import torch import sys import sys sys.path.append(".") from causalvideovae.model.causal_vae.modeling_causalvae import CausalVAEModel from causalvideovae.model.modules import * origin_path = "/remote-home1/lzj/causal-video-vae-github/results/test" output_path = "models/latent8_3d" print("Loading model!") model = CausalVAEModel.from_pretrained(origin_path) new_config = model.config.copy() new_config['z_channels'] = 8 new_config['embed_dim'] = 8 reset_mix_factor = True print("Building new model") new_model = CausalVAEModel.from_config(new_config) ckpt = new_model.state_dict() old_ckpt = model.state_dict() for name, parameter in new_model.named_parameters(): if name not in old_ckpt: # ckpt[name] = torch.zeros_like(ckpt[name]) continue shape1 = ckpt[name].shape if sum(shape1) == 1: if reset_mix_factor: ckpt[name] = torch.tensor([0.]) continue shape2 = old_ckpt[name].shape slices = tuple(slice(0, s) for s in shape2) mu = torch.mean(old_ckpt[name]) std = torch.std(old_ckpt[name]) ckpt[name] = torch.empty_like(ckpt[name]).normal_(mean=mu, std=std) ckpt[name][slices] = old_ckpt[name] new_model.load_state_dict(ckpt) new_model.save_pretrained(output_path)