Meehai commited on
Commit
c68c5d3
·
1 Parent(s): dba7146

updated readme.

Browse files
Files changed (4) hide show
  1. README.md +41 -1
  2. logo.png +3 -0
  3. split.png +3 -0
  4. vre_dronescapes/commands.txt +13 -1
README.md CHANGED
@@ -4,6 +4,46 @@ This dataset is an extension of the original [dronescapes dataset](https://huggi
4
 
5
  ![Logo](logo.png)
6
 
7
- WIP
8
 
 
9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
 
5
  ![Logo](logo.png)
6
 
7
+ # 1. Downloading the data
8
 
9
+ ## Option 1. Download the pre-processed dataset from HuggingFace repository
10
 
11
+ ```
12
+ git lfs install # Make sure you have git-lfs installed (https://git-lfs.com)
13
+ git clone https://huggingface.co/datasets/Meehai/dronescapes
14
+ ```
15
+
16
+ ## Option 2. Generate all the modalities from raw videos
17
+
18
+ Follow the instructions under [this file](./vre_dronescapes/commands.txt).
19
+
20
+ Note: you can generate all the data except `semantic_segprop8` (human annotated), `depth_sfm_manual202204` and
21
+ `normals_sfm_manual202204` (SfM tool was used).
22
+
23
+ ## 2. Using the data
24
+
25
+ As per the split from the paper:
26
+
27
+ <details>
28
+ <summary> Split </summary>
29
+ <img src="split.png">
30
+ </details>
31
+
32
+ The data is in `data/*` (if you used git clone) (it should match even if you download from huggingface).
33
+
34
+ ## 2.1 Using the provided viewer
35
+
36
+ ![Collage](collage.png)
37
+
38
+ The simplest way to explore the data is to use the [provided notebook](scripts/dronescapes_viewer.ipynb). Upon running
39
+ it, you should get a collage with all the default tasks, like the picture at the top.
40
+
41
+ For a CLI-only method, you can use the provided reader as well:
42
+
43
+ ```
44
+ python scripts/dronescapes_viewer.py data/test_set_annotated_only/ # or any of the 8 directories in data/
45
+ ```
46
+
47
+ ## 3. Evaluation
48
+
49
+ See the original [dronescapes evaluation description & benchmark](https://huggingface.co/datasets/Meehai/dronescapes#3-evaluation-for-semantic-segmentation) for this.
logo.png ADDED

Git LFS Details

  • SHA256: 332901bc02631f7d3e38f7153e145575f785f6821a9c44e0bff0487124662e6d
  • Pointer size: 132 Bytes
  • Size of remote file: 1.39 MB
split.png ADDED

Git LFS Details

  • SHA256: 368f6c89de5c78b81af20a6dcdeadd16ee770c9b614a99e95391732504d6157b
  • Pointer size: 131 Bytes
  • Size of remote file: 118 kB
vre_dronescapes/commands.txt CHANGED
@@ -1,5 +1,6 @@
1
- # rgb semantic_mask2former_mapillary_49189528_0 semantic_mask2former_swin_mapillary_converted depth_marigold semantic_mask2former_swin_mapillary_converted semantic_mask2former_swin_coco_converted opticalflow_rife normals_svd(depth_marigold)
2
 
 
3
  tmux new -s vre_atanasie
4
  VRE_DEVICE=cuda CUDA_VISIBLE_DEVICES=0 vre ../raw_data/videos/atanasie_DJI_0652_full/atanasie_DJI_0652_full_540p.mp4 -o atanasie_DJI_0652_full/ --config_path cfg.yaml --output_dir_exists_mode skip_computed --representations rgb semantic_mask2former_mapillary_49189528_0 semantic_mask2former_swin_mapillary_converted --n_threads_data_storer 2 -I semantic_mapper.py:get_new_semantic_mapped_tasks;
5
 
@@ -25,3 +26,14 @@ VRE_DEVICE=cuda CUDA_VISIBLE_DEVICES=6 vre ../raw_data/videos/slanic_DJI_0956_09
25
  tmux new -s vre_olanesti_jupiter
26
  VRE_DEVICE=cuda CUDA_VISIBLE_DEVICES=7 vre ../raw_data/videos/jupiter_DJI_0703_0704_0705_combined_sliced_10650_21715/jupiter_DJI_0703_0704_0705_combined_sliced_10650_21715_540p.mp4 -o jupiter_DJI_0703_0704_0705_combined_sliced_10650_21715/ --config_path cfg.yaml --output_dir_exists_mode skip_computed --representations rgb semantic_mask2former_mapillary_49189528_0 semantic_mask2former_swin_mapillary_converted --n_threads_data_storer 2 -I semantic_mapper.py:get_new_semantic_mapped_tasks
27
  VRE_DEVICE=cuda CUDA_VISIBLE_DEVICES=7 vre ../raw_data/videos/olanesti_DJI_0416_full/olanesti_DJI_0416_full_540p.mp4 -o olanesti_DJI_0416_full/ --config_path cfg.yaml --output_dir_exists_mode skip_computed --representations rgb semantic_mask2former_mapillary_49189528_0 semantic_mask2former_swin_mapillary_converted --n_threads_data_storer 2 -I semantic_mapper.py:get_new_semantic_mapped_tasks
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Run VRE on the raw videos
2
 
3
+ # rgb semantic_mask2former_mapillary_49189528_0 semantic_mask2former_swin_mapillary_converted depth_marigold semantic_mask2former_swin_mapillary_converted semantic_mask2former_swin_coco_converted opticalflow_rife normals_svd(depth_marigold)
4
  tmux new -s vre_atanasie
5
  VRE_DEVICE=cuda CUDA_VISIBLE_DEVICES=0 vre ../raw_data/videos/atanasie_DJI_0652_full/atanasie_DJI_0652_full_540p.mp4 -o atanasie_DJI_0652_full/ --config_path cfg.yaml --output_dir_exists_mode skip_computed --representations rgb semantic_mask2former_mapillary_49189528_0 semantic_mask2former_swin_mapillary_converted --n_threads_data_storer 2 -I semantic_mapper.py:get_new_semantic_mapped_tasks;
6
 
 
26
  tmux new -s vre_olanesti_jupiter
27
  VRE_DEVICE=cuda CUDA_VISIBLE_DEVICES=7 vre ../raw_data/videos/jupiter_DJI_0703_0704_0705_combined_sliced_10650_21715/jupiter_DJI_0703_0704_0705_combined_sliced_10650_21715_540p.mp4 -o jupiter_DJI_0703_0704_0705_combined_sliced_10650_21715/ --config_path cfg.yaml --output_dir_exists_mode skip_computed --representations rgb semantic_mask2former_mapillary_49189528_0 semantic_mask2former_swin_mapillary_converted --n_threads_data_storer 2 -I semantic_mapper.py:get_new_semantic_mapped_tasks
28
  VRE_DEVICE=cuda CUDA_VISIBLE_DEVICES=7 vre ../raw_data/videos/olanesti_DJI_0416_full/olanesti_DJI_0416_full_540p.mp4 -o olanesti_DJI_0416_full/ --config_path cfg.yaml --output_dir_exists_mode skip_computed --representations rgb semantic_mask2former_mapillary_49189528_0 semantic_mask2former_swin_mapillary_converted --n_threads_data_storer 2 -I semantic_mapper.py:get_new_semantic_mapped_tasks
29
+
30
+ # Split dataset in the relevant 8 splits
31
+
32
+ python scripts/symlinks_from_txt_list.py vre_dronescapes/ --copy_files --txt_file txt_files/annotated_and_segprop/train_files_11664.txt -o data/train_set
33
+ python scripts/symlinks_from_txt_list.py vre_dronescapes/ --copy_files --txt_file txt_files/annotated_and_segprop/val_files_605.txt -o data/validation_set
34
+ python scripts/symlinks_from_txt_list.py vre_dronescapes/ --copy_files --txt_file txt_files/annotated_and_segprop/semisup_files_11299.txt -o data/semisupervised_set
35
+ python scripts/symlinks_from_txt_list.py vre_dronescapes/ --copy_files --txt_file txt_files/annotated_and_segprop/test_files_5603.txt -o data/test_set
36
+ python scripts/symlinks_from_txt_list.py vre_dronescapes/ --copy_files --txt_file txt_files/manually_annotated_files/train_files_218.txt -o data/train_set_annotated_only
37
+ python scripts/symlinks_from_txt_list.py vre_dronescapes/ --copy_files --txt_file txt_files/manually_annotated_files/val_files_15.txt -o data/validation_set_annotated_only
38
+ python scripts/symlinks_from_txt_list.py vre_dronescapes/ --copy_files --txt_file txt_files/manually_annotated_files/semisup_files_207.txt -o data/semisupervised_set_annotated_nly
39
+ python scripts/symlinks_from_txt_list.py vre_dronescapes/ --copy_files --txt_file txt_files/manually_annotated_files/test_files_116.txt -o data/test_set_annotated_only