File size: 12,909 Bytes
f2b657e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
import sys
sys.path.append(".")
from causalvideovae.model import CausalVAEModel
from CV_VAE.models.modeling_vae import CVVAEModel
from opensora.models.vae.vae import VideoAutoencoderPipeline
from opensora.registry import DATASETS, MODELS, build_module
from opensora.utils.config_utils import parse_configs
from diffusers.models import AutoencoderKL, AutoencoderKLTemporalDecoder
from tats import VQGAN
from tats.download import load_vqgan
from taming.models.vqgan import VQModel, GumbelVQ
import torch
from omegaconf import OmegaConf
import yaml
import argparse
from einops import rearrange
from causalvideovae.model.modules.normalize import Normalize
from causalvideovae.model.modules.block import Block
import time

def total_params(model):
    total_params = sum(p.numel() for p in model.parameters())
    total_params_in_millions = total_params / 1e6
    return total_params_in_millions
  
device = torch.device('cuda')
data_type = torch.bfloat16
video_input = torch.randn(1, 3, 33, 256, 256).to(device).to(data_type)
image_input = torch.randn(33, 3, 256, 256).to(device).to(data_type)
num = 1000

"""
#VQGAN
def load_config(config_path, display=False):
  config = OmegaConf.load(config_path)
  if display:
    print(yaml.dump(OmegaConf.to_container(config)))
  return config

def load_vqgan(config, ckpt_path=None, is_gumbel=False):
  if is_gumbel:
    model = GumbelVQ(**config.model.params)
  else:
    model = VQModel(**config.model.params)
  if ckpt_path is not None:
    sd = torch.load(ckpt_path, map_location="cpu")["state_dict"]
    missing, unexpected = model.load_state_dict(sd, strict=False)
  return model.eval()

vqgan_ckpt='/remote-home1/clh/taming-transformers/logs/vqgan_gumbel_f8/checkpoints/last.ckpt'
vqgan_config='/remote-home1/clh/taming-transformers/logs/vqgan_gumbel_f8/configs/model.yaml'
vqgan_config = load_config(vqgan_config, display=False)
vqgan = load_vqgan(vqgan_config, ckpt_path=vqgan_ckpt, is_gumbel=True).to(device).to(data_type).eval()
vqgan.requires_grad_(False)
print('VQGAN')
print(f"Generator:\t\t{total_params(vqgan) :.2f}M")
print(f"\t- Encoder:\t{total_params(vqgan.encoder) :.2f}M")
print(f"\t- Decoder:\t{total_params(vqgan.decoder) :.2f}M")
# 计算程序运行时间  
start_time = time.time()
for i in range(num):
  latents, _, [_, _, indices] = vqgan.encode(image_input)
end_time = time.time()  
print(f"encode_time:{(end_time - start_time)/num :.3f}s")

start_time = time.time()
for i in range(num):  
  video_recon = vqgan.decode(latents.to(data_type))
end_time = time.time()  
print(f"decode_time:{(end_time - start_time)/num :.3f}s")

start_time = time.time()
for i in range(num):
  latents, _, [_, _, indices] = vqgan.encode(image_input)
  video_recon = vqgan.decode(latents.to(data_type))
end_time = time.time()  
print(f"rec_time:{(end_time - start_time)/num :.3f}s")



#TATS
tats_path = '/remote-home1/clh/TATS/vqgan_sky_128_488_epoch_12-step_29999-train.ckpt'
tats = VQGAN.load_from_checkpoint(tats_path).to(device).to(torch.float32).eval()
tats.requires_grad_(False)
print('TATS')
print(f"Generator:\t\t{total_params(tats) :.2f}M")
print(f"\t- Encoder:\t{total_params(tats.encoder):.2f}M")
print(f"\t- Decoder:\t{total_params(tats.decoder):.2f}M")
# 计算程序运行时间  
start_time = time.time()
for i in range(num):
  z = tats.pre_vq_conv(tats.encoder(video_input.to(torch.float32)))
  vq_output = tats.codebook(z)
  latents = vq_output['embeddings']
end_time = time.time()  
print(f"encode_time:{(end_time - start_time)/num :.3f}s")

start_time = time.time()
for i in range(num):  
  video_recon = tats.decoder(tats.post_vq_conv(latents.to(torch.float32)))
end_time = time.time()  
print(f"decode_time:{(end_time - start_time)/num :.3f}s")

start_time = time.time()
for i in range(num):
  z = tats.pre_vq_conv(tats.encoder(video_input.to(torch.float32)))
  vq_output = tats.codebook(z)
  latents = vq_output['embeddings']
  video_recon = tats.decoder(tats.post_vq_conv(latents.to(torch.float32)))
end_time = time.time()  
print(f"rec_time:{(end_time - start_time)/num :.3f}s")


#SD2_1
sd2_1_path = '/remote-home1/clh/sd2_1'
sd2_1 = AutoencoderKL.from_pretrained(sd2_1_path).eval().to(device).to(data_type)
sd2_1.requires_grad_(False)
print('SD2_1')
print(f"Generator:\t\t{total_params(sd2_1) :.2f}M")
print(f"\t- Encoder:\t{total_params(sd2_1.encoder):.2f}M")
print(f"\t- Decoder:\t{total_params(sd2_1.decoder):.2f}M")
# 计算程序运行时间  
start_time = time.time()
for i in range(num):
  latents = sd2_1.encode(image_input)['latent_dist'].sample()
end_time = time.time()  
print(f"encode_time:{(end_time - start_time)/num :.3f}s")

start_time = time.time()
for i in range(num):  
  video_recon = sd2_1.decode(latents.to(data_type))['sample']
end_time = time.time()  
print(f"decode_time:{(end_time - start_time)/num :.3f}s")

start_time = time.time()
for i in range(num):
  latents = sd2_1.encode(image_input)['latent_dist'].sample()
  video_recon = sd2_1.decode(latents.to(data_type))['sample']
end_time = time.time()  
print(f"rec_time:{(end_time - start_time)/num :.3f}s")

#SVD
svd_path = '/remote-home1/clh/svd/'
svd = AutoencoderKLTemporalDecoder.from_pretrained(svd_path).eval().to(device).to(data_type)
svd.requires_grad_(False)
print('SVD')
print(f"Generator:\t\t{total_params(svd):.2f}M")
print(f"\t- Encoder:\t{total_params(svd.encoder):.2f}M")
print(f"\t- Decoder:\t{total_params(svd.decoder):.2f}M")
# 计算程序运行时间  
start_time = time.time()
for i in range(num):
  latents = svd.encode(image_input)['latent_dist'].sample()
end_time = time.time()  
print(f"encode_time:{(end_time - start_time)/num :.3f}s")

start_time = time.time()
for i in range(num):  
  video_recon = svd.decode(latents.to(data_type), num_frames=video_input.shape[2])['sample']
end_time = time.time()  
print(f"decode_time:{(end_time - start_time)/num :.3f}s")

start_time = time.time()
for i in range(num):
  latents = svd.encode(image_input)['latent_dist'].sample()
  video_recon = svd.decode(latents.to(data_type), num_frames=video_input.shape[2])['sample']
end_time = time.time()  
print(f"rec_time:{(end_time - start_time)/num :.3f}s")

#CV-VAE
cvvae_path = '/remote-home1/clh/CV-VAE/vae3d'
cvvae = CVVAEModel.from_pretrained(cvvae_path).eval().to(device).to(data_type)
cvvae.requires_grad_(False)
print('CV-VAE')
print(f"Generator:\t\t{total_params(cvvae):.2f}M")
print(f"\t- Encoder:\t{total_params(cvvae.encoder):.2f}M")
print(f"\t- Decoder:\t{total_params(cvvae.decoder):.2f}M")
# 计算程序运行时间  
start_time = time.time()
for i in range(num):
  latent = cvvae.encode(video_input).latent_dist.sample()
end_time = time.time()  
print(f"encode_time:{(end_time - start_time)/num :.3f}s")

start_time = time.time()
for i in range(num):  
 video_recon = cvvae.decode(latent).sample
end_time = time.time()  
print(f"decode_time:{(end_time - start_time)/num :.3f}s")

start_time = time.time()
for i in range(num):
  latent = cvvae.encode(video_input).latent_dist.sample()
  video_recon = cvvae.decode(latent).sample
end_time = time.time()  
print(f"rec_time:{(end_time - start_time)/num :.3f}s")


#NUS-VAE
nusvae_path = '/remote-home1/clh/CV-VAE/vae3d'
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, default="/remote-home1/clh/Causal-Video-VAE/opensora/video.py")
parser.add_argument("--ckpt", type=str, default="/remote-home1/clh/Open-Sora/OpenSora-VAE-v1.2")
args = parser.parse_args()
cfg = parse_configs(args, training=False)
nusvae = build_module(cfg.model, MODELS).eval().to(device).to(data_type)
nusvae.requires_grad_(False)
print('NUS-VAE')
print(f"Generator:\t\t{total_params(nusvae):.2f}M")
print(f"\t- Spatial_Encoder:\t{total_params(nusvae.spatial_vae.module.encoder):.2f}M")
print(f"\t- Temporal_Encoder:\t{total_params(nusvae.temporal_vae.encoder):.2f}M")
print(f"\t- Temporal_Decoder:\t{total_params(nusvae.temporal_vae.decoder):.2f}M")
print(f"\t- Spatial_Decoder:\t{total_params(nusvae.spatial_vae.module.decoder):.2f}M")
# 计算程序运行时间  
start_time = time.time()
for i in range(num):
  latents, posterior, x_z = nusvae.encode(video_input)
end_time = time.time()  
print(f"encode_time:{(end_time - start_time)/num :.3f}s")

start_time = time.time()
for i in range(num):  
 video_recon, x_z_rec = nusvae.decode(latents, num_frames=video_input.size(2))
end_time = time.time()  
print(f"decode_time:{(end_time - start_time)/num :.3f}s")

start_time = time.time()
for i in range(num):
  latents, posterior, x_z = nusvae.encode(video_input)
  video_recon, x_z_rec = nusvae.decode(latents, num_frames=video_input.size(2))
end_time = time.time()  
print(f"rec_time:{(end_time - start_time)/num :.3f}s")
"""

#ours1.2
ours1_2_vae_path = '/remote-home1/clh/models/23denc_3ddec_vae_pretrained_weight'
ours1_2_vae = CausalVAEModel.from_pretrained(ours1_2_vae_path).eval().to(device).to(data_type)
ours1_2_vae.requires_grad_(False)
print('open_sora_plan_vae_1_2')
print(f"Generator:\t\t{total_params(ours1_2_vae):.2f}M")
print(f"\t- Encoder:\t{total_params(ours1_2_vae.encoder):.2f}M")
print(f"\t- Decoder:\t{total_params(ours1_2_vae.decoder):.2f}M")
# 计算程序运行时间  
start_time = time.time()
for i in range(num):
  latents = ours1_2_vae.encode(video_input).sample().to(data_type)
end_time = time.time()  
print(f"encode_time:{(end_time - start_time)/num :.3f}s")

start_time = time.time()
for i in range(num):  
 video_recon = ours1_2_vae.decode(latents)
end_time = time.time()  
print(f"decode_time:{(end_time - start_time)/num :.3f}s")

start_time = time.time()
for i in range(num):
  latents = ours1_2_vae.encode(video_input).sample().to(data_type)
  video_recon = ours1_2_vae.decode(latents)
end_time = time.time()  
print(f"rec_time:{(end_time - start_time)/num :.3f}s")


#23d
half3d_vae_path = '/remote-home1/clh/models/23d_vae_pretrained_weight'
half3d_vae = CausalVAEModel.from_pretrained(half3d_vae_path).eval().to(device).to(data_type)
half3d_vae.requires_grad_(False)
print('open_sora_plan_vae_half3d')
print(f"Generator:\t\t{total_params(half3d_vae):.2f}M")
print(f"\t- Encoder:\t{total_params(half3d_vae.encoder):.2f}M")
print(f"\t- Decoder:\t{total_params(half3d_vae.decoder):.2f}M")
# 计算程序运行时间  
start_time = time.time()
for i in range(num):
  latents = half3d_vae.encode(video_input).sample().to(data_type)
end_time = time.time()  
print(f"encode_time:{(end_time - start_time)/num :.3f}s")

start_time = time.time()
for i in range(num):  
 video_recon = half3d_vae.decode(latents)
end_time = time.time()  
print(f"decode_time:{(end_time - start_time)/num :.3f}s")

start_time = time.time()
for i in range(num):
  latents = half3d_vae.encode(video_input).sample().to(data_type)
  video_recon = half3d_vae.decode(latents)
end_time = time.time()  
print(f"rec_time:{(end_time - start_time)/num :.3f}s")

#2and3d
mix23d_vae_path = '/remote-home1/clh/models/mix23d_vae_pretrained_weight'
mix23d_vae = CausalVAEModel.from_pretrained(mix23d_vae_path).eval().to(device).to(data_type)
mix23d_vae.requires_grad_(False)
print('open_sora_plan_vae_mix23d')
print(f"Generator:\t\t{total_params(mix23d_vae):.2f}M")
print(f"\t- Encoder:\t{total_params(mix23d_vae.encoder):.2f}M")
print(f"\t- Decoder:\t{total_params(mix23d_vae.decoder):.2f}M")
# 计算程序运行时间  
start_time = time.time()
for i in range(num):
  latents = mix23d_vae.encode(video_input).sample().to(data_type)
end_time = time.time()  
print(f"encode_time:{(end_time - start_time)/num :.3f}s")

start_time = time.time()
for i in range(num):  
 video_recon = mix23d_vae.decode(latents)
end_time = time.time()  
print(f"decode_time:{(end_time - start_time)/num :.3f}s")

start_time = time.time()
for i in range(num):
  latents = mix23d_vae.encode(video_input).sample().to(data_type)
  video_recon = mix23d_vae.decode(latents)
end_time = time.time()  
print(f"rec_time:{(end_time - start_time)/num :.3f}s")

#full 3d
full3d_vae_path = '/remote-home1/clh/models/full3d_vae_pretrained_weight'
full3d_vae = CausalVAEModel.from_pretrained(full3d_vae_path).eval().to(device).to(data_type)
full3d_vae.requires_grad_(False)
print('open_sora_plan_vae_full3d')
print(f"Generator:\t\t{total_params(full3d_vae):.2f}M")
print(f"\t- Encoder:\t{total_params(full3d_vae.encoder):.2f}M")
print(f"\t- Decoder:\t{total_params(full3d_vae.decoder):.2f}M")
# 计算程序运行时间  
start_time = time.time()
for i in range(num):
  latents = full3d_vae.encode(video_input).sample().to(data_type)
end_time = time.time()  
print(f"encode_time:{(end_time - start_time)/num :.3f}s")

start_time = time.time()
for i in range(num):  
 video_recon = full3d_vae.decode(latents)
end_time = time.time()  
print(f"decode_time:{(end_time - start_time)/num :.3f}s")

start_time = time.time()
for i in range(num):
  latents = full3d_vae.encode(video_input).sample().to(data_type)
  video_recon = full3d_vae.decode(latents)
end_time = time.time()  
print(f"rec_time:{(end_time - start_time)/num :.3f}s")