File size: 13,801 Bytes
8dd5c84 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 |
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import numpy as np
import os
import sys
from collections import OrderedDict
class MaxPool3dSamePadding(nn.MaxPool3d):
def compute_pad(self, dim, s):
if s % self.stride[dim] == 0:
return max(self.kernel_size[dim] - self.stride[dim], 0)
else:
return max(self.kernel_size[dim] - (s % self.stride[dim]), 0)
def forward(self, x):
# compute 'same' padding
(batch, channel, t, h, w) = x.size()
#print t,h,w
out_t = np.ceil(float(t) / float(self.stride[0]))
out_h = np.ceil(float(h) / float(self.stride[1]))
out_w = np.ceil(float(w) / float(self.stride[2]))
#print out_t, out_h, out_w
pad_t = self.compute_pad(0, t)
pad_h = self.compute_pad(1, h)
pad_w = self.compute_pad(2, w)
#print pad_t, pad_h, pad_w
pad_t_f = pad_t // 2
pad_t_b = pad_t - pad_t_f
pad_h_f = pad_h // 2
pad_h_b = pad_h - pad_h_f
pad_w_f = pad_w // 2
pad_w_b = pad_w - pad_w_f
pad = (pad_w_f, pad_w_b, pad_h_f, pad_h_b, pad_t_f, pad_t_b)
#print x.size()
#print pad
x = F.pad(x, pad)
return super(MaxPool3dSamePadding, self).forward(x)
class Unit3D(nn.Module):
def __init__(self, in_channels,
output_channels,
kernel_shape=(1, 1, 1),
stride=(1, 1, 1),
padding=0,
activation_fn=F.relu,
use_batch_norm=True,
use_bias=False,
name='unit_3d'):
"""Initializes Unit3D module."""
super(Unit3D, self).__init__()
self._output_channels = output_channels
self._kernel_shape = kernel_shape
self._stride = stride
self._use_batch_norm = use_batch_norm
self._activation_fn = activation_fn
self._use_bias = use_bias
self.name = name
self.padding = padding
self.conv3d = nn.Conv3d(in_channels=in_channels,
out_channels=self._output_channels,
kernel_size=self._kernel_shape,
stride=self._stride,
padding=0, # we always want padding to be 0 here. We will dynamically pad based on input size in forward function
bias=self._use_bias)
if self._use_batch_norm:
self.bn = nn.BatchNorm3d(self._output_channels, eps=0.001, momentum=0.01)
def compute_pad(self, dim, s):
if s % self._stride[dim] == 0:
return max(self._kernel_shape[dim] - self._stride[dim], 0)
else:
return max(self._kernel_shape[dim] - (s % self._stride[dim]), 0)
def forward(self, x):
# compute 'same' padding
(batch, channel, t, h, w) = x.size()
#print t,h,w
out_t = np.ceil(float(t) / float(self._stride[0]))
out_h = np.ceil(float(h) / float(self._stride[1]))
out_w = np.ceil(float(w) / float(self._stride[2]))
#print out_t, out_h, out_w
pad_t = self.compute_pad(0, t)
pad_h = self.compute_pad(1, h)
pad_w = self.compute_pad(2, w)
#print pad_t, pad_h, pad_w
pad_t_f = pad_t // 2
pad_t_b = pad_t - pad_t_f
pad_h_f = pad_h // 2
pad_h_b = pad_h - pad_h_f
pad_w_f = pad_w // 2
pad_w_b = pad_w - pad_w_f
pad = (pad_w_f, pad_w_b, pad_h_f, pad_h_b, pad_t_f, pad_t_b)
#print x.size()
#print pad
x = F.pad(x, pad)
#print x.size()
x = self.conv3d(x)
if self._use_batch_norm:
x = self.bn(x)
if self._activation_fn is not None:
x = self._activation_fn(x)
return x
class InceptionModule(nn.Module):
def __init__(self, in_channels, out_channels, name):
super(InceptionModule, self).__init__()
self.b0 = Unit3D(in_channels=in_channels, output_channels=out_channels[0], kernel_shape=[1, 1, 1], padding=0,
name=name+'/Branch_0/Conv3d_0a_1x1')
self.b1a = Unit3D(in_channels=in_channels, output_channels=out_channels[1], kernel_shape=[1, 1, 1], padding=0,
name=name+'/Branch_1/Conv3d_0a_1x1')
self.b1b = Unit3D(in_channels=out_channels[1], output_channels=out_channels[2], kernel_shape=[3, 3, 3],
name=name+'/Branch_1/Conv3d_0b_3x3')
self.b2a = Unit3D(in_channels=in_channels, output_channels=out_channels[3], kernel_shape=[1, 1, 1], padding=0,
name=name+'/Branch_2/Conv3d_0a_1x1')
self.b2b = Unit3D(in_channels=out_channels[3], output_channels=out_channels[4], kernel_shape=[3, 3, 3],
name=name+'/Branch_2/Conv3d_0b_3x3')
self.b3a = MaxPool3dSamePadding(kernel_size=[3, 3, 3],
stride=(1, 1, 1), padding=0)
self.b3b = Unit3D(in_channels=in_channels, output_channels=out_channels[5], kernel_shape=[1, 1, 1], padding=0,
name=name+'/Branch_3/Conv3d_0b_1x1')
self.name = name
def forward(self, x):
b0 = self.b0(x)
b1 = self.b1b(self.b1a(x))
b2 = self.b2b(self.b2a(x))
b3 = self.b3b(self.b3a(x))
return torch.cat([b0,b1,b2,b3], dim=1)
class InceptionI3d(nn.Module):
"""Inception-v1 I3D architecture.
The model is introduced in:
Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset
Joao Carreira, Andrew Zisserman
https://arxiv.org/pdf/1705.07750v1.pdf.
See also the Inception architecture, introduced in:
Going deeper with convolutions
Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich.
http://arxiv.org/pdf/1409.4842v1.pdf.
"""
# Endpoints of the model in order. During construction, all the endpoints up
# to a designated `final_endpoint` are returned in a dictionary as the
# second return value.
VALID_ENDPOINTS = (
'Conv3d_1a_7x7',
'MaxPool3d_2a_3x3',
'Conv3d_2b_1x1',
'Conv3d_2c_3x3',
'MaxPool3d_3a_3x3',
'Mixed_3b',
'Mixed_3c',
'MaxPool3d_4a_3x3',
'Mixed_4b',
'Mixed_4c',
'Mixed_4d',
'Mixed_4e',
'Mixed_4f',
'MaxPool3d_5a_2x2',
'Mixed_5b',
'Mixed_5c',
'Logits',
'Predictions',
)
def __init__(self, num_classes=400, spatial_squeeze=True,
final_endpoint='Logits', name='inception_i3d', in_channels=3, dropout_keep_prob=0.5):
"""Initializes I3D model instance.
Args:
num_classes: The number of outputs in the logit layer (default 400, which
matches the Kinetics dataset).
spatial_squeeze: Whether to squeeze the spatial dimensions for the logits
before returning (default True).
final_endpoint: The model contains many possible endpoints.
`final_endpoint` specifies the last endpoint for the model to be built
up to. In addition to the output at `final_endpoint`, all the outputs
at endpoints up to `final_endpoint` will also be returned, in a
dictionary. `final_endpoint` must be one of
InceptionI3d.VALID_ENDPOINTS (default 'Logits').
name: A string (optional). The name of this module.
Raises:
ValueError: if `final_endpoint` is not recognized.
"""
if final_endpoint not in self.VALID_ENDPOINTS:
raise ValueError('Unknown final endpoint %s' % final_endpoint)
super(InceptionI3d, self).__init__()
self._num_classes = num_classes
self._spatial_squeeze = spatial_squeeze
self._final_endpoint = final_endpoint
self.logits = None
if self._final_endpoint not in self.VALID_ENDPOINTS:
raise ValueError('Unknown final endpoint %s' % self._final_endpoint)
self.end_points = {}
end_point = 'Conv3d_1a_7x7'
self.end_points[end_point] = Unit3D(in_channels=in_channels, output_channels=64, kernel_shape=[7, 7, 7],
stride=(2, 2, 2), padding=(3,3,3), name=name+end_point)
if self._final_endpoint == end_point: return
end_point = 'MaxPool3d_2a_3x3'
self.end_points[end_point] = MaxPool3dSamePadding(kernel_size=[1, 3, 3], stride=(1, 2, 2),
padding=0)
if self._final_endpoint == end_point: return
end_point = 'Conv3d_2b_1x1'
self.end_points[end_point] = Unit3D(in_channels=64, output_channels=64, kernel_shape=[1, 1, 1], padding=0,
name=name+end_point)
if self._final_endpoint == end_point: return
end_point = 'Conv3d_2c_3x3'
self.end_points[end_point] = Unit3D(in_channels=64, output_channels=192, kernel_shape=[3, 3, 3], padding=1,
name=name+end_point)
if self._final_endpoint == end_point: return
end_point = 'MaxPool3d_3a_3x3'
self.end_points[end_point] = MaxPool3dSamePadding(kernel_size=[1, 3, 3], stride=(1, 2, 2),
padding=0)
if self._final_endpoint == end_point: return
end_point = 'Mixed_3b'
self.end_points[end_point] = InceptionModule(192, [64,96,128,16,32,32], name+end_point)
if self._final_endpoint == end_point: return
end_point = 'Mixed_3c'
self.end_points[end_point] = InceptionModule(256, [128,128,192,32,96,64], name+end_point)
if self._final_endpoint == end_point: return
end_point = 'MaxPool3d_4a_3x3'
self.end_points[end_point] = MaxPool3dSamePadding(kernel_size=[3, 3, 3], stride=(2, 2, 2),
padding=0)
if self._final_endpoint == end_point: return
end_point = 'Mixed_4b'
self.end_points[end_point] = InceptionModule(128+192+96+64, [192,96,208,16,48,64], name+end_point)
if self._final_endpoint == end_point: return
end_point = 'Mixed_4c'
self.end_points[end_point] = InceptionModule(192+208+48+64, [160,112,224,24,64,64], name+end_point)
if self._final_endpoint == end_point: return
end_point = 'Mixed_4d'
self.end_points[end_point] = InceptionModule(160+224+64+64, [128,128,256,24,64,64], name+end_point)
if self._final_endpoint == end_point: return
end_point = 'Mixed_4e'
self.end_points[end_point] = InceptionModule(128+256+64+64, [112,144,288,32,64,64], name+end_point)
if self._final_endpoint == end_point: return
end_point = 'Mixed_4f'
self.end_points[end_point] = InceptionModule(112+288+64+64, [256,160,320,32,128,128], name+end_point)
if self._final_endpoint == end_point: return
end_point = 'MaxPool3d_5a_2x2'
self.end_points[end_point] = MaxPool3dSamePadding(kernel_size=[2, 2, 2], stride=(2, 2, 2),
padding=0)
if self._final_endpoint == end_point: return
end_point = 'Mixed_5b'
self.end_points[end_point] = InceptionModule(256+320+128+128, [256,160,320,32,128,128], name+end_point)
if self._final_endpoint == end_point: return
end_point = 'Mixed_5c'
self.end_points[end_point] = InceptionModule(256+320+128+128, [384,192,384,48,128,128], name+end_point)
if self._final_endpoint == end_point: return
end_point = 'Logits'
self.avg_pool = nn.AvgPool3d(kernel_size=[2, 7, 7],
stride=(1, 1, 1))
self.dropout = nn.Dropout(dropout_keep_prob)
self.logits = Unit3D(in_channels=384+384+128+128, output_channels=self._num_classes,
kernel_shape=[1, 1, 1],
padding=0,
activation_fn=None,
use_batch_norm=False,
use_bias=True,
name='logits')
self.build()
def replace_logits(self, num_classes):
self._num_classes = num_classes
self.logits = Unit3D(in_channels=384+384+128+128, output_channels=self._num_classes,
kernel_shape=[1, 1, 1],
padding=0,
activation_fn=None,
use_batch_norm=False,
use_bias=True,
name='logits')
def build(self):
for k in self.end_points.keys():
self.add_module(k, self.end_points[k])
def forward(self, x):
for end_point in self.VALID_ENDPOINTS:
if end_point in self.end_points:
x = self._modules[end_point](x) # use _modules to work with dataparallel
x = self.logits(self.dropout(self.avg_pool(x)))
if self._spatial_squeeze:
logits = x.squeeze(3).squeeze(3)
# logits is batch X time X classes, which is what we want to work with
return logits
def extract_features(self, x):
for end_point in self.VALID_ENDPOINTS:
if end_point in self.end_points:
x = self._modules[end_point](x)
return self.avg_pool(x)
|