import torch import torch.utils.data as data_utl from torch.utils.data.dataloader import default_collate import numpy as np import json import csv import h5py import random import os import os.path import cv2 def video_to_tensor(pic): """Convert a ``numpy.ndarray`` to tensor. Converts a numpy.ndarray (T x H x W x C) to a torch.FloatTensor of shape (C x T x H x W) Args: pic (numpy.ndarray): Video to be converted to tensor. Returns: Tensor: Converted video. """ return torch.from_numpy(pic.transpose([3,0,1,2])) def load_rgb_frames(image_dir, vid, start, num): frames = [] for i in range(start, start+num): img = cv2.imread(os.path.join(image_dir, vid, vid+'-'+str(i).zfill(6)+'.jpg'))[:, :, [2, 1, 0]] w,h,c = img.shape if w < 226 or h < 226: d = 226.-min(w,h) sc = 1+d/min(w,h) img = cv2.resize(img,dsize=(0,0),fx=sc,fy=sc) img = (img/255.)*2 - 1 frames.append(img) return np.asarray(frames, dtype=np.float32) def load_flow_frames(image_dir, vid, start, num): frames = [] for i in range(start, start+num): imgx = cv2.imread(os.path.join(image_dir, vid, vid+'-'+str(i).zfill(6)+'x.jpg'), cv2.IMREAD_GRAYSCALE) imgy = cv2.imread(os.path.join(image_dir, vid, vid+'-'+str(i).zfill(6)+'y.jpg'), cv2.IMREAD_GRAYSCALE) w,h = imgx.shape if w < 224 or h < 224: d = 224.-min(w,h) sc = 1+d/min(w,h) imgx = cv2.resize(imgx,dsize=(0,0),fx=sc,fy=sc) imgy = cv2.resize(imgy,dsize=(0,0),fx=sc,fy=sc) imgx = (imgx/255.)*2 - 1 imgy = (imgy/255.)*2 - 1 img = np.asarray([imgx, imgy]).transpose([1,2,0]) frames.append(img) return np.asarray(frames, dtype=np.float32) def make_dataset(split_file, split, root, mode, num_classes=157): dataset = [] with open(split_file, 'r') as f: data = json.load(f) i = 0 for vid in data.keys(): if data[vid]['subset'] != split: continue if not os.path.exists(os.path.join(root, vid)): continue num_frames = len(os.listdir(os.path.join(root, vid))) if mode == 'flow': num_frames = num_frames//2 if num_frames < 66: continue label = np.zeros((num_classes,num_frames), np.float32) fps = num_frames/data[vid]['duration'] for ann in data[vid]['actions']: for fr in range(0,num_frames,1): if fr/fps > ann[1] and fr/fps < ann[2]: label[ann[0], fr] = 1 # binary classification dataset.append((vid, label, data[vid]['duration'], num_frames)) i += 1 return dataset class Charades(data_utl.Dataset): def __init__(self, split_file, split, root, mode, transforms=None): self.data = make_dataset(split_file, split, root, mode) self.split_file = split_file self.transforms = transforms self.mode = mode self.root = root def __getitem__(self, index): """ Args: index (int): Index Returns: tuple: (image, target) where target is class_index of the target class. """ vid, label, dur, nf = self.data[index] start_f = random.randint(1,nf-65) if self.mode == 'rgb': imgs = load_rgb_frames(self.root, vid, start_f, 64) else: imgs = load_flow_frames(self.root, vid, start_f, 64) label = label[:, start_f:start_f+64] imgs = self.transforms(imgs) return video_to_tensor(imgs), torch.from_numpy(label) def __len__(self): return len(self.data)