from transformers import AutoModel import numpy as np from PIL import Image import torch import os current_dir = os.getcwd() images = [ os.path.join(current_dir, "test", "1.png"), os.path.join(current_dir, "test", "1.jpg"), ] def read_image_as_np_array(image_path): with open(image_path, "rb") as file: image = Image.open(file).convert("L").convert("RGB") image = np.array(image) return image images = [read_image_as_np_array(image) for image in images] model = AutoModel.from_pretrained( "ragavsachdeva/magi", trust_remote_code=True).cuda() # model = AutoModel.from_pretrained( # "./magi", trust_remote_code=True).cuda() with torch.no_grad(): results = model.predict_detections_and_associations(images) text_bboxes_for_all_images = [x["texts"] for x in results] ocr_results = model.predict_ocr(images, text_bboxes_for_all_images) for i in range(len(images)): model.visualise_single_image_prediction( images[i], results[i], filename=f"image_{i}.png") model.generate_transcript_for_single_image( results[i], ocr_results[i], filename=f"transcript_{i}.txt") print("Done")