sanchit-gandhi
commited on
Commit
·
e3615e7
1
Parent(s):
8b016b1
Upload tedlium.py
Browse files- tedlium.py +272 -0
tedlium.py
ADDED
@@ -0,0 +1,272 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Datasets Authors.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
"""TED-LIUM speech recognition dataset."""
|
16 |
+
|
17 |
+
import os
|
18 |
+
import re
|
19 |
+
import numpy as np
|
20 |
+
|
21 |
+
|
22 |
+
import datasets
|
23 |
+
from datasets.tasks import AutomaticSpeechRecognition
|
24 |
+
|
25 |
+
from pydub import AudioSegment
|
26 |
+
|
27 |
+
_LICENSE = "licensed under Creative Commons BY-NC-ND 3.0 (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en)"
|
28 |
+
|
29 |
+
class TedliumReleaseConfig(datasets.BuilderConfig):
|
30 |
+
"""BuilderConfig for a release of the TED-LIUM dataset."""
|
31 |
+
|
32 |
+
def __init__(self, *, url, download_url, split_paths, citation, **kwargs):
|
33 |
+
super(TedliumReleaseConfig, self).__init__(
|
34 |
+
version=datasets.Version("1.0.1"), **kwargs)
|
35 |
+
self.url = url
|
36 |
+
self.download_url = download_url
|
37 |
+
# List of split, path pairs containing the relative path within the
|
38 |
+
# extracted tarball to the data for each split.
|
39 |
+
self.split_paths = split_paths
|
40 |
+
self.citation = citation
|
41 |
+
|
42 |
+
|
43 |
+
def _make_builder_configs():
|
44 |
+
"""Creates builder configs for all supported Tedlium dataset releases."""
|
45 |
+
release1 = TedliumReleaseConfig(
|
46 |
+
name="release1",
|
47 |
+
description="""\
|
48 |
+
The TED-LIUM corpus is English-language TED talks, with transcriptions,
|
49 |
+
sampled at 16kHz. It contains about 118 hours of speech.
|
50 |
+
|
51 |
+
This is the TED-LIUM corpus release 1,
|
52 |
+
licensed under Creative Commons BY-NC-ND 3.0
|
53 |
+
(http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en).
|
54 |
+
""",
|
55 |
+
citation="""\
|
56 |
+
@inproceedings{rousseau2012tedlium,
|
57 |
+
title={TED-LIUM: an Automatic Speech Recognition dedicated corpus},
|
58 |
+
author={Rousseau, Anthony and Del{\\'e}glise, Paul and Est{\\`e}ve, Yannick},
|
59 |
+
booktitle={Conference on Language Resources and Evaluation (LREC)},
|
60 |
+
pages={125--129},
|
61 |
+
year={2012}
|
62 |
+
}
|
63 |
+
""",
|
64 |
+
url="https://www.openslr.org/7/",
|
65 |
+
download_url="http://www.openslr.org/resources/7/TEDLIUM_release1.tar.gz",
|
66 |
+
split_paths=[(datasets.Split.TRAIN, os.path.join("TEDLIUM_release1",
|
67 |
+
"train")),
|
68 |
+
(datasets.Split.VALIDATION,
|
69 |
+
os.path.join("TEDLIUM_release1", "dev")),
|
70 |
+
(datasets.Split.TEST, os.path.join("TEDLIUM_release1", "test"))])
|
71 |
+
|
72 |
+
release2 = TedliumReleaseConfig(
|
73 |
+
name="release2",
|
74 |
+
description="""\
|
75 |
+
This is the TED-LIUM corpus release 2,
|
76 |
+
licensed under Creative Commons BY-NC-ND 3.0
|
77 |
+
(http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en).
|
78 |
+
|
79 |
+
All talks and text are property of TED Conferences LLC.
|
80 |
+
|
81 |
+
The TED-LIUM corpus was made from audio talks and their transcriptions
|
82 |
+
available on the TED website. We have prepared and filtered these data
|
83 |
+
in order to train acoustic models to participate to the International
|
84 |
+
Workshop on Spoken Language Translation 2011 (the LIUM English/French
|
85 |
+
SLT system reached the first rank in the SLT task).
|
86 |
+
|
87 |
+
Contains 1495 talks and transcripts.
|
88 |
+
""",
|
89 |
+
citation="""\
|
90 |
+
@inproceedings{rousseau2014tedlium2,
|
91 |
+
title={Enhancing the {TED-LIUM} Corpus with Selected Data for Language Modeling and More {TED} Talks},
|
92 |
+
author={Rousseau, Anthony and Del{\\'e}glise, Paul and Est{\\`e}ve, Yannick},
|
93 |
+
booktitle={Conference on Language Resources and Evaluation (LREC)},
|
94 |
+
year={2014}
|
95 |
+
}
|
96 |
+
""",
|
97 |
+
url="https://www.openslr.org/19/",
|
98 |
+
download_url="http://www.openslr.org/resources/19/TEDLIUM_release2.tar.gz",
|
99 |
+
split_paths=[(datasets.Split.TRAIN, os.path.join("TEDLIUM_release2",
|
100 |
+
"train")),
|
101 |
+
(datasets.Split.VALIDATION,
|
102 |
+
os.path.join("TEDLIUM_release2", "dev")),
|
103 |
+
(datasets.Split.TEST, os.path.join("TEDLIUM_release2", "test"))])
|
104 |
+
|
105 |
+
release3 = TedliumReleaseConfig(
|
106 |
+
name="release3",
|
107 |
+
description="""\
|
108 |
+
This is the TED-LIUM corpus release 3, licensed under Creative Commons
|
109 |
+
BY-NC-ND 3.0.
|
110 |
+
|
111 |
+
All talks and text are property of TED Conferences LLC.
|
112 |
+
|
113 |
+
This new TED-LIUM release was made through a collaboration between the
|
114 |
+
Ubiqus company and the LIUM (University of Le Mans, France)
|
115 |
+
|
116 |
+
Contents:
|
117 |
+
|
118 |
+
- 2351 audio talks in NIST sphere format (SPH), including talks from
|
119 |
+
TED-LIUM 2: be careful, same talks but not same audio files (only
|
120 |
+
these audio file must be used with the TED-LIUM 3 STM files)
|
121 |
+
- 452 hours of audio
|
122 |
+
- 2351 aligned automatic transcripts in STM format
|
123 |
+
- TEDLIUM 2 dev and test data: 19 TED talks in SPH format with
|
124 |
+
corresponding manual transcriptions (cf. 'legacy' distribution below).
|
125 |
+
- Dictionary with pronunciations (159848 entries), same file as the one
|
126 |
+
included in TED-LIUM 2
|
127 |
+
- Selected monolingual data for language modeling from WMT12 publicly
|
128 |
+
available corpora: these files come from the TED-LIUM 2 release, but
|
129 |
+
have been modified to get a tokenization more relevant for English
|
130 |
+
language
|
131 |
+
|
132 |
+
Two corpus distributions:
|
133 |
+
- the legacy one, on which the dev and test datasets are the same as in
|
134 |
+
TED-LIUM 2 (and TED-LIUM 1).
|
135 |
+
- the 'speaker adaptation' one, especially designed for experiments on
|
136 |
+
speaker adaptation.
|
137 |
+
""",
|
138 |
+
citation="""\
|
139 |
+
@inproceedings{hernandez2018tedlium3,
|
140 |
+
title={TED-LIUM 3: twice as much data and corpus repartition for experiments on speaker adaptation},
|
141 |
+
author={Hernandez, Fran{\\c{c}}ois and Nguyen, Vincent and Ghannay, Sahar and Tomashenko, Natalia and Est{\\`e}ve, Yannick},
|
142 |
+
booktitle={International Conference on Speech and Computer},
|
143 |
+
pages={198--208},
|
144 |
+
year={2018},
|
145 |
+
organization={Springer}
|
146 |
+
}
|
147 |
+
""",
|
148 |
+
url="https://www.openslr.org/51/",
|
149 |
+
download_url="http://www.openslr.org/resources/51/TEDLIUM_release-3.tgz",
|
150 |
+
split_paths=[
|
151 |
+
(datasets.Split.VALIDATION,
|
152 |
+
os.path.join("TEDLIUM_release-3", "legacy", "dev")),
|
153 |
+
(datasets.Split.TEST, os.path.join("TEDLIUM_release-3", "legacy",
|
154 |
+
"test")),
|
155 |
+
# The legacy/train directory contains symlinks to "data",
|
156 |
+
# which are skipped by extraction (see above).
|
157 |
+
# Work around this by manually dereferencing the links here.
|
158 |
+
(datasets.Split.TRAIN, os.path.join("TEDLIUM_release-3", "data"))
|
159 |
+
])
|
160 |
+
|
161 |
+
return [release1, release2, release3]
|
162 |
+
|
163 |
+
|
164 |
+
class TedLium(datasets.GeneratorBasedBuilder):
|
165 |
+
""" The TED-LIUM corpus is English-language TED talks, with transcriptions, sampled at 16kHz. It contains about 118 hours of speech."""
|
166 |
+
|
167 |
+
VERSION = datasets.Version("1.1.0")
|
168 |
+
|
169 |
+
BUILDER_CONFIGS = _make_builder_configs()
|
170 |
+
|
171 |
+
def _info(self):
|
172 |
+
features = datasets.Features({
|
173 |
+
"audio":
|
174 |
+
datasets.features.Audio(sampling_rate=16_000),
|
175 |
+
"text":
|
176 |
+
datasets.Value('string'),
|
177 |
+
"speaker_id":
|
178 |
+
datasets.Value('string'),
|
179 |
+
"gender":
|
180 |
+
datasets.features.ClassLabel(names=["unknown", "female", "male"]),
|
181 |
+
"file": datasets.Value('string'),
|
182 |
+
"id":
|
183 |
+
datasets.Value('string'),
|
184 |
+
})
|
185 |
+
return datasets.DatasetInfo(
|
186 |
+
description=self.config.description,
|
187 |
+
features=features,
|
188 |
+
supervised_keys=("audio", "text"),
|
189 |
+
homepage=self.config.url,
|
190 |
+
license=_LICENSE,
|
191 |
+
citation=self.config.citation,
|
192 |
+
task_templates=[AutomaticSpeechRecognition(audio_column="audio", transcription_column="text")],
|
193 |
+
)
|
194 |
+
|
195 |
+
def _split_generators(self, dl_manager):
|
196 |
+
data_dir = dl_manager.download_and_extract(
|
197 |
+
self.config.download_url)
|
198 |
+
splits = []
|
199 |
+
for split, path in self.config.split_paths:
|
200 |
+
kwargs = {"filepath": os.path.join(data_dir, path)}
|
201 |
+
splits.append(datasets.SplitGenerator(name=split, gen_kwargs=kwargs))
|
202 |
+
return splits
|
203 |
+
|
204 |
+
def _generate_examples(self, filepath):
|
205 |
+
"""Generate examples from a TED-LIUM stm file."""
|
206 |
+
# The stm directory houses the speaker and transcription information in .stm format
|
207 |
+
stm_dir = os.path.join(filepath, "stm")
|
208 |
+
# The sph directory houses the audio files in .sph format
|
209 |
+
sph_dir = os.path.join(filepath, "sph")
|
210 |
+
stm_files = [os.path.join(stm_dir, f) for f in os.listdir(stm_dir) if f.endswith('.stm')]
|
211 |
+
for file in stm_files:
|
212 |
+
with open(file) as f:
|
213 |
+
for line in f:
|
214 |
+
line = line.strip()
|
215 |
+
fn, channel, speaker, start, end, label, transcript = line.split(" ", 6)
|
216 |
+
transcript = _maybe_trim_suffix(transcript)
|
217 |
+
|
218 |
+
audio_file = "%s.sph" % fn
|
219 |
+
samples = _extract_audio_segment(
|
220 |
+
os.path.join(sph_dir, audio_file), int(channel), float(start),
|
221 |
+
float(end))
|
222 |
+
|
223 |
+
key = "-".join([speaker, start, end, label])
|
224 |
+
example = {
|
225 |
+
"audio": {"path": file, "bytes": samples},
|
226 |
+
"text": transcript,
|
227 |
+
"speaker_id": speaker,
|
228 |
+
"gender": _parse_gender(label),
|
229 |
+
"file": file,
|
230 |
+
"id": key,
|
231 |
+
}
|
232 |
+
yield key, example
|
233 |
+
|
234 |
+
def _maybe_trim_suffix(transcript):
|
235 |
+
# stm files for the TEDLIUM release 1 train split contain a key (enclosed in
|
236 |
+
# parens) at the end.
|
237 |
+
splits = transcript.rsplit(" ", 1)
|
238 |
+
transcript = splits[0]
|
239 |
+
if len(splits) > 1:
|
240 |
+
suffix = splits[-1]
|
241 |
+
if not suffix.startswith("("):
|
242 |
+
transcript += " " + suffix
|
243 |
+
return transcript
|
244 |
+
|
245 |
+
|
246 |
+
def _parse_gender(label_str):
|
247 |
+
"""Parse gender string from STM "<label>" field."""
|
248 |
+
gender = re.split(",|_", label_str)[-1][:-1]
|
249 |
+
# Fix inconsistencies in the data.
|
250 |
+
if not gender:
|
251 |
+
gender = -1 # Missing label.
|
252 |
+
elif gender == "<NA": # In TEDLIUM release 3 training data.
|
253 |
+
gender = -1 # Missing label.
|
254 |
+
elif gender == "F":
|
255 |
+
gender = "female"
|
256 |
+
elif gender == "M":
|
257 |
+
gender = "male"
|
258 |
+
return gender
|
259 |
+
|
260 |
+
|
261 |
+
def _extract_audio_segment(sph_path, channel, start_sec, end_sec):
|
262 |
+
"""Extracts segment of audio samples (as an ndarray) from the given path."""
|
263 |
+
with open(sph_path, "rb") as f:
|
264 |
+
segment = AudioSegment.from_file(f, format="nistsphere")
|
265 |
+
# The dataset only contains mono audio.
|
266 |
+
assert segment.channels == 1
|
267 |
+
assert channel == 1
|
268 |
+
start_ms = int(start_sec * 1000)
|
269 |
+
end_ms = int(end_sec * 1000)
|
270 |
+
segment = segment[start_ms:end_ms]
|
271 |
+
samples = np.array(segment.get_array_of_samples())
|
272 |
+
return samples
|