Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
Libraries:
Datasets
pandas
File size: 4,399 Bytes
667ee46
5adf9a3
b9c1ae9
5adf9a3
 
 
 
 
 
 
 
 
 
 
 
 
 
b9c1ae9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ccca41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5adf9a3
 
 
 
 
 
 
b9c1ae9
 
 
 
 
 
1ccca41
 
 
 
 
 
667ee46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
---
dataset_info:
- config_name: continuation
  features:
  - name: input
    dtype: string
  - name: output
    dtype: string
  splits:
  - name: train
    num_bytes: 246278017
    num_examples: 108647
  - name: test
    num_bytes: 17566431
    num_examples: 7983
  download_size: 32940424
  dataset_size: 263844448
- config_name: ling_1s
  features:
  - name: input
    dtype: string
  - name: output
    dtype: string
  splits:
  - name: train
    num_bytes: 370567628
    num_examples: 108647
  - name: test
    num_bytes: 26716156
    num_examples: 7983
  download_size: 45617587
  dataset_size: 397283784
- config_name: verb_1s_top1
  features:
  - name: input
    dtype: string
  - name: output
    dtype: string
  splits:
  - name: train
    num_bytes: 358384680
    num_examples: 108647
  - name: test
    num_bytes: 25825045
    num_examples: 7983
  download_size: 43652362
  dataset_size: 384209725
configs:
- config_name: continuation
  data_files:
  - split: train
    path: continuation/train-*
  - split: test
    path: continuation/test-*
- config_name: ling_1s
  data_files:
  - split: train
    path: ling_1s/train-*
  - split: test
    path: ling_1s/test-*
- config_name: verb_1s_top1
  data_files:
  - split: train
    path: verb_1s_top1/train-*
  - split: test
    path: verb_1s_top1/test-*
---

# Dataset Card for coqa

<!-- Provide a quick summary of the dataset. -->

This is a preprocessed version of coqa dataset for benchmarks in LM-Polygraph.

## Dataset Details

### Dataset Description

<!-- Provide a longer summary of what this dataset is. -->

- **Curated by:** https://huggingface.co/LM-Polygraph
- **License:** https://github.com/IINemo/lm-polygraph/blob/main/LICENSE.md

### Dataset Sources [optional]

<!-- Provide the basic links for the dataset. -->

- **Repository:** https://github.com/IINemo/lm-polygraph

## Uses

<!-- Address questions around how the dataset is intended to be used. -->

### Direct Use

<!-- This section describes suitable use cases for the dataset. -->

This dataset should be used for performing benchmarks on LM-polygraph.

### Out-of-Scope Use

<!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. -->

This dataset should not be used for further dataset preprocessing.

## Dataset Structure

<!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->

This dataset contains the "continuation" subset, which corresponds to main dataset, used in LM-Polygraph. It may also contain other subsets, which correspond to instruct methods, used in LM-Polygraph.

Each subset contains two splits: train and test. Each split contains two string columns: "input", which corresponds to processed input for LM-Polygraph, and "output", which corresponds to processed output for LM-Polygraph.

## Dataset Creation

### Curation Rationale

<!-- Motivation for the creation of this dataset. -->

This dataset is created in order to separate dataset creation code from benchmarking code.

### Source Data

<!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). -->

#### Data Collection and Processing

<!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. -->

Data is collected from https://huggingface.co/datasets/coqa and processed by using build_dataset.py script in repository.

#### Who are the source data producers?

<!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. -->

People who created https://huggingface.co/datasets/coqa

## Bias, Risks, and Limitations

<!-- This section is meant to convey both technical and sociotechnical limitations. -->

This dataset contains the same biases, risks, and limitations as its source dataset https://huggingface.co/datasets/coqa

### Recommendations

<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->

Users should be made aware of the risks, biases and limitations of the dataset.