blob_id
stringlengths 40
40
| repo_name
stringlengths 6
108
| path
stringlengths 3
244
| length_bytes
int64 36
870k
| score
float64 3.5
5.16
| int_score
int64 4
5
| text
stringlengths 36
870k
|
---|---|---|---|---|---|---|
7e57fca9717e62dbba10ab777a34eeb005af248a | sahil-dhingra/Reinforcement-Learning | /Project 3/Soccer_game.py | 4,854 | 3.609375 | 4 | # -*- coding: utf-8 -*-
"""
Created on Wed Jul 10 23:06:41 2019
@author: sahil.d
"""
import random
class soccer:
# Board
board = [[0, 0],
[0, 1],
[1, 0],
[1, 1],
[2, 0],
[2, 1],
[3, 0],
[3, 1]]
# Eligible moves
moves = [[0,-1],
[-1,0],
[0, 0],
[1, 0],
[0, 1]]
# Goal positions
goal_A =[[0, 0],
[0, 1]]
goal_B =[[3, 0],
[3, 1]]
def __init__(self, width=4, height=2):
# Player & Ball initial positions
self.player_A = [2, 1]
self.player_B = [1, 1]
self.position_ball = [1, 1]
self.ball_with = 'B'
self.position_players = {'A' : self.player_A, 'B' : self.player_A}
self.is_over = None
self.goal = None
self.order = None
# Random start
self.ball_with = ['A','B'][random.randrange(2)]
p_ball = 2+random.randrange(4)
self.position_ball = self.board[p_ball]
free_spots = list(range(2,p_ball)) + list(range(p_ball+1,6))
self.player_A = self.position_ball if self.ball_with == 'A' else self.board[random.choice(free_spots)]
self.player_B = self.position_ball if self.ball_with == 'B' else self.board[random.choice(free_spots)]
# Simulate actions for A & B
def play(self, action_A_i, action_B_i):
action_A = self.moves[action_A_i]
action_B = self.moves[action_B_i]
if random.randrange(2) == 0:
self.order = ['A','B']
for i in range(1):
self.move_player(self.player_A, self.player_B, action_A, 'A')
if self.goal:
self.is_over = 1
break
self.move_player(self.player_B, self.player_A, action_B, 'B')
if self.goal:
self.is_over = 1
break
else:
self.order = ['B','A']
for i in range(1):
self.move_player(self.player_B, self.player_A, action_B, 'B')
if self.goal:
self.is_over = 1
break
self.move_player(self.player_A, self.player_B, action_A, 'A')
if self.goal:
self.is_over = 1
break
# Execute actions and modify environment states
def move_player(self, player, opp_player, action, player_tag):
new_player = list(map(sum, zip(player, action)))
valid_move = 0
collision = 0
# Collision check
if new_player == opp_player:
collision = 1
self.position_ball = opp_player
if self.ball_with == 'B' and player_tag == 'B':
self.ball_with = 'A'
if self.ball_with == 'A' and player_tag == 'A':
self.ball_with = 'B'
# Bounds check
if new_player in self.board:
valid_move = 1
# Goal conditions
if new_player in self.goal_A and self.ball_with == player_tag:
self.goal = 'A'
if new_player in self.goal_B and self.ball_with == player_tag:
self.goal = 'B'
# Updating player positions
if player_tag == 'A' and valid_move == 1 and collision == 0:
self.player_A = new_player
self.position_ball = new_player if self.ball_with == 'A' else self.position_ball
if player_tag == 'B' and valid_move == 1 and collision == 0:
self.player_B = new_player
self.position_ball = new_player if self.ball_with == 'B' else self.position_ball
# Return current state of the game in int form
def i_state(self):
A = 2*self.player_A[0] + self.player_A[1]
B = 2*self.player_B[0] + self.player_B[1]
Ball = 0 if self.ball_with == 'A' else 1
return (A, B, Ball)
# Return actions in int form
def i_actions(self, action_A, action_B):
aA = action_A[0] + 2*action_A[1] + 2
aB = action_B[0] + 2*action_B[1] + 2
return [aA, aB]
# Return rewards for [A, B]
def get_reward(self):
reward = [0, 0]
if self.goal:
if self.goal == 'A':
reward = [100, -100]
if self.goal == 'B':
reward = [-100, 100]
return reward
# Game state
def game_state(self):
return self.player_A, self.player_B, self.position_ball, self.is_over, self.ball_with, self.goal
# Reset game
def reset(self):
self.__init__()
|
e2db1ca72b5571cf8936182d89a2fe90c5b94a63 | BPCao/Assignments | /ACTIVITIES/python/Calculator/test_operator.py | 869 | 3.953125 | 4 | import unittest
from calculator import Calculator
class CalculatorTests(unittest.TestCase):
def setUp(self):
self.Calculator = Calculator()
print("SETUP")
def test_add_two_numbers(self):
print("test_add_two_numbers")
result = self.Calculator.addition(2, 3)
self.assertEqual(5, result)
def test_subtract_two_numbers(self):
print("test_subtract_two_numbers")
result = self.Calculator.subtraction(3, 2)
self.assertEqual(1, result)
def test_multiply_two_numbers(self):
print("test_multiply_two_numbers")
result = self.Calculator.multiply(2, 3)
self.assertEqual(6, result)
def test_divide_two_numbers(self):
result = self.Calculator.divide(6, 3)
self.assertEqual(2, result)
def tearDown(self):
print("TEARDOWN")
unittest.main()
|
5a44fb4b82fa16813715db13e98c94ae3c46b338 | maris205/secondary_structure_detection | /src/evaluate/get_svm_data.py | 1,159 | 3.5 | 4 | #!/usr/bin/env python
#coding=utf-8
import math
import sys
#ȡngramǷǴʵlabel
word_dict={}
#װشʵ
def load_dict(dict_file_name):
#سʼʵ
dict_file = open(dict_file_name, "r")
word_dict_count = {}
for line in dict_file:
sequence = line.strip()
key = sequence.split('\t')[0]
value = float(sequence.split('\t')[1])
word_dict[key] = value
#print key,value
#feature fileӵ pre dict file֮
#ʼpre dict fileӦword + "\t" + label
if __name__=="__main__":
if len(sys.argv) != 4:
print "please input feature file, pre dict file, feature id"
sys.exit()
#load dict
load_dict(sys.argv[1])
#ȡµֵļ
dict_file = open(sys.argv[2], "r")
feature_id = sys.argv[3]
for line in dict_file:
sequence = line.strip()
key = sequence.split('\t')[0]
if word_dict.has_key(key):
print sequence + " " + feature_id + ":" + str(word_dict[key])
else: #no this feature
print sequence + " " + feature_id + ":0"
|
8cf049b369af25b8d38303b54823b9254fe944ad | jasonwee/asus-rt-n14uhp-mrtg | /src/lesson_dates_and_times/datetime_time.py | 216 | 3.609375 | 4 | import datetime
t = datetime.time(1, 2, 3)
print(t)
print('hour :', t.hour)
print('minute :', t.minute)
print('second :', t.second)
print('microsecond:', t.microsecond)
print('tzinfo :', t.tzinfo)
|
37ade2db051a8a2f06430bbd2df5891db528c234 | Vegadhardik7/DATA_STRUCTURES_AND_ALGO | /SORTING/Bubble.py | 244 | 4.03125 | 4 | def bubblesort(A):
for i in range(len(A)-1, 0, -1):
for j in range(i):
if A[j] > A[j+1]:
A[j], A[j+1] = A[j+1], A[j]
A = [85,6,15,24,36]
print("Before Sorting:",A)
bubblesort(A)
print("After Sorting:",A) |
21790ed3b7639de7b24fd9071ea20e1f76450963 | Tyler-Carter/100-Days-of-Code | /Day 17 - The Quiz Project/main(example).py | 426 | 3.59375 | 4 | class User:
def __init__(self, user_id, username):
self.id = user_id
self.username = username
self.followers = 0
self.following = 0
def follow(self, user):
user.followers += 1
self.following += 1
user_1 = User("001","angela")
user_2 = User("002", "not_angela")
user_1.follow(user_2)
print(user_1.followers, user_1.following)
print(user_2.followers, user_2.following) |
5b8007d8375f10761eb33541e2613fa84419c0bc | DarioBernardo/hackerrank_exercises | /tree_and_graphs/tree_level_avg_bfs_and_dfs.py | 2,231 | 3.859375 | 4 | """
Given a binary tree, get the average value at each level of the tree.
Explained here:
https://vimeo.com/357608978
pass fbprep
"""
import numpy as np
class Node(object):
def __init__(self, value):
self.value = value
# print(f"creating node with value {self.value}")
self.children = []
def add_child(self, value):
if len(self.children) == 2:
raise Exception(f"Can't add more children here! {len(self.children)}")
self.children.append(Node(value))
def get_children(self):
return self.children
def get_bfs_level_avg(tree_head: Node) -> dict:
def _update_result(result, level, children):
children_for_level = result.get(level, [])
for child in children:
children_for_level.append(child.value)
result[level] = children_for_level
result = {}
level = 1
queue = [tree_head]
while len(queue) != 0:
_update_result(result, level, queue)
new_queue = []
for elem in queue:
new_queue.extend(elem.get_children())
queue = new_queue
level += 1
avgs = {}
for key, value in result.items():
avgs[key] = np.mean(value)
return avgs
def get_dfs_level_avg(tree_head: Node) -> dict:
result = {}
level = 1
def _update_result(result, level, child):
children_for_level = result.get(level, [])
children_for_level.append(child.value)
result[level] = children_for_level
def _collect(level: int, node: Node, result):
for child in node.children:
_collect(level+1, child, result)
_update_result(result, level, node)
_collect(level, tree_head, result)
avgs = {}
for key, value in result.items():
avgs[key] = np.mean(value)
return avgs
th = Node(4)
th.add_child(7)
th.add_child(9)
th.get_children()[1].add_child(6)
th.get_children()[0].add_child(10)
th.get_children()[0].add_child(2)
th.get_children()[0].get_children()[1].add_child(6)
th.get_children()[0].get_children()[1].get_children()[0].add_child(2)
avgs = get_bfs_level_avg(th)
print(avgs)
avgs = get_dfs_level_avg(th)
s = sorted(avgs.items(), key=lambda x: x[0])
print(s)
print(avgs)
|
c00ed09a70a60293af61e1c35966ebb5e7da419d | hypersport/LeetCode | /valid-palindrome-ii/valid_palindrome_ii.py | 561 | 3.65625 | 4 | class Solution:
def validPalindrome(self, s: str) -> bool:
left, right = 0, len(s) - 1
while left < right:
if s[left] != s[right]:
return self.isPalindrome(s, left+1, right) or self.isPalindrome(s, left, right-1) or False
left += 1
right -= 1
return True
def isPalindrome(self, s: str, left: int, right: int) -> bool:
while left < right:
if s[left] != s[right]:
return False
left += 1
right -= 1
return True
|
a7e104da027ed59a1df6a02033541beaf7cda39a | CodeVeish/py4e | /Completed/ex_02_03/ex_02_03.py | 173 | 3.9375 | 4 | entry_hours = input("Enter Total Hours Worked: ")
entry_rate = input("Enter Employee Pay Rate: ")
total_pay = float(entry_hours) * float(entry_rate)
print("Pay,",total_pay) |
5676088e0bf4a67a00cbefad8cc4db2c8e5992fb | Submitty/Submitty | /sbin/get_version_details.py | 6,625 | 3.578125 | 4 | #!/usr/bin/env python3
"""
Generate a list of active versions for students. Useful for when the database gets bad
values for the active version and then you can just run this function to get the proper
values to update the database with.
Basic usage of this script is ./get_version_details.py <semester> <course> which will
get all students and their submissions for that particular semester course. You can
also pass in optional flag to not have any indentation in the JSON produced as well as
to write the JSON to a file instead of printing it out to stdout.
To see all options, use ./get_version_details.py --help
"""
import argparse
from datetime import datetime
import json
import os
CONFIG_PATH = os.path.join(os.path.dirname(os.path.realpath(__file__)), '..', 'config')
with open(os.path.join(CONFIG_PATH, 'submitty.json')) as open_file:
JSON = json.load(open_file)
DATA_PATH = os.path.join(JSON['submitty_data_dir'], "courses")
def get_all_versions(semester, course):
"""
Given a semester and course, generate a dictionary of every student, that then
contains every homework for that student and then all versions (with condensed
details) for the version. Additionally, we mark one of these versions as "active"
based on the value in their user_assignment_settings.json file.
:param semester: semester to use for the active versions
:type semester: str
:param course: course to examine for the active versions
:type semester: str
:return: a dictionary containing all students and their active versions for all
assignments for the course and semester
:rtype: dict
"""
versions = {}
submission_path = os.path.join(DATA_PATH, semester, course, "submissions")
results_path = os.path.join(DATA_PATH, semester, course, "results")
build_path = os.path.join(DATA_PATH, semester, course, "config", "build")
if not os.path.isdir(submission_path) or not os.path.isdir(results_path):
raise SystemError("Could not find submission or results directory")
for homework in os.listdir(submission_path):
testcases = []
buildfile = os.path.join(build_path, "build_" + homework + ".json")
if os.path.isfile(buildfile):
with open(buildfile) as open_file:
parsed = json.load(open_file)
if parsed['testcases']:
for testcase in parsed['testcases']:
testcases.append({
"title": testcase['title'],
"points": testcase['points'],
"extra_credit": testcase['extra_credit'],
"hidden": testcase['hidden']
})
homework_path = os.path.join(submission_path, homework)
for student in os.listdir(homework_path):
if student not in versions:
versions[student] = {}
versions[student][homework] = {}
with open(os.path.join(
homework_path,
student,
"user_assignment_settings.json"
), "r") as read_file:
json_file = json.load(read_file)
active = int(json_file["active_version"])
results_student = os.path.join(results_path, homework, student)
for version in sorted(os.listdir(results_student)):
versions[student][homework][version] = get_version_details(
semester,
course,
homework,
student,
version,
testcases,
active
)
return versions
def get_version_details(
semester,
course,
homework,
student,
version,
testcases,
active_version
):
results_path = os.path.join(
DATA_PATH,
semester,
course,
"results",
homework,
student,
version
)
entry = {
'autograding_non_hidden_non_extra_credit': 0,
'autograding_non_hidden_extra_credit': 0,
'autograding_hidden_non_extra_credit': 0,
'autograding_hidden_extra_credit': 0,
'submission_time': None,
'active': False
}
if int(version) == active_version:
entry['active'] = True
results_json = os.path.join(results_path, "results.json")
if not os.path.isfile(results_json):
return False
with open(results_json) as open_file:
open_file = json.load(open_file)
if testcases:
if len(testcases) != len(open_file['testcases']):
return False
for i in range(len(open_file['testcases'])):
testcase = testcases[i]
points = float(open_file['testcases'][i]['points_awarded'])
hidden = "hidden" if testcase['hidden'] else "non_hidden"
ec = "extra_credit" if testcase['extra_credit'] else "non_extra_credit"
entry['autograding_' + hidden + "_" + ec] += points
with open(os.path.join(results_path, "history.json")) as open_file:
json_file = json.load(open_file)
if isinstance(json_file, list):
a = datetime.strptime(
json_file[-1]['submission_time'],
"%a %b %d %H:%M:%S %Z %Y"
)
entry['submission_time'] = '{}-{:02d}-{:02d} {:02d}:{:02d}:{:02d}' \
.format(a.year, a.month, a.day, a.hour, a.minute, a.second)
return entry
def main():
"""
Main program execution. Pretty prints the generated dictionary for students and
their active versions
"""
parser = argparse.ArgumentParser(
description="Generate a list of students and their version "
"details for all assignments"
)
parser.add_argument("semester", type=str, help="What semester to look at?")
parser.add_argument("course", type=str, help="What course to look at?")
parser.add_argument(
"-n",
"--no-indent",
dest="no_indent",
action="store_true",
default=False
)
parser.add_argument("-o", "--outfile", dest="outfile", type=str, default=None)
args = parser.parse_args()
versions = get_all_versions(args.semester, args.course)
indent = None
if not args.no_indent:
indent = 4
if args.outfile:
with open(args.outfile, 'w') as open_file:
json.dump(versions, open_file, indent=indent)
else:
print(json.dumps(versions, indent=indent))
if __name__ == "__main__":
main()
|
d010f9ac5a0e794325476ad3f6b7e7d17e8e6706 | Tahaa2t/Py-basics | /Conditions.py | 1,231 | 4.34375 | 4 | #-----------------------------simple if else ------------------------------------
#BMI calculator
height = float(input("Enter height in cm: "))
weight = float(input("Enter weight in kg: "))
height = height/100
bmi = round(weight/(height**2)) #round = round off to nearest whole number
if bmi < 18.5:
print(f"{bmi}: Underweight")
elif bmi < 25: #else if() <---cpp = elif <---Python
print(f"{bmi}: Normal weight")
elif bmi < 30:
print(f"{bmi}: overweight")
elif bmi < 35:
print(f"{bmi}: obese")
elif bmi >= 35:
print(f"{bmi}: overweight")
else:
print("Enter correct weight")
#------------------------------Nested if else---------------------------------------
#Roller coaster ride,
# if heignt >= 120cm and age >= 10, charge 10$
# if heignt >= 120cm and age < 10, charge 7$
# if height < 120cm, not allowed
print("Welcome to rollercoaster")
height = int(input("Enter height in cm: "))
age = int(input("Enter age: "))
if height >= 120: #>=, <=, >, <, ==, !=
if age >= 10:
print("You're good to go, 10$")
elif age <10:
print("You're good to go, 7$")
else:
print("nope...!")
#for multiple conditions, use 'and'/'or'
# eg: if age < 10 and age >= 5: ... |
dab39dca767fd9c96b77482dbcdc9c10ba21cfb8 | moore1474/public | /archive/Practice/Python_Leetcode_Solutions/019_Remove_Nth_Node_From_End_of_List.py | 856 | 3.5625 | 4 | from _Node_Tests_Util import *
class Solution(object):
def removeNthFromEnd(self, head, n):
current = head
#Find first n ahead
i = 0
while i < n:
current = current.next
if current is None: return head.next if n == i+1 else head
i += 1
#Go to the end
n_minus_one_back = head
while current.next is not None:
n_minus_one_back = n_minus_one_back.next
current = current.next
n_minus_one_back.next = n_minus_one_back.next.next
return head
ll = create_linked_list((1,2,3,4,5))
ll = Solution().removeNthFromEnd(ll, 2)
printll(ll)#1 -> 2 -> 3 -> 5 -> None
print('')
ll2 = create_linked_list((1,2))
ll2 = Solution().removeNthFromEnd(ll2, 2)
printll(ll2)#2 -> None |
6697269aaf11f377b22ef5ef5188e7ce15ac307e | joaofig/dublin-buses | /geomath.py | 1,913 | 3.578125 | 4 | import numpy as np
import math
def haversine_np(lat1, lon1, lat2, lon2):
"""
Calculate the great circle distance between two points
on the earth (specified in decimal degrees)
All args must be of equal length.
Taken from here: https://stackoverflow.com/questions/29545704/fast-haversine-approximation-python-pandas#29546836
"""
lon1, lat1, lon2, lat2 = map(np.radians, [lon1, lat1, lon2, lat2])
dlon = lon2 - lon1
dlat = lat2 - lat1
a = np.sin(dlat/2.0)**2 + np.cos(lat1) * np.cos(lat2) * np.sin(dlon/2.0)**2
c = 2 * np.arctan2(np.sqrt(a), np.sqrt(1.0 - a))
meters = 6378137.0 * c
return meters
def delta_location(lat, lon, bearing, meters):
"""
Calculates a destination location from a starting location, a bearing and a distance in meters.
:param lat: Start latitude
:param lon: Start longitude
:param bearing: Bearing (North is zero degrees, measured clockwise)
:param meters: Distance to displace from the starting point
:return: Tuple with the new latitude and longitude
"""
delta = meters / 6378137.0
theta = math.radians(bearing)
lat_r = math.radians(lat)
lon_r = math.radians(lon)
lat_r2 = math.asin(math.sin(lat_r) * math.cos(delta) + math.cos(lat_r) * math.sin(delta) * math.cos(theta))
lon_r2 = lon_r + math.atan2(math.sin(theta) * math.sin(delta) * math.cos(lat_r),
math.cos(delta) - math.sin(lat_r) * math.sin(lat_r2))
return math.degrees(lat_r2), math.degrees(lon_r2)
def delta_degree_to_meters(lat, lon, delta_lat=0, delta_lon=0):
return haversine_np(lon, lat, lon + delta_lon, lat + delta_lat)
def x_meters_to_degrees(meters, lat, lon):
_, lon2 = delta_location(lat, lon, 90, meters)
return abs(lon - lon2)
def y_meters_to_degrees(meters, lat, lon):
lat2, _ = delta_location(lat, lon, 0, meters)
return abs(lat - lat2)
|
18f842c23d1a4bdcf4918f0e34cb2815fd70ba0d | ronaldoedicassio/Pyhthon | /Arquivos Exercicios/Exercicios/Ex072.py | 631 | 4.09375 | 4 | ''''
Exercício Python 72:
Crie um programa que tenha uma dupla totalmente preenchida com uma contagem por extenso, de zero até
vinte. Seu programa deverá ler um número pelo teclado (entre 0 e 20) e mostrá-lo por extenso.
'''
extenso =('zero','um','dois','tres','quatro','cinco','seis','sete','oito','nove','dez','onze','doze','treze','quatorze','quinze','dezesseis','dezessete','dezoito','dezenove','vinte')
while True:
num = int(input("Digite um numero entre 0 e 20: "))
if 0 <= num <= 20:
print(f'Numero digitado foi {extenso[num]}')
break
else:
print('Tente novamnte,', end=' ')
|
8b4bcb6a35682462e659e512120a59b1c21d1553 | Gabrielganchev/week2final | /whilelloops/count_to_user2.py | 140 | 3.8125 | 4 | a=int(input())
b=1
while b<=a:
print(b)
b+=1
if b==a:
print("good facking logic my friend sorry for the cursing words")
|
bf7ee1a39aee2fad47a6eeb69b7bdd7e82c7c95e | Aarav6790/pst_to_ist.py | /psttoist.py | 1,160 | 3.90625 | 4 | time = input("enter time in pst(hh:mm am/pm): ")
hours = int(time[0:2])
min = int(time[3:5])
if hours == 11 and min == 30 and time[-2].lower()=='a':
print("12 midnight")
elif hours == 11 and min == 30 and time[-2].lower()=='p':
print("12 noon")
elif hours>11 and min>=30 and time[-2].lower()=='a':
hours+=12
min+=30
if min >= 60:
min = min-60
hours+=1
if hours>12:
hours-=12
print('Same day\n', hours,':', min, 'PM')
elif hours<11 and min<=30 and time[-2].lower()=='a':
hours+=12
min+=30
if min >= 60:
min = min-60
hours+=1
if hours>12:
hours-=12
print('Same Day\n', hours,':', min, 'PM')
elif hours>11 and min>=30 and time[-2].lower()=='p':
hours+=12
min+=30
if min >= 60:
min = min-60
hours+=1
if hours>12:
hours-=12
print('Next Day\n', hours,':', min, 'AM')
elif hours<11 and min<=30 and time[-2].lower()=='p':
hours+=12
min+=30
if min >= 60:
min = min-60
hours+=1
if hours>12:
hours-=12
print('Next Day\n', hours,':', min, 'AM')
|
5cb19cf17aa1c58a9bc7bead4c6e5e80806b6bea | Dayanand-Chinchure/assignments | /python/prog/number.py | 58 | 3.609375 | 4 | a=[1,2,3,4,5]
if 2 in a:
print 'yes'
else:
print 'no`'
|
3c8c98a0b54582dc1fb99b1ff64238304d78b178 | KseniaMIPT/Adamasta | /graph/test/B1.py | 309 | 3.875 | 4 | def check(matrix):
N = len(matrix)
for i in range(N):
for j in range(N):
if matrix[i][j] != matrix[j][i]:
return 'NO'
return 'YES'
N = int(input())
matrix = []
for i in range(N):
data = str(input()).split()
matrix.append(data)
print(check(matrix))
|
fbe2cec4ed178b7b0eb736167549af2697ec9959 | Seok-in/PythonCodingTest | /Solution/BinarySearch/BinarySearch01.py | 664 | 3.890625 | 4 | n = int(input())
array_n = list(map(int, input().split()))
m = int(input())
array_m = list(map(int, input().split()))
array_n.sort()
array_m.sort()
def binary_search(array, target, start, end):
if start > end:
return False
mid = (start+end)//2
if target == array[mid]:
return True
elif target < array[mid]:
return binary_search(array, target, start, mid-1)
elif target > array[mid]:
return binary_search(array, target, mid+1, end)
for i in array_m:
if binary_search(array_n, i, 0, n) == True:
print("yes", end=" ")
elif binary_search(array_n, i, 0, n) == False:
print("no", end=" ")
|
d6b1fcc56424f573e53b46bd9195ff89dd536360 | gaeun0516/python_projects | /Basic_grammer/class/Remove_the_same_word.py | 683 | 3.703125 | 4 |
class find:
def __init__(self):
self.flag = 0
self.input_word = i_word
self.list_word = l_word
self.same_list = same_word
def find_word(self, input_word, list_word, same_list):
for i in range(0, len(input_word)):
for o in range(0, len(list_word)):
if (input_word[i] == list_word[o]):
flag = 1
break
if (flag == 1):
same_list.append(input_word[i])
return input_word, list_word, same_list
i_word = input()
l_word = ['C', 'A', 'M', 'B', 'R', 'I', 'D', 'G', 'E']
same_word = []
find(i_word, l_word, same_word)
print(same_word)
|
de1c68abe87136803a8f72457664e8196c708ecd | Rex7/PythonDemo | /hackerrank/Sets/SymmetricDifference.py | 370 | 4.34375 | 4 | """
Given sets of integers, m and n, print their symmetric difference in ascending order.
The term symmetric difference indicates those values that exist in either or but do not exist in both.
"""
m = input()
a = set(map(int, input().split()))
n = input()
b = set(map(int, input().split()))
c = sorted(a.symmetric_difference(b))
for element in c:
print(element)
|
646823aebe61a3800d7fbb3a45c6cd00d3ce3fa7 | dntandan/VTU-Lab-Programs | /SEM-6 (File Structures Laboratory)/4 RRN Records/student_record_using_rrn.py | 1,911 | 3.703125 | 4 | rrn = [-1]
cnt = 0
class student:
def __init__(self, usn, name, sem):
self.usn = usn
self.name = name
self.sem = sem
def display_data(self):
print(f"\nUSN -> {self.usn} \nName -> {self.name} \nSem -> {self.sem} \n")
def pack(self, file):
global cnt
pos = file.tell()
buf = self.usn + "|" + self.name + "|" + self.sem + "|"
buf += "\n"
file.write(buf)
cnt += 1
rrn.append(pos)
def unpack(pos):
with open("record.txt", "r") as fp:
fp.seek(pos)
line = fp.readline()
fields = line.strip("\n").split("|")[:-1]
s1 = student(fields[0], fields[1], fields[2])
s1.display_data()
def find_rrn():
global cnt, pos, rrn
pos = 0
try:
with open("record.txt", "r+") as fp:
line = fp.readline()
while line:
rrn.append(pos)
pos = fp.tell() # for returning the location of the next line
cnt += 1
line = fp.readline()
except:
pass
find_rrn()
while True:
choice = input(
"\n1.Insert a record\n2.Search for a record using RRN\n3.Exit\nEnter your choice ==>\t"
)
if choice == "1":
usn = input("Enter USN \t")
name = input("Enter name \t")
sem = input("Enter sem \t")
new_student = student(usn, name, sem)
with open("record.txt", "a+") as fp:
new_student.pack(fp)
elif choice == "3":
break
elif choice == "2":
print(cnt)
rrn_search = int(input("Enter the RRN to be found \t"))
if rrn_search > cnt or rrn_search < 0:
print("Invalid RRN Entered!")
continue
print("RRN Record Found")
pos = rrn[rrn_search]
with open("record.txt", "r") as fp:
unpack(pos)
else:
print("Invalid Input")
|
1608302fa6f26b5dc2211cf5cfd923bc10b96ecd | IswaryaNidadavolu/python | /divisible.py | 142 | 4.21875 | 4 | x=int(input("enter the number"))
y=int(input("enter the number"))
if x%y==0:
print("divisible")
else:
print("not divisible")
|
be288af37233916858ea687e4335a403eec28631 | tanoabeleyra/algorithms.py | /searching/binary_search.py | 473 | 3.96875 | 4 | def binary_search(sorted_collection, target_elem):
lo, hi = 0, len(sorted_collection) - 1
while lo <= hi:
mid = (lo + hi) // 2
current_elem = sorted_collection[mid]
if target_elem == current_elem: # Element found!
return mid
if target_elem < current_elem: # Search on the left side
hi = mid - 1
else: # Search on the right side
lo = mid + 1
return None # The element doesn't exist
|
423d9b5c9e1a9f1cf2c191b3e29cbfbf4952628b | Moerai/algorithm | /goorm/bitaalgo/temins_hobby.py | 288 | 3.59375 | 4 | # 고속거듭제곱 알고리즘
# def power(a,b,m):
# result = 1
# while b > 0:
# if b % 2 != 0:
# result = (result * a) % m
# b //= 2
# a = (a * a) % m
# return result
n = int(input())
answer = 0
for i in range(1, n+1):
answer = answer + i*i*i
print(answer%1000000007) |
2102569e3fa88e0597ae8a091ffbe399f21e9afb | sillyCod/multiprocessing_demo | /condition.py | 1,889 | 3.578125 | 4 | # -*- coding: utf-8 -*-
# time: 19-3-8 下午4:44
"""
多进程状态下的condition不可用
"""
import multiprocessing
from multiprocessing import Manager
from multiprocessing.managers import BaseManager
import time
class Producer(multiprocessing.Process):
def __init__(self, con):
self.condition = con
super().__init__()
def run(self):
global count
while True:
if self.condition.acquire():
print(count)
if count > 700:
self.condition.wait()
else:
count = count+100
msg = self.name+' produce 100, count=' + str(count)
print(msg)
self.condition.notify()
self.condition.release()
time.sleep(1)
class Consumer(multiprocessing.Process):
def __init__(self, con):
self.condition = con
super().__init__()
def run(self):
global count
while True:
if self.condition.acquire():
if count < 100:
self.condition.wait()
else:
count = count-50
msg = self.name+' consume 50, count='+str(count)
print(msg)
self.condition.notify()
self.condition.release()
time.sleep(1)
count = 500
# con = multiprocessing.Condition()
class MyManager(BaseManager):
pass
def test():
# MyManager.register()
with Manager() as manager:
print("address", manager.address)
print("connect", manager.connect())
con = manager.Condition()
for i in range(2):
p = Producer(con)
p.start()
for i in range(2):
c = Consumer(con)
c.start()
if __name__ == '__main__':
test()
|
4d482588627d326f54efd8e53ac72ed472015efd | daniela-mejia/Python-Net-idf19- | /PhythonAssig/4-24-19 Assigment4/4-24 Assigment5(Palindrom).py | 592 | 4.28125 | 4 | #Return the reversal of an integer in hexa, eg. reverse (456) returns 654
def reverse(number):
reverse = 0
while number > 0: #this I took from GOOGLE
endDigit = number % 10
reverse = (reverse*10) + endDigit
number = number // 10
def isPalindrome(number):
reverse(number)
uno = number
if uno == reverse:
print("yep, it's a Palindrome")
else:
print("Not a Palindrome...Try again")
def main():
number = eval(input("Please enter a number to check if Palindrome: "))
isPalindrome(number)
main()
|
960e8264718ae5ae48d461e2de2e774f00df580c | suyeon-yang/CP1404practicals | /prac_01/loops.py | 468 | 4 | 4 | """
first loop
"""
for i in range(1, 21, 2):
print(i, end=' ')
print()
"""
second loop
"""
for j in range(0, 100, 10):
print(j, end=' ')
print()
"""
third loop
"""
for i in range(20, 0, -1):
print(i, end=' ')
print()
"""
fourth loop
"""
stars = int(input("Number of stars: "))
for j in range(stars):
print('*', end=' ')
print()
"""
fifth loop
"""
stars = int(input("Number of stars: "))
for i in range(1, stars + 1):
print('*' * i)
print()
|
58011fd09f64afe5b2a56118bfa131800b6039ec | aidangainor/Physics-97b-TTL-CPU | /src/microcoder/Instruction.py | 5,019 | 3.609375 | 4 | from MicroInstruction import MicroInstruction
from Encoders import *
class Instruction:
"""Corresponds to an instruction from the ISA level.
It stores a sequence of up to 16 micro instructions needed to execute a programmer specified instruction.
Default micro instructions are specified as class varialbes to deal with instruction fetch, reset, and interrupt routines.
Micro instructions with "NoneType" in Python are unused, and will be written as 0xFF by EEPROM programmer.
"""
# Rest program counter and MAR, then do instruction fetch
rst_micro_instructions = [MicroInstruction(inc_PC="0", clear_PC="0", clear_MAR="0", clear_condition_bit="0")]
# Output ROM/RAM and clock in instruction register
rst_micro_instructions.append(MicroInstruction(inc_PC="0", device_onto_db=DB_DEVICE_TO_BITSTRING["ROM/RAM"],
device_onto_ab=AB_DEVICE_TO_BITSTRING["PC"],
device_write_enable=DB_DEVICE_TO_BITSTRING["IR"]))
# It is quite common to fetch two bytes from memory that are pointed to by PC + 1 and PC + 2
# These values are loading into PC in little endian format, so lets store this sequence of u-insts
# Although we specify "PC_LOW" as our write target, the control unit actually writes into the PC low buffer so we can keep the original PC for next u-inst
fetch_new_pc_instructions = [MicroInstruction(device_onto_db=DB_DEVICE_TO_BITSTRING["ROM/RAM"],
device_onto_ab=AB_DEVICE_TO_BITSTRING["PC"],
device_write_enable=DB_DEVICE_TO_BITSTRING["PC_LOW"],
inc_PC="1")]
# Now when we specify "PC_HIGH" as write target, the control unit actually specifies PC_HIGH to clock in data bus contents while PC_LOW clocks in PC buffer contents
# This is done in parallel
fetch_new_pc_instructions.append(MicroInstruction(inc_PC="0", device_onto_db=DB_DEVICE_TO_BITSTRING["ROM/RAM"],
device_onto_ab=AB_DEVICE_TO_BITSTRING["PC"],
device_write_enable=DB_DEVICE_TO_BITSTRING["PC_HIGH"]))
# Auto generate instruction fetch, instruction fetch is always last micro instruction of an instruction
# Program counter is incremented during instruction execution
# Output ROM/RAM and clock in instruction register
ir_fetch_instructions = [MicroInstruction(inc_PC="0", clear_condition_bit="0", device_onto_db=DB_DEVICE_TO_BITSTRING["ROM/RAM"],
device_onto_ab=AB_DEVICE_TO_BITSTRING["PC"],
device_write_enable=DB_DEVICE_TO_BITSTRING["IR"])]
def __init__(self):
self.instructions_added = 0
self.inst_micro_instructions = [None] * 16 # An instruction consists of 16 micro instructions
# Note that only a subset of these 16 micro instructions will actually be used
def add_u_instruction(self, u_inst):
"""Add a micro instruction to the instance of an instruction.
"""
self.inst_micro_instructions[self.instructions_added] = u_inst
self.instructions_added += 1
def add_u_instructions(self, u_insts):
"""Add N micro instructions to instance of an instruction.
"""
for u_inst in u_insts:
self.add_u_instruction(u_inst)
def add_fetch_ir_sequence(self):
"""Append a sequence of micro instructions that fetch next instruction
"""
self.add_u_instructions(self.ir_fetch_instructions)
def add_fetch_pc_sequence(self):
"""Append a sequence of micro instructions that swap the PC with 16 bit address operand stored in memory.
"""
self.add_u_instructions(self.fetch_new_pc_instructions)
def add_def_instruction(self):
"""Append a sequence of 4 micro instructions that does nothing to the computers state
"""
self.add_u_instructions([MicroInstruction(inc_PC="0"), MicroInstruction(inc_PC="0"), MicroInstruction(inc_PC="0"), MicroInstruction(inc_PC="1")])
def add_skip_two_bytes_u_insts(self):
self.add_u_instructions([MicroInstruction(inc_PC="1"), MicroInstruction(inc_PC="1")])
def generate_interrupt_sequence(self):
"""Return a constant interrupt handling routine (in microcode, of course!).
Interrupt only occurs on next instruction cycle, this can be accomplished by checking if feedback register contains 4 0's
"""
pass
def get_u_instructions(self):
"""Return all micro instructions that constitute an instruction
"""
return self.inst_micro_instructions
def get_reset_sequence(self):
"""Returns a sequnce of u-insts that reset the CPU
"""
return self.rst_micro_instructions
|
4aa3552eaf65caf7d09f530a47b6105c3feb81c5 | SoosX/python_study | /chapter3/3.2.py | 535 | 3.828125 | 4 | motorcycles =['honda','yamaha','suzuki']
print(motorcycles)
motorcycles[2]='ducati'
print(motorcycles)
motorcycles.append('suzuki')
print(motorcycles)
motorcyclestwo =[]
motorcyclestwo.append('1honda')
motorcyclestwo.append('2yamaha')
motorcyclestwo.append('3suzuki')
print(motorcyclestwo)
motorcyclestwo.insert(1,'ducati')
print(motorcyclestwo)
del motorcyclestwo[0]
print(motorcyclestwo)
fruits = ['apple','pear','banana']
print(fruits)
poppedfruit=fruits.pop(1)
print(poppedfruit)
print(fruits)
fruits.remove('apple')
print(fruits)
|
208dfefa977b9d6c31755038161ddc592f01c2c3 | Zzpecter/Coursera_AlgorithmicToolbox | /week2/6_last_digit_sum_of_fib_numbers.py | 948 | 4.09375 | 4 | # Created by: René Vilar S.
# Algorithmic Toolbox - Coursera 2021
import time
global start
MAX_TIME = 9.9
def get_fibonacci_rene(n):
pisano_period = get_pisano_period(10)
remainder_n = n % pisano_period
if remainder_n == 0:
return 0
previous, current = 0, 1
for _ in range(remainder_n - 1):
if time.time() - start > MAX_TIME:
raise TimeoutError
previous, current = current, previous + current
return current % 10
def get_pisano_period(m):
previous, current = 0, 1
for i in range(m ** 2):
previous, current = current, (previous + current) % m
# Pisano Period always starts with 01
if (previous == 0 and current == 1):
return i + 1
def get_last_digit_of_sum(n):
return (get_fibonacci_rene(n + 2) - 1)%10
if __name__ == '__main__':
n = int(input())
start = time.time()
print(get_last_digit_of_sum(n))
end = time.time()
|
d12e6e1c9d63dde4e5f2b96e80eb491680d55c0e | cpiehl/Project-Euler | /python/092-Square_digit_chains/euler092.py | 1,759 | 3.53125 | 4 | #!/usr/bin/env python
from Euler import sum_squared_digits, timing
# A number chain is created by continuously adding the square of the digits
# in a number to form a new number until it has been seen before.
# For example,
# 44 → 32 → 13 → 10 → 1 → 1
# 85 → 89 → 145 → 42 → 20 → 4 → 16 → 37 → 58 → 89
# Therefore any chain that arrives at 1 or 89 will become stuck in an
# endless loop. What is most amazing is that EVERY starting number
# will eventually arrive at 1 or 89.
# How many starting numbers below ten million will arrive at 89?
# Answer: 8581146
# Still takes ~24s to solve, needs a better algorithm
@timing
def main():
#~ cyclical = {1, 4, 10, 13, 16, 20, 32, 37, 42, 44, 58, 89, 145}
cyclical = {'1', '4', '01', '13', '16', '02', '23', '37', '24', '44', '58', '89', '145'}
#~ happy = {44, 32, 13, 10, 1}
#~ unhappy = {4, 16, 37, 58, 89, 145, 42, 20}
unhappy = {'4', '16', '37', '58', '89', '145', '24', '02'}
L = 7 # limit expressed as 10**L
count = 0
for i in range(1,10**L):
j = i
chain = set() # All numbers in the chain, for if we come across them later
while True:
jstr = ''.join(sorted(str(j)))
if jstr in cyclical:
break
#~ while j not in cyclical:
#~ print([int(c)**2 for c in str(j)], j)
#~ j = sum([int(c)**2 for c in str(j)]) # sum squares of digits
#~ j = sum([int(c)*int(c) for c in str(j)]) # mult is faster than pow
#~ j = sum((int(c)*int(c) for c in str(j))) # generator is faster
j = sum_squared_digits(j) # pure ints is even faster
chain.add(jstr)
#~ chain.add(j)
cyclical |= chain # 2x faster than cyclical = cyclical | chain
if jstr in unhappy:
unhappy |= chain
count += 1
print(count)
if __name__ == "__main__":
main()
|
7144e90bf618377c31e00c4e60496d8e028034db | NarayanS321/Selenium-Project | /code cha10.py | 446 | 4.34375 | 4 | def isPalindrome(str): # ABCBA
reverse_str = reverse(str)
#print(reverse_str)
result = False
if reverse_str == str:
#print("true")
result = True
else:
# print("false")
result = False
return result
# Python code to reverse a string
# using extended slice syntax
# Function to reverse a string
def reverse(string):
string = string[::-1]
return string
print(isPalindrome("wow")) |
b5a9ba7cd6fa97d3990c7c70465c87af837c1dc3 | txcavscout/tempConversion | /temp.py | 796 | 4.34375 | 4 | # Temp conversion
print('Temperature Conversion Tool.')
try:
convert_type = int(input("Enter 1 for Celsius to Fareheit. Enter 2 for Farenheit to Celsius: "))
if convert_type == 1:
temp = int(input('Enter the temp in celsius to convert: '))
converted = temp * 9/5 + 32
print(f'{temp} celsius is {converted} degrees farenheit.\n')
if convert_type == 2:
temp = int(input('Enter the temp in farenheit to convert: '))
converted = (temp - 32) * 5/9
converted = int(round(converted, 0))
print(f'{temp} degrees farenheit is {converted} degree celsius.')
if convert_type > 2 or convert_type < 1:
print("You must enter 1 or 2.")
except ValueError:
val = int
print("You must enter 1 or 2.")
|
157aa0f7db30f8bd33f617c6ae49188d35793dfa | vierbergenlars/Informatica | /HC 2/types.py | 685 | 3.671875 | 4 | # Negeer al die try en except zever, dat is gewoon om effe fouten te vermijden
#
invoer = raw_input("Tekst voor de invoer > ")
print "Invoer: "
print invoer, "type: ",
print type(invoer) # Welk is het type van deze variabele?
# Omzetten naar een int
try:
print "Omzetten naar int: "
omgezet = int(invoer)
print omgezet, "type: ",
print type(omgezet)
# // Negeer onderstaand
except ValueError:
print "Oké, dat kan duidelijk geen int zijn!"
# Of naar een float
try:
print "Omzetten naar float: "
omgezet = float(invoer)
print omgezet, "type: ",
print type(omgezet)
# // Negeer onderstaand
except ValueError:
print "Oké, dit is geen float"
|
51f8261cf381af3ba214ec0f410c25ddb98363e7 | ccacoba/cmsc117project | /dmcspy/numdiff/second.py | 1,702 | 3.703125 | 4 | #credits: PAALAN
import numpy as np
from matplotlib import pyplot as plt
#plt.rc('text', usetex=True)
plt.rc('font', family='serif')
#machine epsilon
eps = np.finfo('float').eps #4/3
# stepsizes
h = np.array([0.1/(1.1**k) for k in range(500)])
#takes stepsizes greather than eps
#h = h[h>eps]
from time import time
def second_derivative():
start = time()
"""
This function shows the graph of the Second Derivative Formula
f"(x) = [f(x+h) - 2f(x) + f(x-h)]/(h^2). The truncation error
is -(h^2/12)f""(eps).
Variables:
- eps machine epsilon equal to np.finfo('float').eps
- h step size
Output:
1. Graph of Second Derivative Formula with line truncation error,
predicted optimal h, and horizontal line(for reference)
"""
error = np.abs(1 - ( np.exp(h) - 2 + np.exp(-h) )/(h**2))
fig = plt.figure()
plt.loglog(h, error, color='blue', linewidth = 2.0, label = r'$|1 - (e^h - 2 + e^{-h} )/h^2|$')
plt.xlabel(r'$h$', fontsize=12)
plt.title('Second Derivative Formula')
plt.loglog(h, h**2/12, color='red', linestyle = '--', linewidth = 2.0, label = r'$h^2/12$')
plt.loglog(h, 24*eps/(h**2), color = 'green', linestyle = '--', linewidth = 2.0, label = r'$24\epsilon/h^{1/2}$')
plt.loglog([6.*(eps)**0.25, 6.*(eps)**0.25], [0.0,1.5], linewidth=2.0, label=r'predicted optimal $h$',linestyle= '--')
plt.plot([0,10**-1],[10**-10,10**-10], label=r'horizontal line $y=10^{-10}$')
plt.ylim(bottom=1e-12, top=2.0)
plt.legend(loc = 'best', fontsize = 15)
plt.xticks(fontsize = 14)
plt.yticks(fontsize = 14)
plt.gca().autoscale(enable = True, axis='x', tight =True)
end = time()
plt.show()
return end-start
#second_derivative()
|
8c736003b6f4ab0d32850552dadb2d7cede55fb7 | Gromy4/Site | /Site/test_4.py | 506 | 3.515625 | 4 | import unittest
import re
import app
class Test_test4(unittest.TestCase):
def test_phone_True(self):
phone = ["8-931-233-49-72"]
for i in range (len(phone)):
regex=re.search(r'^([+]?\d{1,2}[-\s]?|)\d{3}[-\s]?\d{3}[-\s]?\d{2}[-\s]?\d{2}$',phone[i])
if (regex == None):
a=False
if (regex != None):
a=True
self.assertTrue(a)
if __name__ == '__main__':
unittest.main() |
6f088fd9ff8670f0006f28e3a8a01ec6d1a02709 | nagireddy96666/Interview_-python | /COMPANIES/pracice.bangalur/numpy/nump.py | 153 | 3.703125 | 4 | import numpy as np
x=np.array([[1,2],[3,4]])
y=np.array([[5,6],[7,8]])
print x+y
print np.add(x,y)
print x*y
print np.multiply(x,y)
print np.reversed(x)
|
861e7381eee1b427bb306709c4af71c9a75c2e41 | suton5/partia-flood-warning-system | /test_flood.py | 2,164 | 3.65625 | 4 | #!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sun Feb 26 16:25:50 2017
@author: limyiheng
"""
import pytest
from floodsystem.stationdata import build_station_list, update_water_levels
from floodsystem.flood import stations_highest_rel_level, stations_level_over_threshold
#stations = build_station_list()
#update_water_levels(stations)
#new_list = stations_level_over_threshold(stations, 0.2)
#print(new_list)
#test for 2B
def test_stations_level_over_threshold():
"""check if the elements in the list are ranked in desceding order according to their relative
water level, check if each element in the list is a tuple of 2"""
stations = build_station_list()
update_water_levels(stations)
new_list = stations_level_over_threshold(stations, 0.2)
for i in new_list:
#check if they are tuples
assert type(i) == tuple
#check if the tuples have 2 items
assert len(i) == 2
for i in range(len(new_list)-1):
#check if the order is correct
if new_list[i][1] > new_list[i+1][1]:
True
else:
False
assert True
if new_list[i][1] <= 0.2:
False
else:
True
assert True
#test for 2C
def test_stations_highest_rel_level():
"""check if the elements in the list are ranked in desceding order according to their relative
water level, check if each element in the list is a tuple of 2, check if the length of the list is N"""
stations = build_station_list()
update_water_levels(stations)
new_list_2 = stations_highest_rel_level(stations, 10)
assert len(new_list_2) == 10
for i in new_list_2:
#check if they are tuples
assert type(i) == tuple
#check if the tuples have 2 items
assert len(i) == 2
for i in range(len(new_list_2)-1):
#check if the order is correct
if new_list_2[i][1] > new_list_2[i+1][1]:
True
else:
False
assert True
|
4393b13e151064175366d0d3a7dfcf2914506dda | lclong728/Daily-Coding-Problem | /problem #1-#20/dailyCoding#10.py | 469 | 3.734375 | 4 | # -*- coding: utf-8 -*-
"""
Created on Thu Jul 26 19:55:12 2018
@author: lenovo
"""
"""
DailyCodingProblem #10
26/07/2018
Asked by: Apple
Implement a job scheduler which takes in a function f and an integer n, and calls f after n milliseconds
"""
import time
def delay_function(function, sleep_time):
print('delay function start!')
time.sleep(sleep_time)
return function
def function():
return 'after delay'
print(delay_function(function(), 10)) |
a0dd69ff5d72d041c1ed2cf297fe89924b8ac161 | ioam/featuremapper | /featuremapper/distribution.py | 41,156 | 3.5 | 4 | """
Distribution class
"""
# To do:
#
# - wrap bins for cyclic histograms
# - check use of float() in count_mag() etc
# - clarify comment about negative selectivity
#
# - function to return value in a range (like a real histogram)
# - cache values
# - assumes cyclic axes start at 0: include a shift based on range
#
# - is there a way to make this work for arrays without mentioning
# "array" anywhere in here?
# - should this be two classes: one for the core (which would be
# small though) and another for statistics?
import numpy as np
import param
import cmath
import math
unavailable_scipy_optimize = False
try:
from scipy import optimize
except ImportError:
param.Parameterized().debug("scipy.optimize not available, dummy von Mises fit")
unavailable_scipy_optimize = True
def wrap(lower, upper, x):
"""
Circularly alias the numeric value x into the range [lower,upper).
Valid for cyclic quantities like orientations or hues.
"""
#I have no idea how I came up with this algorithm; it should be simplified.
#
# Note that Python's % operator works on floats and arrays;
# usually one can simply use that instead. E.g. to wrap array or
# scalar x into 0,2*pi, just use "x % (2*pi)".
axis_range = upper - lower
return lower + (x - lower + 2.0 * axis_range * (1.0 - math.floor(x / (2.0 * axis_range)))) % axis_range
def calc_theta(bins, axis_range):
"""
Convert a bin number to a direction in radians.
Works for NumPy arrays of bin numbers, returning
an array of directions.
"""
return np.exp( (2.0 * np.pi) * bins / axis_range * 1.0j )
class Distribution(object):
"""
Holds a distribution of the values f(x) associated with a variable x.
A Distribution is a histogram-like object that is a dictionary of
samples. Each sample is an x:f(x) pair, where x is called the feature_bin
and f(x) is called the value(). Each feature_bin's value is typically
maintained as the sum of all the values that have been placed into
it.
The feature_bin axis is continuous, and can represent a continuous
quantity without discretization. Alternatively, this class can be
used as a traditional histogram by either discretizing the feature_bin
number before adding each sample, or by binning the values in the
final Distribution.
Distributions are bounded by the specified axis_bounds, and can
either be cyclic (like directions or hues) or non-cyclic. For
cyclic distributions, samples provided outside the axis_bounds
will be wrapped back into the bound range, as is appropriate for
quantities like directions. For non-cyclic distributions,
providing samples outside the axis_bounds will result in a
ValueError.
In addition to the values, can also return the counts, i.e., the
number of times that a sample has been added with the given feature_bin.
Not all instances of this class will be a true distribution in the
mathematical sense; e.g. the values will have to be normalized
before they can be considered a probability distribution.
If keep_peak=True, the value stored in each feature_bin will be the
maximum of all values ever added, instead of the sum. The
distribution will thus be a record of the maximum value
seen at each feature_bin, also known as an envelope.
"""
# Holds the number of times that undefined values have been
# returned from calculations for any instance of this class,
# e.g. calls to vector_direction() or vector_selectivity() when no
# value is non-zero. Useful for warning users when the values are
# not meaningful.
undefined_vals = 0
def __init__(self, axis_bounds, axis_range, cyclic, data, counts, total_count, total_value, theta):
self._data = data
self._counts = counts
# total_count and total_value hold the total number and sum
# (respectively) of values that have ever been provided for
# each feature_bin. For a simple distribution these will be the same as
# sum_counts() and sum_values().
self.total_count = total_count
self.total_value = total_value
self.axis_bounds = axis_bounds
self.axis_range = axis_range
self.cyclic = cyclic
self._pop_store = None
# Cache busy data
self._keys = list(data.keys())
self._values = list(data.values())
self._theta = theta
if self.cyclic:
# Cache the vector sum
self._vector_sum = self._fast_vector_sum(self._values, theta)
else:
self._vector_sum = None
def data(self):
"""
Answer a dictionary with bins as keys.
"""
return self._data
def pop(self, feature_bin):
"""
Remove the entry with bin from the distribution.
"""
if self._pop_store is not None:
raise Exception("Distribution: attempt to pop value before outstanding restore")
self._pop_store = self._data.pop(feature_bin)
self._keys = list(self._data.keys())
self._values = list(self._data.values())
def restore(self, feature_bin):
"""
Restore the entry with bin from the distribution.
Only valid if called after a pop.
"""
if self._pop_store is None:
raise Exception("Distribution: attempt to restore value before pop")
self._data[feature_bin] = self._pop_store
self._pop_store = None
self._keys = list(self._data.keys())
self._values = list(self._data.values())
def vector_sum(self):
"""
Return the vector sum of the distribution as a tuple (magnitude, avgbinnum).
Each feature_bin contributes a vector of length equal to its value, at
a direction corresponding to the feature_bin number. Specifically,
the total feature_bin number range is mapped into a direction range
[0,2pi].
For a cyclic distribution, the avgbinnum will be a continuous
measure analogous to the max_value_bin() of the distribution.
But this quantity has more precision than max_value_bin()
because it is computed from the entire distribution instead of
just the peak feature_bin. However, it is likely to be useful only
for uniform or very dense sampling; with sparse, non-uniform
sampling the estimates will be biased significantly by the
particular samples chosen.
The avgbinnum is not meaningful when the magnitude is 0,
because a zero-length vector has no direction. To find out
whether such cases occurred, you can compare the value of
undefined_vals before and after a series of calls to this
function.
This tries to use cached values of this.
"""
if self._vector_sum is None:
# There is a non cyclic distribution that is using this.
# Calculate and then cache it
# First check if there is a cached theta. If not derive it.
if self._theta is None:
self._theta = calc_theta(np.array(self._keys), self.axis_range)
self._vector_sum = self._fast_vector_sum(self._values, self._theta)
return self._vector_sum
def _fast_vector_sum(self, values, theta):
"""
Return the vector sum of the distribution as a tuple (magnitude, avgbinnum).
This implementation assumes that the values of the distribution needed for the
vector sum will not be changed and depends on cached values.
"""
# vectors are represented in polar form as complex numbers
v_sum = np.inner(values, theta)
magnitude = abs(v_sum)
direction = cmath.phase(v_sum)
if v_sum == 0:
self.undefined_vals += 1
direction_radians = self._radians_to_bins(direction)
# wrap the direction because arctan2 returns principal values
wrapped_direction = wrap(self.axis_bounds[0], self.axis_bounds[1], direction_radians)
return (magnitude, wrapped_direction)
def get_value(self, feature_bin):
"""
Return the value of the specified feature_bin.
(Return None if there is no such feature_bin.)
"""
return self._data.get(feature_bin)
def get_count(self, feature_bin):
"""
Return the count from the specified feature_bin.
(Return None if there is no such feature_bin.)
"""
return self._counts.get(feature_bin)
def values(self):
"""
Return a list of values.
Various statistics can then be calculated if desired:
sum(vals) (total of all values)
max(vals) (highest value in any feature_bin)
Note that the feature_bin-order of values returned does not necessarily
match that returned by counts().
"""
return self._values
def counts(self):
"""
Return a list of values.
Various statistics can then be calculated if desired:
sum(counts) (total of all counts)
max(counts) (highest count in any feature_bin)
Note that the feature_bin-order of values returned does not necessarily
match that returned by values().
"""
return list(self._counts.values())
def bins(self):
"""
Return a list of bins that have been populated.
"""
return self._keys
def sub_distr( self, distr ):
"""
Subtract the given distribution from the current one.
Only existing bins are modified, new bins in the given
distribution are discarded without raising errors.
Note that total_value and total_count are not affected, and
keep_peak is ignored, therefore analysis relying on these
values should not call this method.
"""
for b in distr.bins():
if b in self.bins():
v = distr._data.get(b)
if v is not None: self._data[b] -= v
def max_value_bin(self):
"""
Return the feature_bin with the largest value.
Note that uses cached values so that pop and restore
need to be used if want with altered distribution.
"""
return self._keys[np.argmax(self._values)]
def weighted_sum(self):
"""Return the sum of each value times its feature_bin."""
return np.inner(self._keys, self._values)
def value_mag(self, feature_bin):
"""Return the value of a single feature_bin as a proportion of total_value."""
return self._safe_divide(self._data.get(feature_bin), self.total_value)
def count_mag(self, feature_bin):
"""Return the count of a single feature_bin as a proportion of total_count."""
return self._safe_divide(float(self._counts.get(feature_bin)), float(self.total_count))
# use of float()
def _bins_to_radians(self, bin):
"""
Convert a bin number to a direction in radians.
Works for NumPy arrays of bin numbers, returning
an array of directions.
"""
return (2*np.pi)*bin/self.axis_range
def _radians_to_bins(self, direction):
"""
Convert a direction in radians into a feature_bin number.
Works for NumPy arrays of direction, returning
an array of feature_bin numbers.
"""
return direction * self.axis_range / (2 * np.pi)
def _safe_divide(self, numerator, denominator):
"""
Division routine that avoids division-by-zero errors
(returning zero in such cases) but keeps track of them
for undefined_values().
"""
if denominator == 0:
self.undefined_vals += 1
return 0
else:
return numerator/denominator
class Pref(dict):
"""
This class simply collects named arguments into a dictionary
the main purpose is to make pretty readable the output of DistributionStatisticFn
functions.
In addition, trap missing keys
"""
def __init__(self, **args):
dict.__init__(self, **args)
def __getitem__(self, key):
try:
return dict.__getitem__(self, key)
except KeyError:
return None
class DistributionStatisticFn(param.Parameterized):
"""
Base class for various functions performing statistics on a distribution.
"""
value_scale = param.NumericTuple((0.0, 1.0), doc="""
Scaling of the resulting value of the distribution statistics,
typically the preference of a unit to feature values. The tuple
specifies (offset, multiplier) of the output scaling""")
# APNOTE: previously selectivity_scale[ 1 ] used to be 17, a value suitable
# for combining preference and selectivity in HSV plots. Users wishing to keep
# this value should now set it when creating SheetViews, in commands like that
# in command/analysis.py
selectivity_scale = param.NumericTuple((0.0, 1.0), doc="""
Scaling of the resulting measure of the distribution peakedness,
typically the selectivity of a unit to its preferred feature value.
The tuple specifies (offset, multiplier) of the output scaling""")
__abstract = True
def __call__(self, distribution):
"""
Apply the distribution statistic function; must be implemented by subclasses.
Subclasses sould be called with a Distribution as argument, return will be a
dictionary, with Pref objects as values
"""
raise NotImplementedError
class DescriptiveStatisticFn(DistributionStatisticFn):
"""
Abstract class for basic descriptive statistics
"""
def vector_sum(self, d):
"""
Return the vector sum of the distribution as a tuple (magnitude, avgbinnum).
Each bin contributes a vector of length equal to its value, at
a direction corresponding to the bin number. Specifically,
the total bin number range is mapped into a direction range
[0,2pi].
For a cyclic distribution, the avgbinnum will be a continuous
measure analogous to the max_value_bin() of the distribution.
But this quantity has more precision than max_value_bin()
because it is computed from the entire distribution instead of
just the peak bin. However, it is likely to be useful only
for uniform or very dense sampling; with sparse, non-uniform
sampling the estimates will be biased significantly by the
particular samples chosen.
The avgbinnum is not meaningful when the magnitude is 0,
because a zero-length vector has no direction. To find out
whether such cases occurred, you can compare the value of
undefined_vals before and after a series of calls to this
function.
This is a slow algorithm and should only be used if the
contents of the distribution have been changed by the statistical
function.
If not, then the cached value in the distribution should be used.
"""
# vectors are represented in polar form as complex numbers
h = d.data()
theta = calc_theta(np.array(list(h.keys())), d.axis_range)
return d._fast_vector_sum(list(h.values()), theta)
def _weighted_average(self, d ):
"""
Return the weighted_sum divided by the sum of the values
"""
return d._safe_divide(d.weighted_sum(), sum(d.values()))
def selectivity(self, d):
"""
Return a measure of the peakedness of the distribution. The
calculation differs depending on whether this is a cyclic
variable. For a cyclic variable, returns the magnitude of the
vector_sum() divided by the sum_value() (see
_vector_selectivity for more details). For a non-cyclic
variable, returns the max_value_bin()) as a proportion of the
sum_value() (see _relative_selectivity for more details).
"""
if d.cyclic == True:
return self._vector_selectivity(d)
else:
return self._relative_selectivity(d)
# CEBHACKALERT: the definition of selectivity for non-cyclic
# quantities probably needs some more thought.
# Additionally, this fails the test in testfeaturemap
# (see the comment there).
def _relative_selectivity(self, d):
"""
Return max_value_bin()) as a proportion of the sum_value().
This quantity is a measure of how strongly the distribution is
biased towards the max_value_bin(). For a smooth,
single-lobed distribution with an inclusive, non-cyclic range,
this quantity is an analog to vector_selectivity. To be a
precise analog for arbitrary distributions, it would need to
compute some measure of the selectivity that works like the
weighted_average() instead of the max_value_bin(). The result
is scaled such that if all bins are identical, the selectivity
is 0.0, and if all bins but one are zero, the selectivity is
1.0.
"""
# A single feature_bin is considered fully selective (but could also
# arguably be considered fully unselective)
if len(d.data()) <= 1:
return 1.0
proportion = d._safe_divide(max(d.values()), sum(d.values()))
offset = 1.0/len(d.values())
scaled = (proportion-offset) / (1.0-offset)
# negative scaled is possible
# e.g. 2 bins, with values that sum to less than 0.5
# this probably isn't what should be done in those cases
if scaled >= 0.0:
return scaled
else:
return 0.0
def _vector_selectivity(self, d):
"""
Return the magnitude of the vector_sum() divided by the sum_value().
This quantity is a vector-based measure of the peakedness of
the distribution. If only a single feature_bin has a non-zero value(),
the selectivity will be 1.0, and if all bins have the same
value() then the selectivity will be 0.0. Other distributions
will result in intermediate values.
For a distribution with a sum_value() of zero (i.e. all bins
empty), the selectivity is undefined. Assuming that one will
usually be looking for high selectivity, we return zero in such
a case so that high selectivity will not mistakenly be claimed.
To find out whether such cases occurred, you can compare the
value of undefined_values() before and after a series of
calls to this function.
"""
return d._safe_divide(d.vector_sum()[0], sum(d.values()))
__abstract = True
class DescriptiveBimodalStatisticFn(DescriptiveStatisticFn):
"""
Abstract class for descriptive statistics of two-modes distributions
"""
def second_max_value_bin(self, d):
"""
Return the feature_bin with the second largest value.
If there is one feature_bin only, return it. This is not a correct result,
however it is practical for plotting compatibility, and it will not
mistakenly be claimed as secondary maximum, by forcing its selectivity
to 0.0
"""
if len(d.bins()) <= 1:
return d.bins()[0]
k = d.max_value_bin()
d.pop(k)
m = d.max_value_bin()
d.restore(k)
return m
def second_selectivity(self, d):
"""
Return the selectivity of the second largest value in the distribution.
If there is one feature_bin only, the selectivity is 0, since there is no second
peack at all, and this value is also used to discriminate the validity
of second_max_value_bin()
Selectivity is computed in two ways depending on whether the variable is
a cyclic, as in selectivity()
"""
if len( d._data ) <= 1:
return 0.0
if d.cyclic == True:
return self._vector_second_selectivity(d)
else:
return self._relative_second_selectivity(d)
def _relative_second_selectivity(self, d):
"""
Return the value of the second maximum as a proportion of the sum_value()
see _relative_selectivity() for further details
"""
k = d.max_value_bin()
d.pop(k)
m = max(d.values())
d.restore(k)
proportion = d._safe_divide(m, sum(d.values()))
offset = 1.0 / len(d.data())
scaled = (proportion - offset) / (1.0 - offset)
return max(scaled, 0.0)
def _vector_second_selectivity(self, d):
"""
Return the magnitude of the vector_sum() of all bins excluding the
maximum one, divided by the sum_value().
see _vector_selectivity() for further details
"""
k = d.max_value_bin()
d.pop(k)
s = self.vector_sum(d)[0]
d.restore(k)
return self._safe_divide(s, sum(d.values()))
def second_peak_bin(self, d):
"""
Return the feature_bin with the second peak in the distribution.
Unlike second_max_value_bin(), it does not return a feature_bin which is the
second largest value, if laying on a wing of the first peak, the second
peak is returned only if the distribution is truly multimodal. If it isn't,
return the first peak (for compatibility with numpy array type, and
plotting compatibility), however the corresponding selectivity will be
forced to 0.0
"""
h = d.data()
l = len(h)
if l <= 1:
return d.keys()[0]
ks = list(h.keys())
ks.sort()
ik0 = ks.index(d.keys()[np.argmax(d.values())])
k0 = ks[ik0]
v0 = h[k0]
v = v0
k = k0
ik = ik0
while h[k] <= v:
ik += 1
if ik >= l:
ik = 0
if ik == ik0:
return k0
v = h[k]
k = ks[ik]
ik1 = ik
v = v0
k = k0
ik = ik0
while h[k] <= v:
ik -= 1
if ik < 0:
ik = l - 1
if ik == ik0:
return k0
v = h[k]
k = ks[ik]
ik2 = ik
if ik1 == ik2:
return ks[ik1]
ik = ik1
m = 0
while ik != ik2:
k = ks[ik]
if h[k] > m:
m = h[k]
im = ik
ik += 1
if ik >= l:
ik = 0
return ks[im]
def second_peak_selectivity(self, d):
"""
Return the selectivity of the second peak in the distribution.
If the distribution has only one peak, return 0.0, and this value is
also usefl to discriminate the validity of second_peak_bin()
"""
l = len(d.keys())
if l <= 1:
return 0.0
p1 = d.max_value_bin()
p2 = self.second_peak_bin(d)
if p1 == p2:
return 0.0
m = d.get_value(p2)
proportion = d._safe_divide(m, sum(d.values()))
offset = 1.0 / l
scaled = (proportion - offset) / (1.0 - offset)
return max(scaled, 0.0)
def second_peak(self, d):
"""
Return preference and selectivity of the second peak in the distribution.
It is just the combination of second_peak_bin() and
second_peak_selectivity(), with the advantage of avoiding a duplicate
call of second_peak_bin(), if the user is interested in both preference
and selectivity, as often is the case.
"""
l = len(d.keys())
if l <= 1:
return (d.keys()[0], 0.0)
p1 = d.max_value_bin()
p2 = self.second_peak_bin(d)
if p1 == p2:
return (p1, 0.0)
m = d.get_value(p2)
proportion = d._safe_divide(m, sum(d.values()))
offset = 1.0 / l
scaled = (proportion - offset) / (1.0 - offset)
return (p2, max(scaled, 0.0))
__abstract = True
class DSF_MaxValue(DescriptiveStatisticFn):
"""
Return the peak value of the given distribution
"""
def __call__(self, d):
p = self.value_scale[1] * (d.max_value_bin() + self.value_scale[0])
s = self.selectivity_scale[1] * (self.selectivity(d)+self.selectivity_scale[0])
return {"": Pref(preference=p, selectivity=s)}
class DSF_WeightedAverage(DescriptiveStatisticFn):
"""
Return the main mode of the given distribution
The prefence value ia a continuous, interpolated equivalent of the max_value_bin().
For a cyclic distribution, this is the direction of the vector
sum (see vector_sum()).
For a non-cyclic distribution, this is the arithmetic average
of the data on the bin_axis, where each feature_bin is weighted by its
value.
Such a computation will generally produce much more precise maps using
fewer test stimuli than the discrete method. However, weighted_average
methods generally require uniform and full-range sampling, which is not
always feasible.
For measurements at evenly-spaced intervals over the full range of
possible parameter values, weighted_averages are a good measure of the
underlying continuous-valued parameter preference, assuming that neurons
are tuned broadly enough (and/or sampled finely enough) that they
respond to at least two of the tested parameter values. This method
will not usually give good results when those criteria are not met, i.e.
if the sampling is too sparse, not at evenly-spaced intervals, or does
not cover the full range of possible values. In such cases
max_value_bin should be used, and the number of test patterns will
usually need to be increased instead.
"""
def __call__(self, d):
p = d.vector_sum()[1] if d.cyclic else self._weighted_average(d)
p = self.value_scale[1] * (p + self.value_scale[0])
s = self.selectivity_scale[1] * (self.selectivity(d) + self.selectivity_scale[0])
return {"": Pref(preference=p, selectivity=s)}
class DSF_TopTwoValues(DescriptiveBimodalStatisticFn):
"""
Return the two max values of distributions in the given matrix
"""
def __call__(self, d):
r = {}
p = self.value_scale[1] * (d.max_value_bin() + self.value_scale[0])
s = self.selectivity_scale[1] * (self.selectivity(d) + self.selectivity_scale[0])
r[""] = Pref(preference=p, selectivity=s)
p = self.second_max_value_bin(d)
s = self.second_selectivity(d)
p = self.value_scale[1] * (p + self.value_scale[0])
s = self.selectivity_scale[1] * (s + self.selectivity_scale[0])
r["Mode2"] = Pref(preference=p, selectivity=s)
return r
class DSF_BimodalPeaks(DescriptiveBimodalStatisticFn):
"""
Return the two peak values of distributions in the given matrix
"""
def __call__(self, d):
r = {}
p = self.value_scale[1] * (d.max_value_bin() + self.value_scale[0])
s = self.selectivity_scale[1] * (self.selectivity(d) + self.selectivity_scale[0])
r[""] = Pref(preference=p, selectivity=s)
p, s = self.second_peak(d)
p = self.value_scale[1] * (p + self.value_scale[0])
s = self.selectivity_scale[1] * (s + self.selectivity_scale[0])
r["Mode2"] = Pref(preference=p, selectivity=s)
return r
class VonMisesStatisticFn(DistributionStatisticFn):
"""
Base class for von Mises statistics
"""
# values to fit the maximum value of k parameter in von Mises distribution,
# as a function of the number of bins in the distribution. Useful for
# keeping selectivity in range 0..1. Values derived offline from distribution
# with a single active feature_bin, and total bins from 8 to 32
vm_kappa_fit = (0.206, 0.614)
# level of activity in units confoundable with noise. Used in von Mises fit,
# for two purposes: if the standard deviation of a distribution is below this
# value, the distribution is assumed to lack any mode; it is the maximum level
# of random noise added to a distribution before the fit optimization, for
# stability reasons
noise_level = 0.001
# exit code of the distribution fit function. Codes are function-specific and
# each fit function, if provide exit codes, should have corresponding string translation
fit_exit_code = 0
user_warned_if_unavailable = False
__abstract = True
def _orth(self, t):
"""
Return the orthogonal orientation
"""
if t < 0.5 * np.pi:
return t + 0.5 * np.pi
return t - 0.5 * np.pi
def _in_pi(self, t):
"""
Reduce orientation from -pi..2pi to 0..pi
"""
if t > np.pi:
return t - np.pi
if t < 0:
return t + np.pi
return t
def von_mises(self, pars, x):
"""
Compute a simplified von Mises function.
Original formulation in Richard von Mises, "Wahrscheinlichkeitsrechnung
und ihre Anwendungen in der Statistik und theoretischen Physik", 1931,
Deuticke, Leipzig; see also Mardia, K.V. and Jupp, P.E., " Directional
Statistics", 1999, J. Wiley, p.36;
http://en.wikipedia.org/wiki/Von_Mises_distribution
The two differences are that this function is a continuous probability
distribution on a semi-circle, while von Mises is on the full circle,
and that the normalization factor, which is the inverse of the modified
Bessel function of first kind and 0 degree in the original, is here a fit parameter.
"""
a, k, t = pars
return a * np.exp(k * (np.cos(2 * (x - t)) - 1))
def von2_mises(self, pars, x):
"""
Compute a simplified bimodal von Mises function
Two superposed von Mises functions, with different peak and bandwith values
"""
p1 = pars[: 3]
p2 = pars[3:]
return self.von_mises(p1, x) + self.von_mises(p2, x)
def von_mises_res(self, pars, x, y):
return y - self.von_mises(pars, x)
def von2_mises_res(self, pars, x, y):
return y - self.von2_mises(pars, x)
def norm_sel(self, k, n):
m = (self.vm_kappa_fit[0] + n * self.vm_kappa_fit[1])**2
return np.log(1 + k) / np.log(1 + m)
def fit_vm(self, distribution):
"""
computes the best fit of the monovariate von Mises function in the
semi-circle.
Return a tuple with the orientation preference, in the same range of
axis_bounds, the orientation selectivity, and an estimate of the
goodness-of-fit, as the variance of the predicted orientation
preference. The selectivity is given by the bandwith parameter of the
von Mises function, modified for compatibility with other selectivity
computations in this class. The bandwith parameter is transposed in
logaritmic scale, and is normalized by the maximum value for the number
of bins in the distribution, in order to give roughly 1.0 for a
distribution with one feature_bin at 1.0 an all the other at 0.0, and 0.0 for
uniform distributions. The normalizing factor of the selectivity is fit
for the total number of bins, using fit parameters computed offline.
There are conditions that prevents apriori the possibility to fit the
distribution:
* not enough bins, at least 4 are necessary
* the distribution is too flat, below the noise level
and conditions of aposteriori failures:
* "ier" flag returned by leastsq out of ( 1, 2, 3, 4 )
* no estimated Jacobian around the solution
* negative bandwith (the peak of the distribution is convex)
Note that these are the minimal conditions, their fulfillment does not
warrant unimodality, is up to the user to check the goodness-of-fit value
for an accurate acceptance of the fit.
"""
if unavailable_scipy_optimize:
if not VonMisesStatisticFn.user_warned_if_unavailable:
param.Parameterized().warning("scipy.optimize not available, dummy von Mises fit")
VonMisesStatisticFn.user_warned_if_unavailable=True
self.fit_exit_code = 3
return 0, 0, 0
to_pi = np.pi / distribution.axis_range
x = to_pi * np.array(distribution.bins())
n = len(x)
if n < 5:
param.Parameterized().warning("No von Mises fit possible with less than 4 bins")
self.fit_exit_code = -1
return 0, 0, 0
y = np.array(distribution.values())
if y.std() < self.noise_level:
self.fit_exit_code = 1
return 0, 0, 0
rn = self.noise_level * np.random.random_sample(y.shape)
p0 = (1.0, 1.0, distribution.max_value_bin())
r = optimize.leastsq(self.von_mises_res, p0, args=(x, y + rn),
full_output=True)
if not r[-1] in ( 1, 2, 3, 4 ):
self.fit_exit_code = 100 + r[-1]
return 0, 0, 0
residuals = r[2]['fvec']
jacobian = r[1]
bandwith = r[0][1]
tuning = r[0][2]
if bandwith < 0:
self.fit_exit_code = 1
return 0, 0, 0
if jacobian is None:
self.fit_exit_code = 2
return 0, 0, 0
error = (residuals**2).sum() / (n - len(p0))
covariance = jacobian * error
g = covariance[2, 2]
p = self._in_pi(tuning) / to_pi
s = self.norm_sel(bandwith, n)
self.fit_exit_code = 0
return p, s, g
def vm_fit_exit_codes(self):
if self.fit_exit_code == 0:
return "succesfull exit"
if self.fit_exit_code == -1:
return "not enough bins for this fit"
if self.fit_exit_code == 1:
return "flat distribution"
if self.fit_exit_code == 2:
return "flat distribution"
if self.fit_exit_code == 3:
return "missing scipy.optimize import"
if self.fit_exit_code > 110:
return "unknown exit code"
if self.fit_exit_code > 100:
return "error " + str(self.fit_exit_code - 100) + " in scipy.optimize.leastsq"
return "unknown exit code"
def fit_v2m(self, distribution):
"""
computes the best fit of the bivariate von Mises function in the
semi-circle.
Return the tuple:
(
orientation1_preference, orientation1_selectivity, goodness_of_fit1,
orientation2_preference, orientation2_selectivity, goodness_of_fit2
)
See fit_vm() for considerations about selectivity and goodness_of_fit
"""
null = 0, 0, 0, 0, 0, 0
if unavailable_scipy_optimize:
if not VonMisesStatisticFn.user_warned_if_unavailable:
param.Parameterized().warning("scipy.optimize not available, dummy von Mises fit")
VonMisesStatisticFn.user_warned_if_unavailable=True
self.fit_exit_code = 3
return null
to_pi = np.pi / distribution.axis_range
x = to_pi * np.array(distribution.bins())
n = len(x)
if n < 9:
param.Parameterized().warning( "no bimodal von Mises fit possible with less than 8 bins" )
self.fit_exit_code = -1
return null
y = np.array(distribution.values())
if y.std() < self.noise_level:
self.fit_exit_code = 1
return null
rn = self.noise_level * np.random.random_sample(y.shape)
t0 = distribution.max_value_bin()
p0 = (1.0, 1.0, t0, 1.0, 1.0, self._orth(t0))
r = optimize.leastsq(self.von2_mises_res, p0, args=(x, y + rn),
full_output=True)
if not r[-1] in ( 1, 2, 3, 4 ):
self.fit_exit_code = 100 + r[-1]
return null
residuals = r[2]['fvec']
jacobian = r[1]
bandwith_1 = r[0][1]
tuning_1 = r[0][2]
bandwith_2 = r[0][4]
tuning_2 = r[0][5]
if jacobian is None:
self.fit_exit_code = 2
return null
if bandwith_1 < 0:
self.fit_exit_code = 1
return null
if bandwith_2 < 0:
self.fit_exit_code = 1
return null
error = (residuals ** 2).sum() / (n - len(p0))
covariance = jacobian * error
g1 = covariance[2, 2]
g2 = covariance[5, 5]
p1 = self._in_pi(tuning_1) / to_pi
p2 = self._in_pi(tuning_2) / to_pi
s1 = self.norm_sel(bandwith_1, n)
s2 = self.norm_sel(bandwith_2, n)
self.fit_exit_code = 0
return p1, s1, g1, p2, s2, g2
def __call__(self, distribution):
"""
Apply the distribution statistic function; must be implemented by subclasses.
"""
raise NotImplementedError
class DSF_VonMisesFit(VonMisesStatisticFn):
"""
Return the main mode of distribution in the given matrix, by fit with von Mises function.
"""
worst_fit = param.Number(default=0.5, bounds=(0.0, None), softbounds=(0.0, 1.0), doc="""
worst good-of-fitness value for accepting the distribution as monomodal""")
# default result in case of failure of the fit
null_result = {"": Pref(preference=0, selectivity=0, goodness_of_fit=0),
"Modes": Pref(number=0)}
def __call__(self, distribution):
f = self.fit_vm(distribution)
if self.fit_exit_code != 0 or f[-1] > self.worst_fit:
return self.null_result
results = {}
p, s, g = f
p = self.value_scale[1] * (p + self.value_scale[0])
s = self.selectivity_scale[1] * (s + self.selectivity_scale[0])
results[""] = Pref(preference=p, selectivity=s, goodness_of_fit=g)
results["Modes"] = Pref(number=1)
return results
class DSF_BimodalVonMisesFit(VonMisesStatisticFn):
"""
Return the two modes of distributions in the given matrix, by fit with von Mises function
The results of the main mode are available in
self.{preference,selectivity,good_of_fit}, while the second mode results are
in the first element of the self.more_modes list, as a dictionary with keys
preference,selectivity,good_of_fit.
"""
worst_fit = param.Number(default=0.5, bounds=(0.0, None), softbounds=(0.0, 1.0), doc="""
Worst good-of-fitness value for accepting the distribution as mono- or bi-modal""")
# default result in case of failure of the fit
null_result = {
"": Pref(preference=0, selectivity=0, goodness_of_fit=0),
"Mode2": Pref(preference=0, selectivity=0, goodness_of_fit=0),
"Modes": Pref(number=0)
}
def _analyze_distr(self, d):
"""
Analyze the given distribution with von Mises bimodal fit.
The distribution is analyzed with both unimodal and bimodal fits, and a
decision about the number of modes is made by comparing the goodness of
fit. It is a quick but inaccurate way of estimating the number of modes.
Return preference, selectivity, goodness of fit for both modes, and the
estimated numer of modes, None if even the unimodal fit failed. If the
distribution is unimodal, values of the second mode are set to 0. The main
mode is always the one with the largest selectivity (von Mises bandwith).
"""
no1 = False
f = self.fit_vm(d)
if self.fit_exit_code != 0:
no1 = True
p, s, g = f
f2 = self.fit_v2m(d)
if self.fit_exit_code != 0 or f2[2] > self.worst_fit:
if no1 or f[-1] > self.worst_fit:
return None
return p, s, g, 0, 0, 0, 1
p1, s1, g1, p2, s2, g2 = f2
if g1 > g:
return p, s, g, 0, 0, 0, 1
if s2 > s1:
return p2, s2, g2, p1, s1, g1, 2
return p1, s1, g1, p2, s2, g2, 2
def __call__(self, distribution):
f = self._analyze_distr(distribution)
if f is None:
return self.null_result
results = {}
p, s, g = f[: 3]
p = self.value_scale[1] * (p + self.value_scale[0])
s = self.selectivity_scale[1] * (s + self.selectivity_scale[0])
results[""] = Pref(preference=p, selectivity=s, goodness_of_fit=g)
p, s, g, n = f[3:]
p = self.value_scale[1] * (p + self.value_scale[0])
s = self.selectivity_scale[1] * (s + self.selectivity_scale[0])
results["Mode2"] = Pref(preference=p, selectivity=s, goodness_of_fit=g)
results["Modes"] = Pref(number=n)
return results
|
dfebfce2e9601d9d33effa74ee361a9b9f00456f | soyal/py-gs | /src/data-struct/ds_using_tuple.py | 263 | 3.765625 | 4 | zoo = ('dog', 'cat', 'elephant')
new_zoo = ('monkey', 'camel', zoo)
print('zoo length: ',len(zoo))
print('the last animal about old zoo is', new_zoo[2][2])
# len == 1的元组
tuple_len1 = ('a',)
print(type(tuple_len1))
print('len: ', len(tuple_len1)) # len, 1 |
6256050dedd92c725048cbca550062cdf87db3d0 | Sudhanva1999/AllCodesPython | /Sorting/MergeSort.py | 713 | 4 | 4 | def merge_sort(arr):
if len(arr)>1:
middle=len(arr)//2
arr1=arr[0:middle]
arr2=arr[middle:len(arr)]
merge_sort(arr1)
merge_sort(arr2)
i=0
j=0
k=0
while i<len(arr1) and j<len(arr2):
if(arr1[i]<arr2[j]):
arr[k]=arr1[i]
i+=1
else:
arr[k]=arr2[j]
j+=1
k+=1
while i < len(arr1):
arr[k]=arr1[i]
i+=1
k+=1
while j < len(arr2):
arr[k]=arr2[j]
j+=1
k+=1
print('Enter space separated Elements.')
arr=list(map(int,input().split()))
merge_sort(arr)
print(arr)
|
27d88ddac1d1fff0cd486a33ce2c8c559ed6447b | fabiannoda/PythonTutorial | /hashmap.py | 226 | 3.8125 | 4 | stra=hash("hola123.")
str2=hash(input())
lista=["hola123/", "angel15/"]
flag=True
while flag:
if stra==str2:
print(lista)
flag=False
else:
print("contraseña erronea")
str2=hash(input()) |
e82b007daaa309b967e893cace158d45ca137ffc | programmeremmanuel586/investment_and_inflation_calculator | /investment_and_inflation_calculations.py | 1,531 | 3.828125 | 4 | import math
# finding the value from investment
def investment_value(investment, growth_rate, num_of_compounds, years):
# converts growth rate to a decimal
growth_rate = growth_rate/100
# exponential function equation
value = investment * (1 + growth_rate/num_of_compounds) ** (num_of_compounds * years)
# rounds value to nearest cent
value = round(value, 2)
msg = "Your current investment value is now: $" + str(value)
print(msg)
# finding investment compounded continuously
def continuous_investment_value(investment, growth_rate, years):
# converts growth rate to a decimal
growth_rate = growth_rate/100
# continuous compounded function equation
value = investment * math.e ** (growth_rate * years)
# rounds value to nearest cent
value = round(value, 2)
msg = "Your continuous investment value is now: $" + str(value)
print(msg)
# solving for inflation
def inflation_calculation(inflation_cost, growth_rate, years):
# converts growth rate to a decimal
growth_rate = growth_rate/100
# continuous compounded function equation
value = inflation_cost * (1 + growth_rate) ** years
# rounds value to nearest cent
value = round(value, 2)
msg = "The inflation value is: $" + str(value)
print(msg)
# finding the value from investment
investment_value(5100, 5.3, 1, 6.5)
# finding investment compounded continuously
continuous_investment_value(9600, 3.1, 4)
# solving for inflation
inflation_calculation(131500, 2.5, 14) |
a97c234c714fefea8a9fe93f11a4ceecf13c5fda | yash161/jeniknsdemo8-10 | /jenkins.py | 59 | 3.5625 | 4 | a=100
b=30
c=a+b
print(f"The sum of Two numbers is:{c}")
|
ed1379a2c5324d04bc3623d8c9645b5f125102c3 | jetbrains-academy/introduction_to_python | /File input output/What next/main.py | 712 | 3.890625 | 4 | def print_heart(n):
for i in range(n // 2, n, 2):
for j in range(1, n - i, 2):
print(end=" ")
for j in range(1, i + 1):
print("*", end=" ") if (j == 1 or j == i) else print(end=" ")
for j in range(1, n - i + 1):
print(end=" ")
for j in range(1, i + 1):
print("*", end=" ") if (j == 1 or j == i) else print(end=" ")
print()
for i in range(n, 0, -1):
for j in range(i, n):
print(end=" ")
for j in range(1, i * 2):
print("*", end=" ") if (j == 1 or j == i * 2 - 1 or (i == n and j == i)) else print(end=" ")
print()
if __name__ == '__main__':
print_heart(5)
|
d3f1a4c1806d0532404a4cbd6273fd84614338d6 | farrowking37/CSI260Repo | /Week 5/Library Project 1/main.py | 6,403 | 3.796875 | 4 | """Implements the functions created in library_catalog.py and allows you to add/remove items to a catalog,
print catalog contents, and search for specific catalog items.
Author: John Shultz
Class: CSI-260-03
Assignment: Library Project Part 1
Due Date: 2/26/2019 12:30 PM
Certification of Authenticity:
I certify that this is entirely my own work, except where I have given
fully-documented references to the work of others. I understand the definition
and consequences of plagiarism and acknowledge that the assessor of this
assignment may, for the purpose of assessing this assignment:
- Reproduce this assignment and provide a copy to another member of academic
- staff; and/or Communicate a copy of this assignment to a plagiarism checking
- service (which may then retain a copy of this assignment on its database for
- the purpose of future plagiarism checking)
"""
from library_catalog import LibraryItem, DVDMovie, MusicCD, Book, Catalog
# Create a catalog named catalog that we will work with.
catalog = Catalog("Champlain College Library Catalog")
def search_catalog():
"""UI for searching the catalog"""
filter_text = str(input("Enter in some text to search for (name, author, director, tag, etc.): "))
while True:
print("1. Book\n2. DVD Movie\n3. Music CD")
type_filter = input("Enter in one of the above choices to filter by item or nothing to show all items: ")
if type_filter in ["1", "2", "3", ""]:
break
else:
print("Please only enter in a valid choice or no input.")
print('Searching the catalog')
filter_dict = {"1": "Book", "2": "DVD", "3": "Music CD"}
# Call the Catalog.search_items function which returns a list of matching items
if type_filter:
found_items = catalog.search_items(filter_text, filter_dict[type_filter])
else:
found_items = catalog.search_items(filter_text)
print("Here are your results!")
print("---------------------")
# Check to see if any items were found. If any were, print each found item to screen
if found_items:
for item in found_items:
print(item)
def print_catalog():
print("Here all all the items in the library catalog!")
print("----------------------------------------------")
for item in catalog._all_items:
print(item)
def add_item():
"""Adds a list of items to the catalog
:return: No return value, but appends a list of items to catalog._all_items
"""
new_items = []
while True:
print("1. Book")
print("2. DVD Movie")
print("3. Music CD")
try:
item_choice = int(input("Enter a number to select the type of item you want to add: "))
if item_choice == 1:
# Make a book
name = str(input("Enter the name of the book: "))
isbn = str(input("Enter the ISBN of the book: "))
author = str(input("Enter the author of the book: "))
tags = []
while True:
new_tag = str(input("Enter in a tag describing the book, or nothing to quit: "))
if new_tag:
tags.append(new_tag)
else:
break
new_book = Book(name, isbn, author, tags)
new_items.append(new_book)
elif item_choice == 2:
# Make a DVD movie
name = str(input("Enter the name of the DVD: "))
isbn = str(input("Enter the ISBN of the DVD: "))
director = str(input("Enter in the director of the movie: "))
actor = str(input("Enter in the lead actor in the movie: "))
tags = []
while True:
new_tag = str(input("Enter in a tag describing the movie, or nothing to quit: "))
if new_tag:
tags.append(new_tag)
else:
break
new_dvd = DVDMovie(name, isbn, director, actor, tags)
new_items.append(new_dvd)
elif item_choice == 3:
# Make a Music CD
name = str(input("Enter the name of the CD: "))
isbn = str(input("Enter the ISBN of the CD: "))
artist = str(input("Enter in the recording artist of the CD: "))
while True:
try:
num_discs = int(input("Please enter in the number of discs: "))
break
except ValueError:
print("That's not a valid number!")
tags = []
while True:
new_tag = str(input("Enter in a tag describing the CD, or nothing to quit: "))
if new_tag:
tags.append(new_tag)
else:
break
new_cd = MusicCD(name, isbn, artist, num_discs, tags)
new_items.append(new_cd)
else:
print("Please enter one of the above numbers")
run_again = str(input("Would you like to add another item (Y/N): "))
if run_again.lower() not in ['y', 'yes']:
catalog.add_items(new_items)
break
except ValueError:
print("Please enter one of the above numbers")
def remove_item():
"""Takes an item with a given name and removes it from the catalog
:return: nothing. Removes entries from catalog._all_items
"""
remove_name = str(input("Enter the name of the item you wish to remove: "))
for item in catalog._all_items:
if item.name.lower() == remove_name.lower():
print(f'Removing a {item.resource_type} named {item.name}')
catalog.remove_items([item])
catalog_menu = """Library Catalog Menu
1. Search catalog
2. Print the entire catalog
3. Add items to catalog
4. Remove items from catalog
Choose an option: """
menu_options = {'1': search_catalog,
'2': print_catalog,
'3': add_item,
'4': remove_item}
while True:
user_choice = input(catalog_menu)
if user_choice in menu_options:
menu_options[user_choice]()
else:
print('That option is not recognized')
|
5c4a743c57ae6c19cf75b9a79b81d2b09fe47175 | cocacolabe/TechInterviewProblems | /hackerrank/quicksort.py | 1,043 | 3.90625 | 4 | '''
https://www.hackerrank.com/challenges/quicksort1
divide-and-conquer algorithm
divide:
choose some pivot element, p, and partition your unsorted array into left, right, and equal,
left < p, right > p, equal = p
If partition is then called on each sub-array, the array will now be split into four parts.
This process can be repeated until the sub-arrays are small. When partition is called on just
one of the numbers, they end up being sorted.
'''
def partition(ar):
p = ar[0]
left = []
equal = [p]
right = []
for i in range(1, len(ar)):
if ar[i] < p:
left.append(ar[i])
elif ar[i] == p:
equal.append(ar[i])
else:
right.append(ar[i])
return (left, equal, right)
def sort(arr):
if len(arr) < 2: return arr
if len(arr) == 2:
if arr[0] > arr[1]:
arr[0], arr[1] = arr[1], arr[0]
return arr
else:
return arr
if len(arr) > 2:
left, p, right = partition(arr)
final = sort(left) + p + sort(right)
return final
m = input()
ar = [int(i) for i in raw_input().strip().split()]
print sort(ar)
|
5dfe77f140c84b2daa3e8db9ebf59124491ed0ed | Yulionok2/Netologia | /1.Fundamentals Python/Python.Знакомство с консолью/DZ_2.py | 641 | 4.375 | 4 | # Пользователь вводит длину и ширину фигуры.Программа выводит их периметр и площадь.
square=int(input("Введите длину стороны квадрата:"))
P=square*4
S=square**2
print("Вывод: ")
print("Периметр:", P)
print("Площадь:", S)
rectangle_a=int(input("Введите длину прямоугольника:"))
rectangle_b=int(input("Введите ширину прямоугольника:"))
P=(rectangle_a+rectangle_b)*2
S=rectangle_a*rectangle_b
print("Вывод: ")
print("Периметр:", P)
print("Площадь:", S) |
786d331aacfac82a4900cb3929fda7e001a8d1ab | MohamedMagdyOmar/Arabic-Diacritization | /NN/tensorflow/5- combine 2, 3, 4.py | 6,349 | 3.734375 | 4 | import os
import tensorflow as tf
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
# Load training data set from CSV file
training_data_df = pd.read_csv("sales_data_training.csv", dtype=float)
# Load testing data set from CSV file
testing_data_df = pd.read_csv("sales_data_test.csv", dtype=float)
# Pull out columns for X (data to train with) and Y (value to predict)
X_training = training_data_df.drop("total_earnings", axis=1).values
Y_training = training_data_df[["total_earnings"]].values
# Pull out columns for X (data to train with) and Y (value to predict)
X_testing = testing_data_df.drop("total_earnings", axis=1).values
Y_testing = testing_data_df[["total_earnings"]].values
# All data needs to be scaled to a small range like 0 to 1 for the neural
# network to work well. Create scalers for the inputs and outputs.
X_scaler = MinMaxScaler(feature_range=(0, 1))
Y_scaler = MinMaxScaler(feature_range=(0, 1))
# Scale both the training inputs and outputs
X_scaled_training = X_scaler.fit_transform(X_training)
Y_scaled_training = Y_scaler.fit_transform(Y_training)
# It's very important that the training and test data are scaled with the same scaler.
X_scaled_testing = X_scaler.transform(X_testing)
Y_scaled_testing = Y_scaler.transform(Y_testing)
print(X_scaled_testing.shape)
print(Y_scaled_testing.shape)
print("Note: Y values were scaled by multiplying by {:.10f} and adding {:.4f}".format(Y_scaler.scale_[0], Y_scaler.min_[0]))
# define model parameters
learning_rate = 0.001
training_epochs = 100
display_step = 5
# define how many input and output neurons
number_of_inputs = 9
number_of_outputs = 1
# define how many neurons in each layer
layer_1_nodes = 50
layer_2_nodes = 100
layer_3_nodes = 50
# section one: define the layers of the neural network itself
# input layer
# we put each layer in its "variable scope"
# any variables we create within this scope will automatically get a prefix of "input" to their name internally in tf
# "None" tells tf that our NN can mix up batches of any size
# "number_of_inputs" tells tf to expect nine values for each record in the batch
with tf.variable_scope('input'):
x = tf.placeholder(tf.float32, shape=(None, number_of_inputs))
# layer 1
# each fully connected layer has the following 3 parts
# "weights" is the value for each connection between each node and the node in previous layer
# "bias" value for each node
# "activation function" that outputs the result of the layer
with tf.variable_scope('layer_1'):
# "shape", we want to have one weight for each node's connection to each node in the previous layer.
# "initializer" a good choice for initializing weights is an algorithm called "Xavier Initialization"
weights = tf.get_variable(name="weights1", shape=[number_of_inputs, layer_1_nodes], initializer=tf.contrib.layers.xavier_initializer())
# we need "variables" to store bias value for each node
# this will be a "variable" instead of a "placeholder", because we want tf to remember the value over time
# there is one bias value for each node in this layer, so the shape should be the same as the number of nodes in the
# ... layer
# we need also to define "initial value" for this variable, so we can pass one of the built-in initializer functions
# we want the bias values for each node to default to zero
biases = tf.get_variable(name="biases1", shape=[layer_1_nodes], initializer=tf.zeros_initializer)
# "activation function", multiplying "weights" by "inputs"
layer_1_output = tf.nn.relu(tf.matmul(x, weights) + biases)
# layer 2
with tf.variable_scope('layer_2'):
weights = tf.get_variable(name="weights2", shape=[layer_1_nodes, layer_2_nodes], initializer=tf.contrib.layers.xavier_initializer())
biases = tf.get_variable(name="biases2", shape=[layer_2_nodes], initializer=tf.zeros_initializer)
layer_2_output = tf.nn.relu(tf.matmul(layer_1_output, weights) + biases)
# layer 3
with tf.variable_scope('layer_3'):
weights = tf.get_variable(name="weights3", shape=[layer_2_nodes, layer_3_nodes], initializer=tf.contrib.layers.xavier_initializer())
biases = tf.get_variable(name="biases3", shape=[layer_3_nodes], initializer=tf.zeros_initializer)
layer_3_output = tf.nn.relu(tf.matmul(layer_2_output, weights) + biases)
# Output Layer
with tf.variable_scope('output'):
weights = tf.get_variable(name="weights4", shape=[layer_3_nodes, number_of_outputs], initializer=tf.contrib.layers.xavier_initializer())
biases = tf.get_variable(name="biases4", shape=[number_of_outputs], initializer=tf.zeros_initializer)
prediction = tf.nn.relu(tf.matmul(layer_3_output, weights) + biases)
# section 2: define the "cost function" of the NN that will measure prediction
with tf.variable_scope('cost'):
# expected value, it will be "placeholder" node, because it will feed in a new value each time
Y = tf.placeholder(tf.float32, shape=[None, 1])
# "cost" function or "loss" function, tells us how wrong the neural network is when trying to predict the correct output
# mean square of what we expected and the actual(calculated)
# we want to get avg value of that difference, so we will use "reduce_mean"
cost = tf.reduce_mean(tf.squared_difference(prediction, Y))
# section 3: define the optimization function that will be run to optimize the neural network
with tf.variable_scope('train'):
# we will use here adam optimizer, that tells tf that whenever we tell it to execute the optimizer, it should run
# one iteration of AdamOptimizer to make the cost function smaller
optimizer = tf.train.AdamOptimizer(learning_rate).minimize(cost)
with tf.Session() as session:
# run the global variable initializer to initialize all variables and layers to their default values
session.run(tf.global_variables_initializer())
# here we run our optimizer function over and over, either for a certain number of iterations
# ... or until it hits an accuracy level we want
for epoch in range(training_epochs):
# feed in the training data and do one step of neural network training
session.run(optimizer, feed_dict={x: X_scaled_training, Y: Y_scaled_training})
print("Training pass: {}".format(epoch))
print("Training is complete")
|
2ac360e3c1a07e7657a216f587f807b055f1111c | oulenz/fuzzy-rough-learn | /examples/data_descriptors/one_class_classification.py | 3,139 | 3.796875 | 4 | """
========================
One class classification
========================
Data descriptors generalise knowledge about a target class of data to the whole attribute space.
This can be used to predict whether new data instances belong to the target class or not,
or to identify which new instances should be subjected to further inspection.
This type of binary classification is known as *one-class classification*,
*semi-supervised outlier detection*, *semi-supervised anomaly detection*, or *novelty detection*.
In principle, there is no good or bad way to generalise the target class, this can only be evaluated empirically.
In practice, we want a good balance between variance and bias.
The following graphs illustrate the behaviour of the data descriptors in fuzzy-rough-learn,
with their default hyperparameter values as established in [1]_.
Note that the predicted scores have been converted to quantiles
to obtain clear contour lines that illustrate how the predicted scores taper off.
References
----------
.. [1] `Lenz OU, Peralta D, Cornelis C (2021).
Average Localised Proximity: A new data descriptor with good default one-class classification performance.
Pattern Recognition, vol 118, no 107991.
doi: 10.1016/j.patcog.2021.107991
<https://www.sciencedirect.com/science/article/abs/pii/S0031320321001783>`_
"""
print(__doc__)
import numpy as np
import matplotlib.pyplot as plt
from frlearn.data_descriptors import ALP, CD, IF, MD, NND, LNND, LOF, SVM
# Sample attribute space, to use as test data
xx, yy = np.meshgrid(np.linspace(-6, 6, 300), np.linspace(-6, 6, 300))
# Generate training data
rng = np.random.default_rng(0)
X = rng.standard_normal((100, 2))
X_train = np.r_[1 * X + 2, 0.75*X, 0.5 * X - 2]
# Initialise data descriptors to include
data_descriptors = [
('ALP', ALP()),
('CD', CD()),
('IF', IF()),
('LNND', LNND()),
('LOF', LOF()),
('MD', MD()),
('NND', NND()),
('SVM', SVM()),
]
# Calculate number of rows
cols = 3
rows = (len(data_descriptors) + (cols - 1)) // cols
# Create plot layout with square subplots
fig, axs = plt.subplots(rows, cols, figsize=(3*cols, 3*rows), subplot_kw=dict(box_aspect=1), )
# Iterate over data descriptors
for i, (name, clf) in enumerate(data_descriptors):
ax = axs[i // cols][i % cols]
# Create model and query for scores
model = clf(X_train)
Z = model(np.c_[xx.ravel(), yy.ravel()])
# Transform scores into their respective centile
centiles = np.quantile(Z, np.linspace(0, 1, 101))
Z = np.searchsorted(centiles, Z)/100
Z = Z.reshape(xx.shape)
# Plot contours
ax.contourf(xx, yy, Z, levels=np.linspace(0, 1, 12), cmap=plt.cm.PuBu)
# Plot training data
c = ax.scatter(X_train[:, 0], X_train[:, 1], c='white', s=10, edgecolors='k')
# Set axis limits and delete ticks and legends
plt.xlim((-6, 6))
plt.ylim((-6, 6))
c.axes.get_xaxis().set_visible(False)
c.axes.get_yaxis().set_visible(False)
ax.set_title(name)
# Delete spare subfigures
for i in range((-len(data_descriptors)) % cols):
fig.delaxes(axs[-1, -(i + 1)])
fig.tight_layout()
plt.show()
|
a034799bb4e91d1ea630adf405a7611ff0ccf7d7 | Naushikha/Old-Projects | /Python/Simple Tutorials/The All-in-One Converter/Chunked functions/deci_to_hexa_f.py | 469 | 3.765625 | 4 | #17 Feb 2017
#Converts a decimal into hexadecimal
#Coded by _xXHun3rXx_
def dec_hexa():
res=""
while n!=0:
q=n//16
r=n%16
if r==10:
r="A"
elif r==11:
r="B"
elif r==12:
r="C"
elif r==13:
r="D"
elif r==14:
r="E"
elif r==15:
r="F"
else:
r=str(r)
n=q
res = r + res
return (res)
|
b8e8f37db75c0cbcb81e83c8cf531f9dcef21b5f | mm-uddin/HackerRankSolutions | /second_lowest.py | 769 | 4.09375 | 4 | '''
Given the names and grades for each student in a Physics class of N students,
store them in a nested list and print the name(s) of any student(s) having the second lowest grade.
Note: If there are multiple students with the same grade,
order their names alphabetically and print each name on a new line.
Input:
students = [['Harry', 37.21], ['Berry', 37.21], ['Tina', 37.2], ['Akriti', 41], ['Harsh', 39]]
Output:
Berry
Harry
'''
student_with_marks = []
marks = []
for i in range(int(input())):
name = input()
score = float(input())
student_with_marks.append([name, score])
marks.append(score)
marks = sorted(set(marks))
second_lowest_num = marks[1]
for i, j in sorted(student_with_marks):
if j == second_lowest_num:
print(i)
|
edf0ae5da9ddd499bfcf752e0e1a76fa8f1ea0e3 | krisgrav/IN1000 | /1. oblig/dato.py | 1,473 | 3.796875 | 4 | #Oppgave 3
#1
dag_1 = input("Skriv inn en dato med bruk av tall. Forst dag:")
maaned_1 = input(", deretter maaned.:")
dag_2 = input("Skriv så inn en annen dato. Forst dag:")
maaned_2 = input(", deretter maaned.:")
dato_1 = (dag_1 + maaned_1)
dato_2 = (dag_2 + maaned_2)
'''Her ber programmet brukeren om to datoer, og lagrer svarene som fire forskjellige
variabler, to for dag og to for måned. Det lager også to variabler der dag og måned
er slått sammen til en hel dato.'''
if maaned_1 < maaned_2:
print("Riktig rekkefølge!")
if maaned_1 > maaned_2:
print("Feil rekkefølge!")
elif maaned_1 == maaned_2 and dag_1 > dag_2:
print("Feil rekkefølge!")
elif maaned_1 == maaned_2 and dag_1 < dag_2:
print("Riktig rekkefølge!")
elif maaned_1 == maaned_2 and dag_1 == dag_2:
print("Samme dato!")
'''Videre bruker programmet variabelene og if-statements til å sjekke hvilken av datoene som kommer først.
Er maaned_2 større enn maaned_1 vil "Riktig rekkefølge!" printes, men om det er omvendt vil "feil rekkefølge" printes.
Videre bruker programmet til linjer med elif i tilfellene der måneden er lik.
Linje 21 og 23 er skrevet slik at programmet først vil finne ut om variablene for
maaned_1 og maaned_2 er like, og deretter vurdere hvilken av dagene som kommer først,
for å gi to forskjellige svar i output. Er datoene like vil programmet i linjer
23 først se om måneden er lik, og deretter dag, før det da evt printer "samme dato!"'''
|
d552fa3a40bbdce489293961a8059c723730bd35 | ravi4all/PythonApril_21 | /functions/12-func.py | 466 | 3.53125 | 4 | def temp_convert(c):
return 9/5 * c + 32
def min_to_sec(m):
return m * 60
def km_to_m(km):
return km * 1000
def myMap(func, iter):
data = []
for i in range(len(iter)):
data.append(func(iter[i]))
return data
temps = [34.5,45.3,42.3,39.8,29.4,28.5,33.6]
mins = [5,6,12,45,60,1,2.5,5.5]
kms = [2,2.3,5.4,5,3.8,10,120]
print(myMap(temp_convert, temps))
print(myMap(min_to_sec, mins))
print(myMap(km_to_m, kms))
|
9df0c805a58ec4efb7b40b1cb158ef761b150bd4 | renlei-great/git_window- | /python数据结构/python黑马数据结构/链表/single_link_list.py | 7,206 | 3.78125 | 4 | """重要的就是要考虑周全,普通情况和特殊情况"""
class BaseLinkList(object):
"""链表基板"""
def is_empty(self):
"""链表是否为空"""
return self.head is None
def length(self):
"""链表长度"""
cur = self.head
count = 0
while cur:
count += 1
cur = cur.next
return count
def travel(self):
"""遍历整个链表"""
cur = self.head
if cur is None:
return cur
print('- ', end='')
while cur:
print(cur.item, end=',')
cur = cur.next
print(' -')
def search(self, item):
"""查找节点是否存在"""
# 将每一个节点的值拿出来进行比对,如果找到,返回true如果没有找到返回false
cru = self.head
while cru != None:
if cru.item == item:
return True
cru = cru.next
return False
class SingleNode(object):
def __init__(self, item):
self.item = item
self.next = None
class SingleLinkList(BaseLinkList):
"""单链表"""
def __init__(self, node=None):
self.head = node
def add(self, item):
"""链表头部添加元素"""
node = SingleNode(item)
node.next = self.head
self.head = node
def append(self, item):
"""链表尾部添加元素"""
cur = self.head
if cur == None:
node = SingleNode(item)
self.head = node
else:
while cur.next:
cur = cur.next
node = SingleNode(item)
cur.next = node
def insert(self, pos, item):
"""指定位置添加元素"""
if pos <= 0:
self.add(item)
elif pos > self.length():
self.append(item)
else:
node = SingleNode(item)
cur = self.head
count = 0
while count < (pos - 1):
cur = cur.next
count += 1
node.next = cur.next
cur.next = node
def remove(self, item):
"""删除节点"""
# 将每一个节点的值拿出来进行比对,如果相同,执行删除操作,如果判断完所有数据都没有相同,什么都不做
# 特殊情况
cru = self.head
while cru != None:
# 只有一个节点
if cru.item == item:
self.head = cru.next
break
if cru.next:
if cru.next.item == item:
cru.next = cru.next.next
break
cru = cru.next
def is_loop(self):
"""
判断是否有环路
解题思想1:分出两个指针一个指针P每次前进一,后一个指针PP,然后有一个计数器,
P每走一步,计数器加1,PP指针每次从头来走,走到P的前一个步长停
结论:如果没有环路,那么循环正常退出,如果有环路PP指针一定会和P指针重合,有重合返回True
参考文档:https://zhuanlan.zhihu.com/p/31401474
"""
cur = self.head.next
# 1, 1, 1, 2, 1, 2
# 0, 0, 1, 1
count = 1
while cur is not None:
is_cur = self.head
for i in range(count):
if cur == is_cur:
return True
is_cur = is_cur.next
cur = cur.next
count += 1
return False
def reverse_index(self, index):
"""查看倒数第index 的数是什么"""
try:
if self.is_empty():
return None
le = self.length()
n = le - index
if n >= 0:
cur = self.head
for i in range(n):
cur = cur.next
return cur.item
else:
return None
except AttributeError:
return None
def reverse_star_end(self):
"""反转第一个和最后一个节点"""
if self.head and self.head.next:
cur_p = self.head
cur_n = self.head.next
# 找到前一个和最后一个节点
while cur_n.next:
cur_p = cur_n
cur_n = cur_n.next
if self.length() == 2:
cur_p.next = None
cur_n.next = cur_p
self.head = cur_n
else:
cur_n.next = self.head.next
cur_p.next = self.head
self.head.next = None
self.head = cur_n
else:
pass
def reverse(self):
"""反转列表
单链表反转的思想:
1. 创建一个新列表
2. 从旧链表中依次往出取数据
3. 然后将这个数据每次都插入到新列表的头部
4. 反转完成
"""
if self.head.next is None:
return
cur = self.head
ll = SingleLinkList()
while True:
cur = self.head
if cur is None:
break
ll.add(self.head.item)
self.head = self.head.next
self.head = ll.head
def reverse_print(self):
"""反向输出"""
if self.head is None:
return
cur = self.head
stack = list()
while cur is not None:
"""遍历每个节点,压入在中,这里用列表实现栈的功能"""
stack.insert(0, cur.item)
cur = cur.next
for item in stack:
print(item, end=" ")
def pop(self):
"""弹出头结点位置的元素"""
if self.head is None:
return None
ret = self.head.item
self.head = self.head.next
return ret
def p_pop(self):
if self.head is None:
return None
ret = self.head.item
return ret
def merge_single(l1:SingleLinkList, l2:SingleLinkList):
"""合并两个有序集合"""
if l1.is_empty() and l2.is_empty():
"""对两个链表进行判空"""
return
new_l = SingleLinkList()
l1_val = l1.pop()
l2_val = l2.pop()
while l1_val is not None and l2_val is not None:
if int(l1_val) <= int(l2_val):
new_l.append(l1_val)
l1_val = l1.pop()
else:
new_l.append(l2_val)
l2_val = l2.pop()
if not l1.is_empty():
l1_val = l1.pop()
while l1_val is not None:
new_l.append(l1_val)
l1_val = l1.pop()
elif not l2.is_empty():
l2_val = l2.pop()
while l2_val is not None:
new_l.append(l2_val)
l2_val = l2.pop()
return new_l
if __name__ == "__main__":
l1 = SingleLinkList()
l1.append(1)
l1.append(5)
l1.append(9)
l1.append(15)
l1.append(26)
l1.append(32)
l2 = SingleLinkList()
l2.append(2)
l2.append(7)
l2.append(16)
l2.append(17)
l2.append(21)
l2.append(34)
new_l = merge_single(l1, l2)
new_l.travel()
|
37257970bf8e9ad211d6a33f656265c508c70ac4 | otisgbangba/python-lessons | /simple/todo.py | 128 | 3.859375 | 4 | items = []
while True:
item = input('Item? ')
if item:
items.append(item)
else:
break
print(items)
|
a0313dec7265e25f84b7be1ef3a67262c4a0cf22 | Gabicolombo/Python-exercicios | /Dictionaries/exercicio 3.py | 551 | 3.9375 | 4 | '''
3. At the halfway point during the Rio Olympics, the United States had 70 medals,
Great Britain had 38 medals, China had 45 medals, Russia had 30 medals, and Germany had 17 medals.
Create a dictionary assigned to the variable medal_count with the country names as the keys and
the number of medals the country had as each key’s value.
'''
medal_count = {'United States' : 70, 'Great Britain': 38, 'China': 45, 'Russia': 30, 'Germany': 17}
print(medal_count)
# {'United States': 70, 'Great Britain': 38, 'China': 45, 'Russia': 30, 'Germany': 17}
|
92da246f3db0c5a0c39773fc1e7fe2dfe75a2a1f | imolina218/Practica | /Login_system/validation.py | 1,282 | 3.859375 | 4 | class Authentication(object):
def __init__(self, input_value=''):
self.input_value = input_value
def __lower(self):
lower = any(c.islower() for c in self.input_value)
return lower
def __upper(self):
upper = any(c.isupper() for c in self.input_value)
return upper
def __digit(self):
digit = any(c.isdigit() for c in self.input_value)
return digit
def validate(self):
lower = self.__lower()
upper = self.__upper()
digit = self.__digit()
value_len = len(self.input_value)
report_name = lower and upper and digit and value_len >= 6
if report_name:
print("Username and password validated.")
return True
elif not lower:
print("You didn't use a lower case letter.")
return False
elif not upper:
print("You didn't use a upper case letter.")
return False
elif value_len < 6:
print("Your username and password should have at least 6 characters")
return False
elif not digit:
print("You didn't use a digit")
return False
else:
pass
|
c283c3a0fe5848138890eb4499ac0fa675cc3448 | Cr1s1/bfsutechlab-1week-python | /学习笔记/代码笔记/Day2/4.1_lists.py | 2,598 | 3.84375 | 4 | # 4.1 列表
# 4.1.1 定义一个列表
names = ['John', 'Bob', 'Mosh', 'Sarah', 'Mary'] # 用方括号定义一个列表,字符串元素需要用引号括起来
print(names)
'''
运行结果:
------------------------------------------
['John', 'Bob', 'Mosh', 'Sarah', 'Mary']
------------------------------------------
'''
# 4.1.2 列表中单个元素的索引
# 相关知识点:可复习2.2字符串的索引
names = ['John', 'Bob', 'Mosh', 'Sarah', 'Mary']
print(names[0]) # 用索引来访问单个元素(0索引第一项)
print(names[2]) # 2索引第(2+1)项
print(names[-1]) # -1索引最后一项
print(names[-2]) # -2索引倒数第二项
'''
运行结果:
----------
John
Mosh
Mary
Sarah
----------
'''
# 4.1.3 列表中对一系列元素的索引
names = ['John', 'Bob', 'Mosh', 'Sarah', 'Mary']
print(names[2:]) # 只指定开始索引,就默认一直访问到末尾
print(names[2:4]) # 只访问开始索引所指项,不访问结束索引所指项
print(names[:4]) # 只指定结束索引,就默认从第一项开始访问
print(names[:]) # 开始和结束索引都不指定,默认访问所有项
print(names[0:]) # 默认访问所有项
print(names) # 字符串的索引语句不会修改最初的列表
'''
运行结果:
-------------------------------------------
['Mosh', 'Sarah', 'Mary']
['Mosh', 'Sarah']
['John', 'Bob', 'Mosh', 'Sarah']
['John', 'Bob', 'Mosh', 'Sarah', 'Mary']
['John', 'Bob', 'Mosh', 'Sarah', 'Mary']
['John', 'Bob', 'Mosh', 'Sarah', 'Mary']
--------------------------------------------
'''
print('\n')
# 4.1.4 修改原列表中的单个元素
names = ['John', 'Bob', 'Mosh', 'Sarah', 'Mary']
names[0] = 'Jon' # 直接使用索引和赋值语句修改其值
print(names)
'''
运行结果:
----------------------------------------------
['Jon', 'Bob', 'Mosh', 'Sarah', 'Mary']
----------------------------------------------
'''
print('\n')
# 4.1.5 小练习:找出列表中的最大元素
# 注:本练习需要用到for循环、if语句的知识,可以待学完第五章相关知识后再回看本练习
numbers =[3, 6, 2, 10, 8, 4]
max = numbers[0] # 存放最大值,初始化为列表第一项的值(假设第一项最大)
# 需要遍历这个列表,获取其中每一项的值,每一次迭代进行一次比较
for number in numbers:
if number > max:
max = number
print(max)
'''
运行结果:10
''' |
548e9536380b869da7fa727e49cc631dba03399a | jay6413682/Leetcode | /Merge_k_Sorted_Lists_23.py | 6,442 | 3.984375 | 4 | # Definition for singly-linked list.
class ListNode:
def __init__(self, val=0, next=None):
self.val = val
self.next = next
class Solution:
""" 顺序合并: https://leetcode-cn.com/problems/merge-k-sorted-lists/solution/he-bing-kge-pai-xu-lian-biao-by-leetcode-solutio-2/ """
def merge_two_lists(self, node_a: ListNode, node_b: ListNode) -> ListNode:
if not node_a:
return node_b
if not node_b:
return node_a
merged_dummy_head = ListNode()
merged_pointer = merged_dummy_head
pointer_a = node_a
pointer_b = node_b
while pointer_a is not None and pointer_b is not None:
if pointer_a.val < pointer_b.val:
merged_pointer.next = pointer_a
pointer_a = pointer_a.next
else:
merged_pointer.next = pointer_b
pointer_b = pointer_b.next
merged_pointer = merged_pointer.next
if pointer_a is not None:
merged_pointer.next = pointer_a
elif pointer_b is not None:
merged_pointer.next = pointer_b
return merged_dummy_head.next
def mergeKLists(self, lists: List[ListNode]) -> ListNode:
m = None
for l in lists:
m = self.merge_two_lists(m, l)
return m
class Solution2:
""" My own solution, not efficient """
def mergeKLists(self, lists: List[ListNode]) -> ListNode:
if not lists:
return None
merged_list_dummpy_head = ListNode(-10**4 - 1)
for l in lists:
if not l:
continue
pointer = l
while pointer is not None:
merged_list_pointer_slow = merged_list_dummpy_head
merged_list_pointer_fast = merged_list_pointer_slow.next
nxt = pointer.next
while merged_list_pointer_slow is not None:
if (merged_list_pointer_fast is not None and pointer.val >= merged_list_pointer_slow.val and pointer.val <= merged_list_pointer_fast.val) or (merged_list_pointer_fast is None):
pointer.next = merged_list_pointer_fast
merged_list_pointer_slow.next = pointer
break
merged_list_pointer_slow = merged_list_pointer_slow.next
if merged_list_pointer_fast is not None:
merged_list_pointer_fast = merged_list_pointer_fast.next
pointer = nxt
return merged_list_dummpy_head.next
class Solution3:
""" 堆/优先序列;use heapq : to represent priority queue: https://www.geeksforgeeks.org/heap-queue-or-heapq-in-python/
working solution: https://leetcode-cn.com/problems/merge-k-sorted-lists/solution/python-c-you-xian-dui-lie-zui-xiao-dui-onlogk-by-m/
not working in python 3: https://leetcode-cn.com/problems/merge-k-sorted-lists/solution/duo-tu-yan-shi-23-he-bing-kge-pai-xu-lian-biao-by-/
"""
def mergeKLists(self, lists: List[ListNode]) -> ListNode:
if not lists:
return
n = len(lists)
if n == 1:
return lists[0]
import heapq
q = []
dummpy_head = ListNode(-1)
merged_pointer = dummpy_head
for i, l in enumerate(lists):
if l:
heapq.heappush(q, (l.val, i))
while q:
val, i = heapq.heappop(q)
# why cannot i use pointer = lists[i] here????
# because the next node needs to be saved to the lists; so in one of next loops, we can access it.
merged_pointer.next = lists[i]
merged_pointer = merged_pointer.next
lists[i] = lists[i].next
if lists[i]:
heapq.heappush(q, (lists[i].val, i))
return dummpy_head.next
"""
# my latest try. easier to understand
if not lists:
return
heap = []
for i, root in enumerate(lists):
while root:
heapq.heappush(heap, (root.val, i))
root = root.next
#print(heap)
root = None
if heap:
val, i = heapq.heappop(heap)
node = lists[i]
#print(node)
root = curr = node
lists[i] = node.next
while heap:
val, i = heapq.heappop(heap)
node = lists[i]
#print(node)
curr.next = node
curr = curr.next
lists[i] = node.next
return root
"""
class Solution4:
"""
归并/merge 法: https://leetcode-cn.com/problems/merge-k-sorted-lists/solution/he-bing-kge-pai-xu-lian-biao-by-leetcode-solutio-2/
归并排序最好的解释: https://zhuanlan.zhihu.com/p/44656243
归并排序复杂度解析:https://blog.csdn.net/YuZhiHui_No1/article/details/44223225 (也可用master theorem)
https://zhuanlan.zhihu.com/p/124356219
"""
def merge_two_lists(self, node_a: ListNode, node_b: ListNode) -> ListNode:
if not node_a:
return node_b
if not node_b:
return node_a
merged_dummy_head = ListNode()
merged_pointer = merged_dummy_head
pointer_a = node_a
pointer_b = node_b
while pointer_a is not None and pointer_b is not None:
if pointer_a.val < pointer_b.val:
merged_pointer.next = pointer_a
pointer_a = pointer_a.next
else:
merged_pointer.next = pointer_b
pointer_b = pointer_b.next
merged_pointer = merged_pointer.next
if pointer_a is not None:
merged_pointer.next = pointer_a
elif pointer_b is not None:
merged_pointer.next = pointer_b
print(4)
return merged_dummy_head.next
def merge(self, lists, left, right):
print(2)
if left == right:
return lists[left]
mid = (left + right) // 2
l1 = self.merge(lists, left, mid)
l2 = self.merge(lists, mid + 1, right)
print(3)
return self.merge_two_lists(l1, l2)
def mergeKLists(self, lists: List[ListNode]) -> ListNode:
if not lists:
return
n = len(lists)
if n == 1:
return lists[0]
print(1)
return self.merge(lists, 0, n - 1)
|
9c957cc382445c1747af3d99c90da18e44068934 | KojiNagahara/Python | /TextExercise/13-2/binaryTree.py | 1,326 | 3.8125 | 4 | """動的計画法に使用するRooted Binary Treeのpython実装をclass化したもの。
関数バージョンだとキャッシュの初期化を明示的に書かないといけないので、class化することでその問題を解消する"""
class CachedBinaryTree():
"""キャッシュを考慮したRooted Binary Treeクラス"""
def __init__(self):
"""sourceはツリーを生成するための元になるItemのList"""
self._cache = {}
def max_value(self, source, avail):
if (len(source), avail) in self._cache:
result = self._cache[(len(source), avail)]
elif source == [] or avail == 0:
result = (0, [])
elif source[0].weight > avail:
# 右側の分岐のみを探索する
result = self.max_value(source[1:], avail)
else:
next_item = source[0]
# 左側の分岐を探索する
with_value, with_to_take = self.max_value(source[1:], avail - next_item.weight)
with_value += next_item.value
# 右側の分岐を探索する
without_value, without_to_take = self.max_value(source[1:], avail)
if with_value > without_value:
result = (with_value, with_to_take + [next_item,])
else:
result = (without_value, without_to_take)
self._cache[(len(source), avail)] = result
return result
|
4710d526b1c43bd18e7e4f7077c823043f36d94d | dmitryzhurkovsky/stepik | /python_profiling/euler_7.py | 1,873 | 3.546875 | 4 | """Project euler problem 7 solve"""
from __future__ import print_function
import math
import sys
import cProfile
def profile(func):
"""Decorator for run function profile"""
def wrapper(*args, **kwargs):
profile_filename = func.__name__ + '.prof'
profiler = cProfile.Profile()
result = profiler.runcall(func, *args, **kwargs)
profiler.dump_stats(profile_filename)
return result
return wrapper
def is_prime(num):
"""
Checks if num is prime number.
>>> is_prime(2)
True
>>> is_prime(3)
True
>>> is_prime(4)
False
>>> is_prime(5)
True
>>> is_prime(41)
True
>>> is_prime(42)
False
>>> is_prime(43)
True
"""
for i in range(2, int(math.sqrt(num) + 1)):
if num % i == 0:
return False
return True
@profile
def get_prime_numbers(count):
"""
Get 'count' prime numbers.
>>> get_prime_numbers(1)
[2]
>>> get_prime_numbers(2)
[2, 3]
>>> get_prime_numbers(3)
[2, 3, 5]
>>> get_prime_numbers(6)
[2, 3, 5, 7, 11, 13]
>>> get_prime_numbers(9)
[2, 3, 5, 7, 11, 13, 17, 19, 23]
>>> get_prime_numbers(19)
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67]
"""
prime_numbers = [2]
next_numbers = 3
while len(prime_numbers) < count:
if is_prime(next_numbers):
prime_numbers.append(next_numbers)
next_numbers += 1
return prime_numbers
if __name__ == '__main__':
try:
count = int(sys.argv[1])
except (TypeError, ValueError, IndexError):
sys.exit("Usage: euler_7.py number")
if count < 1:
sys.exit("Error: number must be greater than zero")
prime_numbers = get_prime_numbers(count)
print(f'Answer: {prime_numbers[-1]}')
|
f793319b2d63ca0fbf6b4a286dedcab3d66b1a33 | elsantodel90/cses-problemset | /concert_tickets.py | 2,832 | 3.671875 | 4 | # MAGIC CODEFORCES PYTHON FAST IO
import atexit
import io
import sys
_INPUT_LINES = sys.stdin.read().splitlines()
input = iter(_INPUT_LINES).__next__
_OUTPUT_BUFFER = io.StringIO()
sys.stdout = _OUTPUT_BUFFER
@atexit.register
def write():
sys.__stdout__.write(_OUTPUT_BUFFER.getvalue())
# END OF MAGIC CODEFORCES PYTHON FAST IO
import random
NOT_FOUND = (-1,-1)
class EmptyNode(object):
def insert(self, val):
return BSTNode(val)
def findAndRemove(self, upper):
return self, NOT_FOUND
def merge(self, right):
return right
def empty(self):
return True
def depth(self):
return 0
# Notar que no necesitamos balancear porque tenemos todos los datos que insertamos al comienzo:
# basta un random_shuffle al comienzo para tener un arbol balanceado.
# NOTA: Asumiendo que no hay repetidos!!! Por eso tuve un WA, y hubo que desempatar cosas.
class BSTNode(object):
def __init__(self, val):
self.left = EmptyNode()
self.right = EmptyNode()
self.val = val
def empty(self):
return False
def insert(self, val):
if val <= self.val:
self.left = self.left.insert(val)
else:
self.right = self.right.insert(val)
return self
# Sabemos que todo el arbol right es mayor estricto que todo nuestro arbol
def merge(self, right):
parent, largest = None, self
while not largest.right.empty():
parent , largest = largest, largest.right
if parent is not None:
parent.right = largest.left
largest.left = self
largest.right = right
return largest
def findAndRemove(self, upper):
if upper >= self.val:
self.right, ret = self.right.findAndRemove(upper)
if ret == NOT_FOUND:
return self.left.merge(self.right), self.val
else:
return self, ret
else:
self.left , ret = self.left.findAndRemove(upper)
return self, ret
def depth(self):
return 1+max(self.left.depth(), self.right.depth())
class BinarySearchTree(object):
def __init__(self):
self.root = EmptyNode()
def insert(self, val):
self.root = self.root.insert(val)
def insertAll(self, values):
for val in values:
self.insert(val)
def findAndRemove(self, upper):
self.root, ret = self.root.findAndRemove(upper)
return ret
def readLineInts():
return map(int,input().split())
n,m = readLineInts()
h = [(x,i) for i,x in enumerate(readLineInts())]
random.shuffle(h)
bst = BinarySearchTree()
bst.insertAll(h)
print(bst.root.depth(), file=sys.stderr)
t = readLineInts()
for customer in t:
val, index = bst.findAndRemove((customer, n))
print(val)
|
f6812ed3e0a165dd0bed8726d65bbcdf37de5b82 | lightening0907/algorithm | /SwapTwoNodeInPair.py | 522 | 3.875 | 4 | # Given a linked list, swap every two adjacent nodes and return its head.
# Definition for singly-linked list.
# class ListNode(object):
# def __init__(self, x):
# self.val = x
# self.next = None
class Solution(object):
def swapPairs(self, head):
"""
:type head: ListNode
:rtype: ListNode
"""
if not head or not head.next: return head
N1 = head.next
N2 = head
N2.next = self.swapPairs(N1.next)
N1.next = N2
return N1 |
fe1fead1b6716947dbb093a5d955a31b3f8fd44e | AdamZhouSE/pythonHomework | /Code/CodeRecords/2936/60634/250951.py | 1,239 | 3.59375 | 4 | table = ['2','2','2','3','3','3','4','4','4','5','5','5','6','6','6','7','#','7','7','8','8','8','9','9','9','#']
def transform(phoneNum):
result = ""
for x in phoneNum:
if x <= 'Z' and x >= 'A':
result += table[ord(x) - ord('A')]
elif x >= '0' and x <= '9':
result += x
return result
def equal(phone1, phone2):
if len(phone1) != len(phone2):
return False
for x in range(len(phone1)):
if ord(phone1[x]) != ord(phone2[x]):
return False
return True
num = int(input())
phoneBook = []
for x in range(num):
phoneBook.append(transform(input()))
diff = True
i = 0
while i < len(phoneBook) - 1:
count = 1
j = i + 1
while j < len(phoneBook):
if equal(phoneBook[i],phoneBook[j]):
diff = False
count += 1
phoneBook.remove(phoneBook[j])
j -= 1
j += 1
if count > 1:
k = 0
while k < len(phoneBook[i]):
print(phoneBook[i][k],end = "")
if k == 2:
print('-',end = "")
k += 1
print(end = " ")
print(count)
i += 1
if diff:
print("No duplicates.",end = "")
|
1c75a2f4f0e1689a7eca3b528d4221f1073c3d4e | tapachec0/Algorithms-Data-Structures | /Monitoring Activities/List #3/DoublyLinkedList.py | 10,902 | 3.921875 | 4 | '''
Univesidade Federal de Pernambuco -- UFPE (http://www.ufpe.br)
Centro de Informatica -- CIn (http://www.cin.ufpe.br)
Bacharelado em Sistemas de Informacao
IF969 -- Algoritmos e Estruturas de Dados
Autor: Talyta Maria Rosas Pacheco
Email: [email protected]
Data: 2018-09-07
Descricao: Implementação de uma lista duplamente encadeada
Copyright(c) 2018 Talyta Pacheco
'''
class Node:
def __init__(self, item = None, previous = None, after = None):
self.item = item
self.prev = previous
self.after = after
def __str__(self):
return str(self.item)
def __repr__(self):
return repr(self.item)
class DoublyLinkedList:
def __init__(self, iterable = None):
'''
Construtor recebe iteráveis. Por padão é None, que é uma lista vazia
'''
self.head = Node()
if(iterable == None):
self.tail = self.head
else:
aux = self.head
for element in iterable:
#construindo a lista, começando pelo próximo elemento da cabeça
aux.after = Node(element, aux)
aux = aux.after
#o fim é o último elemento adicionado
self.tail = aux
def isEmpty(self):
if(self.head == self.tail):
return True
else:
return False
def append(self, item):
'''
Adicionar um item no fim da lista
'''
#o proximo elemento do outro --> Nó
self.tail.after = Node(item, self.tail)
#atualização do último elemento
self.tail = self.tail.after
def insertByIndex(self, item, index):
'''
Insere um elemento na lista, em um índice desejado. Caso o índice seja maior que o tamanho da lista, adiciona na última posição
'''
if(index < self.__len__()):
cont = 0
aux = self.head.after
while(cont != index):
aux = aux.after
cont += 1
aux.prev = Node(item, aux.prev, aux)
aux.prev.prev.after = aux.prev
else:
return self.append(item)
def pop(self, index = None):
'''
Remove o elemento de um índice desejado. Sendo por padrão, o último índice
'''
if(index == None):
index = self.__len__()-1
if(self.isEmpty()):
print("List is empty")
elif(index > (self.__len__()-1)):
raise IndexError("Index out of Range")
else:
aux = self.head.after
cont = 0
while(cont != index):
aux = aux.after
cont += 1
aux.prev.after = aux.after
#caso o elemento que foi removido seja o ultimo, altera a ligação do último para o anterior do último
if(aux.after == None):
self.tail = aux.prev
else:
aux.after.prev = aux.prev
valueReturn = aux
del aux
#devolve o valor retirado
return valueReturn
def remove(self, item):
'''
Remove o nó que contém o item passado pelo usuario. Caso haja mais de um nós com esse elemento, remove apenas o primeiro
'''
if(self.isEmpty()):
print("List is empty")
elif(self.__contains__(item) == False):
raise ValueError("Item not found")
else:
aux = self.head.after
while(aux.item != item):
aux = aux.after
aux.prev.after = aux.after
if(aux.after == None):
self.tail = aux.prev
else:
aux.after.prev = aux.prev
del aux
def eliminate(self, item):
'''
Retira da lista, todos os nós os nós que possuem o valor passado pelo usuario
'''
if(self.isEmpty()):
print("List is empty")
elif(self.__contains__(item) == False):
raise ValueError("Item not found")
else:
cont = 0
tam = self.__len__()
aux = self.head.after
while(cont < tam):
keepFinding = aux
if(aux.item == item):
if(aux.after == None):
aux.prev.after = aux.after
self.tail = aux.prev
else:
aux.prev.after = aux.after
aux.after.prev = aux.prev
del keepFinding
aux = aux.after
cont += 1
def research(self, item):
'''
Devolve para o usuário o índice do valor desejado na lista
'''
if(self.__contains__(item) == False):
raise ValueError("Item not found")
else:
cont = 0
aux = self.head.after
found = False
while(found == False):
if(aux.item == item):
found = True
return "Index de %s é "%(item) + str(cont)
aux = aux.after
cont += 1
def copy(self):
'''
Faz uma cópia de uma lista duplamente encadeada
'''
#novo objeto do tipo lista encadeada
self.newObject = DoublyLinkedList()
cont = 0
aux = self.head.after
#tamanho da lista que será copiada
tam = int(self.__len__())
while(cont < tam):
#construção da lista por vários appends, até chegar ao tamanho da lista original
self.newObject.append(aux.item)
aux = aux.after
cont += 1
self.tail = aux
#devolve a cópia
return self.newObject
def extend(self, iterable):
'''
Põe ao final da lista, um objeto iteravel
'''
for item in iterable:
self.append(item)
def switch(self, index1, index2):
'''
Troca os nós de uma lista que possui os indices passados pelo usuario: o primerio e segundo indices que deseja trocar de posição na lista
'''
if(index1 > (self.__len__()-1) or index2 > (self.__len__()-1)):
raise IndexError("Index out of range")
else:
cont = 0
aux = self.head.after
self.secondValue = self.firstValue = 0
while(cont != index1):
aux = aux.after
cont += 1
#get o valor do primeiro indice do usuario
self.firstValue = aux.item
#reseta o auxiliar e cont para encontrar o valor do segundo índice
cont = 0
aux = self.head.after
while(cont != index2):
aux = aux.after
cont += 1
self.secondValue = aux.item
#utiliza a função setitem para trocar de posição. O primerio indice recebe o segundo, e o outro o inverso
self.__setitem__(index1, self.secondValue)
self.__setitem__(index2, self.firstValue)
def __iter__(self):
#torna o objeto da lista duplamente encadeada iteravel
return DoublyLinkedListIterator(self)
def __contains__(self, item):
'''
Verifica se há um elemento passado pelo usuario na lista
'''
aux = self.head.after
#tag para auxiliar o encontro
found = False
while(found == False):
#caso o aux seja None, significa que chegou ao final, já que não há, agr, nenhum valor guardado. Logo, não encontrou o elemento
if(aux == None):
return False
if(aux.item == item):
found = True
return True
aux = aux.after
def __getitem__(self, index):
'''
Retorna o valor de um indice. Implementa a seguinte chamada: lista[indice]
'''
if(self.isEmpty()):
print("List is empty")
elif(index > (self.__len__()-1)):
raise IndexError("Index out of Range")
else:
found = False
cont = 0
aux = self.head.after
while(found == False):
if(cont == index):
found = True
return aux
aux = aux.after
cont += 1
def __setitem__(self, index, item):
'''
Troca o valor de um indice. Implementa a seguinte chamada: lista[indice] = valor
'''
if(index > (self.__len__()-1)):
raise IndexError("Index out of Range")
else:
cont = 0
aux = self.head.after
while(cont != index):
aux = aux.after
cont += 1
aux.item = item
def __len__(self):
cont = 0
aux = self.head
while(aux.after != None):
aux = aux.after
cont += 1
return cont
def __str__(self):
string = "["
cont = 0
aux = self.head
while(cont < self.__len__()):
if(aux.after.after == None):
string += repr(aux.after)
else:
string += repr(aux.after) + "," + " "
cont += 1
aux = aux.after
string += "]"
return string
def __repr__(self):
string = "DoublyLinkedList(["
cont = 0
aux = self.head
while(cont < self.__len__()):
if(aux.after.after == None):
string += repr(aux.after)
else:
string += repr(aux.after) + "," + " "
cont += 1
aux = aux.after
string += "])"
return string
class DoublyLinkedListIterator:
def __init__(self, doublyLinkedList):
self.firstPosition = doublyLinkedList.head
def __iter__(self):
return self
def __next__(self):
self.firstPosition = self.firstPosition.after
if(self.firstPosition == None):
raise StopIteration
return self.firstPosition.item
def concanate(list1, list2):
'''
Junta duas listas. O princípio é ligar como o proximo elemento do ultimo da primeira lista ao primeiro elemento da segunda lista.
'''
list1.tail.after = list2.head.after
list2.head.after.prev = list1.tail
return list1
|
1c532103db2d814eb3a9250454ea9abb99b94838 | Suzie-to/Python_Data_Structures | /Stacks_Tuples_Sets/04.Honey.py | 3,407 | 4.34375 | 4 | ''' Worker-bees collect nectar. When a worker-bee has found enough nectar, she returns to the hive to drop off the load.
The worker-bees pass the nectar to waiting bees so they can really start the honey-making process.
You will receive 3 sequences:
• a sequence of integers, representing working bees,
• a sequence of integers, representing nectar,
• a sequence of symbols – "+", "-", "*" or "/", representing the honey-making process.
Your task is to check if the bee has collected enough nectar to return to the hive and to keep track of the total honey
waiting bees have made with the collected nectar.
Step one: you should check if the bee has collected enough nectar. You should take the first bee and try to match it
with the last nectar:
• If the nectar value is more or equal to the value of the bee, it is considered collected, and the bee returns to
the hive to drop off the load (step two).
• If the nectar value is less than the value of the bee, you should remove the nectar and try to match the bee with
the next nectar's value.
Step two: you should calculate the honey made with the passed nectar. When you find a bee and nectar that have matched
(step one), you should take the first symbol in the sequence of symbols ("+", "-", "*" or "/") and make the
corresponding calculation as follows:
"{matched bee} {symbol} {matched nectar}"
The result represents the honey that is made from the passed nectar. The calculation should always return the absolute
value of the result. After the calculation, remove the bee, the nectar, and the symbol.
Stop making honey when you are out of bees or nectar.
There always will be enough symbols in the sequence of symbols
Input
• On the first line, you will be given the values of bees - integers, separated by a single space
• On the second line, you will be given the nectar's values - integers, separated by a single space
• On the third line, you will be given symbols - "+", "-", "*" or "/", separated by a single space
Output
• On the first line - print the total honey made:
◦ "Total honey made: {total honey}"
• On the next two lines print the bees or the nectar that are left, if there are any, otherwise skip the line:
◦ "Bees left: {bee1}, {bee2}, … {beeN}"
◦ "Nectar left: {nectar1}, {nectar2}, … {nectarN}" '''
from collections import deque
bees = deque([int(x) for x in input().split()]) # FIFO tail
nectar = [int(x) for x in input().split()] # LIFO stack
signs = deque(input().split()) # honey making process
total_honey = 0
while bees and nectar:
curr_bee = bees.popleft()
curr_nectar = nectar.pop()
if curr_nectar >= curr_bee:
sign = signs.popleft()
if sign == '+':
total_honey += abs(curr_bee + curr_nectar)
elif sign == '*':
total_honey += abs(curr_bee * curr_nectar)
elif sign == '/':
if curr_nectar > 0:
total_honey += abs(curr_bee / curr_nectar)
elif sign == '-':
total_honey += abs(curr_bee - curr_nectar)
else:
bees.appendleft(curr_bee)
print(f"Total honey made: {total_honey}")
if bees:
print(f"Bees left: {', '.join([str(bee) for bee in bees])}")
if nectar:
print(f"Nectar left: {', '.join([str(x) for x in nectar])}") |
c59d063724dc0114126740c1af759c3f84d9c945 | tgspacelabs/Dev | /PythonApplication1/PythonApplication1/PythonApplication1.py | 312 | 4.03125 | 4 | def Test(n):
print('Function called with ', n)
print('This is python...')
for i in range(10):
print('For loop value: ', i)
Test(i)
# Python 3: Fibonacci series up to n
def Fibonacci(n):
a, b = 0, 1
while a < n:
print(a, end=' ')
a, b = b, a+b
print()
Fibonacci(10000)
|
479e714f12fb49b3e410d29e5ea9b811f3e990c5 | Master-of-moyu/sh_and_md | /python/array.py | 462 | 3.546875 | 4 | import matplotlib.pyplot as plt
import numpy as np
a = [1, 2]
print(a)
for x in a:
print(x)
a.append(3)
print(a)
b = np.arange(0, 1, 0.1)
print("np.arange: ")
print(b)
c = np.linspace(1, 10, num= 5, endpoint = True)
print("np.linspace: ")
print(c)
arr = []
l = len(arr)
print(l)
arr.append(100)
l = len(arr)
print(l)
d = np.array([1, 2, 3, 4, 5])
print(d)
print("np.zeros: ")
e = np.zeros((2,3))
print(e)
print("np.ones: ")
f = np.ones((2,4))
print(f) |
2fe8c28fbad8a712b5f57c72dfabe82ec7812a80 | williamsyb/mycookbook | /algorithms/BAT-algorithms/The beauty of programming/chapter-3/3-计算字符串的相似度.py | 982 | 3.890625 | 4 | def calculate_string_distance(str_a, start_a, end_a, str_b, start_b, end_b):
if start_a > end_a:
if start_b > end_b:
return 0
else:
return end_b - start_b + 1
if start_b > end_b:
if start_a > end_a:
return 0
else:
return end_a - start_a + 1
if str_a[start_a] == str_b[start_b]:
return calculate_string_distance(str_a, start_a + 1, end_a, str_b, start_b + 1, end_b)
else:
t1 = calculate_string_distance(str_a, start_a + 1, end_a, str_b, start_b, end_b)
t2 = calculate_string_distance(str_a, start_a, end_a, str_b, start_b + 1, end_b)
t3 = calculate_string_distance(str_a, start_a + 1, end_a, str_b, start_b + 1, end_b)
return min(t1, t2, t3) + 1
if __name__ == '__main__':
str_a = "aaee"
str_b = "aac"
if calculate_string_distance(str_a, 0, len(str_a) - 1, str_b, 0, len(str_b) - 1) == 1:
print(1)
else:
print(0)
|
dad93ea293a3adc68ba3f6b01e86c0dea9e01fe6 | qnadeem/solutions_to_some_programming_puzzles | /six/PrA.py | 347 | 3.8125 | 4 | x = str(raw_input())
def printt(a):
r = ""
if a ==0:
print "0"
else:
while a>0:
i = a%2
a = a/2
r = str(i) + r
print r
while( x!= "#"):
N = int(x, 2)
ans = 17*N
printt(ans)
x = raw_input()
|
854ff732f61fbcc1b089b25bb40050aedef1ffd8 | fran757/battles | /model/factory.py | 1,547 | 3.578125 | 4 | """Army-oriented Unit factory, using generic stats stored in json file."""
from dataclasses import dataclass, field as dfield
from typing import List
import json
from tools import tools
from .unit import Unit, UnitBase, UnitField, Strategy
from .army import Army
@dataclass
class Factory:
"""Interface to build units for an army.
Army side is provided at instanciation.
Each call providing unit type and position will use loaded stats
to add a new unit to the underlying army.
"""
side: int
units: List[Unit] = dfield(default_factory=list)
_registery = {}
@classmethod
@tools(log="registered {name}")
def register(cls, name, prototype):
"""Register prototype for given unit type name."""
cls._registery[name] = prototype
@property
def army(self):
"""Provide army built from created units."""
return Army(self.units)
def __call__(self, name, coords, strategy, is_centurion=False):
try:
base = self._registery[name]
except KeyError:
tools(log=f"Unregistered name: {name}")()
base = UnitBase(0, 0, 0, 0)
field = UnitField(self.side, coords, is_centurion)
strat = Strategy(*strategy)
self.units.append(Unit(base, field, strat))
return self.units[-1]
def load(file_name):
"""Load unit type stats from json file."""
with open(file_name) as file:
data = json.load(file)
for name, attrs in data.items():
Factory.register(name, UnitBase(*attrs))
|
1e05ea0ebf34f5310ce37f6c34d5a90b7f304f86 | 7vgt/CSE | /Andrew Esparza - Programmer.py | 629 | 3.765625 | 4 | class Person(object):
def __init__(self, name, age):
self.name = name
self.age = age
def work(self):
print("%s gose to work" % self.name)
class Employee(Person):
def __init__(self, name, age, length):
super(Employee, self).__init__(name, age)
self.length = length
def name_tag(self):
print("Tells Us All of your information")
class Programmer(Employee):
def __init__(self, name, age, length, weight):
super(Programmer, self).__init__(name, age, length)
self.weight = weight
def experience_recemmended(self):
print("10 years")
|
843409930b29c9cea6952dda33839169afa3b059 | As4klat/Tutorial_Python | /Tanda 1/04.py | 234 | 3.84375 | 4 | def fahrenheit_celsius(f):
return (f - 32)*5/9
print("Grados Fahrenheit Grados Celsius")
print("================= ==============")
for f in range(0, 121, 10):
print(" ", f, " ", fahrenheit_celsius(f)) |
fe6f13e1e74686b068e8fa8dd7a1a28dc6b0ee72 | janmlam/TDT4110 | /oving1/messages.py | 559 | 3.5625 | 4 | counter = 1
def logg(name, time, msg):
global counter
print ("MSG", counter, ", " + name + " sent this message: " + msg + " at " + time + " o'clock.")
counter = counter + 1
return
def main():
logg("Mr. Y", "23:59", "Har du mottatt pakken?")
logg("Mdm. Evil", "0:00", "Ja. Pakken er mottatt.")
logg("Dr. Horrible", "0:03", "All you need is love!")
logg("Mr. Y", "0:09", "Dr. Horrible, Dr. Horrible , calling Dr. Horrible .")
logg("Mr. Y", "0:09", "Dr. Horrible, Dr. Horrible wake up now.")
logg("Dr. Horrible", "0:09", "Up now!")
return
main() |
39a99861d4f0a4c068fcacd0a886d95cfd004fc4 | spacemanlol/Python-DataStructures-Reference | /SinglyLinkedList.py | 6,077 | 4.21875 | 4 | # Singly Linked List
class Node:
def __init__(self, data=None):
self.data = data
self.next = None
class SinglyLinkedList:
# Default Constructor
def __init__(self):
self.head = None
self.tail = None
self.length = 0
# Add to end of linked list
def push(self, data):
# Create a new node using the value passed to the function
newNode = Node(data)
# if there is no head property, set the
# head and the tail to be the newly created node
if not self.head:
self.head = newNode
self.tail = self.head
# Otherwise set the next property on the tail to be the
# new node and set the tail property on the list
# to be the newly created node
else:
self.tail.next = newNode
self.tail = newNode
# Increment length
self.length += 1
return SinglyLinkedList
# Pop last element in linked list
def pop(self):
# If there are no nodes in the list, return undefined
if not self.head:
return None
# Case if theres only 1 item in the array
if self.head == self.tail:
self.__init__()
return None
current = self.head
# Loop through the entire list until you reach the tail
while(current.next != self.tail):
current = current.next
# set the next property of the 2nd to last node to be null
current.next = None
self.tail = current
# Decrement Length By One
self.length -= 1
# Remove node from the beginning of the linked list
def display_list(self):
# Print List to Console
current = self.head
toString = "[ "
while(current):
toString += current.data + " "
current = current.next
print(toString + "]")
# Remove node from the beginning of the linked list
def shift(self):
if self.length == 0:
return None
current = self.head
if not self.head.next:
self.__init__()
return current
# Remove node from the beginning of the linked list
self.head = current.next
self.length -= 1
return
# Adding a new node to the beginning of the linked list
def unshift(self, data):
newNode = Node(data)
# if there is no head property on the list, set the head
# and tail to be the newly created node
if not self.head:
self.head = newNode
self.tail = newNode
# Otherwise set the newly created node's next
# property to be the current head property on the list
else:
newNode.next = self.head
# Set the head property on the list to be that newly created node
self.head = newNode
return SinglyLinkedList
# Get value at specific index within linked list
def get(self, index):
if index > self.length or index < 0:
return None
current = self.head
for i in range(index):
current = current.next
return current
# Set Value at specific index within the linked list
def set(self, index, value):
getVal = self.get(index)
if(getVal): getVal.data = value
return getVal
# Adding a node to the linked list at a specific position
def insert(self, index, data):
# if the index less than zero or greater than the length, return false
if index < 0 or index > self.length:
return False
# if the index is the same as the length, push a new node to the end of the list
if index == self.length:
self.push(data)
return True
# if the index is 0, unshift a new node to the start of the list
if index == 0:
self.unshift(data)
return True
# Create new node
newNode = Node(data)
# Otherwise, using the get method, access the node at the [index - 1]
getValue = self.get(index - 1)
# Set the next property on that node to be the new node
next = getValue.next
getValue.next = newNode
# Set the property on the new node to be the previous next
newNode.next = next
# Increment Length
self.length += 1
return True
# Removing a node from the Linked List at a specific index
def remove(self, index):
# Value to be removed
toRemove = None
# If the index is less than zero or greater than the length, return undefined
if index < 0 or index >= self.length:
return toRemove
# If the index is the same as the length-1, pop
if index == self.length - 1:
toRemove = self.pop()
# If the index is 0, use shift
elif index == 0:
toRemove = self.shift()
else:
# Otherwise, using the get method, access the node at index - 1
getValue = self.get(index - 1)
# Value to be removed
toRemove = getValue.next
# Set the next property on that node to be the next of the next node
getValue.next = getValue.next.next
self.length -= 1
return toRemove
# Reversing Linked List In Place
def reverse(self):
# Initialize node variable
node = self.head
# Swap head and tail
self.head, self.tail = self.tail, self.head
# We need prev to be null because we need to make sure the end of the list is null
prev = None
next = None
# Rebuild list in backwards order
for i in range(self.length):
next = node.next
node.next = prev
prev = node
node = next
return SinglyLinkedList
newList = SinglyLinkedList()
newList.push("1")
newList.push("2")
newList.push("3")
newList.push("4")
newList.display_list()
newList.reverse()
newList.display_list()
|
4442ed29b6b1ae736e7c53fa7a956a934468234c | syurskyi/Python_Topics | /125_algorithms/_examples/_algorithms_challenges/pybites/without_level/314/to_columns.py | 335 | 3.765625 | 4 | from typing import List # not needed when we upgrade to 3.9
from itertools import zip_longest
def print_names_to_columns(names: List[str], cols: int = 2) -> None:
names = list(map(lambda x: f'| {x:10}', names))
groups = zip_longest(*[iter(names)] * cols, fillvalue='')
for group in groups:
print(''.join(group))
|
185e897df5f1b45edbfb88d72a94638ef9ee33e1 | shubham2441/movierental | /BackEnd.py | 1,644 | 3.515625 | 4 | import sqlite3
def connect():
conn=sqlite3.connect("Movie.db")
cur=conn.cursor()
cur.execute("CREATE TABLE IF NOT EXISTS rental (id INTEGER PRIMARY KEY, name text, title text, time integer, phone integer, address text)")
conn.commit()
conn.close()
def insert(name, title, time, phone, address):
conn=sqlite3.connect("Movie.db")
cur = conn.cursor()
cur.execute("INSERT INTO rental VALUES(NULL,?,?,?,?,?)", (name, title, time, phone, address))
conn.commit()
conn.close()
def view():
conn = sqlite3.connect("Movie.db")
cur = conn.cursor()
cur.execute("SELECT * FROM rental")
rows=cur.fetchall()
conn.commit()
conn.close()
return rows
def search(name="", title="", time="", phone="", address=""):
conn = sqlite3.connect("Movie.db")
cur = conn.cursor()
cur.execute("SELECT * FROM rental WHERE name=? OR title=? OR time=? OR phone=? OR address=?", (name, title, time, phone, address))
rows=cur.fetchall()
conn.commit()
conn.close()
return rows
def delete(id):
conn=sqlite3.connect("Movie.db")
cur=conn.cursor()
cur.execute("DELETE FROM rental WHERE id=?", (id,))
conn.commit()
conn.close()
def update(id, name, title, time, phone, address):
conn = sqlite3.connect("Movie.db")
cur = conn.cursor()
cur.execute("UPDATE rental SET name=?, title=?, time=?, phone=?, address=? WHERE id=?", (name, title, time, phone, address, id))
conn.commit()
conn.close()
def calculate(cost, time):
amount = int(cost) + (int(time)*10)
return amount
connect()
|
2ccdf66e29855c0dac9d70c1781cd9d16fd2b5e7 | SuryamitraAkkipeddi/Codility | /Nesting.py | 295 | 3.828125 | 4 | def solution(S):
parentheses = 0
for element in S:
if element == "(":
parentheses += 1
else:
parentheses -= 1
if parentheses < 0:
return 0
if parentheses == 0:
return 1
else:
return 0 |
a568db684e331b7d6353ee7ba251c566ad4f5731 | zhjw8086/MagikCode | /第二季/tkinterProjectS02TEST/paddleGame1~9/paddolGame5/paddleGame5.py | 2,898 | 3.65625 | 4 | """
12.5 让球拍移动
"""
from tkinter import *
import time
import random
tk = Tk()
tk.title('paddle game')
tk.resizable(0, 0) # 设置窗口的大小是否可以调整, (0, 0)的意思是在水平和垂直方向上都不能改变
tk.wm_attributes("-topmost", 1) # 窗口置顶(无条件记住该方法和括号内的选项)
canvas = Canvas(tk, width=500, height=400, bd=0,
highlightthickness=5) # 指定高亮边框的宽度
canvas.pack()
tk.update() # 刷新页面,为我们的游戏动画做好初始化
class Ball:
def __init__(self, main_canvas, color): # 创建 Ball 的类,它有两个参数:画布·main_canvas、球的颜色·color
self.canvas = main_canvas # 将参数 main_canvas 赋值给变量 canvas
self.ID = main_canvas.create_oval(0, 0, 20, 20, fill=color) # 在画布上画一个用颜色参数作为填充颜色的小球
self.canvas.move(self.ID, 240, 190) # 将tkinter画小球时所返回的ID保存起来
start_x = [-3, -2, -1, 1, 2, 3]
random.shuffle(start_x)
self.x = start_x[0]
self.y = -3
self.canvas_height = self.canvas.winfo_height()
self.canvas_width = self.canvas.winfo_width()
def draw(self):
self.canvas.move(self.ID, self.x, self.y)
pos = self.canvas.coords(self.ID)
# print(pos)
if pos[1] <= 0:
self.y = 10
if pos[3] >= self.canvas_height:
self.y = -10
if pos[0] <= 0:
self.x = 10
if pos[2] >= self.canvas_width:
self.x = -10
class Paddle:
def __init__(self, main_canvas, color):
self.canvas = main_canvas
self.ID = main_canvas.create_rectangle(0, 0, 100, 10, fill=color)
self.canvas.move(self.ID, 200, 300)
"""step1: 增加对象变量 self.x"""
self.x = 0
"""step2:调取画布的宽度赋值给 self.canvas_width"""
self.canvas_width = self.canvas.winfo_width()
"""step4:将对应的按键的方向绑定在step3中生成的函数上"""
self.canvas.bind_all("<KeyPress-Left>", self.turn_left)
self.canvas.bind_all("<KeyPress-Right>", self.turn_right)
def draw(self):
"""pass"""
"""step5:修改 draw 的移动条件"""
self.canvas.move(self.ID, self.x, 0)
ball_pos = self.canvas.coords(self.ID)
if ball_pos[0] <= 0:
self.x = 0
elif ball_pos[2] >= self.canvas_width:
self.x = 0
"""step3: 创建两个函数来改变向左(turn_left)向右(turn_right)的方向"""
def turn_left(self, evt):
self.x = -3
def turn_right(self, evt):
self.x = 3
paddle = Paddle(canvas, "LightSteelBlue")
ball = Ball(canvas, "Royalblue")
while True:
ball.draw()
paddle.draw()
tk.update_idletasks()
tk.update()
time.sleep(0.01)
|
946bcb5c8016c99c844b5f4a4e1525f2b5042bde | vv31415926/python_lesson_08_UltraLite | /main.py | 1,163 | 3.953125 | 4 | '''
1. Написать свой генератор последовательностей, свой тернарный оператор
2. Написать свой декоратор
'''
# тернарный оператор
f = lambda x: 'дед' if x > 50 else 'пацан'
print( f(30), f(60))
# Генератор последовательностей ***************************************************
lst = [ [x,x**3] for x in range( 10 ) if x%2 == 0 ]
print('списки:',type(lst))
for v in lst:
print( v[0], v[1])
dic = { x : x**3 for x in range( 10 ) if x%2 == 0 }
print('словарь:',type(dic))
for k,v in dic.items():
print( k, v )
set = { x**3 for x in range( 10 ) if x%2 == 0 }
print('Множество:',type(set))
for v in set:
print( v )
# Декоратор ********************************************************************
def show(f):
def wrapper( *args, **kwargs ):
print( '*' * (len(args[0])+4) )
print( '* '+f( *args, **kwargs )+' *' )
print('*' * (len(args[0])+4) )
return wrapper
@show
def getName( s ):
return s
getName('Валерий')
getName('Вика') |
d47727cbec4aed19ba134225be452d3953dc7046 | s0m35h1t/holbertonschool-higher_level_programming | /0x0B-python-input_output/4-append_write.py | 379 | 4.28125 | 4 | #!/usr/bin/python3
"""
append text to file
"""
def append_write(filename="", text=""):
"""append a string to a text file (UTF8) and returns
the number of characters written
Args:
filename (str): file name
text (int): text to write
Returns:
(int)
"""
with open(filename, "a", encoding="utf-8") as f:
return f.write(text)
|
5599c3504e3ba15bb055e7e4d9632065c096fcb4 | Nadim-Nion/Python-Programming | /xargs.py | 528 | 4.21875 | 4 | '''
xargs is used to print multiple numbers of arguments for the same number of parameter.
if we change the numbers of argument , the function still can print the output.
Note: xargs works like Tuples.
'''
def add(*details):# syntax: def function_name(*text)
print(details)
print(details[1])
add(101,"Physics")
add(102,"Chemistry","Ch 1st paper")
def summation(*numbers):
sum=0
for x in numbers:
sum= sum+x
print("Summation is =",sum)
summation(10,20)
summation(10,20,50)
summation(10,20,50,70)
|
7ad417ac25510689517f115ae6fa0a2d3f8797e5 | pbinneboese/CD_Python | /fundamentals/stars.py | 797 | 3.75 | 4 | # stars, part 1
#
def convertToChars(num, chr): # return string with num characters of chr
str = ""
for i in range(0,num):
str += chr
return str
#
def draw_stars(arr, chr):
for i in arr:
str1 = convertToChars(i, chr)
print (str1)
return
#
starArray = [4,6,1,3,5,7,25]
print "stars part 1"
draw_stars(starArray,"*")
#
# stars, part 2
def draw_stars2(wordList):
for i in wordList:
if type(i) is int:
chr = "*"
num = i
elif type(i) is str:
chr = i[0].lower()
num = len(i)
# print chr, num
str1 = convertToChars(num, chr)
print (str1)
# draw_stars(starArray,chr)
return
#
x = [4, "Tom", 1, "Michael", 5, 7, "Jimmy Smith"]
print "stars part 2"
draw_stars2(x)
|
d0812a2f6a355269748f065b0252463a8b64b6f7 | TanishTaneja/Python-Questions | /Coding Ninjas/Conditionals & Loops/Q4_Fahrenheit_to_Celsius.py | 985 | 4.15625 | 4 | # Given Given three values - Start Fahrenheit Value (S), End Fahrenheit value (E) and Step Size (W), you need to
# convert all Fahrenheit values from Start to End at the gap of W, into their corresponding Celsius values and print
# the table. Input Format : 3 integers - S, E and W respectively Output Format : Fahrenheit to Celsius conversion
# table. One line for every Fahrenheit and corresponding Celsius value. On Fahrenheit value and its corresponding
# Celsius value should be separate by tab ("\t")version table. One line for every Fahrenheit and corresponding
# Celsius value. On Fahrenheit value and its corresponding Celsius value should be separate by tab ("\t")
# Read input as specified in the question
# Print output as specified in the question
# (°F â 32) à 5/9 = °C
# C = (F-32)*5//9
S = int(input())
E = int(input())
W = int(input())
F = S
# C = (F-32)*5//9
# print(C)
for F in range(S, E + 1, W):
C = int((F - 32) * 5 / 9)
print(F, "", C)
|
6b6562c63a3a05dbaf728b3d767b1c76b6e986b3 | Akshaya-Dhelaria-au7/coding-challenges | /coding-challenges/week02/day3/alphabet_rangoli.py | 410 | 3.5 | 4 | size=3
for i in range(1,size+1):
print ("-"*(2*(size-i)),end="")
s=chr(96+size)
for j in range(1,i):
s+=("-"+chr(96+size-j))
s2= s[::-1]
print (s+s2[1::],end="")
print ("-"*(2*(size-i)))
for i in range(size-1,0,-1):
print ("-"*(2*(size-i)),end="")
s=chr(96+size)
for j in range(1,i):
s+=("-"+chr(96+size-j))
s2= s[::-1]
print (s+s2[1::],end="")
print ("-"*(2*(size-i)))
|
bb15928f8b089b749025ffedc10b3c9e20a26c78 | nyirweb/python-t | /Exam2.py | 836 | 3.890625 | 4 | #Üzenet a napokra válaszként
nap = int(input("Add meg hanyadik napja van a hétnek?\n"))
if(nap == 1):
print("Hétfő - Work hard live hard - Éld túl ezt is!")
elif(nap == 2):
print("Kedd! Akkor még egy kis erő maradt a hétvégéből?")
elif(nap == 3):
print("Szerda! A nap végén több telt el a hétből, mint ami hátra van! ;) ")
elif(nap == 4):
print("Csütörtök! Akkor ez azt jelenti, hogy holnap végre pééééntek!")
elif(nap == 5):
print("Péntek! A nap végén vége a hétnek, már ami a munkát illeti!")
elif(nap == 6):
print("Szombat! A hétvége ma kezdődik! Programok és programozások!")
elif(nap == 7):
print("Vasárnap! Holnap meló, örülsz!?")
else:
print("Helytelen számot adtál meg! Futtatsd újra a szoftvert és 1 és 7 között válassz!") |
0d791c5333b25bef3a1a47451243b2e594f65434 | whime/dataStructure-algorithm | /剑指offer/左旋转字符串.py | 413 | 3.953125 | 4 | """
汇编语言中有一种移位指令叫做循环左移(ROL),现在有个简单的任务,
就是用字符串模拟这个指令的运算结果。
对于一个给定的字符序列S,请你把其循环左移K位后的序列输出。
"""
# -*- coding:utf-8 -*-
class Solution:
def LeftRotateString(self, s, n):
# write code here
tmpstr=s[0:n]
s=s[n:]+tmpstr
return s |
2b9d56106fa73e6b8a1ac114d9d611c0bd71bcc2 | BumbarG/Hex-Tournament | /hex/libs/disjoint_set.py | 838 | 3.703125 | 4 | class DisjoinSet:
def __init__(self):
self.parents = {}
self.ranks = {}
def find(self, a):
if a not in self.parents:
self.parents[a] = a
self.ranks[a] = 0
return a
while self.parents[a] != a:
prev = a
a = self.parents[a]
self.parents[prev] = self.parents[a]
return a
def union(self, a, b):
aroot = self.find(a)
broot = self.find(b)
if aroot == broot:
return # already connected
if self.ranks[aroot] < self.ranks[broot]:
aroot, broot = broot, aroot
self.parents[broot] = aroot
if self.ranks[aroot] == self.ranks[broot]:
self.ranks[aroot] += 1
def are_connected(self, a, b):
return self.find(a) == self.find(b)
|
ef0cb1cc84ca2f43073d090ea9ca691894556d6d | RonaldoLira/Mision_02 | /cuenta.py | 308 | 3.9375 | 4 | # Autor: Ronaldo Estefano Lira Buendia
# Programa donde calcula el total de la cuenta
c=int(input("Introduce el total de la comida: "))
p=c*.13
i=c*.16
t=c+p+i
print("Costo de su comida: {0:.2f}".format(c))
print("Propina: {0:.2f}".format(p))
print("IVA: {0:.2f}".format(i))
print("Total a pagar: {0:.2f}".format(t)) |
822b005755d4a0bc72e2ad1f383366a5a41d6350 | fatimahammouri/HB_Restaurant_rating_lab | /ratings.py | 930 | 3.9375 | 4 | """Restaurant rating lister."""
def Restaurant_scoring(file_name):
opened_file = open(file_name)
rating_dict = {}
for line in opened_file:
line = line.rstrip("\n")
data = line.split(":")
#print(data)
rating_dict[data[0]] = data[1]
# print(rating_dict)
user_restaurant_name = input("What is the restaurant name? > ")
user_restaurant_score = input("What is the restaurant score? > ")
while int(user_restaurant_score) > 5 or int(user_restaurant_score) < 1:
user_restaurant_score = input("Score must be between 1 and 5. What is the restaurant score? > ")
rating_dict[user_restaurant_name.title()] = user_restaurant_score
restaurants = rating_dict.items()
restaurants = sorted(restaurants)
# print(restaurants)
for ratings_set in restaurants:
print(f"{ratings_set[0]} is rated at {ratings_set[1]}.")
|
18fa6677f3e607cb74d2681f7ba5b80dec931f55 | UncleBob2/MyPythonCookBook | /data and variable types.py | 967 | 3.828125 | 4 | '''
Example Data Type
x = "Hello World" str
x = 20 int
x = 20.5 float
x = 1j complex
x = ["apple", "banana", "cherry"] list
x = ("apple", "banana", "cherry") tuple
x = range(6) range
x = {"name" : "John", "age" : 36} dict
x = {"apple", "banana", "cherry"} set
x = frozenset({"apple", "banana", "cherry"}) frozenset
x = True bool
x = b"Hello" bytes
x = bytearray(5) bytearray
x = memoryview(bytes(5)) memoryview
'''
my_integer =3
my_float = 3.141592
my_string = "hello"
print(type(my_integer))
print(type(my_float))
print(type(my_string))
my_integer = 'some text'
print(type(my_integer))
|
27544b52d9865f27d4a5780b09f11b59b38da578 | binghe2402/learnPython | /刷题/Leetcode/p938 二叉搜索树的范围和.py | 671 | 3.578125 | 4 | # Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def __init__(self):
self.s = 0
def rangeSumBST(self, root: TreeNode, low: int, high: int) -> int:
def travalTree(node):
if node is None:
return
if low <= node.val <= high:
self.s += node.val
if node.val >= low:
travalTree(node.left)
if node.val <= high:
travalTree(node.right)
travalTree(root)
return(self.s)
|
c189d4dd818de4d56557c01aca4d87f8139a0056 | eagletusk/PythonADS | /Trees/nodeTree.py | 1,465 | 3.765625 | 4 | class BT(object):
def __init__(self,rootObj):
self.key =rootObj
self.leftChild = None
self.rightChild = None
def insertLeft(self,newNode):
if self.leftChild == None:
self.leftChild = BT(newNode)
else:
t = BT(newNode)
t.leftChild = self.leftChild
self.leftChild = t
def insertRight(self,newNode):
if self.rightChild == None:
self.rightChild = BT(newNode)
else:
t = BT(newNode)
t.rightChild = self.rightChild
self.rightChild = t
def getRightChild(self):
return self.rightChild
def getLeftChild(self):
return self.leftChild
def setRootVal(self,obj):
self.key = obj
def getRootVal(self):
return self.key
def preorder(self):
if self.key:
print(self.key)
if self.leftChild:
self.leftChild.preorder()
if self.rightChild:
self.rightChild.preorder()
r = BT('a')
# print(r.getRootVal())
# print(r.getRightChild())
r.insertLeft(3)
r.insertLeft(2)
r.insertRight(4)
# print(r.getLeftChild().getRootVal())
r.preorder()
def preorder(tree):
if tree:
print(tree.getRootVal())
preorder(tree.getLeftChild())
preorder(tree.getRightChild())
def postorder(tree):
if tree:
postorder(tree.getLeftChild())
postorder(tree.getRightChild())
print(tree.getRootVal())
def inorder(tree):
if tree:
postorder(tree.getLeftChild())
print(tree.getRootVal())
postorder(tree.getRightChild())
|
6c5327e6dab0ae0a5df388deaa7a904a59991edd | acaciooneto/cursoemvideo | /ex_aulas/ex.aula12-036.py | 836 | 3.953125 | 4 | print('Você quer alugar uma casa? Primeiro terá que se adequar a nossos critérios.')
casa = int(input('Digite o valor da casa que você quer comprar: '))
salario = int(input('Diga o valor do seu salário: '))
tempo = int(input('Agora diga em quantos anos você pretende pagar: '))
parcelas = tempo * 12
prestação = casa / parcelas
if prestação <= (salario*30) / 100:
print('Em {} parcelas, a prestação da casa fica {:.2f} R$ por mês.' .format(parcelas, prestação))
print('Como você se enquadra em nossos requisitos, seu crédito será aprovado.')
elif prestação > (salario*30) / 100:
print('Do jeito que você quer, as prestações ficam {:.2f} R$, o que está acima de 30% do seu salário.'.format(prestação))
print('Então infelizmente não podemos aprovar seu crédito.')
print('Tenha um bom dia.')
|
106e4f7b4330a226c54f85051ad29239f8938600 | PrivateVictory/Leetcode | /src/ziyi/Tree/MaximumDepthofBinaryTree.py | 876 | 3.890625 | 4 | #!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Date : 2016-01-05 13:18:43
# @Author : Alex Tang ([email protected])
# @Link : http://t1174779123.iteye.com
'''
description:
'''
# Definition for a binary tree node.
class TreeNode(object):
def __init__(self, x):
self.val = x
self.left = None
self.right = None
class Solution(object):
def maxDepth(self, root):
"""
:type root: TreeNode
:rtype: int
"""
if not root:
return 0
else:
return self.iterDepth(0,[root])
def iterDepth(self, depth, nodeList):
if len(nodeList) == 0:
return depth
else:
newNodes = []
for node in nodeList:
if node.left:
newNodes.append(node.left)
if node.right:
newNodes.append(node.right)
return self.iterDepth(depth+1, newNodes)
|
b99c49f96c2697a56f2c9197b6039891466417ef | DonValino/Python | /practice1/Conditionals.py | 632 | 4.15625 | 4 | import random
import sys
import os
# if else elif == != > >= <=
age = 21
if age >= 21 :
print("You Are Old Enough To Drive A Bus")
elif age >= 16 :
print("You Are Old Enough To Drive A Car or Motorcycle")
else :
print("You Are Not Old Enough To Drive")
# Combining conditions with logical operators
# Logical operators: and, or, not
print("\n")
if((age >= 1) and (age <= 18)) :
print("You are aged between 1 and 18")
elif((age == 21) or (age >= 65)) :
print("You are a senior of working age")
elif not (age == 30) :
print("You are not yet considered a fully growned adult")
else :
print("Don't know") |
89ba15aa0fe4605c09afe376d402ac7c9ac3daff | sifirib/yoo | /src/Games/connect4/Board.py | 2,141 | 3.625 | 4 | from enum import Enum
class Board:
def __init__(self, height=6, width=7):
self.width = width
self.height = height
self.board = [[Piece.EMPTY for _ in range(width)] for _ in range(height)] # 6 x 7
def getPiece(self, x, y):
return self.board[y][x]
def addPiece(self, col, peice):
for i in range(self.height):
if self.board[self.height - i - 1][col] == Piece.EMPTY:
self.board[self.height - i - 1][col] = peice
return col, self.height - i - 1
return False
def checkWin(self, x, y, piece):
"""
Check if the move is a winning move
:param x:
:param y:
:return:
"""
count = 0
# Check rows
for i in range(max(x - 4, 0), min(x + 4, self.width)):
if self.board[y][i] == piece:
count += 1
else:
count = 0
if count >= 4:
return True
# Check cols
for i in range(max(y - 4, 0), min(y + 4, self.height)):
if self.board[i][x] == piece:
count += 1
else:
count = 0
if count >= 4:
return True
# Check diag
drc = 0
dlc = 0
for i in range(-3, 4):
if x + i < self.width and y + i < self.height and x + i >= 0 and y + i >= 0 and self.board[y + i][
x + i] == piece:
drc += 1
else:
drc = 0
if x + i < self.width and y - i < self.height and x + i >= 0 and y - i >= 0 and self.board[y - i][
x + i] == piece:
dlc += 1
else:
dlc = 0
if dlc >= 4 or drc >= 4:
return True
return False
def __repr__(self):
return "\n".join((["|" + "|".join(
["O" if y == Piece.RED else ("X" if y == Piece.BLACK else "_") for y in x]) + "|" for x in
self.board])) + "\n"
class Piece(Enum):
EMPTY = 0
RED = 1
BLACK = 2
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.