elliesleightholm commited on
Commit
6449c67
·
verified ·
1 Parent(s): ba2346f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +287 -0
README.md CHANGED
@@ -23,3 +23,290 @@ configs:
23
  - split: data
24
  path: data/data-*
25
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23
  - split: data
24
  path: data/data-*
25
  ---
26
+
27
+
28
+ <div style="display: flex; align-items: center; gap: 10px;">
29
+ <a href="https://www.marqo.ai/blog/introducing-marqos-ecommerce-embedding-models">
30
+ <img src="https://img.shields.io/badge/Model_Release-Blog-blue?logo=font-awesome&logoColor=white&style=flat&logo=pencil-alt" alt="Blog">
31
+ </a>
32
+ <a href="https://github.com/marqo-ai/marqo-ecommerce-embeddings">
33
+ <img src="https://img.shields.io/badge/GitHub-Repo-black?logo=github" alt="GitHub Repo">
34
+ </a>
35
+ <a href="https://www.marqo.ai/blog/how-to-build-an-ecommerce-image-search-application">
36
+ <img src="https://img.shields.io/badge/Ecommerce Search-Blog-red?logo=font-awesome&logoColor=white&style=flat&logo=pencil-alt" alt="Blog">
37
+ </a>
38
+ <a href="https://join.slack.com/t/marqo-community/shared_invite/zt-2b4nsvbd2-TDf8agPszzWH5hYKBMIgDA">
39
+ <img src="https://img.shields.io/badge/Slack-4A154B?style=for-the-badge&logo=slack&logoColor=white" alt=Slack Community">
40
+ </a>
41
+ </div>
42
+
43
+ # Marqo Ecommerce Embedding Models
44
+ **In this work, we introduce the AmazonProducts-3m dataset for evaluation.** This dataset comes with the release of our state-of-the-art embedding models for ecommerce products: [Marqo-Ecommerce-B](https://huggingface.co/Marqo/marqo-ecommerce-embeddings-B) and [Marqo-Ecommerce-L](https://huggingface.co/Marqo/marqo-ecommerce-embeddings-L).
45
+
46
+ **Released Content**:
47
+ 1) Marqo-Ecommerce-B and Marqo-Ecommerce-L embedding models
48
+ 2) GoogleShopping-1m and AmazonProducts-3m for evaluation
49
+ 3) Evaluation Code
50
+
51
+ The benchmarking results show that the Marqo-Ecommerce models consistently outperformed *all other models* across various metrics. Specifically, `marqo-ecommerce-L` achieved an average improvement of **17.6% in MRR** and **20.5% in nDCG@10** when compared with the current best open source model, `ViT-SO400M-14-SigLIP` across all three tasks in the `marqo-ecommerce-hard` dataset. When compared with the best private model, `Amazon-Titan-Multimodal`, we saw an average improvement of **38.9% in MRR** and **45.1% in nDCG@10** across all three tasks, and **35.9% in Recall** across the Text-to-Image tasks in the `marqo-ecommerce-hard` dataset.
52
+
53
+ <img src="https://raw.githubusercontent.com/marqo-ai/marqo-ecommerce-embeddings/main/performance.png" alt="multi split visual" width="700"/>
54
+
55
+ More benchmarking results can be found below.
56
+
57
+ ## Models
58
+
59
+ | **Embedding Model** | **#Params (m)** | **Dimension** | **HuggingFace** | **Download .pt** |
60
+ |---------------------| --- |---------------|------------------------------------|-------------------------------------------------------------------------------------------------------------|
61
+ | Marqo-Ecommerce-B | 203 | 768 | [Marqo/marqo-ecommerce-embeddings-B](https://huggingface.co/Marqo/marqo-ecommerce-embeddings-B) | [link](https://marqo-gcl-public.s3.us-west-2.amazonaws.com/marqo-general-ecomm/marqo-ecomm-embeddings-b.pt) |
62
+ | Marqo-Ecommerce-L | 652 | 1024 | [Marqo/marqo-ecommerce-embeddings-L](https://huggingface.co/Marqo/marqo-ecommerce-embeddings-L) | [link](https://marqo-gcl-public.s3.us-west-2.amazonaws.com/marqo-general-ecomm/marqo-ecomm-embeddings-l.pt) |
63
+
64
+ ### Load from HuggingFace with transformers
65
+ To load the models in Transformers, see below. The models are hosted on [Hugging Face](https://huggingface.co/collections/Marqo/marqo-ecommerce-embeddings-66f611b9bb9d035a8d164fbb) and loaded using [Transformers](https://github.com/huggingface/transformers).
66
+
67
+ ```python
68
+ from transformers import AutoModel, AutoProcessor
69
+ import torch
70
+ from PIL import Image
71
+ import requests
72
+
73
+ model_name= 'Marqo/marqo-ecommerce-embeddings-L'
74
+ # model_name = 'Marqo/marqo-ecommerce-embeddings-B'
75
+
76
+ model = AutoModel.from_pretrained(model_name, trust_remote_code=True)
77
+ processor = AutoProcessor.from_pretrained(model_name, trust_remote_code=True)
78
+
79
+ img = Image.open(requests.get('https://raw.githubusercontent.com/marqo-ai/marqo-ecommerce-embeddings/refs/heads/main/images/dining-chairs.png', stream=True).raw).convert("RGB")
80
+ image = [img]
81
+ text = ["dining chairs", "a laptop", "toothbrushes"]
82
+ processed = processor(text=text, images=image, padding='max_length', return_tensors="pt")
83
+ processor.image_processor.do_rescale = False
84
+ with torch.no_grad():
85
+ image_features = model.get_image_features(processed['pixel_values'], normalize=True)
86
+ text_features = model.get_text_features(processed['input_ids'], normalize=True)
87
+
88
+ text_probs = (100 * image_features @ text_features.T).softmax(dim=-1)
89
+
90
+ print(text_probs)
91
+ # [1.0000e+00, 8.3131e-12, 5.2173e-12]
92
+ ```
93
+
94
+ ### Load from HuggingFace with OpenCLIP
95
+ To load the models in OpenCLIP, see below. The models are hosted on [Hugging Face](https://huggingface.co/collections/Marqo/marqo-ecommerce-embeddings-66f611b9bb9d035a8d164fbb) and loaded using [OpenCLIP](https://github.com/mlfoundations/open_clip). You can also find this code inside `run_models.py`.
96
+
97
+ ```
98
+ pip install open_clip_torch
99
+ ```
100
+ ```python
101
+ from PIL import Image
102
+ import open_clip
103
+ import requests
104
+ import torch
105
+
106
+ # Specify model from Hugging Face Hub
107
+ model_name = 'hf-hub:Marqo/marqo-ecommerce-embeddings-L'
108
+ # model_name = 'hf-hub:Marqo/marqo-ecommerce-embeddings-B'
109
+
110
+ model, preprocess_train, preprocess_val = open_clip.create_model_and_transforms(model_name)
111
+ tokenizer = open_clip.get_tokenizer(model_name)
112
+
113
+ # Preprocess the image and tokenize text inputs
114
+ # Load an example image from a URL
115
+ img = Image.open(requests.get('https://raw.githubusercontent.com/marqo-ai/marqo-ecommerce-embeddings/refs/heads/main/images/dining-chairs.png', stream=True).raw)
116
+ image = preprocess_val(img).unsqueeze(0)
117
+ text = tokenizer(["dining chairs", "a laptop", "toothbrushes"])
118
+
119
+ # Perform inference
120
+ with torch.no_grad(), torch.cuda.amp.autocast():
121
+ image_features = model.encode_image(image, normalize=True)
122
+ text_features = model.encode_text(text, normalize=True)
123
+
124
+ # Calculate similarity probabilities
125
+ text_probs = (100.0 * image_features @ text_features.T).softmax(dim=-1)
126
+
127
+ # Display the label probabilities
128
+ print("Label probs:", text_probs)
129
+ # [1.0000e+00, 8.3131e-12, 5.2173e-12]
130
+ ```
131
+
132
+ ### Evaluation
133
+ [Generalised Contrastiove Learning](https://github.com/marqo-ai/GCL) (GCL) is used for the evaluation. The following code can also be found in `scripts`.
134
+
135
+ ```
136
+ git clone https://github.com/marqo-ai/GCL
137
+ ```
138
+ Install the packages required by GCL.
139
+
140
+ **1. GoogleShopping-Text2Image Retrieval.**
141
+ ```
142
+ cd ./GCL
143
+ MODEL=hf-hub:Marqo/marqo-ecommerce-B
144
+ outdir=/MarqoModels/GE/marqo-ecommerce-B/gs-title2image
145
+ hfdataset=Marqo/google-shopping-general-eval
146
+ python evals/eval_hf_datasets_v1.py \
147
+ --model_name $MODEL \
148
+ --hf-dataset $hfdataset \
149
+ --output-dir $outdir \
150
+ --batch-size 1024 \
151
+ --num_workers 8 \
152
+ --left-key "['title']" \
153
+ --right-key "['image']" \
154
+ --img-or-txt "[['txt'], ['img']]" \
155
+ --left-weight "[1]" \
156
+ --right-weight "[1]" \
157
+ --run-queries-cpu \
158
+ --top-q 4000 \
159
+ --doc-id-key item_ID \
160
+ --context-length "[[64], [0]]"
161
+ ```
162
+
163
+ **2. GoogleShopping-Category2Image Retrieval.**
164
+ ```
165
+ cd ./GCL
166
+ MODEL=hf-hub:Marqo/marqo-ecommerce-B
167
+ outdir=/MarqoModels/GE/marqo-ecommerce-B/gs-cat2image
168
+ hfdataset=Marqo/google-shopping-general-eval
169
+ python evals/eval_hf_datasets_v1.py \
170
+ --model_name $MODEL \
171
+ --hf-dataset $hfdataset \
172
+ --output-dir $outdir \
173
+ --batch-size 1024 \
174
+ --num_workers 8 \
175
+ --left-key "['query']" \
176
+ --right-key "['image']" \
177
+ --img-or-txt "[['txt'], ['img']]" \
178
+ --left-weight "[1]" \
179
+ --right-weight "[1]" \
180
+ --run-queries-cpu \
181
+ --top-q 4000 \
182
+ --doc-id-key item_ID \
183
+ --context-length "[[64], [0]]"
184
+ ```
185
+
186
+ **3. AmazonProducts-Category2Image Retrieval.**
187
+ ```
188
+ cd ./GCL
189
+ MODEL=hf-hub:Marqo/marqo-ecommerce-B
190
+ outdir=/MarqoModels/GE/marqo-ecommerce-B/ap-title2image
191
+ hfdataset=Marqo/amazon-products-eval
192
+ python evals/eval_hf_datasets_v1.py \
193
+ --model_name $MODEL \
194
+ --hf-dataset $hfdataset \
195
+ --output-dir $outdir \
196
+ --batch-size 1024 \
197
+ --num_workers 8 \
198
+ --left-key "['title']" \
199
+ --right-key "['image']" \
200
+ --img-or-txt "[['txt'], ['img']]" \
201
+ --left-weight "[1]" \
202
+ --right-weight "[1]" \
203
+ --run-queries-cpu \
204
+ --top-q 4000 \
205
+ --doc-id-key item_ID \
206
+ --context-length "[[64], [0]]"
207
+ ```
208
+
209
+ ## Detailed Performance
210
+ Our benchmarking process was divided into two distinct regimes, each using different datasets of ecommerce product listings: marqo-ecommerce-hard and marqo-ecommerce-easy. Both datasets contained product images and text and only differed in size. The "easy" dataset is approximately 10-30 times smaller (200k vs 4M products), and designed to accommodate rate-limited models, specifically Cohere-Embeddings-v3 and GCP-Vertex (with limits of 0.66 rps and 2 rps respectively). The "hard" dataset represents the true challenge, since it contains four million ecommerce product listings and is more representative of real-world ecommerce search scenarios.
211
+
212
+ Within both these scenarios, the models were benchmarked against three different tasks:
213
+
214
+ * Google Shopping Text-to-Image
215
+ * Google Shopping Category-to-Image
216
+ * Amazon Products Text-to-Image
217
+
218
+ ### Marqo-Ecommerce-Hard
219
+ Marqo-Ecommerce-Hard looks into the comprehensive evaluation conducted using the full 4 million dataset, highlighting the robust performance of our models in a real-world context.
220
+
221
+ **GoogleShopping-Text2Image Retrieval.**
222
+
223
+ | **Embedding Model** | **mAP** | **R@10** | **MRR** | **nDCG@10** |
224
+ |-------------------------|------|-------|------|---------|
225
+ | **Marqo-Ecommerce-L** | **0.682**| **0.878** | **0.683**| **0.726** |
226
+ | Marqo-Ecommerce-B | 0.623| 0.832 | 0.624| 0.668 |
227
+ | ViT-SO400M-14-SigLip | 0.573| 0.763 | 0.574| 0.613 |
228
+ | ViT-L-16-SigLip | 0.540| 0.722 | 0.540| 0.577 |
229
+ | ViT-B-16-SigLip | 0.476| 0.660 | 0.477| 0.513 |
230
+ | Amazon-Titan-MultiModal | 0.475| 0.648 | 0.475| 0.509 |
231
+ | Jina-V1-CLIP | 0.285| 0.402 | 0.285| 0.306 |
232
+
233
+ **GoogleShopping-Category2Image Retrieval.**
234
+
235
+ | **Embedding Model** | **mAP** | **P@10** | **MRR** | **nDCG@10** |
236
+ |-----------------------------|---------|----------|---------|-------------|
237
+ | **Marqo-Ecommerce-L** | **0.463** | **0.652** | **0.822** | **0.666** |
238
+ | Marqo-Ecommerce-B | 0.423 | 0.629 | 0.810 | 0.644 |
239
+ | ViT-SO400M-14-SigLip | 0.352 | 0.516 | 0.707 | 0.529 |
240
+ | ViT-L-16-SigLip | 0.324 | 0.497 | 0.687 | 0.509 |
241
+ | ViT-B-16-SigLip | 0.277 | 0.458 | 0.660 | 0.473 |
242
+ | Amazon-Titan-MultiModal | 0.246 | 0.429 | 0.642 | 0.446 |
243
+ | Jina-V1-CLIP | 0.123 | 0.275 | 0.504 | 0.294 |
244
+
245
+ **AmazonProducts-Text2Image Retrieval.**
246
+
247
+ | **Embedding Model** | **mAP** | **R@10** | **MRR** | **nDCG@10** |
248
+ |-----------------------------|---------|----------|---------|-------------|
249
+ | **Marqo-Ecommerce-L** | **0.658** | **0.854** | **0.663** | **0.703** |
250
+ | Marqo-Ecommerce-B | 0.592 | 0.795 | 0.597 | 0.637 |
251
+ | ViT-SO400M-14-SigLip | 0.560 | 0.742 | 0.564 | 0.599 |
252
+ | ViT-L-16-SigLip | 0.544 | 0.715 | 0.548 | 0.580 |
253
+ | ViT-B-16-SigLip | 0.480 | 0.650 | 0.484 | 0.515 |
254
+ | Amazon-Titan-MultiModal | 0.456 | 0.627 | 0.457 | 0.491 |
255
+ | Jina-V1-CLIP | 0.265 | 0.378 | 0.266 | 0.285 |
256
+
257
+ ### Marqo-Ecommerce-Easy
258
+ This dataset is about 10-30 times smaller than the Marqo-Ecommerce-Hard, and designed to accommodate rate-limited models, specifically Cohere-Embeddings-v3 and GCP-Vertex.
259
+
260
+ **GoogleShopping-Text2Image Retrieval.**
261
+
262
+ | **Embedding Model** | **mAP** | **R@10** | **MRR** | **nDCG@10** |
263
+ |-----------------------------|---------|----------|---------|-------------|
264
+ | **Marqo-Ecommerce-L** | **0.879** | **0.971** | **0.879** | **0.901** |
265
+ | Marqo-Ecommerce-B | 0.842 | 0.961 | 0.842 | 0.871 |
266
+ | ViT-SO400M-14-SigLip | 0.792 | 0.935 | 0.792 | 0.825 |
267
+ | GCP-Vertex | 0.740 | 0.910 | 0.740 | 0.779 |
268
+ | ViT-L-16-SigLip | 0.754 | 0.907 | 0.754 | 0.789 |
269
+ | ViT-B-16-SigLip | 0.701 | 0.870 | 0.701 | 0.739 |
270
+ | Amazon-Titan-MultiModal | 0.694 | 0.868 | 0.693 | 0.733 |
271
+ | Jina-V1-CLIP | 0.480 | 0.638 | 0.480 | 0.511 |
272
+ | Cohere-embedding-v3 | 0.358 | 0.515 | 0.358 | 0.389 |
273
+
274
+ **GoogleShopping-Category2Image Retrieval.**
275
+
276
+ | **Embedding Model** | **mAP** | **P@10** | **MRR** | **nDCG@10** |
277
+ |-----------------------------|---------|----------|---------|-------------|
278
+ | **Marqo-Ecommerce-L** | **0.515** | **0.358** | **0.764** | **0.590** |
279
+ | Marqo-Ecommerce-B | 0.479 | 0.336 | 0.744 | 0.558 |
280
+ | ViT-SO400M-14-SigLip | 0.423 | 0.302 | 0.644 | 0.487 |
281
+ | GCP-Vertex | 0.417 | 0.298 | 0.636 | 0.481 |
282
+ | ViT-L-16-SigLip | 0.392 | 0.281 | 0.627 | 0.458 |
283
+ | ViT-B-16-SigLip | 0.347 | 0.252 | 0.594 | 0.414 |
284
+ | Amazon-Titan-MultiModal | 0.308 | 0.231 | 0.558 | 0.377 |
285
+ | Jina-V1-CLIP | 0.175 | 0.122 | 0.369 | 0.229 |
286
+ | Cohere-embedding-v3 | 0.136 | 0.110 | 0.315 | 0.178 |
287
+
288
+ **AmazonProducts-Text2Image Retrieval.**
289
+
290
+ | **Embedding Model** | **mAP** | **R@10** | **MRR** | **nDCG@10** |
291
+ |-----------------------------|---------|----------|---------|-------------|
292
+ | **Marqo-Ecommerce-L** | **0.92** | **0.978** | **0.928** | **0.940** |
293
+ | Marqo-Ecommerce-B | 0.897 | 0.967 | 0.897 | 0.914 |
294
+ | ViT-SO400M-14-SigLip | 0.860 | 0.954 | 0.860 | 0.882 |
295
+ | ViT-L-16-SigLip | 0.842 | 0.940 | 0.842 | 0.865 |
296
+ | GCP-Vertex | 0.808 | 0.933 | 0.808 | 0.837 |
297
+ | ViT-B-16-SigLip | 0.797 | 0.917 | 0.797 | 0.825 |
298
+ | Amazon-Titan-MultiModal | 0.762 | 0.889 | 0.763 | 0.791 |
299
+ | Jina-V1-CLIP | 0.530 | 0.699 | 0.530 | 0.565 |
300
+ | Cohere-embedding-v3 | 0.433 | 0.597 | 0.433 | 0.465 |
301
+
302
+ ## Citation
303
+ ```
304
+ @software{zhu2024marqoecommembed_2024,
305
+ author = {Tianyu Zhu and and Jesse Clark},
306
+ month = oct,
307
+ title = {{Marqo Ecommerce Embeddings - Foundation Model for Product Embeddings}},
308
+ url = {https://github.com/marqo-ai/marqo-ecommerce-embeddings/},
309
+ version = {1.0.0},
310
+ year = {2024}
311
+ }
312
+ ```