import os os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID" #os.environ["CUDA_VISIBLE_DEVICES"]='0,1,2,3' import sys import argparse parser = argparse.ArgumentParser() parser.add_argument('-mode', type=str, help='rgb or flow') parser.add_argument('-save_model', type=str) parser.add_argument('-root', type=str) args = parser.parse_args() import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.optim import lr_scheduler from torch.autograd import Variable import torchvision from torchvision import datasets, transforms import videotransforms import numpy as np from pytorch_i3d import InceptionI3d from charades_dataset import Charades as Dataset def run(init_lr=0.1, max_steps=64e3, mode='rgb', root='/ssd/Charades_v1_rgb', train_split='charades/charades.json', batch_size=8*5, save_model=''): # setup dataset train_transforms = transforms.Compose([videotransforms.RandomCrop(224), videotransforms.RandomHorizontalFlip(), ]) test_transforms = transforms.Compose([videotransforms.CenterCrop(224)]) dataset = Dataset(train_split, 'training', root, mode, train_transforms) dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=True, num_workers=36, pin_memory=True) val_dataset = Dataset(train_split, 'testing', root, mode, test_transforms) val_dataloader = torch.utils.data.DataLoader(val_dataset, batch_size=batch_size, shuffle=True, num_workers=36, pin_memory=True) dataloaders = {'train': dataloader, 'val': val_dataloader} datasets = {'train': dataset, 'val': val_dataset} # setup the model if mode == 'flow': i3d = InceptionI3d(400, in_channels=2) i3d.load_state_dict(torch.load('models/flow_imagenet.pt')) else: i3d = InceptionI3d(400, in_channels=3) i3d.load_state_dict(torch.load('models/rgb_imagenet.pt')) i3d.replace_logits(157) #i3d.load_state_dict(torch.load('/ssd/models/000920.pt')) i3d.cuda() i3d = nn.DataParallel(i3d) lr = init_lr optimizer = optim.SGD(i3d.parameters(), lr=lr, momentum=0.9, weight_decay=0.0000001) lr_sched = optim.lr_scheduler.MultiStepLR(optimizer, [300, 1000]) num_steps_per_update = 4 # accum gradient steps = 0 # train it while steps < max_steps:#for epoch in range(num_epochs): print 'Step {}/{}'.format(steps, max_steps) print '-' * 10 # Each epoch has a training and validation phase for phase in ['train', 'val']: if phase == 'train': i3d.train(True) else: i3d.train(False) # Set model to evaluate mode tot_loss = 0.0 tot_loc_loss = 0.0 tot_cls_loss = 0.0 num_iter = 0 optimizer.zero_grad() # Iterate over data. for data in dataloaders[phase]: num_iter += 1 # get the inputs inputs, labels = data # wrap them in Variable inputs = Variable(inputs.cuda()) t = inputs.size(2) labels = Variable(labels.cuda()) per_frame_logits = i3d(inputs) # upsample to input size per_frame_logits = F.upsample(per_frame_logits, t, mode='linear') # compute localization loss loc_loss = F.binary_cross_entropy_with_logits(per_frame_logits, labels) tot_loc_loss += loc_loss.data[0] # compute classification loss (with max-pooling along time B x C x T) cls_loss = F.binary_cross_entropy_with_logits(torch.max(per_frame_logits, dim=2)[0], torch.max(labels, dim=2)[0]) tot_cls_loss += cls_loss.data[0] loss = (0.5*loc_loss + 0.5*cls_loss)/num_steps_per_update tot_loss += loss.data[0] loss.backward() if num_iter == num_steps_per_update and phase == 'train': steps += 1 num_iter = 0 optimizer.step() optimizer.zero_grad() lr_sched.step() if steps % 10 == 0: print '{} Loc Loss: {:.4f} Cls Loss: {:.4f} Tot Loss: {:.4f}'.format(phase, tot_loc_loss/(10*num_steps_per_update), tot_cls_loss/(10*num_steps_per_update), tot_loss/10) # save model torch.save(i3d.module.state_dict(), save_model+str(steps).zfill(6)+'.pt') tot_loss = tot_loc_loss = tot_cls_loss = 0. if phase == 'val': print '{} Loc Loss: {:.4f} Cls Loss: {:.4f} Tot Loss: {:.4f}'.format(phase, tot_loc_loss/num_iter, tot_cls_loss/num_iter, (tot_loss*num_steps_per_update)/num_iter) if __name__ == '__main__': # need to add argparse run(mode=args.mode, root=args.root, save_model=args.save_model)