Add files using upload-large-folder tool
Browse files- =0.33.0 +8 -0
- =0.5.1 +0 -0
- =1.37.0 +0 -0
- =2.4.0 +0 -0
- =4.43.3 +0 -0
- causalvideovae/eval/RAFT/LICENSE +29 -0
- causalvideovae/eval/RAFT/README.md +80 -0
- causalvideovae/eval/RAFT/alt_cuda_corr/correlation_kernel.cu +324 -0
- causalvideovae/eval/RAFT/core/__init__.py +0 -0
- causalvideovae/eval/RAFT/core/datasets.py +235 -0
- causalvideovae/eval/RAFT/core/extractor.py +267 -0
- causalvideovae/eval/RAFT/models.zip +3 -0
- causalvideovae/eval/cal_ssim.py +113 -0
- causalvideovae/eval/flolpips/correlation/correlation.py +397 -0
- causalvideovae/eval/flolpips/pretrained_networks.py +180 -0
- causalvideovae/eval/fvd/videogpt/pytorch_i3d.py +322 -0
- causalvideovae/model/__init__.py +5 -0
- causalvideovae/model/dataset_videobase.py +178 -0
- causalvideovae/model/ema_model.py +31 -0
- causalvideovae/model/losses/lpips.py +120 -0
- causalvideovae/model/modules/block.py +5 -0
- causalvideovae/model/utils/video_utils.py +10 -0
- scripts/eval.sh +19 -0
- scripts/nus_vae_gen_video.sh +35 -0
- scripts/rec_cv_vae.py +298 -0
- scripts/rec_sd2_1_vae.py +302 -0
- scripts/reconstruction.sh +11 -0
- scripts/refine_video.py +299 -0
- scripts/vae_demo.py +337 -0
- scripts/vqgan_gen_video.sh +32 -0
- train_ddp_refiner.py +595 -0
=0.33.0
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
usage: accelerate <command> [<args>]
|
2 |
+
|
3 |
+
positional arguments:
|
4 |
+
{config,estimate-memory,env,launch,tpu-config,test}
|
5 |
+
accelerate command helpers
|
6 |
+
|
7 |
+
optional arguments:
|
8 |
+
-h, --help show this help message and exit
|
=0.5.1
ADDED
File without changes
|
=1.37.0
ADDED
File without changes
|
=2.4.0
ADDED
File without changes
|
=4.43.3
ADDED
File without changes
|
causalvideovae/eval/RAFT/LICENSE
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
BSD 3-Clause License
|
2 |
+
|
3 |
+
Copyright (c) 2020, princeton-vl
|
4 |
+
All rights reserved.
|
5 |
+
|
6 |
+
Redistribution and use in source and binary forms, with or without
|
7 |
+
modification, are permitted provided that the following conditions are met:
|
8 |
+
|
9 |
+
* Redistributions of source code must retain the above copyright notice, this
|
10 |
+
list of conditions and the following disclaimer.
|
11 |
+
|
12 |
+
* Redistributions in binary form must reproduce the above copyright notice,
|
13 |
+
this list of conditions and the following disclaimer in the documentation
|
14 |
+
and/or other materials provided with the distribution.
|
15 |
+
|
16 |
+
* Neither the name of the copyright holder nor the names of its
|
17 |
+
contributors may be used to endorse or promote products derived from
|
18 |
+
this software without specific prior written permission.
|
19 |
+
|
20 |
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
21 |
+
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
22 |
+
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
23 |
+
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
24 |
+
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
25 |
+
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
26 |
+
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
27 |
+
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
28 |
+
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
29 |
+
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
causalvideovae/eval/RAFT/README.md
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# RAFT
|
2 |
+
This repository contains the source code for our paper:
|
3 |
+
|
4 |
+
[RAFT: Recurrent All Pairs Field Transforms for Optical Flow](https://arxiv.org/pdf/2003.12039.pdf)<br/>
|
5 |
+
ECCV 2020 <br/>
|
6 |
+
Zachary Teed and Jia Deng<br/>
|
7 |
+
|
8 |
+
<img src="RAFT.png">
|
9 |
+
|
10 |
+
## Requirements
|
11 |
+
The code has been tested with PyTorch 1.6 and Cuda 10.1.
|
12 |
+
```Shell
|
13 |
+
conda create --name raft
|
14 |
+
conda activate raft
|
15 |
+
conda install pytorch=1.6.0 torchvision=0.7.0 cudatoolkit=10.1 matplotlib tensorboard scipy opencv -c pytorch
|
16 |
+
```
|
17 |
+
|
18 |
+
## Demos
|
19 |
+
Pretrained models can be downloaded by running
|
20 |
+
```Shell
|
21 |
+
./download_models.sh
|
22 |
+
```
|
23 |
+
or downloaded from [google drive](https://drive.google.com/drive/folders/1sWDsfuZ3Up38EUQt7-JDTT1HcGHuJgvT?usp=sharing)
|
24 |
+
|
25 |
+
You can demo a trained model on a sequence of frames
|
26 |
+
```Shell
|
27 |
+
python demo.py --model=models/raft-things.pth --path=demo-frames
|
28 |
+
```
|
29 |
+
|
30 |
+
## Required Data
|
31 |
+
To evaluate/train RAFT, you will need to download the required datasets.
|
32 |
+
* [FlyingChairs](https://lmb.informatik.uni-freiburg.de/resources/datasets/FlyingChairs.en.html#flyingchairs)
|
33 |
+
* [FlyingThings3D](https://lmb.informatik.uni-freiburg.de/resources/datasets/SceneFlowDatasets.en.html)
|
34 |
+
* [Sintel](http://sintel.is.tue.mpg.de/)
|
35 |
+
* [KITTI](http://www.cvlibs.net/datasets/kitti/eval_scene_flow.php?benchmark=flow)
|
36 |
+
* [HD1K](http://hci-benchmark.iwr.uni-heidelberg.de/) (optional)
|
37 |
+
|
38 |
+
|
39 |
+
By default `datasets.py` will search for the datasets in these locations. You can create symbolic links to wherever the datasets were downloaded in the `datasets` folder
|
40 |
+
|
41 |
+
```Shell
|
42 |
+
├── datasets
|
43 |
+
├── Sintel
|
44 |
+
├── test
|
45 |
+
├── training
|
46 |
+
├── KITTI
|
47 |
+
├── testing
|
48 |
+
├── training
|
49 |
+
├── devkit
|
50 |
+
├── FlyingChairs_release
|
51 |
+
├── data
|
52 |
+
├── FlyingThings3D
|
53 |
+
├── frames_cleanpass
|
54 |
+
├── frames_finalpass
|
55 |
+
├── optical_flow
|
56 |
+
```
|
57 |
+
|
58 |
+
## Evaluation
|
59 |
+
You can evaluate a trained model using `evaluate.py`
|
60 |
+
```Shell
|
61 |
+
python evaluate.py --model=models/raft-things.pth --dataset=sintel --mixed_precision
|
62 |
+
```
|
63 |
+
|
64 |
+
## Training
|
65 |
+
We used the following training schedule in our paper (2 GPUs). Training logs will be written to the `runs` which can be visualized using tensorboard
|
66 |
+
```Shell
|
67 |
+
./train_standard.sh
|
68 |
+
```
|
69 |
+
|
70 |
+
If you have a RTX GPU, training can be accelerated using mixed precision. You can expect similiar results in this setting (1 GPU)
|
71 |
+
```Shell
|
72 |
+
./train_mixed.sh
|
73 |
+
```
|
74 |
+
|
75 |
+
## (Optional) Efficent Implementation
|
76 |
+
You can optionally use our alternate (efficent) implementation by compiling the provided cuda extension
|
77 |
+
```Shell
|
78 |
+
cd alt_cuda_corr && python setup.py install && cd ..
|
79 |
+
```
|
80 |
+
and running `demo.py` and `evaluate.py` with the `--alternate_corr` flag Note, this implementation is somewhat slower than all-pairs, but uses significantly less GPU memory during the forward pass.
|
causalvideovae/eval/RAFT/alt_cuda_corr/correlation_kernel.cu
ADDED
@@ -0,0 +1,324 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#include <torch/extension.h>
|
2 |
+
#include <cuda.h>
|
3 |
+
#include <cuda_runtime.h>
|
4 |
+
#include <vector>
|
5 |
+
|
6 |
+
|
7 |
+
#define BLOCK_H 4
|
8 |
+
#define BLOCK_W 8
|
9 |
+
#define BLOCK_HW BLOCK_H * BLOCK_W
|
10 |
+
#define CHANNEL_STRIDE 32
|
11 |
+
|
12 |
+
|
13 |
+
__forceinline__ __device__
|
14 |
+
bool within_bounds(int h, int w, int H, int W) {
|
15 |
+
return h >= 0 && h < H && w >= 0 && w < W;
|
16 |
+
}
|
17 |
+
|
18 |
+
template <typename scalar_t>
|
19 |
+
__global__ void corr_forward_kernel(
|
20 |
+
const torch::PackedTensorAccessor32<scalar_t,4,torch::RestrictPtrTraits> fmap1,
|
21 |
+
const torch::PackedTensorAccessor32<scalar_t,4,torch::RestrictPtrTraits> fmap2,
|
22 |
+
const torch::PackedTensorAccessor32<scalar_t,5,torch::RestrictPtrTraits> coords,
|
23 |
+
torch::PackedTensorAccessor32<scalar_t,5,torch::RestrictPtrTraits> corr,
|
24 |
+
int r)
|
25 |
+
{
|
26 |
+
const int b = blockIdx.x;
|
27 |
+
const int h0 = blockIdx.y * blockDim.x;
|
28 |
+
const int w0 = blockIdx.z * blockDim.y;
|
29 |
+
const int tid = threadIdx.x * blockDim.y + threadIdx.y;
|
30 |
+
|
31 |
+
const int H1 = fmap1.size(1);
|
32 |
+
const int W1 = fmap1.size(2);
|
33 |
+
const int H2 = fmap2.size(1);
|
34 |
+
const int W2 = fmap2.size(2);
|
35 |
+
const int N = coords.size(1);
|
36 |
+
const int C = fmap1.size(3);
|
37 |
+
|
38 |
+
__shared__ scalar_t f1[CHANNEL_STRIDE][BLOCK_HW+1];
|
39 |
+
__shared__ scalar_t f2[CHANNEL_STRIDE][BLOCK_HW+1];
|
40 |
+
__shared__ scalar_t x2s[BLOCK_HW];
|
41 |
+
__shared__ scalar_t y2s[BLOCK_HW];
|
42 |
+
|
43 |
+
for (int c=0; c<C; c+=CHANNEL_STRIDE) {
|
44 |
+
for (int k=0; k<BLOCK_HW; k+=BLOCK_HW/CHANNEL_STRIDE) {
|
45 |
+
int k1 = k + tid / CHANNEL_STRIDE;
|
46 |
+
int h1 = h0 + k1 / BLOCK_W;
|
47 |
+
int w1 = w0 + k1 % BLOCK_W;
|
48 |
+
int c1 = tid % CHANNEL_STRIDE;
|
49 |
+
|
50 |
+
auto fptr = fmap1[b][h1][w1];
|
51 |
+
if (within_bounds(h1, w1, H1, W1))
|
52 |
+
f1[c1][k1] = fptr[c+c1];
|
53 |
+
else
|
54 |
+
f1[c1][k1] = 0.0;
|
55 |
+
}
|
56 |
+
|
57 |
+
__syncthreads();
|
58 |
+
|
59 |
+
for (int n=0; n<N; n++) {
|
60 |
+
int h1 = h0 + threadIdx.x;
|
61 |
+
int w1 = w0 + threadIdx.y;
|
62 |
+
if (within_bounds(h1, w1, H1, W1)) {
|
63 |
+
x2s[tid] = coords[b][n][h1][w1][0];
|
64 |
+
y2s[tid] = coords[b][n][h1][w1][1];
|
65 |
+
}
|
66 |
+
|
67 |
+
scalar_t dx = x2s[tid] - floor(x2s[tid]);
|
68 |
+
scalar_t dy = y2s[tid] - floor(y2s[tid]);
|
69 |
+
|
70 |
+
int rd = 2*r + 1;
|
71 |
+
for (int iy=0; iy<rd+1; iy++) {
|
72 |
+
for (int ix=0; ix<rd+1; ix++) {
|
73 |
+
for (int k=0; k<BLOCK_HW; k+=BLOCK_HW/CHANNEL_STRIDE) {
|
74 |
+
int k1 = k + tid / CHANNEL_STRIDE;
|
75 |
+
int h2 = static_cast<int>(floor(y2s[k1]))-r+iy;
|
76 |
+
int w2 = static_cast<int>(floor(x2s[k1]))-r+ix;
|
77 |
+
int c2 = tid % CHANNEL_STRIDE;
|
78 |
+
|
79 |
+
auto fptr = fmap2[b][h2][w2];
|
80 |
+
if (within_bounds(h2, w2, H2, W2))
|
81 |
+
f2[c2][k1] = fptr[c+c2];
|
82 |
+
else
|
83 |
+
f2[c2][k1] = 0.0;
|
84 |
+
}
|
85 |
+
|
86 |
+
__syncthreads();
|
87 |
+
|
88 |
+
scalar_t s = 0.0;
|
89 |
+
for (int k=0; k<CHANNEL_STRIDE; k++)
|
90 |
+
s += f1[k][tid] * f2[k][tid];
|
91 |
+
|
92 |
+
int ix_nw = H1*W1*((iy-1) + rd*(ix-1));
|
93 |
+
int ix_ne = H1*W1*((iy-1) + rd*ix);
|
94 |
+
int ix_sw = H1*W1*(iy + rd*(ix-1));
|
95 |
+
int ix_se = H1*W1*(iy + rd*ix);
|
96 |
+
|
97 |
+
scalar_t nw = s * (dy) * (dx);
|
98 |
+
scalar_t ne = s * (dy) * (1-dx);
|
99 |
+
scalar_t sw = s * (1-dy) * (dx);
|
100 |
+
scalar_t se = s * (1-dy) * (1-dx);
|
101 |
+
|
102 |
+
scalar_t* corr_ptr = &corr[b][n][0][h1][w1];
|
103 |
+
|
104 |
+
if (iy > 0 && ix > 0 && within_bounds(h1, w1, H1, W1))
|
105 |
+
*(corr_ptr + ix_nw) += nw;
|
106 |
+
|
107 |
+
if (iy > 0 && ix < rd && within_bounds(h1, w1, H1, W1))
|
108 |
+
*(corr_ptr + ix_ne) += ne;
|
109 |
+
|
110 |
+
if (iy < rd && ix > 0 && within_bounds(h1, w1, H1, W1))
|
111 |
+
*(corr_ptr + ix_sw) += sw;
|
112 |
+
|
113 |
+
if (iy < rd && ix < rd && within_bounds(h1, w1, H1, W1))
|
114 |
+
*(corr_ptr + ix_se) += se;
|
115 |
+
}
|
116 |
+
}
|
117 |
+
}
|
118 |
+
}
|
119 |
+
}
|
120 |
+
|
121 |
+
|
122 |
+
template <typename scalar_t>
|
123 |
+
__global__ void corr_backward_kernel(
|
124 |
+
const torch::PackedTensorAccessor32<scalar_t,4,torch::RestrictPtrTraits> fmap1,
|
125 |
+
const torch::PackedTensorAccessor32<scalar_t,4,torch::RestrictPtrTraits> fmap2,
|
126 |
+
const torch::PackedTensorAccessor32<scalar_t,5,torch::RestrictPtrTraits> coords,
|
127 |
+
const torch::PackedTensorAccessor32<scalar_t,5,torch::RestrictPtrTraits> corr_grad,
|
128 |
+
torch::PackedTensorAccessor32<scalar_t,4,torch::RestrictPtrTraits> fmap1_grad,
|
129 |
+
torch::PackedTensorAccessor32<scalar_t,4,torch::RestrictPtrTraits> fmap2_grad,
|
130 |
+
torch::PackedTensorAccessor32<scalar_t,5,torch::RestrictPtrTraits> coords_grad,
|
131 |
+
int r)
|
132 |
+
{
|
133 |
+
|
134 |
+
const int b = blockIdx.x;
|
135 |
+
const int h0 = blockIdx.y * blockDim.x;
|
136 |
+
const int w0 = blockIdx.z * blockDim.y;
|
137 |
+
const int tid = threadIdx.x * blockDim.y + threadIdx.y;
|
138 |
+
|
139 |
+
const int H1 = fmap1.size(1);
|
140 |
+
const int W1 = fmap1.size(2);
|
141 |
+
const int H2 = fmap2.size(1);
|
142 |
+
const int W2 = fmap2.size(2);
|
143 |
+
const int N = coords.size(1);
|
144 |
+
const int C = fmap1.size(3);
|
145 |
+
|
146 |
+
__shared__ scalar_t f1[CHANNEL_STRIDE][BLOCK_HW+1];
|
147 |
+
__shared__ scalar_t f2[CHANNEL_STRIDE][BLOCK_HW+1];
|
148 |
+
|
149 |
+
__shared__ scalar_t f1_grad[CHANNEL_STRIDE][BLOCK_HW+1];
|
150 |
+
__shared__ scalar_t f2_grad[CHANNEL_STRIDE][BLOCK_HW+1];
|
151 |
+
|
152 |
+
__shared__ scalar_t x2s[BLOCK_HW];
|
153 |
+
__shared__ scalar_t y2s[BLOCK_HW];
|
154 |
+
|
155 |
+
for (int c=0; c<C; c+=CHANNEL_STRIDE) {
|
156 |
+
|
157 |
+
for (int k=0; k<BLOCK_HW; k+=BLOCK_HW/CHANNEL_STRIDE) {
|
158 |
+
int k1 = k + tid / CHANNEL_STRIDE;
|
159 |
+
int h1 = h0 + k1 / BLOCK_W;
|
160 |
+
int w1 = w0 + k1 % BLOCK_W;
|
161 |
+
int c1 = tid % CHANNEL_STRIDE;
|
162 |
+
|
163 |
+
auto fptr = fmap1[b][h1][w1];
|
164 |
+
if (within_bounds(h1, w1, H1, W1))
|
165 |
+
f1[c1][k1] = fptr[c+c1];
|
166 |
+
else
|
167 |
+
f1[c1][k1] = 0.0;
|
168 |
+
|
169 |
+
f1_grad[c1][k1] = 0.0;
|
170 |
+
}
|
171 |
+
|
172 |
+
__syncthreads();
|
173 |
+
|
174 |
+
int h1 = h0 + threadIdx.x;
|
175 |
+
int w1 = w0 + threadIdx.y;
|
176 |
+
|
177 |
+
for (int n=0; n<N; n++) {
|
178 |
+
x2s[tid] = coords[b][n][h1][w1][0];
|
179 |
+
y2s[tid] = coords[b][n][h1][w1][1];
|
180 |
+
|
181 |
+
scalar_t dx = x2s[tid] - floor(x2s[tid]);
|
182 |
+
scalar_t dy = y2s[tid] - floor(y2s[tid]);
|
183 |
+
|
184 |
+
int rd = 2*r + 1;
|
185 |
+
for (int iy=0; iy<rd+1; iy++) {
|
186 |
+
for (int ix=0; ix<rd+1; ix++) {
|
187 |
+
for (int k=0; k<BLOCK_HW; k+=BLOCK_HW/CHANNEL_STRIDE) {
|
188 |
+
int k1 = k + tid / CHANNEL_STRIDE;
|
189 |
+
int h2 = static_cast<int>(floor(y2s[k1]))-r+iy;
|
190 |
+
int w2 = static_cast<int>(floor(x2s[k1]))-r+ix;
|
191 |
+
int c2 = tid % CHANNEL_STRIDE;
|
192 |
+
|
193 |
+
auto fptr = fmap2[b][h2][w2];
|
194 |
+
if (within_bounds(h2, w2, H2, W2))
|
195 |
+
f2[c2][k1] = fptr[c+c2];
|
196 |
+
else
|
197 |
+
f2[c2][k1] = 0.0;
|
198 |
+
|
199 |
+
f2_grad[c2][k1] = 0.0;
|
200 |
+
}
|
201 |
+
|
202 |
+
__syncthreads();
|
203 |
+
|
204 |
+
const scalar_t* grad_ptr = &corr_grad[b][n][0][h1][w1];
|
205 |
+
scalar_t g = 0.0;
|
206 |
+
|
207 |
+
int ix_nw = H1*W1*((iy-1) + rd*(ix-1));
|
208 |
+
int ix_ne = H1*W1*((iy-1) + rd*ix);
|
209 |
+
int ix_sw = H1*W1*(iy + rd*(ix-1));
|
210 |
+
int ix_se = H1*W1*(iy + rd*ix);
|
211 |
+
|
212 |
+
if (iy > 0 && ix > 0 && within_bounds(h1, w1, H1, W1))
|
213 |
+
g += *(grad_ptr + ix_nw) * dy * dx;
|
214 |
+
|
215 |
+
if (iy > 0 && ix < rd && within_bounds(h1, w1, H1, W1))
|
216 |
+
g += *(grad_ptr + ix_ne) * dy * (1-dx);
|
217 |
+
|
218 |
+
if (iy < rd && ix > 0 && within_bounds(h1, w1, H1, W1))
|
219 |
+
g += *(grad_ptr + ix_sw) * (1-dy) * dx;
|
220 |
+
|
221 |
+
if (iy < rd && ix < rd && within_bounds(h1, w1, H1, W1))
|
222 |
+
g += *(grad_ptr + ix_se) * (1-dy) * (1-dx);
|
223 |
+
|
224 |
+
for (int k=0; k<CHANNEL_STRIDE; k++) {
|
225 |
+
f1_grad[k][tid] += g * f2[k][tid];
|
226 |
+
f2_grad[k][tid] += g * f1[k][tid];
|
227 |
+
}
|
228 |
+
|
229 |
+
for (int k=0; k<BLOCK_HW; k+=BLOCK_HW/CHANNEL_STRIDE) {
|
230 |
+
int k1 = k + tid / CHANNEL_STRIDE;
|
231 |
+
int h2 = static_cast<int>(floor(y2s[k1]))-r+iy;
|
232 |
+
int w2 = static_cast<int>(floor(x2s[k1]))-r+ix;
|
233 |
+
int c2 = tid % CHANNEL_STRIDE;
|
234 |
+
|
235 |
+
scalar_t* fptr = &fmap2_grad[b][h2][w2][0];
|
236 |
+
if (within_bounds(h2, w2, H2, W2))
|
237 |
+
atomicAdd(fptr+c+c2, f2_grad[c2][k1]);
|
238 |
+
}
|
239 |
+
}
|
240 |
+
}
|
241 |
+
}
|
242 |
+
__syncthreads();
|
243 |
+
|
244 |
+
|
245 |
+
for (int k=0; k<BLOCK_HW; k+=BLOCK_HW/CHANNEL_STRIDE) {
|
246 |
+
int k1 = k + tid / CHANNEL_STRIDE;
|
247 |
+
int h1 = h0 + k1 / BLOCK_W;
|
248 |
+
int w1 = w0 + k1 % BLOCK_W;
|
249 |
+
int c1 = tid % CHANNEL_STRIDE;
|
250 |
+
|
251 |
+
scalar_t* fptr = &fmap1_grad[b][h1][w1][0];
|
252 |
+
if (within_bounds(h1, w1, H1, W1))
|
253 |
+
fptr[c+c1] += f1_grad[c1][k1];
|
254 |
+
}
|
255 |
+
}
|
256 |
+
}
|
257 |
+
|
258 |
+
|
259 |
+
|
260 |
+
std::vector<torch::Tensor> corr_cuda_forward(
|
261 |
+
torch::Tensor fmap1,
|
262 |
+
torch::Tensor fmap2,
|
263 |
+
torch::Tensor coords,
|
264 |
+
int radius)
|
265 |
+
{
|
266 |
+
const auto B = coords.size(0);
|
267 |
+
const auto N = coords.size(1);
|
268 |
+
const auto H = coords.size(2);
|
269 |
+
const auto W = coords.size(3);
|
270 |
+
|
271 |
+
const auto rd = 2 * radius + 1;
|
272 |
+
auto opts = fmap1.options();
|
273 |
+
auto corr = torch::zeros({B, N, rd*rd, H, W}, opts);
|
274 |
+
|
275 |
+
const dim3 blocks(B, (H+BLOCK_H-1)/BLOCK_H, (W+BLOCK_W-1)/BLOCK_W);
|
276 |
+
const dim3 threads(BLOCK_H, BLOCK_W);
|
277 |
+
|
278 |
+
corr_forward_kernel<float><<<blocks, threads>>>(
|
279 |
+
fmap1.packed_accessor32<float,4,torch::RestrictPtrTraits>(),
|
280 |
+
fmap2.packed_accessor32<float,4,torch::RestrictPtrTraits>(),
|
281 |
+
coords.packed_accessor32<float,5,torch::RestrictPtrTraits>(),
|
282 |
+
corr.packed_accessor32<float,5,torch::RestrictPtrTraits>(),
|
283 |
+
radius);
|
284 |
+
|
285 |
+
return {corr};
|
286 |
+
}
|
287 |
+
|
288 |
+
std::vector<torch::Tensor> corr_cuda_backward(
|
289 |
+
torch::Tensor fmap1,
|
290 |
+
torch::Tensor fmap2,
|
291 |
+
torch::Tensor coords,
|
292 |
+
torch::Tensor corr_grad,
|
293 |
+
int radius)
|
294 |
+
{
|
295 |
+
const auto B = coords.size(0);
|
296 |
+
const auto N = coords.size(1);
|
297 |
+
|
298 |
+
const auto H1 = fmap1.size(1);
|
299 |
+
const auto W1 = fmap1.size(2);
|
300 |
+
const auto H2 = fmap2.size(1);
|
301 |
+
const auto W2 = fmap2.size(2);
|
302 |
+
const auto C = fmap1.size(3);
|
303 |
+
|
304 |
+
auto opts = fmap1.options();
|
305 |
+
auto fmap1_grad = torch::zeros({B, H1, W1, C}, opts);
|
306 |
+
auto fmap2_grad = torch::zeros({B, H2, W2, C}, opts);
|
307 |
+
auto coords_grad = torch::zeros({B, N, H1, W1, 2}, opts);
|
308 |
+
|
309 |
+
const dim3 blocks(B, (H1+BLOCK_H-1)/BLOCK_H, (W1+BLOCK_W-1)/BLOCK_W);
|
310 |
+
const dim3 threads(BLOCK_H, BLOCK_W);
|
311 |
+
|
312 |
+
|
313 |
+
corr_backward_kernel<float><<<blocks, threads>>>(
|
314 |
+
fmap1.packed_accessor32<float,4,torch::RestrictPtrTraits>(),
|
315 |
+
fmap2.packed_accessor32<float,4,torch::RestrictPtrTraits>(),
|
316 |
+
coords.packed_accessor32<float,5,torch::RestrictPtrTraits>(),
|
317 |
+
corr_grad.packed_accessor32<float,5,torch::RestrictPtrTraits>(),
|
318 |
+
fmap1_grad.packed_accessor32<float,4,torch::RestrictPtrTraits>(),
|
319 |
+
fmap2_grad.packed_accessor32<float,4,torch::RestrictPtrTraits>(),
|
320 |
+
coords_grad.packed_accessor32<float,5,torch::RestrictPtrTraits>(),
|
321 |
+
radius);
|
322 |
+
|
323 |
+
return {fmap1_grad, fmap2_grad, coords_grad};
|
324 |
+
}
|
causalvideovae/eval/RAFT/core/__init__.py
ADDED
File without changes
|
causalvideovae/eval/RAFT/core/datasets.py
ADDED
@@ -0,0 +1,235 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Data loading based on https://github.com/NVIDIA/flownet2-pytorch
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
import torch.utils.data as data
|
6 |
+
import torch.nn.functional as F
|
7 |
+
|
8 |
+
import os
|
9 |
+
import math
|
10 |
+
import random
|
11 |
+
from glob import glob
|
12 |
+
import os.path as osp
|
13 |
+
|
14 |
+
from .utils import frame_utils
|
15 |
+
from .utils.augmentor import FlowAugmentor, SparseFlowAugmentor
|
16 |
+
|
17 |
+
|
18 |
+
class FlowDataset(data.Dataset):
|
19 |
+
def __init__(self, aug_params=None, sparse=False):
|
20 |
+
self.augmentor = None
|
21 |
+
self.sparse = sparse
|
22 |
+
if aug_params is not None:
|
23 |
+
if sparse:
|
24 |
+
self.augmentor = SparseFlowAugmentor(**aug_params)
|
25 |
+
else:
|
26 |
+
self.augmentor = FlowAugmentor(**aug_params)
|
27 |
+
|
28 |
+
self.is_test = False
|
29 |
+
self.init_seed = False
|
30 |
+
self.flow_list = []
|
31 |
+
self.image_list = []
|
32 |
+
self.extra_info = []
|
33 |
+
|
34 |
+
def __getitem__(self, index):
|
35 |
+
|
36 |
+
if self.is_test:
|
37 |
+
img1 = frame_utils.read_gen(self.image_list[index][0])
|
38 |
+
img2 = frame_utils.read_gen(self.image_list[index][1])
|
39 |
+
img1 = np.array(img1).astype(np.uint8)[..., :3]
|
40 |
+
img2 = np.array(img2).astype(np.uint8)[..., :3]
|
41 |
+
img1 = torch.from_numpy(img1).permute(2, 0, 1).float()
|
42 |
+
img2 = torch.from_numpy(img2).permute(2, 0, 1).float()
|
43 |
+
return img1, img2, self.extra_info[index]
|
44 |
+
|
45 |
+
if not self.init_seed:
|
46 |
+
worker_info = torch.utils.data.get_worker_info()
|
47 |
+
if worker_info is not None:
|
48 |
+
torch.manual_seed(worker_info.id)
|
49 |
+
np.random.seed(worker_info.id)
|
50 |
+
random.seed(worker_info.id)
|
51 |
+
self.init_seed = True
|
52 |
+
|
53 |
+
index = index % len(self.image_list)
|
54 |
+
valid = None
|
55 |
+
if self.sparse:
|
56 |
+
flow, valid = frame_utils.readFlowKITTI(self.flow_list[index])
|
57 |
+
else:
|
58 |
+
flow = frame_utils.read_gen(self.flow_list[index])
|
59 |
+
|
60 |
+
img1 = frame_utils.read_gen(self.image_list[index][0])
|
61 |
+
img2 = frame_utils.read_gen(self.image_list[index][1])
|
62 |
+
|
63 |
+
flow = np.array(flow).astype(np.float32)
|
64 |
+
img1 = np.array(img1).astype(np.uint8)
|
65 |
+
img2 = np.array(img2).astype(np.uint8)
|
66 |
+
|
67 |
+
# grayscale images
|
68 |
+
if len(img1.shape) == 2:
|
69 |
+
img1 = np.tile(img1[...,None], (1, 1, 3))
|
70 |
+
img2 = np.tile(img2[...,None], (1, 1, 3))
|
71 |
+
else:
|
72 |
+
img1 = img1[..., :3]
|
73 |
+
img2 = img2[..., :3]
|
74 |
+
|
75 |
+
if self.augmentor is not None:
|
76 |
+
if self.sparse:
|
77 |
+
img1, img2, flow, valid = self.augmentor(img1, img2, flow, valid)
|
78 |
+
else:
|
79 |
+
img1, img2, flow = self.augmentor(img1, img2, flow)
|
80 |
+
|
81 |
+
img1 = torch.from_numpy(img1).permute(2, 0, 1).float()
|
82 |
+
img2 = torch.from_numpy(img2).permute(2, 0, 1).float()
|
83 |
+
flow = torch.from_numpy(flow).permute(2, 0, 1).float()
|
84 |
+
|
85 |
+
if valid is not None:
|
86 |
+
valid = torch.from_numpy(valid)
|
87 |
+
else:
|
88 |
+
valid = (flow[0].abs() < 1000) & (flow[1].abs() < 1000)
|
89 |
+
|
90 |
+
return img1, img2, flow, valid.float()
|
91 |
+
|
92 |
+
|
93 |
+
def __rmul__(self, v):
|
94 |
+
self.flow_list = v * self.flow_list
|
95 |
+
self.image_list = v * self.image_list
|
96 |
+
return self
|
97 |
+
|
98 |
+
def __len__(self):
|
99 |
+
return len(self.image_list)
|
100 |
+
|
101 |
+
|
102 |
+
class MpiSintel(FlowDataset):
|
103 |
+
def __init__(self, aug_params=None, split='training', root='datasets/Sintel', dstype='clean'):
|
104 |
+
super(MpiSintel, self).__init__(aug_params)
|
105 |
+
flow_root = osp.join(root, split, 'flow')
|
106 |
+
image_root = osp.join(root, split, dstype)
|
107 |
+
|
108 |
+
if split == 'test':
|
109 |
+
self.is_test = True
|
110 |
+
|
111 |
+
for scene in os.listdir(image_root):
|
112 |
+
image_list = sorted(glob(osp.join(image_root, scene, '*.png')))
|
113 |
+
for i in range(len(image_list)-1):
|
114 |
+
self.image_list += [ [image_list[i], image_list[i+1]] ]
|
115 |
+
self.extra_info += [ (scene, i) ] # scene and frame_id
|
116 |
+
|
117 |
+
if split != 'test':
|
118 |
+
self.flow_list += sorted(glob(osp.join(flow_root, scene, '*.flo')))
|
119 |
+
|
120 |
+
|
121 |
+
class FlyingChairs(FlowDataset):
|
122 |
+
def __init__(self, aug_params=None, split='train', root='datasets/FlyingChairs_release/data'):
|
123 |
+
super(FlyingChairs, self).__init__(aug_params)
|
124 |
+
|
125 |
+
images = sorted(glob(osp.join(root, '*.ppm')))
|
126 |
+
flows = sorted(glob(osp.join(root, '*.flo')))
|
127 |
+
assert (len(images)//2 == len(flows))
|
128 |
+
|
129 |
+
split_list = np.loadtxt('chairs_split.txt', dtype=np.int32)
|
130 |
+
for i in range(len(flows)):
|
131 |
+
xid = split_list[i]
|
132 |
+
if (split=='training' and xid==1) or (split=='validation' and xid==2):
|
133 |
+
self.flow_list += [ flows[i] ]
|
134 |
+
self.image_list += [ [images[2*i], images[2*i+1]] ]
|
135 |
+
|
136 |
+
|
137 |
+
class FlyingThings3D(FlowDataset):
|
138 |
+
def __init__(self, aug_params=None, root='datasets/FlyingThings3D', dstype='frames_cleanpass'):
|
139 |
+
super(FlyingThings3D, self).__init__(aug_params)
|
140 |
+
|
141 |
+
for cam in ['left']:
|
142 |
+
for direction in ['into_future', 'into_past']:
|
143 |
+
image_dirs = sorted(glob(osp.join(root, dstype, 'TRAIN/*/*')))
|
144 |
+
image_dirs = sorted([osp.join(f, cam) for f in image_dirs])
|
145 |
+
|
146 |
+
flow_dirs = sorted(glob(osp.join(root, 'optical_flow/TRAIN/*/*')))
|
147 |
+
flow_dirs = sorted([osp.join(f, direction, cam) for f in flow_dirs])
|
148 |
+
|
149 |
+
for idir, fdir in zip(image_dirs, flow_dirs):
|
150 |
+
images = sorted(glob(osp.join(idir, '*.png')) )
|
151 |
+
flows = sorted(glob(osp.join(fdir, '*.pfm')) )
|
152 |
+
for i in range(len(flows)-1):
|
153 |
+
if direction == 'into_future':
|
154 |
+
self.image_list += [ [images[i], images[i+1]] ]
|
155 |
+
self.flow_list += [ flows[i] ]
|
156 |
+
elif direction == 'into_past':
|
157 |
+
self.image_list += [ [images[i+1], images[i]] ]
|
158 |
+
self.flow_list += [ flows[i+1] ]
|
159 |
+
|
160 |
+
|
161 |
+
class KITTI(FlowDataset):
|
162 |
+
def __init__(self, aug_params=None, split='training', root='datasets/KITTI'):
|
163 |
+
super(KITTI, self).__init__(aug_params, sparse=True)
|
164 |
+
if split == 'testing':
|
165 |
+
self.is_test = True
|
166 |
+
|
167 |
+
root = osp.join(root, split)
|
168 |
+
images1 = sorted(glob(osp.join(root, 'image_2/*_10.png')))
|
169 |
+
images2 = sorted(glob(osp.join(root, 'image_2/*_11.png')))
|
170 |
+
|
171 |
+
for img1, img2 in zip(images1, images2):
|
172 |
+
frame_id = img1.split('/')[-1]
|
173 |
+
self.extra_info += [ [frame_id] ]
|
174 |
+
self.image_list += [ [img1, img2] ]
|
175 |
+
|
176 |
+
if split == 'training':
|
177 |
+
self.flow_list = sorted(glob(osp.join(root, 'flow_occ/*_10.png')))
|
178 |
+
|
179 |
+
|
180 |
+
class HD1K(FlowDataset):
|
181 |
+
def __init__(self, aug_params=None, root='datasets/HD1k'):
|
182 |
+
super(HD1K, self).__init__(aug_params, sparse=True)
|
183 |
+
|
184 |
+
seq_ix = 0
|
185 |
+
while 1:
|
186 |
+
flows = sorted(glob(os.path.join(root, 'hd1k_flow_gt', 'flow_occ/%06d_*.png' % seq_ix)))
|
187 |
+
images = sorted(glob(os.path.join(root, 'hd1k_input', 'image_2/%06d_*.png' % seq_ix)))
|
188 |
+
|
189 |
+
if len(flows) == 0:
|
190 |
+
break
|
191 |
+
|
192 |
+
for i in range(len(flows)-1):
|
193 |
+
self.flow_list += [flows[i]]
|
194 |
+
self.image_list += [ [images[i], images[i+1]] ]
|
195 |
+
|
196 |
+
seq_ix += 1
|
197 |
+
|
198 |
+
|
199 |
+
def fetch_dataloader(args, TRAIN_DS='C+T+K+S+H'):
|
200 |
+
""" Create the data loader for the corresponding trainign set """
|
201 |
+
|
202 |
+
if args.stage == 'chairs':
|
203 |
+
aug_params = {'crop_size': args.image_size, 'min_scale': -0.1, 'max_scale': 1.0, 'do_flip': True}
|
204 |
+
train_dataset = FlyingChairs(aug_params, split='training')
|
205 |
+
|
206 |
+
elif args.stage == 'things':
|
207 |
+
aug_params = {'crop_size': args.image_size, 'min_scale': -0.4, 'max_scale': 0.8, 'do_flip': True}
|
208 |
+
clean_dataset = FlyingThings3D(aug_params, dstype='frames_cleanpass')
|
209 |
+
final_dataset = FlyingThings3D(aug_params, dstype='frames_finalpass')
|
210 |
+
train_dataset = clean_dataset + final_dataset
|
211 |
+
|
212 |
+
elif args.stage == 'sintel':
|
213 |
+
aug_params = {'crop_size': args.image_size, 'min_scale': -0.2, 'max_scale': 0.6, 'do_flip': True}
|
214 |
+
things = FlyingThings3D(aug_params, dstype='frames_cleanpass')
|
215 |
+
sintel_clean = MpiSintel(aug_params, split='training', dstype='clean')
|
216 |
+
sintel_final = MpiSintel(aug_params, split='training', dstype='final')
|
217 |
+
|
218 |
+
if TRAIN_DS == 'C+T+K+S+H':
|
219 |
+
kitti = KITTI({'crop_size': args.image_size, 'min_scale': -0.3, 'max_scale': 0.5, 'do_flip': True})
|
220 |
+
hd1k = HD1K({'crop_size': args.image_size, 'min_scale': -0.5, 'max_scale': 0.2, 'do_flip': True})
|
221 |
+
train_dataset = 100*sintel_clean + 100*sintel_final + 200*kitti + 5*hd1k + things
|
222 |
+
|
223 |
+
elif TRAIN_DS == 'C+T+K/S':
|
224 |
+
train_dataset = 100*sintel_clean + 100*sintel_final + things
|
225 |
+
|
226 |
+
elif args.stage == 'kitti':
|
227 |
+
aug_params = {'crop_size': args.image_size, 'min_scale': -0.2, 'max_scale': 0.4, 'do_flip': False}
|
228 |
+
train_dataset = KITTI(aug_params, split='training')
|
229 |
+
|
230 |
+
train_loader = data.DataLoader(train_dataset, batch_size=args.batch_size,
|
231 |
+
pin_memory=False, shuffle=True, num_workers=4, drop_last=True)
|
232 |
+
|
233 |
+
print('Training with %d image pairs' % len(train_dataset))
|
234 |
+
return train_loader
|
235 |
+
|
causalvideovae/eval/RAFT/core/extractor.py
ADDED
@@ -0,0 +1,267 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
|
5 |
+
|
6 |
+
class ResidualBlock(nn.Module):
|
7 |
+
def __init__(self, in_planes, planes, norm_fn='group', stride=1):
|
8 |
+
super(ResidualBlock, self).__init__()
|
9 |
+
|
10 |
+
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, padding=1, stride=stride)
|
11 |
+
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, padding=1)
|
12 |
+
self.relu = nn.ReLU(inplace=True)
|
13 |
+
|
14 |
+
num_groups = planes // 8
|
15 |
+
|
16 |
+
if norm_fn == 'group':
|
17 |
+
self.norm1 = nn.GroupNorm(num_groups=num_groups, num_channels=planes)
|
18 |
+
self.norm2 = nn.GroupNorm(num_groups=num_groups, num_channels=planes)
|
19 |
+
if not stride == 1:
|
20 |
+
self.norm3 = nn.GroupNorm(num_groups=num_groups, num_channels=planes)
|
21 |
+
|
22 |
+
elif norm_fn == 'batch':
|
23 |
+
self.norm1 = nn.BatchNorm2d(planes)
|
24 |
+
self.norm2 = nn.BatchNorm2d(planes)
|
25 |
+
if not stride == 1:
|
26 |
+
self.norm3 = nn.BatchNorm2d(planes)
|
27 |
+
|
28 |
+
elif norm_fn == 'instance':
|
29 |
+
self.norm1 = nn.InstanceNorm2d(planes)
|
30 |
+
self.norm2 = nn.InstanceNorm2d(planes)
|
31 |
+
if not stride == 1:
|
32 |
+
self.norm3 = nn.InstanceNorm2d(planes)
|
33 |
+
|
34 |
+
elif norm_fn == 'none':
|
35 |
+
self.norm1 = nn.Sequential()
|
36 |
+
self.norm2 = nn.Sequential()
|
37 |
+
if not stride == 1:
|
38 |
+
self.norm3 = nn.Sequential()
|
39 |
+
|
40 |
+
if stride == 1:
|
41 |
+
self.downsample = None
|
42 |
+
|
43 |
+
else:
|
44 |
+
self.downsample = nn.Sequential(
|
45 |
+
nn.Conv2d(in_planes, planes, kernel_size=1, stride=stride), self.norm3)
|
46 |
+
|
47 |
+
|
48 |
+
def forward(self, x):
|
49 |
+
y = x
|
50 |
+
y = self.relu(self.norm1(self.conv1(y)))
|
51 |
+
y = self.relu(self.norm2(self.conv2(y)))
|
52 |
+
|
53 |
+
if self.downsample is not None:
|
54 |
+
x = self.downsample(x)
|
55 |
+
|
56 |
+
return self.relu(x+y)
|
57 |
+
|
58 |
+
|
59 |
+
|
60 |
+
class BottleneckBlock(nn.Module):
|
61 |
+
def __init__(self, in_planes, planes, norm_fn='group', stride=1):
|
62 |
+
super(BottleneckBlock, self).__init__()
|
63 |
+
|
64 |
+
self.conv1 = nn.Conv2d(in_planes, planes//4, kernel_size=1, padding=0)
|
65 |
+
self.conv2 = nn.Conv2d(planes//4, planes//4, kernel_size=3, padding=1, stride=stride)
|
66 |
+
self.conv3 = nn.Conv2d(planes//4, planes, kernel_size=1, padding=0)
|
67 |
+
self.relu = nn.ReLU(inplace=True)
|
68 |
+
|
69 |
+
num_groups = planes // 8
|
70 |
+
|
71 |
+
if norm_fn == 'group':
|
72 |
+
self.norm1 = nn.GroupNorm(num_groups=num_groups, num_channels=planes//4)
|
73 |
+
self.norm2 = nn.GroupNorm(num_groups=num_groups, num_channels=planes//4)
|
74 |
+
self.norm3 = nn.GroupNorm(num_groups=num_groups, num_channels=planes)
|
75 |
+
if not stride == 1:
|
76 |
+
self.norm4 = nn.GroupNorm(num_groups=num_groups, num_channels=planes)
|
77 |
+
|
78 |
+
elif norm_fn == 'batch':
|
79 |
+
self.norm1 = nn.BatchNorm2d(planes//4)
|
80 |
+
self.norm2 = nn.BatchNorm2d(planes//4)
|
81 |
+
self.norm3 = nn.BatchNorm2d(planes)
|
82 |
+
if not stride == 1:
|
83 |
+
self.norm4 = nn.BatchNorm2d(planes)
|
84 |
+
|
85 |
+
elif norm_fn == 'instance':
|
86 |
+
self.norm1 = nn.InstanceNorm2d(planes//4)
|
87 |
+
self.norm2 = nn.InstanceNorm2d(planes//4)
|
88 |
+
self.norm3 = nn.InstanceNorm2d(planes)
|
89 |
+
if not stride == 1:
|
90 |
+
self.norm4 = nn.InstanceNorm2d(planes)
|
91 |
+
|
92 |
+
elif norm_fn == 'none':
|
93 |
+
self.norm1 = nn.Sequential()
|
94 |
+
self.norm2 = nn.Sequential()
|
95 |
+
self.norm3 = nn.Sequential()
|
96 |
+
if not stride == 1:
|
97 |
+
self.norm4 = nn.Sequential()
|
98 |
+
|
99 |
+
if stride == 1:
|
100 |
+
self.downsample = None
|
101 |
+
|
102 |
+
else:
|
103 |
+
self.downsample = nn.Sequential(
|
104 |
+
nn.Conv2d(in_planes, planes, kernel_size=1, stride=stride), self.norm4)
|
105 |
+
|
106 |
+
|
107 |
+
def forward(self, x):
|
108 |
+
y = x
|
109 |
+
y = self.relu(self.norm1(self.conv1(y)))
|
110 |
+
y = self.relu(self.norm2(self.conv2(y)))
|
111 |
+
y = self.relu(self.norm3(self.conv3(y)))
|
112 |
+
|
113 |
+
if self.downsample is not None:
|
114 |
+
x = self.downsample(x)
|
115 |
+
|
116 |
+
return self.relu(x+y)
|
117 |
+
|
118 |
+
class BasicEncoder(nn.Module):
|
119 |
+
def __init__(self, output_dim=128, norm_fn='batch', dropout=0.0):
|
120 |
+
super(BasicEncoder, self).__init__()
|
121 |
+
self.norm_fn = norm_fn
|
122 |
+
|
123 |
+
if self.norm_fn == 'group':
|
124 |
+
self.norm1 = nn.GroupNorm(num_groups=8, num_channels=64)
|
125 |
+
|
126 |
+
elif self.norm_fn == 'batch':
|
127 |
+
self.norm1 = nn.BatchNorm2d(64)
|
128 |
+
|
129 |
+
elif self.norm_fn == 'instance':
|
130 |
+
self.norm1 = nn.InstanceNorm2d(64)
|
131 |
+
|
132 |
+
elif self.norm_fn == 'none':
|
133 |
+
self.norm1 = nn.Sequential()
|
134 |
+
|
135 |
+
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3)
|
136 |
+
self.relu1 = nn.ReLU(inplace=True)
|
137 |
+
|
138 |
+
self.in_planes = 64
|
139 |
+
self.layer1 = self._make_layer(64, stride=1)
|
140 |
+
self.layer2 = self._make_layer(96, stride=2)
|
141 |
+
self.layer3 = self._make_layer(128, stride=2)
|
142 |
+
|
143 |
+
# output convolution
|
144 |
+
self.conv2 = nn.Conv2d(128, output_dim, kernel_size=1)
|
145 |
+
|
146 |
+
self.dropout = None
|
147 |
+
if dropout > 0:
|
148 |
+
self.dropout = nn.Dropout2d(p=dropout)
|
149 |
+
|
150 |
+
for m in self.modules():
|
151 |
+
if isinstance(m, nn.Conv2d):
|
152 |
+
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
|
153 |
+
elif isinstance(m, (nn.BatchNorm2d, nn.InstanceNorm2d, nn.GroupNorm)):
|
154 |
+
if m.weight is not None:
|
155 |
+
nn.init.constant_(m.weight, 1)
|
156 |
+
if m.bias is not None:
|
157 |
+
nn.init.constant_(m.bias, 0)
|
158 |
+
|
159 |
+
def _make_layer(self, dim, stride=1):
|
160 |
+
layer1 = ResidualBlock(self.in_planes, dim, self.norm_fn, stride=stride)
|
161 |
+
layer2 = ResidualBlock(dim, dim, self.norm_fn, stride=1)
|
162 |
+
layers = (layer1, layer2)
|
163 |
+
|
164 |
+
self.in_planes = dim
|
165 |
+
return nn.Sequential(*layers)
|
166 |
+
|
167 |
+
|
168 |
+
def forward(self, x):
|
169 |
+
|
170 |
+
# if input is list, combine batch dimension
|
171 |
+
is_list = isinstance(x, tuple) or isinstance(x, list)
|
172 |
+
if is_list:
|
173 |
+
batch_dim = x[0].shape[0]
|
174 |
+
x = torch.cat(x, dim=0)
|
175 |
+
|
176 |
+
x = self.conv1(x)
|
177 |
+
x = self.norm1(x)
|
178 |
+
x = self.relu1(x)
|
179 |
+
|
180 |
+
x = self.layer1(x)
|
181 |
+
x = self.layer2(x)
|
182 |
+
x = self.layer3(x)
|
183 |
+
|
184 |
+
x = self.conv2(x)
|
185 |
+
|
186 |
+
if self.training and self.dropout is not None:
|
187 |
+
x = self.dropout(x)
|
188 |
+
|
189 |
+
if is_list:
|
190 |
+
x = torch.split(x, [batch_dim, batch_dim], dim=0)
|
191 |
+
|
192 |
+
return x
|
193 |
+
|
194 |
+
|
195 |
+
class SmallEncoder(nn.Module):
|
196 |
+
def __init__(self, output_dim=128, norm_fn='batch', dropout=0.0):
|
197 |
+
super(SmallEncoder, self).__init__()
|
198 |
+
self.norm_fn = norm_fn
|
199 |
+
|
200 |
+
if self.norm_fn == 'group':
|
201 |
+
self.norm1 = nn.GroupNorm(num_groups=8, num_channels=32)
|
202 |
+
|
203 |
+
elif self.norm_fn == 'batch':
|
204 |
+
self.norm1 = nn.BatchNorm2d(32)
|
205 |
+
|
206 |
+
elif self.norm_fn == 'instance':
|
207 |
+
self.norm1 = nn.InstanceNorm2d(32)
|
208 |
+
|
209 |
+
elif self.norm_fn == 'none':
|
210 |
+
self.norm1 = nn.Sequential()
|
211 |
+
|
212 |
+
self.conv1 = nn.Conv2d(3, 32, kernel_size=7, stride=2, padding=3)
|
213 |
+
self.relu1 = nn.ReLU(inplace=True)
|
214 |
+
|
215 |
+
self.in_planes = 32
|
216 |
+
self.layer1 = self._make_layer(32, stride=1)
|
217 |
+
self.layer2 = self._make_layer(64, stride=2)
|
218 |
+
self.layer3 = self._make_layer(96, stride=2)
|
219 |
+
|
220 |
+
self.dropout = None
|
221 |
+
if dropout > 0:
|
222 |
+
self.dropout = nn.Dropout2d(p=dropout)
|
223 |
+
|
224 |
+
self.conv2 = nn.Conv2d(96, output_dim, kernel_size=1)
|
225 |
+
|
226 |
+
for m in self.modules():
|
227 |
+
if isinstance(m, nn.Conv2d):
|
228 |
+
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
|
229 |
+
elif isinstance(m, (nn.BatchNorm2d, nn.InstanceNorm2d, nn.GroupNorm)):
|
230 |
+
if m.weight is not None:
|
231 |
+
nn.init.constant_(m.weight, 1)
|
232 |
+
if m.bias is not None:
|
233 |
+
nn.init.constant_(m.bias, 0)
|
234 |
+
|
235 |
+
def _make_layer(self, dim, stride=1):
|
236 |
+
layer1 = BottleneckBlock(self.in_planes, dim, self.norm_fn, stride=stride)
|
237 |
+
layer2 = BottleneckBlock(dim, dim, self.norm_fn, stride=1)
|
238 |
+
layers = (layer1, layer2)
|
239 |
+
|
240 |
+
self.in_planes = dim
|
241 |
+
return nn.Sequential(*layers)
|
242 |
+
|
243 |
+
|
244 |
+
def forward(self, x):
|
245 |
+
|
246 |
+
# if input is list, combine batch dimension
|
247 |
+
is_list = isinstance(x, tuple) or isinstance(x, list)
|
248 |
+
if is_list:
|
249 |
+
batch_dim = x[0].shape[0]
|
250 |
+
x = torch.cat(x, dim=0)
|
251 |
+
|
252 |
+
x = self.conv1(x)
|
253 |
+
x = self.norm1(x)
|
254 |
+
x = self.relu1(x)
|
255 |
+
|
256 |
+
x = self.layer1(x)
|
257 |
+
x = self.layer2(x)
|
258 |
+
x = self.layer3(x)
|
259 |
+
x = self.conv2(x)
|
260 |
+
|
261 |
+
if self.training and self.dropout is not None:
|
262 |
+
x = self.dropout(x)
|
263 |
+
|
264 |
+
if is_list:
|
265 |
+
x = torch.split(x, [batch_dim, batch_dim], dim=0)
|
266 |
+
|
267 |
+
return x
|
causalvideovae/eval/RAFT/models.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4be6101b271f58ec49866da5cf609fd17e86e9cae2483f70630ef4a295dc66bd
|
3 |
+
size 81977417
|
causalvideovae/eval/cal_ssim.py
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
from tqdm import tqdm
|
4 |
+
import cv2
|
5 |
+
|
6 |
+
def ssim(img1, img2):
|
7 |
+
C1 = 0.01 ** 2
|
8 |
+
C2 = 0.03 ** 2
|
9 |
+
img1 = img1.astype(np.float64)
|
10 |
+
img2 = img2.astype(np.float64)
|
11 |
+
kernel = cv2.getGaussianKernel(11, 1.5)
|
12 |
+
window = np.outer(kernel, kernel.transpose())
|
13 |
+
mu1 = cv2.filter2D(img1, -1, window)[5:-5, 5:-5] # valid
|
14 |
+
mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5]
|
15 |
+
mu1_sq = mu1 ** 2
|
16 |
+
mu2_sq = mu2 ** 2
|
17 |
+
mu1_mu2 = mu1 * mu2
|
18 |
+
sigma1_sq = cv2.filter2D(img1 ** 2, -1, window)[5:-5, 5:-5] - mu1_sq
|
19 |
+
sigma2_sq = cv2.filter2D(img2 ** 2, -1, window)[5:-5, 5:-5] - mu2_sq
|
20 |
+
sigma12 = cv2.filter2D(img1 * img2, -1, window)[5:-5, 5:-5] - mu1_mu2
|
21 |
+
ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) *
|
22 |
+
(sigma1_sq + sigma2_sq + C2))
|
23 |
+
return ssim_map.mean()
|
24 |
+
|
25 |
+
|
26 |
+
def calculate_ssim_function(img1, img2):
|
27 |
+
# [0,1]
|
28 |
+
# ssim is the only metric extremely sensitive to gray being compared to b/w
|
29 |
+
if not img1.shape == img2.shape:
|
30 |
+
raise ValueError('Input images must have the same dimensions.')
|
31 |
+
if img1.ndim == 2:
|
32 |
+
return ssim(img1, img2)
|
33 |
+
elif img1.ndim == 3:
|
34 |
+
if img1.shape[0] == 3:
|
35 |
+
ssims = []
|
36 |
+
for i in range(3):
|
37 |
+
ssims.append(ssim(img1[i], img2[i]))
|
38 |
+
return np.array(ssims).mean()
|
39 |
+
elif img1.shape[0] == 1:
|
40 |
+
return ssim(np.squeeze(img1), np.squeeze(img2))
|
41 |
+
else:
|
42 |
+
raise ValueError('Wrong input image dimensions.')
|
43 |
+
|
44 |
+
def trans(x):
|
45 |
+
return x
|
46 |
+
|
47 |
+
def calculate_ssim(videos1, videos2):
|
48 |
+
print("calculate_ssim...")
|
49 |
+
|
50 |
+
# videos [batch_size, timestamps, channel, h, w]
|
51 |
+
|
52 |
+
assert videos1.shape == videos2.shape
|
53 |
+
|
54 |
+
videos1 = trans(videos1)
|
55 |
+
videos2 = trans(videos2)
|
56 |
+
|
57 |
+
ssim_results = []
|
58 |
+
|
59 |
+
for video_num in tqdm(range(videos1.shape[0])):
|
60 |
+
# get a video
|
61 |
+
# video [timestamps, channel, h, w]
|
62 |
+
video1 = videos1[video_num]
|
63 |
+
video2 = videos2[video_num]
|
64 |
+
|
65 |
+
ssim_results_of_a_video = []
|
66 |
+
for clip_timestamp in range(len(video1)):
|
67 |
+
# get a img
|
68 |
+
# img [timestamps[x], channel, h, w]
|
69 |
+
# img [channel, h, w] numpy
|
70 |
+
|
71 |
+
img1 = video1[clip_timestamp].numpy()
|
72 |
+
img2 = video2[clip_timestamp].numpy()
|
73 |
+
|
74 |
+
# calculate ssim of a video
|
75 |
+
ssim_results_of_a_video.append(calculate_ssim_function(img1, img2))
|
76 |
+
|
77 |
+
ssim_results.append(ssim_results_of_a_video)
|
78 |
+
|
79 |
+
ssim_results = np.array(ssim_results)
|
80 |
+
|
81 |
+
ssim = {}
|
82 |
+
ssim_std = {}
|
83 |
+
|
84 |
+
for clip_timestamp in range(len(video1)):
|
85 |
+
ssim[clip_timestamp] = np.mean(ssim_results[:,clip_timestamp])
|
86 |
+
ssim_std[clip_timestamp] = np.std(ssim_results[:,clip_timestamp])
|
87 |
+
|
88 |
+
result = {
|
89 |
+
"value": ssim,
|
90 |
+
"value_std": ssim_std,
|
91 |
+
"video_setting": video1.shape,
|
92 |
+
"video_setting_name": "time, channel, heigth, width",
|
93 |
+
}
|
94 |
+
|
95 |
+
return result
|
96 |
+
|
97 |
+
# test code / using example
|
98 |
+
|
99 |
+
def main():
|
100 |
+
NUMBER_OF_VIDEOS = 8
|
101 |
+
VIDEO_LENGTH = 50
|
102 |
+
CHANNEL = 3
|
103 |
+
SIZE = 64
|
104 |
+
videos1 = torch.zeros(NUMBER_OF_VIDEOS, VIDEO_LENGTH, CHANNEL, SIZE, SIZE, requires_grad=False)
|
105 |
+
videos2 = torch.zeros(NUMBER_OF_VIDEOS, VIDEO_LENGTH, CHANNEL, SIZE, SIZE, requires_grad=False)
|
106 |
+
device = torch.device("cuda")
|
107 |
+
|
108 |
+
import json
|
109 |
+
result = calculate_ssim(videos1, videos2)
|
110 |
+
print(json.dumps(result, indent=4))
|
111 |
+
|
112 |
+
if __name__ == "__main__":
|
113 |
+
main()
|
causalvideovae/eval/flolpips/correlation/correlation.py
ADDED
@@ -0,0 +1,397 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
import torch
|
4 |
+
|
5 |
+
import cupy#add
|
6 |
+
import re
|
7 |
+
|
8 |
+
kernel_Correlation_rearrange = '''
|
9 |
+
extern "C" __global__ void kernel_Correlation_rearrange(
|
10 |
+
const int n,
|
11 |
+
const float* input,
|
12 |
+
float* output
|
13 |
+
) {
|
14 |
+
int intIndex = (blockIdx.x * blockDim.x) + threadIdx.x;
|
15 |
+
|
16 |
+
if (intIndex >= n) {
|
17 |
+
return;
|
18 |
+
}
|
19 |
+
|
20 |
+
int intSample = blockIdx.z;
|
21 |
+
int intChannel = blockIdx.y;
|
22 |
+
|
23 |
+
float fltValue = input[(((intSample * SIZE_1(input)) + intChannel) * SIZE_2(input) * SIZE_3(input)) + intIndex];
|
24 |
+
|
25 |
+
__syncthreads();
|
26 |
+
|
27 |
+
int intPaddedY = (intIndex / SIZE_3(input)) + 4;
|
28 |
+
int intPaddedX = (intIndex % SIZE_3(input)) + 4;
|
29 |
+
int intRearrange = ((SIZE_3(input) + 8) * intPaddedY) + intPaddedX;
|
30 |
+
|
31 |
+
output[(((intSample * SIZE_1(output) * SIZE_2(output)) + intRearrange) * SIZE_1(input)) + intChannel] = fltValue;
|
32 |
+
}
|
33 |
+
'''
|
34 |
+
|
35 |
+
kernel_Correlation_updateOutput = '''
|
36 |
+
extern "C" __global__ void kernel_Correlation_updateOutput(
|
37 |
+
const int n,
|
38 |
+
const float* rbot0,
|
39 |
+
const float* rbot1,
|
40 |
+
float* top
|
41 |
+
) {
|
42 |
+
extern __shared__ char patch_data_char[];
|
43 |
+
|
44 |
+
float *patch_data = (float *)patch_data_char;
|
45 |
+
|
46 |
+
// First (upper left) position of kernel upper-left corner in current center position of neighborhood in image 1
|
47 |
+
int x1 = blockIdx.x + 4;
|
48 |
+
int y1 = blockIdx.y + 4;
|
49 |
+
int item = blockIdx.z;
|
50 |
+
int ch_off = threadIdx.x;
|
51 |
+
|
52 |
+
// Load 3D patch into shared shared memory
|
53 |
+
for (int j = 0; j < 1; j++) { // HEIGHT
|
54 |
+
for (int i = 0; i < 1; i++) { // WIDTH
|
55 |
+
int ji_off = (j + i) * SIZE_3(rbot0);
|
56 |
+
for (int ch = ch_off; ch < SIZE_3(rbot0); ch += 32) { // CHANNELS
|
57 |
+
int idx1 = ((item * SIZE_1(rbot0) + y1+j) * SIZE_2(rbot0) + x1+i) * SIZE_3(rbot0) + ch;
|
58 |
+
int idxPatchData = ji_off + ch;
|
59 |
+
patch_data[idxPatchData] = rbot0[idx1];
|
60 |
+
}
|
61 |
+
}
|
62 |
+
}
|
63 |
+
|
64 |
+
__syncthreads();
|
65 |
+
|
66 |
+
__shared__ float sum[32];
|
67 |
+
|
68 |
+
// Compute correlation
|
69 |
+
for (int top_channel = 0; top_channel < SIZE_1(top); top_channel++) {
|
70 |
+
sum[ch_off] = 0;
|
71 |
+
|
72 |
+
int s2o = top_channel % 9 - 4;
|
73 |
+
int s2p = top_channel / 9 - 4;
|
74 |
+
|
75 |
+
for (int j = 0; j < 1; j++) { // HEIGHT
|
76 |
+
for (int i = 0; i < 1; i++) { // WIDTH
|
77 |
+
int ji_off = (j + i) * SIZE_3(rbot0);
|
78 |
+
for (int ch = ch_off; ch < SIZE_3(rbot0); ch += 32) { // CHANNELS
|
79 |
+
int x2 = x1 + s2o;
|
80 |
+
int y2 = y1 + s2p;
|
81 |
+
|
82 |
+
int idxPatchData = ji_off + ch;
|
83 |
+
int idx2 = ((item * SIZE_1(rbot0) + y2+j) * SIZE_2(rbot0) + x2+i) * SIZE_3(rbot0) + ch;
|
84 |
+
|
85 |
+
sum[ch_off] += patch_data[idxPatchData] * rbot1[idx2];
|
86 |
+
}
|
87 |
+
}
|
88 |
+
}
|
89 |
+
|
90 |
+
__syncthreads();
|
91 |
+
|
92 |
+
if (ch_off == 0) {
|
93 |
+
float total_sum = 0;
|
94 |
+
for (int idx = 0; idx < 32; idx++) {
|
95 |
+
total_sum += sum[idx];
|
96 |
+
}
|
97 |
+
const int sumelems = SIZE_3(rbot0);
|
98 |
+
const int index = ((top_channel*SIZE_2(top) + blockIdx.y)*SIZE_3(top))+blockIdx.x;
|
99 |
+
top[index + item*SIZE_1(top)*SIZE_2(top)*SIZE_3(top)] = total_sum / (float)sumelems;
|
100 |
+
}
|
101 |
+
}
|
102 |
+
}
|
103 |
+
'''
|
104 |
+
|
105 |
+
kernel_Correlation_updateGradFirst = '''
|
106 |
+
#define ROUND_OFF 50000
|
107 |
+
|
108 |
+
extern "C" __global__ void kernel_Correlation_updateGradFirst(
|
109 |
+
const int n,
|
110 |
+
const int intSample,
|
111 |
+
const float* rbot0,
|
112 |
+
const float* rbot1,
|
113 |
+
const float* gradOutput,
|
114 |
+
float* gradFirst,
|
115 |
+
float* gradSecond
|
116 |
+
) { for (int intIndex = (blockIdx.x * blockDim.x) + threadIdx.x; intIndex < n; intIndex += blockDim.x * gridDim.x) {
|
117 |
+
int n = intIndex % SIZE_1(gradFirst); // channels
|
118 |
+
int l = (intIndex / SIZE_1(gradFirst)) % SIZE_3(gradFirst) + 4; // w-pos
|
119 |
+
int m = (intIndex / SIZE_1(gradFirst) / SIZE_3(gradFirst)) % SIZE_2(gradFirst) + 4; // h-pos
|
120 |
+
|
121 |
+
// round_off is a trick to enable integer division with ceil, even for negative numbers
|
122 |
+
// We use a large offset, for the inner part not to become negative.
|
123 |
+
const int round_off = ROUND_OFF;
|
124 |
+
const int round_off_s1 = round_off;
|
125 |
+
|
126 |
+
// We add round_off before_s1 the int division and subtract round_off after it, to ensure the formula matches ceil behavior:
|
127 |
+
int xmin = (l - 4 + round_off_s1 - 1) + 1 - round_off; // ceil (l - 4)
|
128 |
+
int ymin = (m - 4 + round_off_s1 - 1) + 1 - round_off; // ceil (l - 4)
|
129 |
+
|
130 |
+
// Same here:
|
131 |
+
int xmax = (l - 4 + round_off_s1) - round_off; // floor (l - 4)
|
132 |
+
int ymax = (m - 4 + round_off_s1) - round_off; // floor (m - 4)
|
133 |
+
|
134 |
+
float sum = 0;
|
135 |
+
if (xmax>=0 && ymax>=0 && (xmin<=SIZE_3(gradOutput)-1) && (ymin<=SIZE_2(gradOutput)-1)) {
|
136 |
+
xmin = max(0,xmin);
|
137 |
+
xmax = min(SIZE_3(gradOutput)-1,xmax);
|
138 |
+
|
139 |
+
ymin = max(0,ymin);
|
140 |
+
ymax = min(SIZE_2(gradOutput)-1,ymax);
|
141 |
+
|
142 |
+
for (int p = -4; p <= 4; p++) {
|
143 |
+
for (int o = -4; o <= 4; o++) {
|
144 |
+
// Get rbot1 data:
|
145 |
+
int s2o = o;
|
146 |
+
int s2p = p;
|
147 |
+
int idxbot1 = ((intSample * SIZE_1(rbot0) + (m+s2p)) * SIZE_2(rbot0) + (l+s2o)) * SIZE_3(rbot0) + n;
|
148 |
+
float bot1tmp = rbot1[idxbot1]; // rbot1[l+s2o,m+s2p,n]
|
149 |
+
|
150 |
+
// Index offset for gradOutput in following loops:
|
151 |
+
int op = (p+4) * 9 + (o+4); // index[o,p]
|
152 |
+
int idxopoffset = (intSample * SIZE_1(gradOutput) + op);
|
153 |
+
|
154 |
+
for (int y = ymin; y <= ymax; y++) {
|
155 |
+
for (int x = xmin; x <= xmax; x++) {
|
156 |
+
int idxgradOutput = (idxopoffset * SIZE_2(gradOutput) + y) * SIZE_3(gradOutput) + x; // gradOutput[x,y,o,p]
|
157 |
+
sum += gradOutput[idxgradOutput] * bot1tmp;
|
158 |
+
}
|
159 |
+
}
|
160 |
+
}
|
161 |
+
}
|
162 |
+
}
|
163 |
+
const int sumelems = SIZE_1(gradFirst);
|
164 |
+
const int bot0index = ((n * SIZE_2(gradFirst)) + (m-4)) * SIZE_3(gradFirst) + (l-4);
|
165 |
+
gradFirst[bot0index + intSample*SIZE_1(gradFirst)*SIZE_2(gradFirst)*SIZE_3(gradFirst)] = sum / (float)sumelems;
|
166 |
+
} }
|
167 |
+
'''
|
168 |
+
|
169 |
+
kernel_Correlation_updateGradSecond = '''
|
170 |
+
#define ROUND_OFF 50000
|
171 |
+
|
172 |
+
extern "C" __global__ void kernel_Correlation_updateGradSecond(
|
173 |
+
const int n,
|
174 |
+
const int intSample,
|
175 |
+
const float* rbot0,
|
176 |
+
const float* rbot1,
|
177 |
+
const float* gradOutput,
|
178 |
+
float* gradFirst,
|
179 |
+
float* gradSecond
|
180 |
+
) { for (int intIndex = (blockIdx.x * blockDim.x) + threadIdx.x; intIndex < n; intIndex += blockDim.x * gridDim.x) {
|
181 |
+
int n = intIndex % SIZE_1(gradSecond); // channels
|
182 |
+
int l = (intIndex / SIZE_1(gradSecond)) % SIZE_3(gradSecond) + 4; // w-pos
|
183 |
+
int m = (intIndex / SIZE_1(gradSecond) / SIZE_3(gradSecond)) % SIZE_2(gradSecond) + 4; // h-pos
|
184 |
+
|
185 |
+
// round_off is a trick to enable integer division with ceil, even for negative numbers
|
186 |
+
// We use a large offset, for the inner part not to become negative.
|
187 |
+
const int round_off = ROUND_OFF;
|
188 |
+
const int round_off_s1 = round_off;
|
189 |
+
|
190 |
+
float sum = 0;
|
191 |
+
for (int p = -4; p <= 4; p++) {
|
192 |
+
for (int o = -4; o <= 4; o++) {
|
193 |
+
int s2o = o;
|
194 |
+
int s2p = p;
|
195 |
+
|
196 |
+
//Get X,Y ranges and clamp
|
197 |
+
// We add round_off before_s1 the int division and subtract round_off after it, to ensure the formula matches ceil behavior:
|
198 |
+
int xmin = (l - 4 - s2o + round_off_s1 - 1) + 1 - round_off; // ceil (l - 4 - s2o)
|
199 |
+
int ymin = (m - 4 - s2p + round_off_s1 - 1) + 1 - round_off; // ceil (l - 4 - s2o)
|
200 |
+
|
201 |
+
// Same here:
|
202 |
+
int xmax = (l - 4 - s2o + round_off_s1) - round_off; // floor (l - 4 - s2o)
|
203 |
+
int ymax = (m - 4 - s2p + round_off_s1) - round_off; // floor (m - 4 - s2p)
|
204 |
+
|
205 |
+
if (xmax>=0 && ymax>=0 && (xmin<=SIZE_3(gradOutput)-1) && (ymin<=SIZE_2(gradOutput)-1)) {
|
206 |
+
xmin = max(0,xmin);
|
207 |
+
xmax = min(SIZE_3(gradOutput)-1,xmax);
|
208 |
+
|
209 |
+
ymin = max(0,ymin);
|
210 |
+
ymax = min(SIZE_2(gradOutput)-1,ymax);
|
211 |
+
|
212 |
+
// Get rbot0 data:
|
213 |
+
int idxbot0 = ((intSample * SIZE_1(rbot0) + (m-s2p)) * SIZE_2(rbot0) + (l-s2o)) * SIZE_3(rbot0) + n;
|
214 |
+
float bot0tmp = rbot0[idxbot0]; // rbot1[l+s2o,m+s2p,n]
|
215 |
+
|
216 |
+
// Index offset for gradOutput in following loops:
|
217 |
+
int op = (p+4) * 9 + (o+4); // index[o,p]
|
218 |
+
int idxopoffset = (intSample * SIZE_1(gradOutput) + op);
|
219 |
+
|
220 |
+
for (int y = ymin; y <= ymax; y++) {
|
221 |
+
for (int x = xmin; x <= xmax; x++) {
|
222 |
+
int idxgradOutput = (idxopoffset * SIZE_2(gradOutput) + y) * SIZE_3(gradOutput) + x; // gradOutput[x,y,o,p]
|
223 |
+
sum += gradOutput[idxgradOutput] * bot0tmp;
|
224 |
+
}
|
225 |
+
}
|
226 |
+
}
|
227 |
+
}
|
228 |
+
}
|
229 |
+
const int sumelems = SIZE_1(gradSecond);
|
230 |
+
const int bot1index = ((n * SIZE_2(gradSecond)) + (m-4)) * SIZE_3(gradSecond) + (l-4);
|
231 |
+
gradSecond[bot1index + intSample*SIZE_1(gradSecond)*SIZE_2(gradSecond)*SIZE_3(gradSecond)] = sum / (float)sumelems;
|
232 |
+
} }
|
233 |
+
'''
|
234 |
+
|
235 |
+
def cupy_kernel(strFunction, objVariables):
|
236 |
+
strKernel = globals()[strFunction]
|
237 |
+
|
238 |
+
while True:
|
239 |
+
objMatch = re.search('(SIZE_)([0-4])(\()([^\)]*)(\))', strKernel)
|
240 |
+
|
241 |
+
if objMatch is None:
|
242 |
+
break
|
243 |
+
# end
|
244 |
+
|
245 |
+
intArg = int(objMatch.group(2))
|
246 |
+
|
247 |
+
strTensor = objMatch.group(4)
|
248 |
+
intSizes = objVariables[strTensor].size()
|
249 |
+
|
250 |
+
strKernel = strKernel.replace(objMatch.group(), str(intSizes[intArg]))
|
251 |
+
# end
|
252 |
+
|
253 |
+
while True:
|
254 |
+
objMatch = re.search('(VALUE_)([0-4])(\()([^\)]+)(\))', strKernel)
|
255 |
+
|
256 |
+
if objMatch is None:
|
257 |
+
break
|
258 |
+
# end
|
259 |
+
|
260 |
+
intArgs = int(objMatch.group(2))
|
261 |
+
strArgs = objMatch.group(4).split(',')
|
262 |
+
|
263 |
+
strTensor = strArgs[0]
|
264 |
+
intStrides = objVariables[strTensor].stride()
|
265 |
+
strIndex = [ '((' + strArgs[intArg + 1].replace('{', '(').replace('}', ')').strip() + ')*' + str(intStrides[intArg]) + ')' for intArg in range(intArgs) ]
|
266 |
+
|
267 |
+
strKernel = strKernel.replace(objMatch.group(0), strTensor + '[' + str.join('+', strIndex) + ']')
|
268 |
+
# end
|
269 |
+
|
270 |
+
return strKernel
|
271 |
+
# end
|
272 |
+
|
273 |
+
@cupy.memoize(for_each_device=True)
|
274 |
+
def cupy_launch(strFunction, strKernel):
|
275 |
+
return cupy.RawKernel(strKernel, strFunction)
|
276 |
+
# end
|
277 |
+
|
278 |
+
class _FunctionCorrelation(torch.autograd.Function):
|
279 |
+
@staticmethod
|
280 |
+
def forward(self, first, second):
|
281 |
+
rbot0 = first.new_zeros([ first.shape[0], first.shape[2] + 8, first.shape[3] + 8, first.shape[1] ])
|
282 |
+
rbot1 = first.new_zeros([ first.shape[0], first.shape[2] + 8, first.shape[3] + 8, first.shape[1] ])
|
283 |
+
|
284 |
+
self.save_for_backward(first, second, rbot0, rbot1)
|
285 |
+
|
286 |
+
first = first.contiguous(); assert(first.is_cuda == True)
|
287 |
+
second = second.contiguous(); assert(second.is_cuda == True)
|
288 |
+
|
289 |
+
output = first.new_zeros([ first.shape[0], 81, first.shape[2], first.shape[3] ])
|
290 |
+
|
291 |
+
if first.is_cuda == True:
|
292 |
+
n = first.shape[2] * first.shape[3]
|
293 |
+
cupy_launch('kernel_Correlation_rearrange', cupy_kernel('kernel_Correlation_rearrange', {
|
294 |
+
'input': first,
|
295 |
+
'output': rbot0
|
296 |
+
}))(
|
297 |
+
grid=tuple([ int((n + 16 - 1) / 16), first.shape[1], first.shape[0] ]),
|
298 |
+
block=tuple([ 16, 1, 1 ]),
|
299 |
+
args=[ n, first.data_ptr(), rbot0.data_ptr() ]
|
300 |
+
)
|
301 |
+
|
302 |
+
n = second.shape[2] * second.shape[3]
|
303 |
+
cupy_launch('kernel_Correlation_rearrange', cupy_kernel('kernel_Correlation_rearrange', {
|
304 |
+
'input': second,
|
305 |
+
'output': rbot1
|
306 |
+
}))(
|
307 |
+
grid=tuple([ int((n + 16 - 1) / 16), second.shape[1], second.shape[0] ]),
|
308 |
+
block=tuple([ 16, 1, 1 ]),
|
309 |
+
args=[ n, second.data_ptr(), rbot1.data_ptr() ]
|
310 |
+
)
|
311 |
+
|
312 |
+
n = output.shape[1] * output.shape[2] * output.shape[3]
|
313 |
+
cupy_launch('kernel_Correlation_updateOutput', cupy_kernel('kernel_Correlation_updateOutput', {
|
314 |
+
'rbot0': rbot0,
|
315 |
+
'rbot1': rbot1,
|
316 |
+
'top': output
|
317 |
+
}))(
|
318 |
+
grid=tuple([ output.shape[3], output.shape[2], output.shape[0] ]),
|
319 |
+
block=tuple([ 32, 1, 1 ]),
|
320 |
+
shared_mem=first.shape[1] * 4,
|
321 |
+
args=[ n, rbot0.data_ptr(), rbot1.data_ptr(), output.data_ptr() ]
|
322 |
+
)
|
323 |
+
|
324 |
+
elif first.is_cuda == False:
|
325 |
+
raise NotImplementedError()
|
326 |
+
|
327 |
+
# end
|
328 |
+
|
329 |
+
return output
|
330 |
+
# end
|
331 |
+
|
332 |
+
@staticmethod
|
333 |
+
def backward(self, gradOutput):
|
334 |
+
first, second, rbot0, rbot1 = self.saved_tensors
|
335 |
+
|
336 |
+
gradOutput = gradOutput.contiguous(); assert(gradOutput.is_cuda == True)
|
337 |
+
|
338 |
+
gradFirst = first.new_zeros([ first.shape[0], first.shape[1], first.shape[2], first.shape[3] ]) if self.needs_input_grad[0] == True else None
|
339 |
+
gradSecond = first.new_zeros([ first.shape[0], first.shape[1], first.shape[2], first.shape[3] ]) if self.needs_input_grad[1] == True else None
|
340 |
+
|
341 |
+
if first.is_cuda == True:
|
342 |
+
if gradFirst is not None:
|
343 |
+
for intSample in range(first.shape[0]):
|
344 |
+
n = first.shape[1] * first.shape[2] * first.shape[3]
|
345 |
+
cupy_launch('kernel_Correlation_updateGradFirst', cupy_kernel('kernel_Correlation_updateGradFirst', {
|
346 |
+
'rbot0': rbot0,
|
347 |
+
'rbot1': rbot1,
|
348 |
+
'gradOutput': gradOutput,
|
349 |
+
'gradFirst': gradFirst,
|
350 |
+
'gradSecond': None
|
351 |
+
}))(
|
352 |
+
grid=tuple([ int((n + 512 - 1) / 512), 1, 1 ]),
|
353 |
+
block=tuple([ 512, 1, 1 ]),
|
354 |
+
args=[ n, intSample, rbot0.data_ptr(), rbot1.data_ptr(), gradOutput.data_ptr(), gradFirst.data_ptr(), None ]
|
355 |
+
)
|
356 |
+
# end
|
357 |
+
# end
|
358 |
+
|
359 |
+
if gradSecond is not None:
|
360 |
+
for intSample in range(first.shape[0]):
|
361 |
+
n = first.shape[1] * first.shape[2] * first.shape[3]
|
362 |
+
cupy_launch('kernel_Correlation_updateGradSecond', cupy_kernel('kernel_Correlation_updateGradSecond', {
|
363 |
+
'rbot0': rbot0,
|
364 |
+
'rbot1': rbot1,
|
365 |
+
'gradOutput': gradOutput,
|
366 |
+
'gradFirst': None,
|
367 |
+
'gradSecond': gradSecond
|
368 |
+
}))(
|
369 |
+
grid=tuple([ int((n + 512 - 1) / 512), 1, 1 ]),
|
370 |
+
block=tuple([ 512, 1, 1 ]),
|
371 |
+
args=[ n, intSample, rbot0.data_ptr(), rbot1.data_ptr(), gradOutput.data_ptr(), None, gradSecond.data_ptr() ]
|
372 |
+
)
|
373 |
+
# end
|
374 |
+
# end
|
375 |
+
|
376 |
+
elif first.is_cuda == False:
|
377 |
+
raise NotImplementedError()
|
378 |
+
|
379 |
+
# end
|
380 |
+
|
381 |
+
return gradFirst, gradSecond
|
382 |
+
# end
|
383 |
+
# end
|
384 |
+
|
385 |
+
def FunctionCorrelation(tenFirst, tenSecond):
|
386 |
+
return _FunctionCorrelation.apply(tenFirst, tenSecond)
|
387 |
+
# end
|
388 |
+
|
389 |
+
class ModuleCorrelation(torch.nn.Module):
|
390 |
+
def __init__(self):
|
391 |
+
super(ModuleCorrelation, self).__init__()
|
392 |
+
# end
|
393 |
+
|
394 |
+
def forward(self, tenFirst, tenSecond):
|
395 |
+
return _FunctionCorrelation.apply(tenFirst, tenSecond)
|
396 |
+
# end
|
397 |
+
# end
|
causalvideovae/eval/flolpips/pretrained_networks.py
ADDED
@@ -0,0 +1,180 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections import namedtuple
|
2 |
+
import torch
|
3 |
+
from torchvision import models as tv
|
4 |
+
|
5 |
+
class squeezenet(torch.nn.Module):
|
6 |
+
def __init__(self, requires_grad=False, pretrained=True):
|
7 |
+
super(squeezenet, self).__init__()
|
8 |
+
pretrained_features = tv.squeezenet1_1(pretrained=pretrained).features
|
9 |
+
self.slice1 = torch.nn.Sequential()
|
10 |
+
self.slice2 = torch.nn.Sequential()
|
11 |
+
self.slice3 = torch.nn.Sequential()
|
12 |
+
self.slice4 = torch.nn.Sequential()
|
13 |
+
self.slice5 = torch.nn.Sequential()
|
14 |
+
self.slice6 = torch.nn.Sequential()
|
15 |
+
self.slice7 = torch.nn.Sequential()
|
16 |
+
self.N_slices = 7
|
17 |
+
for x in range(2):
|
18 |
+
self.slice1.add_module(str(x), pretrained_features[x])
|
19 |
+
for x in range(2,5):
|
20 |
+
self.slice2.add_module(str(x), pretrained_features[x])
|
21 |
+
for x in range(5, 8):
|
22 |
+
self.slice3.add_module(str(x), pretrained_features[x])
|
23 |
+
for x in range(8, 10):
|
24 |
+
self.slice4.add_module(str(x), pretrained_features[x])
|
25 |
+
for x in range(10, 11):
|
26 |
+
self.slice5.add_module(str(x), pretrained_features[x])
|
27 |
+
for x in range(11, 12):
|
28 |
+
self.slice6.add_module(str(x), pretrained_features[x])
|
29 |
+
for x in range(12, 13):
|
30 |
+
self.slice7.add_module(str(x), pretrained_features[x])
|
31 |
+
if not requires_grad:
|
32 |
+
for param in self.parameters():
|
33 |
+
param.requires_grad = False
|
34 |
+
|
35 |
+
def forward(self, X):
|
36 |
+
h = self.slice1(X)
|
37 |
+
h_relu1 = h
|
38 |
+
h = self.slice2(h)
|
39 |
+
h_relu2 = h
|
40 |
+
h = self.slice3(h)
|
41 |
+
h_relu3 = h
|
42 |
+
h = self.slice4(h)
|
43 |
+
h_relu4 = h
|
44 |
+
h = self.slice5(h)
|
45 |
+
h_relu5 = h
|
46 |
+
h = self.slice6(h)
|
47 |
+
h_relu6 = h
|
48 |
+
h = self.slice7(h)
|
49 |
+
h_relu7 = h
|
50 |
+
vgg_outputs = namedtuple("SqueezeOutputs", ['relu1','relu2','relu3','relu4','relu5','relu6','relu7'])
|
51 |
+
out = vgg_outputs(h_relu1,h_relu2,h_relu3,h_relu4,h_relu5,h_relu6,h_relu7)
|
52 |
+
|
53 |
+
return out
|
54 |
+
|
55 |
+
|
56 |
+
class alexnet(torch.nn.Module):
|
57 |
+
def __init__(self, requires_grad=False, pretrained=True):
|
58 |
+
super(alexnet, self).__init__()
|
59 |
+
alexnet_pretrained_features = tv.alexnet(pretrained=pretrained).features
|
60 |
+
self.slice1 = torch.nn.Sequential()
|
61 |
+
self.slice2 = torch.nn.Sequential()
|
62 |
+
self.slice3 = torch.nn.Sequential()
|
63 |
+
self.slice4 = torch.nn.Sequential()
|
64 |
+
self.slice5 = torch.nn.Sequential()
|
65 |
+
self.N_slices = 5
|
66 |
+
for x in range(2):
|
67 |
+
self.slice1.add_module(str(x), alexnet_pretrained_features[x])
|
68 |
+
for x in range(2, 5):
|
69 |
+
self.slice2.add_module(str(x), alexnet_pretrained_features[x])
|
70 |
+
for x in range(5, 8):
|
71 |
+
self.slice3.add_module(str(x), alexnet_pretrained_features[x])
|
72 |
+
for x in range(8, 10):
|
73 |
+
self.slice4.add_module(str(x), alexnet_pretrained_features[x])
|
74 |
+
for x in range(10, 12):
|
75 |
+
self.slice5.add_module(str(x), alexnet_pretrained_features[x])
|
76 |
+
if not requires_grad:
|
77 |
+
for param in self.parameters():
|
78 |
+
param.requires_grad = False
|
79 |
+
|
80 |
+
def forward(self, X):
|
81 |
+
h = self.slice1(X)
|
82 |
+
h_relu1 = h
|
83 |
+
h = self.slice2(h)
|
84 |
+
h_relu2 = h
|
85 |
+
h = self.slice3(h)
|
86 |
+
h_relu3 = h
|
87 |
+
h = self.slice4(h)
|
88 |
+
h_relu4 = h
|
89 |
+
h = self.slice5(h)
|
90 |
+
h_relu5 = h
|
91 |
+
alexnet_outputs = namedtuple("AlexnetOutputs", ['relu1', 'relu2', 'relu3', 'relu4', 'relu5'])
|
92 |
+
out = alexnet_outputs(h_relu1, h_relu2, h_relu3, h_relu4, h_relu5)
|
93 |
+
|
94 |
+
return out
|
95 |
+
|
96 |
+
class vgg16(torch.nn.Module):
|
97 |
+
def __init__(self, requires_grad=False, pretrained=True):
|
98 |
+
super(vgg16, self).__init__()
|
99 |
+
vgg_pretrained_features = tv.vgg16(pretrained=pretrained).features
|
100 |
+
self.slice1 = torch.nn.Sequential()
|
101 |
+
self.slice2 = torch.nn.Sequential()
|
102 |
+
self.slice3 = torch.nn.Sequential()
|
103 |
+
self.slice4 = torch.nn.Sequential()
|
104 |
+
self.slice5 = torch.nn.Sequential()
|
105 |
+
self.N_slices = 5
|
106 |
+
for x in range(4):
|
107 |
+
self.slice1.add_module(str(x), vgg_pretrained_features[x])
|
108 |
+
for x in range(4, 9):
|
109 |
+
self.slice2.add_module(str(x), vgg_pretrained_features[x])
|
110 |
+
for x in range(9, 16):
|
111 |
+
self.slice3.add_module(str(x), vgg_pretrained_features[x])
|
112 |
+
for x in range(16, 23):
|
113 |
+
self.slice4.add_module(str(x), vgg_pretrained_features[x])
|
114 |
+
for x in range(23, 30):
|
115 |
+
self.slice5.add_module(str(x), vgg_pretrained_features[x])
|
116 |
+
if not requires_grad:
|
117 |
+
for param in self.parameters():
|
118 |
+
param.requires_grad = False
|
119 |
+
|
120 |
+
def forward(self, X):
|
121 |
+
h = self.slice1(X)
|
122 |
+
h_relu1_2 = h
|
123 |
+
h = self.slice2(h)
|
124 |
+
h_relu2_2 = h
|
125 |
+
h = self.slice3(h)
|
126 |
+
h_relu3_3 = h
|
127 |
+
h = self.slice4(h)
|
128 |
+
h_relu4_3 = h
|
129 |
+
h = self.slice5(h)
|
130 |
+
h_relu5_3 = h
|
131 |
+
vgg_outputs = namedtuple("VggOutputs", ['relu1_2', 'relu2_2', 'relu3_3', 'relu4_3', 'relu5_3'])
|
132 |
+
out = vgg_outputs(h_relu1_2, h_relu2_2, h_relu3_3, h_relu4_3, h_relu5_3)
|
133 |
+
|
134 |
+
return out
|
135 |
+
|
136 |
+
|
137 |
+
|
138 |
+
class resnet(torch.nn.Module):
|
139 |
+
def __init__(self, requires_grad=False, pretrained=True, num=18):
|
140 |
+
super(resnet, self).__init__()
|
141 |
+
if(num==18):
|
142 |
+
self.net = tv.resnet18(pretrained=pretrained)
|
143 |
+
elif(num==34):
|
144 |
+
self.net = tv.resnet34(pretrained=pretrained)
|
145 |
+
elif(num==50):
|
146 |
+
self.net = tv.resnet50(pretrained=pretrained)
|
147 |
+
elif(num==101):
|
148 |
+
self.net = tv.resnet101(pretrained=pretrained)
|
149 |
+
elif(num==152):
|
150 |
+
self.net = tv.resnet152(pretrained=pretrained)
|
151 |
+
self.N_slices = 5
|
152 |
+
|
153 |
+
self.conv1 = self.net.conv1
|
154 |
+
self.bn1 = self.net.bn1
|
155 |
+
self.relu = self.net.relu
|
156 |
+
self.maxpool = self.net.maxpool
|
157 |
+
self.layer1 = self.net.layer1
|
158 |
+
self.layer2 = self.net.layer2
|
159 |
+
self.layer3 = self.net.layer3
|
160 |
+
self.layer4 = self.net.layer4
|
161 |
+
|
162 |
+
def forward(self, X):
|
163 |
+
h = self.conv1(X)
|
164 |
+
h = self.bn1(h)
|
165 |
+
h = self.relu(h)
|
166 |
+
h_relu1 = h
|
167 |
+
h = self.maxpool(h)
|
168 |
+
h = self.layer1(h)
|
169 |
+
h_conv2 = h
|
170 |
+
h = self.layer2(h)
|
171 |
+
h_conv3 = h
|
172 |
+
h = self.layer3(h)
|
173 |
+
h_conv4 = h
|
174 |
+
h = self.layer4(h)
|
175 |
+
h_conv5 = h
|
176 |
+
|
177 |
+
outputs = namedtuple("Outputs", ['relu1','conv2','conv3','conv4','conv5'])
|
178 |
+
out = outputs(h_relu1, h_conv2, h_conv3, h_conv4, h_conv5)
|
179 |
+
|
180 |
+
return out
|
causalvideovae/eval/fvd/videogpt/pytorch_i3d.py
ADDED
@@ -0,0 +1,322 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Original code from https://github.com/piergiaj/pytorch-i3d
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
class MaxPool3dSamePadding(nn.MaxPool3d):
|
8 |
+
|
9 |
+
def compute_pad(self, dim, s):
|
10 |
+
if s % self.stride[dim] == 0:
|
11 |
+
return max(self.kernel_size[dim] - self.stride[dim], 0)
|
12 |
+
else:
|
13 |
+
return max(self.kernel_size[dim] - (s % self.stride[dim]), 0)
|
14 |
+
|
15 |
+
def forward(self, x):
|
16 |
+
# compute 'same' padding
|
17 |
+
(batch, channel, t, h, w) = x.size()
|
18 |
+
out_t = np.ceil(float(t) / float(self.stride[0]))
|
19 |
+
out_h = np.ceil(float(h) / float(self.stride[1]))
|
20 |
+
out_w = np.ceil(float(w) / float(self.stride[2]))
|
21 |
+
pad_t = self.compute_pad(0, t)
|
22 |
+
pad_h = self.compute_pad(1, h)
|
23 |
+
pad_w = self.compute_pad(2, w)
|
24 |
+
|
25 |
+
pad_t_f = pad_t // 2
|
26 |
+
pad_t_b = pad_t - pad_t_f
|
27 |
+
pad_h_f = pad_h // 2
|
28 |
+
pad_h_b = pad_h - pad_h_f
|
29 |
+
pad_w_f = pad_w // 2
|
30 |
+
pad_w_b = pad_w - pad_w_f
|
31 |
+
|
32 |
+
pad = (pad_w_f, pad_w_b, pad_h_f, pad_h_b, pad_t_f, pad_t_b)
|
33 |
+
x = F.pad(x, pad)
|
34 |
+
return super(MaxPool3dSamePadding, self).forward(x)
|
35 |
+
|
36 |
+
|
37 |
+
class Unit3D(nn.Module):
|
38 |
+
|
39 |
+
def __init__(self, in_channels,
|
40 |
+
output_channels,
|
41 |
+
kernel_shape=(1, 1, 1),
|
42 |
+
stride=(1, 1, 1),
|
43 |
+
padding=0,
|
44 |
+
activation_fn=F.relu,
|
45 |
+
use_batch_norm=True,
|
46 |
+
use_bias=False,
|
47 |
+
name='unit_3d'):
|
48 |
+
|
49 |
+
"""Initializes Unit3D module."""
|
50 |
+
super(Unit3D, self).__init__()
|
51 |
+
|
52 |
+
self._output_channels = output_channels
|
53 |
+
self._kernel_shape = kernel_shape
|
54 |
+
self._stride = stride
|
55 |
+
self._use_batch_norm = use_batch_norm
|
56 |
+
self._activation_fn = activation_fn
|
57 |
+
self._use_bias = use_bias
|
58 |
+
self.name = name
|
59 |
+
self.padding = padding
|
60 |
+
|
61 |
+
self.conv3d = nn.Conv3d(in_channels=in_channels,
|
62 |
+
out_channels=self._output_channels,
|
63 |
+
kernel_size=self._kernel_shape,
|
64 |
+
stride=self._stride,
|
65 |
+
padding=0, # we always want padding to be 0 here. We will dynamically pad based on input size in forward function
|
66 |
+
bias=self._use_bias)
|
67 |
+
|
68 |
+
if self._use_batch_norm:
|
69 |
+
self.bn = nn.BatchNorm3d(self._output_channels, eps=1e-5, momentum=0.001)
|
70 |
+
|
71 |
+
def compute_pad(self, dim, s):
|
72 |
+
if s % self._stride[dim] == 0:
|
73 |
+
return max(self._kernel_shape[dim] - self._stride[dim], 0)
|
74 |
+
else:
|
75 |
+
return max(self._kernel_shape[dim] - (s % self._stride[dim]), 0)
|
76 |
+
|
77 |
+
|
78 |
+
def forward(self, x):
|
79 |
+
# compute 'same' padding
|
80 |
+
(batch, channel, t, h, w) = x.size()
|
81 |
+
out_t = np.ceil(float(t) / float(self._stride[0]))
|
82 |
+
out_h = np.ceil(float(h) / float(self._stride[1]))
|
83 |
+
out_w = np.ceil(float(w) / float(self._stride[2]))
|
84 |
+
pad_t = self.compute_pad(0, t)
|
85 |
+
pad_h = self.compute_pad(1, h)
|
86 |
+
pad_w = self.compute_pad(2, w)
|
87 |
+
|
88 |
+
pad_t_f = pad_t // 2
|
89 |
+
pad_t_b = pad_t - pad_t_f
|
90 |
+
pad_h_f = pad_h // 2
|
91 |
+
pad_h_b = pad_h - pad_h_f
|
92 |
+
pad_w_f = pad_w // 2
|
93 |
+
pad_w_b = pad_w - pad_w_f
|
94 |
+
|
95 |
+
pad = (pad_w_f, pad_w_b, pad_h_f, pad_h_b, pad_t_f, pad_t_b)
|
96 |
+
x = F.pad(x, pad)
|
97 |
+
|
98 |
+
x = self.conv3d(x)
|
99 |
+
if self._use_batch_norm:
|
100 |
+
x = self.bn(x)
|
101 |
+
if self._activation_fn is not None:
|
102 |
+
x = self._activation_fn(x)
|
103 |
+
return x
|
104 |
+
|
105 |
+
|
106 |
+
|
107 |
+
class InceptionModule(nn.Module):
|
108 |
+
def __init__(self, in_channels, out_channels, name):
|
109 |
+
super(InceptionModule, self).__init__()
|
110 |
+
|
111 |
+
self.b0 = Unit3D(in_channels=in_channels, output_channels=out_channels[0], kernel_shape=[1, 1, 1], padding=0,
|
112 |
+
name=name+'/Branch_0/Conv3d_0a_1x1')
|
113 |
+
self.b1a = Unit3D(in_channels=in_channels, output_channels=out_channels[1], kernel_shape=[1, 1, 1], padding=0,
|
114 |
+
name=name+'/Branch_1/Conv3d_0a_1x1')
|
115 |
+
self.b1b = Unit3D(in_channels=out_channels[1], output_channels=out_channels[2], kernel_shape=[3, 3, 3],
|
116 |
+
name=name+'/Branch_1/Conv3d_0b_3x3')
|
117 |
+
self.b2a = Unit3D(in_channels=in_channels, output_channels=out_channels[3], kernel_shape=[1, 1, 1], padding=0,
|
118 |
+
name=name+'/Branch_2/Conv3d_0a_1x1')
|
119 |
+
self.b2b = Unit3D(in_channels=out_channels[3], output_channels=out_channels[4], kernel_shape=[3, 3, 3],
|
120 |
+
name=name+'/Branch_2/Conv3d_0b_3x3')
|
121 |
+
self.b3a = MaxPool3dSamePadding(kernel_size=[3, 3, 3],
|
122 |
+
stride=(1, 1, 1), padding=0)
|
123 |
+
self.b3b = Unit3D(in_channels=in_channels, output_channels=out_channels[5], kernel_shape=[1, 1, 1], padding=0,
|
124 |
+
name=name+'/Branch_3/Conv3d_0b_1x1')
|
125 |
+
self.name = name
|
126 |
+
|
127 |
+
def forward(self, x):
|
128 |
+
b0 = self.b0(x)
|
129 |
+
b1 = self.b1b(self.b1a(x))
|
130 |
+
b2 = self.b2b(self.b2a(x))
|
131 |
+
b3 = self.b3b(self.b3a(x))
|
132 |
+
return torch.cat([b0,b1,b2,b3], dim=1)
|
133 |
+
|
134 |
+
|
135 |
+
class InceptionI3d(nn.Module):
|
136 |
+
"""Inception-v1 I3D architecture.
|
137 |
+
The model is introduced in:
|
138 |
+
Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset
|
139 |
+
Joao Carreira, Andrew Zisserman
|
140 |
+
https://arxiv.org/pdf/1705.07750v1.pdf.
|
141 |
+
See also the Inception architecture, introduced in:
|
142 |
+
Going deeper with convolutions
|
143 |
+
Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
|
144 |
+
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich.
|
145 |
+
http://arxiv.org/pdf/1409.4842v1.pdf.
|
146 |
+
"""
|
147 |
+
|
148 |
+
# Endpoints of the model in order. During construction, all the endpoints up
|
149 |
+
# to a designated `final_endpoint` are returned in a dictionary as the
|
150 |
+
# second return value.
|
151 |
+
VALID_ENDPOINTS = (
|
152 |
+
'Conv3d_1a_7x7',
|
153 |
+
'MaxPool3d_2a_3x3',
|
154 |
+
'Conv3d_2b_1x1',
|
155 |
+
'Conv3d_2c_3x3',
|
156 |
+
'MaxPool3d_3a_3x3',
|
157 |
+
'Mixed_3b',
|
158 |
+
'Mixed_3c',
|
159 |
+
'MaxPool3d_4a_3x3',
|
160 |
+
'Mixed_4b',
|
161 |
+
'Mixed_4c',
|
162 |
+
'Mixed_4d',
|
163 |
+
'Mixed_4e',
|
164 |
+
'Mixed_4f',
|
165 |
+
'MaxPool3d_5a_2x2',
|
166 |
+
'Mixed_5b',
|
167 |
+
'Mixed_5c',
|
168 |
+
'Logits',
|
169 |
+
'Predictions',
|
170 |
+
)
|
171 |
+
|
172 |
+
def __init__(self, num_classes=400, spatial_squeeze=True,
|
173 |
+
final_endpoint='Logits', name='inception_i3d', in_channels=3, dropout_keep_prob=0.5):
|
174 |
+
"""Initializes I3D model instance.
|
175 |
+
Args:
|
176 |
+
num_classes: The number of outputs in the logit layer (default 400, which
|
177 |
+
matches the Kinetics dataset).
|
178 |
+
spatial_squeeze: Whether to squeeze the spatial dimensions for the logits
|
179 |
+
before returning (default True).
|
180 |
+
final_endpoint: The model contains many possible endpoints.
|
181 |
+
`final_endpoint` specifies the last endpoint for the model to be built
|
182 |
+
up to. In addition to the output at `final_endpoint`, all the outputs
|
183 |
+
at endpoints up to `final_endpoint` will also be returned, in a
|
184 |
+
dictionary. `final_endpoint` must be one of
|
185 |
+
InceptionI3d.VALID_ENDPOINTS (default 'Logits').
|
186 |
+
name: A string (optional). The name of this module.
|
187 |
+
Raises:
|
188 |
+
ValueError: if `final_endpoint` is not recognized.
|
189 |
+
"""
|
190 |
+
|
191 |
+
if final_endpoint not in self.VALID_ENDPOINTS:
|
192 |
+
raise ValueError('Unknown final endpoint %s' % final_endpoint)
|
193 |
+
|
194 |
+
super(InceptionI3d, self).__init__()
|
195 |
+
self._num_classes = num_classes
|
196 |
+
self._spatial_squeeze = spatial_squeeze
|
197 |
+
self._final_endpoint = final_endpoint
|
198 |
+
self.logits = None
|
199 |
+
|
200 |
+
if self._final_endpoint not in self.VALID_ENDPOINTS:
|
201 |
+
raise ValueError('Unknown final endpoint %s' % self._final_endpoint)
|
202 |
+
|
203 |
+
self.end_points = {}
|
204 |
+
end_point = 'Conv3d_1a_7x7'
|
205 |
+
self.end_points[end_point] = Unit3D(in_channels=in_channels, output_channels=64, kernel_shape=[7, 7, 7],
|
206 |
+
stride=(2, 2, 2), padding=(3,3,3), name=name+end_point)
|
207 |
+
if self._final_endpoint == end_point: return
|
208 |
+
|
209 |
+
end_point = 'MaxPool3d_2a_3x3'
|
210 |
+
self.end_points[end_point] = MaxPool3dSamePadding(kernel_size=[1, 3, 3], stride=(1, 2, 2),
|
211 |
+
padding=0)
|
212 |
+
if self._final_endpoint == end_point: return
|
213 |
+
|
214 |
+
end_point = 'Conv3d_2b_1x1'
|
215 |
+
self.end_points[end_point] = Unit3D(in_channels=64, output_channels=64, kernel_shape=[1, 1, 1], padding=0,
|
216 |
+
name=name+end_point)
|
217 |
+
if self._final_endpoint == end_point: return
|
218 |
+
|
219 |
+
end_point = 'Conv3d_2c_3x3'
|
220 |
+
self.end_points[end_point] = Unit3D(in_channels=64, output_channels=192, kernel_shape=[3, 3, 3], padding=1,
|
221 |
+
name=name+end_point)
|
222 |
+
if self._final_endpoint == end_point: return
|
223 |
+
|
224 |
+
end_point = 'MaxPool3d_3a_3x3'
|
225 |
+
self.end_points[end_point] = MaxPool3dSamePadding(kernel_size=[1, 3, 3], stride=(1, 2, 2),
|
226 |
+
padding=0)
|
227 |
+
if self._final_endpoint == end_point: return
|
228 |
+
|
229 |
+
end_point = 'Mixed_3b'
|
230 |
+
self.end_points[end_point] = InceptionModule(192, [64,96,128,16,32,32], name+end_point)
|
231 |
+
if self._final_endpoint == end_point: return
|
232 |
+
|
233 |
+
end_point = 'Mixed_3c'
|
234 |
+
self.end_points[end_point] = InceptionModule(256, [128,128,192,32,96,64], name+end_point)
|
235 |
+
if self._final_endpoint == end_point: return
|
236 |
+
|
237 |
+
end_point = 'MaxPool3d_4a_3x3'
|
238 |
+
self.end_points[end_point] = MaxPool3dSamePadding(kernel_size=[3, 3, 3], stride=(2, 2, 2),
|
239 |
+
padding=0)
|
240 |
+
if self._final_endpoint == end_point: return
|
241 |
+
|
242 |
+
end_point = 'Mixed_4b'
|
243 |
+
self.end_points[end_point] = InceptionModule(128+192+96+64, [192,96,208,16,48,64], name+end_point)
|
244 |
+
if self._final_endpoint == end_point: return
|
245 |
+
|
246 |
+
end_point = 'Mixed_4c'
|
247 |
+
self.end_points[end_point] = InceptionModule(192+208+48+64, [160,112,224,24,64,64], name+end_point)
|
248 |
+
if self._final_endpoint == end_point: return
|
249 |
+
|
250 |
+
end_point = 'Mixed_4d'
|
251 |
+
self.end_points[end_point] = InceptionModule(160+224+64+64, [128,128,256,24,64,64], name+end_point)
|
252 |
+
if self._final_endpoint == end_point: return
|
253 |
+
|
254 |
+
end_point = 'Mixed_4e'
|
255 |
+
self.end_points[end_point] = InceptionModule(128+256+64+64, [112,144,288,32,64,64], name+end_point)
|
256 |
+
if self._final_endpoint == end_point: return
|
257 |
+
|
258 |
+
end_point = 'Mixed_4f'
|
259 |
+
self.end_points[end_point] = InceptionModule(112+288+64+64, [256,160,320,32,128,128], name+end_point)
|
260 |
+
if self._final_endpoint == end_point: return
|
261 |
+
|
262 |
+
end_point = 'MaxPool3d_5a_2x2'
|
263 |
+
self.end_points[end_point] = MaxPool3dSamePadding(kernel_size=[2, 2, 2], stride=(2, 2, 2),
|
264 |
+
padding=0)
|
265 |
+
if self._final_endpoint == end_point: return
|
266 |
+
|
267 |
+
end_point = 'Mixed_5b'
|
268 |
+
self.end_points[end_point] = InceptionModule(256+320+128+128, [256,160,320,32,128,128], name+end_point)
|
269 |
+
if self._final_endpoint == end_point: return
|
270 |
+
|
271 |
+
end_point = 'Mixed_5c'
|
272 |
+
self.end_points[end_point] = InceptionModule(256+320+128+128, [384,192,384,48,128,128], name+end_point)
|
273 |
+
if self._final_endpoint == end_point: return
|
274 |
+
|
275 |
+
end_point = 'Logits'
|
276 |
+
self.avg_pool = nn.AvgPool3d(kernel_size=[2, 7, 7],
|
277 |
+
stride=(1, 1, 1))
|
278 |
+
self.dropout = nn.Dropout(dropout_keep_prob)
|
279 |
+
self.logits = Unit3D(in_channels=384+384+128+128, output_channels=self._num_classes,
|
280 |
+
kernel_shape=[1, 1, 1],
|
281 |
+
padding=0,
|
282 |
+
activation_fn=None,
|
283 |
+
use_batch_norm=False,
|
284 |
+
use_bias=True,
|
285 |
+
name='logits')
|
286 |
+
|
287 |
+
self.build()
|
288 |
+
|
289 |
+
|
290 |
+
def replace_logits(self, num_classes):
|
291 |
+
self._num_classes = num_classes
|
292 |
+
self.logits = Unit3D(in_channels=384+384+128+128, output_channels=self._num_classes,
|
293 |
+
kernel_shape=[1, 1, 1],
|
294 |
+
padding=0,
|
295 |
+
activation_fn=None,
|
296 |
+
use_batch_norm=False,
|
297 |
+
use_bias=True,
|
298 |
+
name='logits')
|
299 |
+
|
300 |
+
|
301 |
+
def build(self):
|
302 |
+
for k in self.end_points.keys():
|
303 |
+
self.add_module(k, self.end_points[k])
|
304 |
+
|
305 |
+
def forward(self, x):
|
306 |
+
for end_point in self.VALID_ENDPOINTS:
|
307 |
+
if end_point in self.end_points:
|
308 |
+
x = self._modules[end_point](x) # use _modules to work with dataparallel
|
309 |
+
|
310 |
+
x = self.logits(self.dropout(self.avg_pool(x)))
|
311 |
+
if self._spatial_squeeze:
|
312 |
+
logits = x.squeeze(3).squeeze(3)
|
313 |
+
logits = logits.mean(dim=2)
|
314 |
+
# logits is batch X time X classes, which is what we want to work with
|
315 |
+
return logits
|
316 |
+
|
317 |
+
|
318 |
+
def extract_features(self, x):
|
319 |
+
for end_point in self.VALID_ENDPOINTS:
|
320 |
+
if end_point in self.end_points:
|
321 |
+
x = self._modules[end_point](x)
|
322 |
+
return self.avg_pool(x)
|
causalvideovae/model/__init__.py
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .causal_vae import (
|
2 |
+
CausalVAEModel, CausalVAEModelWrapper
|
3 |
+
)
|
4 |
+
from .refiner import Refiner
|
5 |
+
from .ema_model import EMA
|
causalvideovae/model/dataset_videobase.py
ADDED
@@ -0,0 +1,178 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os.path as osp
|
2 |
+
import random
|
3 |
+
from glob import glob
|
4 |
+
|
5 |
+
from torchvision import transforms
|
6 |
+
import numpy as np
|
7 |
+
import torch
|
8 |
+
import torch.utils.data as data
|
9 |
+
import torch.nn.functional as F
|
10 |
+
from torchvision.transforms import Lambda
|
11 |
+
|
12 |
+
from ..dataset.transform import ToTensorVideo, CenterCropVideo, RandomCropVideo
|
13 |
+
from ..utils.dataset_utils import DecordInit
|
14 |
+
|
15 |
+
def TemporalRandomCrop(total_frames, size):
|
16 |
+
"""
|
17 |
+
Performs a random temporal crop on a video sequence.
|
18 |
+
|
19 |
+
This function randomly selects a continuous frame sequence of length `size` from a video sequence.
|
20 |
+
`total_frames` indicates the total number of frames in the video sequence, and `size` represents the length of the frame sequence to be cropped.
|
21 |
+
|
22 |
+
Parameters:
|
23 |
+
- total_frames (int): The total number of frames in the video sequence.
|
24 |
+
- size (int): The length of the frame sequence to be cropped.
|
25 |
+
|
26 |
+
Returns:
|
27 |
+
- (int, int): A tuple containing two integers. The first integer is the starting frame index of the cropped sequence,
|
28 |
+
and the second integer is the ending frame index (inclusive) of the cropped sequence.
|
29 |
+
"""
|
30 |
+
rand_end = max(0, total_frames - size - 1)
|
31 |
+
begin_index = random.randint(0, rand_end)
|
32 |
+
end_index = min(begin_index + size, total_frames)
|
33 |
+
return begin_index, end_index
|
34 |
+
|
35 |
+
def resize(x, resolution):
|
36 |
+
height, width = x.shape[-2:]
|
37 |
+
resolution = min(2 * resolution, height, width)
|
38 |
+
aspect_ratio = width / height
|
39 |
+
if width <= height:
|
40 |
+
new_width = resolution
|
41 |
+
new_height = int(resolution / aspect_ratio)
|
42 |
+
else:
|
43 |
+
new_height = resolution
|
44 |
+
new_width = int(resolution * aspect_ratio)
|
45 |
+
resized_x = F.interpolate(x, size=(new_height, new_width), mode='bilinear', align_corners=True, antialias=True)
|
46 |
+
return resized_x
|
47 |
+
|
48 |
+
class VideoDataset(data.Dataset):
|
49 |
+
""" Generic dataset for videos files stored in folders
|
50 |
+
Returns BCTHW videos in the range [-1, 1] """
|
51 |
+
video_exts = ['avi', 'mp4', 'webm']
|
52 |
+
def __init__(self, video_folder, sequence_length, image_folder=None, train=True, resolution=64, sample_rate=1, dynamic_sample=True):
|
53 |
+
|
54 |
+
self.train = train
|
55 |
+
self.sequence_length = sequence_length
|
56 |
+
self.sample_rate = sample_rate
|
57 |
+
self.resolution = resolution
|
58 |
+
self.v_decoder = DecordInit()
|
59 |
+
self.video_folder = video_folder
|
60 |
+
self.dynamic_sample = dynamic_sample
|
61 |
+
|
62 |
+
self.transform = transforms.Compose([
|
63 |
+
ToTensorVideo(),
|
64 |
+
# Lambda(lambda x: resize(x, self.resolution)),
|
65 |
+
CenterCropVideo(self.resolution),
|
66 |
+
Lambda(lambda x: 2.0 * x - 1.0)
|
67 |
+
])
|
68 |
+
print('Building datasets...')
|
69 |
+
self.samples = self._make_dataset()
|
70 |
+
|
71 |
+
def _make_dataset(self):
|
72 |
+
samples = []
|
73 |
+
samples += sum([glob(osp.join(self.video_folder, '**', f'*.{ext}'), recursive=True)
|
74 |
+
for ext in self.video_exts], [])
|
75 |
+
return samples
|
76 |
+
|
77 |
+
def __len__(self):
|
78 |
+
return len(self.samples)
|
79 |
+
|
80 |
+
def __getitem__(self, idx):
|
81 |
+
video_path = self.samples[idx]
|
82 |
+
try:
|
83 |
+
video = self.decord_read(video_path)
|
84 |
+
video = self.transform(video) # T C H W -> T C H W
|
85 |
+
video = video.transpose(0, 1) # T C H W -> C T H W
|
86 |
+
return dict(video=video, label="")
|
87 |
+
except Exception as e:
|
88 |
+
print(f'Error with {e}, {video_path}')
|
89 |
+
return self.__getitem__(random.randint(0, self.__len__()-1))
|
90 |
+
|
91 |
+
def decord_read(self, path):
|
92 |
+
decord_vr = self.v_decoder(path)
|
93 |
+
total_frames = len(decord_vr)
|
94 |
+
# Sampling video frames
|
95 |
+
if self.dynamic_sample:
|
96 |
+
sample_rate = random.randint(1, self.sample_rate)
|
97 |
+
else:
|
98 |
+
sample_rate = self.sample_rate
|
99 |
+
size = self.sequence_length * sample_rate
|
100 |
+
start_frame_ind, end_frame_ind = TemporalRandomCrop(total_frames, size)
|
101 |
+
# assert end_frame_ind - start_frame_ind >= self.num_frames
|
102 |
+
frame_indice = np.linspace(start_frame_ind, end_frame_ind - 1, self.sequence_length, dtype=int)
|
103 |
+
|
104 |
+
video_data = decord_vr.get_batch(frame_indice).asnumpy()
|
105 |
+
video_data = torch.from_numpy(video_data)
|
106 |
+
video_data = video_data.permute(0, 3, 1, 2) # (T, H, W, C) -> (T C H W)
|
107 |
+
return video_data
|
108 |
+
|
109 |
+
class VideoDatasetRefiner(data.Dataset):
|
110 |
+
""" Generic dataset for videos files stored in folders
|
111 |
+
Returns BCTHW videos in the range [-0.5, 0.5] """
|
112 |
+
video_exts = ['avi', 'mp4', 'webm']
|
113 |
+
def __init__(self, origin_video_folder, vae_video_folder, sequence_length, image_folder=None, train=True, resolution=64, sample_rate=1, dynamic_sample=True):
|
114 |
+
|
115 |
+
self.train = train
|
116 |
+
self.sequence_length = sequence_length
|
117 |
+
self.sample_rate = sample_rate
|
118 |
+
self.resolution = resolution
|
119 |
+
self.v_decoder = DecordInit()
|
120 |
+
self.origin_video_folder = origin_video_folder
|
121 |
+
self.vae_video_folder = vae_video_folder
|
122 |
+
self.dynamic_sample = dynamic_sample
|
123 |
+
|
124 |
+
self.transform = transforms.Compose([
|
125 |
+
ToTensorVideo(),
|
126 |
+
#Lambda(lambda x: resize(x, self.resolution)),
|
127 |
+
CenterCropVideo(self.resolution),
|
128 |
+
Lambda(lambda x: 2.0 * x - 1.0)
|
129 |
+
])
|
130 |
+
print('Building datasets...')
|
131 |
+
self.origin_samples = self._make_dataset(self.origin_video_folder)
|
132 |
+
self.vae_samples = self._make_dataset(self.vae_video_folder)
|
133 |
+
|
134 |
+
def _make_dataset(self, dir):
|
135 |
+
samples = []
|
136 |
+
samples += sum([glob(osp.join(dir, '**', f'*.{ext}'), recursive=True)
|
137 |
+
for ext in self.video_exts], [])
|
138 |
+
return sorted(samples)
|
139 |
+
|
140 |
+
def __len__(self):
|
141 |
+
return len(self.origin_samples)
|
142 |
+
|
143 |
+
def __getitem__(self, idx):
|
144 |
+
origin_video_path = self.origin_samples[idx]
|
145 |
+
vae_video_path = self.vae_samples[idx]
|
146 |
+
|
147 |
+
try:
|
148 |
+
origin_video, vae_video = self.decord_read(origin_video_path, vae_video_path)
|
149 |
+
origin_video = self.transform(origin_video) # T C H W -> T C H W
|
150 |
+
origin_video = origin_video.transpose(0, 1) # T C H W -> C T H W
|
151 |
+
vae_video = self.transform(vae_video) # T C H W -> T C H W
|
152 |
+
vae_video = vae_video.transpose(0, 1) # T C H W -> C T H W
|
153 |
+
return dict(origin_video=origin_video, vae_video=vae_video)
|
154 |
+
except Exception as e:
|
155 |
+
print(f'Error with {e}, {origin_video_path}, {vae_video_path}')
|
156 |
+
return self.__getitem__(random.randint(0, self.__len__()-1))
|
157 |
+
|
158 |
+
def decord_read(self, origin_path, vae_path):
|
159 |
+
decord_vr_origin = self.v_decoder(origin_path)
|
160 |
+
decord_vr_vae = self.v_decoder(vae_path)
|
161 |
+
total_frames = len(decord_vr_origin)
|
162 |
+
# Sampling video frames
|
163 |
+
if self.dynamic_sample:
|
164 |
+
sample_rate = random.randint(1, self.sample_rate)
|
165 |
+
else:
|
166 |
+
sample_rate = self.sample_rate
|
167 |
+
size = self.sequence_length * sample_rate
|
168 |
+
start_frame_ind, end_frame_ind = TemporalRandomCrop(total_frames, size)
|
169 |
+
# assert end_frame_ind - start_frame_ind >= self.num_frames
|
170 |
+
frame_indice = np.linspace(start_frame_ind, end_frame_ind - 1, self.sequence_length, dtype=int)
|
171 |
+
|
172 |
+
origin_video_data = decord_vr_origin.get_batch(frame_indice).asnumpy()
|
173 |
+
origin_video_data = torch.from_numpy(origin_video_data)
|
174 |
+
origin_video_data = origin_video_data.permute(0, 3, 1, 2) # (T, H, W, C) -> (T C H W)
|
175 |
+
vae_video_data = decord_vr_vae.get_batch(frame_indice).asnumpy()
|
176 |
+
vae_video_data = torch.from_numpy(vae_video_data)
|
177 |
+
vae_video_data = vae_video_data.permute(0, 3, 1, 2) # (T, H, W, C) -> (T C H W)
|
178 |
+
return origin_video_data, vae_video_data
|
causalvideovae/model/ema_model.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
class EMA:
|
2 |
+
def __init__(self, model, decay):
|
3 |
+
self.model = model
|
4 |
+
self.decay = decay
|
5 |
+
self.shadow = {}
|
6 |
+
self.backup = {}
|
7 |
+
|
8 |
+
def register(self):
|
9 |
+
for name, param in self.model.named_parameters():
|
10 |
+
if param.requires_grad:
|
11 |
+
self.shadow[name] = param.data.clone()
|
12 |
+
|
13 |
+
def update(self):
|
14 |
+
for name, param in self.model.named_parameters():
|
15 |
+
if name in self.shadow:
|
16 |
+
new_average = (1.0 - self.decay) * param.data + self.decay * self.shadow[name]
|
17 |
+
self.shadow[name] = new_average.clone()
|
18 |
+
|
19 |
+
def apply_shadow(self):
|
20 |
+
for name, param in self.model.named_parameters():
|
21 |
+
if name in self.shadow:
|
22 |
+
self.backup[name] = param.data
|
23 |
+
param.data = self.shadow[name]
|
24 |
+
|
25 |
+
def restore(self):
|
26 |
+
for name, param in self.model.named_parameters():
|
27 |
+
if name in self.shadow:
|
28 |
+
param.data = self.backup[name]
|
29 |
+
self.backup = {}
|
30 |
+
|
31 |
+
|
causalvideovae/model/losses/lpips.py
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Stripped version of https://github.com/richzhang/PerceptualSimilarity/tree/master/models"""
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
from torchvision import models
|
6 |
+
from collections import namedtuple
|
7 |
+
from ...utils.taming_download import get_ckpt_path
|
8 |
+
|
9 |
+
class LPIPS(nn.Module):
|
10 |
+
# Learned perceptual metric
|
11 |
+
def __init__(self, use_dropout=True):
|
12 |
+
super().__init__()
|
13 |
+
self.scaling_layer = ScalingLayer()
|
14 |
+
self.chns = [64, 128, 256, 512, 512] # vg16 features
|
15 |
+
self.net = vgg16(pretrained=True, requires_grad=False)
|
16 |
+
self.lin0 = NetLinLayer(self.chns[0], use_dropout=use_dropout)
|
17 |
+
self.lin1 = NetLinLayer(self.chns[1], use_dropout=use_dropout)
|
18 |
+
self.lin2 = NetLinLayer(self.chns[2], use_dropout=use_dropout)
|
19 |
+
self.lin3 = NetLinLayer(self.chns[3], use_dropout=use_dropout)
|
20 |
+
self.lin4 = NetLinLayer(self.chns[4], use_dropout=use_dropout)
|
21 |
+
self.load_from_pretrained()
|
22 |
+
for param in self.parameters():
|
23 |
+
param.requires_grad = False
|
24 |
+
|
25 |
+
def load_from_pretrained(self, name="vgg_lpips"):
|
26 |
+
ckpt = get_ckpt_path(name, ".cache/lpips")
|
27 |
+
self.load_state_dict(torch.load(ckpt, map_location=torch.device("cpu")), strict=False)
|
28 |
+
print("loaded pretrained LPIPS loss from {}".format(ckpt))
|
29 |
+
|
30 |
+
@classmethod
|
31 |
+
def from_pretrained(cls, name="vgg_lpips"):
|
32 |
+
if name != "vgg_lpips":
|
33 |
+
raise NotImplementedError
|
34 |
+
model = cls()
|
35 |
+
ckpt = get_ckpt_path(name)
|
36 |
+
model.load_state_dict(torch.load(ckpt, map_location=torch.device("cpu")), strict=False)
|
37 |
+
return model
|
38 |
+
|
39 |
+
def forward(self, input, target):
|
40 |
+
in0_input, in1_input = (self.scaling_layer(input), self.scaling_layer(target))
|
41 |
+
outs0, outs1 = self.net(in0_input), self.net(in1_input)
|
42 |
+
feats0, feats1, diffs = {}, {}, {}
|
43 |
+
lins = [self.lin0, self.lin1, self.lin2, self.lin3, self.lin4]
|
44 |
+
for kk in range(len(self.chns)):
|
45 |
+
feats0[kk], feats1[kk] = normalize_tensor(outs0[kk]), normalize_tensor(outs1[kk])
|
46 |
+
diffs[kk] = (feats0[kk] - feats1[kk]) ** 2
|
47 |
+
|
48 |
+
res = [spatial_average(lins[kk].model(diffs[kk]), keepdim=True) for kk in range(len(self.chns))]
|
49 |
+
val = res[0]
|
50 |
+
for l in range(1, len(self.chns)):
|
51 |
+
val += res[l]
|
52 |
+
return val
|
53 |
+
|
54 |
+
|
55 |
+
class ScalingLayer(nn.Module):
|
56 |
+
def __init__(self):
|
57 |
+
super(ScalingLayer, self).__init__()
|
58 |
+
self.register_buffer('shift', torch.Tensor([-.030, -.088, -.188])[None, :, None, None])
|
59 |
+
self.register_buffer('scale', torch.Tensor([.458, .448, .450])[None, :, None, None])
|
60 |
+
|
61 |
+
def forward(self, inp):
|
62 |
+
return (inp - self.shift) / self.scale
|
63 |
+
|
64 |
+
|
65 |
+
class NetLinLayer(nn.Module):
|
66 |
+
""" A single linear layer which does a 1x1 conv """
|
67 |
+
def __init__(self, chn_in, chn_out=1, use_dropout=False):
|
68 |
+
super(NetLinLayer, self).__init__()
|
69 |
+
layers = [nn.Dropout(), ] if (use_dropout) else []
|
70 |
+
layers += [nn.Conv2d(chn_in, chn_out, 1, stride=1, padding=0, bias=False), ]
|
71 |
+
self.model = nn.Sequential(*layers)
|
72 |
+
|
73 |
+
|
74 |
+
class vgg16(torch.nn.Module):
|
75 |
+
def __init__(self, requires_grad=False, pretrained=True):
|
76 |
+
super(vgg16, self).__init__()
|
77 |
+
vgg_pretrained_features = models.vgg16(pretrained=pretrained).features
|
78 |
+
self.slice1 = torch.nn.Sequential()
|
79 |
+
self.slice2 = torch.nn.Sequential()
|
80 |
+
self.slice3 = torch.nn.Sequential()
|
81 |
+
self.slice4 = torch.nn.Sequential()
|
82 |
+
self.slice5 = torch.nn.Sequential()
|
83 |
+
self.N_slices = 5
|
84 |
+
for x in range(4):
|
85 |
+
self.slice1.add_module(str(x), vgg_pretrained_features[x])
|
86 |
+
for x in range(4, 9):
|
87 |
+
self.slice2.add_module(str(x), vgg_pretrained_features[x])
|
88 |
+
for x in range(9, 16):
|
89 |
+
self.slice3.add_module(str(x), vgg_pretrained_features[x])
|
90 |
+
for x in range(16, 23):
|
91 |
+
self.slice4.add_module(str(x), vgg_pretrained_features[x])
|
92 |
+
for x in range(23, 30):
|
93 |
+
self.slice5.add_module(str(x), vgg_pretrained_features[x])
|
94 |
+
if not requires_grad:
|
95 |
+
for param in self.parameters():
|
96 |
+
param.requires_grad = False
|
97 |
+
|
98 |
+
def forward(self, X):
|
99 |
+
h = self.slice1(X)
|
100 |
+
h_relu1_2 = h
|
101 |
+
h = self.slice2(h)
|
102 |
+
h_relu2_2 = h
|
103 |
+
h = self.slice3(h)
|
104 |
+
h_relu3_3 = h
|
105 |
+
h = self.slice4(h)
|
106 |
+
h_relu4_3 = h
|
107 |
+
h = self.slice5(h)
|
108 |
+
h_relu5_3 = h
|
109 |
+
vgg_outputs = namedtuple("VggOutputs", ['relu1_2', 'relu2_2', 'relu3_3', 'relu4_3', 'relu5_3'])
|
110 |
+
out = vgg_outputs(h_relu1_2, h_relu2_2, h_relu3_3, h_relu4_3, h_relu5_3)
|
111 |
+
return out
|
112 |
+
|
113 |
+
|
114 |
+
def normalize_tensor(x,eps=1e-10):
|
115 |
+
norm_factor = torch.sqrt(torch.sum(x**2,dim=1,keepdim=True))
|
116 |
+
return x/(norm_factor+eps)
|
117 |
+
|
118 |
+
|
119 |
+
def spatial_average(x, keepdim=True):
|
120 |
+
return x.mean([2,3],keepdim=keepdim)
|
causalvideovae/model/modules/block.py
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch.nn as nn
|
2 |
+
|
3 |
+
class Block(nn.Module):
|
4 |
+
def __init__(self, *args, **kwargs) -> None:
|
5 |
+
super().__init__(*args, **kwargs)
|
causalvideovae/model/utils/video_utils.py
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
|
4 |
+
def tensor_to_video(x):
|
5 |
+
#x = (x * 2 - 1).detach().cpu()
|
6 |
+
x = torch.clamp(x, -1, 1).detach().cpu()
|
7 |
+
x = (x + 1) / 2
|
8 |
+
x = x.permute(1, 0, 2, 3).float().numpy() # c t h w -> t c h w
|
9 |
+
x = (255 * x).astype(np.uint8)
|
10 |
+
return x
|
scripts/eval.sh
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# REAL_DATASET_DIR=/remote-home1/dataset/OpenMMLab___Kinetics-400/raw/Kinetics-400/videos_val/
|
2 |
+
SAMPLE_RATE=1
|
3 |
+
REAL_DATASET_DIR=/storage/clh/video_control/DAVIS_119pairs_test/CogVideoXI/CogVideoXI_25x720x480_50steps_prompt
|
4 |
+
NUM_FRAMES=25
|
5 |
+
RESOLUTION=256
|
6 |
+
SUBSET_SIZE=119
|
7 |
+
METRIC=ssim
|
8 |
+
|
9 |
+
python causalvideovae/eval/eval_common_metric.py \
|
10 |
+
--batch_size 1 \
|
11 |
+
--real_video_dir ${REAL_DATASET_DIR} \
|
12 |
+
--generated_video_dir /storage/clh/video_control/DAVIS_119pairs_test/gt/25x720x480 \
|
13 |
+
--device cuda:4 \
|
14 |
+
--sample_fps 24 \
|
15 |
+
--sample_rate ${SAMPLE_RATE} \
|
16 |
+
--num_frames ${NUM_FRAMES} \
|
17 |
+
--resolution ${RESOLUTION} \
|
18 |
+
--crop_size ${RESOLUTION} \
|
19 |
+
--metric ${METRIC} \
|
scripts/nus_vae_gen_video.sh
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
|
2 |
+
export NCCL_DEBUG=INFO
|
3 |
+
export NCCL_SOCKET_IFNAME=ibs11
|
4 |
+
export NCCL_IB_DISABLE=1
|
5 |
+
REAL_DATASET_DIR=/storage/dataset/vae_eval/panda70m
|
6 |
+
EXP_NAME=test_train
|
7 |
+
SAMPLE_RATE=1
|
8 |
+
NUM_FRAMES=33
|
9 |
+
RESOLUTION=256
|
10 |
+
SUBSET_SIZE=1000
|
11 |
+
CKPT=/storage/clh/Open-Sora/OpenSora-VAE-v1.2
|
12 |
+
unset https_proxy
|
13 |
+
unset http_proxy
|
14 |
+
|
15 |
+
torchrun \
|
16 |
+
--nnodes=1 --nproc_per_node=8 \
|
17 |
+
--rdzv_backend=c10d \
|
18 |
+
--rdzv_endpoint=localhost:29504 \
|
19 |
+
--master_addr=localhost \
|
20 |
+
--master_port=29600 \
|
21 |
+
scripts/rec_nus_vae.py\
|
22 |
+
--batch_size 1 \
|
23 |
+
--real_video_dir ${REAL_DATASET_DIR} \
|
24 |
+
--generated_video_dir /storage/clh/gen/488dim8 \
|
25 |
+
--sample_fps 24 \
|
26 |
+
--sample_rate ${SAMPLE_RATE} \
|
27 |
+
--num_frames ${NUM_FRAMES} \
|
28 |
+
--resolution ${RESOLUTION} \
|
29 |
+
--crop_size ${RESOLUTION} \
|
30 |
+
--num_workers 8 \
|
31 |
+
--ckpt ${CKPT} \
|
32 |
+
--config /storage/clh/Causal-Video-VAE/opensora/video.py\
|
33 |
+
--output_origin \
|
34 |
+
--subset_size 1000 \
|
35 |
+
|
scripts/rec_cv_vae.py
ADDED
@@ -0,0 +1,298 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import random
|
2 |
+
import argparse
|
3 |
+
import cv2
|
4 |
+
from tqdm import tqdm
|
5 |
+
import numpy as np
|
6 |
+
import numpy.typing as npt
|
7 |
+
import torch
|
8 |
+
import torch.distributed as dist
|
9 |
+
from torch.nn.parallel import DistributedDataParallel as DDP
|
10 |
+
from torch.utils.data import DataLoader, DistributedSampler, Subset
|
11 |
+
from decord import VideoReader, cpu
|
12 |
+
from torch.nn import functional as F
|
13 |
+
from pytorchvideo.transforms import ShortSideScale
|
14 |
+
from torchvision.transforms import Lambda, Compose
|
15 |
+
from torchvision.transforms._transforms_video import CenterCropVideo
|
16 |
+
import sys
|
17 |
+
from torch.utils.data import Dataset, DataLoader, Subset
|
18 |
+
import os
|
19 |
+
import glob
|
20 |
+
sys.path.append(".")
|
21 |
+
import torch.nn as nn
|
22 |
+
import yaml
|
23 |
+
from omegaconf import OmegaConf
|
24 |
+
from einops import rearrange
|
25 |
+
from CV_VAE.models.modeling_vae import CVVAEModel
|
26 |
+
|
27 |
+
def ddp_setup():
|
28 |
+
dist.init_process_group(backend="nccl")
|
29 |
+
torch.cuda.set_device(int(os.environ["LOCAL_RANK"]))
|
30 |
+
|
31 |
+
def array_to_video(
|
32 |
+
image_array: npt.NDArray, fps: float = 30.0, output_file: str = "output_video.mp4"
|
33 |
+
) -> None:
|
34 |
+
height, width, channels = image_array[0].shape
|
35 |
+
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
|
36 |
+
video_writer = cv2.VideoWriter(output_file, fourcc, float(fps), (width, height))
|
37 |
+
|
38 |
+
for image in image_array:
|
39 |
+
image_rgb = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
|
40 |
+
video_writer.write(image_rgb)
|
41 |
+
|
42 |
+
video_writer.release()
|
43 |
+
|
44 |
+
|
45 |
+
def custom_to_video(
|
46 |
+
x: torch.Tensor, fps: float = 2.0, output_file: str = "output_video.mp4"
|
47 |
+
) -> None:
|
48 |
+
x = x.detach().cpu()
|
49 |
+
x = torch.clamp(x, -1, 1)
|
50 |
+
x = (x + 1) / 2
|
51 |
+
x = x.permute(1, 2, 3, 0).float().numpy()
|
52 |
+
x = (255 * x).astype(np.uint8)
|
53 |
+
array_to_video(x, fps=fps, output_file=output_file)
|
54 |
+
return
|
55 |
+
|
56 |
+
|
57 |
+
def read_video(video_path: str, num_frames: int, sample_rate: int) -> torch.Tensor:
|
58 |
+
decord_vr = VideoReader(video_path, ctx=cpu(0), num_threads=8)
|
59 |
+
total_frames = len(decord_vr)
|
60 |
+
sample_frames_len = sample_rate * num_frames
|
61 |
+
|
62 |
+
if total_frames > sample_frames_len:
|
63 |
+
s = 0
|
64 |
+
e = s + sample_frames_len
|
65 |
+
num_frames = num_frames
|
66 |
+
else:
|
67 |
+
s = 0
|
68 |
+
e = total_frames
|
69 |
+
num_frames = int(total_frames / sample_frames_len * num_frames)
|
70 |
+
print(
|
71 |
+
f"sample_frames_len {sample_frames_len}, only can sample {num_frames * sample_rate}",
|
72 |
+
video_path,
|
73 |
+
total_frames,
|
74 |
+
)
|
75 |
+
|
76 |
+
frame_id_list = np.linspace(s, e - 1, num_frames, dtype=int)
|
77 |
+
video_data = decord_vr.get_batch(frame_id_list).asnumpy()
|
78 |
+
video_data = torch.from_numpy(video_data)
|
79 |
+
video_data = video_data.permute(3, 0, 1, 2) # (T, H, W, C) -> (C, T, H, W)
|
80 |
+
return video_data
|
81 |
+
|
82 |
+
|
83 |
+
class RealVideoDataset(Dataset):
|
84 |
+
video_exts = ['avi', 'mp4', 'webm']
|
85 |
+
|
86 |
+
def __init__(
|
87 |
+
self,
|
88 |
+
real_video_dir,
|
89 |
+
num_frames,
|
90 |
+
sample_rate=1,
|
91 |
+
crop_size=None,
|
92 |
+
resolution=128,
|
93 |
+
) -> None:
|
94 |
+
super().__init__()
|
95 |
+
self.real_video_files = self._combine_without_prefix(real_video_dir)
|
96 |
+
self.num_frames = num_frames
|
97 |
+
self.sample_rate = sample_rate
|
98 |
+
self.crop_size = crop_size
|
99 |
+
self.short_size = resolution
|
100 |
+
|
101 |
+
def __len__(self):
|
102 |
+
return len(self.real_video_files)
|
103 |
+
|
104 |
+
def __getitem__(self, index):
|
105 |
+
try:
|
106 |
+
if index >= len(self):
|
107 |
+
raise IndexError
|
108 |
+
real_video_file = self.real_video_files[index]
|
109 |
+
real_video_tensor = self._load_video(real_video_file)
|
110 |
+
video_name = os.path.basename(real_video_file)
|
111 |
+
except:
|
112 |
+
if index >= len(self):
|
113 |
+
raise IndexError
|
114 |
+
real_video_file = self.real_video_files[random.randint(1,index-1)]
|
115 |
+
real_video_tensor = self._load_video(real_video_file)
|
116 |
+
video_name = os.path.basename(real_video_file)
|
117 |
+
return {'video': real_video_tensor, 'file_name': video_name }
|
118 |
+
|
119 |
+
def _load_video(self, video_path):
|
120 |
+
num_frames = self.num_frames
|
121 |
+
sample_rate = self.sample_rate
|
122 |
+
decord_vr = VideoReader(video_path, ctx=cpu(0))
|
123 |
+
total_frames = len(decord_vr)
|
124 |
+
sample_frames_len = sample_rate * num_frames
|
125 |
+
s = 0
|
126 |
+
e = s + sample_frames_len
|
127 |
+
num_frames = num_frames
|
128 |
+
"""
|
129 |
+
if total_frames > sample_frames_len:
|
130 |
+
s = 0
|
131 |
+
e = s + sample_frames_len
|
132 |
+
num_frames = num_frames
|
133 |
+
|
134 |
+
else:
|
135 |
+
s = 0
|
136 |
+
e = total_frames
|
137 |
+
num_frames = int(total_frames / sample_frames_len * num_frames)
|
138 |
+
print(
|
139 |
+
f"sample_frames_len {sample_frames_len}, only can sample {num_frames * sample_rate}",
|
140 |
+
video_path,
|
141 |
+
total_frames,
|
142 |
+
)
|
143 |
+
"""
|
144 |
+
frame_id_list = np.linspace(s, e - 1, num_frames, dtype=int)
|
145 |
+
video_data = decord_vr.get_batch(frame_id_list).asnumpy()
|
146 |
+
video_data = torch.from_numpy(video_data)
|
147 |
+
video_data = video_data.permute(3, 0, 1, 2)
|
148 |
+
return _preprocess(
|
149 |
+
video_data, short_size=self.short_size, crop_size=self.crop_size
|
150 |
+
)
|
151 |
+
|
152 |
+
def _combine_without_prefix(self, folder_path):
|
153 |
+
samples = []
|
154 |
+
samples += sum([glob.glob(os.path.join(folder_path, '**', f'*.{ext}'), recursive=True)
|
155 |
+
for ext in self.video_exts], [])
|
156 |
+
samples.sort()
|
157 |
+
return samples
|
158 |
+
|
159 |
+
def resize(x, resolution):
|
160 |
+
height, width = x.shape[-2:]
|
161 |
+
aspect_ratio = width / height
|
162 |
+
if width <= height:
|
163 |
+
new_width = resolution
|
164 |
+
new_height = int(resolution / aspect_ratio)
|
165 |
+
else:
|
166 |
+
new_height = resolution
|
167 |
+
new_width = int(resolution * aspect_ratio)
|
168 |
+
resized_x = F.interpolate(x, size=(new_height, new_width), mode='bilinear', align_corners=True, antialias=True)
|
169 |
+
return resized_x
|
170 |
+
|
171 |
+
def _preprocess(video_data, short_size=128, crop_size=None):
|
172 |
+
transform = Compose(
|
173 |
+
|
174 |
+
[
|
175 |
+
|
176 |
+
Lambda(lambda x: ((x / 255.0) * 2 - 1)),
|
177 |
+
Lambda(lambda x: resize(x, short_size)),
|
178 |
+
(
|
179 |
+
CenterCropVideo(crop_size=crop_size)
|
180 |
+
if crop_size is not None
|
181 |
+
else Lambda(lambda x: x)
|
182 |
+
),
|
183 |
+
|
184 |
+
]
|
185 |
+
|
186 |
+
)
|
187 |
+
video_outputs = transform(video_data)
|
188 |
+
video_outputs = _format_video_shape(video_outputs)
|
189 |
+
return video_outputs
|
190 |
+
|
191 |
+
|
192 |
+
def _format_video_shape(video, time_compress=4, spatial_compress=8):
|
193 |
+
time = video.shape[1]
|
194 |
+
height = video.shape[2]
|
195 |
+
width = video.shape[3]
|
196 |
+
new_time = (
|
197 |
+
(time - (time - 1) % time_compress)
|
198 |
+
if (time - 1) % time_compress != 0
|
199 |
+
else time
|
200 |
+
)
|
201 |
+
new_height = (
|
202 |
+
(height - (height) % spatial_compress)
|
203 |
+
if height % spatial_compress != 0
|
204 |
+
else height
|
205 |
+
)
|
206 |
+
new_width = (
|
207 |
+
(width - (width) % spatial_compress) if width % spatial_compress != 0 else width
|
208 |
+
)
|
209 |
+
return video[:, :new_time, :new_height, :new_width]
|
210 |
+
|
211 |
+
@torch.no_grad()
|
212 |
+
def main(args: argparse.Namespace):
|
213 |
+
real_video_dir = args.real_video_dir
|
214 |
+
generated_video_dir = args.generated_video_dir
|
215 |
+
ckpt = args.ckpt
|
216 |
+
sample_rate = args.sample_rate
|
217 |
+
resolution = args.resolution
|
218 |
+
crop_size = args.crop_size
|
219 |
+
num_frames = args.num_frames
|
220 |
+
sample_rate = args.sample_rate
|
221 |
+
sample_fps = args.sample_fps
|
222 |
+
batch_size = args.batch_size
|
223 |
+
num_workers = args.num_workers
|
224 |
+
subset_size = args.subset_size
|
225 |
+
|
226 |
+
if not os.path.exists(args.generated_video_dir):
|
227 |
+
os.makedirs(os.path.join(generated_video_dir, "vae_gen/"), exist_ok=True)
|
228 |
+
|
229 |
+
data_type = torch.bfloat16
|
230 |
+
|
231 |
+
ddp_setup()
|
232 |
+
rank = int(os.environ["LOCAL_RANK"])
|
233 |
+
|
234 |
+
# ---- Load Model ----
|
235 |
+
cvvae = CVVAEModel.from_pretrained(ckpt)
|
236 |
+
print(cvvae)
|
237 |
+
cvvae = cvvae.to(rank).to(data_type)
|
238 |
+
cvvae.eval()
|
239 |
+
|
240 |
+
# ---- Load Model ----
|
241 |
+
|
242 |
+
# ---- Prepare Dataset ----
|
243 |
+
dataset = RealVideoDataset(
|
244 |
+
real_video_dir=real_video_dir,
|
245 |
+
num_frames=num_frames,
|
246 |
+
sample_rate=sample_rate,
|
247 |
+
crop_size=crop_size,
|
248 |
+
resolution=resolution,
|
249 |
+
)
|
250 |
+
|
251 |
+
if subset_size:
|
252 |
+
indices = range(subset_size)
|
253 |
+
dataset = Subset(dataset, indices=indices)
|
254 |
+
ddp_sampler = DistributedSampler(dataset)
|
255 |
+
dataloader = DataLoader(
|
256 |
+
dataset, batch_size=batch_size, sampler=ddp_sampler ,pin_memory=True, num_workers=num_workers
|
257 |
+
)
|
258 |
+
# ---- Prepare Dataset
|
259 |
+
|
260 |
+
# ---- Inference ----
|
261 |
+
for batch in tqdm(dataloader):
|
262 |
+
x, file_names = batch['video'], batch['file_name']
|
263 |
+
|
264 |
+
x = x.to(rank).to(data_type) # b c t h w
|
265 |
+
latent = cvvae.encode(x).latent_dist.sample()
|
266 |
+
video_recon = cvvae.decode(latent).sample
|
267 |
+
for idx, video in enumerate(video_recon):
|
268 |
+
output_path = os.path.join(generated_video_dir, "vae_gen/", file_names[idx])
|
269 |
+
if args.output_origin:
|
270 |
+
os.makedirs(os.path.join(generated_video_dir, "origin/"), exist_ok=True)
|
271 |
+
origin_output_path = os.path.join(generated_video_dir, "origin/", file_names[idx])
|
272 |
+
custom_to_video(
|
273 |
+
x[idx], fps=sample_fps / sample_rate, output_file=origin_output_path
|
274 |
+
)
|
275 |
+
custom_to_video(
|
276 |
+
video, fps=sample_fps / sample_rate, output_file=output_path
|
277 |
+
)
|
278 |
+
# ---- Inference ----
|
279 |
+
|
280 |
+
if __name__ == "__main__":
|
281 |
+
parser = argparse.ArgumentParser()
|
282 |
+
parser.add_argument("--real_video_dir", type=str, default="")
|
283 |
+
parser.add_argument("--generated_video_dir", type=str, default="")
|
284 |
+
parser.add_argument("--ckpt", type=str, default="")
|
285 |
+
parser.add_argument("--sample_fps", type=int, default=30)
|
286 |
+
parser.add_argument("--resolution", type=int, default=336)
|
287 |
+
parser.add_argument("--crop_size", type=int, default=None)
|
288 |
+
parser.add_argument("--num_frames", type=int, default=17)
|
289 |
+
parser.add_argument("--sample_rate", type=int, default=1)
|
290 |
+
parser.add_argument("--batch_size", type=int, default=1)
|
291 |
+
parser.add_argument("--num_workers", type=int, default=8)
|
292 |
+
parser.add_argument("--subset_size", type=int, default=None)
|
293 |
+
parser.add_argument('--output_origin', action='store_true')
|
294 |
+
parser.add_argument("--config", type=str, default="")
|
295 |
+
|
296 |
+
|
297 |
+
args = parser.parse_args()
|
298 |
+
main(args)
|
scripts/rec_sd2_1_vae.py
ADDED
@@ -0,0 +1,302 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import random
|
2 |
+
import argparse
|
3 |
+
import cv2
|
4 |
+
from tqdm import tqdm
|
5 |
+
import numpy as np
|
6 |
+
import numpy.typing as npt
|
7 |
+
import torch
|
8 |
+
import torch.distributed as dist
|
9 |
+
from torch.nn.parallel import DistributedDataParallel as DDP
|
10 |
+
from torch.utils.data import DataLoader, DistributedSampler, Subset
|
11 |
+
from decord import VideoReader, cpu
|
12 |
+
from torch.nn import functional as F
|
13 |
+
from pytorchvideo.transforms import ShortSideScale
|
14 |
+
from torchvision.transforms import Lambda, Compose
|
15 |
+
from torchvision.transforms._transforms_video import CenterCropVideo
|
16 |
+
import sys
|
17 |
+
from torch.utils.data import Dataset, DataLoader, Subset
|
18 |
+
import os
|
19 |
+
import glob
|
20 |
+
sys.path.append(".")
|
21 |
+
import torch.nn as nn
|
22 |
+
import yaml
|
23 |
+
from omegaconf import OmegaConf
|
24 |
+
from einops import rearrange
|
25 |
+
from diffusers.models import AutoencoderKL
|
26 |
+
|
27 |
+
def ddp_setup():
|
28 |
+
dist.init_process_group(backend="nccl")
|
29 |
+
torch.cuda.set_device(int(os.environ["LOCAL_RANK"]))
|
30 |
+
|
31 |
+
def array_to_video(
|
32 |
+
image_array: npt.NDArray, fps: float = 30.0, output_file: str = "output_video.mp4"
|
33 |
+
) -> None:
|
34 |
+
height, width, channels = image_array[0].shape
|
35 |
+
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
|
36 |
+
video_writer = cv2.VideoWriter(output_file, fourcc, float(fps), (width, height))
|
37 |
+
|
38 |
+
for image in image_array:
|
39 |
+
image_rgb = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
|
40 |
+
video_writer.write(image_rgb)
|
41 |
+
|
42 |
+
video_writer.release()
|
43 |
+
|
44 |
+
|
45 |
+
def custom_to_video(
|
46 |
+
x: torch.Tensor, fps: float = 2.0, output_file: str = "output_video.mp4"
|
47 |
+
) -> None:
|
48 |
+
x = x.detach().cpu()
|
49 |
+
x = torch.clamp(x, -1, 1)
|
50 |
+
x = (x + 1) / 2
|
51 |
+
x = x.permute(1, 2, 3, 0).float().numpy()
|
52 |
+
x = (255 * x).astype(np.uint8)
|
53 |
+
array_to_video(x, fps=fps, output_file=output_file)
|
54 |
+
return
|
55 |
+
|
56 |
+
|
57 |
+
def read_video(video_path: str, num_frames: int, sample_rate: int) -> torch.Tensor:
|
58 |
+
decord_vr = VideoReader(video_path, ctx=cpu(0), num_threads=8)
|
59 |
+
total_frames = len(decord_vr)
|
60 |
+
sample_frames_len = sample_rate * num_frames
|
61 |
+
|
62 |
+
if total_frames > sample_frames_len:
|
63 |
+
s = 0
|
64 |
+
e = s + sample_frames_len
|
65 |
+
num_frames = num_frames
|
66 |
+
else:
|
67 |
+
s = 0
|
68 |
+
e = total_frames
|
69 |
+
num_frames = int(total_frames / sample_frames_len * num_frames)
|
70 |
+
print(
|
71 |
+
f"sample_frames_len {sample_frames_len}, only can sample {num_frames * sample_rate}",
|
72 |
+
video_path,
|
73 |
+
total_frames,
|
74 |
+
)
|
75 |
+
|
76 |
+
frame_id_list = np.linspace(s, e - 1, num_frames, dtype=int)
|
77 |
+
video_data = decord_vr.get_batch(frame_id_list).asnumpy()
|
78 |
+
video_data = torch.from_numpy(video_data)
|
79 |
+
video_data = video_data.permute(3, 0, 1, 2) # (T, H, W, C) -> (C, T, H, W)
|
80 |
+
return video_data
|
81 |
+
|
82 |
+
|
83 |
+
class RealVideoDataset(Dataset):
|
84 |
+
video_exts = ['avi', 'mp4', 'webm']
|
85 |
+
|
86 |
+
def __init__(
|
87 |
+
self,
|
88 |
+
real_video_dir,
|
89 |
+
num_frames,
|
90 |
+
sample_rate=1,
|
91 |
+
crop_size=None,
|
92 |
+
resolution=128,
|
93 |
+
) -> None:
|
94 |
+
super().__init__()
|
95 |
+
self.real_video_files = self._combine_without_prefix(real_video_dir)
|
96 |
+
self.num_frames = num_frames
|
97 |
+
self.sample_rate = sample_rate
|
98 |
+
self.crop_size = crop_size
|
99 |
+
self.short_size = resolution
|
100 |
+
|
101 |
+
def __len__(self):
|
102 |
+
return len(self.real_video_files)
|
103 |
+
|
104 |
+
def __getitem__(self, index):
|
105 |
+
try:
|
106 |
+
if index >= len(self):
|
107 |
+
raise IndexError
|
108 |
+
real_video_file = self.real_video_files[index]
|
109 |
+
real_video_tensor = self._load_video(real_video_file)
|
110 |
+
video_name = os.path.basename(real_video_file)
|
111 |
+
except:
|
112 |
+
if index >= len(self):
|
113 |
+
raise IndexError
|
114 |
+
real_video_file = self.real_video_files[random.randint(1,index-1)]
|
115 |
+
real_video_tensor = self._load_video(real_video_file)
|
116 |
+
video_name = os.path.basename(real_video_file)
|
117 |
+
return {'video': real_video_tensor, 'file_name': video_name }
|
118 |
+
|
119 |
+
def _load_video(self, video_path):
|
120 |
+
num_frames = self.num_frames
|
121 |
+
sample_rate = self.sample_rate
|
122 |
+
decord_vr = VideoReader(video_path, ctx=cpu(0))
|
123 |
+
total_frames = len(decord_vr)
|
124 |
+
sample_frames_len = sample_rate * num_frames
|
125 |
+
s = 0
|
126 |
+
e = s + sample_frames_len
|
127 |
+
num_frames = num_frames
|
128 |
+
"""
|
129 |
+
if total_frames > sample_frames_len:
|
130 |
+
s = 0
|
131 |
+
e = s + sample_frames_len
|
132 |
+
num_frames = num_frames
|
133 |
+
|
134 |
+
else:
|
135 |
+
s = 0
|
136 |
+
e = total_frames
|
137 |
+
num_frames = int(total_frames / sample_frames_len * num_frames)
|
138 |
+
print(
|
139 |
+
f"sample_frames_len {sample_frames_len}, only can sample {num_frames * sample_rate}",
|
140 |
+
video_path,
|
141 |
+
total_frames,
|
142 |
+
)
|
143 |
+
"""
|
144 |
+
frame_id_list = np.linspace(s, e - 1, num_frames, dtype=int)
|
145 |
+
video_data = decord_vr.get_batch(frame_id_list).asnumpy()
|
146 |
+
video_data = torch.from_numpy(video_data)
|
147 |
+
video_data = video_data.permute(3, 0, 1, 2)
|
148 |
+
return _preprocess(
|
149 |
+
video_data, short_size=self.short_size, crop_size=self.crop_size
|
150 |
+
)
|
151 |
+
|
152 |
+
def _combine_without_prefix(self, folder_path):
|
153 |
+
samples = []
|
154 |
+
samples += sum([glob.glob(os.path.join(folder_path, '**', f'*.{ext}'), recursive=True)
|
155 |
+
for ext in self.video_exts], [])
|
156 |
+
samples.sort()
|
157 |
+
return samples
|
158 |
+
|
159 |
+
def resize(x, resolution):
|
160 |
+
height, width = x.shape[-2:]
|
161 |
+
aspect_ratio = width / height
|
162 |
+
if width <= height:
|
163 |
+
new_width = resolution
|
164 |
+
new_height = int(resolution / aspect_ratio)
|
165 |
+
else:
|
166 |
+
new_height = resolution
|
167 |
+
new_width = int(resolution * aspect_ratio)
|
168 |
+
resized_x = F.interpolate(x, size=(new_height, new_width), mode='bilinear', align_corners=True, antialias=True)
|
169 |
+
return resized_x
|
170 |
+
|
171 |
+
def _preprocess(video_data, short_size=128, crop_size=None):
|
172 |
+
transform = Compose(
|
173 |
+
|
174 |
+
[
|
175 |
+
|
176 |
+
Lambda(lambda x: ((x / 255.0) * 2 - 1)),
|
177 |
+
Lambda(lambda x: resize(x, short_size)),
|
178 |
+
(
|
179 |
+
CenterCropVideo(crop_size=crop_size)
|
180 |
+
if crop_size is not None
|
181 |
+
else Lambda(lambda x: x)
|
182 |
+
),
|
183 |
+
|
184 |
+
]
|
185 |
+
|
186 |
+
)
|
187 |
+
video_outputs = transform(video_data)
|
188 |
+
video_outputs = _format_video_shape(video_outputs)
|
189 |
+
return video_outputs
|
190 |
+
|
191 |
+
|
192 |
+
def _format_video_shape(video, time_compress=4, spatial_compress=8):
|
193 |
+
time = video.shape[1]
|
194 |
+
height = video.shape[2]
|
195 |
+
width = video.shape[3]
|
196 |
+
new_time = (
|
197 |
+
(time - (time - 1) % time_compress)
|
198 |
+
if (time - 1) % time_compress != 0
|
199 |
+
else time
|
200 |
+
)
|
201 |
+
new_height = (
|
202 |
+
(height - (height) % spatial_compress)
|
203 |
+
if height % spatial_compress != 0
|
204 |
+
else height
|
205 |
+
)
|
206 |
+
new_width = (
|
207 |
+
(width - (width) % spatial_compress) if width % spatial_compress != 0 else width
|
208 |
+
)
|
209 |
+
return video[:, :new_time, :new_height, :new_width]
|
210 |
+
|
211 |
+
@torch.no_grad()
|
212 |
+
def main(args: argparse.Namespace):
|
213 |
+
real_video_dir = args.real_video_dir
|
214 |
+
generated_video_dir = args.generated_video_dir
|
215 |
+
ckpt = args.ckpt
|
216 |
+
sample_rate = args.sample_rate
|
217 |
+
resolution = args.resolution
|
218 |
+
crop_size = args.crop_size
|
219 |
+
num_frames = args.num_frames
|
220 |
+
sample_rate = args.sample_rate
|
221 |
+
sample_fps = args.sample_fps
|
222 |
+
batch_size = args.batch_size
|
223 |
+
num_workers = args.num_workers
|
224 |
+
subset_size = args.subset_size
|
225 |
+
|
226 |
+
if not os.path.exists(args.generated_video_dir):
|
227 |
+
os.makedirs(os.path.join(generated_video_dir, "vae_gen/"), exist_ok=True)
|
228 |
+
|
229 |
+
data_type = torch.bfloat16
|
230 |
+
|
231 |
+
ddp_setup()
|
232 |
+
rank = int(os.environ["LOCAL_RANK"])
|
233 |
+
|
234 |
+
# ---- Load Model ----
|
235 |
+
sd2_1_vae = AutoencoderKL.from_pretrained(ckpt)
|
236 |
+
print(sd2_1_vae)
|
237 |
+
sd2_1_vae = sd2_1_vae.to(rank).to(data_type)
|
238 |
+
sd2_1_vae.eval()
|
239 |
+
|
240 |
+
# ---- Load Model ----
|
241 |
+
|
242 |
+
# ---- Prepare Dataset ----
|
243 |
+
dataset = RealVideoDataset(
|
244 |
+
real_video_dir=real_video_dir,
|
245 |
+
num_frames=num_frames,
|
246 |
+
sample_rate=sample_rate,
|
247 |
+
crop_size=crop_size,
|
248 |
+
resolution=resolution,
|
249 |
+
)
|
250 |
+
|
251 |
+
if subset_size:
|
252 |
+
indices = range(subset_size)
|
253 |
+
dataset = Subset(dataset, indices=indices)
|
254 |
+
ddp_sampler = DistributedSampler(dataset)
|
255 |
+
dataloader = DataLoader(
|
256 |
+
dataset, batch_size=batch_size, sampler=ddp_sampler ,pin_memory=True, num_workers=num_workers
|
257 |
+
)
|
258 |
+
# ---- Prepare Dataset
|
259 |
+
|
260 |
+
# ---- Inference ----
|
261 |
+
for batch in tqdm(dataloader):
|
262 |
+
x, file_names = batch['video'], batch['file_name']
|
263 |
+
|
264 |
+
x = x.to(rank).to(data_type) # b c t h w
|
265 |
+
t = x.shape[2]
|
266 |
+
x = rearrange(x, "b c t h w -> (b t) c h w", t=t)
|
267 |
+
latents = sd2_1_vae.encode(x)['latent_dist'].sample()
|
268 |
+
video_recon = sd2_1_vae.decode(latents.to(data_type))['sample']
|
269 |
+
video_recon = rearrange(video_recon, "(b t) c h w -> b c t h w", t=t)
|
270 |
+
x = rearrange(x, "(b t) c h w -> b c t h w", t=t)
|
271 |
+
for idx, video in enumerate(video_recon):
|
272 |
+
output_path = os.path.join(generated_video_dir, "vae_gen/", file_names[idx])
|
273 |
+
if args.output_origin:
|
274 |
+
os.makedirs(os.path.join(generated_video_dir, "origin/"), exist_ok=True)
|
275 |
+
origin_output_path = os.path.join(generated_video_dir, "origin/", file_names[idx])
|
276 |
+
custom_to_video(
|
277 |
+
x[idx], fps=sample_fps / sample_rate, output_file=origin_output_path
|
278 |
+
)
|
279 |
+
custom_to_video(
|
280 |
+
video, fps=sample_fps / sample_rate, output_file=output_path
|
281 |
+
)
|
282 |
+
# ---- Inference ----
|
283 |
+
|
284 |
+
if __name__ == "__main__":
|
285 |
+
parser = argparse.ArgumentParser()
|
286 |
+
parser.add_argument("--real_video_dir", type=str, default="")
|
287 |
+
parser.add_argument("--generated_video_dir", type=str, default="")
|
288 |
+
parser.add_argument("--ckpt", type=str, default="")
|
289 |
+
parser.add_argument("--sample_fps", type=int, default=30)
|
290 |
+
parser.add_argument("--resolution", type=int, default=336)
|
291 |
+
parser.add_argument("--crop_size", type=int, default=None)
|
292 |
+
parser.add_argument("--num_frames", type=int, default=17)
|
293 |
+
parser.add_argument("--sample_rate", type=int, default=1)
|
294 |
+
parser.add_argument("--batch_size", type=int, default=1)
|
295 |
+
parser.add_argument("--num_workers", type=int, default=8)
|
296 |
+
parser.add_argument("--subset_size", type=int, default=None)
|
297 |
+
parser.add_argument('--output_origin', action='store_true')
|
298 |
+
parser.add_argument("--config", type=str, default="")
|
299 |
+
|
300 |
+
|
301 |
+
args = parser.parse_args()
|
302 |
+
main(args)
|
scripts/reconstruction.sh
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
CUDA_VISIBLE_DEVICES=0 python examples/rec_imvi_vae.py \
|
2 |
+
--ae_path /remote-home1/lzj/results/latest_488_reset/test \
|
3 |
+
--video_path visual/134445.mp4 \
|
4 |
+
--rec_path rec488.mp4 \
|
5 |
+
--device cuda \
|
6 |
+
--sample_rate 1 \
|
7 |
+
--num_frames 65 \
|
8 |
+
--resolution 512 \
|
9 |
+
--crop_size 512 \
|
10 |
+
--ae CausalVAEModel_4x8x8 \
|
11 |
+
--enable_tiling
|
scripts/refine_video.py
ADDED
@@ -0,0 +1,299 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import random
|
2 |
+
import argparse
|
3 |
+
import cv2
|
4 |
+
from tqdm import tqdm
|
5 |
+
import numpy as np
|
6 |
+
import numpy.typing as npt
|
7 |
+
import torch
|
8 |
+
from decord import VideoReader, cpu
|
9 |
+
from torch.nn import functional as F
|
10 |
+
from pytorchvideo.transforms import ShortSideScale
|
11 |
+
from torchvision.transforms import Lambda, Compose
|
12 |
+
from torchvision.transforms._transforms_video import CenterCropVideo
|
13 |
+
import sys
|
14 |
+
from torch.utils.data import Dataset, DataLoader, Subset
|
15 |
+
import os
|
16 |
+
import glob
|
17 |
+
sys.path.append(".")
|
18 |
+
from causalvideovae.model import Refiner
|
19 |
+
import torch.nn as nn
|
20 |
+
|
21 |
+
|
22 |
+
def array_to_video(
|
23 |
+
image_array: npt.NDArray, fps: float = 30.0, output_file: str = "output_video.mp4"
|
24 |
+
) -> None:
|
25 |
+
height, width, channels = image_array[0].shape
|
26 |
+
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
|
27 |
+
video_writer = cv2.VideoWriter(output_file, fourcc, float(fps), (width, height))
|
28 |
+
|
29 |
+
for image in image_array:
|
30 |
+
image_rgb = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
|
31 |
+
video_writer.write(image_rgb)
|
32 |
+
|
33 |
+
video_writer.release()
|
34 |
+
|
35 |
+
|
36 |
+
def custom_to_video(
|
37 |
+
x: torch.Tensor, fps: float = 2.0, output_file: str = "output_video.mp4"
|
38 |
+
) -> None:
|
39 |
+
x = x.detach().cpu()
|
40 |
+
x = torch.clamp(x, -1, 1)
|
41 |
+
x = (x + 1) / 2
|
42 |
+
x = x.permute(1, 2, 3, 0).float().numpy()
|
43 |
+
x = (255 * x).astype(np.uint8)
|
44 |
+
array_to_video(x, fps=fps, output_file=output_file)
|
45 |
+
return
|
46 |
+
|
47 |
+
|
48 |
+
def read_video(video_path: str, num_frames: int, sample_rate: int) -> torch.Tensor:
|
49 |
+
decord_vr = VideoReader(video_path, ctx=cpu(0), num_threads=8)
|
50 |
+
total_frames = len(decord_vr)
|
51 |
+
sample_frames_len = sample_rate * num_frames
|
52 |
+
|
53 |
+
if total_frames > sample_frames_len:
|
54 |
+
s = 0
|
55 |
+
e = s + sample_frames_len
|
56 |
+
num_frames = num_frames
|
57 |
+
else:
|
58 |
+
s = 0
|
59 |
+
e = total_frames
|
60 |
+
num_frames = int(total_frames / sample_frames_len * num_frames)
|
61 |
+
print(
|
62 |
+
f"sample_frames_len {sample_frames_len}, only can sample {num_frames * sample_rate}",
|
63 |
+
video_path,
|
64 |
+
total_frames,
|
65 |
+
)
|
66 |
+
|
67 |
+
frame_id_list = np.linspace(s, e - 1, num_frames, dtype=int)
|
68 |
+
video_data = decord_vr.get_batch(frame_id_list).asnumpy()
|
69 |
+
video_data = torch.from_numpy(video_data)
|
70 |
+
video_data = video_data.permute(3, 0, 1, 2) # (T, H, W, C) -> (C, T, H, W)
|
71 |
+
return video_data
|
72 |
+
|
73 |
+
|
74 |
+
class RealVideoDataset(Dataset):
|
75 |
+
video_exts = ['avi', 'mp4', 'webm']
|
76 |
+
|
77 |
+
def __init__(
|
78 |
+
self,
|
79 |
+
real_video_dir,
|
80 |
+
num_frames,
|
81 |
+
sample_rate=1,
|
82 |
+
crop_size=None,
|
83 |
+
resolution=128,
|
84 |
+
) -> None:
|
85 |
+
super().__init__()
|
86 |
+
self.real_video_files = self._combine_without_prefix(real_video_dir)
|
87 |
+
self.num_frames = num_frames
|
88 |
+
self.sample_rate = sample_rate
|
89 |
+
self.crop_size = crop_size
|
90 |
+
self.short_size = resolution
|
91 |
+
|
92 |
+
def __len__(self):
|
93 |
+
return len(self.real_video_files)
|
94 |
+
|
95 |
+
def __getitem__(self, index):
|
96 |
+
try:
|
97 |
+
if index >= len(self):
|
98 |
+
raise IndexError
|
99 |
+
real_video_file = self.real_video_files[index]
|
100 |
+
real_video_tensor = self._load_video(real_video_file)
|
101 |
+
video_name = os.path.basename(real_video_file)
|
102 |
+
except:
|
103 |
+
if index >= len(self):
|
104 |
+
raise IndexError
|
105 |
+
real_video_file = self.real_video_files[random.randint(1,index-1)]
|
106 |
+
real_video_tensor = self._load_video(real_video_file)
|
107 |
+
video_name = os.path.basename(real_video_file)
|
108 |
+
return {'video': real_video_tensor, 'file_name': video_name }
|
109 |
+
|
110 |
+
def _load_video(self, video_path):
|
111 |
+
num_frames = self.num_frames
|
112 |
+
sample_rate = self.sample_rate
|
113 |
+
decord_vr = VideoReader(video_path, ctx=cpu(0))
|
114 |
+
total_frames = len(decord_vr)
|
115 |
+
sample_frames_len = sample_rate * num_frames
|
116 |
+
s = 0
|
117 |
+
e = s + sample_frames_len
|
118 |
+
num_frames = num_frames
|
119 |
+
"""
|
120 |
+
if total_frames > sample_frames_len:
|
121 |
+
s = 0
|
122 |
+
e = s + sample_frames_len
|
123 |
+
num_frames = num_frames
|
124 |
+
|
125 |
+
else:
|
126 |
+
s = 0
|
127 |
+
e = total_frames
|
128 |
+
num_frames = int(total_frames / sample_frames_len * num_frames)
|
129 |
+
print(
|
130 |
+
f"sample_frames_len {sample_frames_len}, only can sample {num_frames * sample_rate}",
|
131 |
+
video_path,
|
132 |
+
total_frames,
|
133 |
+
)
|
134 |
+
"""
|
135 |
+
frame_id_list = np.linspace(s, e - 1, num_frames, dtype=int)
|
136 |
+
video_data = decord_vr.get_batch(frame_id_list).asnumpy()
|
137 |
+
video_data = torch.from_numpy(video_data)
|
138 |
+
video_data = video_data.permute(3, 0, 1, 2)
|
139 |
+
return _preprocess(
|
140 |
+
video_data, short_size=self.short_size, crop_size=self.crop_size
|
141 |
+
)
|
142 |
+
|
143 |
+
def _combine_without_prefix(self, folder_path):
|
144 |
+
samples = []
|
145 |
+
samples += sum([glob.glob(os.path.join(folder_path, '**', f'*.{ext}'), recursive=True)
|
146 |
+
for ext in self.video_exts], [])
|
147 |
+
samples.sort()
|
148 |
+
return samples
|
149 |
+
|
150 |
+
def resize(x, resolution):
|
151 |
+
height, width = x.shape[-2:]
|
152 |
+
aspect_ratio = width / height
|
153 |
+
if width <= height:
|
154 |
+
new_width = resolution
|
155 |
+
new_height = int(resolution / aspect_ratio)
|
156 |
+
else:
|
157 |
+
new_height = resolution
|
158 |
+
new_width = int(resolution * aspect_ratio)
|
159 |
+
resized_x = F.interpolate(x, size=(new_height, new_width), mode='bilinear', align_corners=True, antialias=True)
|
160 |
+
return resized_x
|
161 |
+
|
162 |
+
def _preprocess(video_data, short_size=128, crop_size=None):
|
163 |
+
transform = Compose(
|
164 |
+
[
|
165 |
+
Lambda(lambda x: ((x / 255.0) * 2 - 1)),
|
166 |
+
Lambda(lambda x: resize(x, short_size)),
|
167 |
+
(
|
168 |
+
CenterCropVideo(crop_size=crop_size)
|
169 |
+
if crop_size is not None
|
170 |
+
else Lambda(lambda x: x)
|
171 |
+
),
|
172 |
+
]
|
173 |
+
)
|
174 |
+
video_outputs = transform(video_data)
|
175 |
+
video_outputs = _format_video_shape(video_outputs)
|
176 |
+
return video_outputs
|
177 |
+
|
178 |
+
|
179 |
+
def _format_video_shape(video, time_compress=4, spatial_compress=8):
|
180 |
+
time = video.shape[1]
|
181 |
+
height = video.shape[2]
|
182 |
+
width = video.shape[3]
|
183 |
+
new_time = (
|
184 |
+
(time - (time - 1) % time_compress)
|
185 |
+
if (time - 1) % time_compress != 0
|
186 |
+
else time
|
187 |
+
)
|
188 |
+
new_height = (
|
189 |
+
(height - (height) % spatial_compress)
|
190 |
+
if height % spatial_compress != 0
|
191 |
+
else height
|
192 |
+
)
|
193 |
+
new_width = (
|
194 |
+
(width - (width) % spatial_compress) if width % spatial_compress != 0 else width
|
195 |
+
)
|
196 |
+
return video[:, :new_time, :new_height, :new_width]
|
197 |
+
|
198 |
+
|
199 |
+
@torch.no_grad()
|
200 |
+
def main(args: argparse.Namespace):
|
201 |
+
real_video_dir = args.real_video_dir
|
202 |
+
generated_video_dir = args.generated_video_dir
|
203 |
+
ckpt = args.ckpt
|
204 |
+
sample_rate = args.sample_rate
|
205 |
+
resolution = args.resolution
|
206 |
+
crop_size = args.crop_size
|
207 |
+
num_frames = args.num_frames
|
208 |
+
sample_rate = args.sample_rate
|
209 |
+
device = args.device
|
210 |
+
sample_fps = args.sample_fps
|
211 |
+
batch_size = args.batch_size
|
212 |
+
num_workers = args.num_workers
|
213 |
+
subset_size = args.subset_size
|
214 |
+
|
215 |
+
if not os.path.exists(args.generated_video_dir):
|
216 |
+
os.makedirs(args.generated_video_dir, exist_ok=True)
|
217 |
+
|
218 |
+
data_type = torch.bfloat16
|
219 |
+
|
220 |
+
# ---- Load Model ----
|
221 |
+
device = args.device
|
222 |
+
refiner = Refiner.from_pretrained(args.ckpt)
|
223 |
+
print(refiner)
|
224 |
+
refiner = refiner.to(device).to(data_type)
|
225 |
+
refiner.eval()
|
226 |
+
# ---- Load Model ----
|
227 |
+
|
228 |
+
# ---- Prepare Dataset ----
|
229 |
+
dataset = RealVideoDataset(
|
230 |
+
real_video_dir=real_video_dir,
|
231 |
+
num_frames=num_frames,
|
232 |
+
sample_rate=sample_rate,
|
233 |
+
crop_size=crop_size,
|
234 |
+
resolution=resolution,
|
235 |
+
)
|
236 |
+
|
237 |
+
if subset_size:
|
238 |
+
indices = range(subset_size)
|
239 |
+
dataset = Subset(dataset, indices=indices)
|
240 |
+
|
241 |
+
dataloader = DataLoader(
|
242 |
+
dataset, batch_size=batch_size, pin_memory=True, num_workers=num_workers
|
243 |
+
)
|
244 |
+
# ---- Prepare Dataset
|
245 |
+
|
246 |
+
# ---- Inference ----
|
247 |
+
for batch in tqdm(dataloader):
|
248 |
+
x, file_names = batch['video'], batch['file_name']
|
249 |
+
|
250 |
+
x = x.to(device=device, dtype=data_type) # b c t h w
|
251 |
+
T, H, W = (x.shape[2], x.shape[3], x.shape[4])
|
252 |
+
chunk_T, chunk_H, chunk_W = (24,256,256)
|
253 |
+
|
254 |
+
video_recon = torch.zeros(x.shape)
|
255 |
+
for t in range(0, T, chunk_T):
|
256 |
+
for h in range(0, H, chunk_H):
|
257 |
+
for w in range(0, W, chunk_W):
|
258 |
+
# 计算当前块的边界
|
259 |
+
t_end = min(t + chunk_T, T)
|
260 |
+
h_end = min(h + chunk_H, H)
|
261 |
+
w_end = min(w + chunk_W, W)
|
262 |
+
|
263 |
+
# 切片并添加到列表中
|
264 |
+
video_recon[:,:,t:t_end, h:h_end, w:w_end] = refiner(x[:,:,t:t_end, h:h_end, w:w_end])
|
265 |
+
|
266 |
+
for idx, video in enumerate(video_recon):
|
267 |
+
output_path = os.path.join(generated_video_dir, file_names[idx])
|
268 |
+
if args.output_origin:
|
269 |
+
os.makedirs(os.path.join(generated_video_dir, "origin/"), exist_ok=True)
|
270 |
+
origin_output_path = os.path.join(generated_video_dir, "origin/", file_names[idx])
|
271 |
+
custom_to_video(
|
272 |
+
x[idx], fps=sample_fps / sample_rate, output_file=origin_output_path
|
273 |
+
)
|
274 |
+
custom_to_video(
|
275 |
+
video, fps=sample_fps / sample_rate, output_file=output_path
|
276 |
+
)
|
277 |
+
# ---- Inference ----
|
278 |
+
|
279 |
+
if __name__ == "__main__":
|
280 |
+
parser = argparse.ArgumentParser()
|
281 |
+
parser.add_argument("--real_video_dir", type=str, default="")
|
282 |
+
parser.add_argument("--generated_video_dir", type=str, default="")
|
283 |
+
parser.add_argument("--ckpt", type=str, default="")
|
284 |
+
parser.add_argument("--sample_fps", type=int, default=30)
|
285 |
+
parser.add_argument("--resolution", type=int, default=336)
|
286 |
+
parser.add_argument("--crop_size", type=int, default=None)
|
287 |
+
parser.add_argument("--num_frames", type=int, default=17)
|
288 |
+
parser.add_argument("--sample_rate", type=int, default=1)
|
289 |
+
parser.add_argument("--batch_size", type=int, default=1)
|
290 |
+
parser.add_argument("--num_workers", type=int, default=8)
|
291 |
+
parser.add_argument("--subset_size", type=int, default=None)
|
292 |
+
parser.add_argument("--tile_overlap_factor", type=float, default=0.25)
|
293 |
+
parser.add_argument('--enable_tiling', action='store_true')
|
294 |
+
parser.add_argument('--output_origin', action='store_true')
|
295 |
+
parser.add_argument("--device", type=str, default="cuda")
|
296 |
+
|
297 |
+
args = parser.parse_args()
|
298 |
+
main(args)
|
299 |
+
|
scripts/vae_demo.py
ADDED
@@ -0,0 +1,337 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import random
|
2 |
+
import argparse
|
3 |
+
import cv2
|
4 |
+
from tqdm import tqdm
|
5 |
+
import numpy as np
|
6 |
+
import numpy.typing as npt
|
7 |
+
import torch
|
8 |
+
import torch.distributed as dist
|
9 |
+
from torch.nn.parallel import DistributedDataParallel as DDP
|
10 |
+
from torch.utils.data import DataLoader, DistributedSampler, Subset
|
11 |
+
from decord import VideoReader, cpu
|
12 |
+
from torch.nn import functional as F
|
13 |
+
from pytorchvideo.transforms import ShortSideScale
|
14 |
+
from torchvision.transforms import Lambda, Compose
|
15 |
+
from torchvision.transforms._transforms_video import CenterCropVideo
|
16 |
+
import sys
|
17 |
+
from torch.utils.data import Dataset, DataLoader, Subset
|
18 |
+
import os
|
19 |
+
import glob
|
20 |
+
sys.path.append(".")
|
21 |
+
from causalvideovae.model import CausalVAEModel
|
22 |
+
from diffusers.models import AutoencoderKL
|
23 |
+
from diffusers.models import AutoencoderKLTemporalDecoder
|
24 |
+
from CV_VAE.models.modeling_vae import CVVAEModel
|
25 |
+
from opensora.registry import MODELS, build_module
|
26 |
+
from opensora.utils.config_utils import parse_configs
|
27 |
+
from opensora.registry import MODELS, build_module
|
28 |
+
from opensora.utils.config_utils import parse_configs
|
29 |
+
import gradio as gr
|
30 |
+
from functools import partial
|
31 |
+
from einops import rearrange
|
32 |
+
import torchvision.transforms as transforms
|
33 |
+
from PIL import Image
|
34 |
+
import time
|
35 |
+
import imageio
|
36 |
+
|
37 |
+
# 创建一个transform,用于中心裁剪图像到指定的大小
|
38 |
+
transform = transforms.Compose([
|
39 |
+
transforms.CenterCrop(512),
|
40 |
+
])
|
41 |
+
|
42 |
+
def array_to_video(
|
43 |
+
image_array: npt.NDArray, fps: float = 30.0, output_file: str = "output_video.mp4"
|
44 |
+
) -> None:
|
45 |
+
height, width, channels = image_array[0].shape
|
46 |
+
imageio.mimwrite(output_file, image_array, fps=fps, quality=6,)
|
47 |
+
"""
|
48 |
+
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
|
49 |
+
video_writer = cv2.VideoWriter(output_file, fourcc, float(fps), (width, height))
|
50 |
+
for image in image_array:
|
51 |
+
image_rgb = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
|
52 |
+
video_writer.write(image_rgb)
|
53 |
+
|
54 |
+
video_writer.release()
|
55 |
+
"""
|
56 |
+
|
57 |
+
def custom_to_video(
|
58 |
+
x: torch.Tensor, fps: float = 2.0, output_file: str = "output_video.mp4"
|
59 |
+
) -> None:
|
60 |
+
x = x.detach().cpu()
|
61 |
+
x = torch.clamp(x, -1, 1)
|
62 |
+
x = (x + 1) / 2
|
63 |
+
x = x.permute(1, 2, 3, 0).float().numpy()
|
64 |
+
x = (255 * x).astype(np.uint8)
|
65 |
+
array_to_video(x, fps=fps, output_file=output_file)
|
66 |
+
return
|
67 |
+
|
68 |
+
def _format_video_shape(video, time_compress=4, spatial_compress=8):
|
69 |
+
time = video.shape[1]
|
70 |
+
height = video.shape[2]
|
71 |
+
width = video.shape[3]
|
72 |
+
new_time = (
|
73 |
+
(time - (time - 1) % time_compress)
|
74 |
+
if (time - 1) % time_compress != 0
|
75 |
+
else time
|
76 |
+
)
|
77 |
+
new_height = (
|
78 |
+
(height - (height) % spatial_compress)
|
79 |
+
if height % spatial_compress != 0
|
80 |
+
else height
|
81 |
+
)
|
82 |
+
new_width = (
|
83 |
+
(width - (width) % spatial_compress) if width % spatial_compress != 0 else width
|
84 |
+
)
|
85 |
+
return video[:, :new_time, :new_height, :new_width]
|
86 |
+
|
87 |
+
|
88 |
+
@torch.no_grad()
|
89 |
+
def rec_nusvae(input_file):
|
90 |
+
|
91 |
+
nus_vae_path = '/storage/clh/Causal-Video-VAE/gradio/nus_vae_temp/video.mp4'
|
92 |
+
|
93 |
+
if input_file.endswith(('.jpg', '.jpeg', '.png', '.gif', '.bmp')):
|
94 |
+
#处理图像
|
95 |
+
image = cv2.imread(input_file, cv2.IMREAD_COLOR)
|
96 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
97 |
+
fps=10
|
98 |
+
total_frames = 1
|
99 |
+
video_data = torch.from_numpy(image)
|
100 |
+
video_data = video_data.unsqueeze(0)
|
101 |
+
video_data = video_data.permute(3, 0, 1, 2)
|
102 |
+
video_data = (video_data / 255.0) * 2 - 1
|
103 |
+
video_data = _format_video_shape(video_data)
|
104 |
+
video_data = video_data.unsqueeze(0)
|
105 |
+
video_data = video_data.to(dtype=data_type) # b c t h w
|
106 |
+
|
107 |
+
elif input_file.endswith(('.mp4', '.avi', '.mov', '.wmv')):
|
108 |
+
# 处理视频
|
109 |
+
decord_vr = VideoReader(input_file, ctx=cpu(0))
|
110 |
+
total_frames = len(decord_vr)
|
111 |
+
video = cv2.VideoCapture(input_file)
|
112 |
+
fps = video.get(cv2.CAP_PROP_FPS)
|
113 |
+
frame_id_list = np.linspace(0, total_frames-1, total_frames, dtype=int)
|
114 |
+
video_data = decord_vr.get_batch(frame_id_list).asnumpy()
|
115 |
+
video_data = torch.from_numpy(video_data)
|
116 |
+
video_data = video_data.permute(3, 0, 1, 2)
|
117 |
+
video_data = (video_data / 255.0) * 2 - 1
|
118 |
+
video_data = _format_video_shape(video_data)
|
119 |
+
video_data = video_data.unsqueeze(0)
|
120 |
+
video_data = video_data.to(dtype=data_type) # b c t h w
|
121 |
+
|
122 |
+
video_data = video_data.to(device4)
|
123 |
+
latents, posterior, x_z = nus_vae.encode(video_data)
|
124 |
+
video_recon, x_z_rec = nus_vae.decode(latents, num_frames=video_data.size(2))
|
125 |
+
custom_to_video(video_recon[0], fps=fps, output_file=nus_vae_path)
|
126 |
+
time.sleep(15)
|
127 |
+
|
128 |
+
return nus_vae_path
|
129 |
+
|
130 |
+
@torch.no_grad()
|
131 |
+
def rec_cvvae(input_file):
|
132 |
+
|
133 |
+
cv_vae_path = '/storage/clh/Causal-Video-VAE/gradio/cv_vae_temp/video.mp4'
|
134 |
+
|
135 |
+
if input_file.endswith(('.jpg', '.jpeg', '.png', '.gif', '.bmp')):
|
136 |
+
#处理图像
|
137 |
+
image = cv2.imread(input_file, cv2.IMREAD_COLOR)
|
138 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
139 |
+
fps=10
|
140 |
+
total_frames = 1
|
141 |
+
video_data = torch.from_numpy(image)
|
142 |
+
video_data = video_data.unsqueeze(0)
|
143 |
+
video_data = video_data.permute(3, 0, 1, 2)
|
144 |
+
video_data = (video_data / 255.0) * 2 - 1
|
145 |
+
video_data = _format_video_shape(video_data)
|
146 |
+
video_data = video_data.unsqueeze(0)
|
147 |
+
video_data = video_data.to(dtype=data_type) # b c t h w
|
148 |
+
|
149 |
+
elif input_file.endswith(('.mp4', '.avi', '.mov', '.wmv')):
|
150 |
+
# 处理视频
|
151 |
+
decord_vr = VideoReader(input_file, ctx=cpu(0))
|
152 |
+
total_frames = len(decord_vr)
|
153 |
+
video = cv2.VideoCapture(input_file)
|
154 |
+
fps = video.get(cv2.CAP_PROP_FPS)
|
155 |
+
frame_id_list = np.linspace(0, total_frames-1, total_frames, dtype=int)
|
156 |
+
video_data = decord_vr.get_batch(frame_id_list).asnumpy()
|
157 |
+
video_data = torch.from_numpy(video_data)
|
158 |
+
video_data = video_data.permute(3, 0, 1, 2)
|
159 |
+
video_data = (video_data / 255.0) * 2 - 1
|
160 |
+
video_data = _format_video_shape(video_data)
|
161 |
+
video_data = video_data.unsqueeze(0)
|
162 |
+
video_data = video_data.to(dtype=data_type) # b c t h w
|
163 |
+
|
164 |
+
video_data = video_data.to(device3)
|
165 |
+
latent = cvvae.encode(video_data).latent_dist.sample()
|
166 |
+
video_recon = cvvae.decode(latent).sample
|
167 |
+
custom_to_video(video_recon[0], fps=fps, output_file=cv_vae_path)
|
168 |
+
time.sleep(10)
|
169 |
+
return cv_vae_path
|
170 |
+
|
171 |
+
@torch.no_grad()
|
172 |
+
def rec_our12(input_file):
|
173 |
+
|
174 |
+
our_vae_path = '/storage/clh/Causal-Video-VAE/gradio/our_temp/video.mp4'
|
175 |
+
if input_file.endswith(('.jpg', '.jpeg', '.png', '.gif', '.bmp')):
|
176 |
+
#处理图像
|
177 |
+
image = cv2.imread(input_file, cv2.IMREAD_COLOR)
|
178 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
179 |
+
fps=10
|
180 |
+
total_frames = 1
|
181 |
+
video_data = torch.from_numpy(image)
|
182 |
+
video_data = video_data.unsqueeze(0)
|
183 |
+
video_data = video_data.permute(3, 0, 1, 2)
|
184 |
+
video_data = (video_data / 255.0) * 2 - 1
|
185 |
+
video_data = _format_video_shape(video_data)
|
186 |
+
video_data = video_data.unsqueeze(0)
|
187 |
+
video_data = video_data.to(dtype=data_type) # b c t h w
|
188 |
+
|
189 |
+
elif input_file.endswith(('.mp4', '.avi', '.mov', '.wmv')):
|
190 |
+
# 处理视频
|
191 |
+
decord_vr = VideoReader(input_file, ctx=cpu(0))
|
192 |
+
total_frames = len(decord_vr)
|
193 |
+
video = cv2.VideoCapture(input_file)
|
194 |
+
fps = video.get(cv2.CAP_PROP_FPS)
|
195 |
+
frame_id_list = np.linspace(0, total_frames-1, total_frames, dtype=int)
|
196 |
+
video_data = decord_vr.get_batch(frame_id_list).asnumpy()
|
197 |
+
video_data = torch.from_numpy(video_data)
|
198 |
+
video_data = video_data.permute(3, 0, 1, 2)
|
199 |
+
video_data = (video_data / 255.0) * 2 - 1
|
200 |
+
video_data = _format_video_shape(video_data)
|
201 |
+
video_data = video_data.unsqueeze(0)
|
202 |
+
video_data = video_data.to(dtype=data_type) # b c t h w
|
203 |
+
|
204 |
+
##我们的VAE的输出
|
205 |
+
input_data = video_data.clone()
|
206 |
+
input_data = input_data.to(device0)
|
207 |
+
latents = vqvae.encode(input_data).sample().to(data_type)
|
208 |
+
video_recon = vqvae.decode(latents)
|
209 |
+
custom_to_video(video_recon[0], fps=fps, output_file=our_vae_path)
|
210 |
+
|
211 |
+
return our_vae_path
|
212 |
+
|
213 |
+
@torch.no_grad()
|
214 |
+
def rec_new(input_file):
|
215 |
+
|
216 |
+
our_vae_path = '/storage/clh/Causal-Video-VAE/gradio/new_temp/video.mp4'
|
217 |
+
if input_file.endswith(('.jpg', '.jpeg', '.png', '.gif', '.bmp')):
|
218 |
+
#处理图像
|
219 |
+
image = cv2.imread(input_file, cv2.IMREAD_COLOR)
|
220 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
221 |
+
fps=10
|
222 |
+
total_frames = 1
|
223 |
+
video_data = torch.from_numpy(image)
|
224 |
+
video_data = video_data.unsqueeze(0)
|
225 |
+
video_data = video_data.permute(3, 0, 1, 2)
|
226 |
+
video_data = (video_data / 255.0) * 2 - 1
|
227 |
+
video_data = _format_video_shape(video_data)
|
228 |
+
video_data = video_data.unsqueeze(0)
|
229 |
+
video_data = video_data.to(dtype=data_type) # b c t h w
|
230 |
+
|
231 |
+
elif input_file.endswith(('.mp4', '.avi', '.mov', '.wmv')):
|
232 |
+
# 处理视频
|
233 |
+
decord_vr = VideoReader(input_file, ctx=cpu(0))
|
234 |
+
total_frames = len(decord_vr)
|
235 |
+
video = cv2.VideoCapture(input_file)
|
236 |
+
fps = video.get(cv2.CAP_PROP_FPS)
|
237 |
+
frame_id_list = np.linspace(0, total_frames-1, total_frames, dtype=int)
|
238 |
+
video_data = decord_vr.get_batch(frame_id_list).asnumpy()
|
239 |
+
video_data = torch.from_numpy(video_data)
|
240 |
+
video_data = video_data.permute(3, 0, 1, 2)
|
241 |
+
video_data = (video_data / 255.0) * 2 - 1
|
242 |
+
video_data = _format_video_shape(video_data)
|
243 |
+
video_data = video_data.unsqueeze(0)
|
244 |
+
video_data = video_data.to(dtype=data_type) # b c t h w
|
245 |
+
|
246 |
+
##我们的VAE的输出
|
247 |
+
input_data = video_data.clone()
|
248 |
+
input_data = input_data.to(device0)
|
249 |
+
latents = newvae.encode(input_data).sample().to(data_type)
|
250 |
+
video_recon = newvae.decode(latents)
|
251 |
+
custom_to_video(video_recon[0], fps=fps, output_file=our_vae_path)
|
252 |
+
|
253 |
+
return our_vae_path
|
254 |
+
|
255 |
+
@torch.no_grad()
|
256 |
+
def show_origin(input_file):
|
257 |
+
return input_file
|
258 |
+
|
259 |
+
@torch.no_grad()
|
260 |
+
def main(args: argparse.Namespace):
|
261 |
+
|
262 |
+
# 创建输出界面
|
263 |
+
|
264 |
+
with gr.Blocks() as demo:
|
265 |
+
with gr.Row():
|
266 |
+
input_interface = gr.components.File(label="上传文件(图片或视频)")
|
267 |
+
with gr.Row():
|
268 |
+
output_video1 = gr.Video(label="原始视频或图片")
|
269 |
+
output_video2 = gr.Video(label="我们的3D VAE输出视频或图片")
|
270 |
+
with gr.Row():
|
271 |
+
show_origin_button = gr.components.Button("展示原始视频或图片")
|
272 |
+
show_origin_button.click(fn=show_origin, inputs=input_interface, outputs=output_video1)
|
273 |
+
our12_button = gr.components.Button("用我们的3D VAE重建视频或图片")
|
274 |
+
our12_button.click(fn=rec_our12, inputs=input_interface, outputs=output_video2)
|
275 |
+
with gr.Row():
|
276 |
+
output_video3 = gr.Video(label="CV-VAE VAE输出视频或图片")
|
277 |
+
output_video4 = gr.Video(label="Open-Sora VAE输出视频或图片")
|
278 |
+
with gr.Row():
|
279 |
+
cvvae_button = gr.components.Button("用CV VAE重建视频或图片")
|
280 |
+
cvvae_button.click(fn=rec_cvvae, inputs=input_interface, outputs=output_video3)
|
281 |
+
nusvae_button = gr.components.Button("用Open-Sora VAE重建视频或图片")
|
282 |
+
nusvae_button.click(fn=rec_nusvae, inputs=input_interface, outputs=output_video4)
|
283 |
+
"""
|
284 |
+
with gr.Row():
|
285 |
+
output_video5 = gr.Video(label="我们最新内部版本VAE")
|
286 |
+
with gr.Row():
|
287 |
+
new_button = gr.components.Button("用新VAE重建视频或图片")
|
288 |
+
new_button.click(fn=rec_new, inputs=input_interface, outputs=output_video5)
|
289 |
+
"""
|
290 |
+
|
291 |
+
|
292 |
+
demo.launch(server_name="0.0.0.0", server_port=11904)
|
293 |
+
|
294 |
+
|
295 |
+
|
296 |
+
if __name__ == "__main__":
|
297 |
+
parser = argparse.ArgumentParser()
|
298 |
+
|
299 |
+
parser.add_argument("--ckpt", type=str, default="")
|
300 |
+
parser.add_argument("--sample_fps", type=int, default=30)
|
301 |
+
parser.add_argument("--tile_overlap_factor", type=float, default=0.125)
|
302 |
+
parser.add_argument('--enable_tiling', action='store_true')
|
303 |
+
parser.add_argument("--device", type=str, default="cuda")
|
304 |
+
parser.add_argument("--config", type=str, default="cuda")
|
305 |
+
args = parser.parse_args()
|
306 |
+
device = args.device
|
307 |
+
data_type = torch.bfloat16
|
308 |
+
device0 = torch.device('cuda:2')
|
309 |
+
ckpt = '/storage/clh/models/488dim8_layernorm_nearst'
|
310 |
+
vqvae = CausalVAEModel.from_pretrained(ckpt)
|
311 |
+
if args.enable_tiling:
|
312 |
+
vqvae.enable_tiling()
|
313 |
+
vqvae.tile_overlap_factor = args.tile_overlap_factor
|
314 |
+
vqvae = vqvae.to(data_type).to(device0)
|
315 |
+
vqvae.eval()
|
316 |
+
|
317 |
+
device3 = torch.device('cuda:3')
|
318 |
+
ckpt = '/storage/clh/CV-VAE/vae3d'
|
319 |
+
cvvae = CVVAEModel.from_pretrained(ckpt)
|
320 |
+
cvvae = cvvae.to(device3).to(data_type)
|
321 |
+
cvvae.eval()
|
322 |
+
device4 = torch.device('cuda:4')
|
323 |
+
cfg = parse_configs(args, training=False)
|
324 |
+
nus_vae = build_module(cfg.model, MODELS)
|
325 |
+
nus_vae = nus_vae.to(device4).to(data_type)
|
326 |
+
nus_vae.eval()
|
327 |
+
"""
|
328 |
+
device5 = torch.device('cuda:5')
|
329 |
+
ckpt = '/storage/clh/models/488dim8'
|
330 |
+
newvae = CausalVAEModel.from_pretrained(ckpt)
|
331 |
+
if args.enable_tiling:
|
332 |
+
newvae.enable_tiling()
|
333 |
+
newvae.tile_overlap_factor = args.tile_overlap_factor
|
334 |
+
newvae = vqvae.to(data_type).to(device0)
|
335 |
+
newvae.eval()
|
336 |
+
"""
|
337 |
+
main(args)
|
scripts/vqgan_gen_video.sh
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
|
2 |
+
export NCCL_DEBUG=INFO
|
3 |
+
export NCCL_SOCKET_IFNAME=ibs11
|
4 |
+
export NCCL_IB_DISABLE=1
|
5 |
+
REAL_DATASET_DIR=/remote-home1/clh/dataset/panda70m_val
|
6 |
+
EXP_NAME=test_train
|
7 |
+
SAMPLE_RATE=1
|
8 |
+
NUM_FRAMES=33
|
9 |
+
RESOLUTION=256
|
10 |
+
SUBSET_SIZE=100
|
11 |
+
CKPT=/remote-home1/clh/taming-transformers/logs/vqgan_gumbel_f8/checkpoints/last.ckpt
|
12 |
+
CONFIG=/remote-home1/clh/taming-transformers/logs/vqgan_gumbel_f8/configs/model.yaml
|
13 |
+
|
14 |
+
torchrun \
|
15 |
+
--nnodes=1 --nproc_per_node=8 \
|
16 |
+
--rdzv_backend=c10d \
|
17 |
+
--rdzv_endpoint=localhost:29501 \
|
18 |
+
--master_addr=localhost \
|
19 |
+
--master_port=29600 \
|
20 |
+
scripts/rec_vqgan_vae.py \
|
21 |
+
--batch_size 8 \
|
22 |
+
--real_video_dir ${REAL_DATASET_DIR} \
|
23 |
+
--generated_video_dir /remote-home1/clh/gen/VQGAN/panda70m \
|
24 |
+
--sample_fps 24 \
|
25 |
+
--sample_rate ${SAMPLE_RATE} \
|
26 |
+
--num_frames ${NUM_FRAMES} \
|
27 |
+
--resolution ${RESOLUTION} \
|
28 |
+
--crop_size ${RESOLUTION} \
|
29 |
+
--num_workers 8 \
|
30 |
+
--ckpt ${CKPT} \
|
31 |
+
--config ${CONFIG} \
|
32 |
+
--output_origin \
|
train_ddp_refiner.py
ADDED
@@ -0,0 +1,595 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import torch.distributed as dist
|
4 |
+
from torch.nn.parallel import DistributedDataParallel as DDP
|
5 |
+
from torch.utils.data import DataLoader, DistributedSampler, Subset
|
6 |
+
import argparse
|
7 |
+
import logging
|
8 |
+
from colorlog import ColoredFormatter
|
9 |
+
import tqdm
|
10 |
+
from itertools import chain
|
11 |
+
import wandb
|
12 |
+
import random
|
13 |
+
import numpy as np
|
14 |
+
from pathlib import Path
|
15 |
+
from einops import rearrange
|
16 |
+
from causalvideovae.model import Refiner, EMA, CausalVAEModel
|
17 |
+
from causalvideovae.utils.utils import RealVideoDataset
|
18 |
+
from causalvideovae.model.dataset_videobase import VideoDataset
|
19 |
+
from causalvideovae.model.utils.module_utils import resolve_str_to_obj
|
20 |
+
from causalvideovae.model.utils.video_utils import tensor_to_video
|
21 |
+
import time
|
22 |
+
try:
|
23 |
+
import lpips
|
24 |
+
except:
|
25 |
+
raise Exception("Need lpips to valid.")
|
26 |
+
|
27 |
+
def set_random_seed(seed):
|
28 |
+
random.seed(seed)
|
29 |
+
np.random.seed(seed)
|
30 |
+
torch.manual_seed(seed)
|
31 |
+
torch.cuda.manual_seed(seed)
|
32 |
+
torch.cuda.manual_seed_all(seed)
|
33 |
+
|
34 |
+
|
35 |
+
def ddp_setup():
|
36 |
+
dist.init_process_group(backend="nccl")
|
37 |
+
torch.cuda.set_device(int(os.environ["LOCAL_RANK"]))
|
38 |
+
|
39 |
+
|
40 |
+
def setup_logger(rank):
|
41 |
+
logger = logging.getLogger()
|
42 |
+
logger.setLevel(logging.INFO)
|
43 |
+
formatter = ColoredFormatter(
|
44 |
+
f"[rank{rank}] %(log_color)s%(asctime)s - %(levelname)s - %(message)s",
|
45 |
+
datefmt="%Y-%m-%d %H:%M:%S",
|
46 |
+
log_colors={
|
47 |
+
"DEBUG": "cyan",
|
48 |
+
"INFO": "green",
|
49 |
+
"WARNING": "yellow",
|
50 |
+
"ERROR": "red",
|
51 |
+
"CRITICAL": "bold_red",
|
52 |
+
},
|
53 |
+
reset=True,
|
54 |
+
style="%",
|
55 |
+
)
|
56 |
+
stream_handler = logging.StreamHandler()
|
57 |
+
stream_handler.setLevel(logging.DEBUG)
|
58 |
+
stream_handler.setFormatter(formatter)
|
59 |
+
|
60 |
+
if not logger.handlers:
|
61 |
+
logger.addHandler(stream_handler)
|
62 |
+
|
63 |
+
return logger
|
64 |
+
|
65 |
+
|
66 |
+
def check_unused_params(model):
|
67 |
+
unused_params = []
|
68 |
+
for name, param in model.named_parameters():
|
69 |
+
if param.grad is None:
|
70 |
+
unused_params.append(name)
|
71 |
+
return unused_params
|
72 |
+
|
73 |
+
|
74 |
+
def set_requires_grad_optimizer(optimizer, requires_grad):
|
75 |
+
for param_group in optimizer.param_groups:
|
76 |
+
for param in param_group["params"]:
|
77 |
+
param.requires_grad = requires_grad
|
78 |
+
|
79 |
+
|
80 |
+
def total_params(model):
|
81 |
+
total_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
|
82 |
+
total_params_in_millions = total_params / 1e6
|
83 |
+
return int(total_params_in_millions)
|
84 |
+
|
85 |
+
|
86 |
+
def get_exp_name(args):
|
87 |
+
return f"{args.exp_name}-lr{args.lr:.2e}-bs{args.batch_size}-rs{args.resolution}-sr{args.sample_rate}-fr{args.num_frames}"
|
88 |
+
|
89 |
+
def set_train(modules):
|
90 |
+
for module in modules:
|
91 |
+
module.train()
|
92 |
+
|
93 |
+
def set_eval(modules):
|
94 |
+
for module in modules:
|
95 |
+
module.eval()
|
96 |
+
|
97 |
+
def set_modules_requires_grad(modules, requires_grad):
|
98 |
+
for module in modules:
|
99 |
+
module.requires_grad_(requires_grad)
|
100 |
+
|
101 |
+
def save_checkpoint(
|
102 |
+
epoch,
|
103 |
+
batch_idx,
|
104 |
+
optimizer_state,
|
105 |
+
state_dict,
|
106 |
+
scaler_state,
|
107 |
+
checkpoint_dir,
|
108 |
+
filename="checkpoint.ckpt",
|
109 |
+
ema_state_dict={}
|
110 |
+
):
|
111 |
+
filepath = checkpoint_dir / Path(filename)
|
112 |
+
torch.save(
|
113 |
+
{
|
114 |
+
"epoch": epoch,
|
115 |
+
"batch_idx": batch_idx,
|
116 |
+
"optimizer_state": optimizer_state,
|
117 |
+
"state_dict": state_dict,
|
118 |
+
"ema_state_dict": ema_state_dict,
|
119 |
+
"scaler_state": scaler_state,
|
120 |
+
},
|
121 |
+
filepath,
|
122 |
+
)
|
123 |
+
return filepath
|
124 |
+
|
125 |
+
|
126 |
+
def valid(rank, model, vae, val_dataloader, precision, args):
|
127 |
+
if args.eval_lpips:
|
128 |
+
lpips_model = lpips.LPIPS(net='alex', spatial=True)
|
129 |
+
lpips_model.to(rank)
|
130 |
+
lpips_model = DDP(lpips_model, device_ids=[rank])
|
131 |
+
lpips_model.requires_grad_(False)
|
132 |
+
lpips_model.eval()
|
133 |
+
|
134 |
+
bar = None
|
135 |
+
if rank == 0:
|
136 |
+
bar = tqdm.tqdm(total=len(val_dataloader), desc="Validation...")
|
137 |
+
|
138 |
+
psnr_list = []
|
139 |
+
lpips_list = []
|
140 |
+
video_log = []
|
141 |
+
num_video_log = args.eval_num_video_log
|
142 |
+
|
143 |
+
with torch.no_grad():
|
144 |
+
for batch_idx, batch in enumerate(val_dataloader):
|
145 |
+
inputs = batch['video'].to(rank)
|
146 |
+
with torch.cuda.amp.autocast(dtype=precision):
|
147 |
+
latents = vae.encode(inputs).sample()
|
148 |
+
video_recon = vae.decode(latents)
|
149 |
+
refines = model(video_recon)
|
150 |
+
|
151 |
+
# Upload videos
|
152 |
+
if rank == 0:
|
153 |
+
for i in range(len(refines)):
|
154 |
+
if num_video_log <= 0:
|
155 |
+
break
|
156 |
+
refine_video = tensor_to_video(refines[i])
|
157 |
+
video_log.append(refine_video)
|
158 |
+
num_video_log -= 1
|
159 |
+
|
160 |
+
inputs = rearrange(inputs, "b c t h w -> (b t) c h w").contiguous()
|
161 |
+
refines = rearrange(refines, "b c t h w -> (b t) c h w").contiguous()
|
162 |
+
|
163 |
+
# Calculate PSNR
|
164 |
+
mse = torch.mean(torch.square(inputs - refines), dim=(1,2,3))
|
165 |
+
psnr = 20 * torch.log10(1 / torch.sqrt(mse))
|
166 |
+
psnr = psnr.mean().detach().cpu().item()
|
167 |
+
|
168 |
+
# Calculate LPIPS
|
169 |
+
if args.eval_lpips:
|
170 |
+
lpips_score = lpips_model.forward(inputs, refines).mean().detach().cpu().item()
|
171 |
+
lpips_list.append(lpips_score)
|
172 |
+
|
173 |
+
psnr_list.append(psnr)
|
174 |
+
if rank == 0:
|
175 |
+
bar.update()
|
176 |
+
# Release gpus memory
|
177 |
+
torch.cuda.empty_cache()
|
178 |
+
return psnr_list, lpips_list, video_log
|
179 |
+
|
180 |
+
def gather_valid_result(psnr_list, lpips_list, video_log_list, rank, world_size):
|
181 |
+
gathered_psnr_list = [None for _ in range(world_size)]
|
182 |
+
gathered_lpips_list = [None for _ in range(world_size)]
|
183 |
+
gathered_video_logs = [None for _ in range(world_size)]
|
184 |
+
|
185 |
+
dist.all_gather_object(gathered_psnr_list, psnr_list)
|
186 |
+
dist.all_gather_object(gathered_lpips_list, lpips_list)
|
187 |
+
dist.all_gather_object(gathered_video_logs, video_log_list)
|
188 |
+
return np.array(gathered_psnr_list).mean(), np.array(gathered_lpips_list).mean(), list(chain(*gathered_video_logs))
|
189 |
+
|
190 |
+
def train(args):
|
191 |
+
# Setup logger
|
192 |
+
ddp_setup()
|
193 |
+
rank = int(os.environ["LOCAL_RANK"])
|
194 |
+
logger = setup_logger(rank)
|
195 |
+
|
196 |
+
# Init
|
197 |
+
ckpt_dir = Path(args.ckpt_dir) / Path(get_exp_name(args))
|
198 |
+
if rank == 0:
|
199 |
+
try:
|
200 |
+
ckpt_dir.mkdir(exist_ok=False, parents=True)
|
201 |
+
except:
|
202 |
+
logger.warning(f"`{ckpt_dir}` exists!")
|
203 |
+
time.sleep(5)
|
204 |
+
|
205 |
+
logger.warning("Connecting to WANDB...")
|
206 |
+
wandb.init(
|
207 |
+
project=os.environ.get("WANDB_PROJECT", "causalvideovae"),
|
208 |
+
config=args,
|
209 |
+
name=get_exp_name(args)
|
210 |
+
)
|
211 |
+
dist.barrier()
|
212 |
+
|
213 |
+
# Load generator model
|
214 |
+
if args.pretrained_model_name_or_path is not None:
|
215 |
+
if rank == 0:
|
216 |
+
logger.warning(
|
217 |
+
f"You are loading a checkpoint from `{args.pretrained_model_name_or_path}`."
|
218 |
+
)
|
219 |
+
model = Refiner.from_pretrained(
|
220 |
+
args.pretrained_model_name_or_path, ignore_mismatched_sizes=False
|
221 |
+
)
|
222 |
+
elif args.model_config is not None:
|
223 |
+
if rank == 0:
|
224 |
+
logger.warning(f"Model will be inited randomly.")
|
225 |
+
model = Refiner.from_config(args.model_config)
|
226 |
+
else:
|
227 |
+
raise Exception(
|
228 |
+
"You should set either `--pretrained_model_name_or_path` or `--model_config`"
|
229 |
+
)
|
230 |
+
|
231 |
+
# Load discriminator model
|
232 |
+
disc_cls = resolve_str_to_obj(args.disc_cls, append=False)
|
233 |
+
logger.warning(f"disc_class: {args.disc_cls} perceptual_weight: {args.perceptual_weight} loss_type: {args.loss_type}")
|
234 |
+
disc = disc_cls(
|
235 |
+
disc_start=args.disc_start,
|
236 |
+
disc_weight=args.disc_weight,
|
237 |
+
logvar_init=args.logvar_init,
|
238 |
+
perceptual_weight=args.perceptual_weight,
|
239 |
+
loss_type=args.loss_type
|
240 |
+
)
|
241 |
+
|
242 |
+
# DDP
|
243 |
+
model = model.to(rank)
|
244 |
+
vae = CausalVAEModel.from_pretrained(args.vae_path, ignore_mismatched_sizes=False)
|
245 |
+
vae.requires_grad_(False)
|
246 |
+
vae = vae.to(rank).to(torch.bfloat16)
|
247 |
+
model = DDP(
|
248 |
+
model, device_ids=[rank], find_unused_parameters=args.find_unused_parameters
|
249 |
+
)
|
250 |
+
disc = disc.to(rank)
|
251 |
+
disc = DDP(
|
252 |
+
disc, device_ids=[rank], find_unused_parameters=args.find_unused_parameters
|
253 |
+
)
|
254 |
+
|
255 |
+
dataset = VideoDataset(
|
256 |
+
args.video_path,
|
257 |
+
sequence_length=args.num_frames,
|
258 |
+
resolution=args.resolution,
|
259 |
+
sample_rate=args.sample_rate,
|
260 |
+
dynamic_sample=args.dynamic_sample,
|
261 |
+
)
|
262 |
+
ddp_sampler = DistributedSampler(dataset)
|
263 |
+
dataloader = DataLoader(
|
264 |
+
dataset, batch_size=args.batch_size, sampler=ddp_sampler, pin_memory=True, num_workers=args.dataset_num_worker
|
265 |
+
)
|
266 |
+
|
267 |
+
val_dataset = RealVideoDataset(
|
268 |
+
real_video_dir=args.eval_video_path,
|
269 |
+
num_frames=args.eval_num_frames,
|
270 |
+
sample_rate=args.eval_sample_rate,
|
271 |
+
crop_size=args.eval_resolution,
|
272 |
+
resolution=args.eval_resolution,
|
273 |
+
)
|
274 |
+
indices = range(args.eval_subset_size)
|
275 |
+
val_dataset = Subset(val_dataset, indices=indices)
|
276 |
+
val_sampler = DistributedSampler(val_dataset)
|
277 |
+
val_dataloader = DataLoader(val_dataset, batch_size=args.eval_batch_size, sampler=val_sampler, pin_memory=True)
|
278 |
+
|
279 |
+
|
280 |
+
|
281 |
+
# Optimizer
|
282 |
+
modules_to_train = [module for module in model.module.get_decoder()]
|
283 |
+
if not args.freeze_encoder:
|
284 |
+
modules_to_train += [module for module in model.module.get_encoder()]
|
285 |
+
else:
|
286 |
+
for module in model.module.get_encoder():
|
287 |
+
module.eval()
|
288 |
+
module.requires_grad_(False)
|
289 |
+
logger.warning("Encoder is freezed!")
|
290 |
+
|
291 |
+
parameters_to_train = []
|
292 |
+
for module in modules_to_train:
|
293 |
+
parameters_to_train += module.parameters()
|
294 |
+
|
295 |
+
gen_optimizer = torch.optim.Adam(parameters_to_train, lr=args.lr)
|
296 |
+
disc_optimizer = torch.optim.Adam(
|
297 |
+
disc.module.discriminator.parameters(), lr=args.lr
|
298 |
+
)
|
299 |
+
|
300 |
+
# AMP scaler
|
301 |
+
scaler = torch.cuda.amp.GradScaler()
|
302 |
+
precision = torch.bfloat16
|
303 |
+
if args.mix_precision == "fp16":
|
304 |
+
precision = torch.float16
|
305 |
+
elif args.mix_precision == "fp32":
|
306 |
+
precision = torch.float32
|
307 |
+
|
308 |
+
# Load from checkpoint
|
309 |
+
start_epoch = 0
|
310 |
+
start_batch_idx = 0
|
311 |
+
if args.resume_from_checkpoint:
|
312 |
+
if not os.path.isfile(args.resume_from_checkpoint):
|
313 |
+
raise Exception(
|
314 |
+
f"Make sure `{args.resume_from_checkpoint}` is a ckpt file."
|
315 |
+
)
|
316 |
+
checkpoint = torch.load(args.resume_from_checkpoint, map_location="cpu")
|
317 |
+
|
318 |
+
if "ema_state_dict" in checkpoint and len(checkpoint['ema_state_dict']) > 0 and os.environ.get("NOT_USE_EMA_MODEL", 0) == 0:
|
319 |
+
logger.info("Load from EMA state dict! If you want to load from original state dict, you should set NOT_USE_EMA_MODEL=1.")
|
320 |
+
sd = checkpoint["ema_state_dict"]
|
321 |
+
sd = {key.replace("module.", ""): value for key, value in sd.items()}
|
322 |
+
model.module.load_state_dict(sd, strict=True)
|
323 |
+
else:
|
324 |
+
if "gen_model" in sd["state_dict"]:
|
325 |
+
sd = sd["state_dict"]["gen_model"]
|
326 |
+
else:
|
327 |
+
sd = sd["state_dict"]
|
328 |
+
model.module.load_state_dict(sd)
|
329 |
+
disc.module.load_state_dict(checkpoint["state_dict"]["dics_model"], strict=False)
|
330 |
+
if not args.not_resume_training_process:
|
331 |
+
scaler.load_state_dict(checkpoint["scaler_state"])
|
332 |
+
gen_optimizer.load_state_dict(checkpoint["optimizer_state"]["gen_optimizer"])
|
333 |
+
disc_optimizer.load_state_dict(checkpoint["optimizer_state"]["disc_optimizer"])
|
334 |
+
start_epoch = checkpoint["epoch"]
|
335 |
+
start_batch_idx = checkpoint.get("batch_idx", 0)
|
336 |
+
logger.info(
|
337 |
+
f"Checkpoint loaded from {args.resume_from_checkpoint}, starting from epoch {start_epoch} batch {start_batch_idx}"
|
338 |
+
)
|
339 |
+
else:
|
340 |
+
logger.warning(
|
341 |
+
f"Checkpoint loaded from {args.resume_from_checkpoint}, starting from epoch {start_epoch} batch {start_batch_idx}. But training process is not resumed."
|
342 |
+
)
|
343 |
+
|
344 |
+
if args.ema:
|
345 |
+
logger.warning(f"Start with EMA. EMA decay = {args.ema_decay}.")
|
346 |
+
ema = EMA(model, args.ema_decay)
|
347 |
+
ema.register()
|
348 |
+
|
349 |
+
# Training loop
|
350 |
+
logger.info("Prepared!")
|
351 |
+
dist.barrier()
|
352 |
+
if rank == 0:
|
353 |
+
logger.info(f"=== Model Params ===")
|
354 |
+
logger.info(f"Generator:\t\t{total_params(model.module)}M")
|
355 |
+
logger.info(f"\t- Encoder:\t{total_params(model.module.encoder):d}M")
|
356 |
+
logger.info(f"\t- Decoder:\t{total_params(model.module.decoder):d}M")
|
357 |
+
logger.info(f"Discriminator:\t{total_params(disc.module):d}M")
|
358 |
+
logger.info(f"===========")
|
359 |
+
logger.info(f"Precision is set to: {args.mix_precision}!")
|
360 |
+
logger.info("Start training!")
|
361 |
+
|
362 |
+
# Training Bar
|
363 |
+
bar_desc = ""
|
364 |
+
bar = None
|
365 |
+
if rank == 0:
|
366 |
+
max_steps = (
|
367 |
+
args.epochs * len(dataloader) if args.max_steps is None else args.max_steps
|
368 |
+
)
|
369 |
+
bar = tqdm.tqdm(total=max_steps, desc=bar_desc.format(current_epoch=0, loss=0))
|
370 |
+
bar_desc = "Epoch: {current_epoch}, Loss: {loss}"
|
371 |
+
logger.warning("Training Details: ")
|
372 |
+
logger.warning(f" Max steps: {max_steps}")
|
373 |
+
logger.warning(f" Dataset Samples: {len(dataloader)}")
|
374 |
+
logger.warning(
|
375 |
+
f" Total Batch Size: {args.batch_size} * {os.environ['WORLD_SIZE']}"
|
376 |
+
)
|
377 |
+
dist.barrier()
|
378 |
+
|
379 |
+
# Training Loop
|
380 |
+
num_epochs = args.epochs
|
381 |
+
current_step = 1
|
382 |
+
|
383 |
+
def update_bar(bar):
|
384 |
+
if rank == 0:
|
385 |
+
bar.desc = bar_desc.format(current_epoch=epoch, loss=f"-")
|
386 |
+
bar.update()
|
387 |
+
|
388 |
+
for epoch in range(num_epochs):
|
389 |
+
set_train(modules_to_train)
|
390 |
+
ddp_sampler.set_epoch(epoch) # Shuffle data at every epoch
|
391 |
+
for batch_idx, batch in enumerate(dataloader):
|
392 |
+
|
393 |
+
if epoch <= start_epoch and batch_idx < start_batch_idx:
|
394 |
+
update_bar(bar)
|
395 |
+
current_step += 1
|
396 |
+
continue
|
397 |
+
|
398 |
+
inputs = batch["video"].to(rank)
|
399 |
+
with torch.no_grad():
|
400 |
+
with torch.cuda.amp.autocast(dtype=precision):
|
401 |
+
latents = vae.encode(inputs).sample()
|
402 |
+
video_recon = vae.decode(latents)
|
403 |
+
if (
|
404 |
+
current_step % 2 == 1
|
405 |
+
and current_step >= disc.module.discriminator_iter_start
|
406 |
+
):
|
407 |
+
set_modules_requires_grad(modules_to_train, False)
|
408 |
+
step_gen = False
|
409 |
+
step_dis = True
|
410 |
+
else:
|
411 |
+
set_modules_requires_grad(modules_to_train, True)
|
412 |
+
step_gen = True
|
413 |
+
step_dis = False
|
414 |
+
|
415 |
+
assert (
|
416 |
+
step_gen or step_dis
|
417 |
+
), "You should backward either Gen or Dis in a step."
|
418 |
+
|
419 |
+
with torch.cuda.amp.autocast(dtype=precision):
|
420 |
+
outputs = model(video_recon)
|
421 |
+
|
422 |
+
# Generator Step
|
423 |
+
if step_gen:
|
424 |
+
with torch.cuda.amp.autocast(dtype=precision):
|
425 |
+
g_loss, g_log = disc(
|
426 |
+
inputs,
|
427 |
+
outputs,
|
428 |
+
optimizer_idx=0,
|
429 |
+
global_step=current_step,
|
430 |
+
last_layer=model.module.get_last_layer(),
|
431 |
+
split="train",
|
432 |
+
)
|
433 |
+
gen_optimizer.zero_grad()
|
434 |
+
scaler.scale(g_loss).backward()
|
435 |
+
scaler.step(gen_optimizer)
|
436 |
+
scaler.update()
|
437 |
+
if args.ema:
|
438 |
+
ema.update()
|
439 |
+
if rank == 0 and current_step % args.log_steps == 0:
|
440 |
+
wandb.log({"train/generator_loss": g_loss.item()}, step=current_step)
|
441 |
+
|
442 |
+
# Discriminator Step
|
443 |
+
if step_dis:
|
444 |
+
with torch.cuda.amp.autocast(dtype=precision):
|
445 |
+
d_loss, d_log = disc(
|
446 |
+
inputs,
|
447 |
+
outputs,
|
448 |
+
optimizer_idx=1,
|
449 |
+
global_step=current_step,
|
450 |
+
last_layer=None,
|
451 |
+
split="train",
|
452 |
+
)
|
453 |
+
disc_optimizer.zero_grad()
|
454 |
+
scaler.scale(d_loss).backward()
|
455 |
+
scaler.step(disc_optimizer)
|
456 |
+
scaler.update()
|
457 |
+
if rank == 0 and current_step % args.log_steps == 0:
|
458 |
+
wandb.log({"train/discriminator_loss": d_loss.item()}, step=current_step)
|
459 |
+
|
460 |
+
def valid_model(model, vae, name=""):
|
461 |
+
set_eval(modules_to_train)
|
462 |
+
psnr_list, lpips_list, video_log = valid(rank, model, vae, val_dataloader, precision, args)
|
463 |
+
valid_psnr, valid_lpips, valid_video_log = gather_valid_result(psnr_list, lpips_list, video_log, rank, dist.get_world_size())
|
464 |
+
if rank == 0:
|
465 |
+
name = "_" + name if name != "" else name
|
466 |
+
wandb.log({f"val{name}/recon": wandb.Video(np.array(valid_video_log), fps=10)}, step=current_step)
|
467 |
+
wandb.log({f"val{name}/psnr": valid_psnr}, step=current_step)
|
468 |
+
wandb.log({f"val{name}/lpips": valid_lpips}, step=current_step)
|
469 |
+
logger.info(f"{name} Validation done.")
|
470 |
+
|
471 |
+
if current_step % args.eval_steps == 0 or current_step == 1:
|
472 |
+
if rank == 0:
|
473 |
+
logger.info("Starting validation...")
|
474 |
+
valid_model(model, vae)
|
475 |
+
if args.ema:
|
476 |
+
ema.apply_shadow()
|
477 |
+
valid_model(model, vae, "ema")
|
478 |
+
ema.restore()
|
479 |
+
|
480 |
+
# Checkpoint
|
481 |
+
if current_step % args.save_ckpt_step == 0 and rank == 0:
|
482 |
+
file_path = save_checkpoint(
|
483 |
+
epoch,
|
484 |
+
batch_idx,
|
485 |
+
{
|
486 |
+
"gen_optimizer": gen_optimizer.state_dict(),
|
487 |
+
"disc_optimizer": disc_optimizer.state_dict(),
|
488 |
+
},
|
489 |
+
{
|
490 |
+
"gen_model": model.module.state_dict(),
|
491 |
+
"dics_model": disc.module.state_dict(),
|
492 |
+
},
|
493 |
+
scaler.state_dict(),
|
494 |
+
ckpt_dir,
|
495 |
+
f"checkpoint-{current_step}.ckpt",
|
496 |
+
ema_state_dict=ema.shadow if args.ema else {}
|
497 |
+
)
|
498 |
+
logger.info(f"Checkpoint has been saved to `{file_path}`.")
|
499 |
+
|
500 |
+
# Update step
|
501 |
+
update_bar(bar)
|
502 |
+
current_step += 1
|
503 |
+
|
504 |
+
dist.destroy_process_group()
|
505 |
+
|
506 |
+
|
507 |
+
def main():
|
508 |
+
parser = argparse.ArgumentParser(description="Distributed Training")
|
509 |
+
# Exp setting
|
510 |
+
parser.add_argument(
|
511 |
+
"--exp_name", type=str, default="test", help="number of epochs to train"
|
512 |
+
)
|
513 |
+
parser.add_argument("--seed", type=int, default=1234, help="seed")
|
514 |
+
# Training setting
|
515 |
+
parser.add_argument(
|
516 |
+
"--epochs", type=int, default=10, help="number of epochs to train"
|
517 |
+
)
|
518 |
+
parser.add_argument(
|
519 |
+
"--max_steps", type=int, default=None, help="number of epochs to train"
|
520 |
+
)
|
521 |
+
parser.add_argument("--save_ckpt_step", type=int, default=1000, help="")
|
522 |
+
parser.add_argument("--ckpt_dir", type=str, default="./results/", help="")
|
523 |
+
parser.add_argument(
|
524 |
+
"--batch_size", type=int, default=1, help="batch size for training"
|
525 |
+
)
|
526 |
+
parser.add_argument("--lr", type=float, default=1e-5, help="learning rate")
|
527 |
+
parser.add_argument("--log_steps", type=int, default=5, help="log steps")
|
528 |
+
parser.add_argument("--freeze_encoder", action="store_true", help="")
|
529 |
+
|
530 |
+
# Data
|
531 |
+
parser.add_argument("--video_path", type=str, default=None, help="")
|
532 |
+
parser.add_argument("--num_frames", type=int, default=17, help="")
|
533 |
+
parser.add_argument("--resolution", type=int, default=512, help="")
|
534 |
+
parser.add_argument("--sample_rate", type=int, default=1, help="")
|
535 |
+
parser.add_argument("--dynamic_sample", type=bool, default=False, help="")
|
536 |
+
# Generator model
|
537 |
+
parser.add_argument("--find_unused_parameters", action="store_true", help="")
|
538 |
+
parser.add_argument(
|
539 |
+
"--pretrained_model_name_or_path", type=str, default=None, help=""
|
540 |
+
)
|
541 |
+
parser.add_argument(
|
542 |
+
"--vae_path", type=str, default=None, help=""
|
543 |
+
)
|
544 |
+
parser.add_argument("--resume_from_checkpoint", type=str, default=None, help="")
|
545 |
+
parser.add_argument("--not_resume_training_process", action="store_true", help="")
|
546 |
+
parser.add_argument("--model_config", type=str, default=None, help="")
|
547 |
+
parser.add_argument(
|
548 |
+
"--mix_precision",
|
549 |
+
type=str,
|
550 |
+
default="bf16",
|
551 |
+
choices=["fp16", "bf16", "fp32"],
|
552 |
+
help="precision for training",
|
553 |
+
)
|
554 |
+
|
555 |
+
# Discriminator Model
|
556 |
+
parser.add_argument("--load_disc_from_checkpoint", type=str, default=None, help="")
|
557 |
+
parser.add_argument(
|
558 |
+
"--disc_cls",
|
559 |
+
type=str,
|
560 |
+
default="causalvideovae.model.losses.LPIPSWithDiscriminator3D",
|
561 |
+
help="",
|
562 |
+
)
|
563 |
+
parser.add_argument("--disc_start", type=int, default=5, help="")
|
564 |
+
parser.add_argument("--disc_weight", type=float, default=0.5, help="")
|
565 |
+
parser.add_argument("--kl_weight", type=float, default=1e-06, help="")
|
566 |
+
parser.add_argument("--perceptual_weight", type=float, default=1.0, help="")
|
567 |
+
parser.add_argument("--loss_type", type=str, default="l1", help="")
|
568 |
+
parser.add_argument("--logvar_init", type=float, default=0.0, help="")
|
569 |
+
|
570 |
+
# Validation
|
571 |
+
parser.add_argument("--eval_steps", type=int, default=1000, help="")
|
572 |
+
parser.add_argument("--eval_video_path", type=str, default=None, help="")
|
573 |
+
parser.add_argument("--eval_num_frames", type=int, default=17, help="")
|
574 |
+
parser.add_argument("--eval_resolution", type=int, default=256, help="")
|
575 |
+
parser.add_argument("--eval_sample_rate", type=int, default=1, help="")
|
576 |
+
parser.add_argument("--eval_batch_size", type=int, default=8, help="")
|
577 |
+
parser.add_argument("--eval_subset_size", type=int, default=50, help="")
|
578 |
+
parser.add_argument("--eval_num_video_log", type=int, default=2, help="")
|
579 |
+
parser.add_argument("--eval_lpips", action="store_true", help="")
|
580 |
+
|
581 |
+
# Dataset
|
582 |
+
parser.add_argument("--dataset_num_worker", type=int, default=16, help="")
|
583 |
+
|
584 |
+
# EMA
|
585 |
+
parser.add_argument("--ema", action="store_true", help="")
|
586 |
+
parser.add_argument("--ema_decay", type=float, default=0.999, help="")
|
587 |
+
|
588 |
+
args = parser.parse_args()
|
589 |
+
|
590 |
+
set_random_seed(args.seed)
|
591 |
+
train(args)
|
592 |
+
|
593 |
+
|
594 |
+
if __name__ == "__main__":
|
595 |
+
main()
|