added consistency script
Browse files
scripts/collage_comparison/consistency.py
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
import os
|
3 |
+
import torch as tr
|
4 |
+
import numpy as np
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
from functools import lru_cache
|
7 |
+
from omegaconf import OmegaConf
|
8 |
+
from pathlib import Path
|
9 |
+
from torch.nn import functional as F
|
10 |
+
from argparse import ArgumentParser, Namespace
|
11 |
+
from tqdm import tqdm
|
12 |
+
|
13 |
+
from vre.utils import clip, AtomicOpen
|
14 |
+
from vre import FFmpegVideo
|
15 |
+
from vre_repository.optical_flow.raft import FlowRaft
|
16 |
+
from matplotlib.cm import hot
|
17 |
+
|
18 |
+
device = "cuda" if tr.cuda.is_available() else "cpu"
|
19 |
+
|
20 |
+
def _vre_inference(model: "Representation", video: "Video", ixs: list[int]) -> np.ndarray:
|
21 |
+
model.data = None
|
22 |
+
model.compute(video, ixs)
|
23 |
+
return model.data.output
|
24 |
+
|
25 |
+
def warp_image_torch(rgb_t_numpy: np.ndarray, flow_numpy: np.ndarray) -> np.ndarray:
|
26 |
+
image = tr.tensor(rgb_t_numpy).permute(0, 3, 1, 2).float().to(device)
|
27 |
+
flow = tr.tensor(flow_numpy).float().to(device)
|
28 |
+
|
29 |
+
H, W = image.shape[-2:]
|
30 |
+
|
31 |
+
# Create normalized meshgrid [-1,1] for grid_sample
|
32 |
+
grid_x, grid_y = tr.meshgrid(
|
33 |
+
tr.linspace(-1, 1, W, device=image.device),
|
34 |
+
tr.linspace(-1, 1, H, device=image.device),
|
35 |
+
indexing="xy",
|
36 |
+
)
|
37 |
+
grid = tr.stack((grid_x, grid_y), dim=-1) # (H, W, 2), normalized [-1, 1]
|
38 |
+
|
39 |
+
new_grid = grid - flow # why minus ?
|
40 |
+
|
41 |
+
# Warp image using grid_sample
|
42 |
+
warped = F.grid_sample(image, new_grid, mode="bilinear", align_corners=True)
|
43 |
+
warped_numpy = warped.permute(0, 2, 3, 1).cpu().numpy()
|
44 |
+
return warped_numpy
|
45 |
+
|
46 |
+
@lru_cache(maxsize=100)
|
47 |
+
def _npload(pth: str) -> np.ndarray:
|
48 |
+
return np.load(pth)["arr_0"]
|
49 |
+
|
50 |
+
def get_args() -> Namespace:
|
51 |
+
parser = ArgumentParser()
|
52 |
+
parser.add_argument("video_path", type=Path)
|
53 |
+
parser.add_argument("semantic_preds_path", type=Path, help="Path to 0.npz,..., N.npz argmaxed predictions")
|
54 |
+
parser.add_argument("--frames", type=str)
|
55 |
+
parser.add_argument("--batch_size", type=int, default=1)
|
56 |
+
parser.add_argument("--delta", type=int, default=1)
|
57 |
+
parser.add_argument("--output_path", "-o", type=Path, help="Path to output csv file")
|
58 |
+
args = parser.parse_args()
|
59 |
+
assert args.delta >= 1, args.delta
|
60 |
+
assert args.batch_size >= 1, args.batch_size
|
61 |
+
assert args.output_path.suffix == ".csv", args.output_path
|
62 |
+
assert args.semantic_preds_path.exists(), args.semantic_preds_path
|
63 |
+
args.frames = list(range(*map(int, args.frames.split("..")))) if args.frames is not None else None
|
64 |
+
return args
|
65 |
+
|
66 |
+
def main(args: Namespace):
|
67 |
+
video = FFmpegVideo(args.video_path)
|
68 |
+
h, w = video.shape[1:3]
|
69 |
+
raft_r = FlowRaft(name="flow_raft", dependencies=[], inference_width=w, inference_height=h, iters=5,
|
70 |
+
small=False, delta=args.delta)
|
71 |
+
raft_l = FlowRaft(name="flow_raft", dependencies=[], inference_width=w, inference_height=h, iters=5,
|
72 |
+
small=False, delta=-args.delta)
|
73 |
+
raft_r.device = raft_l.device = device
|
74 |
+
raft_r.vre_setup() if raft_r.setup_called is False else None
|
75 |
+
raft_l.vre_setup() if raft_l.setup_called is False else None
|
76 |
+
|
77 |
+
frames = list(range(len(video))) if args.frames is None else args.frames
|
78 |
+
|
79 |
+
if args.output_path.exists():
|
80 |
+
with AtomicOpen(args.output_path, "r") as f:
|
81 |
+
data = f.readlines()[1:]
|
82 |
+
done_frames = list(map(int, [x.split(",")[0] for x in data]))
|
83 |
+
b4 = len(frames)
|
84 |
+
frames = [f for f in frames if f not in done_frames]
|
85 |
+
print(f"Eliminating previously computed frames. Before: {b4} frames. After: {len(frames)} frames left")
|
86 |
+
else:
|
87 |
+
with AtomicOpen(args.output_path, "w") as f:
|
88 |
+
f.write("frame, delta, score\n")
|
89 |
+
|
90 |
+
batches = [frames[i:i + args.batch_size] for i in range(0, len(frames), args.batch_size)]
|
91 |
+
assert all((args.semantic_preds_path / f"{f}.npz").exists() for f in frames)
|
92 |
+
|
93 |
+
for ixs in tqdm(batches):
|
94 |
+
ixs_l = [clip(ix + raft_l.delta, 0, len(video) - 1) for ix in ixs]
|
95 |
+
ixs_r = [clip(ix + raft_r.delta, 0, len(video) - 1) for ix in ixs]
|
96 |
+
|
97 |
+
rgb = video[ixs]
|
98 |
+
rgb_l = video[ixs_l]
|
99 |
+
rgb_r = video[ixs_r]
|
100 |
+
sema = np.array([_npload(str(args.semantic_preds_path / f"{ix}.npz")) for ix in ixs])
|
101 |
+
sema_l = np.array([_npload(str(args.semantic_preds_path / f"{ix}.npz")) for ix in ixs_l])
|
102 |
+
sema_r = np.array([_npload(str(args.semantic_preds_path / f"{ix}.npz")) for ix in ixs_r])
|
103 |
+
|
104 |
+
flow_l = _vre_inference(raft_l, video, ixs)
|
105 |
+
rgb_warp_l = warp_image_torch(rgb, flow_l)
|
106 |
+
mask_l = rgb_warp_l.sum(axis=-1) != 0
|
107 |
+
sema_warp_l = warp_image_torch(sema[..., None], flow_l)[..., 0].round().astype(np.uint8)
|
108 |
+
diff_sema_l = (sema_l != sema_warp_l).astype(int)
|
109 |
+
|
110 |
+
flow_r = _vre_inference(raft_r, video, ixs)
|
111 |
+
rgb_warp_r = warp_image_torch(rgb, flow_r)
|
112 |
+
mask_r = rgb_warp_r.sum(axis=-1) != 0
|
113 |
+
sema_warp_r = warp_image_torch(sema[..., None], flow_r)[..., 0].round().astype(np.uint8)
|
114 |
+
diff_sema_r = (sema_r != sema_warp_r).astype(int)
|
115 |
+
|
116 |
+
# best score = 1 (all agree). Worst score = 0 (none agree). 1/2 means either left or right flow agrees.
|
117 |
+
score = 1 - (diff_sema_l + diff_sema_r) / 2
|
118 |
+
mask = mask_l * mask_r
|
119 |
+
score_valid_perc = [100 * (score[i] * mask[i]).sum() / mask[i].sum() for i in range(len(ixs))]
|
120 |
+
|
121 |
+
with AtomicOpen(args.output_path, "a+") as f:
|
122 |
+
for i in range(len(ixs)):
|
123 |
+
f.write(f"{ixs[i]}, {args.delta}, {score_valid_perc[i]:.2f}\n")
|
124 |
+
|
125 |
+
if __name__ == "__main__":
|
126 |
+
main(get_args())
|
scripts/collage_comparison/wip.py
CHANGED
@@ -3,6 +3,7 @@ import os
|
|
3 |
os.environ["VRE_LOGLEVEL"] = "0"
|
4 |
from argparse import ArgumentParser, Namespace
|
5 |
import torch as tr
|
|
|
6 |
import numpy as np
|
7 |
from pathlib import Path
|
8 |
import sys
|
@@ -14,9 +15,9 @@ from lightning_module_enhanced.utils import to_device
|
|
14 |
from omegaconf import DictConfig
|
15 |
from loggez import loggez_logger as logger
|
16 |
from vre.readers import MultiTaskDataset
|
17 |
-
from functools import partial
|
18 |
from vre.utils import collage_fn, image_add_title, colorize_semantic_segmentation, lo, image_resize, image_write
|
19 |
from vre import FFmpegVideo
|
|
|
20 |
from PIL import Image
|
21 |
import subprocess
|
22 |
from tqdm import tqdm
|
@@ -112,6 +113,7 @@ def inference(model: LME | str, batch: dict, n_ens: int | None = None) -> np.nda
|
|
112 |
item = acc_sema[0]
|
113 |
return item.permute(1, 2, 0).numpy().argmax(-1).astype(np.uint8)
|
114 |
|
|
|
115 |
def get_args() -> Namespace:
|
116 |
parser = ArgumentParser()
|
117 |
parser.add_argument("video_path", type=Path)
|
@@ -148,7 +150,7 @@ def main(args: Namespace):
|
|
148 |
# # print(" ".join(args))
|
149 |
# subprocess.run(args=args, env={**os.environ.copy(), **{"VRE_DEVICE": "cuda" if tr.cuda.is_available() else "cpu", "CUDA_VISIBLE_DEVICES": "7"}})
|
150 |
|
151 |
-
assert (vre_dir / "rgb").exists(), vre_dir
|
152 |
for frame in frames:
|
153 |
assert (vre_dir / f"rgb/npz/{frame}.npz").exists(), frame
|
154 |
weights_path = "/export/home/proiecte/aux/mihai_cristian.pirvu/code/neo-transformers/ckpts/safeuav/sema/mae-4M-ext/epoch=37-val_semantic_output_mean_iou=0.470.ckpt"
|
@@ -159,13 +161,12 @@ def main(args: Namespace):
|
|
159 |
task_types = build_representations((cfg := model_mae.hparams.cfg).data.dataset)
|
160 |
stats = model_mae.hparams.stats
|
161 |
|
|
|
|
|
162 |
test_base_reader2 = MultiTaskDataset(vre_dir, task_types={k: task_types[k] for k in {"semantic_mask2former_r50_mapillary_converted", "rgb"}},
|
163 |
**{**cfg.data.parameters, "task_names": ["rgb", "semantic_mask2former_r50_mapillary_converted"], "normalization": None},
|
164 |
statistics=stats)
|
165 |
reader2 = VITMultiTaskDataset(test_base_reader2)
|
166 |
-
plot_fns2 = dict(zip(reader2.task_names, [partial(vre_plot_fn, node=n) for n in reader2.tasks]))
|
167 |
-
fix_plot_fns_(plot_fns2, task_types, stats, cfg["data"]["parameters"]["normalization"])
|
168 |
-
|
169 |
model_tasks = [t for t in cfg.data.parameters.task_names
|
170 |
if t not in cfg.train.algorithm.masking.parameters.excluded_tasks]
|
171 |
_task_types = {k: v for k, v in task_types.items() if k in model_tasks}
|
@@ -181,30 +182,32 @@ def main(args: Namespace):
|
|
181 |
[(out_dir / x).mkdir(exist_ok=True) for x in ["ens", "m2f", "distil", "collage"]]
|
182 |
|
183 |
for frame_ix in tqdm(frames):
|
184 |
-
if (out_file := out_dir / f"collage/{frame_ix}.jpg").exists():
|
185 |
-
continue
|
186 |
batch_m2f = reader2.collate_fn([reader2[frame_ix]])
|
187 |
batch = reader.collate_fn([reader[frame_ix]])
|
188 |
-
rgb =
|
189 |
|
190 |
-
if not (
|
191 |
y = inference("semantic_mask2former_r50_mapillary_converted", batch_m2f)
|
192 |
-
np.savez_compressed(
|
193 |
-
|
194 |
|
195 |
-
if not (
|
196 |
y = inference(model_mae, batch, n_ens=30)
|
197 |
-
np.savez_compressed(
|
198 |
-
|
199 |
|
200 |
-
if not (
|
201 |
y = inference(model_distil, batch)
|
202 |
-
np.savez_compressed(
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
|
|
|
|
|
|
|
|
208 |
|
209 |
if __name__ == "__main__":
|
210 |
main(get_args())
|
|
|
3 |
os.environ["VRE_LOGLEVEL"] = "0"
|
4 |
from argparse import ArgumentParser, Namespace
|
5 |
import torch as tr
|
6 |
+
from torch.nn import functional as F
|
7 |
import numpy as np
|
8 |
from pathlib import Path
|
9 |
import sys
|
|
|
15 |
from omegaconf import DictConfig
|
16 |
from loggez import loggez_logger as logger
|
17 |
from vre.readers import MultiTaskDataset
|
|
|
18 |
from vre.utils import collage_fn, image_add_title, colorize_semantic_segmentation, lo, image_resize, image_write
|
19 |
from vre import FFmpegVideo
|
20 |
+
from functools import partial
|
21 |
from PIL import Image
|
22 |
import subprocess
|
23 |
from tqdm import tqdm
|
|
|
113 |
item = acc_sema[0]
|
114 |
return item.permute(1, 2, 0).numpy().argmax(-1).astype(np.uint8)
|
115 |
|
116 |
+
|
117 |
def get_args() -> Namespace:
|
118 |
parser = ArgumentParser()
|
119 |
parser.add_argument("video_path", type=Path)
|
|
|
150 |
# # print(" ".join(args))
|
151 |
# subprocess.run(args=args, env={**os.environ.copy(), **{"VRE_DEVICE": "cuda" if tr.cuda.is_available() else "cpu", "CUDA_VISIBLE_DEVICES": "7"}})
|
152 |
|
153 |
+
assert (vre_dir / "rgb").exists(), vre_dir # run vre otherwise
|
154 |
for frame in frames:
|
155 |
assert (vre_dir / f"rgb/npz/{frame}.npz").exists(), frame
|
156 |
weights_path = "/export/home/proiecte/aux/mihai_cristian.pirvu/code/neo-transformers/ckpts/safeuav/sema/mae-4M-ext/epoch=37-val_semantic_output_mean_iou=0.470.ckpt"
|
|
|
161 |
task_types = build_representations((cfg := model_mae.hparams.cfg).data.dataset)
|
162 |
stats = model_mae.hparams.stats
|
163 |
|
164 |
+
h, w = video.shape[1:3]
|
165 |
+
|
166 |
test_base_reader2 = MultiTaskDataset(vre_dir, task_types={k: task_types[k] for k in {"semantic_mask2former_r50_mapillary_converted", "rgb"}},
|
167 |
**{**cfg.data.parameters, "task_names": ["rgb", "semantic_mask2former_r50_mapillary_converted"], "normalization": None},
|
168 |
statistics=stats)
|
169 |
reader2 = VITMultiTaskDataset(test_base_reader2)
|
|
|
|
|
|
|
170 |
model_tasks = [t for t in cfg.data.parameters.task_names
|
171 |
if t not in cfg.train.algorithm.masking.parameters.excluded_tasks]
|
172 |
_task_types = {k: v for k, v in task_types.items() if k in model_tasks}
|
|
|
182 |
[(out_dir / x).mkdir(exist_ok=True) for x in ["ens", "m2f", "distil", "collage"]]
|
183 |
|
184 |
for frame_ix in tqdm(frames):
|
|
|
|
|
185 |
batch_m2f = reader2.collate_fn([reader2[frame_ix]])
|
186 |
batch = reader.collate_fn([reader[frame_ix]])
|
187 |
+
rgb = video[frame_ix]
|
188 |
|
189 |
+
if not (pth1 := out_dir / f"m2f/{frame_ix}.npz").exists():
|
190 |
y = inference("semantic_mask2former_r50_mapillary_converted", batch_m2f)
|
191 |
+
np.savez_compressed(pth1, y)
|
192 |
+
m2f = np.load(pth1)["arr_0"]
|
193 |
|
194 |
+
if not (pth2 := out_dir / f"ens/{frame_ix}.npz").exists():
|
195 |
y = inference(model_mae, batch, n_ens=30)
|
196 |
+
np.savez_compressed(pth2, y)
|
197 |
+
ens = np.load(pth2)["arr_0"]
|
198 |
|
199 |
+
if not (pth3 := out_dir / f"distil/{frame_ix}.npz").exists():
|
200 |
y = inference(model_distil, batch)
|
201 |
+
np.savez_compressed(pth3, y)
|
202 |
+
distil = np.load(pth3)["arr_0"]
|
203 |
+
|
204 |
+
if not (out_file := out_dir / f"collage/{frame_ix}.jpg").exists():
|
205 |
+
m2f_img = colorize_dronescapes(m2f)
|
206 |
+
ens_img = colorize_dronescapes(ens)
|
207 |
+
distil_img = colorize_dronescapes(distil)
|
208 |
+
titles = ["RGB", "Mask2Former (216M)", "Ensembles-30 (4M)", "Distillation (4M)"]
|
209 |
+
collage = collage_fn([rgb, m2f_img, ens_img, distil_img], titles=titles, rows_cols=(2, 2), size_px=40)
|
210 |
+
image_write(collage, out_file)
|
211 |
|
212 |
if __name__ == "__main__":
|
213 |
main(get_args())
|
scripts/collage_comparison/wip.sh
CHANGED
@@ -35,4 +35,4 @@ done
|
|
35 |
wait
|
36 |
|
37 |
# Combine output frames into a video using ffmpeg
|
38 |
-
ffmpeg -framerate $fps -i out_"$video_file"/%d.jpg -c:v libx265 -pix_fmt yuv420p out_"$video_file"/collage.mp4
|
|
|
35 |
wait
|
36 |
|
37 |
# Combine output frames into a video using ffmpeg
|
38 |
+
ffmpeg -framerate $fps -i out_"$video_file"/collage/%d.jpg -c:v libx265 -pix_fmt yuv420p out_"$video_file"/collage/collage.mp4
|