|
|
|
"""TGIF: A New Dataset and Benchmark on Animated GIF Description""" |
|
|
|
import os |
|
import json |
|
import datasets |
|
|
|
_CITATION = """ |
|
@inproceedings{krishna2017dense, |
|
title={Dense-Captioning Events in Videos}, |
|
author={Krishna, Ranjay and Hata, Kenji and Ren, Frederic and Fei-Fei, Li and Niebles, Juan Carlos}, |
|
booktitle={International Conference on Computer Vision (ICCV)}, |
|
year={2017} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
The ActivityNet Captions dataset connects videos to a series of temporally annotated sentence descriptions. |
|
Each sentence covers an unique segment of the video, describing multiple events that occur. These events |
|
may occur over very long or short periods of time and are not limited in any capacity, allowing them to |
|
co-occur. On average, each of the 20k videos contains 3.65 temporally localized sentences, resulting in |
|
a total of 100k sentences. We find that the number of sentences per video follows a relatively normal |
|
distribution. Furthermore, as the video duration increases, the number of sentences also increases. |
|
Each sentence has an average length of 13.48 words, which is also normally distributed. You can find more |
|
details of the dataset under the ActivityNet Captions Dataset section, and under supplementary materials |
|
in the paper. |
|
""" |
|
|
|
_URL_BASE = "https://cs.stanford.edu/people/ranjaykrishna/densevid/" |
|
|
|
|
|
class ActivityNetConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for ActivityNet Captions.""" |
|
|
|
def __init__(self, **kwargs): |
|
super(ActivityNetConfig, self).__init__( |
|
version=datasets.Version("2.1.0", ""), **kwargs) |
|
|
|
|
|
class ActivityNet(datasets.GeneratorBasedBuilder): |
|
|
|
DEFAULT_CONFIG_NAME = "all" |
|
BUILDER_CONFIGS = [ |
|
ActivityNetConfig( |
|
name="all", description="All the ActivityNet Captions dataset"), |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"video_id": datasets.Value("string"), |
|
"video_path": datasets.Value("string"), |
|
"duration": datasets.Value("float32"), |
|
"captions_starts": datasets.features.Sequence(datasets.Value("float32")), |
|
"captions_ends": datasets.features.Sequence(datasets.Value("float32")), |
|
"en_captions": datasets.features.Sequence(datasets.Value("string")) |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage=_URL_BASE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
archive_path = dl_manager.download_and_extract( |
|
_URL_BASE + "captions.zip") |
|
|
|
train_splits = [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"infos_file": os.path.join(archive_path, "train.json") |
|
}, |
|
) |
|
] |
|
dev_splits = [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"infos_file": os.path.join(archive_path, "val_1.json") |
|
}, |
|
) |
|
] |
|
test_splits = [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"infos_file": os.path.join(archive_path, "val_2.json") |
|
}, |
|
) |
|
] |
|
return train_splits + dev_splits + test_splits |
|
|
|
def _generate_examples(self, infos_file): |
|
"""This function returns the examples.""" |
|
|
|
with open(infos_file, encoding="utf-8") as json_file: |
|
infos = json.load(json_file) |
|
for idx, id in enumerate(infos): |
|
path = "https://www.youtube.com/watch?v=" + id[2:] |
|
starts = [float(timestamp[0]) |
|
for timestamp in infos[id]["timestamps"]] |
|
ends = [float(timestamp[1]) |
|
for timestamp in infos[id]["timestamps"]] |
|
captions = [str(caption) for caption in infos[id]["sentences"]] |
|
yield idx, { |
|
"video_id": id, |
|
"video_path": path, |
|
"duration": float(infos[id]["duration"]), |
|
"captions_starts": starts, |
|
"captions_ends": ends, |
|
"en_captions": captions, |
|
} |
|
|