File size: 25,634 Bytes
00c59de
 
 
 
 
 
 
 
53fbbc1
671d73d
53fbbc1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e61b170
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e88090
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3cae07a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
671d73d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53fbbc1
 
 
 
 
e61b170
 
 
 
3e88090
 
 
 
3cae07a
 
 
 
671d73d
 
 
 
c67224f
 
 
 
 
 
e85a0c5
 
 
 
 
c67224f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
07417c0
c67224f
 
 
 
 
 
07417c0
 
c67224f
07417c0
 
c67224f
 
e9536e1
07417c0
 
 
 
 
 
 
 
 
 
c67224f
 
 
 
e9536e1
07417c0
 
c67224f
 
e9536e1
07417c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c67224f
 
07417c0
c67224f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
802dbc4
 
 
 
 
 
 
 
 
 
 
c67224f
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
---
language:
- en
tags:
- recommendation
- reviews
size_categories:
- 10B<n<100B
dataset_info:
- config_name: raw_meta_All_Beauty
  features:
  - name: main_category
    dtype: string
  - name: title
    dtype: string
  - name: average_rating
    dtype: float64
  - name: rating_number
    dtype: int64
  - name: features
    sequence: string
  - name: description
    sequence: string
  - name: price
    dtype: string
  - name: images
    sequence:
    - name: hi_res
      dtype: string
    - name: large
      dtype: string
    - name: thumb
      dtype: string
    - name: variant
      dtype: string
  - name: videos
    sequence:
    - name: title
      dtype: string
    - name: url
      dtype: string
    - name: user_id
      dtype: string
  - name: store
    dtype: string
  - name: categories
    sequence: string
  - name: details
    dtype: string
  - name: parent_asin
    dtype: string
  - name: bought_together
    dtype: string
  - name: subtitle
    dtype: string
  - name: author
    dtype: string
  splits:
  - name: full
    num_bytes: 172622243
    num_examples: 112590
  download_size: 59635138
  dataset_size: 172622243
- config_name: raw_meta_Cell_Phones_and_Accessories
  features:
  - name: main_category
    dtype: string
  - name: title
    dtype: string
  - name: average_rating
    dtype: float64
  - name: rating_number
    dtype: int64
  - name: features
    sequence: string
  - name: description
    sequence: string
  - name: price
    dtype: string
  - name: images
    sequence:
    - name: hi_res
      dtype: string
    - name: large
      dtype: string
    - name: thumb
      dtype: string
    - name: variant
      dtype: string
  - name: videos
    sequence:
    - name: title
      dtype: string
    - name: url
      dtype: string
    - name: user_id
      dtype: string
  - name: store
    dtype: string
  - name: categories
    sequence: string
  - name: details
    dtype: string
  - name: parent_asin
    dtype: string
  - name: bought_together
    dtype: string
  - name: subtitle
    dtype: string
  - name: author
    dtype: string
  splits:
  - name: full
    num_bytes: 3497596478
    num_examples: 1288490
  download_size: 1262072469
  dataset_size: 3497596478
- config_name: raw_meta_Gift_Cards
  features:
  - name: main_category
    dtype: string
  - name: title
    dtype: string
  - name: average_rating
    dtype: float64
  - name: rating_number
    dtype: int64
  - name: features
    sequence: string
  - name: description
    sequence: string
  - name: price
    dtype: string
  - name: images
    sequence:
    - name: hi_res
      dtype: string
    - name: large
      dtype: string
    - name: thumb
      dtype: string
    - name: variant
      dtype: string
  - name: videos
    sequence:
    - name: title
      dtype: string
    - name: url
      dtype: string
    - name: user_id
      dtype: string
  - name: store
    dtype: string
  - name: categories
    sequence: string
  - name: details
    dtype: string
  - name: parent_asin
    dtype: string
  - name: bought_together
    dtype: string
  - name: subtitle
    dtype: string
  - name: author
    dtype: string
  splits:
  - name: full
    num_bytes: 1740761
    num_examples: 1137
  download_size: 401887
  dataset_size: 1740761
- config_name: raw_meta_Industrial_and_Scientific
  features:
  - name: main_category
    dtype: string
  - name: title
    dtype: string
  - name: average_rating
    dtype: float64
  - name: rating_number
    dtype: int64
  - name: features
    sequence: string
  - name: description
    sequence: string
  - name: price
    dtype: string
  - name: images
    sequence:
    - name: hi_res
      dtype: string
    - name: large
      dtype: string
    - name: thumb
      dtype: string
    - name: variant
      dtype: string
  - name: videos
    sequence:
    - name: title
      dtype: string
    - name: url
      dtype: string
    - name: user_id
      dtype: string
  - name: store
    dtype: string
  - name: categories
    sequence: string
  - name: details
    dtype: string
  - name: parent_asin
    dtype: string
  - name: bought_together
    dtype: string
  - name: subtitle
    dtype: string
  - name: author
    dtype: string
  splits:
  - name: full
    num_bytes: 986632649
    num_examples: 427564
  download_size: 425007659
  dataset_size: 986632649
- config_name: raw_meta_Toys_and_Games
  features:
  - name: main_category
    dtype: string
  - name: title
    dtype: string
  - name: average_rating
    dtype: float64
  - name: rating_number
    dtype: int64
  - name: features
    sequence: string
  - name: description
    sequence: string
  - name: price
    dtype: string
  - name: images
    sequence:
    - name: hi_res
      dtype: string
    - name: large
      dtype: string
    - name: thumb
      dtype: string
    - name: variant
      dtype: string
  - name: videos
    sequence:
    - name: title
      dtype: string
    - name: url
      dtype: string
    - name: user_id
      dtype: string
  - name: store
    dtype: string
  - name: categories
    sequence: string
  - name: details
    dtype: string
  - name: parent_asin
    dtype: string
  - name: bought_together
    dtype: string
  - name: subtitle
    dtype: string
  - name: author
    dtype: string
  splits:
  - name: full
    num_bytes: 2291736294
    num_examples: 890874
  download_size: 972667016
  dataset_size: 2291736294
configs:
- config_name: raw_meta_All_Beauty
  data_files:
  - split: full
    path: raw_meta_All_Beauty/full-*
- config_name: raw_meta_Cell_Phones_and_Accessories
  data_files:
  - split: full
    path: raw_meta_Cell_Phones_and_Accessories/full-*
- config_name: raw_meta_Gift_Cards
  data_files:
  - split: full
    path: raw_meta_Gift_Cards/full-*
- config_name: raw_meta_Industrial_and_Scientific
  data_files:
  - split: full
    path: raw_meta_Industrial_and_Scientific/full-*
- config_name: raw_meta_Toys_and_Games
  data_files:
  - split: full
    path: raw_meta_Toys_and_Games/full-*
---

# Amazon Reviews 2023

**Please also visit [amazon-reviews-2023.github.io/](https://amazon-reviews-2023.github.io/) for more details, loading scripts, and preprocessed benchmark files.**

**[April 7, 2024]** We add two useful files:

1. `all_categories.txt`: 34 lines (33 categories + "Unknown"), each line contains a category name.
2. `asin2category.json`: A mapping between `parent_asin` (item ID) to its corresponding category name.

---

<!-- Provide a quick summary of the dataset. -->

This is a large-scale **Amazon Reviews** dataset, collected in **2023** by [McAuley Lab](https://cseweb.ucsd.edu/~jmcauley/), and it includes rich features such as:
1. **User Reviews** (*ratings*, *text*, *helpfulness votes*, etc.);
2. **Item Metadata** (*descriptions*, *price*, *raw image*, etc.);
3. **Links** (*user-item* / *bought together* graphs). 

## What's New?

In the Amazon Reviews'23, we provide:

1. **Larger Dataset:** We collected 571.54M reviews, 245.2% larger than the last version;
2. **Newer Interactions:** Current interactions range from May. 1996 to Sep. 2023;
3. **Richer Metadata:** More descriptive features in item metadata;
4. **Fine-grained Timestamp:** Interaction timestamp at the second or finer level;
5. **Cleaner Processing:** Cleaner item metadata than previous versions;
6. **Standard Splitting:** Standard data splits to encourage RecSys benchmarking.

## Basic Statistics

> We define the <b>#R_Tokens</b> as the number of [tokens](https://pypi.org/project/tiktoken/) in user reviews and <b>#M_Tokens</b> as the number of [tokens](https://pypi.org/project/tiktoken/) if treating the dictionaries of item attributes as strings. We emphasize them as important statistics in the era of LLMs.

> We count the number of items based on user reviews rather than item metadata files. Note that some items lack metadata.

### Compared to Previous Versions

|  Year       | #Review | #User | #Item | #R_Token | #M_Token | #Domain | Timespan          |
| ----------- | ---------: | -------: | -------: | ---------: | ------------: | ------------: |   ------------: |  
| [2013](https://snap.stanford.edu/data/web-Amazon-links.html) | 34.69M      | 6.64M     | 2.44M     | 5.91B             | -- |  28          |  Jun'96 - Mar'13       | 
| [2014](https://cseweb.ucsd.edu/~jmcauley/datasets/amazon/links.html)     | 82.83M      | 21.13M    | 9.86M     | 9.16B             | 4.14B | 24          | May'96 - Jul'14       |
| [2018](https://cseweb.ucsd.edu/~jmcauley/datasets/amazon_v2/)                   | 233.10M      | 43.53M   | 15.17M    | 15.73B             | 7.99B | 29          |  May'96 - Oct'18       |
| <b>[2023](https://)</b>                                                     | **571.54M**  | **54.51M** | **48.19M** | **30.14B**  | **30.78B** | **33**  | **May'96 - Sep'23**    |


### Grouped by Category

| Category                 | #User   | #Item   | #Rating   | #R_Token | #M_Token | Download                     |
| ------------------------ | ------: | ------: | --------: | -------: | -------: | ------------------------------: |
| All_Beauty | 632.0K | 112.6K | 701.5K | 31.6M | 74.1M | <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/review_categories/All_Beauty.jsonl.gz' download> review</a>, <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/meta_categories/meta_All_Beauty.jsonl.gz' download> meta </a> |
| Amazon_Fashion | 2.0M | 825.9K | 2.5M | 94.9M | 510.5M | <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/review_categories/Amazon_Fashion.jsonl.gz' download> review</a>, <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/meta_categories/meta_Amazon_Fashion.jsonl.gz' download> meta </a> |
| Appliances | 1.8M | 94.3K | 2.1M | 92.8M | 95.3M | <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/review_categories/Appliances.jsonl.gz' download> review</a>, <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/meta_categories/meta_Appliances.jsonl.gz' download> meta </a> |
| Arts_Crafts_and_Sewing | 4.6M | 801.3K | 9.0M | 350.0M | 695.4M | <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/review_categories/Arts_Crafts_and_Sewing.jsonl.gz' download> review</a>, <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/meta_categories/meta_Arts_Crafts_and_Sewing.jsonl.gz' download> meta </a> |
| Automotive | 8.0M | 2.0M | 20.0M | 824.9M | 1.7B | <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/review_categories/Automotive.jsonl.gz' download> review</a>, <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/meta_categories/meta_Automotive.jsonl.gz' download> meta </a> |
| Baby_Products | 3.4M | 217.7K | 6.0M | 323.3M | 218.6M | <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/review_categories/Baby_Products.jsonl.gz' download> review</a>, <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/meta_categories/meta_Baby_Products.jsonl.gz' download> meta </a> |
| Beauty_and_Personal_Care | 11.3M | 1.0M | 23.9M | 1.1B | 913.7M | <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/review_categories/Beauty_and_Personal_Care.jsonl.gz' download> review</a>, <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/meta_categories/meta_Beauty_and_Personal_Care.jsonl.gz' download> meta </a> |
| Books | 10.3M | 4.4M | 29.5M | 2.9B | 3.7B | <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/review_categories/Books.jsonl.gz' download> review</a>, <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/meta_categories/meta_Books.jsonl.gz' download> meta </a> |
| CDs_and_Vinyl | 1.8M | 701.7K | 4.8M | 514.8M | 287.5M | <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/review_categories/CDs_and_Vinyl.jsonl.gz' download> review</a>, <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/meta_categories/meta_CDs_and_Vinyl.jsonl.gz' download> meta </a> |
| Cell_Phones_and_Accessories | 11.6M | 1.3M | 20.8M | 935.4M | 1.3B | <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/review_categories/Cell_Phones_and_Accessories.jsonl.gz' download> review</a>, <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/meta_categories/meta_Cell_Phones_and_Accessories.jsonl.gz' download> meta </a> |
| Clothing_Shoes_and_Jewelry | 22.6M | 7.2M | 66.0M | 2.6B | 5.9B | <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/review_categories/Clothing_Shoes_and_Jewelry.jsonl.gz' download> review</a>, <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/meta_categories/meta_Clothing_Shoes_and_Jewelry.jsonl.gz' download> meta </a> |
| Digital_Music | 101.0K | 70.5K | 130.4K | 11.4M | 22.3M | <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/review_categories/Digital_Music.jsonl.gz' download> review</a>, <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/meta_categories/meta_Digital_Music.jsonl.gz' download> meta </a> |
| Electronics | 18.3M | 1.6M | 43.9M | 2.7B | 1.7B | <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/review_categories/Electronics.jsonl.gz' download> review</a>, <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/meta_categories/meta_Electronics.jsonl.gz' download> meta </a> |
| Gift_Cards | 132.7K | 1.1K | 152.4K | 3.6M | 630.0K | <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/review_categories/Gift_Cards.jsonl.gz' download> review</a>, <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/meta_categories/meta_Gift_Cards.jsonl.gz' download> meta </a> |
| Grocery_and_Gourmet_Food | 7.0M | 603.2K | 14.3M | 579.5M | 462.8M | <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/review_categories/Grocery_and_Gourmet_Food.jsonl.gz' download> review</a>, <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/meta_categories/meta_Grocery_and_Gourmet_Food.jsonl.gz' download> meta </a> |
| Handmade_Products | 586.6K | 164.7K | 664.2K | 23.3M | 125.8M | <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/review_categories/Handmade_Products.jsonl.gz' download> review</a>, <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/meta_categories/meta_Handmade_Products.jsonl.gz' download> meta </a> |
| Health_and_Household | 12.5M | 797.4K | 25.6M | 1.2B | 787.2M | <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/review_categories/Health_and_Household.jsonl.gz' download> review</a>, <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/meta_categories/meta_Health_and_Household.jsonl.gz' download> meta </a> |
| Health_and_Personal_Care | 461.7K | 60.3K | 494.1K | 23.9M | 40.3M | <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/review_categories/Health_and_Personal_Care.jsonl.gz' download> review</a>, <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/meta_categories/meta_Health_and_Personal_Care.jsonl.gz' download> meta </a> |
| Home_and_Kitchen | 23.2M | 3.7M | 67.4M | 3.1B | 3.8B | <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/review_categories/Home_and_Kitchen.jsonl.gz' download> review</a>, <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/meta_categories/meta_Home_and_Kitchen.jsonl.gz' download> meta </a> |
| Industrial_and_Scientific | 3.4M | 427.5K | 5.2M | 235.2M | 363.1M | <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/review_categories/Industrial_and_Scientific.jsonl.gz' download> review</a>, <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/meta_categories/meta_Industrial_and_Scientific.jsonl.gz' download> meta </a> |
| Kindle_Store | 5.6M | 1.6M | 25.6M | 2.2B | 1.7B | <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/review_categories/Kindle_Store.jsonl.gz' download> review</a>, <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/meta_categories/meta_Kindle_Store.jsonl.gz' download> meta </a> |
| Magazine_Subscriptions | 60.1K | 3.4K | 71.5K | 3.8M | 1.3M | <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/review_categories/Magazine_Subscriptions.jsonl.gz' download> review</a>, <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/meta_categories/meta_Magazine_Subscriptions.jsonl.gz' download> meta </a> |
| Movies_and_TV | 6.5M | 747.8K | 17.3M | 1.0B | 415.5M | <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/review_categories/Movies_and_TV.jsonl.gz' download> review</a>, <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/meta_categories/meta_Movies_and_TV.jsonl.gz' download> meta </a> |
| Musical_Instruments | 1.8M | 213.6K | 3.0M | 182.2M | 200.1M | <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/review_categories/Musical_Instruments.jsonl.gz' download> review</a>, <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/meta_categories/meta_Musical_Instruments.jsonl.gz' download> meta </a> |
| Office_Products | 7.6M | 710.4K | 12.8M | 574.7M | 682.8M | <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/review_categories/Office_Products.jsonl.gz' download> review</a>, <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/meta_categories/meta_Office_Products.jsonl.gz' download> meta </a> |
| Patio_Lawn_and_Garden | 8.6M | 851.7K | 16.5M | 781.3M | 875.1M | <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/review_categories/Patio_Lawn_and_Garden.jsonl.gz' download> review</a>, <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/meta_categories/meta_Patio_Lawn_and_Garden.jsonl.gz' download> meta </a> |
| Pet_Supplies | 7.8M | 492.7K | 16.8M | 905.9M | 511.0M | <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/review_categories/Pet_Supplies.jsonl.gz' download> review</a>, <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/meta_categories/meta_Pet_Supplies.jsonl.gz' download> meta </a> |
| Software | 2.6M | 89.2K | 4.9M | 179.4M | 67.1M | <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/review_categories/Software.jsonl.gz' download> review</a>, <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/meta_categories/meta_Software.jsonl.gz' download> meta </a> |
| Sports_and_Outdoors | 10.3M | 1.6M | 19.6M | 986.2M | 1.3B | <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/review_categories/Sports_and_Outdoors.jsonl.gz' download> review</a>, <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/meta_categories/meta_Sports_and_Outdoors.jsonl.gz' download> meta </a> |
| Subscription_Boxes | 15.2K | 641 | 16.2K | 1.0M | 447.0K | <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/review_categories/Subscription_Boxes.jsonl.gz' download> review</a>, <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/meta_categories/meta_Subscription_Boxes.jsonl.gz' download> meta </a> |
| Tools_and_Home_Improvement | 12.2M | 1.5M | 27.0M | 1.3B | 1.5B | <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/review_categories/Tools_and_Home_Improvement.jsonl.gz' download> review</a>, <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/meta_categories/meta_Tools_and_Home_Improvement.jsonl.gz' download> meta </a> |
| Toys_and_Games | 8.1M | 890.7K | 16.3M | 707.9M | 848.3M | <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/review_categories/Toys_and_Games.jsonl.gz' download> review</a>, <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/meta_categories/meta_Toys_and_Games.jsonl.gz' download> meta </a> |
| Video_Games | 2.8M | 137.2K | 4.6M | 347.9M | 137.3M | <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/review_categories/Video_Games.jsonl.gz' download> review</a>, <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/meta_categories/meta_Video_Games.jsonl.gz' download> meta </a> |
| Unknown | 23.1M | 13.2M | 63.8M | 3.3B | 232.8M | <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/review_categories/Unknown.jsonl.gz' download> review</a>, <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/meta_categories/meta_Unknown.jsonl.gz' download> meta </a> |


> Check Pure ID files and corresponding data splitting strategies in <b>[Common Data Processing](https://amazon-reviews-2023.github.io/data_processing/index.html)</b> section.

## Quick Start

### Load User Reviews


```python
from datasets import load_dataset

dataset = load_dataset("McAuley-Lab/Amazon-Reviews-2023", "raw_review_All_Beauty", trust_remote_code=True)
print(dataset["full"][0])
```

```json
{'rating': 5.0,
 'title': 'Such a lovely scent but not overpowering.',
 'text': "This spray is really nice. It smells really good, goes on really fine, and does the trick. I will say it feels like you need a lot of it though to get the texture I want. I have a lot of hair, medium thickness. I am comparing to other brands with yucky chemicals so I'm gonna stick with this. Try it!",
 'images': [],
 'asin': 'B00YQ6X8EO',
 'parent_asin': 'B00YQ6X8EO',
 'user_id': 'AGKHLEW2SOWHNMFQIJGBECAF7INQ',
 'timestamp': 1588687728923,
 'helpful_vote': 0,
 'verified_purchase': True}
```

### Load Item Metadata

```python
dataset = load_dataset("McAuley-Lab/Amazon-Reviews-2023", "raw_meta_All_Beauty", split="full", trust_remote_code=True)
print(dataset[0])
```

```json
{'main_category': 'All Beauty',
 'title': 'Howard LC0008 Leather Conditioner, 8-Ounce (4-Pack)',
 'average_rating': 4.8,
 'rating_number': 10,
 'features': [],
 'description': [],
 'price': 'None',
 'images': {'hi_res': [None,
   'https://m.media-amazon.com/images/I/71i77AuI9xL._SL1500_.jpg'],
  'large': ['https://m.media-amazon.com/images/I/41qfjSfqNyL.jpg',
   'https://m.media-amazon.com/images/I/41w2yznfuZL.jpg'],
  'thumb': ['https://m.media-amazon.com/images/I/41qfjSfqNyL._SS40_.jpg',
   'https://m.media-amazon.com/images/I/41w2yznfuZL._SS40_.jpg'],
  'variant': ['MAIN', 'PT01']},
 'videos': {'title': [], 'url': [], 'user_id': []},
 'store': 'Howard Products',
 'categories': [],
 'details': '{"Package Dimensions": "7.1 x 5.5 x 3 inches; 2.38 Pounds", "UPC": "617390882781"}',
 'parent_asin': 'B01CUPMQZE',
 'bought_together': None,
 'subtitle': None,
 'author': None}
```

> Check data loading examples and Huggingface datasets APIs in <b>[Common Data Loading](https://amazon-reviews-2023.github.io/data_loading/index.html)</b> section.


## Data Fields

### For User Reviews

| Field | Type |  Explanation |
| ----- | ---- | ----------- |
| rating | float | Rating of the product (from 1.0 to 5.0). |
| title  | str | Title of the user review. |
| text   | str | Text body of the user review. |
| images | list | Images that users post after they have received the product. Each image has different sizes (small, medium, large), represented by the small_image_url, medium_image_url, and large_image_url respectively. |
| asin  | str | ID of the product. |
| parent_asin | str | Parent ID of the product. Note: Products with different colors, styles, sizes usually belong to the same parent ID. The “asin” in previous Amazon datasets is actually parent ID. <b>Please use parent ID to find product meta.</b> |
| user_id | str | ID of the reviewer |
| timestamp | int | Time of the review (unix time) |
| verified_purchase | bool | User purchase verification |
| helpful_vote | int | Helpful votes of the review |

### For Item Metadata

| Field | Type |  Explanation |
| ----- | ---- | ----------- |
| main_category | str | Main category (i.e., domain) of the product. |
| title | str | Name of the product. |
| average_rating | float | Rating of the product shown on the product page. |
| rating_number | int | Number of ratings in the product. |
| features | list | Bullet-point format features of the product. |
| description | list | Description of the product. |
| price  | float | Price in US dollars (at time of crawling). |
| images | list |  Images of the product. Each image has different sizes (thumb, large, hi_res). The “variant” field shows the position of image. |
| videos | list | Videos of the product including title and url. |
| store | str | Store name of the product. |
| categories | list | Hierarchical categories of the product. |
| details | dict | Product details, including materials, brand, sizes, etc. |
| parent_asin | str | Parent ID of the product. |
| bought_together | list | Recommended bundles from the websites. |

## Citation

```bibtex
@article{hou2024bridging,
  title={Bridging Language and Items for Retrieval and Recommendation},
  author={Hou, Yupeng and Li, Jiacheng and He, Zhankui and Yan, An and Chen, Xiusi and McAuley, Julian},
  journal={arXiv preprint arXiv:2403.03952},
  year={2024}
}
```

## Contact Us

- **Report Bugs**: To report bugs in the dataset, please file an issue on our [GitHub](https://github.com/hyp1231/AmazonReviews2023/issues/new).

- **Others**: For research collaborations or other questions, please email **yphou AT ucsd.edu**.