|
|
|
|
|
import torch
|
|
|
|
import getopt
|
|
import math
|
|
import numpy
|
|
import os
|
|
import PIL
|
|
import PIL.Image
|
|
import sys
|
|
|
|
|
|
from .correlation import correlation
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def backwarp(tenInput, tenFlow):
|
|
backwarp_tenGrid = {}
|
|
backwarp_tenPartial = {}
|
|
if str(tenFlow.shape) not in backwarp_tenGrid:
|
|
tenHor = torch.linspace(-1.0 + (1.0 / tenFlow.shape[3]), 1.0 - (1.0 / tenFlow.shape[3]), tenFlow.shape[3]).view(1, 1, 1, -1).expand(-1, -1, tenFlow.shape[2], -1)
|
|
tenVer = torch.linspace(-1.0 + (1.0 / tenFlow.shape[2]), 1.0 - (1.0 / tenFlow.shape[2]), tenFlow.shape[2]).view(1, 1, -1, 1).expand(-1, -1, -1, tenFlow.shape[3])
|
|
|
|
backwarp_tenGrid[str(tenFlow.shape)] = torch.cat([ tenHor, tenVer ], 1).cuda()
|
|
|
|
|
|
if str(tenFlow.shape) not in backwarp_tenPartial:
|
|
backwarp_tenPartial[str(tenFlow.shape)] = tenFlow.new_ones([ tenFlow.shape[0], 1, tenFlow.shape[2], tenFlow.shape[3] ])
|
|
|
|
|
|
tenFlow = torch.cat([ tenFlow[:, 0:1, :, :] / ((tenInput.shape[3] - 1.0) / 2.0), tenFlow[:, 1:2, :, :] / ((tenInput.shape[2] - 1.0) / 2.0) ], 1)
|
|
tenInput = torch.cat([ tenInput, backwarp_tenPartial[str(tenFlow.shape)] ], 1)
|
|
|
|
tenOutput = torch.nn.functional.grid_sample(input=tenInput, grid=(backwarp_tenGrid[str(tenFlow.shape)] + tenFlow).permute(0, 2, 3, 1), mode='bilinear', padding_mode='zeros', align_corners=False)
|
|
|
|
tenMask = tenOutput[:, -1:, :, :]; tenMask[tenMask > 0.999] = 1.0; tenMask[tenMask < 1.0] = 0.0
|
|
|
|
return tenOutput[:, :-1, :, :] * tenMask
|
|
|
|
|
|
|
|
|
|
class Network(torch.nn.Module):
|
|
def __init__(self):
|
|
super(Network, self).__init__()
|
|
|
|
class Extractor(torch.nn.Module):
|
|
def __init__(self):
|
|
super(Extractor, self).__init__()
|
|
|
|
self.netOne = torch.nn.Sequential(
|
|
torch.nn.Conv2d(in_channels=3, out_channels=16, kernel_size=3, stride=2, padding=1),
|
|
torch.nn.LeakyReLU(inplace=False, negative_slope=0.1),
|
|
torch.nn.Conv2d(in_channels=16, out_channels=16, kernel_size=3, stride=1, padding=1),
|
|
torch.nn.LeakyReLU(inplace=False, negative_slope=0.1),
|
|
torch.nn.Conv2d(in_channels=16, out_channels=16, kernel_size=3, stride=1, padding=1),
|
|
torch.nn.LeakyReLU(inplace=False, negative_slope=0.1)
|
|
)
|
|
|
|
self.netTwo = torch.nn.Sequential(
|
|
torch.nn.Conv2d(in_channels=16, out_channels=32, kernel_size=3, stride=2, padding=1),
|
|
torch.nn.LeakyReLU(inplace=False, negative_slope=0.1),
|
|
torch.nn.Conv2d(in_channels=32, out_channels=32, kernel_size=3, stride=1, padding=1),
|
|
torch.nn.LeakyReLU(inplace=False, negative_slope=0.1),
|
|
torch.nn.Conv2d(in_channels=32, out_channels=32, kernel_size=3, stride=1, padding=1),
|
|
torch.nn.LeakyReLU(inplace=False, negative_slope=0.1)
|
|
)
|
|
|
|
self.netThr = torch.nn.Sequential(
|
|
torch.nn.Conv2d(in_channels=32, out_channels=64, kernel_size=3, stride=2, padding=1),
|
|
torch.nn.LeakyReLU(inplace=False, negative_slope=0.1),
|
|
torch.nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3, stride=1, padding=1),
|
|
torch.nn.LeakyReLU(inplace=False, negative_slope=0.1),
|
|
torch.nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3, stride=1, padding=1),
|
|
torch.nn.LeakyReLU(inplace=False, negative_slope=0.1)
|
|
)
|
|
|
|
self.netFou = torch.nn.Sequential(
|
|
torch.nn.Conv2d(in_channels=64, out_channels=96, kernel_size=3, stride=2, padding=1),
|
|
torch.nn.LeakyReLU(inplace=False, negative_slope=0.1),
|
|
torch.nn.Conv2d(in_channels=96, out_channels=96, kernel_size=3, stride=1, padding=1),
|
|
torch.nn.LeakyReLU(inplace=False, negative_slope=0.1),
|
|
torch.nn.Conv2d(in_channels=96, out_channels=96, kernel_size=3, stride=1, padding=1),
|
|
torch.nn.LeakyReLU(inplace=False, negative_slope=0.1)
|
|
)
|
|
|
|
self.netFiv = torch.nn.Sequential(
|
|
torch.nn.Conv2d(in_channels=96, out_channels=128, kernel_size=3, stride=2, padding=1),
|
|
torch.nn.LeakyReLU(inplace=False, negative_slope=0.1),
|
|
torch.nn.Conv2d(in_channels=128, out_channels=128, kernel_size=3, stride=1, padding=1),
|
|
torch.nn.LeakyReLU(inplace=False, negative_slope=0.1),
|
|
torch.nn.Conv2d(in_channels=128, out_channels=128, kernel_size=3, stride=1, padding=1),
|
|
torch.nn.LeakyReLU(inplace=False, negative_slope=0.1)
|
|
)
|
|
|
|
self.netSix = torch.nn.Sequential(
|
|
torch.nn.Conv2d(in_channels=128, out_channels=196, kernel_size=3, stride=2, padding=1),
|
|
torch.nn.LeakyReLU(inplace=False, negative_slope=0.1),
|
|
torch.nn.Conv2d(in_channels=196, out_channels=196, kernel_size=3, stride=1, padding=1),
|
|
torch.nn.LeakyReLU(inplace=False, negative_slope=0.1),
|
|
torch.nn.Conv2d(in_channels=196, out_channels=196, kernel_size=3, stride=1, padding=1),
|
|
torch.nn.LeakyReLU(inplace=False, negative_slope=0.1)
|
|
)
|
|
|
|
|
|
def forward(self, tenInput):
|
|
tenOne = self.netOne(tenInput)
|
|
tenTwo = self.netTwo(tenOne)
|
|
tenThr = self.netThr(tenTwo)
|
|
tenFou = self.netFou(tenThr)
|
|
tenFiv = self.netFiv(tenFou)
|
|
tenSix = self.netSix(tenFiv)
|
|
|
|
return [ tenOne, tenTwo, tenThr, tenFou, tenFiv, tenSix ]
|
|
|
|
|
|
|
|
class Decoder(torch.nn.Module):
|
|
def __init__(self, intLevel):
|
|
super(Decoder, self).__init__()
|
|
|
|
intPrevious = [ None, None, 81 + 32 + 2 + 2, 81 + 64 + 2 + 2, 81 + 96 + 2 + 2, 81 + 128 + 2 + 2, 81, None ][intLevel + 1]
|
|
intCurrent = [ None, None, 81 + 32 + 2 + 2, 81 + 64 + 2 + 2, 81 + 96 + 2 + 2, 81 + 128 + 2 + 2, 81, None ][intLevel + 0]
|
|
|
|
if intLevel < 6: self.netUpflow = torch.nn.ConvTranspose2d(in_channels=2, out_channels=2, kernel_size=4, stride=2, padding=1)
|
|
if intLevel < 6: self.netUpfeat = torch.nn.ConvTranspose2d(in_channels=intPrevious + 128 + 128 + 96 + 64 + 32, out_channels=2, kernel_size=4, stride=2, padding=1)
|
|
if intLevel < 6: self.fltBackwarp = [ None, None, None, 5.0, 2.5, 1.25, 0.625, None ][intLevel + 1]
|
|
|
|
self.netOne = torch.nn.Sequential(
|
|
torch.nn.Conv2d(in_channels=intCurrent, out_channels=128, kernel_size=3, stride=1, padding=1),
|
|
torch.nn.LeakyReLU(inplace=False, negative_slope=0.1)
|
|
)
|
|
|
|
self.netTwo = torch.nn.Sequential(
|
|
torch.nn.Conv2d(in_channels=intCurrent + 128, out_channels=128, kernel_size=3, stride=1, padding=1),
|
|
torch.nn.LeakyReLU(inplace=False, negative_slope=0.1)
|
|
)
|
|
|
|
self.netThr = torch.nn.Sequential(
|
|
torch.nn.Conv2d(in_channels=intCurrent + 128 + 128, out_channels=96, kernel_size=3, stride=1, padding=1),
|
|
torch.nn.LeakyReLU(inplace=False, negative_slope=0.1)
|
|
)
|
|
|
|
self.netFou = torch.nn.Sequential(
|
|
torch.nn.Conv2d(in_channels=intCurrent + 128 + 128 + 96, out_channels=64, kernel_size=3, stride=1, padding=1),
|
|
torch.nn.LeakyReLU(inplace=False, negative_slope=0.1)
|
|
)
|
|
|
|
self.netFiv = torch.nn.Sequential(
|
|
torch.nn.Conv2d(in_channels=intCurrent + 128 + 128 + 96 + 64, out_channels=32, kernel_size=3, stride=1, padding=1),
|
|
torch.nn.LeakyReLU(inplace=False, negative_slope=0.1)
|
|
)
|
|
|
|
self.netSix = torch.nn.Sequential(
|
|
torch.nn.Conv2d(in_channels=intCurrent + 128 + 128 + 96 + 64 + 32, out_channels=2, kernel_size=3, stride=1, padding=1)
|
|
)
|
|
|
|
|
|
def forward(self, tenFirst, tenSecond, objPrevious):
|
|
tenFlow = None
|
|
tenFeat = None
|
|
|
|
if objPrevious is None:
|
|
tenFlow = None
|
|
tenFeat = None
|
|
|
|
tenVolume = torch.nn.functional.leaky_relu(input=correlation.FunctionCorrelation(tenFirst=tenFirst, tenSecond=tenSecond), negative_slope=0.1, inplace=False)
|
|
|
|
tenFeat = torch.cat([ tenVolume ], 1)
|
|
|
|
elif objPrevious is not None:
|
|
tenFlow = self.netUpflow(objPrevious['tenFlow'])
|
|
tenFeat = self.netUpfeat(objPrevious['tenFeat'])
|
|
|
|
tenVolume = torch.nn.functional.leaky_relu(input=correlation.FunctionCorrelation(tenFirst=tenFirst, tenSecond=backwarp(tenInput=tenSecond, tenFlow=tenFlow * self.fltBackwarp)), negative_slope=0.1, inplace=False)
|
|
|
|
tenFeat = torch.cat([ tenVolume, tenFirst, tenFlow, tenFeat ], 1)
|
|
|
|
|
|
|
|
tenFeat = torch.cat([ self.netOne(tenFeat), tenFeat ], 1)
|
|
tenFeat = torch.cat([ self.netTwo(tenFeat), tenFeat ], 1)
|
|
tenFeat = torch.cat([ self.netThr(tenFeat), tenFeat ], 1)
|
|
tenFeat = torch.cat([ self.netFou(tenFeat), tenFeat ], 1)
|
|
tenFeat = torch.cat([ self.netFiv(tenFeat), tenFeat ], 1)
|
|
|
|
tenFlow = self.netSix(tenFeat)
|
|
|
|
return {
|
|
'tenFlow': tenFlow,
|
|
'tenFeat': tenFeat
|
|
}
|
|
|
|
|
|
|
|
class Refiner(torch.nn.Module):
|
|
def __init__(self):
|
|
super(Refiner, self).__init__()
|
|
|
|
self.netMain = torch.nn.Sequential(
|
|
torch.nn.Conv2d(in_channels=81 + 32 + 2 + 2 + 128 + 128 + 96 + 64 + 32, out_channels=128, kernel_size=3, stride=1, padding=1, dilation=1),
|
|
torch.nn.LeakyReLU(inplace=False, negative_slope=0.1),
|
|
torch.nn.Conv2d(in_channels=128, out_channels=128, kernel_size=3, stride=1, padding=2, dilation=2),
|
|
torch.nn.LeakyReLU(inplace=False, negative_slope=0.1),
|
|
torch.nn.Conv2d(in_channels=128, out_channels=128, kernel_size=3, stride=1, padding=4, dilation=4),
|
|
torch.nn.LeakyReLU(inplace=False, negative_slope=0.1),
|
|
torch.nn.Conv2d(in_channels=128, out_channels=96, kernel_size=3, stride=1, padding=8, dilation=8),
|
|
torch.nn.LeakyReLU(inplace=False, negative_slope=0.1),
|
|
torch.nn.Conv2d(in_channels=96, out_channels=64, kernel_size=3, stride=1, padding=16, dilation=16),
|
|
torch.nn.LeakyReLU(inplace=False, negative_slope=0.1),
|
|
torch.nn.Conv2d(in_channels=64, out_channels=32, kernel_size=3, stride=1, padding=1, dilation=1),
|
|
torch.nn.LeakyReLU(inplace=False, negative_slope=0.1),
|
|
torch.nn.Conv2d(in_channels=32, out_channels=2, kernel_size=3, stride=1, padding=1, dilation=1)
|
|
)
|
|
|
|
|
|
def forward(self, tenInput):
|
|
return self.netMain(tenInput)
|
|
|
|
|
|
|
|
self.netExtractor = Extractor()
|
|
|
|
self.netTwo = Decoder(2)
|
|
self.netThr = Decoder(3)
|
|
self.netFou = Decoder(4)
|
|
self.netFiv = Decoder(5)
|
|
self.netSix = Decoder(6)
|
|
|
|
self.netRefiner = Refiner()
|
|
|
|
self.load_state_dict({ strKey.replace('module', 'net'): tenWeight for strKey, tenWeight in torch.hub.load_state_dict_from_url(url='http://content.sniklaus.com/github/pytorch-pwc/network-' + 'default' + '.pytorch').items() })
|
|
|
|
|
|
def forward(self, tenFirst, tenSecond):
|
|
intWidth = tenFirst.shape[3]
|
|
intHeight = tenFirst.shape[2]
|
|
|
|
intPreprocessedWidth = int(math.floor(math.ceil(intWidth / 64.0) * 64.0))
|
|
intPreprocessedHeight = int(math.floor(math.ceil(intHeight / 64.0) * 64.0))
|
|
|
|
tenPreprocessedFirst = torch.nn.functional.interpolate(input=tenFirst, size=(intPreprocessedHeight, intPreprocessedWidth), mode='bilinear', align_corners=False)
|
|
tenPreprocessedSecond = torch.nn.functional.interpolate(input=tenSecond, size=(intPreprocessedHeight, intPreprocessedWidth), mode='bilinear', align_corners=False)
|
|
|
|
tenFirst = self.netExtractor(tenPreprocessedFirst)
|
|
tenSecond = self.netExtractor(tenPreprocessedSecond)
|
|
|
|
|
|
objEstimate = self.netSix(tenFirst[-1], tenSecond[-1], None)
|
|
objEstimate = self.netFiv(tenFirst[-2], tenSecond[-2], objEstimate)
|
|
objEstimate = self.netFou(tenFirst[-3], tenSecond[-3], objEstimate)
|
|
objEstimate = self.netThr(tenFirst[-4], tenSecond[-4], objEstimate)
|
|
objEstimate = self.netTwo(tenFirst[-5], tenSecond[-5], objEstimate)
|
|
|
|
tenFlow = objEstimate['tenFlow'] + self.netRefiner(objEstimate['tenFeat'])
|
|
tenFlow = 20.0 * torch.nn.functional.interpolate(input=tenFlow, size=(intHeight, intWidth), mode='bilinear', align_corners=False)
|
|
tenFlow[:, 0, :, :] *= float(intWidth) / float(intPreprocessedWidth)
|
|
tenFlow[:, 1, :, :] *= float(intHeight) / float(intPreprocessedHeight)
|
|
|
|
return tenFlow
|
|
|
|
|
|
|
|
netNetwork = None
|
|
|
|
|
|
|
|
def estimate(tenFirst, tenSecond):
|
|
global netNetwork
|
|
|
|
if netNetwork is None:
|
|
netNetwork = Network().cuda().eval()
|
|
|
|
|
|
assert(tenFirst.shape[1] == tenSecond.shape[1])
|
|
assert(tenFirst.shape[2] == tenSecond.shape[2])
|
|
|
|
intWidth = tenFirst.shape[2]
|
|
intHeight = tenFirst.shape[1]
|
|
|
|
assert(intWidth == 1024)
|
|
assert(intHeight == 436)
|
|
|
|
tenPreprocessedFirst = tenFirst.cuda().view(1, 3, intHeight, intWidth)
|
|
tenPreprocessedSecond = tenSecond.cuda().view(1, 3, intHeight, intWidth)
|
|
|
|
intPreprocessedWidth = int(math.floor(math.ceil(intWidth / 64.0) * 64.0))
|
|
intPreprocessedHeight = int(math.floor(math.ceil(intHeight / 64.0) * 64.0))
|
|
|
|
tenPreprocessedFirst = torch.nn.functional.interpolate(input=tenPreprocessedFirst, size=(intPreprocessedHeight, intPreprocessedWidth), mode='bilinear', align_corners=False)
|
|
tenPreprocessedSecond = torch.nn.functional.interpolate(input=tenPreprocessedSecond, size=(intPreprocessedHeight, intPreprocessedWidth), mode='bilinear', align_corners=False)
|
|
|
|
tenFlow = 20.0 * torch.nn.functional.interpolate(input=netNetwork(tenPreprocessedFirst, tenPreprocessedSecond), size=(intHeight, intWidth), mode='bilinear', align_corners=False)
|
|
|
|
tenFlow[:, 0, :, :] *= float(intWidth) / float(intPreprocessedWidth)
|
|
tenFlow[:, 1, :, :] *= float(intHeight) / float(intPreprocessedHeight)
|
|
|
|
return tenFlow[0, :, :, :].cpu()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|