|
import os |
|
import random |
|
import pandas as pd |
|
|
|
|
|
def get_training_batch(root): |
|
""" |
|
the proportional distribution of training data across each batch for classification, |
|
disease localization, report generation, and segmentation tasks to be 0.15/0.2/0.5/0.15 |
|
""" |
|
classification_label = ['Atelectasis', 'Calcification of the Aorta', 'Cardiomegaly', 'Consolidation', 'Edema', \ |
|
'Emphysema', 'Enlarged Cardiomediastinum', 'Fibrosis', 'Fracture', 'Hernia', 'Infiltration', 'Lung Lesion', \ |
|
'Lung Opacity', 'Mass', 'No Finding', 'Nodule', 'Pleural Effusion', 'Pleural Other', 'Pleural Thickening', \ |
|
'Pneumomediastinum', 'Pneumonia', 'Pneumoperitoneum', 'Pneumothorax', 'Subcutaneous Emphysema', 'Support Devices', 'Tortuous Aorta'] |
|
|
|
batch_size = 256 |
|
cla_num = int(batch_size * 0.15) |
|
loc_num = int(batch_size * 0.2) |
|
report_num = int(batch_size * 0.5) |
|
seg_num = batch_size - (cla_num + loc_num + report_num) |
|
|
|
read = lambda x, y : pd.read_csv(x, sep='\t', header=None, chunksize=y) |
|
|
|
|
|
|
|
|
|
|
|
mimic = f'{root}/MIMIC_classification_report-generation_train.tsv' |
|
mimic_chunck = read(mimic, max(cla_num, report_num)) |
|
cla_mimic_info = [] |
|
report_mimic_info = [] |
|
for chunck in mimic_chunck: |
|
for info in chunck.values.tolist(): |
|
report = info[1] |
|
label = info[2] |
|
dicom_id = info[-1] |
|
if len(report_mimic_info) < report_num: |
|
report_mimic_info.append( |
|
['describe the image', report, dicom_id, 'report generation'] |
|
) |
|
if len(cla_mimic_info) < int(cla_num*0.6): |
|
if random.randint(0, 1): |
|
cur_info = ['what disease does this image have?', f"there are {', '.join(label.split('&&'))}", dicom_id, 'classification'] |
|
else: |
|
vqa_label = classification_label[random.randint(0, len(classification_label)-1)] |
|
if vqa_label in label: |
|
cur_info = [f'Is {vqa_label} in this image?', f'yes, there is {vqa_label}.', dicom_id, 'classification'] |
|
else: |
|
cur_info = [f'Is {vqa_label} in this image?', f'no {vqa_label}.', dicom_id, 'classification'] |
|
cla_mimic_info.append(cur_info) |
|
break |
|
del mimic_chunck |
|
|
|
def organize_data(file, chunck_size, task, instruction, label_index, image_index, instruction_index=None, label_format=None): |
|
res = [] |
|
chunck_size = max(chunck_size, 1) |
|
chuncks = read(file, chunck_size) |
|
for chunck in chuncks: |
|
for info in chunck.values.tolist(): |
|
if instruction_index is not None: |
|
instruction = instruction.format(info[instruction_index]) |
|
ans = info[label_index] |
|
elif label_format is not None: |
|
label_ans_list = label_format(info[label_index]) |
|
label_ans = label_ans_list[random.randint(0, len(label_ans_list)-1)].split(',') |
|
if len(label_ans) == 1: |
|
label, ans = label_ans_list[0].split(',')[0], label_ans[0] |
|
else: |
|
label, ans = label_ans |
|
label = label.strip() |
|
instruction = instruction.format(label) |
|
ans = ans.strip() |
|
if len(res) < chunck_size: |
|
res.append( |
|
[instruction, ans, info[image_index], task] |
|
) |
|
break |
|
return res |
|
|
|
|
|
|
|
|
|
mimic_severity = f'{root}/MIMIC_classification-severity_train.tsv' |
|
cla_sev_mimic_info = organize_data( |
|
mimic_severity, int(cla_num*0.2), 'classification_sev', 'what is the level of {}?', 1, -1, label_format=lambda x:x.split('&&') |
|
) |
|
|
|
|
|
|
|
|
|
mimic_location = f'{root}/MIMIC_classification-location_train.tsv' |
|
cla_loc_mimic_info = organize_data( |
|
mimic_location, int(cla_num*0.2), 'classification_loc', 'where is {}?', 1, -1, label_format=lambda x:x.split('&') |
|
) |
|
|
|
|
|
|
|
|
|
chestX_det = f'{root}/ChestX_Det_localization.tsv' |
|
chestX_det_info = organize_data( |
|
chestX_det, loc_num, 'localization', 'where is {}?', 2, -1, instruction_index=1, |
|
) |
|
|
|
|
|
|
|
|
|
cheXmask_heart = f'{root}/CheXmask_heart_segmentation.tsv' |
|
cheXmask_heart_info = organize_data( |
|
cheXmask_heart, seg_num, 'segmentation', 'please segment the {} from the given image.', 2, -1, instruction_index=1 |
|
) |
|
|
|
batch_info = cla_mimic_info + report_mimic_info + cla_loc_mimic_info + cla_sev_mimic_info + chestX_det_info + cheXmask_heart_info |
|
random.shuffle(batch_info) |
|
batch_df = pd.DataFrame(batch_info) |
|
return batch_df |
|
|
|
|
|
if __name__ == '__main__': |
|
root = '' |
|
get_training_batch(root) |