|
from transformers import AutoModel
|
|
import numpy as np
|
|
from PIL import Image
|
|
import torch
|
|
import os
|
|
|
|
images = [
|
|
"1.png",
|
|
"1.jpg",
|
|
]
|
|
|
|
|
|
def read_image_as_np_array(image_path):
|
|
with open(image_path, "rb") as file:
|
|
image = Image.open(file).convert("L").convert("RGB")
|
|
image = np.array(image)
|
|
return image
|
|
|
|
|
|
images = [read_image_as_np_array(image) for image in images]
|
|
|
|
model = AutoModel.from_pretrained(
|
|
"ragavsachdeva/magi", trust_remote_code=True).cuda()
|
|
|
|
|
|
with torch.no_grad():
|
|
results = model.predict_detections_and_associations(images)
|
|
text_bboxes_for_all_images = [x["texts"] for x in results]
|
|
ocr_results = model.predict_ocr(images, text_bboxes_for_all_images)
|
|
|
|
for i in range(len(images)):
|
|
model.visualise_single_image_prediction(
|
|
images[i], results[i], filename=f"image_{i}.png")
|
|
model.generate_transcript_for_single_image(
|
|
results[i], ocr_results[i], filename=f"transcript_{i}.txt")
|
|
|