|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""macocu_parallel""" |
|
|
|
|
|
import os |
|
import csv |
|
import datasets |
|
|
|
|
|
_CITATION = """\ |
|
@inproceedings{banon2022macocu, |
|
title={MaCoCu: Massive collection and curation of monolingual and bilingual data: focus on under-resourced languages}, |
|
author={Ban{\'o}n, Marta and Espla-Gomis, Miquel and Forcada, Mikel L and Garc{\'\i}a-Romero, Cristian and Kuzman, Taja and Ljube{\v{s}}i{\'c}, Nikola and van Noord, Rik and Sempere, Leopoldo Pla and Ram{\'\i}rez-S{\'a}nchez, Gema and Rupnik, Peter and others}, |
|
booktitle={23rd Annual Conference of the European Association for Machine Translation, EAMT 2022}, |
|
pages={303--304}, |
|
year={2022}, |
|
organization={European Association for Machine Translation} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
The MaCoCu parallel dataset is an English-centric collection of 11 |
|
parallel corpora including the following languages: Albanian, |
|
Bulgarian, Bosnian, Croatian, Icelandic, Macedonian, Maltese, |
|
Montenegrin, Serbian, Slovenian, and Turkish. These corpora have |
|
been automatically crawled from national and generic top-level |
|
domains (for example, ".hr" for croatian, or ".is" for icelandic); |
|
then, a parallel curation pipeline has been applied to produce |
|
the final data (see https://github.com/bitextor/bitextor). |
|
""" |
|
|
|
_LanguagePairs = [ "en-is" ] |
|
|
|
|
|
|
|
_LICENSE = "cc0" |
|
_HOMEPAGE = "https://macocu.eu" |
|
|
|
class macocuConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for macocu_parallel""" |
|
|
|
def __init__(self, language_pair, **kwargs): |
|
super().__init__(**kwargs) |
|
""" |
|
|
|
Args: |
|
language_pair: language pair to be loaded |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
self.language_pair = language_pair |
|
|
|
|
|
class MaCoCu_parallel(datasets.GeneratorBasedBuilder): |
|
VERSION = datasets.Version("1.0.0") |
|
|
|
BUILDER_CONFIG_CLASS = macocuConfig |
|
BUILDER_CONFIGS = [ |
|
macocuConfig(name=pair, description=_DESCRIPTION, language_pair=pair ) |
|
for pair in _LanguagePairs |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features({ |
|
"src_url": datasets.Value("string"), |
|
"trg_url": datasets.Value("string"), |
|
"src_text": datasets.Value("string"), |
|
"trg_text": datasets.Value("string"), |
|
"bleualign_score": datasets.Value("string"), |
|
"src_deferred_hash": datasets.Value("string"), |
|
"trg_deferred_hash": datasets.Value("string"), |
|
"src_paragraph_id": datasets.Value("string"), |
|
"trg_paragraph_id": datasets.Value("string"), |
|
"src_doc_title": datasets.Value("string"), |
|
"trg_doc_title": datasets.Value("string"), |
|
"src_crawl_date": datasets.Value("string"), |
|
"trg_crawl_date": datasets.Value("string"), |
|
"src_file_type": datasets.Value("string"), |
|
"trg_file_type": datasets.Value("string"), |
|
"src_boilerplate": datasets.Value("string"), |
|
"trg_boilerplate": datasets.Value("string"), |
|
"src_heading_html_tag": datasets.Value("string"), |
|
"trg_heading_html_tag": datasets.Value("string"), |
|
"bifixer_hash": datasets.Value("string"), |
|
"bifixer_score": datasets.Value("string"), |
|
"bicleaner_ai_score": datasets.Value("string"), |
|
"biroamer_entities_detected": datasets.Value("string"), |
|
"dsi": datasets.Value("string"), |
|
"translation_direction": datasets.Value("string"), |
|
"en_document_level_variant": datasets.Value("string"), |
|
"domain_en": datasets.Value("string"), |
|
"en_domain_level_variant": datasets.Value("string") |
|
}), |
|
homepage=_HOMEPAGE, |
|
citation=_CITATION, |
|
license=_LICENSE |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
|
|
lang_pair = self.config.language_pair |
|
|
|
path = os.path.join("data", f"{lang_pair}.tsv") |
|
|
|
data_file = dl_manager.download_and_extract({"data_file": path}) |
|
return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs=data_file)] |
|
|
|
def _generate_examples(self, data_file): |
|
"""Yields examples.""" |
|
with open(data_file, encoding="utf-8") as f: |
|
reader = csv.reader(f, delimiter="\t", quotechar='"') |
|
for id_, row in enumerate(reader): |
|
if id_ == 0: |
|
continue |
|
yield id_, { |
|
"src_url": row[0], |
|
"trg_url": row[1], |
|
"src_text": row[2], |
|
"trg_text": row[3], |
|
"bleualign_score": row[4], |
|
"src_deferred_hash": row[5], |
|
"trg_deferred_hash": row[6], |
|
"src_paragraph_id": row[7], |
|
"trg_paragraph_id": row[8], |
|
"src_doc_title": row[9], |
|
"trg_doc_title": row[10], |
|
"src_crawl_date": row[11], |
|
"trg_crawl_date": row[12], |
|
"src_file_type": row[13], |
|
"trg_file_type": row[14], |
|
"src_boilerplate": row[15], |
|
"trg_boilerplate": row[16], |
|
"src_heading_html_tag": row[17], |
|
"trg_heading_html_tag": row[18], |
|
"bifixer_hash": row[19], |
|
"bifixer_score": row[20], |
|
"bicleaner_ai_score": row[21], |
|
"biroamer_entities_detected": row[22], |
|
"dsi": row[23], |
|
"translation_direction": row[24], |
|
"en_document_level_variant": row[25], |
|
"domain_en": row[26], |
|
"en_domain_level_variant": row[27] |
|
} |
|
|
|
|