Datasets:
Update README.md
Browse files
README.md
CHANGED
@@ -48,11 +48,12 @@ This dataset aims to facilitate research in multimodal machine learning for onco
|
|
48 |
```python
|
49 |
from datasets import load_dataset
|
50 |
|
51 |
-
clinical_dataset = load_dataset("Lab-Rasool/TCGA", "clinical", split="
|
52 |
-
pathology_report_dataset = load_dataset("Lab-Rasool/TCGA", "pathology_report", split="
|
53 |
-
wsi_dataset = load_dataset("Lab-Rasool/TCGA", "wsi", split="
|
54 |
-
molecular_dataset = load_dataset("Lab-Rasool/TCGA", "molecular", split="
|
55 |
-
|
|
|
56 |
```
|
57 |
|
58 |
Example code for loading HF dataset into a PyTorch Dataloader.
|
@@ -80,8 +81,8 @@ class CustomDataset(Dataset):
|
|
80 |
|
81 |
if __name__ == "__main__":
|
82 |
|
83 |
-
clinical_dataset = load_dataset("Lab-Rasool/TCGA", "clinical", split="
|
84 |
-
wsi_dataset = load_dataset("Lab-Rasool/TCGA", "wsi", split="
|
85 |
|
86 |
for index, item in enumerate(clinical_dataset):
|
87 |
print(np.frombuffer(item.get("embedding"), dtype=np.float32).reshape(item.get("embedding_shape")).shape)
|
|
|
48 |
```python
|
49 |
from datasets import load_dataset
|
50 |
|
51 |
+
clinical_dataset = load_dataset("Lab-Rasool/TCGA", "clinical", split="gatortron")
|
52 |
+
pathology_report_dataset = load_dataset("Lab-Rasool/TCGA", "pathology_report", split="gatortron")
|
53 |
+
wsi_dataset = load_dataset("Lab-Rasool/TCGA", "wsi", split="uni")
|
54 |
+
molecular_dataset = load_dataset("Lab-Rasool/TCGA", "molecular", split="senmo")
|
55 |
+
remedis_radiology_dataset = load_dataset("Lab-Rasool/TCGA", "radiology", split="remedis")
|
56 |
+
radimagenet_radiology_dataset = load_dataset("Lab-Rasool/TCGA", "radiology", split="radimagenet")
|
57 |
```
|
58 |
|
59 |
Example code for loading HF dataset into a PyTorch Dataloader.
|
|
|
81 |
|
82 |
if __name__ == "__main__":
|
83 |
|
84 |
+
clinical_dataset = load_dataset("Lab-Rasool/TCGA", "clinical", split="gatortron")
|
85 |
+
wsi_dataset = load_dataset("Lab-Rasool/TCGA", "wsi", split="uni")
|
86 |
|
87 |
for index, item in enumerate(clinical_dataset):
|
88 |
print(np.frombuffer(item.get("embedding"), dtype=np.float32).reshape(item.get("embedding_shape")).shape)
|