import sys sys.path.append(".") from causalvideovae.model import CausalVAEModel from CV_VAE.models.modeling_vae import CVVAEModel from opensora.models.vae.vae import VideoAutoencoderPipeline from opensora.registry import DATASETS, MODELS, build_module from opensora.utils.config_utils import parse_configs from diffusers.models import AutoencoderKL, AutoencoderKLTemporalDecoder from tats import VQGAN from tats.download import load_vqgan from taming.models.vqgan import VQModel, GumbelVQ import torch from omegaconf import OmegaConf import yaml import argparse from einops import rearrange from causalvideovae.model.modules.normalize import Normalize from causalvideovae.model.modules.block import Block import time def total_params(model): total_params = sum(p.numel() for p in model.parameters()) total_params_in_millions = total_params / 1e6 return total_params_in_millions device = torch.device('cuda') data_type = torch.bfloat16 video_input = torch.randn(1, 3, 33, 256, 256).to(device).to(data_type) image_input = torch.randn(33, 3, 256, 256).to(device).to(data_type) num = 1000 """ #VQGAN def load_config(config_path, display=False): config = OmegaConf.load(config_path) if display: print(yaml.dump(OmegaConf.to_container(config))) return config def load_vqgan(config, ckpt_path=None, is_gumbel=False): if is_gumbel: model = GumbelVQ(**config.model.params) else: model = VQModel(**config.model.params) if ckpt_path is not None: sd = torch.load(ckpt_path, map_location="cpu")["state_dict"] missing, unexpected = model.load_state_dict(sd, strict=False) return model.eval() vqgan_ckpt='/remote-home1/clh/taming-transformers/logs/vqgan_gumbel_f8/checkpoints/last.ckpt' vqgan_config='/remote-home1/clh/taming-transformers/logs/vqgan_gumbel_f8/configs/model.yaml' vqgan_config = load_config(vqgan_config, display=False) vqgan = load_vqgan(vqgan_config, ckpt_path=vqgan_ckpt, is_gumbel=True).to(device).to(data_type).eval() vqgan.requires_grad_(False) print('VQGAN') print(f"Generator:\t\t{total_params(vqgan) :.2f}M") print(f"\t- Encoder:\t{total_params(vqgan.encoder) :.2f}M") print(f"\t- Decoder:\t{total_params(vqgan.decoder) :.2f}M") # 计算程序运行时间 start_time = time.time() for i in range(num): latents, _, [_, _, indices] = vqgan.encode(image_input) end_time = time.time() print(f"encode_time:{(end_time - start_time)/num :.3f}s") start_time = time.time() for i in range(num): video_recon = vqgan.decode(latents.to(data_type)) end_time = time.time() print(f"decode_time:{(end_time - start_time)/num :.3f}s") start_time = time.time() for i in range(num): latents, _, [_, _, indices] = vqgan.encode(image_input) video_recon = vqgan.decode(latents.to(data_type)) end_time = time.time() print(f"rec_time:{(end_time - start_time)/num :.3f}s") #TATS tats_path = '/remote-home1/clh/TATS/vqgan_sky_128_488_epoch_12-step_29999-train.ckpt' tats = VQGAN.load_from_checkpoint(tats_path).to(device).to(torch.float32).eval() tats.requires_grad_(False) print('TATS') print(f"Generator:\t\t{total_params(tats) :.2f}M") print(f"\t- Encoder:\t{total_params(tats.encoder):.2f}M") print(f"\t- Decoder:\t{total_params(tats.decoder):.2f}M") # 计算程序运行时间 start_time = time.time() for i in range(num): z = tats.pre_vq_conv(tats.encoder(video_input.to(torch.float32))) vq_output = tats.codebook(z) latents = vq_output['embeddings'] end_time = time.time() print(f"encode_time:{(end_time - start_time)/num :.3f}s") start_time = time.time() for i in range(num): video_recon = tats.decoder(tats.post_vq_conv(latents.to(torch.float32))) end_time = time.time() print(f"decode_time:{(end_time - start_time)/num :.3f}s") start_time = time.time() for i in range(num): z = tats.pre_vq_conv(tats.encoder(video_input.to(torch.float32))) vq_output = tats.codebook(z) latents = vq_output['embeddings'] video_recon = tats.decoder(tats.post_vq_conv(latents.to(torch.float32))) end_time = time.time() print(f"rec_time:{(end_time - start_time)/num :.3f}s") #SD2_1 sd2_1_path = '/remote-home1/clh/sd2_1' sd2_1 = AutoencoderKL.from_pretrained(sd2_1_path).eval().to(device).to(data_type) sd2_1.requires_grad_(False) print('SD2_1') print(f"Generator:\t\t{total_params(sd2_1) :.2f}M") print(f"\t- Encoder:\t{total_params(sd2_1.encoder):.2f}M") print(f"\t- Decoder:\t{total_params(sd2_1.decoder):.2f}M") # 计算程序运行时间 start_time = time.time() for i in range(num): latents = sd2_1.encode(image_input)['latent_dist'].sample() end_time = time.time() print(f"encode_time:{(end_time - start_time)/num :.3f}s") start_time = time.time() for i in range(num): video_recon = sd2_1.decode(latents.to(data_type))['sample'] end_time = time.time() print(f"decode_time:{(end_time - start_time)/num :.3f}s") start_time = time.time() for i in range(num): latents = sd2_1.encode(image_input)['latent_dist'].sample() video_recon = sd2_1.decode(latents.to(data_type))['sample'] end_time = time.time() print(f"rec_time:{(end_time - start_time)/num :.3f}s") #SVD svd_path = '/remote-home1/clh/svd/' svd = AutoencoderKLTemporalDecoder.from_pretrained(svd_path).eval().to(device).to(data_type) svd.requires_grad_(False) print('SVD') print(f"Generator:\t\t{total_params(svd):.2f}M") print(f"\t- Encoder:\t{total_params(svd.encoder):.2f}M") print(f"\t- Decoder:\t{total_params(svd.decoder):.2f}M") # 计算程序运行时间 start_time = time.time() for i in range(num): latents = svd.encode(image_input)['latent_dist'].sample() end_time = time.time() print(f"encode_time:{(end_time - start_time)/num :.3f}s") start_time = time.time() for i in range(num): video_recon = svd.decode(latents.to(data_type), num_frames=video_input.shape[2])['sample'] end_time = time.time() print(f"decode_time:{(end_time - start_time)/num :.3f}s") start_time = time.time() for i in range(num): latents = svd.encode(image_input)['latent_dist'].sample() video_recon = svd.decode(latents.to(data_type), num_frames=video_input.shape[2])['sample'] end_time = time.time() print(f"rec_time:{(end_time - start_time)/num :.3f}s") #CV-VAE cvvae_path = '/remote-home1/clh/CV-VAE/vae3d' cvvae = CVVAEModel.from_pretrained(cvvae_path).eval().to(device).to(data_type) cvvae.requires_grad_(False) print('CV-VAE') print(f"Generator:\t\t{total_params(cvvae):.2f}M") print(f"\t- Encoder:\t{total_params(cvvae.encoder):.2f}M") print(f"\t- Decoder:\t{total_params(cvvae.decoder):.2f}M") # 计算程序运行时间 start_time = time.time() for i in range(num): latent = cvvae.encode(video_input).latent_dist.sample() end_time = time.time() print(f"encode_time:{(end_time - start_time)/num :.3f}s") start_time = time.time() for i in range(num): video_recon = cvvae.decode(latent).sample end_time = time.time() print(f"decode_time:{(end_time - start_time)/num :.3f}s") start_time = time.time() for i in range(num): latent = cvvae.encode(video_input).latent_dist.sample() video_recon = cvvae.decode(latent).sample end_time = time.time() print(f"rec_time:{(end_time - start_time)/num :.3f}s") #NUS-VAE nusvae_path = '/remote-home1/clh/CV-VAE/vae3d' parser = argparse.ArgumentParser() parser.add_argument("--config", type=str, default="/remote-home1/clh/Causal-Video-VAE/opensora/video.py") parser.add_argument("--ckpt", type=str, default="/remote-home1/clh/Open-Sora/OpenSora-VAE-v1.2") args = parser.parse_args() cfg = parse_configs(args, training=False) nusvae = build_module(cfg.model, MODELS).eval().to(device).to(data_type) nusvae.requires_grad_(False) print('NUS-VAE') print(f"Generator:\t\t{total_params(nusvae):.2f}M") print(f"\t- Spatial_Encoder:\t{total_params(nusvae.spatial_vae.module.encoder):.2f}M") print(f"\t- Temporal_Encoder:\t{total_params(nusvae.temporal_vae.encoder):.2f}M") print(f"\t- Temporal_Decoder:\t{total_params(nusvae.temporal_vae.decoder):.2f}M") print(f"\t- Spatial_Decoder:\t{total_params(nusvae.spatial_vae.module.decoder):.2f}M") # 计算程序运行时间 start_time = time.time() for i in range(num): latents, posterior, x_z = nusvae.encode(video_input) end_time = time.time() print(f"encode_time:{(end_time - start_time)/num :.3f}s") start_time = time.time() for i in range(num): video_recon, x_z_rec = nusvae.decode(latents, num_frames=video_input.size(2)) end_time = time.time() print(f"decode_time:{(end_time - start_time)/num :.3f}s") start_time = time.time() for i in range(num): latents, posterior, x_z = nusvae.encode(video_input) video_recon, x_z_rec = nusvae.decode(latents, num_frames=video_input.size(2)) end_time = time.time() print(f"rec_time:{(end_time - start_time)/num :.3f}s") """ #ours1.2 ours1_2_vae_path = '/remote-home1/clh/models/23denc_3ddec_vae_pretrained_weight' ours1_2_vae = CausalVAEModel.from_pretrained(ours1_2_vae_path).eval().to(device).to(data_type) ours1_2_vae.requires_grad_(False) print('open_sora_plan_vae_1_2') print(f"Generator:\t\t{total_params(ours1_2_vae):.2f}M") print(f"\t- Encoder:\t{total_params(ours1_2_vae.encoder):.2f}M") print(f"\t- Decoder:\t{total_params(ours1_2_vae.decoder):.2f}M") # 计算程序运行时间 start_time = time.time() for i in range(num): latents = ours1_2_vae.encode(video_input).sample().to(data_type) end_time = time.time() print(f"encode_time:{(end_time - start_time)/num :.3f}s") start_time = time.time() for i in range(num): video_recon = ours1_2_vae.decode(latents) end_time = time.time() print(f"decode_time:{(end_time - start_time)/num :.3f}s") start_time = time.time() for i in range(num): latents = ours1_2_vae.encode(video_input).sample().to(data_type) video_recon = ours1_2_vae.decode(latents) end_time = time.time() print(f"rec_time:{(end_time - start_time)/num :.3f}s") #23d half3d_vae_path = '/remote-home1/clh/models/23d_vae_pretrained_weight' half3d_vae = CausalVAEModel.from_pretrained(half3d_vae_path).eval().to(device).to(data_type) half3d_vae.requires_grad_(False) print('open_sora_plan_vae_half3d') print(f"Generator:\t\t{total_params(half3d_vae):.2f}M") print(f"\t- Encoder:\t{total_params(half3d_vae.encoder):.2f}M") print(f"\t- Decoder:\t{total_params(half3d_vae.decoder):.2f}M") # 计算程序运行时间 start_time = time.time() for i in range(num): latents = half3d_vae.encode(video_input).sample().to(data_type) end_time = time.time() print(f"encode_time:{(end_time - start_time)/num :.3f}s") start_time = time.time() for i in range(num): video_recon = half3d_vae.decode(latents) end_time = time.time() print(f"decode_time:{(end_time - start_time)/num :.3f}s") start_time = time.time() for i in range(num): latents = half3d_vae.encode(video_input).sample().to(data_type) video_recon = half3d_vae.decode(latents) end_time = time.time() print(f"rec_time:{(end_time - start_time)/num :.3f}s") #2and3d mix23d_vae_path = '/remote-home1/clh/models/mix23d_vae_pretrained_weight' mix23d_vae = CausalVAEModel.from_pretrained(mix23d_vae_path).eval().to(device).to(data_type) mix23d_vae.requires_grad_(False) print('open_sora_plan_vae_mix23d') print(f"Generator:\t\t{total_params(mix23d_vae):.2f}M") print(f"\t- Encoder:\t{total_params(mix23d_vae.encoder):.2f}M") print(f"\t- Decoder:\t{total_params(mix23d_vae.decoder):.2f}M") # 计算程序运行时间 start_time = time.time() for i in range(num): latents = mix23d_vae.encode(video_input).sample().to(data_type) end_time = time.time() print(f"encode_time:{(end_time - start_time)/num :.3f}s") start_time = time.time() for i in range(num): video_recon = mix23d_vae.decode(latents) end_time = time.time() print(f"decode_time:{(end_time - start_time)/num :.3f}s") start_time = time.time() for i in range(num): latents = mix23d_vae.encode(video_input).sample().to(data_type) video_recon = mix23d_vae.decode(latents) end_time = time.time() print(f"rec_time:{(end_time - start_time)/num :.3f}s") #full 3d full3d_vae_path = '/remote-home1/clh/models/full3d_vae_pretrained_weight' full3d_vae = CausalVAEModel.from_pretrained(full3d_vae_path).eval().to(device).to(data_type) full3d_vae.requires_grad_(False) print('open_sora_plan_vae_full3d') print(f"Generator:\t\t{total_params(full3d_vae):.2f}M") print(f"\t- Encoder:\t{total_params(full3d_vae.encoder):.2f}M") print(f"\t- Decoder:\t{total_params(full3d_vae.decoder):.2f}M") # 计算程序运行时间 start_time = time.time() for i in range(num): latents = full3d_vae.encode(video_input).sample().to(data_type) end_time = time.time() print(f"encode_time:{(end_time - start_time)/num :.3f}s") start_time = time.time() for i in range(num): video_recon = full3d_vae.decode(latents) end_time = time.time() print(f"decode_time:{(end_time - start_time)/num :.3f}s") start_time = time.time() for i in range(num): latents = full3d_vae.encode(video_input).sample().to(data_type) video_recon = full3d_vae.decode(latents) end_time = time.time() print(f"rec_time:{(end_time - start_time)/num :.3f}s")