File size: 11,839 Bytes
6d72a48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e0c0b7
 
 
6d72a48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from mask2former import Mask2Former\n",
    "import torch as tr\n",
    "import os\n",
    "from datetime import datetime\n",
    "import numpy as np\n",
    "from PIL import Image\n",
    "from vre.utils import (FFmpegVideo, collage_fn, semantic_mapper, FakeVideo,\n",
    "                       colorize_semantic_segmentation, image_resize, image_write)\n",
    "from pathlib import Path\n",
    "import pandas as pd\n",
    "from torchmetrics.functional.classification import multiclass_stat_scores\n",
    "\n",
    "%load_ext autoreload\n",
    "%autoreload 2\n",
    "%matplotlib inline"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "mapi_mapping = {\n",
    "    \"land\": [\"Terrain\", \"Sand\", \"Snow\"],\n",
    "    \"forest\": [\"Vegetation\"],\n",
    "    \"residential\": [\"Building\", \"Utility Pole\", \"Pole\", \"Fence\", \"Wall\", \"Manhole\", \"Street Light\", \"Curb\",\n",
    "                    \"Guard Rail\", \"Caravan\", \"Junction Box\", \"Traffic Sign (Front)\", \"Billboard\", \"Banner\",\n",
    "                    \"Mailbox\", \"Traffic Sign (Back)\", \"Bench\", \"Fire Hydrant\", \"Trash Can\", \"CCTV Camera\",\n",
    "                    \"Traffic Light\", \"Barrier\", \"Rail Track\", \"Phone Booth\", \"Curb Cut\", \"Traffic Sign Frame\",\n",
    "                    \"Bike Rack\"],\n",
    "    \"road\": [\"Road\", \"Lane Marking - General\", \"Sidewalk\", \"Bridge\", \"Other Vehicle\", \"Motorcyclist\", \"Pothole\",\n",
    "                \"Catch Basin\", \"Car Mount\", \"Tunnel\", \"Parking\", \"Service Lane\", \"Lane Marking - Crosswalk\",\n",
    "                \"Pedestrian Area\", \"On Rails\", \"Bike Lane\", \"Crosswalk - Plain\"],\n",
    "    \"little-objects\": [\"Car\", \"Person\", \"Truck\", \"Boat\", \"Wheeled Slow\", \"Trailer\", \"Ground Animal\", \"Bicycle\",\n",
    "                        \"Motorcycle\", \"Bird\", \"Bus\", \"Ego Vehicle\", \"Bicyclist\", \"Other Rider\"],\n",
    "    \"water\": [\"Water\"],\n",
    "    \"sky\": [\"Sky\"],\n",
    "    \"hill\": [\"Mountain\"]\n",
    "}\n",
    "\n",
    "coco_mapping = {\n",
    "    \"land\": [\"grass-merged\", \"dirt-merged\", \"sand\", \"gravel\", \"flower\", \"playingfield\", \"snow\", \"platform\"],\n",
    "    \"forest\": [\"tree-merged\"],\n",
    "    \"residential\": [\"building-other-merged\", \"house\", \"roof\", \"fence-merged\", \"wall-other-merged\", \"wall-brick\",\n",
    "                    \"rock-merged\", \"tent\", \"bridge\", \"bench\", \"window-other\", \"fire hydrant\", \"traffic light\",\n",
    "                    \"umbrella\", \"wall-stone\", \"clock\", \"chair\", \"sports ball\", \"floor-other-merged\",\n",
    "                    \"floor-wood\", \"stop sign\", \"door-stuff\", \"banner\", \"light\", \"net\", \"surfboard\", \"frisbee\",\n",
    "                    \"rug-merged\", \"potted plant\", \"parking meter\", \"tennis racket\", \"sink\", \"hair drier\",\n",
    "                    \"food-other-merged\", \"curtain\", \"mirror-stuff\", \"baseball glove\", \"baseball bat\", \"zebra\",\n",
    "                    \"spoon\", \"towel\", \"donut\", \"apple\", \"handbag\", \"couch\", \"orange\", \"wall-wood\",\n",
    "                    \"window-blind\", \"pizza\", \"cabinet-merged\", \"skateboard\", \"remote\", \"bottle\", \"bed\",\n",
    "                    \"table-merged\", \"backpack\", \"bear\", \"wall-tile\", \"cup\", \"scissors\", \"ceiling-merged\",\n",
    "                    \"oven\", \"cell phone\", \"microwave\", \"toaster\", \"carrot\", \"fork\", \"giraffe\", \"paper-merged\",\n",
    "                    \"cat\", \"book\", \"sandwich\", \"wine glass\", \"pillow\", \"blanket\", \"tie\", \"bowl\", \"snowboard\",\n",
    "                    \"vase\", \"toothbrush\", \"toilet\", \"dining table\", \"laptop\", \"tv\", \"cardboard\", \"keyboard\",\n",
    "                    \"hot dog\", \"cake\", \"knife\", \"suitcase\", \"refrigerator\", \"fruit\", \"shelf\", \"counter\", \"skis\",\n",
    "                    \"banana\", \"teddy bear\", \"broccoli\", \"mouse\"],\n",
    "    \"road\": [\"road\", \"railroad\", \"pavement-merged\", \"stairs\"],\n",
    "    \"little-objects\": [\"truck\", \"car\", \"boat\", \"horse\", \"person\", \"train\", \"elephant\", \"bus\", \"bird\", \"sheep\",\n",
    "                        \"cow\", \"motorcycle\", \"dog\", \"bicycle\", \"airplane\", \"kite\"],\n",
    "    \"water\": [\"river\", \"water-other\", \"sea\"],\n",
    "    \"sky\": [\"sky-other-merged\"],\n",
    "    \"hill\": [\"mountain-merged\"]\n",
    "}\n",
    "\n",
    "color_map = [[0, 255, 0], [0, 127, 0], [255, 255, 0], [255, 255, 255],\n",
    "             [255, 0, 0], [0, 0, 255], [0, 255, 255], [127, 127, 63]]\n",
    "\n",
    "def eval(y: np.ndarray, gt: np.ndarray) -> float:\n",
    "    tp, fp, _, fn = multiclass_stat_scores(tr.from_numpy(y), tr.from_numpy(gt), num_classes=8, average=None)[:, 0:4].T\n",
    "    iou = (tp / (tp + fp + fn)).nan_to_num(0, 0, 0)\n",
    "    weights = tr.FloatTensor([0.28172092, 0.30589653, 0.13341699, 0.05937348,\n",
    "                              0.00474491, 0.05987466, 0.08660721, 0.06836531])\n",
    "    iou_avg = (iou * weights).sum().item()\n",
    "    return iou_avg\n",
    "\n",
    "def collage_fn2(images: list[np.ndarray], size: tuple[int, int], **kwargs):\n",
    "    images_rsz = [image_resize(image, *size) for image in images]\n",
    "    return collage_fn(images_rsz, **kwargs)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "video = FFmpegVideo((\"/export/home/proiecte/aux/mihai_cristian.pirvu/datasets/dronescapes/raw_data/videos\"\n",
    "                     \"/norway_210821_DJI_0015_full/DJI_0015.MP4\"))\n",
    "gt_dir = (\"/export/home/proiecte/aux/mihai_cristian.pirvu/datasets/dronescapes/data/\"\n",
    "          \"test_set_annotated_only/semantic_segprop8/norway_210821_DJI_0015_full_\")\n",
    "print(video)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "model_id = \"49189528_0\" # \"49189528_1\" (r50/mapillary), \"47429163_0\" (swin/coco), \"49189528_0\" (swin/mapillary)\n",
    "os.environ[\"VRE_DEVICE\"] = device = \"cuda\" #\"cpu\"\n",
    "os.environ[\"CUDA_VISIBLE_DEVICES\"] = \"7\"\n",
    "\n",
    "m2f_1 = Mask2Former(model_id, disk_data_argmax=False, name=\"m2f\", dependencies=[])\n",
    "m2f_2 = Mask2Former(\"47429163_0\", disk_data_argmax=False, name=\"m2f\", dependencies=[])\n",
    "m2f_3 = Mask2Former(\"49189528_1\", disk_data_argmax=False, name=\"m2f\", dependencies=[])\n",
    "\n",
    "m2f_1.device = \"cuda\" if tr.cuda.is_available() else \"cpu\"\n",
    "m2f_2.device = \"cuda\" if tr.cuda.is_available() else \"cpu\"\n",
    "m2f_3.device = \"cuda\" if tr.cuda.is_available() else \"cpu\"\n",
    "\n",
    "metrics = {}"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "frame_ix = 900\n",
    "def load_gt(ix: int) -> np.ndarray:\n",
    "    gt_path = f\"{gt_dir}{ix}.npz\"\n",
    "    assert Path(gt_path).exists(), gt_path\n",
    "    gt_data = np.load(gt_path)[\"arr_0\"]\n",
    "    return gt_data\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "def m2f_do_one(m2f: Mask2Former, frame: np.ndarray, gt_data_shape, mapping: dict) -> tuple[np.ndarray, np.ndarray]:\n",
    "    m2f_1.vre_free() if m2f_1.setup_called and id(m2f) != id(m2f_1) else None\n",
    "    m2f_2.vre_free() if m2f_2.setup_called and id(m2f) != id(m2f_1) else None\n",
    "    m2f_3.vre_free() if m2f_3.setup_called and id(m2f) != id(m2f_1) else None\n",
    "    m2f.vre_setup() if not m2f.setup_called else None\n",
    "\n",
    "    now = datetime.now()\n",
    "    m2f.data = None\n",
    "    m2f.compute(FakeVideo(frame[None], fps=1), [0])\n",
    "    print(f\"Pred took: {datetime.now() - now}\"); now = datetime.now()\n",
    "    m2f_mapped = semantic_mapper(m2f.data.output.argmax(-1)[0], mapping, m2f.classes)\n",
    "    m2f_mapped = image_resize(m2f_mapped, *gt_data_shape, interpolation=\"nearest\")\n",
    "    print(f\"semantic_mapper took: {datetime.now() - now}\"); now = datetime.now()\n",
    "    m2f_colorized = colorize_semantic_segmentation(m2f_mapped[None], list(mapping), color_map, rgb=rgb_rsz[None])[0]\n",
    "    print(f\"colorize took: {datetime.now() - now}\"); now = datetime.now()\n",
    "    return m2f_mapped, m2f_colorized\n",
    "\n",
    "def eval_and_store(frame, frame_ix, res_all: list[tuple[np.ndarray], np.ndarray], gt_color: np.ndarray,\n",
    "                   columns: list[str]):\n",
    "    collage_data = []\n",
    "    for item in res_all:\n",
    "        collage_data.extend([frame, item[1], gt_color])\n",
    "    clg = collage_fn2(collage_data, size=gt_color.shape[0:2], rows_cols=(-1, 3))\n",
    "    image_write(clg, f\"collage_{frame_ix}.png\")\n",
    "    display(Image.fromarray(clg))\n",
    "    evals = [eval(item[0], gt_data) for item in res_all]\n",
    "\n",
    "    try:\n",
    "        metrics = pd.read_csv(\"metrics.csv\", index_col=0)\n",
    "    except Exception as e:\n",
    "        metrics = pd.DataFrame(None, columns=columns)\n",
    "\n",
    "    metrics.loc[frame_ix] = evals\n",
    "    display(metrics.sort_index())\n",
    "    metrics.to_csv(\"metrics.csv\")\n",
    "\n",
    "for frame_ix in [60, 120, 300, 600, 900, 1200, 1500]:\n",
    "    frame, gt_data = video[frame_ix], load_gt(frame_ix)\n",
    "    rgb_rsz = image_resize(frame, *gt_data.shape)\n",
    "    gt_color = colorize_semantic_segmentation(gt_data[None], classes=list(mapi_mapping), color_map=color_map,\n",
    "                                            rgb=rgb_rsz[None])[0]\n",
    "    mapped1, colorized1 = m2f_do_one(m2f_1, frame, gt_data.shape, mapi_mapping)\n",
    "    mapped2, colorized2 = m2f_do_one(m2f_2, frame, gt_data.shape, coco_mapping)\n",
    "    mapped3, colorized3 = m2f_do_one(m2f_3, frame, gt_data.shape, mapi_mapping)\n",
    "\n",
    "    mapped1_rsz, colorized1_rsz = m2f_do_one(m2f_1, rgb_rsz, gt_data.shape, mapi_mapping)\n",
    "    mapped2_rsz, colorized2_rsz = m2f_do_one(m2f_2, rgb_rsz, gt_data.shape, coco_mapping)\n",
    "    mapped3_rsz, colorized3_rsz = m2f_do_one(m2f_3, rgb_rsz, gt_data.shape, mapi_mapping)\n",
    "\n",
    "    all_res = [\n",
    "        (mapped1, colorized1), (mapped2, colorized2), (mapped3, colorized3),\n",
    "        (mapped1_rsz, colorized1_rsz), (mapped2_rsz, colorized2_rsz), (mapped3_rsz, colorized3_rsz),\n",
    "    ]\n",
    "    columns = [\"swin_mapillary\", \"swin_coco\", \"r50_mapillary\",\n",
    "               \"swin_mapillary_rsz\", \"swin_coco_rsz\", \"r50_mapillary_rsz\"]\n",
    "\n",
    "    eval_and_store(frame, frame_ix, all_res, gt_color, columns)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "ngc",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.6"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}