1.8.1
Browse files
scripts/semantic_mapper/semantic_mapper.py
CHANGED
@@ -19,10 +19,10 @@ def plot_one(data: MultiTaskItem, title: str, order: list[str] | None,
|
|
19 |
"""simple plot function: plot_one(reader[0][0], reader[0][1], None, reader.name_to_task)"""
|
20 |
def vre_plot_fn(rgb_img: np.ndarray, x: tr.Tensor, node: Representation) -> np.ndarray:
|
21 |
node.data = ReprOut(frames=rgb_img, output=MemoryData(x.cpu().detach().numpy()[None]), key=[0])
|
22 |
-
res = node.make_images()[0]
|
23 |
return res
|
24 |
name_to_task["rgb"].data = ReprOut(frames=None, output=MemoryData(data["rgb"].detach().numpy())[None], key=[0])
|
25 |
-
rgb_img = name_to_task["rgb"].make_images()
|
26 |
img_data = {k: vre_plot_fn(rgb_img, v, name_to_task[k]) for k, v in data.items()}
|
27 |
img_data = reorder_dict(img_data, order) if order is not None else img_data
|
28 |
titles = [title if len(title) < 40 else f"{title[0:19]}..{title[-19:]}" for title in img_data]
|
@@ -134,8 +134,8 @@ class SemanticMask2FormerMapillaryConvertedPaper(TaskMapper, NpIORepresentation)
|
|
134 |
return self.n_classes
|
135 |
|
136 |
@overrides
|
137 |
-
def make_images(self) -> np.ndarray:
|
138 |
-
return colorize_semantic_segmentation(
|
139 |
|
140 |
@overrides
|
141 |
def merge_fn(self, dep_data: list[MemoryData]) -> MemoryData:
|
@@ -193,8 +193,8 @@ class SemanticMask2FormerCOCOConverted(TaskMapper, NpIORepresentation):
|
|
193 |
return self.n_classes
|
194 |
|
195 |
@overrides
|
196 |
-
def make_images(self) -> np.ndarray:
|
197 |
-
return colorize_semantic_segmentation(
|
198 |
|
199 |
@overrides
|
200 |
def merge_fn(self, dep_data: list[MemoryData]) -> MemoryData:
|
@@ -235,8 +235,8 @@ class BinaryMapper(TaskMapper, NpIORepresentation):
|
|
235 |
self.output_dtype = "bool"
|
236 |
|
237 |
@overrides
|
238 |
-
def make_images(self) -> np.ndarray:
|
239 |
-
x =
|
240 |
x = x[..., 0] if x.shape[-1] == 1 else x
|
241 |
return colorize_semantic_segmentation(x, self.classes, self.color_map)
|
242 |
|
@@ -299,8 +299,8 @@ class SemanticMedian(TaskMapper, NpIORepresentation):
|
|
299 |
return MemoryData(np.eye(self.n_classes)[sum(dep_data).argmax(-1)].astype(np.uint8))
|
300 |
|
301 |
@overrides
|
302 |
-
def make_images(self) -> np.ndarray:
|
303 |
-
return colorize_semantic_segmentation(
|
304 |
|
305 |
class SafeLandingAreas(BinaryMapper, NpIORepresentation):
|
306 |
def __init__(self, name: str, depth: DepthRepresentation, camera_normals: NormalsRepresentation,
|
|
|
19 |
"""simple plot function: plot_one(reader[0][0], reader[0][1], None, reader.name_to_task)"""
|
20 |
def vre_plot_fn(rgb_img: np.ndarray, x: tr.Tensor, node: Representation) -> np.ndarray:
|
21 |
node.data = ReprOut(frames=rgb_img, output=MemoryData(x.cpu().detach().numpy()[None]), key=[0])
|
22 |
+
res = node.make_images(node.data)[0]
|
23 |
return res
|
24 |
name_to_task["rgb"].data = ReprOut(frames=None, output=MemoryData(data["rgb"].detach().numpy())[None], key=[0])
|
25 |
+
rgb_img = name_to_task["rgb"].make_images(name_to_task["rgb"].data)
|
26 |
img_data = {k: vre_plot_fn(rgb_img, v, name_to_task[k]) for k, v in data.items()}
|
27 |
img_data = reorder_dict(img_data, order) if order is not None else img_data
|
28 |
titles = [title if len(title) < 40 else f"{title[0:19]}..{title[-19:]}" for title in img_data]
|
|
|
134 |
return self.n_classes
|
135 |
|
136 |
@overrides
|
137 |
+
def make_images(self, data: ReprOut) -> np.ndarray:
|
138 |
+
return colorize_semantic_segmentation(data.output.argmax(-1), self.classes, self.color_map)
|
139 |
|
140 |
@overrides
|
141 |
def merge_fn(self, dep_data: list[MemoryData]) -> MemoryData:
|
|
|
193 |
return self.n_classes
|
194 |
|
195 |
@overrides
|
196 |
+
def make_images(self, data: ReprOut) -> np.ndarray:
|
197 |
+
return colorize_semantic_segmentation(data.output.argmax(-1), self.classes, self.color_map)
|
198 |
|
199 |
@overrides
|
200 |
def merge_fn(self, dep_data: list[MemoryData]) -> MemoryData:
|
|
|
235 |
self.output_dtype = "bool"
|
236 |
|
237 |
@overrides
|
238 |
+
def make_images(self, data: ReprOut) -> np.ndarray:
|
239 |
+
x = data.output.argmax(-1) if self.load_mode == "one_hot" else (data.output > 0.5).astype(int)
|
240 |
x = x[..., 0] if x.shape[-1] == 1 else x
|
241 |
return colorize_semantic_segmentation(x, self.classes, self.color_map)
|
242 |
|
|
|
299 |
return MemoryData(np.eye(self.n_classes)[sum(dep_data).argmax(-1)].astype(np.uint8))
|
300 |
|
301 |
@overrides
|
302 |
+
def make_images(self, data: ReprOut) -> np.ndarray:
|
303 |
+
return colorize_semantic_segmentation(data.output.argmax(-1), self.classes, self.color_map)
|
304 |
|
305 |
class SafeLandingAreas(BinaryMapper, NpIORepresentation):
|
306 |
def __init__(self, name: str, depth: DepthRepresentation, camera_normals: NormalsRepresentation,
|