File size: 13,801 Bytes
8dd5c84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable

import numpy as np

import os
import sys
from collections import OrderedDict


class MaxPool3dSamePadding(nn.MaxPool3d):
    
    def compute_pad(self, dim, s):
        if s % self.stride[dim] == 0:
            return max(self.kernel_size[dim] - self.stride[dim], 0)
        else:
            return max(self.kernel_size[dim] - (s % self.stride[dim]), 0)

    def forward(self, x):
        # compute 'same' padding
        (batch, channel, t, h, w) = x.size()
        #print t,h,w
        out_t = np.ceil(float(t) / float(self.stride[0]))
        out_h = np.ceil(float(h) / float(self.stride[1]))
        out_w = np.ceil(float(w) / float(self.stride[2]))
        #print out_t, out_h, out_w
        pad_t = self.compute_pad(0, t)
        pad_h = self.compute_pad(1, h)
        pad_w = self.compute_pad(2, w)
        #print pad_t, pad_h, pad_w

        pad_t_f = pad_t // 2
        pad_t_b = pad_t - pad_t_f
        pad_h_f = pad_h // 2
        pad_h_b = pad_h - pad_h_f
        pad_w_f = pad_w // 2
        pad_w_b = pad_w - pad_w_f

        pad = (pad_w_f, pad_w_b, pad_h_f, pad_h_b, pad_t_f, pad_t_b)
        #print x.size()
        #print pad
        x = F.pad(x, pad)
        return super(MaxPool3dSamePadding, self).forward(x)
    

class Unit3D(nn.Module):

    def __init__(self, in_channels,
                 output_channels,
                 kernel_shape=(1, 1, 1),
                 stride=(1, 1, 1),
                 padding=0,
                 activation_fn=F.relu,
                 use_batch_norm=True,
                 use_bias=False,
                 name='unit_3d'):
        
        """Initializes Unit3D module."""
        super(Unit3D, self).__init__()
        
        self._output_channels = output_channels
        self._kernel_shape = kernel_shape
        self._stride = stride
        self._use_batch_norm = use_batch_norm
        self._activation_fn = activation_fn
        self._use_bias = use_bias
        self.name = name
        self.padding = padding
        
        self.conv3d = nn.Conv3d(in_channels=in_channels,
                                out_channels=self._output_channels,
                                kernel_size=self._kernel_shape,
                                stride=self._stride,
                                padding=0, # we always want padding to be 0 here. We will dynamically pad based on input size in forward function
                                bias=self._use_bias)
        
        if self._use_batch_norm:
            self.bn = nn.BatchNorm3d(self._output_channels, eps=0.001, momentum=0.01)

    def compute_pad(self, dim, s):
        if s % self._stride[dim] == 0:
            return max(self._kernel_shape[dim] - self._stride[dim], 0)
        else:
            return max(self._kernel_shape[dim] - (s % self._stride[dim]), 0)

            
    def forward(self, x):
        # compute 'same' padding
        (batch, channel, t, h, w) = x.size()
        #print t,h,w
        out_t = np.ceil(float(t) / float(self._stride[0]))
        out_h = np.ceil(float(h) / float(self._stride[1]))
        out_w = np.ceil(float(w) / float(self._stride[2]))
        #print out_t, out_h, out_w
        pad_t = self.compute_pad(0, t)
        pad_h = self.compute_pad(1, h)
        pad_w = self.compute_pad(2, w)
        #print pad_t, pad_h, pad_w

        pad_t_f = pad_t // 2
        pad_t_b = pad_t - pad_t_f
        pad_h_f = pad_h // 2
        pad_h_b = pad_h - pad_h_f
        pad_w_f = pad_w // 2
        pad_w_b = pad_w - pad_w_f

        pad = (pad_w_f, pad_w_b, pad_h_f, pad_h_b, pad_t_f, pad_t_b)
        #print x.size()
        #print pad
        x = F.pad(x, pad)
        #print x.size()        

        x = self.conv3d(x)
        if self._use_batch_norm:
            x = self.bn(x)
        if self._activation_fn is not None:
            x = self._activation_fn(x)
        return x



class InceptionModule(nn.Module):
    def __init__(self, in_channels, out_channels, name):
        super(InceptionModule, self).__init__()

        self.b0 = Unit3D(in_channels=in_channels, output_channels=out_channels[0], kernel_shape=[1, 1, 1], padding=0,
                         name=name+'/Branch_0/Conv3d_0a_1x1')
        self.b1a = Unit3D(in_channels=in_channels, output_channels=out_channels[1], kernel_shape=[1, 1, 1], padding=0,
                          name=name+'/Branch_1/Conv3d_0a_1x1')
        self.b1b = Unit3D(in_channels=out_channels[1], output_channels=out_channels[2], kernel_shape=[3, 3, 3],
                          name=name+'/Branch_1/Conv3d_0b_3x3')
        self.b2a = Unit3D(in_channels=in_channels, output_channels=out_channels[3], kernel_shape=[1, 1, 1], padding=0,
                          name=name+'/Branch_2/Conv3d_0a_1x1')
        self.b2b = Unit3D(in_channels=out_channels[3], output_channels=out_channels[4], kernel_shape=[3, 3, 3],
                          name=name+'/Branch_2/Conv3d_0b_3x3')
        self.b3a = MaxPool3dSamePadding(kernel_size=[3, 3, 3],
                                stride=(1, 1, 1), padding=0)
        self.b3b = Unit3D(in_channels=in_channels, output_channels=out_channels[5], kernel_shape=[1, 1, 1], padding=0,
                          name=name+'/Branch_3/Conv3d_0b_1x1')
        self.name = name

    def forward(self, x):    
        b0 = self.b0(x)
        b1 = self.b1b(self.b1a(x))
        b2 = self.b2b(self.b2a(x))
        b3 = self.b3b(self.b3a(x))
        return torch.cat([b0,b1,b2,b3], dim=1)


class InceptionI3d(nn.Module):
    """Inception-v1 I3D architecture.
    The model is introduced in:
        Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset
        Joao Carreira, Andrew Zisserman
        https://arxiv.org/pdf/1705.07750v1.pdf.
    See also the Inception architecture, introduced in:
        Going deeper with convolutions
        Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
        Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich.
        http://arxiv.org/pdf/1409.4842v1.pdf.
    """

    # Endpoints of the model in order. During construction, all the endpoints up
    # to a designated `final_endpoint` are returned in a dictionary as the
    # second return value.
    VALID_ENDPOINTS = (
        'Conv3d_1a_7x7',
        'MaxPool3d_2a_3x3',
        'Conv3d_2b_1x1',
        'Conv3d_2c_3x3',
        'MaxPool3d_3a_3x3',
        'Mixed_3b',
        'Mixed_3c',
        'MaxPool3d_4a_3x3',
        'Mixed_4b',
        'Mixed_4c',
        'Mixed_4d',
        'Mixed_4e',
        'Mixed_4f',
        'MaxPool3d_5a_2x2',
        'Mixed_5b',
        'Mixed_5c',
        'Logits',
        'Predictions',
    )

    def __init__(self, num_classes=400, spatial_squeeze=True,
                 final_endpoint='Logits', name='inception_i3d', in_channels=3, dropout_keep_prob=0.5):
        """Initializes I3D model instance.
        Args:
          num_classes: The number of outputs in the logit layer (default 400, which
              matches the Kinetics dataset).
          spatial_squeeze: Whether to squeeze the spatial dimensions for the logits
              before returning (default True).
          final_endpoint: The model contains many possible endpoints.
              `final_endpoint` specifies the last endpoint for the model to be built
              up to. In addition to the output at `final_endpoint`, all the outputs
              at endpoints up to `final_endpoint` will also be returned, in a
              dictionary. `final_endpoint` must be one of
              InceptionI3d.VALID_ENDPOINTS (default 'Logits').
          name: A string (optional). The name of this module.
        Raises:
          ValueError: if `final_endpoint` is not recognized.
        """

        if final_endpoint not in self.VALID_ENDPOINTS:
            raise ValueError('Unknown final endpoint %s' % final_endpoint)

        super(InceptionI3d, self).__init__()
        self._num_classes = num_classes
        self._spatial_squeeze = spatial_squeeze
        self._final_endpoint = final_endpoint
        self.logits = None

        if self._final_endpoint not in self.VALID_ENDPOINTS:
            raise ValueError('Unknown final endpoint %s' % self._final_endpoint)

        self.end_points = {}
        end_point = 'Conv3d_1a_7x7'
        self.end_points[end_point] = Unit3D(in_channels=in_channels, output_channels=64, kernel_shape=[7, 7, 7],
                                            stride=(2, 2, 2), padding=(3,3,3),  name=name+end_point)
        if self._final_endpoint == end_point: return
        
        end_point = 'MaxPool3d_2a_3x3'
        self.end_points[end_point] = MaxPool3dSamePadding(kernel_size=[1, 3, 3], stride=(1, 2, 2),
                                                             padding=0)
        if self._final_endpoint == end_point: return
        
        end_point = 'Conv3d_2b_1x1'
        self.end_points[end_point] = Unit3D(in_channels=64, output_channels=64, kernel_shape=[1, 1, 1], padding=0,
                                       name=name+end_point)
        if self._final_endpoint == end_point: return
        
        end_point = 'Conv3d_2c_3x3'
        self.end_points[end_point] = Unit3D(in_channels=64, output_channels=192, kernel_shape=[3, 3, 3], padding=1,
                                       name=name+end_point)
        if self._final_endpoint == end_point: return

        end_point = 'MaxPool3d_3a_3x3'
        self.end_points[end_point] = MaxPool3dSamePadding(kernel_size=[1, 3, 3], stride=(1, 2, 2),
                                                             padding=0)
        if self._final_endpoint == end_point: return
        
        end_point = 'Mixed_3b'
        self.end_points[end_point] = InceptionModule(192, [64,96,128,16,32,32], name+end_point)
        if self._final_endpoint == end_point: return

        end_point = 'Mixed_3c'
        self.end_points[end_point] = InceptionModule(256, [128,128,192,32,96,64], name+end_point)
        if self._final_endpoint == end_point: return

        end_point = 'MaxPool3d_4a_3x3'
        self.end_points[end_point] = MaxPool3dSamePadding(kernel_size=[3, 3, 3], stride=(2, 2, 2),
                                                             padding=0)
        if self._final_endpoint == end_point: return

        end_point = 'Mixed_4b'
        self.end_points[end_point] = InceptionModule(128+192+96+64, [192,96,208,16,48,64], name+end_point)
        if self._final_endpoint == end_point: return

        end_point = 'Mixed_4c'
        self.end_points[end_point] = InceptionModule(192+208+48+64, [160,112,224,24,64,64], name+end_point)
        if self._final_endpoint == end_point: return

        end_point = 'Mixed_4d'
        self.end_points[end_point] = InceptionModule(160+224+64+64, [128,128,256,24,64,64], name+end_point)
        if self._final_endpoint == end_point: return

        end_point = 'Mixed_4e'
        self.end_points[end_point] = InceptionModule(128+256+64+64, [112,144,288,32,64,64], name+end_point)
        if self._final_endpoint == end_point: return

        end_point = 'Mixed_4f'
        self.end_points[end_point] = InceptionModule(112+288+64+64, [256,160,320,32,128,128], name+end_point)
        if self._final_endpoint == end_point: return

        end_point = 'MaxPool3d_5a_2x2'
        self.end_points[end_point] = MaxPool3dSamePadding(kernel_size=[2, 2, 2], stride=(2, 2, 2),
                                                             padding=0)
        if self._final_endpoint == end_point: return

        end_point = 'Mixed_5b'
        self.end_points[end_point] = InceptionModule(256+320+128+128, [256,160,320,32,128,128], name+end_point)
        if self._final_endpoint == end_point: return

        end_point = 'Mixed_5c'
        self.end_points[end_point] = InceptionModule(256+320+128+128, [384,192,384,48,128,128], name+end_point)
        if self._final_endpoint == end_point: return

        end_point = 'Logits'
        self.avg_pool = nn.AvgPool3d(kernel_size=[2, 7, 7],
                                     stride=(1, 1, 1))
        self.dropout = nn.Dropout(dropout_keep_prob)
        self.logits = Unit3D(in_channels=384+384+128+128, output_channels=self._num_classes,
                             kernel_shape=[1, 1, 1],
                             padding=0,
                             activation_fn=None,
                             use_batch_norm=False,
                             use_bias=True,
                             name='logits')

        self.build()


    def replace_logits(self, num_classes):
        self._num_classes = num_classes
        self.logits = Unit3D(in_channels=384+384+128+128, output_channels=self._num_classes,
                             kernel_shape=[1, 1, 1],
                             padding=0,
                             activation_fn=None,
                             use_batch_norm=False,
                             use_bias=True,
                             name='logits')
        
    
    def build(self):
        for k in self.end_points.keys():
            self.add_module(k, self.end_points[k])
        
    def forward(self, x):
        for end_point in self.VALID_ENDPOINTS:
            if end_point in self.end_points:
                x = self._modules[end_point](x) # use _modules to work with dataparallel

        x = self.logits(self.dropout(self.avg_pool(x)))
        if self._spatial_squeeze:
            logits = x.squeeze(3).squeeze(3)
        # logits is batch X time X classes, which is what we want to work with
        return logits
        

    def extract_features(self, x):
        for end_point in self.VALID_ENDPOINTS:
            if end_point in self.end_points:
                x = self._modules[end_point](x)
        return self.avg_pool(x)