ])
    return full_processor  

def full_pipeline(X_train, X_test, config):
    full_processor = preprocessing_pipeline(config, X_train)
    reduce_dim = config[""advance""] \
                [""selector""][""featureEngineering""]
    feature_reduce = None
    if reduce_dim[""SVD""] == ""True"":
        feature_reduce = TruncatedSVD(n_components=3)
    if reduce_dim[""PCA""] == ""True"":
        feature_reduce = PCA(n_components=3)
    X_train = full_processor.fit_transform(X_train)
    # joblib.dump(full_processor, 'full_processor_pipeline.pkl')
    deploy_location = config[""basic""][""modelLocation""]
    profiler_file = os.path.join(deploy_location,'model','profiler.pkl')
    selector_file = os.path.join(deploy_location,'model','selector.pkl')
    save_pkl(full_processor, profiler_file)
    X_test = full_processor.transform(X_test)
    predict_config['profilerLocation'] = 'profiler.pkl'    
    if feature_reduce != None:
        X_train = feature_reduce.fit_transform(X_train.to_dask_array(lengths=True))
        save_pkl(feature_reduce, selector_file)
        predict_config['selectorLocation'] = 'selector.pkl'
    # joblib.dump(feature_reduce, 'feature_reduce_pipeline.pkl')
        X_test = feature_reduce.transform(X_test.to_dask_array(lengths=True))
        X_train = dd.from_dask_array(X_train)
        X_test = dd.from_dask_array(X_test)
    else:
        predict_config['selectorLocation'] = ''
    return X_train, X_test

def train_xgb_classification(client, X_train, y_train, X_test, config):
    print(""Training XGBoost classification"")
    model_hyperparams = config[""advance""] \
                    [""distributedlearner_config""] \
                    [""modelParams""] \
                    [""classifierModelParams""] \
                    [""Distributed Extreme Gradient Boosting (XGBoost)""]
    dask_model = xgb.dask.DaskXGBClassifier(
            tree_method=model_hyperparams[""tree_method""],
            n_estimators=int(model_hyperparams[""n_estimators""]),
            max_depth=int(model_hyperparams[""max_depth""]),
            gamma=float(model_hyperparams[""gamma""]),
            min_child_weight=float(model_hyperparams[""min_child_weight""]),
            subsample=float(model_hyperparams[""subsample""]),
            colsample_bytree=float(model_hyperparams[""colsample_bytree""]),
            learning_rate=float(model_hyperparams[""learning_rate""]),
            reg_alpha=float(model_hyperparams[""reg_alpha""]),
            reg_lambda=float(model_hyperparams[""reg_lambda""]),
            random_state=int(model_hyperparams[""random_state""]),
            verbosity=3)   
    dask_model.client = client 
    X_train, X_test = full_pipeline(X_train, X_test, config)
    dask_model.fit(X_train, y_train)
    save_model(config, dask_model)
    save_config(config)
    return dask_model, X_train, X_test
    
def train_xgb_regression(client, X_train, y_train, X_test, config):
    model_hyperparams = config[""advance""] \
                    [""distributedlearner_config""] \
                    [""modelParams""] \
                    [""regressorModelParams""] \
                    [""Distributed Extreme Gradient Boosting (XGBoost)""]
    print(""Training XGBoost regression"")
    dask_model = xgb.dask.DaskXGBRegressor(
            tree_method=model_hyperparams[""tree_method""],
            n_estimators=int(model_hyperparams[""n_estimators""]),
            max_depth=int(model_hyperparams[""max_depth""]),
            gamma=float(model_hyperparams[""gamma""]),
            min_child_weight=float(model_hyperparams[""min_child_weight""]),
            subsample=float(model_hyperparams[""subsample""]),
            colsample_bytree=float(model_hyperparams[""colsample_bytree""]),
            learning_rate=float(model_hyperparams[""learning_rate""]),
            reg_alpha=float(model_hyperparams[""reg_alpha""]),
            reg_lambda=float(model_hyperparams[""reg_lambda""]),
            random_state=int(model_hyperparams[""random_state""]),
            verbosity=3)
    dask_model.client = client
    X_train, X_test = full_pipeline(X_train, X_test, config)
    dask_model.fit(X_train, y_train)
    # dask_model.fit(X_train, y_train, eval_set=[(X_test, y_test)])
    save_model(config, dask_model)
    save_config(config)    
    return dask_model, X_train, X_test 

def train_lgbm_regression(client, X_train, y_train, X_test, config):
    print(""Training lightGBM regression"")
    model_hyperparams = config[""advance""] \
                    [""distributedlearner_config""] \
                    [""modelParams""] \
                    [""regressorModelParams""] \
                    [""Distributed Light Gradient Boosting (LightGBM)""]
    
    dask_model = lgb.DaskLGBMRegressor(
            client=client,
            n_estimators=int(model_hyperparams[""n_estimators""]),
            num_leaves=int(model_hyperparams[""num_leaves""]),
            max_depth =int(model_hyperparams[""max_depth""]),
            learning_rate=float(model_hyperparams[""learning_rate""]),
            min_child_samples=int(model_hyperparams[""min_child_samples""]),
            reg_alpha=int(model_hyperparams[""reg_alpha""]),
            subsample=float(model_hyperparams[""subsample""]),
            reg_lambda=int(model_hyperparams[""reg_lambda""]),
            colsample_bytree=float(model_hyperparams[""colsample_bytree""]),
            n_jobs=4,
            verbosity=3)

    X_train, X_test = full_pipeline(X_train, X_test, config)

    # print(""before X_train.shape, y_train.shape"", 
    #         X_train.shape, 
    #         y_train.shape)
    # indices = dask_findiforestOutlier(X_train)
    # print(""X_train type: "", type(X_train))
    # print(""y_train type: "", type(y_train))
    # X_train, y_train = X_train.iloc[indices, :], \
    #             y_train.iloc[indices]
    # print(""after X_train.shape, y_train.shape"", 
    #         X_train.shape, 
    #         y_train.shape)
    
    dask_model.fit(X_train, y_train)
    # dask_model.fit(X_train, y_train, 
    #                 # eval_set=[(X_test,y_test),
    #                         # (X_train,y_train)],
    #             verbose=20,eval_metric='l2')
    save_model(config, dask_model)
    save_config(config)
    return dask_model, X_train, X_test

def train_lgbm_classification(client, X_train, y_train, X_test, config):
    print(""Training lightGBM classification"") 
    model_hyperparams = config[""advance""] \
                    [""distributedlearner_config""] \
                    [""modelParams""] \
                    [""classifierModelParams""] \
                    [""Distributed Light Gradient Boosting (LightGBM)""]
    dask_model = lgb.DaskLGBMClassifier(
            client=client,
            num_leaves=int(model_hyperparams[""num_leaves""]),
            learning_rate=float(model_hyperparams[""learning_rate""]),
            feature_fraction=float(model_hyperparams[""feature_fraction""]),
            bagging_fraction=float(model_hyperparams[""bagging_fraction""]),
            bagging_freq=int(model_hyperparams[""bagging_freq""]),
            max_depth=int(model_hyperparams[""max_depth""]),
            min_data_in_leaf=int(model_hyperparams[""min_data_in_leaf""]),
            n_estimators=int(model_hyperparams[""n_estimators""]),
            verbosity=3)
    X_train, X_test = full_pipeline(X_train, X_test, config)
    dask_model.fit(X_train, y_train)
    # dask_model.fit(X_train, y_train, 
    #                 eval_set=[(X_test,y_test),
    #                 (X_train,y_train)],
    #             verbose=20,eval_metric='logloss')
    save_model(config, dask_model)
    save_config(config)
    return dask_model, X_train, X_test   

def evaluate_model_classification(model, config, X_test, y_test, class_names):
    metrics = config[""basic""][""scoringCriteria""][""classification""]
    y_test = y_test.to_dask_array().compute()
    log = logging.getLogger('eion')
    X_test = X_test.to_dask_array(lengths=True)
    y_pred = model.predict(X_test)
    if metrics[""Accuracy""] == ""True"":
        # ParallelPostFit(estimator=model, scoring='accuracy')
        # score = model.score(X_test, y_test) * 100.0
        score = accuracy_score(y_test, y_pred) * 100.0
        type = 'Accuracy'
        log.info('Status:-|... Accuracy Score '+str(score))
        
    if metrics[""Recall""] == ""True"":
        score = recall_score(y_test, y_pred)
        type = 'Recall'        
        log.info('Status:-|... Recall Score '+str(score))

    if metrics[""Precision""] == ""True"":
        score = precision_score(y_test, y_pred)
        type = 'Precision'        
        log.info('Status:-|... Precision Score '+str(score))

    if metrics[""F1_Score""] == ""True"":
        score = f1_score(y_test, y_pred)
        type = 'F1'          
        log.info('Status:-|... F1 Score '+str(score))    

    y_pred_prob = model.predict_proba(X_test)
    if len(class_names) == 2:
        roc_auc = roc_auc_score(y_test, y_pred)
    else:
        roc_auc = roc_auc_score(y_test, y_pred_prob, multi_class='ovr')
    if metrics[""ROC_AUC""] == ""True"":
        score = roc_auc
        type = 'ROC_AUC'         
        log.info('Status:-|... ROC AUC Score '+str(score))    

    class_report = classification_report(y_test, y_pred, output_dict=True, target_names=class_names)
    conf_matrix = confusion_matrix(y_test, y_pred)
    return type, score, class_report, conf_matrix, roc_auc
    
def evaluate_model_regression(model, config, X_test, y_test):
    metrics = config[""basic""][""scoringCriteria""][""regression""]
    y_pred = model.predict(X_test).compute()
    y_test = y_test.to_dask_array().compute()
    X_test = X_test.to_dask_array(lengths=True)
    log = logging.getLogger('eion')
    
    mse = mean_squared_error(y_test, y_pred)
    rmse = mean_squared_error(y_test, y_pred, squared=False)
    norm_rmse = rmse * 100 / (y_test.max() - y_test.min())
    mape = mean_absolute_percentage_error(y_test, y_pred)
    r2 = r2_score(y_test, y_pred)
    mae = mean_absolute_error(y_test, y_pred)

    if metrics[""Mean Squared Error""] == ""True"":      
        type = 'Mean Squared Error'  
        score = mse
        log.info('Status:-|... Mean Squared Error '+str(score))
    
    if metrics[""Root Mean Squared Error""] == ""True"":
        type = 'Root Mean Squared Error'
        score = rmse
        log.info('Status:-|... Root Mean Square Error '+str(score))
    
    if metrics[""R-Squared""] == ""True"":
        type = 'R-Squared'
        score = r2     
        log.info('Status:-|... R Squared Error '+str(score))

    if metrics[""Mean Absolute Error""] == ""True"":
        type = 'Mean Absolute Error'  
        score = mae      
        log.info('Status:-|... Mean Absolute Error '+str(score))

    return type, score, mse, rmse, norm_rmse, r2, mae, mape

def save_config(config):
    deploy_location = config[""basic""][""modelLocation""]
    saved_model_file = os.path.join(deploy_location,'etc','config.json')    
    print(predict_config)
    with open (saved_model_file,'w') as f:
          json.dump(predict_config, f)      
    f.close()    
def save_model(config, model):
    model_name = config[""basic""][""modelName""]
    model_version = config[""basic""][""modelVersion""]
    analysis_type = config[""basic""][""analysisType""]
    deploy_location = config[""basic""][""modelLocation""]
    if analysis_type[""classification""] == ""True"":
        problem_type = ""classification""
    if analysis_type[""regression""] == ""True"":
        problem_type = ""regression""
    print(""model_name"", model_name)
    print(""model_version"", model_version)
    print(""problem_type"", problem_type)
    print(""deploy_location"", deploy_location)
    file_name = problem_type + '_' + model_version + "".sav""
    saved_model = os.path.join(deploy_location,'model',file_name)
    print(""Save trained model to directory: "", save_model)
    with open (saved_model,'wb') as f:
        pkl.dump(model,f)        
    f.close()
    predict_config['modelLocation'] = file_name
def save_pkl(model, filename):
    with open(filename, 'wb') as f:
        pkl.dump(model, f, 
            protocol=pkl.HIGHEST_PROTOCOL)


def dask_findiforestOutlier(X):
    print(""Outlier removal with Isolation Forest..."")
    isolation_forest = IsolationForest(n_estimators=100)
    with joblib.parallel_backend('dask'):
        isolation_forest.fit(X)
        y_pred_train = isolation_forest.fit_predict(X)
    mask_isoForest = y_pred_train != -1
    return mask_isoForest

def training(configFile):
    start_time = time.time()
    config = load_config_json(configFile)

    data_dir = config[""basic""][""dataLocation""]

    n_workers = int(config[""advance""]
                        [""distributedlearner_config""]
                        [""n_workers""])
    npartitions = int(config[""advance""]
                                [""distributedlearner_config""]
                                [""npartitions""])

    threads_per_worker = int(config[""advance""]
                                    [""distributedlearner_config""]
                                    [""threads_per_worker""])
    predict_config['modelName'] = config[""basic""][""modelName""]
    predict_config['modelVersion'] = config[""basic""][""modelVersion""]    
    predict_config['targetFeature'] = config[""basic""][""targetFeature""]
    predict_config['trainingFeatures'] = config[""basic""][""trainingFeatures""]    
    predict_config['dataLocation'] = config[""basic""][""dataLocation""]    
    predict_config['n_workers'] = n_workers
    predict_config['npartitions'] = npartitions
    predict_config['threads_per_worker'] = threads_per_worker   
    if config['basic']['analysisType'][""classification""] == ""True"":
        problemType = ""classification""
        oProblemType = ""Distributed Classification""
    if config['basic']['analysisType'][""regression""] == ""True"":    
        problemType = ""regression""
        oProblemType = ""Distributed Regression""    
    predict_config['analysisType'] = problemType
    predict_config['scoringCriteria'] = ''    
    target_feature = config[""basic""][""targetFeature""]
    training_features = config[""basic""][""trainingFeatures""]
    deploy_location = config[""basic""][""deployLocation""]
    
    is_xgb_class = config[""basic""] \
            [""algorithms""][""classification""] \
            [""Distributed Extreme Gradient Boosting (XGBoost)""]

    is_lgbm_class = config[""basic""] \
            [""algorithms""][""classification""] \
            [""Distributed Light Gradient Boosting (LightGBM)""]
    
    is_xgb_regress = config[""basic""] \
            [""algorithms""][""regression""] \
            [""Distributed Extreme Gradient Boosting (XGBoost)""]

    is_lgbm_regress = config[""basic""] \
            [""algorithms""][""regression""] \
            [""Distributed Light Gradient Boosting (LightGBM)""]
    
    if is_xgb_class==""True"" or is_xgb_regress==""True"":
        algorithm = ""Distributed Extreme Gradient Boosting (XGBoost)""
        predict_config['algorithm'] = algorithm
    if is_lgbm_class==""True"" or is_lgbm_regress==""True"":
        algorithm = ""Distributed Light Gradient Boosting (LightGBM)""
        predict_config['algorithm'] = algorithm
    
    cluster = dask.distributed.LocalCluster(n_workers=n_workers,
                        threads_per_worker=threads_per_worker,
                        # dashboard_address=""127.0.0.1:8787""
                        )
    client = dask.distributed.Client(cluster)
    df_dask = load_data_dask(data_dir, npartitions=npartitions)
    deployFolder = config[""basic""][""deployLocation""]
    modelName = config[""basic""][""modelName""]
    modelName = modelName.replace("" "", ""_"")
    modelVersion = config[""basic""][""modelVersion""]
    modelLocation = os.path.join(deployFolder,modelName)
    os.makedirs(modelLocation,exist_ok = True)
    deployLocation = os.path.join(modelLocation,modelVersion)
    predict_config['deployLocation'] = deployLocation
    try:
        os.makedirs(deployLocation)
    except OSError as e:
        shutil.rmtree(deployLocation)
        time.sleep(2)
        os.makedirs(deployLocation)
    modelFolderLocation = os.path.join(deployLocation,'model')
    try:
        os.makedirs(modelFolderLocation)
    except OSError as e:        
        print(""\nModel Folder Already Exists"")
    etcFolderLocation = os.path.join(deployLocation,'etc')
    try:
        os.makedirs(etcFolderLocation)
    except OSError as e:        
        print(""\ETC Folder Already Exists"")    
    logFolderLocation = os.path.join(deployLocation,'log')
    try:
        os.makedirs(logFolderLocation)
    except OSError as e:
        print(""\nLog Folder Already Exists"")
    logFileName=os.path.join(logFolderLocation,'model_training_logs.log')   
    outputjsonFile=os.path.join(deployLocation,'etc','output.json')  
    filehandler = logging.FileHandler(logFileName, 'w','utf-8')
    formatter = logging.Formatter('%(message)s')
    filehandler.setFormatter(formatter)
    log = logging.getLogger('eion')
    log.propagate = False
    for hdlr in log.handlers[:]:  # remove the existing file handlers
        if isinstance(hdlr,logging.FileHandler):
            log.removeHandler(hdlr)
    log.addHandler(filehandler)
    log.setLevel(logging.INFO)
    log.info('Status:-|... Distributed Learning Started')    
    config['basic']['modelLocation'] = deployLocation
    # Get input for EDA
    # descr, corr = get_dask_eda(df_dask=df_dask)
    #print(descr)
    # print(corr)
    #print(df_dask.columns)
    #print(""target feature"", target_feature)
    df_dask = df_dask.dropna(subset=[target_feature])
    if is_xgb_class == ""True"" or is_lgbm_class == ""True"":
        df_dask = df_dask.categorize(columns=[target_feature])
        df_dask[target_feature] = df_dask[target_feature].astype('category')
        df_dask[target_feature] = df_dask[target_feature].cat.as_known()
        label_mapping = dict(enumerate(df_dask[target_feature].cat.categories))
        df_dask[target_feature] = df_dask[target_feature].cat.codes
        label_mapping_file =os.path.join(deployLocation,'etc','label_mapping.json') 
        with open(label_mapping_file, 'w') as f:
            json.dump(label_mapping, f)
                                                       
    if config[""advance""][""profiler""][""removeDuplicate""] == ""True"":
        df_dask = df_dask.drop_duplicates()
        
    # Need to dropna for case of categoricalFillMethod
    # if config[""advance""][""profiler""][""numericalFillMethod""][""Drop""] == ""True"":
    #     df_dask = df_dask.dropna()
    trainingFeatures = config[""basic""][""trainingFeatures""].split(',')
    if target_feature not in trainingFeatures:
        trainingFeatures.append(target_feature)
    df_dask = df_dask[trainingFeatures]
    y = df_dask[target_feature]
    X = df_dask.drop(target_feature, axis=1)
    
    print(""after X.shape, y.shape"", X.shape, y.shape)

    X_train, X_test, y_train, y_test = dask_ml.model_selection.train_test_split(X, y,
                                test_size=0.2, random_state=0)
    trainingFeatures = config[""basic""][""trainingFeatures""].split(',')       
    
    outputJson = None
    conf_matrix_dict = {}
    train_conf_matrix_dict = {}                           
    try:                            
        if is_xgb_class == ""True"":
            modelName = 'Distributed Extreme Gradient Boosting (XGBoost)'
            dask_model, X_train, X_test = train_xgb_classification(client, X_train, y_train, X_test, config)
            class_names = list(label_mapping.values())
            _, _, train_class_report, train_conf_matrix, train_roc_auc = evaluate_model_classification(dask_model, config,
                X_train, y_train, class_names)           
            scoringCreteria,score, class_report, conf_matrix, roc_auc = evaluate_model_classification(dask_model, config,
                X_test, y_test, class_names)
            for i in range(len(conf_matrix)):
                conf_matrix_dict_1 = {} 
                for j in range(len(conf_matrix[i])):
                    conf_matrix_dict_1['pre:' + str(class_names[j])] = int(conf_matrix[i][j])
                conf_matrix_dict['act:'+ str(class_names[i])] = conf_matrix_dict_1

            for i in range(len(train_conf_matrix)):
                train_conf_matrix_dict_1 = {} 
                for j in range(len(train_conf_matrix[i])):
                    train_conf_matrix_dict_1['pre:' + str(class_names[j])] = int(train_conf_matrix[i][j])
                train_conf_matrix_dict['act:'+ str(class_names[i])] = train_conf_matrix_dict_1
            # print(roc_auc)
            outputJson = {'status':'SUCCESS','data':{'ModelType':oProblemType,\
                    'deployLocation':deployLocation,'BestModel':modelName,'BestScore':score,'ScoreType':scoringCreteria,\
                    'matrix':{'ConfusionMatrix':conf_matrix_dict,'ClassificationReport':class_report,'ROC_AUC_SCORE':roc_auc},\
                    'trainmatrix':{'ConfusionMatrix':train_conf_matrix_dict,'ClassificationReport':train_class_report,'ROC_AUC_SCORE':train_roc_auc},\
                    'featuresused':trainingFeatures,'targetFeature':target_feature,'EvaluatedModels':[{'Model':modelName,'Score':score}],
                    'LogFile':logFileName}} 
        if is_lgbm_class == ""True"":
            modelName = 'Distributed Light Gradient Boosting (LightGBM)'    
            dask_model, X_train, X_test = train_lgbm_classification(client, X_train, y_train, X_test, config)
            class_names = list(label_mapping.values())
            _, _, train_class_report, train_conf_matrix, train_roc_auc = evaluate_model_classification(dask_model, config,
                X_train, y_train, class_names)
            scoringCreteria,score, class_report, conf_matrix, roc_auc = evaluate_model_classification(dask_model, config,
                X_test, y_test, class_names)
            for i in range(len(conf_matrix)):
                conf_matrix_dict_1 = {} 
                for j in range(len(conf_matrix[i])):
                    conf_matrix_dict_1['pre:' + str(class_names[j])] = int(conf_matrix[i][j])
                conf_matrix_dict['act:'+ str(class_names[i])] = conf_matrix_dict_1

            for i in range(len(train_conf_matrix)):
                train_conf_matrix_dict_1 = {} 
                for j in range(len(train_conf_matrix[i])):
                    train_conf_matrix_dict_1['pre:' + str(class_names[j])] = int(train_conf_matrix[i][j])
                train_conf_matrix_dict['act:'+ str(class_names[i])] = train_conf_matrix_dict_1

            outputJson = {'status':'SUCCESS','data':{'ModelType':oProblemType,\
                    'deployLocation':deployLocation,'BestModel':modelName,'BestScore':score,'ScoreType':scoringCreteria,\
                    'matrix':{'ConfusionMatrix':conf_matrix_dict,'ClassificationReport':class_report,'ROC_AUC_SCORE':roc_auc},\
                    'trainmatrix':{'ConfusionMatrix':train_conf_matrix_dict,'ClassificationReport':train_class_report,'ROC_AUC_SCORE':train_roc_auc},\
                    'featuresused':trainingFeatures,'targetFeature':target_feature,'EvaluatedModels':[{'Model':modelName,'Score':score}],
                    'LogFile':logFileName}} 
        if is_xgb_regress == ""True"":
            modelName = 'Distributed Extreme Gradient Boosting (XGBoost)'    
            dask_model, X_train, X_test = train_xgb_regression(client, X_train, y_train, X_test, config)
            _, _, train_mse, train_rmse, train_norm_rmse, train_r2, train_mae, train_mape = evaluate_model_regression(dask_model, config, 
                    X_train, y_train)
            scoringCreteria, score, mse, rmse, norm_rmse, r2, mae, mape = evaluate_model_regression(dask_model, config, 
                    X_test, y_test)
            outputJson = {'status':'SUCCESS','data':{'ModelType':oProblemType,\
                    'deployLocation':deployLocation,'BestModel':modelName,'BestScore':score,'ScoreType':scoringCreteria,\
                    'matrix':{'MAE':mae,'R2Score':r2,'MSE':mse,'MAPE':mape,'RMSE':rmse,'Normalised RMSE(%)':norm_rmse}, \
                    'trainmatrix':{'MAE':train_mae,'R2Score':train_r2,'MSE':train_mse,'MAPE':train_mape,'RMSE':train_rmse,'Normalised RMSE(%)':train_norm_rmse}, \
                    'featuresused':trainingFeatures,'targetFeature':target_feature,'EvaluatedModels':[{'Model':modelName,'Score':score}],
                    'LogFile':logFileName}}  
        if is_lgbm_regress == ""True"":
            modelName = 'Distributed Light Gradient Boosting (LightGBM)'    
            dask_model, X_train, X_test = train_lgbm_regression(client, X_train, y_train, X_test, config) 
            _, _, train_mse, train_rmse, train_norm_rmse, train_r2, train_mae, train_mape = evaluate_model_regression(dask_model, config, 
                    X_train, y_train)
            scoringCreteria, score, mse, rmse, norm_rmse, r2, mae, mape = evaluate_model_regression(dask_model, config, 
                    X_test, y_test)
            outputJson = {'status':'SUCCESS','data':{'ModelType':oProblemType,\
                    'deployLocation':deployLocation,'BestModel':modelName,'BestScore':score,'ScoreType':scoringCreteria,\
                    'matrix':{'MAE':mae,'R2Score':r2,'MSE':mse,'MAPE':mape,'RMSE':rmse,'Normalised RMSE(%)':norm_rmse}, \
                    'trainmatrix':{'MAE':train_mae,'R2Score':train_r2,'MSE':train_mse,'MAPE':train_mape,'RMSE':train_rmse,'Normalised RMSE(%)':train_norm_rmse}, \
                    'featuresused':trainingFeatures,'targetFeature':target_feature,'EvaluatedModels':[{'Model':modelName,'Score':score}],
                    'LogFile':logFileName}}  
        src = os.path.join(os.path.dirname(os.path.abspath(__file__)),'..','utilities','dl_aion_predict.py')
        shutil.copy2(src,deployLocation)
        os.rename(os.path.join(deployLocation,'dl_aion_predict.py'),os.path.join(deployLocation,'aion_predict.py'))    
          
    except Exception as e:
        outputJson = {""status"":""FAIL"",""message"":str(e)}
        print(e)
    client.close()
    cluster.close()
    log.info('Status:-|... Distributed Learning Completed')    
    with open(outputjsonFile, 'w') as f:
        json.dump(outputJson, f)
    f.close()
    output_json = json.dumps(outputJson)  
    log.info('aion_learner_status:'+str(output_json))    
    for hdlr in log.handlers[:]:  # remove the existing file handlers
        if isinstance(hdlr,logging.FileHandler):
            hdlr.close()
            log.removeHandler(hdlr)
    print(""\n"")
    print(""aion_learner_status:"",output_json)
    print(""\n"")
    end_time = time.time()  
    print(""--- %s processing time (sec) ---"" % (end_time - start_time))      "
dataset.py,"""""""
The :mod:`dataset <surprise.dataset>` module defines the :class:`Dataset` class
and other subclasses which are used for managing datasets.

Users may use both *built-in* and user-defined datasets (see the
:ref:`getting_started` page for examples). Right now, three built-in datasets
are available:

* The `movielens-100k <https://grouplens.org/datasets/movielens/>`_ dataset.
* The `movielens-1m <https://grouplens.org/datasets/movielens/>`_ dataset.
* The `Jester <https://eigentaste.berkeley.edu/dataset/>`_ dataset 2.

Built-in datasets can all be loaded (or downloaded if you haven't already)
using the :meth:`Dataset.load_builtin` method.
Summary:

.. autosummary::
    :nosignatures:

    Dataset.load_builtin
    Dataset.load_from_file
    Dataset.load_from_folds
""""""


import itertools
import os
import sys
from collections import defaultdict

from .builtin_datasets import BUILTIN_DATASETS, download_builtin_dataset

from .reader import Reader
from .trainset import Trainset


class Dataset:
    """"""Base class for loading datasets.

    Note that you should never instantiate the :class:`Dataset` class directly
    (same goes for its derived classes), but instead use one of the three
    available methods for loading datasets.""""""

    def __init__(self, reader):

        self.reader = reader

    @classmethod
    def load_builtin(cls, name=""ml-100k"", prompt=True):
        """"""Load a built-in dataset.

        If the dataset has not already been loaded, it will be downloaded and
        saved. You will have to split your dataset using the :meth:`split
        <DatasetAutoFolds.split>` method. See an example in the :ref:`User
        Guide <cross_validate_example>`.

        Args:
            name(:obj:`string`): The name of the built-in dataset to load.
                Accepted values are 'ml-100k', 'ml-1m', and 'jester'.
                Default is 'ml-100k'.
            prompt(:obj:`bool`): Prompt before downloading if dataset is not
                already on disk.
                Default is True.

        Returns:
            A :obj:`Dataset` object.

        Raises:
            ValueError: If the ``name`` parameter is incorrect.
        """"""

        try:
            dataset = BUILTIN_DATASETS[name]
        except KeyError:
            raise ValueError(
                ""unknown dataset ""
                + name
                + "". Accepted values are ""
                + "", "".join(BUILTIN_DATASETS.keys())
                + "".""
            )

        # if dataset does not exist, offer to download it
        if not os.path.isfile(dataset.path):
            answered = not prompt
            while not answered:
                print(
                    ""Dataset "" + name + "" could not be found. Do you want ""
                    ""to download it? [Y/n] "",
                    end="""",
                )
                choice = input().lower()

                if choice in [""yes"", ""y"", """", ""omg this is so nice of you!!""]:
                    answered = True
                elif choice in [""no"", ""n"", ""hell no why would i want that?!""]:
                    answered = True
                    print(""Ok then, I'm out!"")
                    sys.exit()

            download_builtin_dataset(name)

        reader = Reader(**dataset.reader_params)

        return cls.load_from_file(file_path=dataset.path, reader=reader)

    @classmethod
    def load_from_file(cls, file_path, reader):
        """"""Load a dataset from a (custom) file.

        Use this if you want to use a custom dataset and all of the ratings are
        stored in one file. You will have to split your dataset using the
        :meth:`split <DatasetAutoFolds.split>` method. See an example in the
        :ref:`User Guide <load_from_file_example>`.


        Args:
            file_path(:obj:`string`): The path to the file containing ratings.
            reader(:obj:`Reader <surprise.reader.Reader>`): A reader to read
                the file.
        """"""

        return DatasetAutoFolds(ratings_file=file_path, reader=reader)

    @classmethod
    def load_from_folds(cls, folds_files, reader):
        """"""Load a dataset where folds (for cross-validation) are predefined by
        some files.

        The purpose of this method is to cover a common use case where a
        dataset is already split into predefined folds, such as the
        movielens-100k dataset which defines files u1.base, u1.test, u2.base,
        u2.test, etc... It can also be used when you don't want to perform
        cross-validation but still want to specify your training and testing
        data (which comes down to 1-fold cross-validation anyway). See an
        example in the :ref:`User Guide <load_from_folds_example>`.


        Args:
            folds_files(:obj:`iterable` of :obj:`tuples`): The list of the
                folds. A fold is a tuple of the form ``(path_to_train_file,
                path_to_test_file)``.
            reader(:obj:`Reader <surprise.reader.Reader>`): A reader to read
                the files.

        """"""

        return DatasetUserFolds(folds_files=folds_files, reader=reader)

    @classmethod
    def load_from_df(cls, df, reader):
        """"""Load a dataset from a pandas dataframe.

        Use this if you want to use a custom dataset that is stored in a pandas
        dataframe. See the :ref:`User Guide<load_from_df_example>` for an
        example.

        Args:
            df(`Dataframe`): The dataframe containing the ratings. It must have
                three columns, corresponding to the user (raw) ids, the item
                (raw) ids, and the ratings, in this order.
            reader(:obj:`Reader <surprise.reader.Reader>`): A reader to read
                the file. Only the ``rating_scale`` field needs to be
                specified.
        """"""

        return DatasetAutoFolds(reader=reader, df=df)

    def read_ratings(self, file_name):
        """"""Return a list of ratings (user, item, rating, timestamp) read from
        file_name""""""

        with open(os.path.expanduser(file_name)) as f:
            raw_ratings = [
                self.reader.parse_line(line)
                for line in itertools.islice(f, self.reader.skip_lines, None)
            ]
        return raw_ratings

    def construct_trainset(self, raw_trainset):

        raw2inner_id_users = {}
        raw2inner_id_items = {}

        current_u_index = 0
        current_i_index = 0

        ur = defaultdict(list)
        ir = defaultdict(list)

        # user raw id, item raw id, translated rating, time stamp
        for urid, irid, r, timestamp in raw_trainset:
            try:
                uid = raw2inner_id_users[urid]
            except KeyError:
                uid = current_u_index
                raw2inner_id_users[urid] = current_u_index
                current_u_index += 1
            try:
                iid = raw2inner_id_items[irid]
            except KeyError:
                iid = current_i_index
                raw2inner_id_items[irid] = current_i_index
                current_i_index += 1

            ur[uid].append((iid, r))
            ir[iid].append((uid, r))

        n_users = len(ur)  # number of users
        n_items = len(ir)  # number of items
        n_ratings = len(raw_trainset)

        trainset = Trainset(
            ur,
            ir,
            n_users,
            n_items,
            n_ratings,
            self.reader.rating_scale,
            raw2inner_id_users,
            raw2inner_id_items,
        )

        return trainset

    def construct_testset(self, raw_testset):

        return [(ruid, riid, r_ui_trans) for (ruid, riid, r_ui_trans, _) in raw_testset]


class DatasetUserFolds(Dataset):
    """"""A derived class from :class:`Dataset` for which folds (for
    cross-validation) are predefined.""""""

    def __init__(self, folds_files=None, reader=None):

        Dataset.__init__(self, reader)
        self.folds_files = folds_files

        # check that all files actually exist.
        for train_test_files in self.folds_files:
            for f in train_test_files:
                if not os.path.isfile(os.path.expanduser(f)):
                    raise ValueError(""File "" + str(f) + "" does not exist."")


class DatasetAutoFolds(Dataset):
    """"""A derived class from :class:`Dataset` for which folds (for
    cross-validation) are not predefined. (Or for when there are no folds at
    all).""""""

    def __init__(self, ratings_file=None, reader=None, df=None):

        Dataset.__init__(self, reader)
        self.has_been_split = False  # flag indicating if split() was called.

        if ratings_file is not None:
            self.ratings_file = ratings_file
            self.raw_ratings = self.read_ratings(self.ratings_file)
        elif df is not None:
            self.df = df
            self.raw_ratings = [
                (uid, iid, float(r), None)
                for (uid, iid, r) in self.df.itertuples(index=False)
            ]
        else:
            raise ValueError(""Must specify ratings file or dataframe."")

    def build_full_trainset(self):
        """"""Do not split the dataset into folds and just return a trainset as
        is, built from the whole dataset.

        User can then query for predictions, as shown in the :ref:`User Guide
        <train_on_whole_trainset>`.

        Returns:
            The :class:`Trainset <surprise.Trainset>`.
        """"""

        return self.construct_trainset(self.raw_ratings)
"
dump.py,"""""""
The :mod:`dump <surprise.dump>` module defines the :func:`dump` function.
""""""

import pickle


def dump(file_name, predictions=None, algo=None, verbose=0):
    """"""A basic wrapper around Pickle to serialize a list of prediction and/or
    an algorithm on drive.

    What is dumped is a dictionary with keys ``'predictions'`` and ``'algo'``.

    Args:
        file_name(str): The name (with full path) specifying where to dump the
            predictions.
        predictions(list of :obj:`Prediction\
            <surprise.prediction_algorithms.predictions.Prediction>`): The
            predictions to dump.
        algo(:class:`Algorithm\
            <surprise.prediction_algorithms.algo_base.AlgoBase>`, optional):
            The algorithm to dump.
        verbose(int): Level of verbosity. If ``1``, then a message indicates
            that the dumping went successfully. Default is ``0``.
    """"""

    dump_obj = {""predictions"": predictions, ""algo"": algo}
    pickle.dump(dump_obj, open(file_name, ""wb""), protocol=pickle.HIGHEST_PROTOCOL)

    if verbose:
        print(""The dump has been saved as file"", file_name)


def load(file_name):
    """"""A basic wrapper around Pickle to deserialize a list of prediction and/or
    an algorithm that were dumped on drive using :func:`dump()
    <surprise.dump.dump>`.

    Args:
        file_name(str): The path of the file from which the algorithm is
            to be loaded

    Returns:
        A tuple ``(predictions, algo)`` where ``predictions`` is a list of
        :class:`Prediction
        <surprise.prediction_algorithms.predictions.Prediction>` objects and
        ``algo`` is an :class:`Algorithm
        <surprise.prediction_algorithms.algo_base.AlgoBase>` object. Depending
        on what was dumped, some of these may be ``None``.

    """"""

    dump_obj = pickle.load(open(file_name, ""rb""))

    return dump_obj[""predictions""], dump_obj[""algo""]
"
accuracy.py,"""""""
The :mod:`surprise.accuracy` module provides tools for computing accuracy
metrics on a set of predictions.

Available accuracy metrics:

.. autosummary::
    :nosignatures:

    rmse
    mse
    mae
    fcp
""""""

from collections import defaultdict

import numpy as np


def rmse(predictions, verbose=True):
    """"""Compute RMSE (Root Mean Squared Error).

    .. math::
        \\text{RMSE} = \\sqrt{\\frac{1}{|\\hat{R}|} \\sum_{\\hat{r}_{ui} \\in
        \\hat{R}}(r_{ui} - \\hat{r}_{ui})^2}.

    Args:
        predictions (:obj:`list` of :obj:`Prediction\
            <surprise.prediction_algorithms.predictions.Prediction>`):
            A list of predictions, as returned by the :meth:`test()
            <surprise.prediction_algorithms.algo_base.AlgoBase.test>` method.
        verbose: If True, will print computed value. Default is ``True``.


    Returns:
        The Root Mean Squared Error of predictions.

    Raises:
        ValueError: When ``predictions`` is empty.
    """"""

    if not predictions:
        raise ValueError(""Prediction list is empty."")

    mse = np.mean(
        [float((true_r - est) ** 2) for (_, _, true_r, est, _) in predictions]
    )
    rmse_ = np.sqrt(mse)

    if verbose:
        print(f""RMSE: {rmse_:1.4f}"")

    return rmse_


def mse(predictions, verbose=True):
    """"""Compute MSE (Mean Squared Error).

    .. math::
        \\text{MSE} = \\frac{1}{|\\hat{R}|} \\sum_{\\hat{r}_{ui} \\in
        \\hat{R}}(r_{ui} - \\hat{r}_{ui})^2.

    Args:
        predictions (:obj:`list` of :obj:`Prediction\
            <surprise.prediction_algorithms.predictions.Prediction>`):
            A list of predictions, as returned by the :meth:`test()
            <surprise.prediction_algorithms.algo_base.AlgoBase.test>` method.
        verbose: If True, will print computed value. Default is ``True``.


    Returns:
        The Mean Squared Error of predictions.

    Raises:
        ValueError: When ``predictions`` is empty.
    """"""

    if not predictions:
        raise ValueError(""Prediction list is empty."")

    mse_ = np.mean(
        [float((true_r - est) ** 2) for (_, _, true_r, est, _) in predictions]
    )

    if verbose:
        print(f""MSE: {mse_:1.4f}"")

    return mse_


def mae(predictions, verbose=True):
    """"""Compute MAE (Mean Absolute Error).

    .. math::
        \\text{MAE} = \\frac{1}{|\\hat{R}|} \\sum_{\\hat{r}_{ui} \\in
        \\hat{R}}|r_{ui} - \\hat{r}_{ui}|

    Args:
        predictions (:obj:`list` of :obj:`Prediction\
            <surprise.prediction_algorithms.predictions.Prediction>`):
            A list of predictions, as returned by the :meth:`test()
            <surprise.prediction_algorithms.algo_base.AlgoBase.test>` method.
        verbose: If True, will print computed value. Default is ``True``.


    Returns:
        The Mean Absolute Error of predictions.

    Raises:
        ValueError: When ``predictions`` is empty.
    """"""

    if not predictions:
        raise ValueError(""Prediction list is empty."")

    mae_ = np.mean([float(abs(true_r - est)) for (_, _, true_r, est, _) in predictions])

    if verbose:
        print(f""MAE:  {mae_:1.4f}"")

    return mae_


def fcp(predictions, verbose=True):
    """"""Compute FCP (Fraction of Concordant Pairs).

    Computed as described in paper `Collaborative Filtering on Ordinal User
    Feedback <https://www.ijcai.org/Proceedings/13/Papers/449.pdf>`_ by Koren
    and Sill, section 5.2.

    Args:
        predictions (:obj:`list` of :obj:`Prediction\
            <surprise.prediction_algorithms.predictions.Prediction>`):
            A list of predictions, as returned by the :meth:`test()
            <surprise.prediction_algorithms.algo_base.AlgoBase.test>` method.
        verbose: If True, will print computed value. Default is ``True``.


    Returns:
        The Fraction of Concordant Pairs.

    Raises:
        ValueError: When ``predictions`` is empty.
    """"""

    if not predictions:
        raise ValueError(""Prediction list is empty."")

    predictions_u = defaultdict(list)
    nc_u = defaultdict(int)
    nd_u = defaultdict(int)

    for u0, _, r0, est, _ in predictions:
        predictions_u[u0].append((r0, est))

    for u0, preds in predictions_u.items():
        for r0i, esti in preds:
            for r0j, estj in preds:
                if esti > estj and r0i > r0j:
                    nc_u[u0] += 1
                if esti >= estj and r0i < r0j:
                    nd_u[u0] += 1

    nc = np.mean(list(nc_u.values())) if nc_u else 0
    nd = np.mean(list(nd_u.values())) if nd_u else 0

    try:
        fcp = nc / (nc + nd)
    except ZeroDivisionError:
        raise ValueError(
            ""cannot compute fcp on this list of prediction. ""
            + ""Does every user have at least two predictions?""
        )

    if verbose:
        print(f""FCP:  {fcp:1.4f}"")

    return fcp
"
reader.py,"""""""This module contains the Reader class.""""""


from .builtin_datasets import BUILTIN_DATASETS


class Reader:
    """"""The Reader class is used to parse a file containing ratings.

    Such a file is assumed to specify only one rating per line, and each line
    needs to respect the following structure: ::

        user ; item ; rating ; [timestamp]

    where the order of the fields and the separator (here ';') may be
    arbitrarily defined (see below).  brackets indicate that the timestamp
    field is optional.

    For each built-in dataset, Surprise also provides predefined readers which
    are useful if you want to use a custom dataset that has the same format as
    a built-in one (see the ``name`` parameter).


    Args:
        name(:obj:`string`, optional): If specified, a Reader for one of the
            built-in datasets is returned and any other parameter is ignored.
            Accepted values are 'ml-100k', 'ml-1m', and 'jester'. Default
            is ``None``.
        line_format(:obj:`string`): The fields names, in the order at which
            they are encountered on a line. Please note that ``line_format`` is
            always space-separated (use the ``sep`` parameter). Default is
            ``'user item rating'``.
        sep(char): the separator between fields. Example : ``';'``.
        rating_scale(:obj:`tuple`, optional): The rating scale used for every
            rating.  Default is ``(1, 5)``.
        skip_lines(:obj:`int`, optional): Number of lines to skip at the
            beginning of the file. Default is ``0``.

    """"""

    def __init__(
        self,
        name=None,
        line_format=""user item rating"",
        sep=None,
        rating_scale=(1, 5),
        skip_lines=0,
    ):

        if name:
            try:
                self.__init__(**BUILTIN_DATASETS[name].reader_params)
            except KeyError:
                raise ValueError(
                    ""unknown reader ""
                    + name
                    + "". Accepted values are ""
                    + "", "".join(BUILTIN_DATASETS.keys())
                    + "".""
                )
        else:
            self.sep = sep
            self.skip_lines = skip_lines
            self.rating_scale = rating_scale

            lower_bound, higher_bound = rating_scale

            splitted_format = line_format.split()

            entities = [""user"", ""item"", ""rating""]
            if ""timestamp"" in splitted_format:
                self.with_timestamp = True
                entities.append(""timestamp"")
            else:
                self.with_timestamp = False

            # check that all fields are correct
            if any(field not in entities for field in splitted_format):
                raise ValueError(""line_format parameter is incorrect."")

            self.indexes = [splitted_format.index(entity) for entity in entities]

    def parse_line(self, line):
        """"""Parse a line.

        Ratings are translated so that they are all strictly positive.

        Args:
            line(str): The line to parse

        Returns:
            tuple: User id, item id, rating and timestamp. The timestamp is set
            to ``None`` if it does no exist.
        """"""

        line = line.split(self.sep)
        try:
            if self.with_timestamp:
                uid, iid, r, timestamp = (line[i].strip() for i in self.indexes)
            else:
                uid, iid, r = (line[i].strip() for i in self.indexes)
                timestamp = None

        except IndexError:
            raise ValueError(
                ""Impossible to parse line. Check the line_format"" "" and sep parameters.""
            )

        return uid, iid, float(r), timestamp
"
__init__.py,"from pkg_resources import get_distribution

from . import dump, model_selection
from .builtin_datasets import get_dataset_dir

from .dataset import Dataset

from .prediction_algorithms import (
    AlgoBase,
    BaselineOnly,
    CoClustering,
    KNNBaseline,
    KNNBasic,
    KNNWithMeans,
    KNNWithZScore,
    NMF,
    NormalPredictor,
    Prediction,
    PredictionImpossible,
    SlopeOne,
    SVD,
    SVDpp,
)
from .reader import Reader
from .trainset import Trainset

__all__ = [
    ""AlgoBase"",
    ""NormalPredictor"",
    ""BaselineOnly"",
    ""KNNBasic"",
    ""KNNWithMeans"",
    ""KNNBaseline"",
    ""SVD"",
    ""SVDpp"",
    ""NMF"",
    ""SlopeOne"",
    ""CoClustering"",
    ""PredictionImpossible"",
    ""Prediction"",
    ""Dataset"",
    ""Reader"",
    ""Trainset"",
    ""dump"",
    ""KNNWithZScore"",
    ""get_dataset_dir"",
    ""model_selection"",
]

__version__ = get_distribution(""scikit-surprise"").version
"
builtin_datasets.py,"""""""This module contains built-in datasets that can be automatically
downloaded.""""""

import errno
import os
import zipfile
from collections import namedtuple

from os.path import join
from urllib.request import urlretrieve


def get_dataset_dir():
    """"""Return folder where downloaded datasets and other data are stored.
    Default folder is ~/.surprise_data/, but it can also be set by the
    environment variable ``SURPRISE_DATA_FOLDER``.
    """"""

    folder = os.environ.get(
        ""SURPRISE_DATA_FOLDER"", os.path.expanduser(""~"") + ""/.surprise_data/""
    )
    try:
        os.makedirs(folder)
    except OSError as e:
        if e.errno != errno.EEXIST:
            # reraise exception if folder does not exist and creation failed.
            raise

    return folder


# a builtin dataset has
# - an url (where to download it)
# - a path (where it is located on the filesystem)
# - the parameters of the corresponding reader
BuiltinDataset = namedtuple(""BuiltinDataset"", [""url"", ""path"", ""reader_params""])

BUILTIN_DATASETS = {
    ""ml-100k"": BuiltinDataset(
        url=""https://files.grouplens.org/datasets/movielens/ml-100k.zip"",
        path=join(get_dataset_dir(), ""ml-100k/ml-100k/u.data""),
        reader_params=dict(
            line_format=""user item rating timestamp"", rating_scale=(1, 5), sep=""\t""
        ),
    ),
    ""ml-1m"": BuiltinDataset(
        url=""https://files.grouplens.org/datasets/movielens/ml-1m.zip"",
        path=join(get_dataset_dir(), ""ml-1m/ml-1m/ratings.dat""),
        reader_params=dict(
            line_format=""user item rating timestamp"", rating_scale=(1, 5), sep=""::""
        ),
    ),
    ""jester"": BuiltinDataset(
        url=""https://eigentaste.berkeley.edu/dataset/archive/jester_dataset_2.zip"",
        path=join(get_dataset_dir(), ""jester/jester_ratings.dat""),
        reader_params=dict(line_format=""user item rating"", rating_scale=(-10, 10)),
    ),
}


def download_builtin_dataset(name):

    dataset = BUILTIN_DATASETS[name]

    print(""Trying to download dataset from "" + dataset.url + ""..."")
    tmp_file_path = join(get_dataset_dir(), ""tmp.zip"")
    urlretrieve(dataset.url, tmp_file_path)

    with zipfile.ZipFile(tmp_file_path, ""r"") as tmp_zip:
        tmp_zip.extractall(join(get_dataset_dir(), name))

    os.remove(tmp_file_path)
    print(""Done! Dataset"", name, ""has been saved to"", join(get_dataset_dir(), name))
"
__main__.py,"#!/usr/bin/env python

import argparse
import os
import random as rd
import shutil
import sys

import numpy as np

import surprise.dataset as dataset
from surprise import __version__
from surprise.builtin_datasets import get_dataset_dir
from surprise.dataset import Dataset
from surprise.model_selection import cross_validate, KFold, PredefinedKFold

from surprise.prediction_algorithms import (
    BaselineOnly,
    CoClustering,
    KNNBaseline,
    KNNBasic,
    KNNWithMeans,
    NMF,
    NormalPredictor,
    SlopeOne,
    SVD,
    SVDpp,
)
from surprise.reader import Reader  # noqa


def main():
    class MyParser(argparse.ArgumentParser):
        """"""A parser which prints the help message when an error occurs. Taken from
        https://stackoverflow.com/questions/4042452/display-help-message-with-python-argparse-when-script-is-called-without-any-argu.""""""  # noqa

        def error(self, message):
            sys.stderr.write(""error: %s\n"" % message)
            self.print_help()
            sys.exit(2)

    parser = MyParser(
        description=""Evaluate the performance of a rating prediction ""
        + ""algorithm ""
        + ""on a given dataset using cross validation. You can use a built-in ""
        + ""or a custom dataset, and you can choose to automatically split the ""
        + ""dataset into folds, or manually specify train and test files. ""
        + ""Please refer to the documentation page ""
        + ""(https://surprise.readthedocs.io/) for more details."",
        epilog=""""""Example:\n
        surprise -algo SVD -params ""{'n_epochs': 5, 'verbose': True}""
        -load-builtin ml-100k -n-folds 3"""""",
    )

    algo_choices = {
        ""NormalPredictor"": NormalPredictor,
        ""BaselineOnly"": BaselineOnly,
        ""KNNBasic"": KNNBasic,
        ""KNNBaseline"": KNNBaseline,
        ""KNNWithMeans"": KNNWithMeans,
        ""SVD"": SVD,
        ""SVDpp"": SVDpp,
        ""NMF"": NMF,
        ""SlopeOne"": SlopeOne,
        ""CoClustering"": CoClustering,
    }

    parser.add_argument(
        ""-algo"",
        type=str,
        choices=algo_choices,
        help=""The prediction algorithm to use. ""
        + ""Allowed values are ""
        + "", "".join(algo_choices.keys())
        + ""."",
        metavar=""<prediction algorithm>"",
    )

    parser.add_argument(
        ""-params"",
        type=str,
        metavar=""<algorithm parameters>"",
        default=""{}"",
        help=""A kwargs dictionary that contains all the ""
        + ""algorithm parameters.""
        + ""Example: \""{'n_epochs': 10}\""."",
    )

    parser.add_argument(
        ""-load-builtin"",
        type=str,
        dest=""load_builtin"",
        metavar=""<dataset name>"",
        default=""ml-100k"",
        help=""The name of the built-in dataset to use.""
        + ""Allowed values are ""
        + "", "".join(dataset.BUILTIN_DATASETS.keys())
        + "". Default is ml-100k."",
    )

    parser.add_argument(
        ""-load-custom"",
        type=str,
        dest=""load_custom"",
        metavar=""<file path>"",
        default=None,
        help=""A file path to custom dataset to use. ""
        + ""Ignored if ""
        + ""-loadbuiltin is set. The -reader parameter needs ""
        + ""to be set."",
    )

    parser.add_argument(
        ""-folds-files"",
        type=str,
        dest=""folds_files"",
        metavar=""<train1 test1 train2 test2... >"",
        default=None,
        help=""A list of custom train and test files. ""
        + ""Ignored if -load-builtin or -load-custom is set. ""
        ""The -reader parameter needs to be set."",
    )

    parser.add_argument(
        ""-reader"",
        type=str,
        metavar=""<reader>"",
        default=None,
        help=""A Reader to read the custom dataset. Example: ""
        + ""\""Reader(line_format='user item rating timestamp',""
        + "" sep='\\t')\"""",
    )

    parser.add_argument(
        ""-n-folds"",
        type=int,
        dest=""n_folds"",
        metavar=""<number of folds>"",
        default=5,
        help=""The number of folds for cross-validation. "" + ""Default is 5."",
    )

    parser.add_argument(
        ""-seed"",
        type=int,
        metavar=""<random seed>"",
        default=None,
        help=""The seed to use for RNG. "" + ""Default is the current system time."",
    )

    parser.add_argument(
        ""--with-dump"",
        dest=""with_dump"",
        action=""store_true"",
        help=""Dump the algorithm ""
        + ""results in a file (one file per fold). ""
        + ""Default is False."",
    )

    parser.add_argument(
        ""-dump-dir"",
        dest=""dump_dir"",
        type=str,
        metavar=""<dir>"",
        default=None,
        help=""Where to dump the files. Ignored if ""
        + ""with-dump is not set. Default is ""
        + os.path.join(get_dataset_dir(), ""dumps/""),
    )

    parser.add_argument(
        ""--clean"",
        dest=""clean"",
        action=""store_true"",
        help=""Remove the "" + get_dataset_dir() + "" directory and exit."",
    )

    parser.add_argument(""-v"", ""--version"", action=""version"", version=__version__)

    args = parser.parse_args()

    if args.clean:
        folder = get_dataset_dir()
        shutil.rmtree(folder)
        print(""Removed"", folder)
        exit()

    # setup RNG
    rd.seed(args.seed)
    np.random.seed(args.seed)

    # setup algorithm
    params = eval(args.params)
    if args.algo is None:
        parser.error(""No algorithm was specified."")
    algo = algo_choices[args.algo](**params)

    # setup dataset
    if args.load_custom is not None:  # load custom and split
        if args.reader is None:
            parser.error(""-reader parameter is needed."")
        reader = eval(args.reader)
        data = Dataset.load_from_file(args.load_custom, reader=reader)
        cv = KFold(n_splits=args.n_folds, random_state=args.seed)

    elif args.folds_files is not None:  # load from files
        if args.reader is None:
            parser.error(""-reader parameter is needed."")
        reader = eval(args.reader)
        folds_files = args.folds_files.split()
        folds_files = [
            (folds_files[i], folds_files[i + 1])
            for i in range(0, len(folds_files) - 1, 2)
        ]
        data = Dataset.load_from_folds(folds_files=folds_files, reader=reader)
        cv = PredefinedKFold()

    else:  # load builtin dataset and split
        data = Dataset.load_builtin(args.load_builtin)
        cv = KFold(n_splits=args.n_folds, random_state=args.seed)

    cross_validate(algo, data, cv=cv, verbose=True)


if __name__ == ""__main__"":
    main()
"
trainset.py,"""""""This module contains the Trainset class.""""""


import numpy as np


class Trainset:
    """"""A trainset contains all useful data that constitute a training set.

    It is used by the :meth:`fit()
    <surprise.prediction_algorithms.algo_base.AlgoBase.fit>` method of every
    prediction algorithm. You should not try to build such an object on your
    own but rather use the :meth:`Dataset.folds()
    <surprise.dataset.Dataset.folds>` method or the
    :meth:`DatasetAutoFolds.build_full_trainset()
    <surprise.dataset.DatasetAutoFolds.build_full_trainset>` method.

    Trainsets are different from :class:`Datasets <surprise.dataset.Dataset>`.
    You can think of a :class:`Dataset <surprise.dataset.Dataset>` as the raw
    data, and Trainsets as higher-level data where useful methods are defined.
    Also, a :class:`Dataset <surprise.dataset.Dataset>` may be comprised of
    multiple Trainsets (e.g. when doing cross validation).


    Attributes:
        ur(:obj:`defaultdict` of :obj:`list`): The users ratings. This is a
            dictionary containing lists of tuples of the form ``(item_inner_id,
            rating)``. The keys are user inner ids.
        ir(:obj:`defaultdict` of :obj:`list`): The items ratings. This is a
            dictionary containing lists of tuples of the form ``(user_inner_id,
            rating)``. The keys are item inner ids.
        n_users: Total number of users :math:`|U|`.
        n_items: Total number of items :math:`|I|`.
        n_ratings: Total number of ratings :math:`|R_{train}|`.
        rating_scale(tuple): The minimum and maximal rating of the rating
            scale.
        global_mean: The mean of all ratings :math:`\\mu`.
    """"""

    def __init__(
        self,
        ur,
        ir,
        n_users,
        n_items,
        n_ratings,
        rating_scale,
        raw2inner_id_users,
        raw2inner_id_items,
    ):

        self.ur = ur
        self.ir = ir
        self.n_users = n_users
        self.n_items = n_items
        self.n_ratings = n_ratings
        self.rating_scale = rating_scale
        self._raw2inner_id_users = raw2inner_id_users
        self._raw2inner_id_items = raw2inner_id_items
        self._global_mean = None
        # inner2raw dicts could be built right now (or even before) but they
        # are not always useful so we wait until we need them.
        self._inner2raw_id_users = None
        self._inner2raw_id_items = None

    def knows_user(self, uid):
        """"""Indicate if the user is part of the trainset.

        A user is part of the trainset if the user has at least one rating.

        Args:
            uid(int): The (inner) user id. See :ref:`this
                note<raw_inner_note>`.
        Returns:
            ``True`` if user is part of the trainset, else ``False``.
        """"""

        return uid in self.ur

    def knows_item(self, iid):
        """"""Indicate if the item is part of the trainset.

        An item is part of the trainset if the item was rated at least once.

        Args:
            iid(int): The (inner) item id. See :ref:`this
                note<raw_inner_note>`.
        Returns:
            ``True`` if item is part of the trainset, else ``False``.
        """"""

        return iid in self.ir

    def to_inner_uid(self, ruid):
        """"""Convert a **user** raw id to an inner id.

        See :ref:`this note<raw_inner_note>`.

        Args:
            ruid(str): The user raw id.

        Returns:
            int: The user inner id.

        Raises:
            ValueError: When user is not part of the trainset.
        """"""

        try:
            return self._raw2inner_id_users[ruid]
        except KeyError:
            raise ValueError(""User "" + str(ruid) + "" is not part of the trainset."")

    def to_raw_uid(self, iuid):
        """"""Convert a **user** inner id to a raw id.

        See :ref:`this note<raw_inner_note>`.

        Args:
            iuid(int): The user inner id.

        Returns:
            str: The user raw id.

        Raises:
            ValueError: When ``iuid`` is not an inner id.
        """"""

        if self._inner2raw_id_users is None:
            self._inner2raw_id_users = {
                inner: raw for (raw, inner) in self._raw2inner_id_users.items()
            }

        try:
            return self._inner2raw_id_users[iuid]
        except KeyError:
            raise ValueError(str(iuid) + "" is not a valid inner id."")

    def to_inner_iid(self, riid):
        """"""Convert an **item** raw id to an inner id.

        See :ref:`this note<raw_inner_note>`.

        Args:
            riid(str): The item raw id.

        Returns:
            int: The item inner id.

        Raises:
            ValueError: When item is not part of the trainset.
        """"""

        try:
            return self._raw2inner_id_items[riid]
        except KeyError:
            raise ValueError(""Item "" + str(riid) + "" is not part of the trainset."")

    def to_raw_iid(self, iiid):
        """"""Convert an **item** inner id to a raw id.

        See :ref:`this note<raw_inner_note>`.

        Args:
            iiid(int): The item inner id.

        Returns:
            str: The item raw id.

        Raises:
            ValueError: When ``iiid`` is not an inner id.
        """"""

        if self._inner2raw_id_items is None:
            self._inner2raw_id_items = {
                inner: raw for (raw, inner) in self._raw2inner_id_items.items()
            }

        try:
            return self._inner2raw_id_items[iiid]
        except KeyError:
            raise ValueError(str(iiid) + "" is not a valid inner id."")

    def all_ratings(self):
        """"""Generator function to iterate over all ratings.

        Yields:
            A tuple ``(uid, iid, rating)`` where ids are inner ids (see
            :ref:`this note <raw_inner_note>`).
        """"""

        for u, u_ratings in self.ur.items():
            for i, r in u_ratings:
                yield u, i, r

    def build_testset(self):
        """"""Return a list of ratings that can be used as a testset in the
        :meth:`test() <surprise.prediction_algorithms.algo_base.AlgoBase.test>`
        method.

        The ratings are all the ratings that are in the trainset, i.e. all the
        ratings returned by the :meth:`all_ratings()
        <surprise.Trainset.all_ratings>` generator. This is useful in
        cases where you want to to test your algorithm on the trainset.
        """"""

        return [
            (self.to_raw_uid(u), self.to_raw_iid(i), r)
            for (u, i, r) in self.all_ratings()
        ]

    def build_anti_testset(self, fill=None):
        """"""Return a list of ratings that can be used as a testset in the
        :meth:`test() <surprise.prediction_algorithms.algo_base.AlgoBase.test>`
        method.

        The ratings are all the ratings that are **not** in the trainset, i.e.
        all the ratings :math:`r_{ui}` where the user :math:`u` is known, the
        item :math:`i` is known, but the rating :math:`r_{ui}`  is not in the
        trainset. As :math:`r_{ui}` is unknown, it is either replaced by the
        :code:`fill` value or assumed to be equal to the mean of all ratings
        :meth:`global_mean <surprise.Trainset.global_mean>`.

        Args:
            fill(float): The value to fill unknown ratings. If :code:`None` the
                global mean of all ratings :meth:`global_mean
                <surprise.Trainset.global_mean>` will be used.

        Returns:
            A list of tuples ``(uid, iid, fill)`` where ids are raw ids.
        """"""
        fill = self.global_mean if fill is None else float(fill)

        anti_testset = []
        for u in self.all_users():
            user_items = {j for (j, _) in self.ur[u]}
            anti_testset += [
                (self.to_raw_uid(u), self.to_raw_iid(i), fill)
                for i in self.all_items()
                if i not in user_items
            ]
        return anti_testset

    def all_users(self):
        """"""Generator function to iterate over all users.

        Yields:
            Inner id of users.
        """"""
        return range(self.n_users)

    def all_items(self):
        """"""Generator function to iterate over all items.

        Yields:
            Inner id of items.
        """"""
        return range(self.n_items)

    @property
    def global_mean(self):
        if self._global_mean is None:
            self._global_mean = np.mean([r for (_, _, r) in self.all_ratings()])

        return self._global_mean
"
utils.py,"""""""The utils module contains the get_rng function.""""""


import numbers

import numpy as np


def get_rng(random_state):
    """"""Return a 'validated' RNG.

    If random_state is None, use RandomState singleton from numpy.  Else if
    it's an integer, consider it's a seed and initialized an rng with that
    seed. If it's already an rng, return it.
    """"""
    if random_state is None:
        return np.random.mtrand._rand
    elif isinstance(random_state, (numbers.Integral, np.integer)):
        return np.random.RandomState(random_state)
    if isinstance(random_state, np.random.RandomState):
        return random_state
    raise ValueError(
        ""Wrong random state. Expecting None, an int or a numpy ""
        ""RandomState instance, got a ""
        ""{}"".format(type(random_state))
    )
"
search.py,"from abc import ABC, abstractmethod
from itertools import product

import numpy as np
from joblib import delayed, Parallel

from ..dataset import DatasetUserFolds
from ..utils import get_rng

from .split import get_cv
from .validation import fit_and_score


class BaseSearchCV(ABC):
    """"""Base class for hyper parameter search with cross-validation.""""""

    @abstractmethod
    def __init__(
        self,
        algo_class,
        measures=[""rmse"", ""mae""],
        cv=None,
        refit=False,
        return_train_measures=False,
        n_jobs=1,
        pre_dispatch=""2*n_jobs"",
        joblib_verbose=0,
    ):

        self.algo_class = algo_class
        self.measures = [measure.lower() for measure in measures]
        self.cv = cv

        if isinstance(refit, str):
            if refit.lower() not in self.measures:
                raise ValueError(
                    ""It looks like the measure you want to use ""
                    ""with refit ({}) is not in the measures ""
                    ""parameter""
                )

            self.refit = refit.lower()

        elif refit is True:
            self.refit = self.measures[0]

        else:
            self.refit = False

        self.return_train_measures = return_train_measures
        self.n_jobs = n_jobs
        self.pre_dispatch = pre_dispatch
        self.joblib_verbose = joblib_verbose

    def _parse_options(self, params):
        # As sim_options and bsl_options are dictionaries, they require a
        # special treatment.

        if ""sim_options"" in params:
            sim_options = params[""sim_options""]
            sim_options_list = [
                dict(zip(sim_options, v)) for v in product(*sim_options.values())
            ]
            params[""sim_options""] = sim_options_list

        if ""bsl_options"" in params:
            bsl_options = params[""bsl_options""]
            bsl_options_list = [
                dict(zip(bsl_options, v)) for v in product(*bsl_options.values())
            ]
            params[""bsl_options""] = bsl_options_list

        return params

    def fit(self, data):
        """"""Runs the ``fit()`` method of the algorithm for all parameter
        combinations, over different splits given by the ``cv`` parameter.

        Args:
            data (:obj:`Dataset <surprise.dataset.Dataset>`): The dataset on
                which to evaluate the algorithm, in parallel.
        """"""

        if self.refit and isinstance(data, DatasetUserFolds):
            raise ValueError(
                ""refit cannot be used when data has been ""
                ""loaded with load_from_folds().""
            )

        cv = get_cv(self.cv)

        delayed_list = (
            delayed(fit_and_score)(
                self.algo_class(**params),
                trainset,
                testset,
                self.measures,
                self.return_train_measures,
            )
            for params, (trainset, testset) in product(
                self.param_combinations, cv.split(data)
            )
        )
        out = Parallel(
            n_jobs=self.n_jobs,
            pre_dispatch=self.pre_dispatch,
            verbose=self.joblib_verbose,
        )(delayed_list)

        (test_measures_dicts, train_measures_dicts, fit_times, test_times) = zip(*out)

        # test_measures_dicts is a list of dict like this:
        # [{'mae': 1, 'rmse': 2}, {'mae': 2, 'rmse': 3} ...]
        # E.g. for 5 splits, the first 5 dicts are for the first param
        # combination, the next 5 dicts are for the second param combination,
        # etc...
        # We convert it into a dict of list:
        # {'mae': [1, 2, ...], 'rmse': [2, 3, ...]}
        # Each list is still of size n_parameters_combinations * n_splits.
        # Then, reshape each list to have 2-D arrays of shape
        # (n_parameters_combinations, n_splits). This way we can easily compute
        # the mean and std dev over all splits or over all param comb.
        test_measures = dict()
        train_measures = dict()
        new_shape = (len(self.param_combinations), cv.get_n_folds())
        for m in self.measures:
            test_measures[m] = np.asarray([d[m] for d in test_measures_dicts])
            test_measures[m] = test_measures[m].reshape(new_shape)
            if self.return_train_measures:
                train_measures[m] = np.asarray([d[m] for d in train_measures_dicts])
                train_measures[m] = train_measures[m].reshape(new_shape)

        cv_results = dict()
        best_index = dict()
        best_params = dict()
        best_score = dict()
        best_estimator = dict()
        for m in self.measures:
            # cv_results: set measures for each split and each param comb
            for split in range(cv.get_n_folds()):
                cv_results[f""split{split}_test_{m}""] = test_measures[m][:, split]
                if self.return_train_measures:
                    cv_results[f""split{split}_train_{m}""] = train_measures[m][:, split]

            # cv_results: set mean and std over all splits (testset and
            # trainset) for each param comb
            mean_test_measures = test_measures[m].mean(axis=1)
            cv_results[f""mean_test_{m}""] = mean_test_measures
            cv_results[f""std_test_{m}""] = test_measures[m].std(axis=1)
            if self.return_train_measures:
                mean_train_measures = train_measures[m].mean(axis=1)
                cv_results[f""mean_train_{m}""] = mean_train_measures
                cv_results[f""std_train_{m}""] = train_measures[m].std(axis=1)

            # cv_results: set rank of each param comb
            # also set best_index, and best_xxxx attributes
            indices = cv_results[f""mean_test_{m}""].argsort()
            cv_results[f""rank_test_{m}""] = np.empty_like(indices)
            if m in (""mae"", ""rmse"", ""mse""):
                cv_results[f""rank_test_{m}""][indices] = (
                    np.arange(len(indices)) + 1
                )  # sklearn starts at 1 as well
                best_index[m] = mean_test_measures.argmin()
            elif m in (""fcp"",):
                cv_results[f""rank_test_{m}""][indices] = np.arange(len(indices), 0, -1)
                best_index[m] = mean_test_measures.argmax()
            best_params[m] = self.param_combinations[best_index[m]]
            best_score[m] = mean_test_measures[best_index[m]]
            best_estimator[m] = self.algo_class(**best_params[m])

        # Cv results: set fit and train times (mean, std)
        fit_times = np.array(fit_times).reshape(new_shape)
        test_times = np.array(test_times).reshape(new_shape)
        for s, times in zip((""fit"", ""test""), (fit_times, test_times)):
            cv_results[f""mean_{s}_time""] = times.mean(axis=1)
            cv_results[f""std_{s}_time""] = times.std(axis=1)

        # cv_results: set params key and each param_* values
        cv_results[""params""] = self.param_combinations
        for param in self.param_combinations[0]:
            cv_results[""param_"" + param] = [
                comb[param] for comb in self.param_combinations
            ]

        if self.refit:
            best_estimator[self.refit].fit(data.build_full_trainset())

        self.best_index = best_index
        self.best_params = best_params
        self.best_score = best_score
        self.best_estimator = best_estimator
        self.cv_results = cv_results

    def test(self, testset, verbose=False):
        """"""Call ``test()`` on the estimator with the best found parameters
        (according the the ``refit`` parameter). See :meth:`AlgoBase.test()
        <surprise.prediction_algorithms.algo_base.AlgoBase.test>`.

        Only available if ``refit`` is not ``False``.
        """"""

        if not self.refit:
            raise ValueError(""refit is False, cannot use test()"")

        return self.best_estimator[self.refit].test(testset, verbose)

    def predict(self, *args):
        """"""Call ``predict()`` on the estimator with the best found parameters
        (according the the ``refit`` parameter). See :meth:`AlgoBase.predict()
        <surprise.prediction_algorithms.algo_base.AlgoBase.predict>`.

        Only available if ``refit`` is not ``False``.
        """"""

        if not self.refit:
            raise ValueError(""refit is False, cannot use predict()"")

        return self.best_estimator[self.refit].predict(*args)


class GridSearchCV(BaseSearchCV):
    """"""The :class:`GridSearchCV` class computes accuracy metrics for an
    algorithm on various combinations of parameters, over a cross-validation
    procedure. This is useful for finding the best set of parameters for a
    prediction algorithm. It is analogous to `GridSearchCV
    <https://scikit-learn.org/stable/modules/generated/sklearn.
    model_selection.GridSearchCV.html>`_ from scikit-learn.

    See an example in the :ref:`User Guide <tuning_algorithm_parameters>`.

    Args:
        algo_class(:obj:`AlgoBase \
            <surprise.prediction_algorithms.algo_base.AlgoBase>`): The class
            of the algorithm to evaluate.
        param_grid(dict): Dictionary with algorithm parameters as keys and
            list of values as keys. All combinations will be evaluated with
            desired algorithm. Dict parameters such as ``sim_options`` require
            special treatment, see :ref:`this note<grid_search_note>`.
        measures(list of string): The performance measures to compute. Allowed
            names are function names as defined in the :mod:`accuracy
            <surprise.accuracy>` module.  Default is ``['rmse', 'mae']``.
        cv(cross-validation iterator, int or ``None``): Determines how the
            ``data`` parameter will be split (i.e. how trainsets and testsets
            will be defined). If an int is passed, :class:`KFold
            <surprise.model_selection.split.KFold>` is used with the
            appropriate ``n_splits`` parameter. If ``None``, :class:`KFold
            <surprise.model_selection.split.KFold>` is used with
            ``n_splits=5``.
        refit(bool or str): If ``True``, refit the algorithm on the whole
            dataset using the set of parameters that gave the best average
            performance for the first measure of ``measures``. Other measures
            can be used by passing a string (corresponding to the measure
            name). Then, you can use the ``test()`` and ``predict()`` methods.
            ``refit`` can only be used if the ``data`` parameter given to
            ``fit()`` hasn't been loaded with :meth:`load_from_folds()
            <surprise.dataset.Dataset.load_from_folds>`. Default is ``False``.
        return_train_measures(bool): Whether to compute performance measures on
            the trainsets. If ``True``, the ``cv_results`` attribute will
            also contain measures for trainsets. Default is ``False``.
        n_jobs(int): The maximum number of parallel training procedures.

            - If ``-1``, all CPUs are used.
            - If ``1`` is given, no parallel computing code is used at all,\
                which is useful for debugging.
            - For ``n_jobs`` below ``-1``, ``(n_cpus + n_jobs + 1)`` are\
                used.  For example, with ``n_jobs = -2`` all CPUs but one are\
                used.

            Default is ``1``.
        pre_dispatch(int or string): Controls the number of jobs that get
            dispatched during parallel execution. Reducing this number can be
            useful to avoid an explosion of memory consumption when more jobs
            get dispatched than CPUs can process. This parameter can be:

            - ``None``, in which case all the jobs are immediately created\
                and spawned. Use this for lightweight and fast-running\
                jobs, to avoid delays due to on-demand spawning of the\
                jobs.
            - An int, giving the exact number of total jobs that are\
                spawned.
            - A string, giving an expression as a function of ``n_jobs``,\
                as in ``'2*n_jobs'``.

            Default is ``'2*n_jobs'``.
        joblib_verbose(int): Controls the verbosity of joblib: the higher, the
            more messages.

    Attributes:
        best_estimator (dict of AlgoBase):
            Using an accuracy measure as key, get the algorithm that gave the
            best accuracy results for the chosen measure, averaged over all
            splits.
        best_score (dict of floats):
            Using an accuracy measure as key, get the best average score
            achieved for that measure.
        best_params (dict of dicts):
            Using an accuracy measure as key, get the parameters combination
            that gave the best accuracy results for the chosen measure (on
            average).
        best_index  (dict of ints):
            Using an accuracy measure as key, get the index that can be used
            with ``cv_results`` that achieved the highest accuracy for that
            measure (on average).
        cv_results (dict of arrays):
            A dict that contains accuracy measures over all splits, as well as
            train and test time for each parameter combination. Can be imported
            into a pandas `DataFrame` (see :ref:`example
            <cv_results_example>`).
    """"""

    def __init__(
        self,
        algo_class,
        param_grid,
        measures=[""rmse"", ""mae""],
        cv=None,
        refit=False,
        return_train_measures=False,
        n_jobs=1,
        pre_dispatch=""2*n_jobs"",
        joblib_verbose=0,
    ):

        super().__init__(
            algo_class=algo_class,
            measures=measures,
            cv=cv,
            refit=refit,
            return_train_measures=return_train_measures,
            n_jobs=n_jobs,
            pre_dispatch=pre_dispatch,
            joblib_verbose=joblib_verbose,
        )

        self.param_grid = self._parse_options(param_grid.copy())
        self.param_combinations = [
            dict(zip(self.param_grid, v)) for v in product(*self.param_grid.values())
        ]


class RandomizedSearchCV(BaseSearchCV):
    """"""The :class:`RandomizedSearchCV` class computes accuracy metrics for an
    algorithm on various combinations of parameters, over a cross-validation
    procedure. As opposed to GridSearchCV, which uses an exhaustive
    combinatorial approach, RandomizedSearchCV samples randomly from the
    parameter space. This is useful for finding the best set of parameters
    for a prediction algorithm, especially using a coarse to fine approach.
    It is analogous to `RandomizedSearchCV <https://scikit-learn.org/stable/
    modules/generated/sklearn.model_selection.RandomizedSearchCV.html>`_ from
    scikit-learn.

    See an example in the :ref:`User Guide <tuning_algorithm_parameters>`.

    Args:
        algo_class(:obj:`AlgoBase \
            <surprise.prediction_algorithms.algo_base.AlgoBase>`): The class
            of the algorithm to evaluate.
        param_distributions(dict): Dictionary with algorithm parameters as
            keys and distributions or lists of parameters to try. Distributions
            must provide a rvs method for sampling (such as those from
            scipy.stats.distributions). If a list is given, it is sampled
            uniformly. Parameters will be sampled n_iter times.
        n_iter(int): Number of times parameter settings are sampled. Default is
            ``10``.
        measures(list of string): The performance measures to compute. Allowed
            names are function names as defined in the :mod:`accuracy
            <surprise.accuracy>` module.  Default is ``['rmse', 'mae']``.
        cv(cross-validation iterator, int or ``None``): Determines how the
            ``data`` parameter will be split (i.e. how trainsets and testsets
            will be defined). If an int is passed, :class:`KFold
            <surprise.model_selection.split.KFold>` is used with the
            appropriate ``n_splits`` parameter. If ``None``, :class:`KFold
            <surprise.model_selection.split.KFold>` is used with
            ``n_splits=5``.
        refit(bool or str): If ``True``, refit the algorithm on the whole
            dataset using the set of parameters that gave the best average
            performance for the first measure of ``measures``. Other measures
            can be used by passing a string (corresponding to the measure
            name). Then, you can use the ``test()`` and ``predict()`` methods.
            ``refit`` can only be used if the ``data`` parameter given to
            ``fit()`` hasn't been loaded with :meth:`load_from_folds()
            <surprise.dataset.Dataset.load_from_folds>`. Default is ``False``.
        return_train_measures(bool): Whether to compute performance measures on
            the trainsets. If ``True``, the ``cv_results`` attribute will
            also contain measures for trainsets. Default is ``False``.
        n_jobs(int): The maximum number of parallel training procedures.

            - If ``-1``, all CPUs are used.
            - If ``1`` is given, no parallel computing code is used at all,\
                which is useful for debugging.
            - For ``n_jobs`` below ``-1``, ``(n_cpus + n_jobs + 1)`` are\
                used.  For example, with ``n_jobs = -2`` all CPUs but one are\
                used.

            Default is ``1``.
        pre_dispatch(int or string): Controls the number of jobs that get
            dispatched during parallel execution. Reducing this number can be
            useful to avoid an explosion of memory consumption when more jobs
            get dispatched than CPUs can process. This parameter can be:

            - ``None``, in which case all the jobs are immediately created\
                and spawned. Use this for lightweight and fast-running\
                jobs, to avoid delays due to on-demand spawning of the\
                jobs.
            - An int, giving the exact number of total jobs that are\
                spawned.
            - A string, giving an expression as a function of ``n_jobs``,\
                as in ``'2*n_jobs'``.

            Default is ``'2*n_jobs'``.
        random_state(int, RandomState or None): Pseudo random number
            generator seed used for random uniform sampling from lists of
            possible values instead of scipy.stats distributions. If int,
            ``random_state`` is the seed used by the random number generator.
            If ``RandomState`` instance, ``random_state`` is the random number
            generator. If ``None``, the random number generator is the
            RandomState instance used by ``np.random``.  Default is ``None``.
        joblib_verbose(int): Controls the verbosity of joblib: the higher, the
            more messages.

    Attributes:
        best_estimator (dict of AlgoBase):
            Using an accuracy measure as key, get the algorithm that gave the
            best accuracy results for the chosen measure, averaged over all
            splits.
        best_score (dict of floats):
            Using an accuracy measure as key, get the best average score
            achieved for that measure.
        best_params (dict of dicts):
            Using an accuracy measure as key, get the parameters combination
            that gave the best accuracy results for the chosen measure (on
            average).
        best_index  (dict of ints):
            Using an accuracy measure as key, get the index that can be used
            with ``cv_results`` that achieved the highest accuracy for that
            measure (on average).
        cv_results (dict of arrays):
            A dict that contains accuracy measures over all splits, as well as
            train and test time for each parameter combination. Can be imported
            into a pandas `DataFrame` (see :ref:`example
            <cv_results_example>`).
    """"""

    def __init__(
        self,
        algo_class,
        param_distributions,
        n_iter=10,
        measures=[""rmse"", ""mae""],
        cv=None,
        refit=False,
        return_train_measures=False,
        n_jobs=1,
        pre_dispatch=""2*n_jobs"",
        random_state=None,
        joblib_verbose=0,
    ):

        super().__init__(
            algo_class=algo_class,
            measures=measures,
            cv=cv,
            refit=refit,
            return_train_measures=return_train_measures,
            n_jobs=n_jobs,
            pre_dispatch=pre_dispatch,
            joblib_verbose=joblib_verbose,
        )

        self.n_iter = n_iter
        self.random_state = random_state
        self.param_distributions = self._parse_options(param_distributions.copy())
        self.param_combinations = self._sample_parameters(
            self.param_distributions, self.n_iter, self.random_state
        )

    @staticmethod
    def _sample_parameters(param_distributions, n_iter, random_state=None):
        """"""Samples ``n_iter`` parameter combinations from
        ``param_distributions`` using ``random_state`` as a seed.

        Non-deterministic iterable over random candidate combinations for
        hyper-parameter search. If all parameters are presented as a list,
        sampling without replacement is performed. If at least one parameter
        is given as a distribution, sampling with replacement is used.
        It is highly recommended to use continuous distributions for continuous
        parameters.

        Note that before SciPy 0.16, the ``scipy.stats.distributions`` do not
        accept a custom RNG instance and always use the singleton RNG from
        ``numpy.random``. Hence setting ``random_state`` will not guarantee a
        deterministic iteration whenever ``scipy.stats`` distributions are used
        to define the parameter search space. Deterministic behavior is however
        guaranteed from SciPy 0.16 onwards.

        Args:
            param_distributions(dict): Dictionary where the keys are
                parameters and values are distributions from which a parameter
                is to be sampled. Distributions either have to provide a
                ``rvs`` function to sample from them, or can be given as a list
                 of values, where a uniform distribution is assumed.
            n_iter(int): Number of parameter settings produced.
                Default is ``10``.
            random_state(int, RandomState instance or None):
                Pseudo random number generator seed used for random uniform
                sampling from lists of possible values instead of scipy.stats
                distributions. If ``None``, the random number generator is the
                random state instance used by np.random.  Default is ``None``.

        Returns:
            combos(list): List of parameter dictionaries with sampled values.
        """"""

        # check if all distributions are given as lists
        # if so, sample without replacement
        all_lists = np.all(
            [not hasattr(v, ""rvs"") for v in param_distributions.values()]
        )
        rnd = get_rng(random_state)

        # sort for reproducibility
        items = sorted(param_distributions.items())

        if all_lists:
            # create exhaustive combinations
            param_grid = [
                dict(zip(param_distributions, v))
                for v in product(*param_distributions.values())
            ]
            combos = np.random.choice(param_grid, n_iter, replace=False)

        else:
            combos = []
            for _ in range(n_iter):
                params = dict()
                for k, v in items:
                    if hasattr(v, ""rvs""):
                        params[k] = v.rvs(random_state=rnd)
                    else:
                        params[k] = v[rnd.randint(len(v))]
                combos.append(params)

        return combos
"
__init__.py,"from .search import GridSearchCV, RandomizedSearchCV
from .split import (
    KFold,
    LeaveOneOut,
    PredefinedKFold,
    RepeatedKFold,
    ShuffleSplit,
    train_test_split,
)

from .validation import cross_validate

__all__ = [
    ""KFold"",
    ""ShuffleSplit"",
    ""train_test_split"",
    ""RepeatedKFold"",
    ""LeaveOneOut"",
    ""PredefinedKFold"",
    ""cross_validate"",
    ""GridSearchCV"",
    ""RandomizedSearchCV"",
]
"
validation.py,"""""""
The validation module contains the cross_validate function, inspired from
the mighty scikit learn.
""""""

import time

import numpy as np
from joblib import delayed, Parallel

from .. import accuracy

from .split import get_cv


def cross_validate(
    algo,
    data,
    measures=[""rmse"", ""mae""],
    cv=None,
    return_train_measures=False,
    n_jobs=1,
    pre_dispatch=""2*n_jobs"",
    verbose=False,
):
    """"""
    Run a cross validation procedure for a given algorithm, reporting accuracy
    measures and computation times.

    See an example in the :ref:`User Guide <cross_validate_example>`.

    Args:
        algo(:obj:`AlgoBase \
            <surprise.prediction_algorithms.algo_base.AlgoBase>`):
            The algorithm to evaluate.
        data(:obj:`Dataset <surprise.dataset.Dataset>`): The dataset on which
            to evaluate the algorithm.
        measures(list of string): The performance measures to compute. Allowed
            names are function names as defined in the :mod:`accuracy
            <surprise.accuracy>` module. Default is ``['rmse', 'mae']``.
        cv(cross-validation iterator, int or ``None``): Determines how the
            ``data`` parameter will be split (i.e. how trainsets and testsets
            will be defined). If an int is passed, :class:`KFold
            <surprise.model_selection.split.KFold>` is used with the
            appropriate ``n_splits`` parameter. If ``None``, :class:`KFold
            <surprise.model_selection.split.KFold>` is used with
            ``n_splits=5``.
        return_train_measures(bool): Whether to compute performance measures on
            the trainsets. Default is ``False``.
        n_jobs(int): The maximum number of folds evaluated in parallel.

            - If ``-1``, all CPUs are used.
            - If ``1`` is given, no parallel computing code is used at all,\
                which is useful for debugging.
            - For ``n_jobs`` below ``-1``, ``(n_cpus + n_jobs + 1)`` are\
                used.  For example, with ``n_jobs = -2`` all CPUs but one are\
                used.

            Default is ``1``.
        pre_dispatch(int or string): Controls the number of jobs that get
            dispatched during parallel execution. Reducing this number can be
            useful to avoid an explosion of memory consumption when more jobs
            get dispatched than CPUs can process. This parameter can be:

            - ``None``, in which case all the jobs are immediately created\
                and spawned. Use this for lightweight and fast-running\
                jobs, to avoid delays due to on-demand spawning of the\
                jobs.
            - An int, giving the exact number of total jobs that are\
                spawned.
            - A string, giving an expression as a function of ``n_jobs``,\
                as in ``'2*n_jobs'``.

            Default is ``'2*n_jobs'``.
        verbose(int): If ``True`` accuracy measures for each split are printed,
            as well as train and test times. Averages and standard deviations
            over all splits are also reported. Default is ``False``: nothing is
            printed.

    Returns:
        dict: A dict with the following keys:

            - ``'test_*'`` where ``*`` corresponds to a lower-case accuracy
              measure, e.g. ``'test_rmse'``: numpy array with accuracy values
              for each testset.

            - ``'train_*'`` where ``*`` corresponds to a lower-case accuracy
              measure, e.g. ``'train_rmse'``: numpy array with accuracy values
              for each trainset. Only available if ``return_train_measures`` is
              ``True``.

            - ``'fit_time'``: numpy array with the training time in seconds for
              each split.

            - ``'test_time'``: numpy array with the testing time in seconds for
              each split.

    """"""

    measures = [m.lower() for m in measures]

    cv = get_cv(cv)

    delayed_list = (
        delayed(fit_and_score)(algo, trainset, testset, measures, return_train_measures)
        for (trainset, testset) in cv.split(data)
    )
    out = Parallel(n_jobs=n_jobs, pre_dispatch=pre_dispatch)(delayed_list)

    (test_measures_dicts, train_measures_dicts, fit_times, test_times) = zip(*out)

    test_measures = dict()
    train_measures = dict()
    ret = dict()
    for m in measures:
        # transform list of dicts into dict of lists
        # Same as in GridSearchCV.fit()
        test_measures[m] = np.asarray([d[m] for d in test_measures_dicts])
        ret[""test_"" + m] = test_measures[m]
        if return_train_measures:
            train_measures[m] = np.asarray([d[m] for d in train_measures_dicts])
            ret[""train_"" + m] = train_measures[m]

    ret[""fit_time""] = fit_times
    ret[""test_time""] = test_times

    if verbose:
        print_summary(
            algo,
            measures,
            test_measures,
            train_measures,
            fit_times,
            test_times,
            cv.n_splits,
        )

    return ret


def fit_and_score(algo, trainset, testset, measures, return_train_measures=False):
    """"""Helper method that trains an algorithm and compute accuracy measures on
    a testset. Also report train and test times.

    Args:
        algo(:obj:`AlgoBase \
            <surprise.prediction_algorithms.algo_base.AlgoBase>`):
            The algorithm to use.
        trainset(:obj:`Trainset <surprise.trainset.Trainset>`): The trainset.
        testset(:obj:`testset`): The testset.
        measures(list of string): The performance measures to compute. Allowed
            names are function names as defined in the :mod:`accuracy
            <surprise.accuracy>` module.
        return_train_measures(bool): Whether to compute performance measures on
            the trainset. Default is ``False``.

    Returns:
        tuple: A tuple containing:

            - A dictionary mapping each accuracy metric to its value on the
            testset (keys are lower case).

            - A dictionary mapping each accuracy metric to its value on the
            trainset (keys are lower case). This dict is empty if
            return_train_measures is False.

            - The fit time in seconds.

            - The testing time in seconds.
    """"""

    start_fit = time.time()
    algo.fit(trainset)
    fit_time = time.time() - start_fit
    start_test = time.time()
    predictions = algo.test(testset)
    test_time = time.time() - start_test

    if return_train_measures:
        train_predictions = algo.test(trainset.build_testset())

    test_measures = dict()
    train_measures = dict()
    for m in measures:
        f = getattr(accuracy, m.lower())
        test_measures[m] = f(predictions, verbose=0)
        if return_train_measures:
            train_measures[m] = f(train_predictions, verbose=0)

    return test_measures, train_measures, fit_time, test_time


def print_summary(
    algo, measures, test_measures, train_measures, fit_times, test_times, n_splits
):
    """"""Helper for printing the result of cross_validate.""""""

    print(
        ""Evaluating {} of algorithm {} on {} split(s)."".format(
            "", "".join(m.upper() for m in measures), algo.__class__.__name__, n_splits
        )
    )
    print()

    row_format = ""{:<18}"" + ""{:<8}"" * (n_splits + 2)
    s = row_format.format(
        """", *[f""Fold {i + 1}"" for i in range(n_splits)] + [""Mean""] + [""Std""]
    )
    s += ""\n""
    s += ""\n"".join(
        row_format.format(
            key.upper() + "" (testset)"",
            *[f""{v:1.4f}"" for v in vals]
            + [f""{np.mean(vals):1.4f}""]
            + [f""{np.std(vals):1.4f}""],
        )
        for (key, vals) in test_measures.items()
    )
    if train_measures:
        s += ""\n""
        s += ""\n"".join(
            row_format.format(
                key.upper() + "" (trainset)"",
                *[f""{v:1.4f}"" for v in vals]
                + [f""{np.mean(vals):1.4f}""]
                + [f""{np.std(vals):1.4f}""],
            )
            for (key, vals) in train_measures.items()
        )
    s += ""\n""
    s += row_format.format(
        ""Fit time"",
        *[f""{t:.2f}"" for t in fit_times]
        + [f""{np.mean(fit_times):.2f}""]
        + [f""{np.std(fit_times):.2f}""],
    )
    s += ""\n""
    s += row_format.format(
        ""Test time"",
        *[f""{t:.2f}"" for t in test_times]
        + [f""{np.mean(test_times):.2f}""]
        + [f""{np.std(test_times):.2f}""],
    )
    print(s)
"
split.py,"""""""
The :mod:`model_selection.split<surprise.model_selection.split>` module
contains various cross-validation iterators. Design and tools are inspired from
the mighty scikit learn.

The available iterators are:

.. autosummary::
    :nosignatures:

    KFold
    RepeatedKFold
    ShuffleSplit
    LeaveOneOut
    PredefinedKFold

This module also contains a function for splitting datasets into trainset and
testset:

.. autosummary::
    :nosignatures:

    train_test_split

""""""

import numbers
from collections import defaultdict
from itertools import chain
from math import ceil, floor

import numpy as np

from ..utils import get_rng


def get_cv(cv):
    """"""Return a 'validated' CV iterator.""""""

    if cv is None:
        return KFold(n_splits=5)
    if isinstance(cv, numbers.Integral):
        return KFold(n_splits=cv)
    if hasattr(cv, ""split"") and not isinstance(cv, str):
        return cv  # str have split

    raise ValueError(
        ""Wrong CV object. Expecting None, an int or CV iterator, ""
        ""got a {}"".format(type(cv))
    )


class KFold:
    """"""A basic cross-validation iterator.

    Each fold is used once as a testset while the k - 1 remaining folds are
    used for training.

    See an example in the :ref:`User Guide <use_cross_validation_iterators>`.

    Args:
        n_splits(int): The number of folds.
        random_state(int, RandomState instance from numpy, or ``None``):
            Determines the RNG that will be used for determining the folds. If
            int, ``random_state`` will be used as a seed for a new RNG. This is
            useful to get the same splits over multiple calls to ``split()``.
            If RandomState instance, this same instance is used as RNG. If
            ``None``, the current RNG from numpy is used. ``random_state`` is
            only used if ``shuffle`` is ``True``.  Default is ``None``.
        shuffle(bool): Whether to shuffle the ratings in the ``data`` parameter
            of the ``split()`` method. Shuffling is not done in-place. Default
            is ``True``.
    """"""

    def __init__(self, n_splits=5, random_state=None, shuffle=True):

        self.n_splits = n_splits
        self.shuffle = shuffle
        self.random_state = random_state

    def split(self, data):
        """"""Generator function to iterate over trainsets and testsets.

        Args:
            data(:obj:`Dataset<surprise.dataset.Dataset>`): The data containing
                ratings that will be divided into trainsets and testsets.

        Yields:
            tuple of (trainset, testset)
        """"""

        if self.n_splits > len(data.raw_ratings) or self.n_splits < 2:
            raise ValueError(
                ""Incorrect value for n_splits={}. ""
                ""Must be >=2 and less than the number ""
                ""of ratings"".format(len(data.raw_ratings))
            )

        # We use indices to avoid shuffling the original data.raw_ratings list.
        indices = np.arange(len(data.raw_ratings))

        if self.shuffle:
            get_rng(self.random_state).shuffle(indices)

        start, stop = 0, 0
        for fold_i in range(self.n_splits):
            start = stop
            stop += len(indices) // self.n_splits
            if fold_i < len(indices) % self.n_splits:
                stop += 1

            raw_trainset = [
                data.raw_ratings[i] for i in chain(indices[:start], indices[stop:])
            ]
            raw_testset = [data.raw_ratings[i] for i in indices[start:stop]]

            trainset = data.construct_trainset(raw_trainset)
            testset = data.construct_testset(raw_testset)

            yield trainset, testset

    def get_n_folds(self):

        return self.n_splits


class RepeatedKFold:
    """"""
    Repeated :class:`KFold` cross validator.

    Repeats :class:`KFold` n times with different randomization in each
    repetition.

    See an example in the :ref:`User Guide <use_cross_validation_iterators>`.

    Args:
        n_splits(int): The number of folds.
        n_repeats(int): The number of repetitions.
        random_state(int, RandomState instance from numpy, or ``None``):
            Determines the RNG that will be used for determining the folds. If
            int, ``random_state`` will be used as a seed for a new RNG. This is
            useful to get the same splits over multiple calls to ``split()``.
            If RandomState instance, this same instance is used as RNG. If
            ``None``, the current RNG from numpy is used. ``random_state`` is
            only used if ``shuffle`` is ``True``.  Default is ``None``.
        shuffle(bool): Whether to shuffle the ratings in the ``data`` parameter
            of the ``split()`` method. Shuffling is not done in-place. Default
            is ``True``.
    """"""

    def __init__(self, n_splits=5, n_repeats=10, random_state=None):

        self.n_repeats = n_repeats
        self.random_state = random_state
        self.n_splits = n_splits

    def split(self, data):
        """"""Generator function to iterate over trainsets and testsets.

        Args:
            data(:obj:`Dataset<surprise.dataset.Dataset>`): The data containing
                ratings that will be divided into trainsets and testsets.

        Yields:
            tuple of (trainset, testset)
        """"""

        rng = get_rng(self.random_state)

        for _ in range(self.n_repeats):
            cv = KFold(n_splits=self.n_splits, random_state=rng, shuffle=True)
            yield from cv.split(data)

    def get_n_folds(self):

        return self.n_repeats * self.n_splits


class ShuffleSplit:
    """"""A basic cross-validation iterator with random trainsets and testsets.

    Contrary to other cross-validation strategies, random splits do not
    guarantee that all folds will be different, although this is still very
    likely for sizeable datasets.

    See an example in the :ref:`User Guide <use_cross_validation_iterators>`.

    Args:
        n_splits(int): The number of folds.
        test_size(float or int ``None``): If float, it represents the
            proportion of ratings to include in the testset. If int,
            represents the absolute number of ratings in the testset. If
            ``None``, the value is set to the complement of the trainset size.
            Default is ``.2``.
        train_size(float or int or ``None``): If float, it represents the
            proportion of ratings to include in the trainset. If int,
            represents the absolute number of ratings in the trainset. If
            ``None``, the value is set to the complement of the testset size.
            Default is ``None``.
        random_state(int, RandomState instance from numpy, or ``None``):
            Determines the RNG that will be used for determining the folds. If
            int, ``random_state`` will be used as a seed for a new RNG. This is
            useful to get the same splits over multiple calls to ``split()``.
            If RandomState instance, this same instance is used as RNG. If
            ``None``, the current RNG from numpy is used. ``random_state`` is
            only used if ``shuffle`` is ``True``.  Default is ``None``.
        shuffle(bool): Whether to shuffle the ratings in the ``data`` parameter
            of the ``split()`` method. Shuffling is not done in-place. Setting
            this to `False` defeats the purpose of this iterator, but it's
            useful for the implementation of :func:`train_test_split`. Default
            is ``True``.
    """"""

    def __init__(
        self,
        n_splits=5,
        test_size=0.2,
        train_size=None,
        random_state=None,
        shuffle=True,
    ):

        if n_splits <= 0:
            raise ValueError(
                ""n_splits = {} should be strictly greater than "" ""0."".format(n_splits)
            )
        if test_size is not None and test_size <= 0:
            raise ValueError(
                ""test_size={} should be strictly greater than "" ""0"".format(test_size)
            )

        if train_size is not None and train_size <= 0:
            raise ValueError(
                ""train_size={} should be strictly greater than "" ""0"".format(train_size)
            )

        self.n_splits = n_splits
        self.test_size = test_size
        self.train_size = train_size
        self.random_state = random_state
        self.shuffle = shuffle

    def validate_train_test_sizes(self, test_size, train_size, n_ratings):

        if test_size is not None and test_size >= n_ratings:
            raise ValueError(
                ""test_size={} should be less than the number of ""
                ""ratings {}"".format(test_size, n_ratings)
            )

        if train_size is not None and train_size >= n_ratings:
            raise ValueError(
                ""train_size={} should be less than the number of""
                "" ratings {}"".format(train_size, n_ratings)
            )

        if np.asarray(test_size).dtype.kind == ""f"":
            test_size = ceil(test_size * n_ratings)

        if train_size is None:
            train_size = n_ratings - test_size
        elif np.asarray(train_size).dtype.kind == ""f"":
            train_size = floor(train_size * n_ratings)

        if test_size is None:
            test_size = n_ratings - train_size

        if train_size + test_size > n_ratings:
            raise ValueError(
                ""The sum of train_size and test_size ({}) ""
                ""should be smaller than the number of ""
                ""ratings {}."".format(train_size + test_size, n_ratings)
            )

        return int(train_size), int(test_size)

    def split(self, data):
        """"""Generator function to iterate over trainsets and testsets.

        Args:
            data(:obj:`Dataset<surprise.dataset.Dataset>`): The data containing
                ratings that will be divided into trainsets and testsets.

        Yields:
            tuple of (trainset, testset)
        """"""

        test_size, train_size = self.validate_train_test_sizes(
            self.test_size, self.train_size, len(data.raw_ratings)
        )
        rng = get_rng(self.random_state)

        for _ in range(self.n_splits):

            if self.shuffle:
                permutation = rng.permutation(len(data.raw_ratings))
            else:
                permutation = np.arange(len(data.raw_ratings))

            raw_trainset = [data.raw_ratings[i] for i in permutation[:test_size]]
            raw_testset = [
                data.raw_ratings[i]
                for i in permutation[test_size : (test_size + train_size)]
            ]

            trainset = data.construct_trainset(raw_trainset)
            testset = data.construct_testset(raw_testset)

            yield trainset, testset

    def get_n_folds(self):

        return self.n_splits


def train_test_split(
    data, test_size=0.2, train_size=None, random_state=None, shuffle=True
):
    """"""Split a dataset into trainset and testset.

    See an example in the :ref:`User Guide <train_test_split_example>`.

    Note: this function cannot be used as a cross-validation iterator.

    Args:
        data(:obj:`Dataset <surprise.dataset.Dataset>`): The dataset to split
            into trainset and testset.
        test_size(float or int ``None``): If float, it represents the
            proportion of ratings to include in the testset. If int,
            represents the absolute number of ratings in the testset. If
            ``None``, the value is set to the complement of the trainset size.
            Default is ``.2``.
        train_size(float or int or ``None``): If float, it represents the
            proportion of ratings to include in the trainset. If int,
            represents the absolute number of ratings in the trainset. If
            ``None``, the value is set to the complement of the testset size.
            Default is ``None``.
        random_state(int, RandomState instance from numpy, or ``None``):
            Determines the RNG that will be used for determining the folds. If
            int, ``random_state`` will be used as a seed for a new RNG. This is
            useful to get the same splits over multiple calls to ``split()``.
            If RandomState instance, this same instance is used as RNG. If
            ``None``, the current RNG from numpy is used. ``random_state`` is
            only used if ``shuffle`` is ``True``.  Default is ``None``.
        shuffle(bool): Whether to shuffle the ratings in the ``data``
            parameter. Shuffling is not done in-place. Default is ``True``.
    """"""
    ss = ShuffleSplit(
        n_splits=1,
        test_size=test_size,
        train_size=train_size,
        random_state=random_state,
        shuffle=shuffle,
    )
    return next(ss.split(data))


class LeaveOneOut:
    """"""Cross-validation iterator where each user has exactly one rating in the
    testset.

    Contrary to other cross-validation strategies, ``LeaveOneOut`` does not
    guarantee that all folds will be different, although this is still very
    likely for sizeable datasets.

    See an example in the :ref:`User Guide <use_cross_validation_iterators>`.

    Args:
        n_splits(int): The number of folds.
        random_state(int, RandomState instance from numpy, or ``None``):
            Determines the RNG that will be used for determining the folds. If
            int, ``random_state`` will be used as a seed for a new RNG. This is
            useful to get the same splits over multiple calls to ``split()``.
            If RandomState instance, this same instance is used as RNG. If
            ``None``, the current RNG from numpy is used. ``random_state`` is
            only used if ``shuffle`` is ``True``.  Default is ``None``.
        min_n_ratings(int): Minimum number of ratings for each user in the
            trainset. E.g. if ``min_n_ratings`` is ``2``, we are sure each user
            has at least ``2`` ratings in the trainset (and ``1`` in the
            testset). Other users are discarded. Default is ``0``, so some
            users (having only one rating) may be in the testset and not in the
            trainset.
    """"""

    def __init__(self, n_splits=5, random_state=None, min_n_ratings=0):

        self.n_splits = n_splits
        self.random_state = random_state
        self.min_n_ratings = min_n_ratings

    def split(self, data):
        """"""Generator function to iterate over trainsets and testsets.

        Args:
            data(:obj:`Dataset<surprise.dataset.Dataset>`): The data containing
                ratings that will be divided into trainsets and testsets.

        Yields:
            tuple of (trainset, testset)
        """"""

        # map ratings to the users ids
        user_ratings = defaultdict(list)
        for uid, iid, r_ui, _ in data.raw_ratings:
            user_ratings[uid].append((uid, iid, r_ui, None))

        rng = get_rng(self.random_state)

        for _ in range(self.n_splits):
            # for each user, randomly choose a rating and put it in the
            # testset.
            raw_trainset, raw_testset = [], []
            for uid, ratings in user_ratings.items():
                if len(ratings) > self.min_n_ratings:
                    i = rng.randint(0, len(ratings))
                    raw_testset.append(ratings[i])
                    raw_trainset += [
                        rating for (j, rating) in enumerate(ratings) if j != i
                    ]

            if not raw_trainset:
                raise ValueError(
                    ""Could not build any trainset. Maybe "" ""min_n_ratings is too high?""
                )
            trainset = data.construct_trainset(raw_trainset)
            testset = data.construct_testset(raw_testset)

            yield trainset, testset

    def get_n_folds(self):

        return self.n_splits


class PredefinedKFold:
    """"""A cross-validation iterator to when a dataset has been loaded with the
    :meth:`load_from_folds <surprise.dataset.Dataset.load_from_folds>`
    method.

    See an example in the :ref:`User Guide <load_from_folds_example>`.
    """"""

    def split(self, data):
        """"""Generator function to iterate over trainsets and testsets.

        Args:
            data(:obj:`Dataset<surprise.dataset.Dataset>`): The data containing
                ratings that will be divided into trainsets and testsets.

        Yields:
            tuple of (trainset, testset)
        """"""

        self.n_splits = len(data.folds_files)
        for train_file, test_file in data.folds_files:

            raw_trainset = data.read_ratings(train_file)
            raw_testset = data.read_ratings(test_file)
            trainset = data.construct_trainset(raw_trainset)
            testset = data.construct_testset(raw_testset)

            yield trainset, testset

    def get_n_folds(self):

        return self.n_splits
"
knns.py,"""""""
the :mod:`knns` module includes some k-NN inspired algorithms.
""""""

import heapq

import numpy as np

from .algo_base import AlgoBase

from .predictions import PredictionImpossible


# Important note: as soon as an algorithm uses a similarity measure, it should
# also allow the bsl_options parameter because of the pearson_baseline
# similarity. It can be done explicitly (e.g. KNNBaseline), or implicetely
# using kwargs (e.g. KNNBasic).


class SymmetricAlgo(AlgoBase):
    """"""This is an abstract class aimed to ease the use of symmetric algorithms.

    A symmetric algorithm is an algorithm that can can be based on users or on
    items indifferently, e.g. all the algorithms in this module.

    When the algo is user-based x denotes a user and y an item. Else, it's
    reversed.
    """"""

    def __init__(self, sim_options={}, verbose=True, **kwargs):

        AlgoBase.__init__(self, sim_options=sim_options, **kwargs)
        self.verbose = verbose

    def fit(self, trainset):

        AlgoBase.fit(self, trainset)

        ub = self.sim_options[""user_based""]
        self.n_x = self.trainset.n_users if ub else self.trainset.n_items
        self.n_y = self.trainset.n_items if ub else self.trainset.n_users
        self.xr = self.trainset.ur if ub else self.trainset.ir
        self.yr = self.trainset.ir if ub else self.trainset.ur

        return self

    def switch(self, u_stuff, i_stuff):
        """"""Return x_stuff and y_stuff depending on the user_based field.""""""

        if self.sim_options[""user_based""]:
            return u_stuff, i_stuff
        else:
            return i_stuff, u_stuff


class KNNBasic(SymmetricAlgo):
    """"""A basic collaborative filtering algorithm.

    The prediction :math:`\\hat{r}_{ui}` is set as:

    .. math::
        \\hat{r}_{ui} = \\frac{
        \\sum\\limits_{v \\in N^k_i(u)} \\text{sim}(u, v) \\cdot r_{vi}}
        {\\sum\\limits_{v \\in N^k_i(u)} \\text{sim}(u, v)}

    or

    .. math::
        \\hat{r}_{ui} = \\frac{
        \\sum\\limits_{j \\in N^k_u(i)} \\text{sim}(i, j) \\cdot r_{uj}}
        {\\sum\\limits_{j \\in N^k_u(i)} \\text{sim}(i, j)}

    depending on the ``user_based`` field of the ``sim_options`` parameter.

    Args:
        k(int): The (max) number of neighbors to take into account for
            aggregation (see :ref:`this note <actual_k_note>`). Default is
            ``40``.
        min_k(int): The minimum number of neighbors to take into account for
            aggregation. If there are not enough neighbors, the prediction is
            set to the global mean of all ratings. Default is ``1``.
        sim_options(dict): A dictionary of options for the similarity
            measure. See :ref:`similarity_measures_configuration` for accepted
            options.
        verbose(bool): Whether to print trace messages of bias estimation,
            similarity, etc.  Default is True.
    """"""

    def __init__(self, k=40, min_k=1, sim_options={}, verbose=True, **kwargs):

        SymmetricAlgo.__init__(self, sim_options=sim_options, verbose=verbose, **kwargs)
        self.k = k
        self.min_k = min_k

    def fit(self, trainset):

        SymmetricAlgo.fit(self, trainset)
        self.sim = self.compute_similarities()

        return self

    def estimate(self, u, i):

        if not (self.trainset.knows_user(u) and self.trainset.knows_item(i)):
            raise PredictionImpossible(""User and/or item is unknown."")

        x, y = self.switch(u, i)

        neighbors = [(self.sim[x, x2], r) for (x2, r) in self.yr[y]]
        k_neighbors = heapq.nlargest(self.k, neighbors, key=lambda t: t[0])

        # compute weighted average
        sum_sim = sum_ratings = actual_k = 0
        for (sim, r) in k_neighbors:
            if sim > 0:
                sum_sim += sim
                sum_ratings += sim * r
                actual_k += 1

        if actual_k < self.min_k:
            raise PredictionImpossible(""Not enough neighbors."")

        est = sum_ratings / sum_sim

        details = {""actual_k"": actual_k}
        return est, details


class KNNWithMeans(SymmetricAlgo):
    """"""A basic collaborative filtering algorithm, taking into account the mean
    ratings of each user.

    The prediction :math:`\\hat{r}_{ui}` is set as:

    .. math::
        \\hat{r}_{ui} = \\mu_u + \\frac{ \\sum\\limits_{v \\in N^k_i(u)}
        \\text{sim}(u, v) \\cdot (r_{vi} - \\mu_v)} {\\sum\\limits_{v \\in
        N^k_i(u)} \\text{sim}(u, v)}

    or

    .. math::
        \\hat{r}_{ui} = \\mu_i + \\frac{ \\sum\\limits_{j \\in N^k_u(i)}
        \\text{sim}(i, j) \\cdot (r_{uj} - \\mu_j)} {\\sum\\limits_{j \\in
        N^k_u(i)} \\text{sim}(i, j)}

    depending on the ``user_based`` field of the ``sim_options`` parameter.


    Args:
        k(int): The (max) number of neighbors to take into account for
            aggregation (see :ref:`this note <actual_k_note>`). Default is
            ``40``.
        min_k(int): The minimum number of neighbors to take into account for
            aggregation. If there are not enough neighbors, the neighbor
            aggregation is set to zero (so the prediction ends up being
            equivalent to the mean :math:`\\mu_u` or :math:`\\mu_i`). Default is
            ``1``.
        sim_options(dict): A dictionary of options for the similarity
            measure. See :ref:`similarity_measures_configuration` for accepted
            options.
        verbose(bool): Whether to print trace messages of bias estimation,
            similarity, etc.  Default is True.
    """"""

    def __init__(self, k=40, min_k=1, sim_options={}, verbose=True, **kwargs):

        SymmetricAlgo.__init__(self, sim_options=sim_options, verbose=verbose, **kwargs)

        self.k = k
        self.min_k = min_k

    def fit(self, trainset):

        SymmetricAlgo.fit(self, trainset)
        self.sim = self.compute_similarities()

        self.means = np.zeros(self.n_x)
        for x, ratings in self.xr.items():
            self.means[x] = np.mean([r for (_, r) in ratings])

        return self

    def estimate(self, u, i):

        if not (self.trainset.knows_user(u) and self.trainset.knows_item(i)):
            raise PredictionImpossible(""User and/or item is unknown."")

        x, y = self.switch(u, i)

        neighbors = [(x2, self.sim[x, x2], r) for (x2, r) in self.yr[y]]
        k_neighbors = heapq.nlargest(self.k, neighbors, key=lambda t: t[1])

        est = self.means[x]

        # compute weighted average
        sum_sim = sum_ratings = actual_k = 0
        for (nb, sim, r) in k_neighbors:
            if sim > 0:
                sum_sim += sim
                sum_ratings += sim * (r - self.means[nb])
                actual_k += 1

        if actual_k < self.min_k:
            sum_ratings = 0

        try:
            est += sum_ratings / sum_sim
        except ZeroDivisionError:
            pass  # return mean

        details = {""actual_k"": actual_k}
        return est, details


class KNNBaseline(SymmetricAlgo):
    """"""A basic collaborative filtering algorithm taking into account a
    *baseline* rating.


    The prediction :math:`\\hat{r}_{ui}` is set as:

    .. math::
        \\hat{r}_{ui} = b_{ui} + \\frac{ \\sum\\limits_{v \\in N^k_i(u)}
        \\text{sim}(u, v) \\cdot (r_{vi} - b_{vi})} {\\sum\\limits_{v \\in
        N^k_i(u)} \\text{sim}(u, v)}

    or


    .. math::
        \\hat{r}_{ui} = b_{ui} + \\frac{ \\sum\\limits_{j \\in N^k_u(i)}
        \\text{sim}(i, j) \\cdot (r_{uj} - b_{uj})} {\\sum\\limits_{j \\in
        N^k_u(i)} \\text{sim}(i, j)}

    depending on the ``user_based`` field of the ``sim_options`` parameter. For
    the best predictions, use the :func:`pearson_baseline
    <surprise.similarities.pearson_baseline>` similarity measure.

    This algorithm corresponds to formula (3), section 2.2 of
    :cite:`Koren:2010`.

    Args:
        k(int): The (max) number of neighbors to take into account for
            aggregation (see :ref:`this note <actual_k_note>`). Default is
            ``40``.
        min_k(int): The minimum number of neighbors to take into account for
            aggregation. If there are not enough neighbors, the neighbor
            aggregation is set to zero (so the prediction ends up being
            equivalent to the baseline). Default is ``1``.
        sim_options(dict): A dictionary of options for the similarity
            measure. See :ref:`similarity_measures_configuration` for accepted
            options. It is recommended to use the :func:`pearson_baseline
            <surprise.similarities.pearson_baseline>` similarity measure.

        bsl_options(dict): A dictionary of options for the baseline estimates
            computation. See :ref:`baseline_estimates_configuration` for
            accepted options.
        verbose(bool): Whether to print trace messages of bias estimation,
            similarity, etc.  Default is True.

    """"""

    def __init__(
        self, k=40, min_k=1, sim_options={}, bsl_options={}, verbose=True, **kwargs
    ):

        SymmetricAlgo.__init__(
            self,
            sim_options=sim_options,
            bsl_options=bsl_options,
            verbose=verbose,
            **kwargs
        )

        self.k = k
        self.min_k = min_k

    def fit(self, trainset):

        SymmetricAlgo.fit(self, trainset)
        self.bu, self.bi = self.compute_baselines()
        self.bx, self.by = self.switch(self.bu, self.bi)
        self.sim = self.compute_similarities()

        return self

    def estimate(self, u, i):

        est = self.trainset.global_mean
        if self.trainset.knows_user(u):
            est += self.bu[u]
        if self.trainset.knows_item(i):
            est += self.bi[i]

        x, y = self.switch(u, i)

        if not (self.trainset.knows_user(u) and self.trainset.knows_item(i)):
            return est

        neighbors = [(x2, self.sim[x, x2], r) for (x2, r) in self.yr[y]]
        k_neighbors = heapq.nlargest(self.k, neighbors, key=lambda t: t[1])

        # compute weighted average
        sum_sim = sum_ratings = actual_k = 0
        for (nb, sim, r) in k_neighbors:
            if sim > 0:
                sum_sim += sim
                nb_bsl = self.trainset.global_mean + self.bx[nb] + self.by[y]
                sum_ratings += sim * (r - nb_bsl)
                actual_k += 1

        if actual_k < self.min_k:
            sum_ratings = 0

        try:
            est += sum_ratings / sum_sim
        except ZeroDivisionError:
            pass  # just baseline again

        details = {""actual_k"": actual_k}
        return est, details


class KNNWithZScore(SymmetricAlgo):
    """"""A basic collaborative filtering algorithm, taking into account
    the z-score normalization of each user.

    The prediction :math:`\\hat{r}_{ui}` is set as:

    .. math::
        \\hat{r}_{ui} = \\mu_u + \\sigma_u \\frac{ \\sum\\limits_{v \\in N^k_i(u)}
        \\text{sim}(u, v) \\cdot (r_{vi} - \\mu_v) / \\sigma_v} {\\sum\\limits_{v
        \\in N^k_i(u)} \\text{sim}(u, v)}

    or

    .. math::
        \\hat{r}_{ui} = \\mu_i + \\sigma_i \\frac{ \\sum\\limits_{j \\in N^k_u(i)}
        \\text{sim}(i, j) \\cdot (r_{uj} - \\mu_j) / \\sigma_j} {\\sum\\limits_{j
        \\in N^k_u(i)} \\text{sim}(i, j)}

    depending on the ``user_based`` field of the ``sim_options`` parameter.

    If :math:`\\sigma` is 0, than the overall sigma is used in that case.

    Args:
        k(int): The (max) number of neighbors to take into account for
            aggregation (see :ref:`this note <actual_k_note>`). Default is
            ``40``.
        min_k(int): The minimum number of neighbors to take into account for
            aggregation. If there are not enough neighbors, the neighbor
            aggregation is set to zero (so the prediction ends up being
            equivalent to the mean :math:`\\mu_u` or :math:`\\mu_i`). Default is
            ``1``.
        sim_options(dict): A dictionary of options for the similarity
            measure. See :ref:`similarity_measures_configuration` for accepted
            options.
        verbose(bool): Whether to print trace messages of bias estimation,
            similarity, etc.  Default is True.
    """"""

    def __init__(self, k=40, min_k=1, sim_options={}, verbose=True, **kwargs):

        SymmetricAlgo.__init__(self, sim_options=sim_options, verbose=verbose, **kwargs)

        self.k = k
        self.min_k = min_k

    def fit(self, trainset):

        SymmetricAlgo.fit(self, trainset)

        self.means = np.zeros(self.n_x)
        self.sigmas = np.zeros(self.n_x)
        # when certain sigma is 0, use overall sigma
        self.overall_sigma = np.std([r for (_, _, r) in self.trainset.all_ratings()])

        for x, ratings in self.xr.items():
            self.means[x] = np.mean([r for (_, r) in ratings])
            sigma = np.std([r for (_, r) in ratings])
            self.sigmas[x] = self.overall_sigma if sigma == 0.0 else sigma

        self.sim = self.compute_similarities()

        return self

    def estimate(self, u, i):

        if not (self.trainset.knows_user(u) and self.trainset.knows_item(i)):
            raise PredictionImpossible(""User and/or item is unknown."")

        x, y = self.switch(u, i)

        neighbors = [(x2, self.sim[x, x2], r) for (x2, r) in self.yr[y]]
        k_neighbors = heapq.nlargest(self.k, neighbors, key=lambda t: t[1])

        est = self.means[x]

        # compute weighted average
        sum_sim = sum_ratings = actual_k = 0
        for (nb, sim, r) in k_neighbors:
            if sim > 0:
                sum_sim += sim
                sum_ratings += sim * (r - self.means[nb]) / self.sigmas[nb]
                actual_k += 1

        if actual_k < self.min_k:
            sum_ratings = 0

        try:
            est += sum_ratings / sum_sim * self.sigmas[x]
        except ZeroDivisionError:
            pass  # return mean

        details = {""actual_k"": actual_k}
        return est, details
"
algo_base.py,"""""""
The :mod:`surprise.prediction_algorithms.algo_base` module defines the base
class :class:`AlgoBase` from which every single prediction algorithm has to
inherit.
""""""
import heapq

from .. import similarities as sims
from .optimize_baselines import baseline_als, baseline_sgd
from .predictions import Prediction, PredictionImpossible


class AlgoBase:
    """"""Abstract class where is defined the basic behavior of a prediction
    algorithm.

    Keyword Args:
        baseline_options(dict, optional): If the algorithm needs to compute a
            baseline estimate, the ``baseline_options`` parameter is used to
            configure how they are computed. See
            :ref:`baseline_estimates_configuration` for usage.
    """"""

    def __init__(self, **kwargs):

        self.bsl_options = kwargs.get(""bsl_options"", {})
        self.sim_options = kwargs.get(""sim_options"", {})
        if ""user_based"" not in self.sim_options:
            self.sim_options[""user_based""] = True

    def fit(self, trainset):
        """"""Train an algorithm on a given training set.

        This method is called by every derived class as the first basic step
        for training an algorithm. It basically just initializes some internal
        structures and set the self.trainset attribute.

        Args:
            trainset(:obj:`Trainset <surprise.Trainset>`) : A training
                set, as returned by the :meth:`folds
                <surprise.dataset.Dataset.folds>` method.

        Returns:
            self
        """"""

        self.trainset = trainset

        # (re) Initialise baselines
        self.bu = self.bi = None

        return self

    def predict(self, uid, iid, r_ui=None, clip=True, verbose=False):
        """"""Compute the rating prediction for given user and item.

        The ``predict`` method converts raw ids to inner ids and then calls the
        ``estimate`` method which is defined in every derived class. If the
        prediction is impossible (e.g. because the user and/or the item is
        unknown), the prediction is set according to
        :meth:`default_prediction()
        <surprise.prediction_algorithms.algo_base.AlgoBase.default_prediction>`.

        Args:
            uid: (Raw) id of the user. See :ref:`this note<raw_inner_note>`.
            iid: (Raw) id of the item. See :ref:`this note<raw_inner_note>`.
            r_ui(float): The true rating :math:`r_{ui}`. Optional, default is
                ``None``.
            clip(bool): Whether to clip the estimation into the rating scale.
                For example, if :math:`\\hat{r}_{ui}` is :math:`5.5` while the
                rating scale is :math:`[1, 5]`, then :math:`\\hat{r}_{ui}` is
                set to :math:`5`. Same goes if :math:`\\hat{r}_{ui} < 1`.
                Default is ``True``.
            verbose(bool): Whether to print details of the prediction.  Default
                is False.

        Returns:
            A :obj:`Prediction\
            <surprise.prediction_algorithms.predictions.Prediction>` object
            containing:

            - The (raw) user id ``uid``.
            - The (raw) item id ``iid``.
            - The true rating ``r_ui`` (:math:`r_{ui}`).
            - The estimated rating (:math:`\\hat{r}_{ui}`).
            - Some additional details about the prediction that might be useful
              for later analysis.
        """"""

        # Convert raw ids to inner ids
        try:
            iuid = self.trainset.to_inner_uid(uid)
        except ValueError:
            iuid = ""UKN__"" + str(uid)
        try:
            iiid = self.trainset.to_inner_iid(iid)
        except ValueError:
            iiid = ""UKN__"" + str(iid)

        details = {}
        try:
            est = self.estimate(iuid, iiid)

            # If the details dict was also returned
            if isinstance(est, tuple):
                est, details = est

            details[""was_impossible""] = False

        except PredictionImpossible as e:
            est = self.default_prediction()
            details[""was_impossible""] = True
            details[""reason""] = str(e)

        # clip estimate into [lower_bound, higher_bound]
        if clip:
            lower_bound, higher_bound = self.trainset.rating_scale
            est = min(higher_bound, est)
            est = max(lower_bound, est)

        pred = Prediction(uid, iid, r_ui, est, details)

        if verbose:
            print(pred)

        return pred

    def default_prediction(self):
        """"""Used when the ``PredictionImpossible`` exception is raised during a
        call to :meth:`predict()
        <surprise.prediction_algorithms.algo_base.AlgoBase.predict>`. By
        default, return the global mean of all ratings (can be overridden in
        child classes).

        Returns:
            (float): The mean of all ratings in the trainset.
        """"""

        return self.trainset.global_mean

    def test(self, testset, verbose=False):
        """"""Test the algorithm on given testset, i.e. estimate all the ratings
        in the given testset.

        Args:
            testset: A test set, as returned by a :ref:`cross-validation
                itertor<use_cross_validation_iterators>` or by the
                :meth:`build_testset() <surprise.Trainset.build_testset>`
                method.
            verbose(bool): Whether to print details for each predictions.
                Default is False.

        Returns:
            A list of :class:`Prediction\
            <surprise.prediction_algorithms.predictions.Prediction>` objects
            that contains all the estimated ratings.
        """"""

        # The ratings are translated back to their original scale.
        predictions = [
            self.predict(uid, iid, r_ui_trans, verbose=verbose)
            for (uid, iid, r_ui_trans) in testset
        ]
        return predictions

    def compute_baselines(self):
        """"""Compute users and items baselines.

        The way baselines are computed depends on the ``bsl_options`` parameter
        passed at the creation of the algorithm (see
        :ref:`baseline_estimates_configuration`).

        This method is only relevant for algorithms using :func:`Pearson
        baseline similarity<surprise.similarities.pearson_baseline>` or the
        :class:`BaselineOnly
        <surprise.prediction_algorithms.baseline_only.BaselineOnly>` algorithm.

        Returns:
            A tuple ``(bu, bi)``, which are users and items baselines.""""""

        # Firt of, if this method has already been called before on the same
        # trainset, then just return. Indeed, compute_baselines may be called
        # more than one time, for example when a similarity metric (e.g.
        # pearson_baseline) uses baseline estimates.
        if self.bu is not None:
            return self.bu, self.bi

        method = dict(als=baseline_als, sgd=baseline_sgd)

        method_name = self.bsl_options.get(""method"", ""als"")

        try:
            if getattr(self, ""verbose"", False):
                print(""Estimating biases using"", method_name + ""..."")
            self.bu, self.bi = method[method_name](self)
            return self.bu, self.bi
        except KeyError:
            raise ValueError(
                ""Invalid method ""
                + method_name
                + "" for baseline computation.""
                + "" Available methods are als and sgd.""
            )

    def compute_similarities(self):
        """"""Build the similarity matrix.

        The way the similarity matrix is computed depends on the
        ``sim_options`` parameter passed at the creation of the algorithm (see
        :ref:`similarity_measures_configuration`).

        This method is only relevant for algorithms using a similarity measure,
        such as the :ref:`k-NN algorithms <pred_package_knn_inpired>`.

        Returns:
            The similarity matrix.""""""

        construction_func = {
            ""cosine"": sims.cosine,
            ""msd"": sims.msd,
            ""pearson"": sims.pearson,
            ""pearson_baseline"": sims.pearson_baseline,
        }

        if self.sim_options[""user_based""]:
            n_x, yr = self.trainset.n_users, self.trainset.ir
        else:
            n_x, yr = self.trainset.n_items, self.trainset.ur

        min_support = self.sim_options.get(""min_support"", 1)

        args = [n_x, yr, min_support]

        name = self.sim_options.get(""name"", ""msd"").lower()
        if name == ""pearson_baseline"":
            shrinkage = self.sim_options.get(""shrinkage"", 100)
            bu, bi = self.compute_baselines()
            if self.sim_options[""user_based""]:
                bx, by = bu, bi
            else:
                bx, by = bi, bu

            args += [self.trainset.global_mean, bx, by, shrinkage]

        try:
            if getattr(self, ""verbose"", False):
                print(f""Computing the {name} similarity matrix..."")
            sim = construction_func[name](*args)
            if getattr(self, ""verbose"", False):
                print(""Done computing similarity matrix."")
            return sim
        except KeyError:
            raise NameError(
                ""Wrong sim name ""
                + name
                + "". Allowed values ""
                + ""are ""
                + "", "".join(construction_func.keys())
                + "".""
            )

    def get_neighbors(self, iid, k):
        """"""Return the ``k`` nearest neighbors of ``iid``, which is the inner id
        of a user or an item, depending on the ``user_based`` field of
        ``sim_options`` (see :ref:`similarity_measures_configuration`).

        As the similarities are computed on the basis of a similarity measure,
        this method is only relevant for algorithms using a similarity measure,
        such as the :ref:`k-NN algorithms <pred_package_knn_inpired>`.

        For a usage example, see the :ref:`FAQ <get_k_nearest_neighbors>`.

        Args:
            iid(int): The (inner) id of the user (or item) for which we want
                the nearest neighbors. See :ref:`this note<raw_inner_note>`.

            k(int): The number of neighbors to retrieve.

        Returns:
            The list of the ``k`` (inner) ids of the closest users (or items)
            to ``iid``.
        """"""

        if self.sim_options[""user_based""]:
            all_instances = self.trainset.all_users
        else:
            all_instances = self.trainset.all_items
        others = [(x, self.sim[iid, x]) for x in all_instances() if x != iid]
        others = heapq.nlargest(k, others, key=lambda tple: tple[1])
        k_nearest_neighbors = [j for (j, _) in others]

        return k_nearest_neighbors
"
random_pred.py,""""""" Algorithm predicting a random rating.
""""""


import numpy as np

from .algo_base import AlgoBase


class NormalPredictor(AlgoBase):
    """"""Algorithm predicting a random rating based on the distribution of the
    training set, which is assumed to be normal.

    The prediction :math:`\\hat{r}_{ui}` is generated from a normal distribution
    :math:`\\mathcal{N}(\\hat{\\mu}, \\hat{\\sigma}^2)` where :math:`\\hat{\\mu}` and
    :math:`\\hat{\\sigma}` are estimated from the training data using Maximum
    Likelihood Estimation:

    .. math::
        \\hat{\\mu} &= \\frac{1}{|R_{train}|} \\sum_{r_{ui} \\in R_{train}}
        r_{ui}\\\\\\\\\
        \\hat{\\sigma} &= \\sqrt{\\sum_{r_{ui} \\in R_{train}}
        \\frac{(r_{ui} - \\hat{\\mu})^2}{|R_{train}|}}
    """"""

    def __init__(self):

        AlgoBase.__init__(self)

    def fit(self, trainset):

        AlgoBase.fit(self, trainset)

        num = sum(
            (r - self.trainset.global_mean) ** 2
            for (_, _, r) in self.trainset.all_ratings()
        )
        denum = self.trainset.n_ratings
        self.sigma = np.sqrt(num / denum)

        return self

    def estimate(self, *_):

        return np.random.normal(self.trainset.global_mean, self.sigma)
"
predictions.py,"""""""
The :mod:`surprise.prediction_algorithms.predictions` module defines the
:class:`Prediction` named tuple and the :class:`PredictionImpossible`
exception.
""""""


from collections import namedtuple


class PredictionImpossible(Exception):
    r""""""Exception raised when a prediction is impossible.

    When raised, the estimation :math:`\hat{r}_{ui}` is set to the global mean
    of all ratings :math:`\mu`.
    """"""

    pass


class Prediction(namedtuple(""Prediction"", [""uid"", ""iid"", ""r_ui"", ""est"", ""details""])):
    """"""A named tuple for storing the results of a prediction.

    It's wrapped in a class, but only for documentation and printing purposes.

    Args:
        uid: The (raw) user id. See :ref:`this note<raw_inner_note>`.
        iid: The (raw) item id. See :ref:`this note<raw_inner_note>`.
        r_ui(float): The true rating :math:`r_{ui}`.
        est(float): The estimated rating :math:`\\hat{r}_{ui}`.
        details (dict): Stores additional details about the prediction that
            might be useful for later analysis.
    """"""

    __slots__ = ()  # for memory saving purpose.

    def __str__(self):
        s = f""user: {self.uid:<10} ""
        s += f""item: {self.iid:<10} ""
        if self.r_ui is not None:
            s += f""r_ui = {self.r_ui:1.2f}   ""
        else:
            s += ""r_ui = None   ""
        s += f""est = {self.est:1.2f}   ""
        s += str(self.details)

        return s
"
__init__.py,"""""""
The :mod:`prediction_algorithms` package includes the prediction algorithms
available for recommendation.

The available prediction algorithms are:

.. autosummary::
    :nosignatures:

    random_pred.NormalPredictor
    baseline_only.BaselineOnly
    knns.KNNBasic
    knns.KNNWithMeans
    knns.KNNWithZScore
    knns.KNNBaseline
    matrix_factorization.SVD
    matrix_factorization.SVDpp
    matrix_factorization.NMF
    slope_one.SlopeOne
    co_clustering.CoClustering
""""""

from .algo_base import AlgoBase
from .baseline_only import BaselineOnly
from .co_clustering import CoClustering
from .knns import KNNBaseline, KNNBasic, KNNWithMeans, KNNWithZScore
from .matrix_factorization import NMF, SVD, SVDpp

from .predictions import Prediction, PredictionImpossible
from .random_pred import NormalPredictor
from .slope_one import SlopeOne

__all__ = [
    ""AlgoBase"",
    ""NormalPredictor"",
    ""BaselineOnly"",
    ""KNNBasic"",
    ""KNNBaseline"",
    ""KNNWithMeans"",
    ""SVD"",
    ""SVDpp"",
    ""NMF"",
    ""SlopeOne"",
    ""CoClustering"",
    ""PredictionImpossible"",
    ""Prediction"",
    ""KNNWithZScore"",
]
"
baseline_only.py,"""""""
This class implements the baseline estimation.
""""""

from .algo_base import AlgoBase


class BaselineOnly(AlgoBase):
    r""""""Algorithm predicting the baseline estimate for given user and item.

    :math:`\hat{r}_{ui} = b_{ui} = \mu + b_u + b_i`

    If user :math:`u` is unknown, then the bias :math:`b_u` is assumed to be
    zero. The same applies for item :math:`i` with :math:`b_i`.

    See section 2.1 of :cite:`Koren:2010` for details.

    Args:
        bsl_options(dict): A dictionary of options for the baseline estimates
            computation. See :ref:`baseline_estimates_configuration` for
            accepted options.
        verbose(bool): Whether to print trace messages of bias estimation,
            similarity, etc.  Default is True.
    """"""

    def __init__(self, bsl_options={}, verbose=True):

        AlgoBase.__init__(self, bsl_options=bsl_options)
        self.verbose = verbose

    def fit(self, trainset):

        AlgoBase.fit(self, trainset)
        self.bu, self.bi = self.compute_baselines()

        return self

    def estimate(self, u, i):

        est = self.trainset.global_mean
        if self.trainset.knows_user(u):
            est += self.bu[u]
        if self.trainset.knows_item(i):
            est += self.bi[i]

        return est
"
linux_dependencies.py,"import os
import traceback
import sys
print(""before function process"")
def process(version):
    print(""inside fun process"")
    currentDirectory = os.path.dirname(os.path.abspath(__file__))
    print(currentDirectory)
    try:
        from os.path import expanduser
        import platform
        import subprocess
        import sys
        import demoji
        try:
            print('Downloading NLTK additional packages...')
            import nltk       
            nltk.download('punkt')
            nltk.download('wordnet')
            nltk.download('stopwords')
            nltk.download('averaged_perceptron_tagger')
        except Exception as e:
            print('NLTK Error: '+str(e))
            pass
        from appbe.dataPath import DATA_DIR
        
        import shutil
        import importlib

        license_path = DATA_DIR
        if os.path.isdir(license_path) == False:
            os.makedirs(license_path)

        import warnings
        warnings.filterwarnings(""ignore"")
        
        LicenseFolder = os.path.join(license_path,'License')
        if os.path.isdir(LicenseFolder) == False:
            os.makedirs(LicenseFolder)


        sqlite_path = os.path.join(license_path,'sqlite')
        if os.path.isdir(sqlite_path) == False:
            os.makedirs(sqlite_path)
        pretrainedModel_path = os.path.join(license_path,'PreTrainedModels')
        if os.path.isdir(pretrainedModel_path) == False:
            os.makedirs(pretrainedModel_path)
        config_path = os.path.join(license_path,'config')
        if os.path.isdir(config_path) == False:
            os.makedirs(config_path)
        target_path = os.path.join(license_path,'target')
        if os.path.isdir(target_path) == False:
            os.makedirs(target_path)
        data_path = os.path.join(license_path,'storage')
        if os.path.isdir(data_path) == False:
            os.makedirs(data_path)
        log_path = os.path.join(license_path,'logs')
        if os.path.isdir(log_path) == False:
            os.makedirs(log_path)


        configFolder = 	os.path.join(currentDirectory,'..','config')
        for file in os.listdir(configFolder):
            if file.endswith("".var""):
                os.remove(os.path.join(configFolder,file))
        versionfile = os.path.join(configFolder,str(version)+'.var')        
        with open(versionfile, 'w') as fp:
            pass
        
        manage_path = os.path.join(currentDirectory,'..','aion.py')
        print('Setting up Django Environment for AION User Interface')
        proc = subprocess.Popen([sys.executable, manage_path, ""-m"",""migrateappfe""],stdout=subprocess.PIPE, stderr=subprocess.PIPE)
        (stdout, stderr) = proc.communicate()
        if proc.returncode != 0:
            err_string = stderr.decode('utf8')
            import re
            result = re.search(""No module named '(.*)'"", err_string)
            if 'ModuleNotFoundError' in err_string:
                print('\n""{}"" module is missing. The dependencies of AION were not installed properly. Uninstall and reinstall AION'.format(result.group(1)))
            else:
                print('\nThe dependencies of AION were not installed properly. Uninstall and reinstall AION')
            raise Exception(err_string)
        else:
            print('AION User Interface successfully set')
            print('--------------AION Installed Successfully--------------')
    except Exception as e:
        print(e)
        f = open(os.path.join(currentDirectory, 'workspace_error_logs.txt'), ""w"")
        f.write(str(traceback.format_exc()))
        f.close()
        pass

if __name__ == ""__main__"":
    process(sys.argv[1])"
dependencies.py,"import os
import traceback

def process(version):
    currentDirectory = os.path.dirname(os.path.abspath(__file__))
    try:
        import win32com.client
        from os.path import expanduser
        import platform
        import subprocess
        import sys
        import demoji
        try:
            print('Downloading NLTK additional packages...')
            import nltk       
            nltk.download('punkt')
            nltk.download('wordnet')
            nltk.download('stopwords')
            nltk.download('averaged_perceptron_tagger')
        except Exception as e:
            print('NLTK Error: '+str(e))
            pass
        from appbe.dataPath import DATA_DIR
        from win32com.shell import shell, shellcon
        import shutil
        import importlib

        license_path = DATA_DIR
        if os.path.isdir(license_path) == False:
            os.makedirs(license_path)

        import warnings
        warnings.filterwarnings(""ignore"")
        
        LicenseFolder = os.path.join(license_path,'License')
        if os.path.isdir(LicenseFolder) == False:
            os.makedirs(LicenseFolder)


        sqlite_path = os.path.join(license_path,'sqlite')
        if os.path.isdir(sqlite_path) == False:
            os.makedirs(sqlite_path)
        pretrainedModel_path = os.path.join(license_path,'PreTrainedModels')
        if os.path.isdir(pretrainedModel_path) == False:
            os.makedirs(pretrainedModel_path)
        config_path = os.path.join(license_path,'config')
        if os.path.isdir(config_path) == False:
            os.makedirs(config_path)
        target_path = os.path.join(license_path,'target')
        if os.path.isdir(target_path) == False:
            os.makedirs(target_path)
        data_path = os.path.join(license_path,'storage')
        if os.path.isdir(data_path) == False:
            os.makedirs(data_path)
        log_path = os.path.join(license_path,'logs')
        if os.path.isdir(log_path) == False:
            os.makedirs(log_path)


        configFolder = 	os.path.join(currentDirectory,'..','config')
        for file in os.listdir(configFolder):
            if file.endswith("".var""):
                os.remove(os.path.join(configFolder,file))
        versionfile = os.path.join(configFolder,str(version)+'.var')        
        with open(versionfile, 'w') as fp:
            pass
        
        manage_path = os.path.join(currentDirectory,'..','aion.py')
        print('Setting up Django Environment for AION User Interface')
        proc = subprocess.Popen([sys.executable, manage_path, ""-m"",""migrateappfe""],stdout=subprocess.PIPE, stderr=subprocess.PIPE)
        (stdout, stderr) = proc.communicate()
        if proc.returncode != 0:
            err_string = stderr.decode('utf8')
            import re
            result = re.search(""No module named '(.*)'"", err_string)
            if 'ModuleNotFoundError' in err_string:
                print('\n""{}"" module is missing. The dependencies of AION were not installed properly. Uninstall and reinstall AION'.format(result.group(1)))
            else:
                print('\nThe dependencies of AION were not installed properly. Uninstall and reinstall AION')
            raise Exception(err_string)
        else:
            print('AION User Interface successfully set')
            desktop = shell.SHGetFolderPath (0, shellcon.CSIDL_DESKTOP, 0, 0)
            #desktop = os.path.expanduser('~/Desktop')
            path = os.path.join(desktop, 'Explorer {0}.lnk'.format(version))
            target = os.path.normpath(os.path.join(currentDirectory,'..', 'sbin', 'AION_Explorer.bat'))
            icon = os.path.join(currentDirectory,'icons','aion.ico')
            shell = win32com.client.Dispatch(""WScript.Shell"")
            shortcut = shell.CreateShortCut(path)
            shortcut.Targetpath = '""'+target+'""'
            shortcut.WorkingDirectory = currentDirectory
            #shortcut.WorkingDirectory = os.path.dirname(__file__)
            shortcut.IconLocation = icon
            shortcut.WindowStyle = 1 # 7 - Minimized, 3 - Maximized, 1 - Normal
            shortcut.save()
            path = os.path.join(desktop, 'Shell {0}.lnk'.format(version)) 
            target = os.path.normpath(os.path.join(currentDirectory,'..','sbin', 'AION_Shell.bat'))
            icon = os.path.join(currentDirectory,'icons','aion_shell.ico')
            shell = win32com.client.Dispatch(""WScript.Shell"")
            shortcut = shell.CreateShortCut(path)
            shortcut.Targetpath = '""'+target+'""'
            shortcut.WorkingDirectory = currentDirectory
            #shortcut.WorkingDirectory = os.path.dirname(__file__)
            shortcut.IconLocation = icon
            shortcut.WindowStyle = 1 # 7 - Minimized, 3 - Maximized, 1 - Normal
            shortcut.save()
            print('--------------AION Installed Successfully--------------')
    except Exception as e:
        print(e)
        f = open(os.path.join(currentDirectory, 'workspace_error_logs.txt'), ""w"")
        f.write(str(traceback.format_exc()))
        f.close()
        pass
"
__init__.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''"
visualization.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''
import warnings
import numpy as np
import pandas as pd
import sklearn.metrics as metrics
from collections import defaultdict
from sklearn.metrics import confusion_matrix 
import re
import shutil
import scipy.stats as st
import json
import os,sys
import glob
import logging
from utils.file_ops import read_df_compressed
class Visualization():
	def __init__(self,usecasename,version,dataframe,visualizationJson,dateTimeColumn,deployPath,dataFolderLocation,numericContinuousFeatures,discreteFeatures,categoricalFeatures,modelFeatures,targetFeature,modeltype,original_data_file,profiled_data_file,trained_data_file,predicted_data_file,labelMaps,vectorizerFeatures,textFeatures,numericalFeatures,nonNumericFeatures,emptyFeatures,nrows,ncols,saved_model,scoreParam,learner_type,modelname,featureReduction,reduction_data_file):
		self.dataframe = dataframe
		self.displayjson = {}
		self.visualizationJson = visualizationJson
		self.dateTimeColumn = dateTimeColumn
		self.deployPath = deployPath
		#shutil.copy2(os.path.join(os.path.dirname(os.path.abspath(__file__)),'aion_portal.py'),self.deployPath)
		if learner_type == 'ML' and modelname != 'Neural Architecture Search':
			if(os.path.isfile(os.path.join(self.deployPath,'explainable_ai.py'))):
				os.remove(os.path.join(self.deployPath,'explainable_ai.py'))
			shutil.copy2(os.path.join(os.path.dirname(os.path.abspath(__file__)),'..','utilities','xai','explainable_ai.py'),self.deployPath)
			# os.rename(os.path.join(self.deployPath,'explainable_ai.py'),os.path.join(self.deployPath,'aion_xai.py'))
			try:
				os.rename(os.path.join(self.deployPath,'explainable_ai.py'),os.path.join(self.deployPath,'aion_xai.py'))
			except FileExistsError:
				os.remove(os.path.join(self.deployPath,'aion_xai.py'))
				os.rename(os.path.join(self.deployPath,'explainable_ai.py'),os.path.join(self.deployPath,'aion_xai.py'))
		elif learner_type == 'DL' or modelname == 'Neural Architecture Search':
			if(os.path.isfile(os.path.join(self.deployPath,'explainable_ai.py'))):
				os.remove(os.path.join(self.deployPath,'explainable_ai.py'))
			shutil.copy2(os.path.join(os.path.dirname(os.path.abspath(__file__)),'..','utilities','xai','explainabledl_ai.py'),self.deployPath)			
			# os.rename(os.path.join(self.deployPath,'explainabledl_ai.py'),os.path.join(self.deployPath,'aion_xai.py'))
			try:
				os.rename(os.path.join(self.deployPath,'explainabledl_ai.py'),os.path.join(self.deployPath,'aion_xai.py'))
			except FileExistsError:
				os.remove(os.path.join(self.deployPath,'aion_xai.py'))
				os.rename(os.path.join(self.deployPath,'explainabledl_ai.py'),os.path.join(self.deployPath,'aion_xai.py'))
		self.jsondeployPath = deployPath
		#self.deployPath = self.deployPath+'visualization/'
		self.dataFolderLocation = dataFolderLocation
		self.vectorizerFeatures = vectorizerFeatures
		self.textFeatures = textFeatures
		self.emptyFeatures = emptyFeatures
		'''
		try:
			os.makedirs(self.deployPath)
		except OSError as e:
			print(""\nFolder Already Exists"")
		'''
		self.numericContinuousFeatures = numericContinuousFeatures
		self.discreteFeatures = discreteFeatures
		self.categoricalFeatures = categoricalFeatures
		self.modelFeatures = modelFeatures
		self.modeltype = modeltype
		self.targetFeature = targetFeature
		self.displayjson['usecasename'] = str(usecasename)
		self.displayjson['version'] = str(version)
		self.displayjson['problemType'] = str(self.modeltype)
		self.displayjson['targetFeature'] = self.targetFeature
		self.displayjson['numericalFeatures'] = numericalFeatures
		self.displayjson['nonNumericFeatures'] = nonNumericFeatures
		self.displayjson['modelFeatures'] = self.modelFeatures
		self.displayjson['textFeatures'] = self.textFeatures
		self.displayjson['emptyFeatures'] = self.emptyFeatures
		self.displayjson['modelname']= str(modelname)
		self.displayjson['preprocessedData'] = str(original_data_file)
		self.displayjson['nrows'] = str(nrows)
		self.displayjson['ncols'] = str(ncols)
		self.displayjson['saved_model'] = str(saved_model)
		self.displayjson['scoreParam'] = str(scoreParam)
		self.displayjson['labelMaps'] = eval(str(labelMaps))
		self.original_data_file  = original_data_file
		self.displayjson['featureReduction'] = featureReduction 
		if featureReduction == 'True':
			self.displayjson['reduction_data_file'] = reduction_data_file
		else:
			self.displayjson['reduction_data_file'] = ''
		self.pred_filename = predicted_data_file
		self.profiled_data_file = profiled_data_file
		self.displayjson['predictedData'] = predicted_data_file
		self.displayjson['postprocessedData'] = profiled_data_file
		#self.trained_data_file = trained_data_file
		#self.displayjson['trainingData'] = trained_data_file
		#self.displayjson['categorialFeatures']=categoricalFeatures
		#self.displayjson['discreteFeatures']=discreteFeatures
		#self.displayjson['continuousFeatures']=numericContinuousFeatures
		#y = json.dumps(self.displayjson)
		#print(y)
		self.labelMaps = labelMaps
		self.log = logging.getLogger('eion')
		
	def visualizationrecommandsystem(self):
		try:
			import tensorflow.keras.utils as kutils
			datasetid = self.visualizationJson['datasetid']
			self.log.info('\n================== Data Profiling Details==================')
			datacolumns=list(self.dataframe.columns)
			self.log.info('================== Data Profiling Details End ==================\n')
			self.log.info('================== Features Correlation Details ==================\n')
			self.log.info('\n================== Model Performance Analysis ==================')
			if os.path.exists(self.pred_filename):
				try:                
					status,df=read_df_compressed(self.pred_filename)
					if self.modeltype == 'Classification' or self.modeltype == 'ImageClassification' or self.modeltype == 'anomaly_detection':
						y_actual = df['actual'].values
						y_predict = df['predict'].values
						y_actual = kutils.to_categorical(y_actual)
						y_predict = kutils.to_categorical(y_predict)
						classes = df.actual.unique()
						n_classes = y_actual.shape[1]
						self.log.info('-------> ROC AUC CURVE')
						roc_curve_dict = []
						for i in classes:
							try:	
								classname = i
								if str(self.labelMaps) != '{}':
									inv_map = {v: k for k, v in self.labelMaps.items()}
									classname = inv_map[i]
								fpr, tpr, threshold = metrics.roc_curve(y_actual[:,i],y_predict[:,i])
								roc_auc = metrics.auc(fpr, tpr)
								class_roc_auc_curve = {}
								class_roc_auc_curve['class']  = str(classname)
								fprstring = ','.join(str(v) for v in fpr)
								tprstring = ','.join(str(v) for v in tpr)
								class_roc_auc_curve['FP']  = str(fprstring)
								class_roc_auc_curve['TP']  = str(tprstring)
								roc_curve_dict.append(class_roc_auc_curve)
								self.log.info('----------> Class: '+str(classname))
								self.log.info('------------> ROC_AUC: '+str(roc_auc))
								self.log.info('------------> False Positive Rate (x Points): '+str(fpr))
								self.log.info('------------> True Positive Rate (y Points): '+str(tpr))
							except:
								pass
							self.displayjson['ROC_AUC_CURVE'] = roc_curve_dict
							self.log.info('-------> Precision Recall CURVE')
							precision_recall_curve_dict = []
						for i in range(n_classes):
							try:
								lr_precision, lr_recall, threshold = metrics.precision_recall_curve(y_actual[:,i],y_predict[:,i])
								classname = i
								if str(self.labelMaps) != '{}':
									inv_map = {v: k for k, v in self.labelMaps.items()}
									classname = inv_map[i]
								roc_auc = metrics.auc(lr_recall,lr_precision)
								class_precision_recall_curve = {}
								class_precision_recall_curve['class']  = str(classname)
								Precisionstring = ','.join(str(round(v,2)) for v in lr_precision)
								Recallstring = ','.join(str(round(v,2)) for v in lr_recall)
								class_precision_recall_curve['Precision']  = str(Precisionstring)
								class_precision_recall_curve['Recall']  = str(Recallstring)
								precision_recall_curve_dict.append(class_precision_recall_curve)
							except:
								pass
					
							self.log.info('----------> Class: '+str(classname))
							self.log.info('------------> ROC_AUC: '+str(roc_auc))
							self.log.info('------------> Recall (x Points): '+str(lr_precision))
							self.log.info('------------> Precision (y Points): '+str(lr_recall))
						self.displayjson['PRECISION_RECALL_CURVE'] = precision_recall_curve_dict
						status,predictdataFrame=read_df_compressed(self.displayjson['predictedData'])
				except Exception as e:
					self.log.info('================== Error in Calculation ROC_AUC/Recall Precision Curve '+str(e))
			self.log.info('================== Model Performance Analysis End ==================\n')
			self.log.info('\n================== For Descriptive Analysis of Model Features ==================')

			
			outputfile = os.path.join(self.jsondeployPath,'etc','display.json')
			with open(outputfile, 'w') as fp:
				json.dump(self.displayjson, fp)
			self.log.info('================== For Descriptive Analysis of Model Features End ==================\n')		
		except Exception as inst:
			self.log.info('Visualization Failed !....'+str(inst))
			exc_type, exc_obj, exc_tb = sys.exc_info()
			fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)
			self.log.info(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))
			
	def drawlinechart(self,xcolumn,ycolumn,deploy_path,datasetid):
		title = 'aion_visualization_'+xcolumn+""_""+ycolumn+""_linechart""
		yaxisname = 'Average '+ycolumn
		datasetindex = datasetid		
		visulizationjson = '[{""_id"": ""543234"",""_type"": ""visualization"",""_source"": {""title"": ""'+title+'"",'
		visulizationjson = visulizationjson+'""visState"": ""{\\""title\\"":\\""'+title+'\\"",'		
		visulizationjson = visulizationjson+'\\""type\\"":\\""line\\"",\\""params\\"":{\\""type\\"":\\""line\\"",\\""grid\\"":{\\""categoryLines\\"":false,\\""style\\"":{\\""color\\"":\\""#eee\\""}},\\""categoryAxes\\"":[{\\""id\\"":\\""CategoryAxis-1\\"",\\""type\\"":\\""category\\"",\\""position\\"":\\""bottom\\"",\\""show\\"":true,\\""style\\"":{},\\""scale\\"":{\\""type\\"":\\""linear\\""},\\""labels\\"":{\\""show\\"":true,\\""truncate\\"":100},\\""title\\"":{}}],\\""valueAxes\\"":[{\\""id\\"":\\""ValueAxis-1\\"",\\""name\\"":\\""LeftAxis-1\\"",\\""type\\"":\\""value\\"",\\""position\\"":\\""left\\"",\\""show\\"":true,\\""style\\"":{},\\""scale\\"":{\\""type\\"":\\""linear\\"",\\""mode\\"":\\""normal\\""},\\""labels\\"":{\\""show\\"":true,\\""rotate\\"":0,\\""filter\\"":false,\\""truncate\\"":100},\\""title\\"":'		
		visulizationjson = visulizationjson+'{\\""text\\"":\\""'+yaxisname+'\\""}}],\\""seriesParams\\"":[{\\""show\\"":\\""true\\"",\\""type\\"":\\""line\\"",\\""mode\\"":\\""normal\\"",\\""data\\"":'
		visulizationjson = visulizationjson+'{\\""label\\"":\\""'+yaxisname+'\\"",\\""id\\"":\\""1\\""},\\""valueAxis\\"":\\""ValueAxis-1\\"",\\""drawLinesBetweenPoints\\"":true,\\""showCircles\\"":true}],\\""addTooltip\\"":true,\\""addLegend\\"":true,\\""legendPosition\\"":\\""right\\"",\\""times\\"":[],\\""addTimeMarker\\"":false},\\""aggs\\"":[{\\""id\\"":\\""1\\"",\\""enabled\\"":true,\\""type\\"":\\""avg\\"",\\""schema\\"":\\""metric\\"",\\""params\\"":{\\""field\\"":\\""'+str(ycolumn)+'\\""}},{\\""id\\"":\\""2\\"",\\""enabled\\"":true,\\""type\\"":\\""terms\\"",\\""schema\\"":\\""segment\\"",\\""params\\"":{\\""field\\"":\\""'+xcolumn+'\\"",\\""size\\"":100,\\""order\\"":\\""desc\\"",\\""orderBy\\"":\\""1\\"",\\""otherBucket\\"":false,\\""otherBucketLabel\\"":\\""Other\\"",\\""missingBucket\\"":false,\\""missingBucketLabel\\"":\\""Missing\\""}}]}"",""uiStateJSON"": ""{}"", ""description"": """",""version"": 1,""kibanaSavedObjectMeta"": {""searchSourceJSON"": ""{\\""index\\"":\\""'+datasetindex+'\\"",\\""query\\"":{\\""query\\"":\\""\\"",\\""language\\"":\\""lucene\\""},\\""filter\\"":[]}""}},""_migrationVersion"": {""visualization"": ""6.7.2""}}]'
		filename = deploy_path+title+'.json'
		f = open(filename, ""w"")
		f.write(str(visulizationjson))
		f.close()

	def drawbarchart(self,xcolumn,ycolumn,deploy_path,datasetid):
		title = 'aion_visualization_'+xcolumn+""_""+ycolumn+""_barchart""
		yaxisname = 'Average '+ycolumn
		datasetindex = datasetid
		visulizationjson = '[{""_id"": ""123456"",""_type"": ""visualization"",""_source"": {""title"":""'+title+'"",'
		visulizationjson = visulizationjson+'""visState"": ""{\\""title\\"":\\""'+title+'\\"",'
		visulizationjson = visulizationjson+'\\""type\\"":\\""histogram\\"",\\""params\\"":{\\""addLegend\\"":true,\\""addTimeMarker\\"":false,\\""addTooltip\\"":true,\\""categoryAxes\\"":[{\\""id\\"":\\""CategoryAxis-1\\"",\\""labels\\"":{\\""show\\"":true,\\""truncate\\"":100},\\""position\\"":\\""bottom\\"",\\""scale\\"":{\\""type\\"":\\""linear\\""},\\""show\\"":true,\\""style\\"":{},\\""title\\"":{},\\""type\\"":\\""category\\""}],\\""grid\\"":{\\""categoryLines\\"":false,\\""style\\"":{\\""color\\"":\\""#eee\\""}},\\""legendPosition\\"":\\""right\\"",\\""seriesParams\\"":[{\\""data\\"":{\\""id\\"":\\""1\\"",'
		visulizationjson = visulizationjson+'\\""label\\"":\\""'+yaxisname+'\\""},'
		visulizationjson = visulizationjson+'\\""drawLinesBetweenPoints\\"":true,\\""mode\\"":\\""stacked\\"",\\""show\\"":\\""true\\"",\\""showCircles\\"":true,\\""type\\"":\\""histogram\\"",\\""valueAxis\\"":\\""ValueAxis-1\\""}],\\""times\\"":[],\\""type\\"":\\""histogram\\"",\\""valueAxes\\"":[{\\""id\\"":\\""ValueAxis-1\\"",\\""labels\\"":{\\""filter\\"":false,\\""rotate\\"":0,\\""show\\"":true,\\""truncate\\"":100},\\""name\\"":\\""LeftAxis-1\\"",\\""position\\"":\\""left\\"",\\""scale\\"":{\\""mode\\"":\\""normal\\"",\\""type\\"":\\""linear\\""},\\""show\\"":true,\\""style\\"":{},\\""title\\"":'
		visulizationjson = visulizationjson+'{\\""text\\"":\\""'+yaxisname+'\\""},'
		visulizationjson = visulizationjson+'\\""type\\"":\\""value\\""}]},\\""aggs\\"":[{\\""id\\"":\\""1\\"",\\""enabled\\"":true,\\""type\\"":\\""avg\\"",\\""schema\\"":\\""metric\\"",\\""params\\"":{\\""field\\"":\\""'+str(xcolumn)+'\\""}},{\\""id\\"":\\""2\\"",\\""enabled\\"":true,\\""type\\"":\\""terms\\"",\\""schema\\"":\\""segment\\"",\\""params\\"":{\\""field\\"":\\""'+ycolumn+'\\"",\\""size\\"":100,\\""order\\"":\\""asc\\"",\\""orderBy\\"":\\""1\\"",\\""otherBucket\\"":false,\\""otherBucketLabel\\"":\\""Other\\"",\\""missingBucket\\"":false,\\""missingBucketLabel\\"":\\""Missing\\""}}]}"",""uiStateJSON"":""{}"",""description"": """",""version"": 1,""kibanaSavedObjectMeta"": {'
		visulizationjson = visulizationjson+'""searchSourceJSON"": ""{\\""index\\"":\\""'+datasetindex+'\\"",\\""query\\"":{\\""language\\"":\\""lucene\\"",\\""query\\"":\\""\\""},\\""filter\\"":[]}""}},""_migrationVersion"":{""visualization"": ""6.7.2""}}]'
		filename = deploy_path+title+'.json'
		f = open(filename, ""w"")
		f.write(str(visulizationjson))
		f.close()

	def drawpiechart(self,xcolumn,deploy_path,datasetid):
		title = 'aion_visualization_'+xcolumn+""_piechart""
		datasetindex = datasetid
		visulizationjson = '[{""_id"": ""123456"",""_type"": ""visualization"",""_source"": {""title"":""'+title+'"",'
		visulizationjson = visulizationjson+'""visState"": ""{\\""title\\"":\\""'+title+'\\"",'
		visulizationjson = visulizationjson+'\\""type\\"":\\""pie\\"",\\""params\\"":{\\""type\\"":\\""pie\\"",\\""addTooltip\\"":true,\\""addLegend\\"":true,\\""legendPosition\\"":\\""right\\"",\\""isDonut\\"":true,\\""labels\\"":{\\""show\\"":false,\\""values\\"":true,\\""last_level\\"":true,\\""truncate\\"":100}},\\""aggs\\"":[{\\""id\\"":\\""1\\"",\\""enabled\\"":true,\\""type\\"":\\""count\\"",\\""schema\\"":\\""metric\\"",\\""params\\"":{}},{\\""id\\"":\\""2\\"",\\""enabled\\"":true,\\""type\\"":\\""terms\\"",\\""schema\\"":\\""segment\\"",\\""params\\"":{\\""field\\"":\\""'+xcolumn+'\\"",\\""size\\"":100,\\""order\\"":\\""asc\\"",\\""orderBy\\"":\\""1\\"",\\""otherBucket\\"":false,\\""otherBucketLabel\\"":\\""Other\\"",\\""missingBucket\\"":false,\\""missingBucketLabel\\"":\\""Missing\\""}}]}"",'
		visulizationjson = visulizationjson+'""uiStateJSON"": ""{}"",""description"": """",""version"": 1,""kibanaSavedObjectMeta"": {""searchSourceJSON"":""{\\""index\\"":\\""'+datasetid+'\\"",\\""query\\"":{\\""query\\"":\\""\\"",\\""language\\"":\\""lucene\\""},\\""filter\\"":[]}""}},""_migrationVersion"": {""visualization"": ""6.7.2""}}]'
		filename = deploy_path+title+'.json'
		f = open(filename, ""w"")
		f.write(str(visulizationjson))
		f.close()	
		
	def get_confusion_matrix(self,df):
		setOfyTrue = set(df['actual'])
		unqClassLst = list(setOfyTrue)
		if(str(self.labelMaps) != '{}'):
			inv_mapping_dict = {v: k for k, v in self.labelMaps.items()}
			unqClassLst2 = (pd.Series(unqClassLst)).map(inv_mapping_dict)
			unqClassLst2 = list(unqClassLst2)
		else:
			unqClassLst2 = 	unqClassLst
		indexName = []
		columnName = []
		for item in unqClassLst2:
			indexName.append(""act:""+str(item))
			columnName.append(""pre:""+str(item))
		result = pd.DataFrame(confusion_matrix(df['actual'], df['predict'], labels = unqClassLst),index = indexName, columns = columnName)
		resultjson = result.to_json(orient='index')
		return(resultjson)
		
	def DistributionFinder(self,data):
		try:
			
			distributionName =""""
			sse =0.0
			KStestStatic=0.0
			dataType=""""
			if(data.dtype == ""float64""):
				dataType =""Continuous""
			elif(data.dtype ==""int"" or data.dtype ==""int64""):
				dataType=""Discrete""
					  
			if(dataType == ""Discrete""):
				distributions= [st.bernoulli,st.binom,st.geom,st.nbinom,st.poisson]                
				index, counts = np.unique(abs(data.astype(int)),return_counts=True)

				if(len(index)>=2):
					best_sse = np.inf
					y1=[]
					total=sum(counts)
					mean=float(sum(index*counts))/total
					variance=float((sum(index**2*counts) -total*mean**2))/(total-1)
					dispersion=mean/float(variance)
					theta=1/float(dispersion)
					r=mean*(float(theta)/1-theta)

					for j in counts:
							y1.append(float(j)/total)
							
					pmf1=st.bernoulli.pmf(index,mean)      
					pmf2=st.binom.pmf(index,len(index),p=mean/len(index))
					pmf3=st.geom.pmf(index,1/float(1+mean))
					pmf4=st.nbinom.pmf(index,mean,r)
					pmf5=st.poisson.pmf(index,mean)

					sse1 = np.sum(np.power(y1 - pmf1, 2.0))
					sse2 = np.sum(np.power(y1 - pmf2, 2.0))
					sse3 = np.sum(np.power(y1 - pmf3, 2.0))
					sse4 = np.sum(np.power(y1 - pmf4, 2.0))
					sse5 = np.sum(np.power(y1-  pmf5, 2.0))

					sselist=[sse1,sse2,sse3,sse4,sse5]
					for i in range(0,len(sselist)):
					  if best_sse > sselist[i] > 0:
						  best_distribution = distributions[i].name
						  best_sse = sselist[i]

				elif (len(index) == 1): 
					best_distribution = ""Constant Data-No Distribution""
					best_sse = 0.0

				distributionName =best_distribution
				sse=best_sse   

			elif(dataType == ""Continuous""): 
					 
				distributions = [st.uniform,st.expon,st.weibull_max,st.weibull_min,st.chi,st.norm,st.lognorm,st.t,st.gamma,st.beta]

				best_distribution = st.norm.name
				best_sse = np.inf
				datamin=data.min()
				datamax=data.max()
				nrange=datamax-datamin
					 
				y, x = np.histogram(data.astype(float), bins='auto', density=True)
				x = (x + np.roll(x, -1))[:-1] / 2.0
										
				for distribution in distributions:
						with warnings.catch_warnings():
								warnings.filterwarnings('ignore')
										
								params = distribution.fit(data.astype(float))
										# Separate parts of parameters
								arg = params[:-2]
								loc = params[-2]
								scale = params[-1]

										# Calculate fitted PDF and error with fit in distribution
								pdf = distribution.pdf(x, loc=loc, scale=scale, *arg)
								sse = np.sum(np.power(y - pdf, 2.0))
								if(best_sse >sse > 0):
										best_distribution = distribution.name
										best_sse = sse

				distributionName =best_distribution
				sse=best_sse 
		except:
			response = str(sys.exc_info()[0])
			message='Job has Failed'+response
			print(message)
		return distributionName,sse

				
	
"
local_pipeline.py,"import docker
import json
import logging
def read_json(file_path):                    
	data = None                    
	with open(file_path,'r') as f:                    
		data = json.load(f)                    
	return data

def run_pipeline(inputconfig):	
	inputconfig  = json.loads(inputconfig)
	logfilepath = inputconfig['logfilepath']
	logging.basicConfig(level=logging.INFO,filename =logfilepath)		
	usecasename = inputconfig['usecase']
	logging.info(""UseCaseName :""+str(usecasename))
	version = inputconfig['version']
	logging.info(""version :""+str(version))
	config = inputconfig['dockerlist']   
	persistancevolume = inputconfig['persistancevolume']
	logging.info(""PersistanceVolume :""+str(persistancevolume))
	datasetpath = inputconfig['datasetpath']   
	logging.info(""DataSet Path :""+str(datasetpath))
	config = read_json(config) 
	client = docker.from_env()
	inputconfig = {'modelName':usecasename,'modelVersion':str(version),'dataLocation':datasetpath}
	inputconfig = json.dumps(inputconfig)					                    
	inputconfig = inputconfig.replace('""', '\\""')
	logging.info(""===== Model Monitoring Container Start ====="")
	outputStr = client.containers.run(config['ModelMonitoring'],'python code.py -i'+datasetpath,volumes=[persistancevolume+':/aion'])
	outputStr = outputStr.decode('utf-8')
	logging.info('ModelMonitoring: '+str(outputStr))
	print('ModelMonitoring: '+str(outputStr))
	logging.info(""===== ModelMonitoring Stop ====="")
	logging.info(""===== Data Ingestion Container Start ====="")
	outputStr = client.containers.run(config['DataIngestion'],'python code.py',volumes=[persistancevolume+':/aion'])
	outputStr = outputStr.decode('utf-8')
	logging.info('DataIngestion: '+str(outputStr))
	print('DataIngestion: '+str(outputStr))
	logging.info(""===== Data Ingestion Container Stop ====="")
	outputStr = outputStr.strip()
	decoded_data = json.loads(outputStr)
	status = decoded_data['Status']
	if status != 'Success':
		output = {'Status':'Error','Msg':'Data Ingestion Fails'}
	logging.info(""===== Transformation Container Start ====="")
	outputStr = client.containers.run(config['DataTransformation'],'python code.py',volumes=[persistancevolume+':/aion'])	
	outputStr = outputStr.decode('utf-8')
	logging.info('Data Transformations: '+str(outputStr))
	print('Data Transformations: '+str(outputStr))
	logging.info(""===== Transformation Container Done ====="")
	outputStr = outputStr.strip()
	decoded_data = json.loads(outputStr)
	status = decoded_data['Status']
	if status != 'Success':
		output = {'Status':'Error','Msg':'Data Transformations Fails'}
	logging.info(""===== Feature Engineering Container Start ====="")
	outputStr = client.containers.run(config['FeatureEngineering'],'python code.py',volumes=[persistancevolume+':/aion'])	
	outputStr = outputStr.decode('utf-8')
	logging.info('FeatureEngineering: '+str(outputStr))
	print('FeatureEngineering: '+str(outputStr))	
	logging.info(""===== Feature Engineering Container Done ====="")
	outputStr = outputStr.strip()
	decoded_data = json.loads(outputStr)
	status = decoded_data['Status']
	modeltraining = config['ModelTraining'] 
	for mt in modeltraining:
		logging.info(""===== Training Container Start ====="")
		outputStr = client.containers.run(mt['Training'],'python code.py',volumes=[persistancevolume+':/aion'])
		outputStr = outputStr.decode('utf-8')
		logging.info('ModelTraining: '+str(outputStr))
		print('ModelTraining: '+str(outputStr))			
		logging.info(""===== Training Container Done ====="")
		outputStr = outputStr.strip()
		try:
			decoded_data = json.loads(outputStr)
			status = decoded_data['Status']
		except Exception as inst:
			logging.info(inst)
	logging.info(""===== Model Registry Start ====="")		
	outputStr = client.containers.run(config['ModelRegistry'],'python code.py',volumes=[persistancevolume+':/aion'])
	outputStr = outputStr.decode('utf-8')
	logging.info('ModelRegistry: '+str(outputStr))
	print('ModelRegistry: '+str(outputStr))
	logging.info(""===== ModelRegistry Done ====="")		
	logging.info(""===== ModelServing Start ====="")		
	outputStr = client.containers.run(config['ModelServing'],'python code.py',volumes=[persistancevolume+':/aion'])
	outputStr = outputStr.decode('utf-8')
	logging.info('Prediction: '+str(outputStr))
	print('Prediction: '+str(outputStr))
	logging.info(""===== ModelServing Done ====="")			"
build_container.py,"import os
import shutil 
import sys
import subprocess
from os.path import expanduser 
import platform
import json

def createDockerImage(model_name,model_version,module,folderpath):
	command = 'docker pull python:3.8-slim-buster'
	os.system(command);
	subprocess.check_call([""docker"", ""build"", ""-t"",module+'_'+model_name.lower()+"":""+model_version,"".""], cwd=folderpath)  
	
def local_docker_build(config):
	print(config)
	config  = json.loads(config)
	model_name = config['usecase']
	model_version  = config['version']
	mlaac__code_path = config['mlacPath']  
	docker_images = {}
	docker_images['ModelMonitoring'] = 'modelmonitoring'+'_'+model_name.lower()+':'+model_version
	dataset_addr = os.path.join(mlaac__code_path,'ModelMonitoring')
	createDockerImage(model_name,model_version,'modelmonitoring',dataset_addr)
	docker_images['DataIngestion'] = 'dataingestion'+'_'+model_name.lower()+':'+model_version
	dataset_addr = os.path.join(mlaac__code_path,'DataIngestion')
	createDockerImage(model_name,model_version,'dataingestion',dataset_addr)
	transformer_addr = os.path.join(mlaac__code_path,'DataTransformation')
	docker_images['DataTransformation'] = 'datatransformation'+'_'+model_name.lower()+':'+model_version
	createDockerImage(model_name,model_version,'datatransformation',transformer_addr)
	featureengineering_addr = os.path.join(mlaac__code_path,'FeatureEngineering')
	docker_images['FeatureEngineering'] = 'featureengineering'+'_'+model_name.lower()+':'+model_version
	createDockerImage(model_name,model_version,'featureengineering',featureengineering_addr)
	from os import listdir
	arr = [filename for filename in os.listdir(mlaac__code_path) if filename.startswith(""ModelTraining"")]	
	docker_training_images = []
	for x in arr:
		dockertraing={}
		dockertraing['Training'] = str(x).lower()+'_'+model_name.lower()+':'+model_version
		docker_training_images.append(dockertraing)
		training_addri = os.path.join(mlaac__code_path,x)
		createDockerImage(model_name,model_version,str(x).lower(),training_addri)
	docker_images['ModelTraining'] = docker_training_images
	docker_images['ModelRegistry'] = 'modelregistry'+'_'+model_name.lower()+':'+model_version
	deploy_addr = os.path.join(mlaac__code_path,'ModelRegistry')
	createDockerImage(model_name,model_version,'modelregistry',deploy_addr)	
	docker_images['ModelServing'] = 'modelserving'+'_'+model_name.lower()+':'+model_version
	deploy_addr = os.path.join(mlaac__code_path,'ModelServing')
	createDockerImage(model_name,model_version,'modelserving',deploy_addr)
	outputjsonFile = os.path.join(mlaac__code_path,'dockerlist.json')
	with open(outputjsonFile, 'w') as f:
		json.dump(docker_images, f)
	f.close()
	output = {'Status':'Success','Msg':outputjsonFile}
	output = json.dumps(output)
	print(""aion_build_container:"",output)"
git_upload.py,"import os
import sys
import json
from pathlib import Path
import subprocess
import shutil
import argparse
       
def create_and_save_yaml(git_storage_path, container_label,usecasepath):
    file_name_prefix = 'gh-acr-'
    yaml_file = f""""""\
name: gh-acr-{container_label}
on: 
  push:
    branches: main
    paths: {container_label}/**
  workflow_dispatch:
jobs:
  gh-acr-build-push:
    runs-on: ubuntu-latest 
    steps:
    - name: 'checkout action'
      uses: actions/checkout@main
    
    - name: 'azure login'
      uses: azure/login@v1
      with:
        creds: ${{{{ secrets.AZURE_CREDENTIALS }}}}
    
    - name: 'build and push image'
      uses: azure/docker-login@v1
      with:
        login-server: ${{{{ secrets.REGISTRY_LOGIN_SERVER }}}}
        username: ${{{{ secrets.REGISTRY_USERNAME }}}}
        password: ${{{{ secrets.REGISTRY_PASSWORD }}}}
    - run:  |
        docker build ./{container_label}/ModelMonitoring -t ${{{{ secrets.REGISTRY_LOGIN_SERVER }}}}/modelmonitoring:{container_label}
        docker push ${{{{ secrets.REGISTRY_LOGIN_SERVER }}}}/modelmonitoring:{container_label}
        docker build ./{container_label}/DataIngestion -t ${{{{ secrets.REGISTRY_LOGIN_SERVER }}}}/dataingestion:{container_label}
        docker push ${{{{ secrets.REGISTRY_LOGIN_SERVER }}}}/dataingestion:{container_label}		
        docker build ./{container_label}/DataTransformation -t ${{{{ secrets.REGISTRY_LOGIN_SERVER }}}}/datatransformation:{container_label}
        docker push ${{{{ secrets.REGISTRY_LOGIN_SERVER }}}}/datatransformation:{container_label}
        docker build ./{container_label}/FeatureEngineering -t ${{{{ secrets.REGISTRY_LOGIN_SERVER }}}}/featureengineering:{container_label}
        docker push ${{{{ secrets.REGISTRY_LOGIN_SERVER }}}}/featureengineering:{container_label}
        docker build ./{container_label}/ModelRegistry -t ${{{{ secrets.REGISTRY_LOGIN_SERVER }}}}/modelregistry:{container_label}
        docker push ${{{{ secrets.REGISTRY_LOGIN_SERVER }}}}/modelregistry:{container_label}		
        docker build ./{container_label}/ModelServing -t ${{{{ secrets.REGISTRY_LOGIN_SERVER }}}}/modelserving:{container_label}
        docker push ${{{{ secrets.REGISTRY_LOGIN_SERVER }}}}/modelserving:{container_label}		
""""""
    arr = [filename for filename in os.listdir(usecasepath) if filename.startswith(""ModelTraining"")]
    for x in arr:
        yaml_file+='        docker build ./'+container_label+'/'+x+' -t ${{ secrets.REGISTRY_LOGIN_SERVER }}/'+x.lower()+':'+container_label
        yaml_file+='\n'		
        yaml_file+='        docker push ${{ secrets.REGISTRY_LOGIN_SERVER }}/'+x.lower()+':'+container_label
        yaml_file+='\n'
    with open(Path(git_storage_path)/(file_name_prefix + container_label + '.yaml'), 'w') as f:
        f.write(yaml_file)

def run_cmd(cmd):
    try:
        subprocess.check_output(cmd, stderr=subprocess.PIPE)
    except subprocess.CalledProcessError as e:
        if e.stderr:
            if isinstance(e.stderr, bytes):
                err_msg = e.stderr.decode(sys.getfilesystemencoding())
            else:
                err_msg = e.stderr
        elif e.output:
            if isinstance(e.output, bytes):
                err_msg = e.output.decode(sys.getfilesystemencoding())
            else:
                err_msg = e.output
        else:
            err_msg = str(e)
        return False, err_msg
    return True, """"

def validate_config(config):
    non_null_keys = ['url','username', 'token', 'location', 'gitFolderLocation', 'email', 'modelName']
    missing_keys = [k for k in non_null_keys if k not in config.keys()]
    if missing_keys:
        raise ValueError(f""following fields are missing in config file: {missing_keys}"")
    for k,v in config.items():
        if k in non_null_keys and not v:
            raise ValueError(f""Please provide value for '{k}' in config file."")

def upload(config):    
    
    validate_config(config)
    url_type = config.get('url_type','https')
    if url_type == 'https':
        https_str = ""https://""
        url = https_str + config['username'] + "":"" + config['token'] + ""@"" + config['url'][len(https_str):]
    else:
        url = config['url']
    model_location = Path(config['location'])
    git_folder_location = Path(config['gitFolderLocation'])
    git_folder_location.mkdir(parents=True, exist_ok=True)
    (git_folder_location/'.github'/'workflows').mkdir(parents=True, exist_ok=True)
    if not model_location.exists():
        raise ValueError('Trained model data not found')

    os.chdir(str(git_folder_location))
    (git_folder_location/config['modelName']).mkdir(parents=True, exist_ok=True)
    shutil.copytree(model_location, git_folder_location/config['modelName'], dirs_exist_ok=True)
    create_and_save_yaml((git_folder_location/'.github'/'workflows'), config['modelName'],config['location']) 
    if (Path(git_folder_location)/'.git').exists():
        first_upload = False
    else:
        first_upload = True
    if first_upload:
        cmd = ['git','init']
        status, msg = run_cmd(cmd)
        if not status:
            raise ValueError(msg)

        cmd = ['git','config','user.name',config['username']]
        status, msg = run_cmd(cmd)
        if not status:
            raise ValueError(msg)

        cmd = ['git','config','user.email',config['email']]
        status, msg = run_cmd(cmd)
        if not status:
            raise ValueError(msg)
        
    cmd = ['git','add', '-A']
    status, msg = run_cmd(cmd)
    if not status:
        raise ValueError(msg)

    cmd = ['git','commit','-m',f""commit {config['modelName']}""]
    status, msg = run_cmd(cmd)
    if not status:
        raise ValueError(msg)

    cmd = ['git','branch','-M','main']
    status, msg = run_cmd(cmd)
    if not status:
        raise ValueError(msg)

    if first_upload:
        cmd = ['git','remote','add','origin', url]
        status, msg = run_cmd(cmd)
        if not status:
            raise ValueError(msg)

        cmd = ['git','push','-f','-u','origin', 'main']
        status, msg = run_cmd(cmd)
        if not status:
            raise ValueError(msg)
    else:
        cmd = ['git','push']
        status, msg = run_cmd(cmd)
        if not status:
            raise ValueError(msg)
    
    return json.dumps({'Status':'SUCCESS'})
    
if __name__ == '__main__':                
    try:                
        if shutil.which('git') is None:
            raise ValueError(""git is not installed on this system"")
        parser = argparse.ArgumentParser()        
        parser.add_argument('-c', '--config', help='Config file location or as a string')

        args = parser.parse_args()        
        if Path(args.config).is_file() and Path(args.config).suffix == '.json':                
            with open(args.config,'r') as f:                    
                config = json.load(f)           
        else:                
            config = json.loads(args.config)                
        print(upload(config))
    except Exception as e:                
        status = {'Status':'Failure','msg':str(e)}                
        print(json.dumps(status))"
__init__.py,"'''
*
* =============================================================================
* COPYRIGHT NOTICE
* =============================================================================
*  @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and
* remains the property of HCL Technologies Limited. Copying or reproducing the
* contents of this file, via any medium is strictly prohibited unless prior
* written permission is obtained from HCL Technologies Limited.
*
'''"
kafka_consumer.py,"from kafka import KafkaConsumer
from json import loads
import pandas as pd
import json
import os,sys
import time
import multiprocessing
from os.path import expanduser
import platform
import datetime
modelDetails = {}
class Process(multiprocessing.Process):
    def __init__(self, modelSignature,jsonData,predictedData,modelpath):
        super(Process, self).__init__()
        self.config = jsonData
        self.modelSignature = modelSignature
        self.data = predictedData
        self.modelpath = modelpath
    def run(self):
        #data = pd.json_normalize(self.data)
        minotoringService = self.config['minotoringService']['url']
        trainingdatalocation = self.config['trainingDataLocation'][self.modelSignature]
        #filetimestamp = 'AION_'+str(int(time.time()))+'.csv'
        #data.to_csv(dataFile, index=False)
        inputFieldsJson = {""trainingDataLocation"":trainingdatalocation,""currentDataLocation"":self.data}
        inputFieldsJson = json.dumps(inputFieldsJson)
        ser_url = minotoringService+self.modelSignature+'/monitoring'
        driftTime = datetime.datetime.now()
        import requests
        try:
            response = requests.post(ser_url, data=inputFieldsJson,headers={""Content-Type"":""application/json"",})
            outputStr=response.content
            outputStr = outputStr.decode('utf-8')
            outputStr = outputStr.strip()
            decoded_data = json.loads(outputStr)
            print(decoded_data)
            status = decoded_data['status']
            msg = decoded_data['data']
        except Exception as inst:
            if 'Failed to establish a new connection' in str(inst):
                status = 'Fail'
                msg = 'AION Service needs to be started'
            else:
                status = 'Fail'
                msg = 'Error during Drift Analysis'
        statusFile = os.path.join(self.modelpath,self.modelSignature+'_status.csv')
        df = pd.DataFrame(columns = ['dateTime', 'status', 'msg'])
        df = df.append({'dateTime' : driftTime, 'status' : status, 'msg' : msg},ignore_index = True)
        
        print(df)
        if (os.path.exists(statusFile)):
            df.to_csv(statusFile, mode='a', header=False,index=False)
        else:
            df.to_csv(statusFile, header=True,index=False)
        
        
        
        
def launch_kafka_consumer():
    from appbe.dataPath import DATA_DIR  
    configfile = os.path.join(os.path.dirname(__file__),'..','config','kafkaConfig.conf')
    with open(configfile,'r',encoding='utf-8') as f:
        jsonData = json.load(f)
    f.close()
    kafkaIP=jsonData['kafkaCluster']['ip']
    kafkaport = jsonData['kafkaCluster']['port']
    topic = jsonData['kafkaCluster']['topic']
    kafkaurl = kafkaIP+':'+kafkaport
    if jsonData['database']['csv'] == 'True':
        database = 'csv'
    elif jsonData['database']['mySql'] == 'True':
        database = 'mySql'
    else:
        database = 'csv'
    kafkaPath = os.path.join(DATA_DIR,'kafka')
    if not (os.path.exists(kafkaPath)):    
        try:
            os.makedirs(kafkaPath)
        except OSError as e:
            pass
    consumer = KafkaConsumer(topic,bootstrap_servers=[kafkaurl],auto_offset_reset='earliest',enable_auto_commit=True,group_id='my-group',value_deserializer=lambda x: loads(x.decode('utf-8')))
    for message in consumer:
        message = message.value
        data = message['data']
        data = pd.json_normalize(data)
        modelname = message['usecasename']
        version = message['version']
        modelSignature = modelname+'_'+str(version)
        modelpath = os.path.join(kafkaPath,modelSignature)
        try:
            os.makedirs(modelpath)
        except OSError as e:
            pass
        secondsSinceEpoch = time.time()
        if modelSignature not in modelDetails:
            modelDetails[modelSignature] = {}
            modelDetails[modelSignature]['startTime'] = secondsSinceEpoch  
        if database == 'csv':
            csvfile = os.path.join(modelpath,modelSignature+'.csv')
            if (os.path.exists(csvfile)):
                data.to_csv(csvfile, mode='a', header=False,index=False)
            else:
                data.to_csv(csvfile, header=True,index=False)
        modelTimeFrame = jsonData['timeFrame'][modelSignature]
        currentseconds = time.time()
        print(currentseconds - modelDetails[modelSignature]['startTime'])
        if (currentseconds - modelDetails[modelSignature]['startTime']) >= float(modelTimeFrame):
            csv_path = os.path.join(modelpath,modelSignature+'.csv')
            #predictedData = pd.read_csv(csv_path)   
            ##predictedData = predictedData.to_json(orient=""records"")
            index = Process(modelSignature,jsonData,csv_path,modelpath)
            index.start()
            modelDetails[modelSignature]['startTime'] = secondsSinceEpoch    
        
        "