File size: 12,909 Bytes
f2b657e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 |
import sys
sys.path.append(".")
from causalvideovae.model import CausalVAEModel
from CV_VAE.models.modeling_vae import CVVAEModel
from opensora.models.vae.vae import VideoAutoencoderPipeline
from opensora.registry import DATASETS, MODELS, build_module
from opensora.utils.config_utils import parse_configs
from diffusers.models import AutoencoderKL, AutoencoderKLTemporalDecoder
from tats import VQGAN
from tats.download import load_vqgan
from taming.models.vqgan import VQModel, GumbelVQ
import torch
from omegaconf import OmegaConf
import yaml
import argparse
from einops import rearrange
from causalvideovae.model.modules.normalize import Normalize
from causalvideovae.model.modules.block import Block
import time
def total_params(model):
total_params = sum(p.numel() for p in model.parameters())
total_params_in_millions = total_params / 1e6
return total_params_in_millions
device = torch.device('cuda')
data_type = torch.bfloat16
video_input = torch.randn(1, 3, 33, 256, 256).to(device).to(data_type)
image_input = torch.randn(33, 3, 256, 256).to(device).to(data_type)
num = 1000
"""
#VQGAN
def load_config(config_path, display=False):
config = OmegaConf.load(config_path)
if display:
print(yaml.dump(OmegaConf.to_container(config)))
return config
def load_vqgan(config, ckpt_path=None, is_gumbel=False):
if is_gumbel:
model = GumbelVQ(**config.model.params)
else:
model = VQModel(**config.model.params)
if ckpt_path is not None:
sd = torch.load(ckpt_path, map_location="cpu")["state_dict"]
missing, unexpected = model.load_state_dict(sd, strict=False)
return model.eval()
vqgan_ckpt='/remote-home1/clh/taming-transformers/logs/vqgan_gumbel_f8/checkpoints/last.ckpt'
vqgan_config='/remote-home1/clh/taming-transformers/logs/vqgan_gumbel_f8/configs/model.yaml'
vqgan_config = load_config(vqgan_config, display=False)
vqgan = load_vqgan(vqgan_config, ckpt_path=vqgan_ckpt, is_gumbel=True).to(device).to(data_type).eval()
vqgan.requires_grad_(False)
print('VQGAN')
print(f"Generator:\t\t{total_params(vqgan) :.2f}M")
print(f"\t- Encoder:\t{total_params(vqgan.encoder) :.2f}M")
print(f"\t- Decoder:\t{total_params(vqgan.decoder) :.2f}M")
# 计算程序运行时间
start_time = time.time()
for i in range(num):
latents, _, [_, _, indices] = vqgan.encode(image_input)
end_time = time.time()
print(f"encode_time:{(end_time - start_time)/num :.3f}s")
start_time = time.time()
for i in range(num):
video_recon = vqgan.decode(latents.to(data_type))
end_time = time.time()
print(f"decode_time:{(end_time - start_time)/num :.3f}s")
start_time = time.time()
for i in range(num):
latents, _, [_, _, indices] = vqgan.encode(image_input)
video_recon = vqgan.decode(latents.to(data_type))
end_time = time.time()
print(f"rec_time:{(end_time - start_time)/num :.3f}s")
#TATS
tats_path = '/remote-home1/clh/TATS/vqgan_sky_128_488_epoch_12-step_29999-train.ckpt'
tats = VQGAN.load_from_checkpoint(tats_path).to(device).to(torch.float32).eval()
tats.requires_grad_(False)
print('TATS')
print(f"Generator:\t\t{total_params(tats) :.2f}M")
print(f"\t- Encoder:\t{total_params(tats.encoder):.2f}M")
print(f"\t- Decoder:\t{total_params(tats.decoder):.2f}M")
# 计算程序运行时间
start_time = time.time()
for i in range(num):
z = tats.pre_vq_conv(tats.encoder(video_input.to(torch.float32)))
vq_output = tats.codebook(z)
latents = vq_output['embeddings']
end_time = time.time()
print(f"encode_time:{(end_time - start_time)/num :.3f}s")
start_time = time.time()
for i in range(num):
video_recon = tats.decoder(tats.post_vq_conv(latents.to(torch.float32)))
end_time = time.time()
print(f"decode_time:{(end_time - start_time)/num :.3f}s")
start_time = time.time()
for i in range(num):
z = tats.pre_vq_conv(tats.encoder(video_input.to(torch.float32)))
vq_output = tats.codebook(z)
latents = vq_output['embeddings']
video_recon = tats.decoder(tats.post_vq_conv(latents.to(torch.float32)))
end_time = time.time()
print(f"rec_time:{(end_time - start_time)/num :.3f}s")
#SD2_1
sd2_1_path = '/remote-home1/clh/sd2_1'
sd2_1 = AutoencoderKL.from_pretrained(sd2_1_path).eval().to(device).to(data_type)
sd2_1.requires_grad_(False)
print('SD2_1')
print(f"Generator:\t\t{total_params(sd2_1) :.2f}M")
print(f"\t- Encoder:\t{total_params(sd2_1.encoder):.2f}M")
print(f"\t- Decoder:\t{total_params(sd2_1.decoder):.2f}M")
# 计算程序运行时间
start_time = time.time()
for i in range(num):
latents = sd2_1.encode(image_input)['latent_dist'].sample()
end_time = time.time()
print(f"encode_time:{(end_time - start_time)/num :.3f}s")
start_time = time.time()
for i in range(num):
video_recon = sd2_1.decode(latents.to(data_type))['sample']
end_time = time.time()
print(f"decode_time:{(end_time - start_time)/num :.3f}s")
start_time = time.time()
for i in range(num):
latents = sd2_1.encode(image_input)['latent_dist'].sample()
video_recon = sd2_1.decode(latents.to(data_type))['sample']
end_time = time.time()
print(f"rec_time:{(end_time - start_time)/num :.3f}s")
#SVD
svd_path = '/remote-home1/clh/svd/'
svd = AutoencoderKLTemporalDecoder.from_pretrained(svd_path).eval().to(device).to(data_type)
svd.requires_grad_(False)
print('SVD')
print(f"Generator:\t\t{total_params(svd):.2f}M")
print(f"\t- Encoder:\t{total_params(svd.encoder):.2f}M")
print(f"\t- Decoder:\t{total_params(svd.decoder):.2f}M")
# 计算程序运行时间
start_time = time.time()
for i in range(num):
latents = svd.encode(image_input)['latent_dist'].sample()
end_time = time.time()
print(f"encode_time:{(end_time - start_time)/num :.3f}s")
start_time = time.time()
for i in range(num):
video_recon = svd.decode(latents.to(data_type), num_frames=video_input.shape[2])['sample']
end_time = time.time()
print(f"decode_time:{(end_time - start_time)/num :.3f}s")
start_time = time.time()
for i in range(num):
latents = svd.encode(image_input)['latent_dist'].sample()
video_recon = svd.decode(latents.to(data_type), num_frames=video_input.shape[2])['sample']
end_time = time.time()
print(f"rec_time:{(end_time - start_time)/num :.3f}s")
#CV-VAE
cvvae_path = '/remote-home1/clh/CV-VAE/vae3d'
cvvae = CVVAEModel.from_pretrained(cvvae_path).eval().to(device).to(data_type)
cvvae.requires_grad_(False)
print('CV-VAE')
print(f"Generator:\t\t{total_params(cvvae):.2f}M")
print(f"\t- Encoder:\t{total_params(cvvae.encoder):.2f}M")
print(f"\t- Decoder:\t{total_params(cvvae.decoder):.2f}M")
# 计算程序运行时间
start_time = time.time()
for i in range(num):
latent = cvvae.encode(video_input).latent_dist.sample()
end_time = time.time()
print(f"encode_time:{(end_time - start_time)/num :.3f}s")
start_time = time.time()
for i in range(num):
video_recon = cvvae.decode(latent).sample
end_time = time.time()
print(f"decode_time:{(end_time - start_time)/num :.3f}s")
start_time = time.time()
for i in range(num):
latent = cvvae.encode(video_input).latent_dist.sample()
video_recon = cvvae.decode(latent).sample
end_time = time.time()
print(f"rec_time:{(end_time - start_time)/num :.3f}s")
#NUS-VAE
nusvae_path = '/remote-home1/clh/CV-VAE/vae3d'
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, default="/remote-home1/clh/Causal-Video-VAE/opensora/video.py")
parser.add_argument("--ckpt", type=str, default="/remote-home1/clh/Open-Sora/OpenSora-VAE-v1.2")
args = parser.parse_args()
cfg = parse_configs(args, training=False)
nusvae = build_module(cfg.model, MODELS).eval().to(device).to(data_type)
nusvae.requires_grad_(False)
print('NUS-VAE')
print(f"Generator:\t\t{total_params(nusvae):.2f}M")
print(f"\t- Spatial_Encoder:\t{total_params(nusvae.spatial_vae.module.encoder):.2f}M")
print(f"\t- Temporal_Encoder:\t{total_params(nusvae.temporal_vae.encoder):.2f}M")
print(f"\t- Temporal_Decoder:\t{total_params(nusvae.temporal_vae.decoder):.2f}M")
print(f"\t- Spatial_Decoder:\t{total_params(nusvae.spatial_vae.module.decoder):.2f}M")
# 计算程序运行时间
start_time = time.time()
for i in range(num):
latents, posterior, x_z = nusvae.encode(video_input)
end_time = time.time()
print(f"encode_time:{(end_time - start_time)/num :.3f}s")
start_time = time.time()
for i in range(num):
video_recon, x_z_rec = nusvae.decode(latents, num_frames=video_input.size(2))
end_time = time.time()
print(f"decode_time:{(end_time - start_time)/num :.3f}s")
start_time = time.time()
for i in range(num):
latents, posterior, x_z = nusvae.encode(video_input)
video_recon, x_z_rec = nusvae.decode(latents, num_frames=video_input.size(2))
end_time = time.time()
print(f"rec_time:{(end_time - start_time)/num :.3f}s")
"""
#ours1.2
ours1_2_vae_path = '/remote-home1/clh/models/23denc_3ddec_vae_pretrained_weight'
ours1_2_vae = CausalVAEModel.from_pretrained(ours1_2_vae_path).eval().to(device).to(data_type)
ours1_2_vae.requires_grad_(False)
print('open_sora_plan_vae_1_2')
print(f"Generator:\t\t{total_params(ours1_2_vae):.2f}M")
print(f"\t- Encoder:\t{total_params(ours1_2_vae.encoder):.2f}M")
print(f"\t- Decoder:\t{total_params(ours1_2_vae.decoder):.2f}M")
# 计算程序运行时间
start_time = time.time()
for i in range(num):
latents = ours1_2_vae.encode(video_input).sample().to(data_type)
end_time = time.time()
print(f"encode_time:{(end_time - start_time)/num :.3f}s")
start_time = time.time()
for i in range(num):
video_recon = ours1_2_vae.decode(latents)
end_time = time.time()
print(f"decode_time:{(end_time - start_time)/num :.3f}s")
start_time = time.time()
for i in range(num):
latents = ours1_2_vae.encode(video_input).sample().to(data_type)
video_recon = ours1_2_vae.decode(latents)
end_time = time.time()
print(f"rec_time:{(end_time - start_time)/num :.3f}s")
#23d
half3d_vae_path = '/remote-home1/clh/models/23d_vae_pretrained_weight'
half3d_vae = CausalVAEModel.from_pretrained(half3d_vae_path).eval().to(device).to(data_type)
half3d_vae.requires_grad_(False)
print('open_sora_plan_vae_half3d')
print(f"Generator:\t\t{total_params(half3d_vae):.2f}M")
print(f"\t- Encoder:\t{total_params(half3d_vae.encoder):.2f}M")
print(f"\t- Decoder:\t{total_params(half3d_vae.decoder):.2f}M")
# 计算程序运行时间
start_time = time.time()
for i in range(num):
latents = half3d_vae.encode(video_input).sample().to(data_type)
end_time = time.time()
print(f"encode_time:{(end_time - start_time)/num :.3f}s")
start_time = time.time()
for i in range(num):
video_recon = half3d_vae.decode(latents)
end_time = time.time()
print(f"decode_time:{(end_time - start_time)/num :.3f}s")
start_time = time.time()
for i in range(num):
latents = half3d_vae.encode(video_input).sample().to(data_type)
video_recon = half3d_vae.decode(latents)
end_time = time.time()
print(f"rec_time:{(end_time - start_time)/num :.3f}s")
#2and3d
mix23d_vae_path = '/remote-home1/clh/models/mix23d_vae_pretrained_weight'
mix23d_vae = CausalVAEModel.from_pretrained(mix23d_vae_path).eval().to(device).to(data_type)
mix23d_vae.requires_grad_(False)
print('open_sora_plan_vae_mix23d')
print(f"Generator:\t\t{total_params(mix23d_vae):.2f}M")
print(f"\t- Encoder:\t{total_params(mix23d_vae.encoder):.2f}M")
print(f"\t- Decoder:\t{total_params(mix23d_vae.decoder):.2f}M")
# 计算程序运行时间
start_time = time.time()
for i in range(num):
latents = mix23d_vae.encode(video_input).sample().to(data_type)
end_time = time.time()
print(f"encode_time:{(end_time - start_time)/num :.3f}s")
start_time = time.time()
for i in range(num):
video_recon = mix23d_vae.decode(latents)
end_time = time.time()
print(f"decode_time:{(end_time - start_time)/num :.3f}s")
start_time = time.time()
for i in range(num):
latents = mix23d_vae.encode(video_input).sample().to(data_type)
video_recon = mix23d_vae.decode(latents)
end_time = time.time()
print(f"rec_time:{(end_time - start_time)/num :.3f}s")
#full 3d
full3d_vae_path = '/remote-home1/clh/models/full3d_vae_pretrained_weight'
full3d_vae = CausalVAEModel.from_pretrained(full3d_vae_path).eval().to(device).to(data_type)
full3d_vae.requires_grad_(False)
print('open_sora_plan_vae_full3d')
print(f"Generator:\t\t{total_params(full3d_vae):.2f}M")
print(f"\t- Encoder:\t{total_params(full3d_vae.encoder):.2f}M")
print(f"\t- Decoder:\t{total_params(full3d_vae.decoder):.2f}M")
# 计算程序运行时间
start_time = time.time()
for i in range(num):
latents = full3d_vae.encode(video_input).sample().to(data_type)
end_time = time.time()
print(f"encode_time:{(end_time - start_time)/num :.3f}s")
start_time = time.time()
for i in range(num):
video_recon = full3d_vae.decode(latents)
end_time = time.time()
print(f"decode_time:{(end_time - start_time)/num :.3f}s")
start_time = time.time()
for i in range(num):
latents = full3d_vae.encode(video_input).sample().to(data_type)
video_recon = full3d_vae.decode(latents)
end_time = time.time()
print(f"rec_time:{(end_time - start_time)/num :.3f}s")
|