|
import math |
|
from einops import rearrange |
|
import decord |
|
from torch.nn import functional as F |
|
import torch |
|
|
|
|
|
IMG_EXTENSIONS = ['.jpg', '.JPG', '.jpeg', '.JPEG', '.png', '.PNG'] |
|
|
|
def is_image_file(filename): |
|
return any(filename.endswith(extension) for extension in IMG_EXTENSIONS) |
|
|
|
class DecordInit(object): |
|
"""Using Decord(https://github.com/dmlc/decord) to initialize the video_reader.""" |
|
|
|
def __init__(self, num_threads=1): |
|
self.num_threads = num_threads |
|
self.ctx = decord.cpu(0) |
|
|
|
def __call__(self, filename): |
|
"""Perform the Decord initialization. |
|
Args: |
|
results (dict): The resulting dict to be modified and passed |
|
to the next transform in pipeline. |
|
""" |
|
reader = decord.VideoReader(filename, |
|
ctx=self.ctx, |
|
num_threads=self.num_threads) |
|
return reader |
|
|
|
def __repr__(self): |
|
repr_str = (f'{self.__class__.__name__}(' |
|
f'sr={self.sr},' |
|
f'num_threads={self.num_threads})') |
|
return repr_str |
|
|
|
def pad_to_multiple(number, ds_stride): |
|
remainder = number % ds_stride |
|
if remainder == 0: |
|
return number |
|
else: |
|
padding = ds_stride - remainder |
|
return number + padding |
|
|
|
class Collate: |
|
def __init__(self, args): |
|
self.max_image_size = args.max_image_size |
|
self.ae_stride = args.ae_stride |
|
self.ae_stride_t = args.ae_stride_t |
|
self.ae_stride_thw = (self.ae_stride_t, self.ae_stride, self.ae_stride) |
|
self.ae_stride_1hw = (1, self.ae_stride, self.ae_stride) |
|
|
|
self.patch_size = args.patch_size |
|
self.patch_size_t = args.patch_size_t |
|
self.patch_size_thw = (self.patch_size_t, self.patch_size, self.patch_size) |
|
self.patch_size_1hw = (1, self.patch_size, self.patch_size) |
|
|
|
self.num_frames = args.num_frames |
|
self.use_image_num = args.use_image_num |
|
self.max_thw = (self.num_frames, self.max_image_size, self.max_image_size) |
|
self.max_1hw = (1, self.max_image_size, self.max_image_size) |
|
|
|
def package(self, batch): |
|
|
|
batch_tubes_vid = [i['video_data']['video'] for i in batch] |
|
input_ids_vid = torch.stack([i['video_data']['input_ids'] for i in batch]) |
|
cond_mask_vid = torch.stack([i['video_data']['cond_mask'] for i in batch]) |
|
batch_tubes_img, input_ids_img, cond_mask_img = None, None, None |
|
if self.use_image_num != 0: |
|
batch_tubes_img = [j for i in batch for j in i['image_data']['image']] |
|
input_ids_img = torch.stack([i['image_data']['input_ids'] for i in batch]) |
|
cond_mask_img = torch.stack([i['image_data']['cond_mask'] for i in batch]) |
|
return batch_tubes_vid, input_ids_vid, cond_mask_vid, batch_tubes_img, input_ids_img, cond_mask_img |
|
|
|
def __call__(self, batch): |
|
batch_tubes_vid, input_ids_vid, cond_mask_vid, batch_tubes_img, input_ids_img, cond_mask_img = self.package(batch) |
|
|
|
|
|
ds_stride = self.ae_stride * self.patch_size |
|
t_ds_stride = self.ae_stride_t * self.patch_size_t |
|
if self.use_image_num == 0: |
|
pad_batch_tubes, attention_mask = self.process(batch_tubes_vid, t_ds_stride, ds_stride, |
|
self.max_thw, self.ae_stride_thw, self.patch_size_thw, extra_1=True) |
|
|
|
input_ids, cond_mask = input_ids_vid.squeeze(1), cond_mask_vid.squeeze(1) |
|
else: |
|
pad_batch_tubes_vid, attention_mask_vid = self.process(batch_tubes_vid, t_ds_stride, ds_stride, |
|
self.max_thw, self.ae_stride_thw, self.patch_size_thw, extra_1=True) |
|
|
|
pad_batch_tubes_img, attention_mask_img = self.process(batch_tubes_img, 1, ds_stride, |
|
self.max_1hw, self.ae_stride_1hw, self.patch_size_1hw, extra_1=False) |
|
pad_batch_tubes_img = rearrange(pad_batch_tubes_img, '(b i) c 1 h w -> b c i h w', i=self.use_image_num) |
|
attention_mask_img = rearrange(attention_mask_img, '(b i) 1 h w -> b i h w', i=self.use_image_num) |
|
pad_batch_tubes = torch.cat([pad_batch_tubes_vid, pad_batch_tubes_img], dim=2) |
|
|
|
attention_mask = torch.cat([attention_mask_vid, attention_mask_img], dim=1) |
|
input_ids = torch.cat([input_ids_vid, input_ids_img], dim=1) |
|
cond_mask = torch.cat([cond_mask_vid, cond_mask_img], dim=1) |
|
return pad_batch_tubes, attention_mask, input_ids, cond_mask |
|
|
|
def process(self, batch_tubes, t_ds_stride, ds_stride, max_thw, ae_stride_thw, patch_size_thw, extra_1): |
|
|
|
|
|
batch_input_size = [i.shape for i in batch_tubes] |
|
max_t, max_h, max_w = max_thw |
|
pad_max_t, pad_max_h, pad_max_w = pad_to_multiple(max_t-1 if extra_1 else max_t, t_ds_stride), \ |
|
pad_to_multiple(max_h, ds_stride), \ |
|
pad_to_multiple(max_w, ds_stride) |
|
pad_max_t = pad_max_t + 1 if extra_1 else pad_max_t |
|
each_pad_t_h_w = [[pad_max_t - i.shape[1], |
|
pad_max_h - i.shape[2], |
|
pad_max_w - i.shape[3]] for i in batch_tubes] |
|
pad_batch_tubes = [F.pad(im, |
|
(0, pad_w, |
|
0, pad_h, |
|
0, pad_t), value=0) for (pad_t, pad_h, pad_w), im in zip(each_pad_t_h_w, batch_tubes)] |
|
pad_batch_tubes = torch.stack(pad_batch_tubes, dim=0) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
max_tube_size = [pad_max_t, pad_max_h, pad_max_w] |
|
max_latent_size = [((max_tube_size[0]-1) // ae_stride_thw[0] + 1) if extra_1 else (max_tube_size[0] // ae_stride_thw[0]), |
|
max_tube_size[1] // ae_stride_thw[1], |
|
max_tube_size[2] // ae_stride_thw[2]] |
|
valid_latent_size = [[int(math.ceil((i[1]-1) / ae_stride_thw[0])) + 1 if extra_1 else int(math.ceil(i[1] / ae_stride_thw[0])), |
|
int(math.ceil(i[2] / ae_stride_thw[1])), |
|
int(math.ceil(i[3] / ae_stride_thw[2]))] for i in batch_input_size] |
|
attention_mask = [F.pad(torch.ones(i), |
|
(0, max_latent_size[2] - i[2], |
|
0, max_latent_size[1] - i[1], |
|
0, max_latent_size[0] - i[0]), value=0) for i in valid_latent_size] |
|
attention_mask = torch.stack(attention_mask) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return pad_batch_tubes, attention_mask |
|
|