Levi980623's picture
Upload 14 files
8dd5c84 verified
import os
os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID"
#os.environ["CUDA_VISIBLE_DEVICES"]='0,1,2,3'
import sys
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('-mode', type=str, help='rgb or flow')
parser.add_argument('-save_model', type=str)
parser.add_argument('-root', type=str)
args = parser.parse_args()
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.optim import lr_scheduler
from torch.autograd import Variable
import torchvision
from torchvision import datasets, transforms
import videotransforms
import numpy as np
from pytorch_i3d import InceptionI3d
from charades_dataset import Charades as Dataset
def run(init_lr=0.1, max_steps=64e3, mode='rgb', root='/ssd/Charades_v1_rgb', train_split='charades/charades.json', batch_size=8*5, save_model=''):
# setup dataset
train_transforms = transforms.Compose([videotransforms.RandomCrop(224),
videotransforms.RandomHorizontalFlip(),
])
test_transforms = transforms.Compose([videotransforms.CenterCrop(224)])
dataset = Dataset(train_split, 'training', root, mode, train_transforms)
dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=True, num_workers=36, pin_memory=True)
val_dataset = Dataset(train_split, 'testing', root, mode, test_transforms)
val_dataloader = torch.utils.data.DataLoader(val_dataset, batch_size=batch_size, shuffle=True, num_workers=36, pin_memory=True)
dataloaders = {'train': dataloader, 'val': val_dataloader}
datasets = {'train': dataset, 'val': val_dataset}
# setup the model
if mode == 'flow':
i3d = InceptionI3d(400, in_channels=2)
i3d.load_state_dict(torch.load('models/flow_imagenet.pt'))
else:
i3d = InceptionI3d(400, in_channels=3)
i3d.load_state_dict(torch.load('models/rgb_imagenet.pt'))
i3d.replace_logits(157)
#i3d.load_state_dict(torch.load('/ssd/models/000920.pt'))
i3d.cuda()
i3d = nn.DataParallel(i3d)
lr = init_lr
optimizer = optim.SGD(i3d.parameters(), lr=lr, momentum=0.9, weight_decay=0.0000001)
lr_sched = optim.lr_scheduler.MultiStepLR(optimizer, [300, 1000])
num_steps_per_update = 4 # accum gradient
steps = 0
# train it
while steps < max_steps:#for epoch in range(num_epochs):
print 'Step {}/{}'.format(steps, max_steps)
print '-' * 10
# Each epoch has a training and validation phase
for phase in ['train', 'val']:
if phase == 'train':
i3d.train(True)
else:
i3d.train(False) # Set model to evaluate mode
tot_loss = 0.0
tot_loc_loss = 0.0
tot_cls_loss = 0.0
num_iter = 0
optimizer.zero_grad()
# Iterate over data.
for data in dataloaders[phase]:
num_iter += 1
# get the inputs
inputs, labels = data
# wrap them in Variable
inputs = Variable(inputs.cuda())
t = inputs.size(2)
labels = Variable(labels.cuda())
per_frame_logits = i3d(inputs)
# upsample to input size
per_frame_logits = F.upsample(per_frame_logits, t, mode='linear')
# compute localization loss
loc_loss = F.binary_cross_entropy_with_logits(per_frame_logits, labels)
tot_loc_loss += loc_loss.data[0]
# compute classification loss (with max-pooling along time B x C x T)
cls_loss = F.binary_cross_entropy_with_logits(torch.max(per_frame_logits, dim=2)[0], torch.max(labels, dim=2)[0])
tot_cls_loss += cls_loss.data[0]
loss = (0.5*loc_loss + 0.5*cls_loss)/num_steps_per_update
tot_loss += loss.data[0]
loss.backward()
if num_iter == num_steps_per_update and phase == 'train':
steps += 1
num_iter = 0
optimizer.step()
optimizer.zero_grad()
lr_sched.step()
if steps % 10 == 0:
print '{} Loc Loss: {:.4f} Cls Loss: {:.4f} Tot Loss: {:.4f}'.format(phase, tot_loc_loss/(10*num_steps_per_update), tot_cls_loss/(10*num_steps_per_update), tot_loss/10)
# save model
torch.save(i3d.module.state_dict(), save_model+str(steps).zfill(6)+'.pt')
tot_loss = tot_loc_loss = tot_cls_loss = 0.
if phase == 'val':
print '{} Loc Loss: {:.4f} Cls Loss: {:.4f} Tot Loss: {:.4f}'.format(phase, tot_loc_loss/num_iter, tot_cls_loss/num_iter, (tot_loss*num_steps_per_update)/num_iter)
if __name__ == '__main__':
# need to add argparse
run(mode=args.mode, root=args.root, save_model=args.save_model)