File size: 1,447 Bytes
0edb09e
 
 
 
 
 
 
 
80bef96
 
 
 
 
cca935a
0edb09e
38fd8ac
 
 
 
 
7ae954a
 
b3ba353
7ae954a
38fd8ac
 
 
7ae954a
38fd8ac
7ae954a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38fd8ac
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
---
license: apache-2.0
task_categories:
- question-answering
language:
- en
size_categories:
- n<1K
configs:
- config_name: benchmark
  data_files:
  - split: test
    path: dataset.json
paperswithcode_id: mapeval-visual
---

# MapEval-Visual

This dataset was introduced in [MapEval](https://arxiv.org/abs/2501.00316)

## Prerequisite

Download the [Vdata.zip](https://huggingface.co/datasets/MapEval/MapEval-Visual/resolve/main/Vdata.zip?download=true) and extract in the working directory.

## Usage
```python
from datasets import load_dataset
import PIL.Image
# Load dataset
ds = load_dataset("MapEval/MapEval-Visual", name="benchmark")

for item in ds["test"]:
   
    # Start with a clear task description
    prompt = (
        "You are a highly intelligent assistant. "
        "Based on the given image, answer the multiple-choice question by selecting the correct option.\n\n"
        "Question:\n" + item["question"] + "\n\n"
        "Options:\n"
    )
    
    # List the options more clearly
    for i, option in enumerate(item["options"], start=1):
        prompt += f"{i}. {option}\n"
    
    # Add a concluding sentence to encourage selection of the answer
    prompt += "\nSelect the best option by choosing its number."
    
    # Pass the image to the model along with the prompt
    img = PIL.Image.open(item["context"])
    
    # Use the prompt as needed
    print([prompt, img])  # Replace with your processing logic
```