File size: 5,191 Bytes
e4f0457
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ca1bec
 
e4f0457
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
from collections import defaultdict
import os
import json
import csv

import datasets

_NAME="masri_dev"
_VERSION="1.0.0"
_AUDIO_EXTENSIONS=".flac"

_DESCRIPTION = """
The MASRI-DEV CORPUS was created out of YouTube videos belonging to the channel of the University of Malta. It has a length of 1 hour and it is gender balanced, as it has the same number of male and female speakers.
"""

_CITATION = """
@misc{carlosmenamasridev2020,
      title={MASRI-DEV CORPUS: Audio and Transcriptions in Maltese extracted from the YouTube channel of the University of Malta.}, 
      author={Hernandez Mena, Carlos Daniel and  Brincat, Ayrton Didier and Gatt, Albert and DeMarco, Andrea and Borg, Claudia and van der Plas, Lonneke and Meza Ruiz, Iván Vladimir},
      journal={MASRI Project, Malta},
      year={2020},
      url={https://www.um.edu.mt/projects/masri/},
}
"""

_HOMEPAGE = "https://www.um.edu.mt/projects/masri/"

_LICENSE = "CC-BY-4.0. The copyright remains with the original owners of the video. See https://creativecommons.org/licenses/by/4.0/"

_BASE_DATA_DIR = "corpus/"
_METADATA_DEV   =  os.path.join(_BASE_DATA_DIR,"files",  "metadata_dev.tsv")

_TARS_DEV   = os.path.join(_BASE_DATA_DIR,"files",  "tars_dev.paths")

class MasriDevConfig(datasets.BuilderConfig):
    """BuilderConfig for MASRI-DEV Corpus"""

    def __init__(self, name, **kwargs):
        name=_NAME
        super().__init__(name=name, **kwargs)

class MasriDev(datasets.GeneratorBasedBuilder):
    """MASRI-DEV Corpus"""

    VERSION = datasets.Version(_VERSION)
    BUILDER_CONFIGS = [
        MasriDevConfig(
            name=_NAME,
            version=datasets.Version(_VERSION),
        )
    ]

    def _info(self):
        features = datasets.Features(
            {
                "audio_id": datasets.Value("string"),
                "audio": datasets.Audio(sampling_rate=16000),
                "speaker_id": datasets.Value("string"),
                "gender": datasets.Value("string"),
                "duration": datasets.Value("float32"),
                "normalized_text": datasets.Value("string"),
            }
        )
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):

        metadata_dev=dl_manager.download_and_extract(_METADATA_DEV)
        
        tars_dev=dl_manager.download_and_extract(_TARS_DEV)
        
        hash_tar_files=defaultdict(dict)

        with open(tars_dev,'r') as f:
            hash_tar_files['dev']=[path.replace('\n','') for path in f]

        hash_meta_paths={"dev":metadata_dev}
        audio_paths = dl_manager.download(hash_tar_files)
        
        splits=["dev"]
        local_extracted_audio_paths = (
            dl_manager.extract(audio_paths) if not dl_manager.is_streaming else
            {
                split:[None] * len(audio_paths[split]) for split in splits
            }
        )                                                                                                            
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              
        return [
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "audio_archives": [dl_manager.iter_archive(archive) for archive in audio_paths["dev"]],
                    "local_extracted_archives_paths": local_extracted_audio_paths["dev"],
                    "metadata_paths": hash_meta_paths["dev"],
                }
            ),
        ]

    def _generate_examples(self, audio_archives, local_extracted_archives_paths, metadata_paths):

        features = ["speaker_id","gender","duration","normalized_text"]
        
        with open(metadata_paths) as f:
            metadata = {x["audio_id"]: x for x in csv.DictReader(f, delimiter="\t")}

        for audio_archive, local_extracted_archive_path in zip(audio_archives, local_extracted_archives_paths):
            for audio_filename, audio_file in audio_archive:
                #audio_id = audio_filename.split(os.sep)[-1].split(_AUDIO_EXTENSIONS)[0]
                audio_id =os.path.splitext(os.path.basename(audio_filename))[0]
                path = os.path.join(local_extracted_archive_path, audio_filename) if local_extracted_archive_path else audio_filename
                                        
                yield audio_id, {
                    "audio_id": audio_id,
                    **{feature: metadata[audio_id][feature] for feature in features},
                    "audio": {"path": path, "bytes": audio_file.read()},
                }