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ABSTRACT: Side-chain modeling plays a critical role in protein structure prediction. However,
in many current methods, balancing the speed and accuracy is still challenging. In this paper, on
the basis of our previous work OPUS-Rota (Protein Sci. 2008, 17, 1576−1585), we introduce a
new side-chain modeling method, OPUS-Rota2, which is tested on both a 65-protein test set
(DB65) in the OPUS-Rota paper and a 379-protein test set (DB379) in the SCWRL4 paper. If
the main chain is native, OPUS-Rota2 is more accurate than OPUS-Rota, SCWRL4, and
OSCAR-star but slightly less accurate than OSCAR-o. Also, if the main chain is non-native,
OPUS-Rota2 is more accurate than any other method. Moreover, OPUS-Rota2 is significantly
faster than any other method, in particular, 2 orders of magnitude faster than OSCAR-o. Thus,
the combination of higher accuracy and speed of OPUS-Rota2 in modeling side chains on both
the native and non-native main chains makes OPUS-Rota2 a very useful tool in protein structure
modeling.

■ INTRODUCTION

Protein structure prediction has become increasingly important
and powerful over the past few decades. However, determining
a protein structure exclusively from an amino acid sequence is
still very challenging.1 One way to improve the performance of
protein structure prediction is to develop a fast and accurate
side-chain modeling method, which is also essential for refining
the high-accuracy structure models. This side-chain modeling
method should satisfy two requirements: First, it should be fast
enough for the time efficiency. Second, it should be accurate
for cases in which the main chains are in either native or non-
native states.
To minimize the sampling space, most side-chain modeling

methods explore a limited number of representative con-
formations in the rotamer library that are derived from a set of
high-resolution X-ray structures.2−8 In these methods, some of
them enhance the sampling scheme to sample the rotamers
with more efficiency,9−24 some of them improve the empirical
potential functions to obtain better optimization,21,25−37 and
some of them alter the standard rotamers slightly to increase
the diversity of the conformation.38−40 Also, there are some
nonrotameric methods.41,42

In side-chain modeling, it is hard to balance the accuracy
and the speed. Some methods, such as SCWRL4,37 sacrifice
their accuracy by using a simplified pairwise energy function
and dead-end elimination9 to achieve a relatively higher speed.
In contrast, some methods such as NCN,30 LGA,27 and
OSCAR,35,36 achieve better accuracy by using a more

complicated and accurate potential function,21,25 which is
computationally more expensive. To leverage the performance
between accuracy and speed, our previous work OPUS-Rota43

uses a simple yet effective potential OPUS-PSP44 in its energy
function, which reduces the computational burden and
achieves good accuracy. After OPUS-PSP, many more
empirical potentials have been developed, such as OPUS-
DOSP45 and OPUS-CSF.46 These more powerful potentials
make it possible to develop a more accurate and faster side-
chain modeling method.
In this paper, we develop a new side-chain modeling

method, OPUS-Rota2, which is based on our previous work
OPUS-Rota.43 We examine the performance of OPUS-Rota2
on a 65-protein benchmark set (DB65) used in OPUS-Rota43

and a 379-protein benchmark set (DB379) used in
SCWRL4.37 If the main chain is native, OPUS-Rota2 is
more accurate than OPUS-Rota, SCWRL4, and OSCAR-star
but slightly less accurate than OSCAR-o. Also, if the main
chain is non-native, OPUS-Rota2 is more accurate than any
other method. OPUS-Rota2 is significantly faster than any
other method, in particular, 2 orders of magnitude faster than
OSCAR-o. The high accuracy and computational efficiency
make OPUS-Rota2 a very useful side-chain modeling tool in
the early stage of protein structural modeling.
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■ METHODS

In OPUS-Rota2, we sample the side-chain rotamer from a
backbone-dependent rotamer library47 for each residue in a
random order. The process also involves an energy function
that contains multiple terms. The final side-chain structures are
reconstructed by minimizing the energy function. A distinct
feature of this work is that its energy function contains a special
scoring function term called the OPUS-DASF term that
describes relative positions of atoms on the side chains. The
OPUS-DASF term is used as a replacement for the OPUS-PSP
term44 in the OPUS-Rota method43 developed by us earlier.
Energy Function. The total energy function contains four

terms

= + +

+
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total dasf dasf vdw mc vdw mc vdw sc vdw sc

rot rot

where Edasf is the OPUS-DASF term (defined below), Evdw_mc
is the modified LJ potential for an atom pair between a main-
chain atom and a side-chain atom, Evdw_mc is the modified LJ
potential for an atom pair between two side-chain atoms that
are on different residues, and Erot is a term related to rotamer
frequency. Since the main chain is fixed, the LJ potential
between different main-chain atoms is not included. Just as in
OPUS-Rota, the four weights wdasf = 0.1, wvdw_mc = 0.8, wvdw_sc
= 0.6, and wrot = 1.0 are optimized against a small set of high-
resolution structures containing 1aac, 1bpi, 1isu, 1ptx, 1xn,
256b, 2erl, 2hbg, 2ihl, 5rxn, and 9rnt.
Compared to the energy function in OPUS-Rota, we use the

OPUS-DASF term to replace the OPUS-PSP term. In addition,
we also remove the solvation energy term for time efficiency.
OPUS-DASF Term. We propose a dihedral angle scoring

function (DASF), which is based on our previous work OPUS-
CSF.46 OPUS-CSF is a fast and accurate scoring function that
can be used to distinguish the native protein structures from
their decoy base on main-chain configurations.
Similar to OPUS-CSF, we generate four DASF lookup tables

for small peptide segments of 5, 7, 9, and 11 residues in length,
respectively, by scanning through the entire Protein Data Bank
(PDB). In order to model the side-chain conformation, we
save the coordinate of the side-chain atoms that would be used
to calculate the side-chain dihedral angles. The identities of the
recorded atoms are listed in Table 1. The segments of different
lengths are marked as 5(1, 3, 5), 7(2, 4, 6), 9(1, 3, 5, 7, 9), and
11(2, 4, 6, 8, 10). In the form of 5(1, 3, 5), for example, the
first number 5 is the segment length; the numbers 1, 3, 5 in the
parentheses are the indices of the recorded residues whose
coordinates of recorded atoms are saved.
Different from OPUS-CSF, in the case of side-chain

modeling, since the main chain is fixed, we can exclude the
influence of main-chain atoms. Therefore, we build the local
molecular coordinate system on each recorded residue
separately, instead of building one on the center residue as
described in OPUS-CSF. The local molecular coordinate
system is constructed via the coordinates of the main-chain C
atom, Ca atom, and O atom. The Ca atom is set as the origin,
and the line connecting the Ca and C atoms is defined as the
X-axis. The parallel component of the C−O vector that is
perpendicular to the X-axis in the Ca−C−O plane is defined as
the Y-axis, and the Z-axis is defined correspondingly. More
details can be found in the OPUS-CSF paper.46

The DASF lookup table is constructed as follows: first, we
assume that the coordinate components of a specific recorded
atom are independent from the same recorded atom in other
segments that have the same sequence in the PDB, and they
obey a Gaussian distribution. Then, after scanning through the
entire PDB, we gather the coordinate components of each
recorded atom with same the segment sequence and use them
to generate the Gaussian distributions for each recorded atom,
respectively. Finally, we calculate the means and standard
deviations of the distributions and save them in the DASF
lookup table. We construct four DASF lookup tables
depending on four different segment lengths.
For protein structure evaluation, we first divide the structure

by all possible overlapping segments (5, 7, 9, 11 residues in
length). Then, for every segment found in the corresponding
DASF lookup table, we calculate the absolute values of the Z-
score for each coordinate component of the recorded atoms on
the basis of the distributions in the DASF lookup table. In the
end, the absolute Z-scores of all coordinate components of the
recorded atoms are added up to form the DASF score. We use
Sn to denote the DASF score for the n-residue segment, and it
is calculated as follows:

∑ ∑
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δ δ
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Here, n ∈ [5, 7, 9, 11], (Xtest, Ytest, Ztest,), are the coordinate
components of a recorded atom in its local molecular
coordinate system; (Xmean, Ymean, Zmean,) and (δx, δy, δz,) are
the means and standard deviations of the coordinate
components of the recorded atom in the DASF look up table.
In OPUS-DASF, we suppose that the longer peptide

segments contain more conservative and reliable information.

Table 1. Recorded Atoms in 20 Different Residuesa

F1 F2 F3 F4

GLY
ALA
SER OG
CYS SG
VAL CG1
ILE CG1 CD
LEU CG CD1
THR OG1
ARG CG CD NE CZ
LYS CG CD CE NZ
ASP CG OD1
GLU CG CD OE1
ASN CG OD1
GLN CG CD OE1
MET CG SD CE
HIS CG ND1
PRO CG CD
PHE CG CD1
TYR CG CD1
TRP CG CD1

aThe recorded atoms will be used to calculate the side-chain dihedral
angles. It should be noticed that different residues may have different
numbers of recorded atoms.
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The final DASF score is constructed using different weights for
different segment lengths

∑= ×E
n

Sn
10n

dasf

Here, n ∈ [5, 7, 9, 11].
van der Waals (vdW) Potential. Just as in OPUS-Rota,43

the van der Waals potential between two atoms i and j takes
the form

λ
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where dij* = dij/aij, and dij is the distance between atoms i and
j. aij = ai + aj, with ai and aj as the atomic radii. =e e eij i j , and ei
and ej are the well depths. The constant λ is the scaling factor
for the repulsive term, which is set to unity if both atoms i and
j are aromatic carbons and is 1.6 otherwise. The details of the
LJ parameters and summation rules are described in our
OPUS-PSP paper.44 To speed up the calculation, the LJ cutoff
distance is dij* = 2.5.
In a real application, we consider Evdw_mc and Evdw_sc

separately.
Rotamer-Frequency-Related Term. The rotamer-fre-

quency-related term is defined as follows:

∑ φ
φ

= −
|⌀

= |⌀=

E r
p R A

p R A
log

( , , )

( 1 , , )m

N
m m m m

m m m m
rot

1

=
∈{ }l

m
oo
n
oor

A0,

1, otherwise

m Gly,Ala

In this equation, N is the number of residues, and m is the
residue index where m ∈ [1, N]. p(Rm|φm, ϕm, Am) is the
occurrence probability of a rotamer Rm whose main-chain
torsional angles are φm and ϕm and residue type is Am. p(Rm=1
|φm, ϕm, Am) is the occurrence probability of the most likely
rotamer (Rm=1). The rotamer frequency is derived from
Dunbrack’s rotamer library.47 Unlike for OPUS-Rota, we set
r to zero for Gly and Ala, and to unity otherwise.
In OPUS-Rota2, a cutoff value in the rotamer-frequency-

related term is used to provide a chance for the rotamers that
have very low occurrence probability in the rotamer library. In

this case, if < −φ
φ

| ⌀
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log 5
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m m m m
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, we set it to −5, and if

>φ
φ
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log 5
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( , , )
m m m m

m m m m1
, we set it to 5.

Procedures of OPUS-Rota2 Implementation. Initiali-
zation. The energy function in OPUS-Rota2 contains four
terms: a DASF term, two vdW terms with one for an atom pair
between a main-chain atom and a side-chain atom and another
for an atom pair between two side-chain atoms that on
different residues, and last a rotamer-frequency-related term.
Since the main chain is fixed, the side-chain configuration is
limited because of its finite number of rotamers in the rotamer
library. For time efficiency, before sampling, we can calculate
and store the energy terms of each rotamer that are
independent of the configuration of other residues to avoid
repetition in calculation during sampling.

In our energy function, the rotamer-frequency-related term
is independent of the configuration of other residues. The
DASF term only depends on the type of nearby residues,
instead of their positions. For vdW interactions, we divide
them into three types: the first type is the one between main-
chain atoms on different residues, and this type of interaction
can be ignored because the main chain is fixed during side-
chain modeling. The second type is the vdW interaction
between the main-chain atom and the side-chain atom, and
this type of vdW potential can be calculated and stored before
sampling because of the fixed main chain and the finite side-
chain rotamers. The third type is the vdW interaction between
side-chain atoms on different residues, and this type of vdW
interaction needs to be calculated during sampling because it
depends on the side-chain configurations of other residues. In
summary, before sampling, we calculate and store the DASF
term, the rotamer-frequency-related term, and the vdW term
between main-chain atoms and side-chain atoms of all
rotamers in rotamer libraray for all residues.
After initialization, we choose the rotamer with the

minimum score of the three terms mentioned above for each
residue and reconstruct the side-chain configuration. This
reconstructed configuration after initialization is called OPUS-
Rota2i.

Neighbor List. In order to accelerate the calculation for the
vdW interactions between side-chain atoms on different
residues, the same as OPUS-Rota, a neighbor list is built in
OPUS-Rota2 before sampling using the inverse triangle
inequality: ||x − y − z || ≥ ||x|| − ||z||. Since the main-chain
atoms are fixed, Cβ can be calculated directly;48 let d(i, j) be
the distance between atoms i and j and Cβ(i) be the value for
the Cβ atom corresponding to the residue of atom i. Therefore,
d(i, j) ≥ d(Cβ(i), Cβ(j)) − max(d(i, Cβ(i)) − max(d(j, Cβ(j)),
where max(d(·)) is calculated using the configuration
reconstructed by all possible rotamers. Given that the distance
between any two Cβ atoms (Cα atoms for Gly) from different
residues is a constant for a fixed main chain, the minimum
distance between any two residues can be estimated before the
sampling. Therefore, we only need to consider the vdW
interactions for the atom pairs between the residue pairs whose
vdW cutoff distance is less than 2.5.

Sampling. In OPUS-Rota2, a simplified sampling method is
employed. First, the rotamer of each residue in OPUS-Rota2i
is used as the starting point of the sampling procedure. Then,
200 rounds of sampling are performed. In each round, we
choose each residue in a random order and sample the rotamer
from the rotamer library for the chosen residue. After each
sampling, we reconstruct the chosen residue using the sampled
rotamer and calculate the energy via the complete energy
function which includes four terms. If the energy is decreased,
we accept the sampled rotamer; otherwise, we keep the old
one.
Although the sampling procedure is simpler in OPUS-Rota2

than that in OPUS-Rota for time efficiency, the results show
that this simplified sampling method works well.

Data Preparation. Training Sets. To generate four DASF
lookup tables, we downloaded the entire PDB which contains
150 742 structures from ftp://ftp.wwpdb.org/pub/pdb/data/
structures/divided/pdb on May 10, 2019. We removed the
structures in decoy sets and side-chain modeling test sets.

Native Test Sets. We used both the 65-protein test set
(DB65) in the OPUS-Rota43 paper and the 379-protein test
set (DB379) in the SCWRL437 paper to evaluate different
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side-chain modeling methods. We cleaned the PDB files in
these two test sets with the following rules: First, if a protein
has more than one chain, we only use the first chain. Second, if
the atom has more than one conformation, we only use
conformation A. Third, if any atom in the main chain is
missing, we exclude this protein. We separate each clean set
into two subsets, one of which contains main-chain atoms only
and the other contains all atoms. The two sets can be
downloaded from our Web site.
Non-Native Test Sets. To evaluate the performance of

different side-chain modeling methods when the configurations
of the main chains are non-native, we added random noise
with various strengths to the main-chain torsional angles. First,
the proteins in DB65 and DB379 are combined to a new test
set, DB437. Then, a non-native main-chain test set is
constructed using the main-chain torsional angles with their
original values multiplied by a modulating factor randomly
sampled from a Gaussian distribution for all proteins in
DB437. We used 10 different levels of noise strength; i.e., the
mean values of Gaussian are 1.0, and the standard deviations of
them are (0.001, 0.003, 0.005, 0.008, 0.01, 0.013, 0.014, 0.015,
0.016, 0.02). Thus, we have 10 non-native test sets, with each
of them containing 437 proteins. The corresponding average
main-chain RMSD49 values of 437 proteins (between the
randomized structure and the native structure) at each noise
level are (0.21, 0.57, 0.93, 1.48, 1.88, 2.38, 2.55, 2.74, 2.95,

3.68) Å. All the non-native main-chain test sets we construct
can also be download from our Web site.

■ RESULTS

Performance of OPUS-DASF. We evaluate the perform-
ance of OPUS-DASF on five decoy sets. For comparison, the
performances of GOAP,50 OPUS-CSF,46 and OPUS-SSF51 are
also listed in Table 2. The results show that OPUS-DASF,
which used side-chain information exclusively, achieves a
comparable performance with OPUS-CSF, which is only based
on the main-chain structure. OPUS-SSF combines the
information on the side chain and the main chain and delivers
the best results.

Performance of OPUS-Rota2 on Native Test Sets. The
performance of OPUS-Rota2 is compared with that of
SCWRL4,37 OPUS-Rota,37 OSCAR-star,35 and OSCAR-o36

on test sets DB65 and DB379. The results are shown in Table
3. In terms of the accuracy of χ1 and χ1+2 and the value of
aRMSD, OPUS-Rota2 is better than SCWRL4, OPUS-Rota,
and OSCAR-star, but slightly worse than OSCAR-o. However,
OPUS-Rota2 is significantly faster than any other method, 2×
faster than SCWRL4, 3× faster than Rota, and 6× and 500×
faster than OSCAR-star and OSCAR-o, respectively. More-
over, the nonsampling version OPUS-Rota2i is 2× faster than
OPUS-Rota2 while achieving a comparable accuracy with
OSCAR-star.

Table 2. Results of OPUS-DASF on Five Decoy Sets Compared with GOAP, OPUS-CSF, and OPUS-SSF Resultsa

total GOAP OPUS-CSF OPUS-SSF OPUS-DASF

3DRobot 200 94 (−1.86) 189 (−4.86) 186 (−5.24) 183 (−5.55)
Rosetta (3DR) 58 37 (−2.16) 51 (−3.83) 53 (−3.98) 52 (−3.95)
I-Tasser (3DR) 56 18 (−1.66) 36 (−3.47) 38 (−3.81) 38 (−3.40)
Rosetta 58 45 (−3.39) 47 (−5.43) 52 (−5.81) 47 (−4.46)
I-Tasser 56 45 (−4.99) 47 (−7.70) 50 (−9.11) 49 (−8.34)

aThe numbers of targets, with their native structures successfully recognized by various potentials, are listed in the table. The numbers in
parentheses are the average Z-scores of the native structures. The larger the absolute value of the Z-score is, the better our results are. 3DRobot
datasets,52 which include 3DRobot, Rosetta (3DR), and I-Tasser (3DR), are downloaded from https://zhanglab.ccmb.med.umich.edu/3DRobot/
decoys. Rosetta and I-Tasser are the original classical benchmarks.53,54

Table 3. Performance of Different Side-Chain Modeling Methodsa

DB65 SCWRL4 OPUS-Rota OSCAR-star OSCAR-o OPUS-Rota2i OPUS-Rota2

χ1 0.86 0.88 0.89 0.90 0.89 0.90
χ1+2 0.68 0.71 0.72 0.74 0.74 0.74
χ1+2+3 0.41 0.46 0.47 0.51 0.50 0.51
χ1+2+3+4 0.30 0.36 0.35 0.39 0.38 0.38
aRMSD 0.67 0.59 0.58 0.53 0.55 0.54
SD 0.58 0.55 0.53 0.53 0.53 0.51
time 1.91 2.98 6.55 583.00 0.55 0.98
DB379 SCWRL4 OPUS-Rota OSCAR-star OSCAR-o OPUS-Rota2i OPUS-Rota2

χ1 0.85 0.86 0.87 0.88 0.86 0.87
χ1+2 0.68 0.69 0.70 0.73 0.69 0.71
χ1+2+3 0.39 0.41 0.42 0.47 0.43 0.45
χ1+2+3+4 0.29 0.31 0.32 0.37 0.32 0.33
aRMSD 0.68 0.64 0.62 0.57 0.63 0.61
SD 0.60 0.59 0.57 0.57 0.59 0.58
time 2.13 3.08 6.35 569.05 0.54 0.95

aThe accuracy of χ1 is defined as the percentage of residues whose predicted χ1 is no more than 40° from the native value, and the accuracy of χ1+2
is defined as the percentage of residues for which both χ1 and χ2 are in the 40° range compared to the native value. The same goes for the χ1+2+3 and
the χ1+2+4 rows. For these indicators, the larger the better. The aRMSD row stands for the average RMSD between all atoms in the predicted
residue and the native residue; the smaller its value is, the better. SD stands for the standard deviation of all RMSDs. We ignore the comparison for
the residue if any side-chain atom in its native configuration is missing. Time stands for the average time for modeling each structure.
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Contributions of Different Terms in OPUS-Rota2
Energy Function. In order to find out the dominant
contributing energy term in OPUS-Rota2, the vdW term, the
rotamer-frequency-related term, and the DASF term are used
alone to examine the performance. As shown in Table 4, when

using the DASF term exclusively, the accuracies of χ1, χ1+2,
χ1+2+3, and χ1+2+3+4 and the value of aRMSD are significantly
better than those using the other two terms. These results
demonstrate the dominant contribution of the DASF term in
the prediction accuracy. In contrast, in OPUS-Rota,43 the
dominant term is the vdW term. Given that the main difference
between OPUS-Rota and OPUS-Rota2 is that OPUS-Rota2
uses the OPUS-DASF term while OPUS-Rota uses the OPUS-
PSP term, a reasonable assumption is that the improvement of
empirical potential leads to the improvement of the side-chain
modeling method.
Performance of OPUS-Rota2 on Non-Native Test

Sets. To evaluate the performance of different side-chain
modeling methods on non-native main chains, we compare the
performances of OPUS-Rota2i and OPUS-Rota2 with those of
SCWRL4, OSCAR-star, OSCAR-o, and OPUS-Rota on three
non-native test sets. The main-chain aRMSD values between
non-native and original native structures in these three non-
native test sets are 0.93, 1.88, and 3.68 Å, respectively. Figure 1
shows that, in terms of χ1 accuracy, both OPUS-Rota2i and
OPUS-Rota2 deliver better performance than other methods
in all three non-native test sets. With the same modeling
method, as the main-chain aRMSD increases, the performance
decreases somewhat as expected; i.e., for all methods, the blue
bar is the tallest and the green bar is the shortest. For the
relative decrease between the green bars vs the blue bars, both
OPUS-Rota2i and OPUS-Rota2 methods have the smallest
rangeability compared with other methods, indicating that
both OPUS-Rota2i and OPUS-Rota2 methods are more
resilient to the increasing deviations of the main-chain
conformations.
We further examine the performance of OPUS-Rota2i and

OPUS-Rota2 on 10 non-native main-chain test sets, and the
results are shown in Figure 2. It seems that OPUS-Rota2 is
better than OPUS-Rota2i when the main chains are very close
to the native ones (<0.7 Å), while OPUS-Rota2i outperforms
OPUS-Rota2 as the main-chain aRMSD increases. This is an
interesting feature as OPUS-Rota2i is faster than OPUS-Rota2;

thus, it may be advantageous to use OPUS-Rota2i at the earlier
stages with a lower quality of main chains, and OPUS-Rota2
should be used when the main chains are closer to the native
states.

■ CONCLUDING DISCUSSION
Side-chain modeling is essential for protein structure
prediction and high-accuracy refinement. However, despite
the great success of the current methods, many of them are still
relatively inefficient, which dramatically limits their usage. In
this paper, we proposed a new side-chain modeling method
called OPUS-Rota2. It has mainly two virtues: First, it balances
the accuracy and the speed. Second, it also works well on non-
native main chains. Both of these virtues are important in real
applications, in which cases the main chains are usually non-
native and the modeling process is iterative.
OPUS-Rota2 is based on our previous work, OPUS-Rota,43

but with important modifications. The main difference is that
we use the OPUS-DASF term, which specifically describes the

Table 4. Contributions of Different Energy Termsa

DB65
vdW
term

rotamer
term

DASF
term OPUS-Rota2i OPUS-Rota2

χ1 0.74 0.73 0.85 0.89 0.90
χ1+2 0.47 0.52 0.66 0.74 0.74
χ1+2+3 0.19 0.24 0.44 0.50 0.51
χ1+2+3+4 0.10 0.16 0.32 0.38 0.38
aRMSD 0.97 0.94 0.66 0.55 0.54

DB379
vdW
term

rotamer
term

DASF
term OPUS-Rota2i OPUS-Rota2

χ1 0.72 0.73 0.79 0.86 0.87
χ1+2 0.44 0.53 0.57 0.69 0.71
χ1+2+3 0.17 0.24 0.35 0.43 0.45
χ1+2+3+4 0.08 0.17 0.25 0.32 0.33
aRMSD 1.03 0.94 0.81 0.63 0.61

aThe energy function of each version of OPUS-Rota2 contains only
one corresponding energy term.

Figure 1. Performance of different side-chain modeling methods on
different non-native test sets. Three non-native test sets (each
containing 437 proteins) are chosen for demonstration. Their
corresponding average RMSD (aRMSD) values from the native
structures are 0.93, 1.88, and 3.68 Å, respectively. Only the accuracy
of χ1 is used as an indicator. It is clear that OPUS-Rota2 and OPUS-
Rota2i deliver better predicted values for χ1 than all other methods.

Figure 2. Performance of OPUS-Rota2 and OPUS-Rota2i on 10
different non-native test sets as a function of aRMSD. It suggests that
the accuracy of prediction of χ1 only decreases moderately when the
main-chain aRMSD increases multiple times. Also, at larger values of
aRMSD, OPUS-Rota2i seems to be better than OPUS-Rota2.
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relative conformation of side chains, to replace the OPUS-
PSP44 term in OPUS-Rota. In OPUS-Rota, the dominant
contribution term for prediction accuracy is the vdW term,
while in OPUS-Rota2, the dominant term becomes the OPUS-
DASF term (Table 4). OPUS-DASF is based on our previous
work, OPUS-CSF,46 and it is a fast and accurate scoring
function that can be used to distinguish the native protein
structures from their decoys based on the conformations of
their side chains exclusively. The good performance of OPUS-
DASF (Table 2) is the critical methodological improvement in
OPUS-Rota2 for modeling side chains.
We used both the 65-protein test set (DB65) in the OPUS-

Rota paper43 and the 379-protein test set (DB379) in the
SCWRL4 paper37 to evaluate the performance of OPUS-Rota2
and other methods. When the main chain is native, OPUS-
Rota2 is more accurate than OPUS-Rota, SCWRL4, and
OSCAR-star, but slightly less accurate than OSCAR-o (Table
3). However, OPUS-Rota2 is significantly faster than any other
method: 2× faster than SCWRL4, 3× faster than OPUS-Rota,
and 6× and 500× faster than OSCAR-star and OSCAR-o,
respectively. Moreover, the nonsampling version OPUS-Rota2i
is even 2× faster than OPUS-Rota2 while achieving a
comparable accuracy with OSCAR-star.
To evaluate the performance of different side-chain

modeling methods on the non-native main chains, we add
Gaussian noise to the torsional angles of the original native
main chains to build 10 non-native main-chain test sets. When
the main chain is non-native, OPUS-Rota2i and OPUS-Rota2
are more accurate than any other method (Figure 1). It is
noteworthy that OPUS-Rota2 is better than OPUS-Rota2i
when the main chain is close to the native structure (<0.7 Å),
and OPUS-Rota2i outperforms OPUS-Rota2 when the main
chain is far from the native structure (>0.7 Å). This seems to
suggest that, at an earlier stage of side-chain modeling, in
which case the main chain is not close to the native state,
OPUS-Rota2i is advantageous, while in a later stage when the
main chain is more accurate, OPUS-Rota2 should be used. The
main difference between OPUS-Rota2i and OPUS-Rota2 is
that the former does not consider the vdW interactions
between side-chain atoms on different residues, which is also
the reason that OPUS-Rota2i is 2× faster than OPUS-Rota2.
Overall, OPUS-Rota2i and OPUS-Rota2 can construct the

side-chain conformation accurately in a very short time, and
the high speed in side-chain modeling plays a very important
role as the modeling processes of protein structures are usually
iterative and require many rounds of building and rebuilding.
Thus, the combination of higher accuracy and speed of OPUS-
Rota2i and OPUS-Rota2 in modeling side chains on both the
native and non-native main chains makes them very useful
tools in protein structure modeling.
In protein folding, the uniqueness of the native structure is

solely determined by the side-chain packing specificity rather
than by that of the main chain. Therefore, there are reasons to
believe that the nativeness of side chains before the polypeptide
chain reaches the final native state is vitally important to the
final stage of folding; i.e., the ultimate folding process is driven
by side-chain packing. However, most of protein structure
prediction procedures, especially the knowledge-based homol-
ogy modeling methods, build the main chains first and add the
side chains last. Such a common practice is opposite to nature’s
law of folding. In other words, the ability of modeling the side-
chain conformation based on not-so-native main-chains is
extremely important in structure prediction, and it may

potentially open up a totally new way of doing structure
prediction.

Accessibility of OPUS-Rota2. The side-chain modeling
program is freely available for all of the academic community.
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