MattiaSangermano commited on
Commit
b0ceff2
·
verified ·
1 Parent(s): 84b0b0b

Update README.md

Browse files

Added citation information

Files changed (1) hide show
  1. README.md +87 -72
README.md CHANGED
@@ -1,72 +1,87 @@
1
- ---
2
- language:
3
- - it
4
- license: cc-by-nc-sa-4.0
5
- configs:
6
- - config_name: default
7
- data_files:
8
- - split: train
9
- path: data/train-*
10
- - split: test
11
- path: data/test-*
12
- - split: test_ood
13
- path: data/test_ood-*
14
- dataset_info:
15
- features:
16
- - name: id
17
- dtype: string
18
- - name: text
19
- dtype: string
20
- - name: emotion_labels
21
- sequence:
22
- class_label:
23
- names:
24
- '0': Anger
25
- '1': Anticipation
26
- '2': Disgust
27
- '3': Fear
28
- '4': Joy
29
- '5': Love
30
- '6': Neutral
31
- '7': Sadness
32
- '8': Surprise
33
- '9': Trust
34
- - name: target_labels
35
- sequence:
36
- class_label:
37
- names:
38
- '0': Direction
39
- '1': Topic
40
- splits:
41
- - name: train
42
- num_bytes: 1010988
43
- num_examples: 5966
44
- - name: test
45
- num_bytes: 169792
46
- num_examples: 1000
47
- - name: test_ood
48
- num_bytes: 137719
49
- num_examples: 1000
50
- download_size: 844581
51
- dataset_size: 1318499
52
- ---
53
-
54
- ### EMit
55
- **Disclaimer: This dataset is not the official EMit repository from EVALITA. For the official repository and more information, please visit the [EVALITA EMit page](http://www.di.unito.it/~tutreeb/emit23/index.html) or the [EMit repository](https://github.com/oaraque/emit).**
56
-
57
- #### Overview
58
-
59
- The EMit dataset is a comprehensive resource for the detection of emotions in Italian social media texts. This dataset was created for the EMit shared task, organized as part of Evalita 2023. The EMit dataset consists of social media messages about TV shows, TV series, music videos, and advertisements. Each message is annotated with one or more of the 8 primary emotions defined by Plutchik (anger, anticipation, disgust, fear, joy, sadness, surprise, trust), as well as an additional label “love.”
60
-
61
- #### Annotations
62
-
63
- The dataset includes multilabel annotations for each text, indicating the presence of specific emotions. An additional auxiliary subtask involves identifying the target of the affective comments, whether they are directed at the topic of the content or at issues under the control of the direction (e.g., production quality or artistic direction).
64
-
65
- #### Structure
66
-
67
- The dataset is composed of the following fields:
68
- - `id`: Identifier for the entry.
69
- - `text`: Social media messages related to TV shows, TV series, music videos, and advertisements.
70
- - `emotion_labels`: Anger, anticipation, disgust, fear, joy, sadness, surprise, trust, and love.
71
- - `target_labels`: Topic, direction, both, or neither.
72
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - it
4
+ license: cc-by-nc-sa-4.0
5
+ configs:
6
+ - config_name: default
7
+ data_files:
8
+ - split: train
9
+ path: data/train-*
10
+ - split: test
11
+ path: data/test-*
12
+ - split: test_ood
13
+ path: data/test_ood-*
14
+ dataset_info:
15
+ features:
16
+ - name: id
17
+ dtype: string
18
+ - name: text
19
+ dtype: string
20
+ - name: emotion_labels
21
+ sequence:
22
+ class_label:
23
+ names:
24
+ '0': Anger
25
+ '1': Anticipation
26
+ '2': Disgust
27
+ '3': Fear
28
+ '4': Joy
29
+ '5': Love
30
+ '6': Neutral
31
+ '7': Sadness
32
+ '8': Surprise
33
+ '9': Trust
34
+ - name: target_labels
35
+ sequence:
36
+ class_label:
37
+ names:
38
+ '0': Direction
39
+ '1': Topic
40
+ splits:
41
+ - name: train
42
+ num_bytes: 1010988
43
+ num_examples: 5966
44
+ - name: test
45
+ num_bytes: 169792
46
+ num_examples: 1000
47
+ - name: test_ood
48
+ num_bytes: 137719
49
+ num_examples: 1000
50
+ download_size: 844581
51
+ dataset_size: 1318499
52
+ ---
53
+
54
+ ### EMit
55
+ **Disclaimer: This dataset is not the official EMit repository from EVALITA. For the official repository and more information, please visit the [EVALITA EMit page](http://www.di.unito.it/~tutreeb/emit23/index.html) or the [EMit repository](https://github.com/oaraque/emit).**
56
+
57
+ #### Overview
58
+
59
+ The EMit dataset is a comprehensive resource for the detection of emotions in Italian social media texts. This dataset was created for the EMit shared task, organized as part of Evalita 2023. The EMit dataset consists of social media messages about TV shows, TV series, music videos, and advertisements. Each message is annotated with one or more of the 8 primary emotions defined by Plutchik (anger, anticipation, disgust, fear, joy, sadness, surprise, trust), as well as an additional label “love.”
60
+
61
+ #### Annotations
62
+
63
+ The dataset includes multilabel annotations for each text, indicating the presence of specific emotions. An additional auxiliary subtask involves identifying the target of the affective comments, whether they are directed at the topic of the content or at issues under the control of the direction (e.g., production quality or artistic direction).
64
+
65
+ #### Structure
66
+
67
+ The dataset is composed of the following fields:
68
+ - `id`: Identifier for the entry.
69
+ - `text`: Social media messages related to TV shows, TV series, music videos, and advertisements.
70
+ - `emotion_labels`: Anger, anticipation, disgust, fear, joy, sadness, surprise, trust, and love.
71
+ - `target_labels`: Topic, direction, both, or neither.
72
+
73
+
74
+ #### Citation
75
+
76
+ If you use this dataset, please cite the original authors:
77
+ ```
78
+ @inproceedings{araque2023emit,
79
+ title={EMit at EVALITA 2023: Overview of the Categorical Emotion Detection in Italian Social Media Task},
80
+ author={Araque, O and Frenda, S and Sprugnoli, R and Nozza, D and Patti, V and others},
81
+ booktitle={CEUR WORKSHOP PROCEEDINGS},
82
+ volume={3473},
83
+ pages={1--8},
84
+ year={2023},
85
+ organization={CEUR-WS}
86
+ }
87
+ ```