Datasets:
Tasks:
Audio Classification
Languages:
English
Size:
100K<n<1M
ArXiv:
Tags:
voice-anti-spoofing
License:
File size: 6,821 Bytes
b2d92b1 9e3c700 b2d92b1 9e3c700 b2d92b1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
---
annotations_creators:
- other
language_creators:
- other
language:
- en
license:
- odc-by
multilinguality:
- monolingual
size_categories:
- 100K<n<1M
source_datasets:
- extended|vctk
task_categories:
- audio-classification
task_ids: []
pretty_name: asvspoof2019
tags:
- voice-anti-spoofing
---
# Dataset Card for asvspoof2019
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-instances)
- [Data Splits](#data-instances)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
## Dataset Description
- **Homepage:** https://datashare.ed.ac.uk/handle/10283/3336
- **Repository:** [Needs More Information]
- **Paper:** https://arxiv.org/abs/1911.01601
- **Leaderboard:** [Needs More Information]
- **Point of Contact:** [Needs More Information]
### Dataset Summary
This is a database used for the Third Automatic Speaker Verification Spoofing
and Countermeasuers Challenge, for short, ASVspoof 2019 (http://www.asvspoof.org)
organized by Junichi Yamagishi, Massimiliano Todisco, Md Sahidullah, Héctor
Delgado, Xin Wang, Nicholas Evans, Tomi Kinnunen, Kong Aik Lee, Ville Vestman,
and Andreas Nautsch in 2019.
### Supported Tasks and Leaderboards
[Needs More Information]
### Languages
English
## Dataset Structure
### Data Instances
```
{'speaker_id': 'LA_0091',
'audio_file_name': 'LA_T_8529430',
'audio': {'path': 'D:/Users/80304531/.cache/huggingface/datasets/downloads/extracted/8cabb6d5c283b0ed94b2219a8d459fea8e972ce098ef14d8e5a97b181f850502/LA/ASVspoof2019_LA_train/flac/LA_T_8529430.flac',
'array': array([-0.00201416, -0.00234985, -0.0022583 , ..., 0.01309204,
0.01339722, 0.01461792], dtype=float32),
'sampling_rate': 16000},
'system_id': 'A01',
'key': 1}
```
### Data Fields
Logical access (LA):
- `speaker_id`: `LA_****`, a 4-digit speaker ID
- `audio_file_name`: name of the audio file
- `audio`: A dictionary containing the path to the downloaded audio file, the decoded audio array, and the sampling rate. Note that when accessing the audio column: `dataset[0]["audio"]` the audio file is automatically decoded and resampled to `dataset.features["audio"].sampling_rate`. Decoding and resampling of a large number of audio files might take a significant amount of time. Thus it is important to first query the sample index before the `"audio"` column, *i.e.* `dataset[0]["audio"]` should **always** be preferred over `dataset["audio"][0]`.
- `system_id`: ID of the speech spoofing system (A01 - A19), or, for bonafide speech SYSTEM-ID is left blank ('-')
- `key`: 'bonafide' for genuine speech, or, 'spoof' for spoofing speech
Physical access (PA):
- `speaker_id`: `PA_****`, a 4-digit speaker ID
- `audio_file_name`: name of the audio file
- `audio`: A dictionary containing the path to the downloaded audio file, the decoded audio array, and the sampling rate. Note that when accessing the audio column: `dataset[0]["audio"]` the audio file is automatically decoded and resampled to `dataset.features["audio"].sampling_rate`. Decoding and resampling of a large number of audio files might take a significant amount of time. Thus it is important to first query the sample index before the `"audio"` column, *i.e.* `dataset[0]["audio"]` should **always** be preferred over `dataset["audio"][0]`.
- `environment_id`: a triplet (S,R,D_s), which take one letter in the set {a,b,c} as categorical value, defined as
| | a | b | c |
| -------------------------------- | ------ | ------- | -------- |
| S: Room size (square meters) | 2-5 | 5-10 | 10-20 |
| R: T60 (ms) | 50-200 | 200-600 | 600-1000 |
| D_s: Talker-to-ASV distance (cm) | 10-50 | 50-100 | 100-150 |
- `attack_id`: a duple (D_a,Q), which take one letter in the set {A,B,C} as categorical value, defined as
| | A | B | C |
| ----------------------------------- | ------- | ------ | ----- |
| Z: Attacker-to-talker distance (cm) | 10-50 | 50-100 | > 100 |
| Q: Replay device quality | perfect | high | low |
for bonafide speech, `attack_id` is left blank ('-')
- `key`: 'bonafide' for genuine speech, or, 'spoof' for spoofing speech
### Data Splits
| | Training set | Development set | Evaluation set |
| -------- | ------------ | --------------- | -------------- |
| Bonafide | 2580 | 2548 | 7355 |
| Spoof | 22800 | 22296 | 63882 |
| Total | 25380 | 24844 | 71237 |
## Dataset Creation
### Curation Rationale
[Needs More Information]
### Source Data
#### Initial Data Collection and Normalization
[Needs More Information]
#### Who are the source language producers?
[Needs More Information]
### Annotations
#### Annotation process
[Needs More Information]
#### Who are the annotators?
[Needs More Information]
### Personal and Sensitive Information
[Needs More Information]
## Considerations for Using the Data
### Social Impact of Dataset
[Needs More Information]
### Discussion of Biases
[Needs More Information]
### Other Known Limitations
[Needs More Information]
## Additional Information
### Dataset Curators
[Needs More Information]
### Licensing Information
This ASVspoof 2019 dataset is made available under the Open Data Commons Attribution License: http://opendatacommons.org/licenses/by/1.0/
### Citation Information
```
@InProceedings{Todisco2019,
Title = {{ASV}spoof 2019: {F}uture {H}orizons in {S}poofed and {F}ake {A}udio {D}etection},
Author = {Todisco, Massimiliano and
Wang, Xin and
Sahidullah, Md and
Delgado, H ́ector and
Nautsch, Andreas and
Yamagishi, Junichi and
Evans, Nicholas and
Kinnunen, Tomi and
Lee, Kong Aik},
booktitle = {Proc. of Interspeech 2019},
Year = {2019}
}
```
|