File size: 2,401 Bytes
f2b657e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import numpy as np
import torch
from tqdm import tqdm
import math

def img_psnr_cuda(img1, img2):
    # [0,1]
    # compute mse
    # mse = np.mean((img1-img2)**2)
    mse = torch.mean((img1 / 1.0 - img2 / 1.0) ** 2)
    # compute psnr
    if mse < 1e-10:
        return 100
    psnr = 20 * torch.log10(1 / torch.sqrt(mse))
    return psnr


def img_mse(img1, img2):
    # [0,1]
    # compute mse
    # mse = np.mean((img1-img2)**2)
    mse = np.sqrt(np.mean((img1*255/ 1.0 - img2*255 / 1.0) ** 2))
    return mse


def trans(x):
    return x

def calculate_mse(videos1, videos2):
    print("calculate_mse...")

    # videos [batch_size, timestamps, channel, h, w]
    
    assert videos1.shape == videos2.shape

    videos1 = trans(videos1)
    videos2 = trans(videos2)

    mse_results = []
    
    for video_num in tqdm(range(videos1.shape[0])):
        # get a video
        # video [timestamps, channel, h, w]
        video1 = videos1[video_num]
        video2 = videos2[video_num]

        mse_results_of_a_video = []
        for clip_timestamp in range(len(video1)):
            # get a img
            # img [timestamps[x], channel, h, w]
            # img [channel, h, w] numpy

            img1 = video1[clip_timestamp].numpy()
            img2 = video2[clip_timestamp].numpy()
            
            # calculate psnr of a video
            mse_results_of_a_video.append(img_mse(img1, img2))

        mse_results.append(mse_results_of_a_video)
    
    mse_results = np.array(mse_results) # [batch_size, num_frames]
    mse = {}
    mse_std = {}

    for clip_timestamp in range(len(video1)):
        mse[clip_timestamp] = np.mean(mse_results[:,clip_timestamp])
        mse_std[clip_timestamp] = np.std(mse_results[:,clip_timestamp])

    result = {
        "value": mse,
        "value_std": mse_std,
        "video_setting": video1.shape,
        "video_setting_name": "time, channel, heigth, width",
    }

    return result

# test code / using example

def main():
    NUMBER_OF_VIDEOS = 8
    VIDEO_LENGTH = 50
    CHANNEL = 3
    SIZE = 64
    videos1 = torch.zeros(NUMBER_OF_VIDEOS, VIDEO_LENGTH, CHANNEL, SIZE, SIZE, requires_grad=False)
    videos2 = torch.zeros(NUMBER_OF_VIDEOS, VIDEO_LENGTH, CHANNEL, SIZE, SIZE, requires_grad=False)

    import json
    result = calculate_psnr(videos1, videos2)
    print(json.dumps(result, indent=4))

if __name__ == "__main__":
    main()