Datasets:

Modalities:
Image
ArXiv:
MedHK23 commited on
Commit
174d064
1 Parent(s): f810406

Delete data_prepare.py

Browse files
Files changed (1) hide show
  1. data_prepare.py +0 -120
data_prepare.py DELETED
@@ -1,120 +0,0 @@
1
- import os
2
- import random
3
- import pandas as pd
4
-
5
-
6
- def get_training_batch(root):
7
- """
8
- the proportional distribution of training data across each batch for classification,
9
- disease localization, report generation, and segmentation tasks to be 0.15/0.2/0.5/0.15
10
- """
11
- classification_label = ['Atelectasis', 'Calcification of the Aorta', 'Cardiomegaly', 'Consolidation', 'Edema', \
12
- 'Emphysema', 'Enlarged Cardiomediastinum', 'Fibrosis', 'Fracture', 'Hernia', 'Infiltration', 'Lung Lesion', \
13
- 'Lung Opacity', 'Mass', 'No Finding', 'Nodule', 'Pleural Effusion', 'Pleural Other', 'Pleural Thickening', \
14
- 'Pneumomediastinum', 'Pneumonia', 'Pneumoperitoneum', 'Pneumothorax', 'Subcutaneous Emphysema', 'Support Devices', 'Tortuous Aorta']
15
-
16
- batch_size = 256
17
- cla_num = int(batch_size * 0.15)
18
- loc_num = int(batch_size * 0.2)
19
- report_num = int(batch_size * 0.5)
20
- seg_num = batch_size - (cla_num + loc_num + report_num)
21
-
22
- read = lambda x, y : pd.read_csv(x, sep='\t', header=None, chunksize=y)
23
-
24
- ### classification and report generation
25
- # Instruction:
26
- # what disease does this image have?
27
- # is {} in this image?
28
- mimic = f'{root}/MIMIC_classification_report-generation_train.tsv'
29
- mimic_chunck = read(mimic, max(cla_num, report_num))
30
- cla_mimic_info = []
31
- report_mimic_info = []
32
- for chunck in mimic_chunck:
33
- for info in chunck.values.tolist():
34
- report = info[1]
35
- label = info[2]
36
- dicom_id = info[-1]
37
- if len(report_mimic_info) < report_num:
38
- report_mimic_info.append(
39
- ['describe the image', report, dicom_id, 'report generation']
40
- )
41
- if len(cla_mimic_info) < int(cla_num*0.6):
42
- if random.randint(0, 1):
43
- cur_info = ['what disease does this image have?', f"there are {', '.join(label.split('&&'))}", dicom_id, 'classification']
44
- else:
45
- vqa_label = classification_label[random.randint(0, len(classification_label)-1)]
46
- if vqa_label in label:
47
- cur_info = [f'Is {vqa_label} in this image?', f'yes, there is {vqa_label}.', dicom_id, 'classification']
48
- else:
49
- cur_info = [f'Is {vqa_label} in this image?', f'no {vqa_label}.', dicom_id, 'classification']
50
- cla_mimic_info.append(cur_info)
51
- break
52
- del mimic_chunck
53
-
54
- def organize_data(file, chunck_size, task, instruction, label_index, image_index, instruction_index=None, label_format=None):
55
- res = []
56
- chunck_size = max(chunck_size, 1)
57
- chuncks = read(file, chunck_size)
58
- for chunck in chuncks:
59
- for info in chunck.values.tolist():
60
- if instruction_index is not None:
61
- instruction = instruction.format(info[instruction_index])
62
- ans = info[label_index]
63
- elif label_format is not None:
64
- label_ans_list = label_format(info[label_index])
65
- label_ans = label_ans_list[random.randint(0, len(label_ans_list)-1)].split(',')
66
- if len(label_ans) == 1:
67
- label, ans = label_ans_list[0].split(',')[0], label_ans[0]
68
- else:
69
- label, ans = label_ans
70
- label = label.strip()
71
- instruction = instruction.format(label)
72
- ans = ans.strip()
73
- if len(res) < chunck_size:
74
- res.append(
75
- [instruction, ans, info[image_index], task]
76
- )
77
- break
78
- return res
79
-
80
- ### classification: severity
81
- # Instruction:
82
- # what is the level of {}?
83
- mimic_severity = f'{root}/MIMIC_classification-severity_train.tsv'
84
- cla_sev_mimic_info = organize_data(
85
- mimic_severity, int(cla_num*0.2), 'classification_sev', 'what is the level of {}?', 1, -1, label_format=lambda x:x.split('&&')
86
- )
87
-
88
- ### classification: location
89
- # Instruction:
90
- # where is {}?
91
- mimic_location = f'{root}/MIMIC_classification-location_train.tsv'
92
- cla_loc_mimic_info = organize_data(
93
- mimic_location, int(cla_num*0.2), 'classification_loc', 'where is {}?', 1, -1, label_format=lambda x:x.split('&')
94
- )
95
-
96
- ### localization
97
- # Instruction:
98
- # give the accurate bbox of {}.
99
- chestX_det = f'{root}/ChestX_Det_localization.tsv'
100
- chestX_det_info = organize_data(
101
- chestX_det, loc_num, 'localization', 'where is {}?', 2, -1, instruction_index=1,
102
- )
103
-
104
- ### segmentation
105
- # Instruction:
106
- # describe the image.
107
- cheXmask_heart = f'{root}/CheXmask_heart_segmentation.tsv'
108
- cheXmask_heart_info = organize_data(
109
- cheXmask_heart, seg_num, 'segmentation', 'please segment the {} from the given image.', 2, -1, instruction_index=1
110
- )
111
-
112
- batch_info = cla_mimic_info + report_mimic_info + cla_loc_mimic_info + cla_sev_mimic_info + chestX_det_info + cheXmask_heart_info
113
- random.shuffle(batch_info)
114
- batch_df = pd.DataFrame(batch_info)
115
- return batch_df
116
-
117
-
118
- if __name__ == '__main__':
119
- root = ''
120
- get_training_batch(root)