File size: 17,808 Bytes
f2b657e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
from ..modeling_videobase import VideoBaseAE
from ..modules import Normalize
from ..modules.ops import nonlinearity
from typing import List, Tuple
import torch.nn as nn

from ..utils.module_utils import resolve_str_to_obj, Module
from ..utils.distrib_utils import DiagonalGaussianDistribution
from ..utils.scheduler_utils import cosine_scheduler
from ...utils.utils import custom_to_video

import torch
from diffusers.configuration_utils import register_to_config
from copy import deepcopy
import os
import glob

import numpy as np
from ...eval.cal_psnr import calculate_psnr
from decord import VideoReader, cpu
from pytorchvideo.transforms import ShortSideScale
from torchvision.io import read_video
from torchvision.transforms import Lambda, Compose
from torchvision.transforms._transforms_video import CenterCropVideo

class Encoder(nn.Module):
    def __init__(
        self,
        hidden_size: int,
        hidden_size_mult: Tuple[int] = (1, 2, 4, 4),
        attn_resolutions: Tuple[int] = (16,),
        conv_in: Module = "Conv2d",
        attention: Module = "AttnBlock",
        resnet_blocks: Tuple[Module] = (
            "ResnetBlock2D",
            "ResnetBlock2D",
            "ResnetBlock2D",
            "ResnetBlock3D",
        ),
        spatial_downsample: Tuple[Module] = (
            "Downsample",
            "Downsample",
            "Downsample",
            "",
        ),
        dropout: float = 0.0,
        resolution: int = 256,
        num_res_blocks: int = 2,
    ) -> None:
        super().__init__()
        assert len(resnet_blocks) == len(hidden_size_mult), print(
            hidden_size_mult, resnet_blocks
        )
        # ---- Config ----
        self.num_resolutions = len(hidden_size_mult)
        self.resolution = resolution
        self.num_res_blocks = num_res_blocks
        
        # ---- In ----
        self.conv_in = resolve_str_to_obj(conv_in)(
            3, hidden_size, kernel_size=3, stride=1, padding=1
        )

        # ---- Downsample ----
        curr_res = resolution
        in_ch_mult = (1,) + tuple(hidden_size_mult)
        self.in_ch_mult = in_ch_mult
        self.down = nn.ModuleList()
        for i_level in range(self.num_resolutions):
            block = nn.ModuleList()
            attn = nn.ModuleList()
            block_in = hidden_size * in_ch_mult[i_level]
            block_out = hidden_size * hidden_size_mult[i_level]
            for i_block in range(self.num_res_blocks):
                block.append(
                    resolve_str_to_obj(resnet_blocks[i_level])(
                        in_channels=block_in,
                        out_channels=block_out,
                        dropout=dropout,
                    )
                )
                block_in = block_out
                if curr_res in attn_resolutions:
                    attn.append(resolve_str_to_obj(attention)(block_in))
            down = nn.Module()
            down.block = block
            down.attn = attn
            if spatial_downsample[i_level]:
                down.downsample = resolve_str_to_obj(spatial_downsample[i_level])(
                    block_in, block_in
                )
                curr_res = curr_res // 2
            self.down.append(down)

    def forward(self, x):
        h = self.conv_in(x)
        h_ = []
        for i_level in range(self.num_resolutions):
            for i_block in range(self.num_res_blocks):
                h = self.down[i_level].block[i_block](h)
                if len(self.down[i_level].attn) > 0:
                    h = self.down[i_level].attn[i_block](h)
            if hasattr(self.down[i_level], "downsample"):
                h_.append(h)
                h = self.down[i_level].downsample(h)

        return h, h_


class Decoder(nn.Module):
    def __init__(
        self,
        hidden_size: int,
        hidden_size_mult: Tuple[int] = (1, 2, 4, 4),
        attn_resolutions: Tuple[int] = (16,),
        conv_out: Module = "CasualConv3d",
        attention: Module = "AttnBlock",
        resnet_blocks: Tuple[Module] = (
            "ResnetBlock3D",
            "ResnetBlock3D",
            "ResnetBlock3D",
            "ResnetBlock3D",
        ),
        spatial_upsample: Tuple[Module] = (
            "",
            "SpatialUpsample2x",
            "SpatialUpsample2x",
            "SpatialUpsample2x",
        ),
        dropout: float = 0.0,
        resolution: int = 256,
        num_res_blocks: int = 2,
    ):
        super().__init__()
        # ---- Config ----
        self.num_resolutions = len(hidden_size_mult)
        self.resolution = resolution
        self.num_res_blocks = num_res_blocks

        # ---- In ----
        block_in = hidden_size * hidden_size_mult[self.num_resolutions - 1]
        curr_res = resolution // 2 ** (self.num_resolutions - 1)

        # ---- Upsample ----
        self.up = nn.ModuleList()
        for i_level in reversed(range(self.num_resolutions)):
            block = nn.ModuleList()
            attn = nn.ModuleList()
            skip = nn.ModuleList()
            block_out = hidden_size * hidden_size_mult[i_level]
            for i_block in range(self.num_res_blocks):
                block.append(
                    resolve_str_to_obj(resnet_blocks[i_level])(
                        in_channels=block_in,
                        out_channels=block_out,
                        dropout=dropout,
                    )
                )
                block_in = block_out
                if curr_res in attn_resolutions:
                    attn.append(resolve_str_to_obj(attention)(block_in))
            up = nn.Module()
            up.block = block
            up.attn = attn
            up.skip = skip
            if spatial_upsample[i_level]:
                up.upsample = resolve_str_to_obj(spatial_upsample[i_level])(
                    block_in, block_in
                )
                up.skip = resolve_str_to_obj(conv_out)(block_in+hidden_size * hidden_size_mult[i_level-1],
                                                       block_in, kernel_size=3, padding=1)
                curr_res = curr_res * 2
            self.up.insert(0, up)

        # ---- Out ----
        self.norm_out = Normalize(block_in)
        self.conv_out = resolve_str_to_obj(conv_out)(
            block_in, 3, kernel_size=3, padding=1
        )

    def forward(self, h, h_):
        
        for i_level in reversed(range(self.num_resolutions)):
            for i_block in range(self.num_res_blocks):
                h = self.up[i_level].block[i_block](h)
                if len(self.up[i_level].attn) > 0:
                    h = self.up[i_level].attn[i_block](h)
            if hasattr(self.up[i_level], "upsample"):
                h = self.up[i_level].upsample(h)
                h = torch.concat([h_[i_level-1], h], dim=1)
                h = self.up[i_level].skip(h)
        
        h = self.norm_out(h)
        h = nonlinearity(h)
        h = self.conv_out(h)
        return h


class Refiner(VideoBaseAE):

    @register_to_config
    def __init__(
        self,
        hidden_size: int = 128,
        hidden_size_mult: Tuple[int] = (1, 2, 4, 4),
        attn_resolutions: Tuple[int] = [],
        dropout: float = 0.0,
        resolution: int = 256,
        num_res_blocks: int = 2,
        encoder_conv_in: Module = "CausalConv3d",
        encoder_attention: Module = "AttnBlock3D",
        encoder_resnet_blocks: Tuple[Module] = (
            "ResnetBlock3D",
            "ResnetBlock3D",
            "ResnetBlock3D",
            "ResnetBlock3D",
        ),
        encoder_spatial_downsample: Tuple[Module] = (
            "SpatialDownsample2x",
            "SpatialDownsample2x",
            "SpatialDownsample2x",
            "",
        ),
        decoder_conv_out: Module = "CausalConv3d",
        decoder_attention: Module = "AttnBlock3D",
        decoder_resnet_blocks: Tuple[Module] = (
            "ResnetBlock3D",
            "ResnetBlock3D",
            "ResnetBlock3D",
            "ResnetBlock3D",
        ),
        decoder_spatial_upsample: Tuple[Module] = (
            "",
            "SpatialUpsample2x",
            "SpatialUpsample2x",
            "SpatialUpsample2x",
        ),
    ) -> None:
        super().__init__()
        
        self.tile_sample_min_size = 256
        self.tile_sample_min_size_t = 65
        self.tile_latent_min_size = int(self.tile_sample_min_size / (2 ** (len(hidden_size_mult) - 1)))
        self.tile_overlap_factor = 0.25
        self.use_tiling = False

        self.encoder = Encoder(
            hidden_size=hidden_size,
            hidden_size_mult=hidden_size_mult,
            attn_resolutions=attn_resolutions,
            conv_in=encoder_conv_in,
            attention=encoder_attention,
            resnet_blocks=encoder_resnet_blocks,
            spatial_downsample=encoder_spatial_downsample,
            dropout=dropout,
            resolution=resolution,
            num_res_blocks=num_res_blocks,
        )

        self.decoder = Decoder(
            hidden_size=hidden_size,
            hidden_size_mult=hidden_size_mult,
            attn_resolutions=attn_resolutions,
            conv_out=decoder_conv_out,
            attention=decoder_attention,
            resnet_blocks=decoder_resnet_blocks,
            spatial_upsample=decoder_spatial_upsample,
            dropout=dropout,
            resolution=resolution,
            num_res_blocks=num_res_blocks,
        )

    def get_encoder(self):
        return [self.encoder]
            
    def get_decoder(self):
        return [self.decoder]
    
    def encode(self, x):
        if self.use_tiling and (
            x.shape[-1] > self.tile_sample_min_size
            or x.shape[-2] > self.tile_sample_min_size
            or x.shape[-3] > self.tile_sample_min_size_t
        ):
            return self.tiled_encode(x)
        enc = self.encoder(x)
        return enc

    def decode(self, z):
        if self.use_tiling and (
            z.shape[-1] > self.tile_latent_min_size
            or z.shape[-2] > self.tile_latent_min_size
            or z.shape[-3] > self.tile_latent_min_size_t
        ):
            return self.tiled_decode(z)
        dec = self.decoder(z)
        return dec

    def forward(self, input):
        enc, enc_ = self.encoder(input)
        dec = self.decoder(enc, enc_)
        return dec+input
    
    def on_train_start(self):
        self.ema = deepcopy(self) if self.save_ema==True else None
    
    def get_last_layer(self):
        if hasattr(self.decoder.conv_out, "conv"):
            return self.decoder.conv_out.conv.weight
        else:
            return self.decoder.conv_out.weight

    def blend_v(
        self, a: torch.Tensor, b: torch.Tensor, blend_extent: int
    ) -> torch.Tensor:
        blend_extent = min(a.shape[3], b.shape[3], blend_extent)
        for y in range(blend_extent):
            b[:, :, :, y, :] = a[:, :, :, -blend_extent + y, :] * (
                1 - y / blend_extent
            ) + b[:, :, :, y, :] * (y / blend_extent)
        return b

    def blend_h(
        self, a: torch.Tensor, b: torch.Tensor, blend_extent: int
    ) -> torch.Tensor:
        blend_extent = min(a.shape[4], b.shape[4], blend_extent)
        for x in range(blend_extent):
            b[:, :, :, :, x] = a[:, :, :, :, -blend_extent + x] * (
                1 - x / blend_extent
            ) + b[:, :, :, :, x] * (x / blend_extent)
        return b

    def tiled_encode(self, x):
        t = x.shape[2]
        t_chunk_idx = [i for i in range(0, t, self.tile_sample_min_size_t-1)]
        if len(t_chunk_idx) == 1 and t_chunk_idx[0] == 0:
            t_chunk_start_end = [[0, t]]
        else:
            t_chunk_start_end = [[t_chunk_idx[i], t_chunk_idx[i+1]+1] for i in range(len(t_chunk_idx)-1)]
            if t_chunk_start_end[-1][-1] > t:
                t_chunk_start_end[-1][-1] = t
            elif t_chunk_start_end[-1][-1] < t:
                last_start_end = [t_chunk_idx[-1], t]
                t_chunk_start_end.append(last_start_end)
        moments = []
        for idx, (start, end) in enumerate(t_chunk_start_end):
            chunk_x = x[:, :, start: end]
            if idx != 0:
                moment = self.tiled_encode2d(chunk_x, return_moments=True)[:, :, 1:]
            else:
                moment = self.tiled_encode2d(chunk_x, return_moments=True)
            moments.append(moment)
        moments = torch.cat(moments, dim=2)
        return moments
    
    def tiled_decode(self, x):
        t = x.shape[2]
        t_chunk_idx = [i for i in range(0, t, self.tile_latent_min_size_t-1)]
        if len(t_chunk_idx) == 1 and t_chunk_idx[0] == 0:
            t_chunk_start_end = [[0, t]]
        else:
            t_chunk_start_end = [[t_chunk_idx[i], t_chunk_idx[i+1]+1] for i in range(len(t_chunk_idx)-1)]
            if t_chunk_start_end[-1][-1] > t:
                t_chunk_start_end[-1][-1] = t
            elif t_chunk_start_end[-1][-1] < t:
                last_start_end = [t_chunk_idx[-1], t]
                t_chunk_start_end.append(last_start_end)
        dec_ = []
        for idx, (start, end) in enumerate(t_chunk_start_end):
            chunk_x = x[:, :, start: end]
            if idx != 0:
                dec = self.tiled_decode2d(chunk_x)[:, :, 1:]
            else:
                dec = self.tiled_decode2d(chunk_x)
            dec_.append(dec)
        dec_ = torch.cat(dec_, dim=2)
        return dec_

    def tiled_encode2d(self, x, return_moments=False):
        overlap_size = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor))
        blend_extent = int(self.tile_latent_min_size * self.tile_overlap_factor)
        row_limit = self.tile_latent_min_size - blend_extent

        # Split the image into 512x512 tiles and encode them separately.
        rows = []
        for i in range(0, x.shape[3], overlap_size):
            row = []
            for j in range(0, x.shape[4], overlap_size):
                tile = x[
                    :,
                    :,
                    :,
                    i : i + self.tile_sample_min_size,
                    j : j + self.tile_sample_min_size,
                ]
                tile = self.encoder(tile)
                row.append(tile)
            rows.append(row)
        result_rows = []
        for i, row in enumerate(rows):
            result_row = []
            for j, tile in enumerate(row):
                # blend the above tile and the left tile
                # to the current tile and add the current tile to the result row
                if i > 0:
                    tile = self.blend_v(rows[i - 1][j], tile, blend_extent)
                if j > 0:
                    tile = self.blend_h(row[j - 1], tile, blend_extent)
                result_row.append(tile[:, :, :, :row_limit, :row_limit])
            result_rows.append(torch.cat(result_row, dim=4))

        moments = torch.cat(result_rows, dim=3)
        posterior = DiagonalGaussianDistribution(moments)
        return posterior

    def tiled_decode2d(self, z):

        overlap_size = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor))
        blend_extent = int(self.tile_sample_min_size * self.tile_overlap_factor)
        row_limit = self.tile_sample_min_size - blend_extent

        # Split z into overlapping 64x64 tiles and decode them separately.
        # The tiles have an overlap to avoid seams between tiles.
        rows = []
        for i in range(0, z.shape[3], overlap_size):
            row = []
            for j in range(0, z.shape[4], overlap_size):
                tile = z[
                    :,
                    :,
                    :,
                    i : i + self.tile_latent_min_size,
                    j : j + self.tile_latent_min_size,
                ]
                if self.use_quant_layer:
                    tile = self.post_quant_conv(tile)
                decoded = self.decoder(tile)
                row.append(decoded)
            rows.append(row)
        result_rows = []
        for i, row in enumerate(rows):
            result_row = []
            for j, tile in enumerate(row):
                # blend the above tile and the left tile
                # to the current tile and add the current tile to the result row
                if i > 0:
                    tile = self.blend_v(rows[i - 1][j], tile, blend_extent)
                if j > 0:
                    tile = self.blend_h(row[j - 1], tile, blend_extent)
                result_row.append(tile[:, :, :, :row_limit, :row_limit])
            result_rows.append(torch.cat(result_row, dim=4))

        dec = torch.cat(result_rows, dim=3)
        return dec

    def enable_tiling(self, use_tiling: bool = True):
        self.use_tiling = use_tiling

    def disable_tiling(self):
        self.enable_tiling(False)

    def init_from_ckpt(self, path, ignore_keys=list()):
        sd = torch.load(path, map_location="cpu")
        print("init from " + path)
        
        if "ema_state_dict" in sd and len(sd['ema_state_dict']) > 0 and os.environ.get("NOT_USE_EMA_MODEL", 0) == 0:
            print("Load from ema model!")
            sd = sd["ema_state_dict"]
            sd = {key.replace("module.", ""): value for key, value in sd.items()}
        elif "state_dict" in sd:
            print("Load from normal model!")
            if "gen_model" in sd["state_dict"]:
                sd = sd["state_dict"]["gen_model"]
            else:
                sd = sd["state_dict"]
                
        keys = list(sd.keys())
        
        for k in keys:
            for ik in ignore_keys:
                if k.startswith(ik):
                    print("Deleting key {} from state_dict.".format(k))
                    del sd[k]
        
        self.load_state_dict(sd, strict=True)