Datasets:

Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
Aakash-Tripathi commited on
Commit
ee1c3b3
·
verified ·
1 Parent(s): 0053ebb

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +54 -11
README.md CHANGED
@@ -48,8 +48,8 @@ license: cc-by-nc-nd-4.0
48
  # Dataset Card for The Cancer Genome Atlas (TCGA) Multimodal Dataset
49
  <!-- Provide a quick summary of the dataset. -->
50
 
51
- The Cancer Genome Atlas (TCGA) Multimodal Dataset is a comprehensive collection of clinical data, pathology reports, and slide images for cancer patients.
52
- This dataset aims to facilitate research in multimodal machine learning for oncology by providing embeddings generated using state-of-the-art models such as GatorTron and UNI.
53
 
54
  - **Curated by:** Lab Rasool
55
  - **Language(s) (NLP):** English
@@ -61,13 +61,27 @@ This dataset aims to facilitate research in multimodal machine learning for onco
61
  ```python
62
  from datasets import load_dataset
63
 
64
- clinical_dataset = load_dataset("Lab-Rasool/TCGA", "clinical", split="gatortron")
65
- biobert_clinical_dataset = load_dataset("Lab-Rasool/TCGA", "clinical", split="biobert")
66
- pathology_report_dataset = load_dataset("Lab-Rasool/TCGA", "pathology_report", split="gatortron")
 
 
 
 
 
 
 
 
 
 
67
  wsi_dataset = load_dataset("Lab-Rasool/TCGA", "wsi", split="uni")
 
 
68
  molecular_dataset = load_dataset("Lab-Rasool/TCGA", "molecular", split="senmo")
69
- remedis_radiology_dataset = load_dataset("Lab-Rasool/TCGA", "radiology", split="remedis")
70
- radimagenet_radiology_dataset = load_dataset("Lab-Rasool/TCGA", "radiology", split="radimagenet")
 
 
71
  ```
72
 
73
  Example code for loading HF dataset into a PyTorch Dataloader.
@@ -95,20 +109,49 @@ class CustomDataset(Dataset):
95
 
96
  if __name__ == "__main__":
97
 
98
- clinical_dataset = load_dataset("Lab-Rasool/TCGA", "clinical", split="gatortron")
 
 
99
  wsi_dataset = load_dataset("Lab-Rasool/TCGA", "wsi", split="uni")
100
 
101
- for index, item in enumerate(clinical_dataset):
102
- print(np.frombuffer(item.get("embedding"), dtype=np.float32).reshape(item.get("embedding_shape")).shape)
 
 
 
 
 
 
 
103
  break
104
  ```
105
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
106
  ## Dataset Creation
107
 
108
  #### Data Collection and Processing
109
  The raw data for this dataset was acquired using MINDS, a multimodal data aggregation tool developed by Lab Rasool.
110
  The collected data includes clinical information, pathology reports, and whole slide images from The Cancer Genome Atlas (TCGA).
111
- The embeddings were generated using the HoneyBee embedding processing tool, which utilizes foundational models such as GatorTron and UNI.
112
 
113
  #### Who are the source data producers?
114
  The source data for this dataset was originally collected and maintained by The Cancer Genome Atlas (TCGA) program, a landmark cancer genomics project jointly managed by the National Cancer Institute (NCI).
 
48
  # Dataset Card for The Cancer Genome Atlas (TCGA) Multimodal Dataset
49
  <!-- Provide a quick summary of the dataset. -->
50
 
51
+ The Cancer Genome Atlas (TCGA) Multimodal Dataset is a comprehensive collection of clinical data, pathology reports, slide images, molecular data, and radiology images for cancer patients.
52
+ This dataset aims to facilitate research in multimodal machine learning for oncology by providing embeddings generated using state-of-the-art models including GatorTron, MedGemma, Qwen, Llama, UNI, SeNMo, REMEDIS, and RadImageNet.
53
 
54
  - **Curated by:** Lab Rasool
55
  - **Language(s) (NLP):** English
 
61
  ```python
62
  from datasets import load_dataset
63
 
64
+ # Clinical data embeddings (4 models available)
65
+ clinical_gatortron = load_dataset("Lab-Rasool/TCGA", "clinical", split="gatortron")
66
+ clinical_medgemma = load_dataset("Lab-Rasool/TCGA", "clinical", split="medgemma")
67
+ clinical_qwen = load_dataset("Lab-Rasool/TCGA", "clinical", split="qwen")
68
+ clinical_llama = load_dataset("Lab-Rasool/TCGA", "clinical", split="llama")
69
+
70
+ # Pathology report embeddings (4 models available)
71
+ pathology_gatortron = load_dataset("Lab-Rasool/TCGA", "pathology_report", split="gatortron")
72
+ pathology_medgemma = load_dataset("Lab-Rasool/TCGA", "pathology_report", split="medgemma")
73
+ pathology_qwen = load_dataset("Lab-Rasool/TCGA", "pathology_report", split="qwen")
74
+ pathology_llama = load_dataset("Lab-Rasool/TCGA", "pathology_report", split="llama")
75
+
76
+ # Whole slide image embeddings
77
  wsi_dataset = load_dataset("Lab-Rasool/TCGA", "wsi", split="uni")
78
+
79
+ # Molecular data embeddings
80
  molecular_dataset = load_dataset("Lab-Rasool/TCGA", "molecular", split="senmo")
81
+
82
+ # Radiology embeddings (2 models available)
83
+ radiology_remedis = load_dataset("Lab-Rasool/TCGA", "radiology", split="remedis")
84
+ radiology_radimagenet = load_dataset("Lab-Rasool/TCGA", "radiology", split="radimagenet")
85
  ```
86
 
87
  Example code for loading HF dataset into a PyTorch Dataloader.
 
109
 
110
  if __name__ == "__main__":
111
 
112
+ # Load clinical embeddings from different models
113
+ clinical_gatortron = load_dataset("Lab-Rasool/TCGA", "clinical", split="gatortron")
114
+ clinical_llama = load_dataset("Lab-Rasool/TCGA", "clinical", split="llama")
115
  wsi_dataset = load_dataset("Lab-Rasool/TCGA", "wsi", split="uni")
116
 
117
+ # Example: Access embeddings
118
+ for index, item in enumerate(clinical_gatortron):
119
+ embedding = np.frombuffer(item.get("embedding"), dtype=np.float32).reshape(item.get("embedding_shape"))
120
+ print(f"GatorTron embedding shape: {embedding.shape}") # Shape: (1024,)
121
+ break
122
+
123
+ for index, item in enumerate(clinical_llama):
124
+ embedding = np.frombuffer(item.get("embedding"), dtype=np.float32).reshape(item.get("embedding_shape"))
125
+ print(f"Llama embedding shape: {embedding.shape}") # Shape: (2304,)
126
  break
127
  ```
128
 
129
+ ## Dataset Statistics
130
+
131
+ ### Clinical Data
132
+ - **10,771 patient records** per model
133
+ - **113 columns** including clinical metadata and embeddings
134
+ - **Embedding dimensions:**
135
+ - GatorTron: 1024
136
+ - MedGemma: 2560
137
+ - Qwen: 1024
138
+ - Llama: 2304
139
+
140
+ ### Pathology Reports
141
+ - **10,857 patient records** per model
142
+ - **17 columns** including pathology metadata and embeddings
143
+ - **Embedding dimensions:**
144
+ - GatorTron: 1024
145
+ - MedGemma: 2560
146
+ - Qwen: 1024
147
+ - Llama: 2304
148
+
149
  ## Dataset Creation
150
 
151
  #### Data Collection and Processing
152
  The raw data for this dataset was acquired using MINDS, a multimodal data aggregation tool developed by Lab Rasool.
153
  The collected data includes clinical information, pathology reports, and whole slide images from The Cancer Genome Atlas (TCGA).
154
+ The embeddings were generated using the HoneyBee embedding processing tool, which utilizes foundational models such as GatorTron, MedGemma, Qwen, Llama, and UNI.
155
 
156
  #### Who are the source data producers?
157
  The source data for this dataset was originally collected and maintained by The Cancer Genome Atlas (TCGA) program, a landmark cancer genomics project jointly managed by the National Cancer Institute (NCI).