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Abstract: We introduce a side-chain-inclusive scoring function, namedOPUS-SSF, for ranking protein
structural models. Themethod builds a scoring function based on the native distributions of the coordinate
components of certain anchoring points in a localmolecular system for peptide segments of 5, 7, 9, and
11 residues in length. Differing fromour previousOPUS-CSF [Xu et al., Protein Sci. 2018; 27: 286–292],
which exclusively usesmain chain information, OPUS-SSF employs anchoring points on side chains so that
the effect of side chains is taken into account. The performance of OPUS-SSFwas tested on 15 decoy sets
containing totally 603 proteins, and 571 of themhad their native structures recognized from their decoys.
Similar toOPUS-CSF, OPUS-SSF does not employ the Boltzmann formula in constructing scoring func-
tions. The results indicate that OPUS-SSF has achieved a significant improvement on decoy recognition
and it should be a very useful tool for protein structural prediction andmodeling.
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Introduction
Designing a good empirical function that can evaluate
protein structural models is very important in protein
structure prediction. Commonly, empirical potential func-
tions can be divided into two categories: physics-based
potentials1–9 and knowledge-based potentials.10–42 Both
kinds of potentials can be in all-atom form, coarse-grained
form, or mixed all-atom and coarse-grained form. For

protein structural modeling, physics-based potentials are
often outperformed by knowledge-based potentials.

In this article,we followed the basic idea of our recent
work OPUS-CSF,43 that is, building the scoring function
based on the distribution of coordinate components of cer-
tain anchoring points extracted from short peptide seg-
ments in the native structure database, rather than on
the traditional Boltzmann formula. An anchoring point is
an actual atom position or position computed based on
a few atoms on side chain. Similar to OPUS-CSF, we
generated configurational native distribution (CND)
lookup tables of small peptide segments of 5, 7, 9, and 11
residues in length by scanning through the entire Protein
DataBank (PDB).UnlikeOPUS-CSF that records thedis-
tribution of main-chain C atom coordinates, OPUS-SSF
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combines the side-chain and main-chain information to
improve the performance of the scoring function. In this
case, the local molecular coordinate system is built on the
main-chain of the central residue (same as OPUS-CSF),
and the recorded anchoring points are based on the side-
chains of specific residues. Therefore, the main-chain and
side-chain information are both taken into consideration
inOPUS-SSF.

The performance of OPUS-SSF was tested on
15 decoy sets and the results showed that OPUS-SSF
significantly outperforms OPUS-CSF both in terms of
native structure recognition and Z-scores. OPUS-SSF
recognized 571 out of 603 native structures from their
decoys, while OPUS-CSF recognized 491. The average
Z-score of OPUS-SSF was −5.46, while that of OPUS-
CSF was −3.32. In terms of Pearson’s correlation coeffi-
cients, OPUS-SSF and OPUS-CSF have similar values
comparing with a generalized orientation-dependent,
all-atom statistical potential (GOAP).40 Note that GOAP
potential needs all-atom coordinates, while OPUS-SSF
andOPUS-CSF are highly coarse-grained.

Both OPUS-CSF and OPUS-SSF do not employ the
Boltzmann formula in constructing scoring functions,
which is a very different feature from most methods in
literature. The performance of OPUS-SSF is signifi-
cantly better than other methods, which indicates the
effectiveness of the non-Boltzmann approach. Further-
more, the local molecular coordinate system in peptide
segments makes it easier and quicker to describe rela-
tive configuration of the peptide than Boltzmann
approach. We believe that OPUS-SSF would be a very
helpful tool inmodeling protein structures.

Results
Beside the 11 commonly used decoy sets used in GOAP40

and OPUS-CSF,43 including decoy sets of 4state_red-
uced,44 fisa,45 fisa_casp3,45 hg_structal, ig_structal and
ig_structal_hires (R. Samudrala, E. Huang, and M. Lev-
itt, unpublished), I-TASSER,39 lattice_ssfit,46,47 lmds,48

MOULDER,49 and ROSETTA,50 we also tested OPUS-
SSF on casp-good set39 (that contains 143 protein targets
generated during CASP5-CASP8) and I-TASSER9,
I-TASSER10, I-TASSER11 sets (decoy sets generated by
I-TASSER server from CASP9,51 CASP10,52 CASP11,53

downloaded from thewebsite ofDr. YangZhang’s group).
The performance of OPUS-SSF tested on 15 decoy

sets are shown in Table I. OPUS-SSF recognized
571 native structures of totally 603 proteins in all decoy
sets and the Z-score was−5.46. OPUS-CSF43 recognized
491 native structures on the same 15 decoy sets with
Z-score of −3.32. Also, like in OPUS-CSF,43 a cutoff
value 15 was added in OPUS-SSF on the sum ofZ-scores
of an anchoring point. For OPUS-SSF without the cutoff
(see Methods), it recognized 546 out of 603 native struc-
tures from the decoys with an average Z-score of −3.89.
Thus, the performance of OPUS-SSF without cutoff was
worse than that of OPUS-CSF in native structure

recognition, which supports the inclusion of the cutoff in
SSF score calculation.

The average RMSD values of recognized structures
are shown inTable II. The result of using backbone infor-
mation alone (CSF case) is worse than that of using side-
chain information and backbone information together
(SSF case), the values are 1.661 and 0.334, respectively.
This result demonstrates that OPUS-SSF can recognize
the native structure from decoys that are very close to
the native structure.

The Pearson’s correlation coefficients between SSF
score andTM-score54 in all decoy setswere also calculated.
The results are shown in Table III. The result of OPUS-
SSF (0.52) wasworse than that of OPUS-CSF (0.56). Side-
chain configuration has larger variation than main-chain
configuration that increases the uncertainty in modeling.
A relatively good result ofOPUS-SSF indicates that it cap-
tured the key point of the side-chain conformation. The
correlation coefficients of OPUS-SSF were better than
that ofOPUS-SSFwith no cutoff (data not shown).

Discussion
In theResults section, we briefly discussed the construc-
tion of CND lookup tables. It is worth noting that the
number of segments was smaller in OPUS-SSF than
that in OPUS-CSF43 although OPUS-SSF was devel-
oped later than OPUS-CSF. Besides, the ratio between
the number of 5-residue segments that appear more
than five times to the total number of 5-residue seg-
ments is also smaller in OPUS-SSF. A reasonable guess
is that lots of structures in PDB do not have a complete
side-chain, therefore a lot of structures were excluded.

Table I. The Performance of OPUS-CSF and OPUS-SSF
on 15 Decoys Sets

# of Proteins OPUS-CSF OPUS-SSF

4state_reduced 7 7 (−3.31) 7 (−5.00)
fisa 4 2 (−2.55) 2 (−3.84)
fisa_casp3 5 4 (−6.72) 4 (−13.60)
hg_structal 29 23 (−2.06) 23 (−2.85)
ig_structal 61 56 (−2.14) 57 (−3.14)
ig_structal_hires 20 20 (−2.08) 20 (−2.84)
I-TASSER 56 56 (−6.39) 56 (−11.24)
lattice_ssfit 8 8 (−11.79) 8 (−18.92)
lmds 10 8 (−6.80) 9 (−9.36)
MOULDER 20 20 (−3.16) 20 (−6.16)
ROSETTA 58 53 (−4.53) 54 (−5.69)
casp_good 143 129 (−1.72) 135 (−2.27)
CASP9 85 46 (−2.80) 84 (−5.91)
CASP10 43 29 (−4.73) 43 (−8.11)
CASP11 54 30 (−3.13) 49 (−6.33)
Total 603 491 (−3.32) 571 (−5.46)

The numbers of protein targets in the decoy set, with their
native structures successfully recognized by OPUS-CSF and
OPUS-SSF are listed in the table. The numbers in parenthe-
ses are the average Z-scores of the native structures. The
bigger the absolute value of Z-score, the better. Out of
totally 603 protein targets in 15 decoy sets, OPUS-SSF rec-
ognized 571 native structures with an average Z-score of
−5.46, both values are better than that of OPUS-CSF.
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However, the ratio between the number of 7-, 9-, and
11-residue segments that appear more than five times
to the total number of 7-, 9-, and 11-residue segments
increased. This means that the incomplete structures
may also have uncommon sequences, excluding them in
trainingwas the right approach.

The performance of OPUS-SSF without cutoff
value was also examined. It was 546 out of 603, while
OPUS-SSF with cutoff was 571 out of 603 (Table I).
So, the performance without cutoff was worse than
that with cutoff. The final version of OPUS-SSF used
15 as the cutoff value in calculating the SSF score.

In constructing the CND lookup table, only the
sequence and coordinates information were included,
no other information such as secondary structural
elements were used.

OPUS-SSF is a fast and accuratemodelingmethod.
It is highly course-grained and does not require inter-
atomic information. In early stage of protein modeling,
a fast and accurate scoring function is very important.
OPUS-SSF seems to be promising in this regard.

Methods
The procedure of OPUS-SSF is similar to that of OPUS-
CSF.43 For the collections of small peptide segments
with specific sequences (with length of 5, 7, 9, and 11
residues), CNDs were constructed. The distributions
were constructed through analyzing all structures in
the PDB, except the ones Do not match our selection
criteria. The sequences that appeared less than five
times in PDB were discarded. We analyzed 130,054
PDB structures up to June 7, 2017 via ftp://ftp.wwpdb.
org/pub/pdb/data/structures/divided/pdb. Finally, the
information extracted from CNDs was stored in CND
lookup tables.

The details of the procedure of OPUS-SSF are very
similar to those in OPUS-CSF.43 In OPUS-SSF, we
included the side-chain conformation, not just the main-
chain atoms only as in OPUS-CSF. Based on rigid body
representation of side-chain chemical structures in
OPUS-DOSP,55 the representations of side-chain configu-
rationswere further simplified to 1–3 anchoring points on
side-chains, the details of which are shown inTable IV.

For each segment, a local molecular coordinate
system is constructed based on the central residue of
the segment via the coordinates of main-chain C
atom, Ca atom, and main-chain O atom. The defini-
tion of the coordinate system is identical to that in
OPUS-CSF.43 The Ca atom is set as the origin, the
line connecting Ca and C atoms is defined as X-axis,
the parallel component of C-O vector that is perpen-
dicular to the X-axis in the Ca-C-O plane is defined
as Y-axis, and the Z-axis is defined by the rule of a
right-handed coordinate system. More details can be
found in OPUS-CSF paper.43

The segments of different length are marked as
5(1, 3, 5), 7(2, 4, 6), 9(1, 3, 5, 7, 9), and 11(2, 4, 6,
8, 10). In the form of 5(1, 3, 5), for example, the first
number 5 is the segment length, 1, 5 in the paren-
thesis are the residue indices for which we record
coordinate component distributions of the anchoring
points in local coordinate system, 3 is the residue on
which the local coordinate system is constructed.

For a 5-residue segment with a specific sequence, for
example, we recorded the coordinate components of the
anchoring points on the side chains of the first and fifth
residues in the local coordinate system. These coordinate
components were treated as independent variables. By
scanning through the entire PDB, we generated distribu-
tions of these independent variables using the recorded

Table II. Average RMSD Values of OPUS-CSF and
OPUS-SSF on 15 Decoys Sets

OPUS-CSF OPUS-SSF

4state_reduced 0 0
fisa 2.184 1.700
fisa_casp3 1.223 1.112
hg_structal 0.305 0.301
ig_structal 0.146 0.127
ig_structal_hires 0 0
I-TASSER 0 0
lattice_ssfit 0 0
lmds 0.756 0.379
MOULDER 0 0
ROSETTA 0.604 0.496
casp_good 0.973 0.264
CASP9 3.911 0.167
CASP10 2.038 0
CASP11 3.387 0.941
Average 1.661 0.334

The numbers for each decoy set are the averageRMSDvalues of
recognized structures in that decoy set by two scoring functions.
The numbers in the last row are the weighted average numbers
of all decoy sets. The value “0” indicates that all native struc-
tures were successfully found in that decoy set. OPUS-SSF out-
performedOPUS-CSF in every decoy set.

Table III. Average Pearson’s Correlation Coefficients of
OPUS-CSF and OPUS-SSF Scores with TM-Scores

OPUS-CSF OPUS-SSF

4state_reduced −0.67 −0.74
fisa −0.55 −0.63
fisa_casp3 −0.33 −0.36
hg_structal −0.80 −0.80
ig_structal −0.88 −0.87
ig_structal_hires −0.90 −0.88
I-TASSER −0.45 −0.48
lattice_ssfit −0.15 −0.08
lmds −0.34 −0.32
MOULDER −0.86 −0.86
ROSETTA −0.39 −0.38
casp_good −0.65 −0.60
CASP9 −0.31 −0.50
CASP10 −0.25 −0.46
CASP11 −0.14 −0.29
Total −0.52 −0.56

The correlation coefficient of a decoy set is the average coef-
ficient of all targets in that decoy set. The native structures
were excluded from the calculation. OPUS-SSF has better
result than OPUS-CSF.

Xu et al. PROTEIN SCIENCE | VOL 28:1157–1162 11591159
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coordinates, called CNDs of 5-residue segments.We then
calculated the means and standard deviations of the dis-
tributions and theywere kept in theCND lookup table.

For a test structure, we first split the structure by
all possible segments (5, 7, 9, and 11 residues in length).
Then for every segment existing in CND lookup table,
we calculated the absolute values of Z-score of each
independent coordinate variable based on distributions
found in the CND lookup table. The final step was
adding up all the absolute values of Z-score of all inde-
pendent variables for all segments and the total sum
was called SSF score. In the process, if the sum of abso-
lute values of Z-scores of three coordinate variables of
one anchoring point is greater than 15, we set it to
15, that is, a cutoff value of 15. This value comes from
the assumption that all these coordinate variables are
Gaussian. If the absolute value ofZ-score is greater than
5, then this data point is extremely rare, and wewant to
ignore its influence. We have three coordinate variables
and the cutoff value is therefore 15. If a residue has
more than one anchoring point, the total sum of all
anchoring points on that residue will be divided by the
number of anchoring points for normalization purpose.
The polypeptide structure with smallest SSF score was
assumed to be the closest one to the native structure. No
weighting function was included for different segment
length in calculating SSF scores.

Accessibility of OPUS-SSF
The software is publicly accessible from ma-lab.rice.
edu, or by contacting Jianpeng Ma at jpma@bcm.edu.
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