File size: 17,808 Bytes
f2b657e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 |
from ..modeling_videobase import VideoBaseAE
from ..modules import Normalize
from ..modules.ops import nonlinearity
from typing import List, Tuple
import torch.nn as nn
from ..utils.module_utils import resolve_str_to_obj, Module
from ..utils.distrib_utils import DiagonalGaussianDistribution
from ..utils.scheduler_utils import cosine_scheduler
from ...utils.utils import custom_to_video
import torch
from diffusers.configuration_utils import register_to_config
from copy import deepcopy
import os
import glob
import numpy as np
from ...eval.cal_psnr import calculate_psnr
from decord import VideoReader, cpu
from pytorchvideo.transforms import ShortSideScale
from torchvision.io import read_video
from torchvision.transforms import Lambda, Compose
from torchvision.transforms._transforms_video import CenterCropVideo
class Encoder(nn.Module):
def __init__(
self,
hidden_size: int,
hidden_size_mult: Tuple[int] = (1, 2, 4, 4),
attn_resolutions: Tuple[int] = (16,),
conv_in: Module = "Conv2d",
attention: Module = "AttnBlock",
resnet_blocks: Tuple[Module] = (
"ResnetBlock2D",
"ResnetBlock2D",
"ResnetBlock2D",
"ResnetBlock3D",
),
spatial_downsample: Tuple[Module] = (
"Downsample",
"Downsample",
"Downsample",
"",
),
dropout: float = 0.0,
resolution: int = 256,
num_res_blocks: int = 2,
) -> None:
super().__init__()
assert len(resnet_blocks) == len(hidden_size_mult), print(
hidden_size_mult, resnet_blocks
)
# ---- Config ----
self.num_resolutions = len(hidden_size_mult)
self.resolution = resolution
self.num_res_blocks = num_res_blocks
# ---- In ----
self.conv_in = resolve_str_to_obj(conv_in)(
3, hidden_size, kernel_size=3, stride=1, padding=1
)
# ---- Downsample ----
curr_res = resolution
in_ch_mult = (1,) + tuple(hidden_size_mult)
self.in_ch_mult = in_ch_mult
self.down = nn.ModuleList()
for i_level in range(self.num_resolutions):
block = nn.ModuleList()
attn = nn.ModuleList()
block_in = hidden_size * in_ch_mult[i_level]
block_out = hidden_size * hidden_size_mult[i_level]
for i_block in range(self.num_res_blocks):
block.append(
resolve_str_to_obj(resnet_blocks[i_level])(
in_channels=block_in,
out_channels=block_out,
dropout=dropout,
)
)
block_in = block_out
if curr_res in attn_resolutions:
attn.append(resolve_str_to_obj(attention)(block_in))
down = nn.Module()
down.block = block
down.attn = attn
if spatial_downsample[i_level]:
down.downsample = resolve_str_to_obj(spatial_downsample[i_level])(
block_in, block_in
)
curr_res = curr_res // 2
self.down.append(down)
def forward(self, x):
h = self.conv_in(x)
h_ = []
for i_level in range(self.num_resolutions):
for i_block in range(self.num_res_blocks):
h = self.down[i_level].block[i_block](h)
if len(self.down[i_level].attn) > 0:
h = self.down[i_level].attn[i_block](h)
if hasattr(self.down[i_level], "downsample"):
h_.append(h)
h = self.down[i_level].downsample(h)
return h, h_
class Decoder(nn.Module):
def __init__(
self,
hidden_size: int,
hidden_size_mult: Tuple[int] = (1, 2, 4, 4),
attn_resolutions: Tuple[int] = (16,),
conv_out: Module = "CasualConv3d",
attention: Module = "AttnBlock",
resnet_blocks: Tuple[Module] = (
"ResnetBlock3D",
"ResnetBlock3D",
"ResnetBlock3D",
"ResnetBlock3D",
),
spatial_upsample: Tuple[Module] = (
"",
"SpatialUpsample2x",
"SpatialUpsample2x",
"SpatialUpsample2x",
),
dropout: float = 0.0,
resolution: int = 256,
num_res_blocks: int = 2,
):
super().__init__()
# ---- Config ----
self.num_resolutions = len(hidden_size_mult)
self.resolution = resolution
self.num_res_blocks = num_res_blocks
# ---- In ----
block_in = hidden_size * hidden_size_mult[self.num_resolutions - 1]
curr_res = resolution // 2 ** (self.num_resolutions - 1)
# ---- Upsample ----
self.up = nn.ModuleList()
for i_level in reversed(range(self.num_resolutions)):
block = nn.ModuleList()
attn = nn.ModuleList()
skip = nn.ModuleList()
block_out = hidden_size * hidden_size_mult[i_level]
for i_block in range(self.num_res_blocks):
block.append(
resolve_str_to_obj(resnet_blocks[i_level])(
in_channels=block_in,
out_channels=block_out,
dropout=dropout,
)
)
block_in = block_out
if curr_res in attn_resolutions:
attn.append(resolve_str_to_obj(attention)(block_in))
up = nn.Module()
up.block = block
up.attn = attn
up.skip = skip
if spatial_upsample[i_level]:
up.upsample = resolve_str_to_obj(spatial_upsample[i_level])(
block_in, block_in
)
up.skip = resolve_str_to_obj(conv_out)(block_in+hidden_size * hidden_size_mult[i_level-1],
block_in, kernel_size=3, padding=1)
curr_res = curr_res * 2
self.up.insert(0, up)
# ---- Out ----
self.norm_out = Normalize(block_in)
self.conv_out = resolve_str_to_obj(conv_out)(
block_in, 3, kernel_size=3, padding=1
)
def forward(self, h, h_):
for i_level in reversed(range(self.num_resolutions)):
for i_block in range(self.num_res_blocks):
h = self.up[i_level].block[i_block](h)
if len(self.up[i_level].attn) > 0:
h = self.up[i_level].attn[i_block](h)
if hasattr(self.up[i_level], "upsample"):
h = self.up[i_level].upsample(h)
h = torch.concat([h_[i_level-1], h], dim=1)
h = self.up[i_level].skip(h)
h = self.norm_out(h)
h = nonlinearity(h)
h = self.conv_out(h)
return h
class Refiner(VideoBaseAE):
@register_to_config
def __init__(
self,
hidden_size: int = 128,
hidden_size_mult: Tuple[int] = (1, 2, 4, 4),
attn_resolutions: Tuple[int] = [],
dropout: float = 0.0,
resolution: int = 256,
num_res_blocks: int = 2,
encoder_conv_in: Module = "CausalConv3d",
encoder_attention: Module = "AttnBlock3D",
encoder_resnet_blocks: Tuple[Module] = (
"ResnetBlock3D",
"ResnetBlock3D",
"ResnetBlock3D",
"ResnetBlock3D",
),
encoder_spatial_downsample: Tuple[Module] = (
"SpatialDownsample2x",
"SpatialDownsample2x",
"SpatialDownsample2x",
"",
),
decoder_conv_out: Module = "CausalConv3d",
decoder_attention: Module = "AttnBlock3D",
decoder_resnet_blocks: Tuple[Module] = (
"ResnetBlock3D",
"ResnetBlock3D",
"ResnetBlock3D",
"ResnetBlock3D",
),
decoder_spatial_upsample: Tuple[Module] = (
"",
"SpatialUpsample2x",
"SpatialUpsample2x",
"SpatialUpsample2x",
),
) -> None:
super().__init__()
self.tile_sample_min_size = 256
self.tile_sample_min_size_t = 65
self.tile_latent_min_size = int(self.tile_sample_min_size / (2 ** (len(hidden_size_mult) - 1)))
self.tile_overlap_factor = 0.25
self.use_tiling = False
self.encoder = Encoder(
hidden_size=hidden_size,
hidden_size_mult=hidden_size_mult,
attn_resolutions=attn_resolutions,
conv_in=encoder_conv_in,
attention=encoder_attention,
resnet_blocks=encoder_resnet_blocks,
spatial_downsample=encoder_spatial_downsample,
dropout=dropout,
resolution=resolution,
num_res_blocks=num_res_blocks,
)
self.decoder = Decoder(
hidden_size=hidden_size,
hidden_size_mult=hidden_size_mult,
attn_resolutions=attn_resolutions,
conv_out=decoder_conv_out,
attention=decoder_attention,
resnet_blocks=decoder_resnet_blocks,
spatial_upsample=decoder_spatial_upsample,
dropout=dropout,
resolution=resolution,
num_res_blocks=num_res_blocks,
)
def get_encoder(self):
return [self.encoder]
def get_decoder(self):
return [self.decoder]
def encode(self, x):
if self.use_tiling and (
x.shape[-1] > self.tile_sample_min_size
or x.shape[-2] > self.tile_sample_min_size
or x.shape[-3] > self.tile_sample_min_size_t
):
return self.tiled_encode(x)
enc = self.encoder(x)
return enc
def decode(self, z):
if self.use_tiling and (
z.shape[-1] > self.tile_latent_min_size
or z.shape[-2] > self.tile_latent_min_size
or z.shape[-3] > self.tile_latent_min_size_t
):
return self.tiled_decode(z)
dec = self.decoder(z)
return dec
def forward(self, input):
enc, enc_ = self.encoder(input)
dec = self.decoder(enc, enc_)
return dec+input
def on_train_start(self):
self.ema = deepcopy(self) if self.save_ema==True else None
def get_last_layer(self):
if hasattr(self.decoder.conv_out, "conv"):
return self.decoder.conv_out.conv.weight
else:
return self.decoder.conv_out.weight
def blend_v(
self, a: torch.Tensor, b: torch.Tensor, blend_extent: int
) -> torch.Tensor:
blend_extent = min(a.shape[3], b.shape[3], blend_extent)
for y in range(blend_extent):
b[:, :, :, y, :] = a[:, :, :, -blend_extent + y, :] * (
1 - y / blend_extent
) + b[:, :, :, y, :] * (y / blend_extent)
return b
def blend_h(
self, a: torch.Tensor, b: torch.Tensor, blend_extent: int
) -> torch.Tensor:
blend_extent = min(a.shape[4], b.shape[4], blend_extent)
for x in range(blend_extent):
b[:, :, :, :, x] = a[:, :, :, :, -blend_extent + x] * (
1 - x / blend_extent
) + b[:, :, :, :, x] * (x / blend_extent)
return b
def tiled_encode(self, x):
t = x.shape[2]
t_chunk_idx = [i for i in range(0, t, self.tile_sample_min_size_t-1)]
if len(t_chunk_idx) == 1 and t_chunk_idx[0] == 0:
t_chunk_start_end = [[0, t]]
else:
t_chunk_start_end = [[t_chunk_idx[i], t_chunk_idx[i+1]+1] for i in range(len(t_chunk_idx)-1)]
if t_chunk_start_end[-1][-1] > t:
t_chunk_start_end[-1][-1] = t
elif t_chunk_start_end[-1][-1] < t:
last_start_end = [t_chunk_idx[-1], t]
t_chunk_start_end.append(last_start_end)
moments = []
for idx, (start, end) in enumerate(t_chunk_start_end):
chunk_x = x[:, :, start: end]
if idx != 0:
moment = self.tiled_encode2d(chunk_x, return_moments=True)[:, :, 1:]
else:
moment = self.tiled_encode2d(chunk_x, return_moments=True)
moments.append(moment)
moments = torch.cat(moments, dim=2)
return moments
def tiled_decode(self, x):
t = x.shape[2]
t_chunk_idx = [i for i in range(0, t, self.tile_latent_min_size_t-1)]
if len(t_chunk_idx) == 1 and t_chunk_idx[0] == 0:
t_chunk_start_end = [[0, t]]
else:
t_chunk_start_end = [[t_chunk_idx[i], t_chunk_idx[i+1]+1] for i in range(len(t_chunk_idx)-1)]
if t_chunk_start_end[-1][-1] > t:
t_chunk_start_end[-1][-1] = t
elif t_chunk_start_end[-1][-1] < t:
last_start_end = [t_chunk_idx[-1], t]
t_chunk_start_end.append(last_start_end)
dec_ = []
for idx, (start, end) in enumerate(t_chunk_start_end):
chunk_x = x[:, :, start: end]
if idx != 0:
dec = self.tiled_decode2d(chunk_x)[:, :, 1:]
else:
dec = self.tiled_decode2d(chunk_x)
dec_.append(dec)
dec_ = torch.cat(dec_, dim=2)
return dec_
def tiled_encode2d(self, x, return_moments=False):
overlap_size = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor))
blend_extent = int(self.tile_latent_min_size * self.tile_overlap_factor)
row_limit = self.tile_latent_min_size - blend_extent
# Split the image into 512x512 tiles and encode them separately.
rows = []
for i in range(0, x.shape[3], overlap_size):
row = []
for j in range(0, x.shape[4], overlap_size):
tile = x[
:,
:,
:,
i : i + self.tile_sample_min_size,
j : j + self.tile_sample_min_size,
]
tile = self.encoder(tile)
row.append(tile)
rows.append(row)
result_rows = []
for i, row in enumerate(rows):
result_row = []
for j, tile in enumerate(row):
# blend the above tile and the left tile
# to the current tile and add the current tile to the result row
if i > 0:
tile = self.blend_v(rows[i - 1][j], tile, blend_extent)
if j > 0:
tile = self.blend_h(row[j - 1], tile, blend_extent)
result_row.append(tile[:, :, :, :row_limit, :row_limit])
result_rows.append(torch.cat(result_row, dim=4))
moments = torch.cat(result_rows, dim=3)
posterior = DiagonalGaussianDistribution(moments)
return posterior
def tiled_decode2d(self, z):
overlap_size = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor))
blend_extent = int(self.tile_sample_min_size * self.tile_overlap_factor)
row_limit = self.tile_sample_min_size - blend_extent
# Split z into overlapping 64x64 tiles and decode them separately.
# The tiles have an overlap to avoid seams between tiles.
rows = []
for i in range(0, z.shape[3], overlap_size):
row = []
for j in range(0, z.shape[4], overlap_size):
tile = z[
:,
:,
:,
i : i + self.tile_latent_min_size,
j : j + self.tile_latent_min_size,
]
if self.use_quant_layer:
tile = self.post_quant_conv(tile)
decoded = self.decoder(tile)
row.append(decoded)
rows.append(row)
result_rows = []
for i, row in enumerate(rows):
result_row = []
for j, tile in enumerate(row):
# blend the above tile and the left tile
# to the current tile and add the current tile to the result row
if i > 0:
tile = self.blend_v(rows[i - 1][j], tile, blend_extent)
if j > 0:
tile = self.blend_h(row[j - 1], tile, blend_extent)
result_row.append(tile[:, :, :, :row_limit, :row_limit])
result_rows.append(torch.cat(result_row, dim=4))
dec = torch.cat(result_rows, dim=3)
return dec
def enable_tiling(self, use_tiling: bool = True):
self.use_tiling = use_tiling
def disable_tiling(self):
self.enable_tiling(False)
def init_from_ckpt(self, path, ignore_keys=list()):
sd = torch.load(path, map_location="cpu")
print("init from " + path)
if "ema_state_dict" in sd and len(sd['ema_state_dict']) > 0 and os.environ.get("NOT_USE_EMA_MODEL", 0) == 0:
print("Load from ema model!")
sd = sd["ema_state_dict"]
sd = {key.replace("module.", ""): value for key, value in sd.items()}
elif "state_dict" in sd:
print("Load from normal model!")
if "gen_model" in sd["state_dict"]:
sd = sd["state_dict"]["gen_model"]
else:
sd = sd["state_dict"]
keys = list(sd.keys())
for k in keys:
for ik in ignore_keys:
if k.startswith(ik):
print("Deleting key {} from state_dict.".format(k))
del sd[k]
self.load_state_dict(sd, strict=True)
|